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ABSTRACT

The advent of large area photometric surveys has raised a great deal of interest in the possibility of using broadband photometric
data, instead of spectra, to measure the size of the broad line region of active galactic nuclei. We describe here a new method that
uses time-delay lensed quasars where one or several images are affected by microlensing due to stars in the lensing galaxy. Because
microlensing decreases (or increases) the flux of the continuum compared to the broad line region, it changes the contrast between
these two emission components. We show that this effect can be used to effectively disentangle the intrinsic variability of those two
regions, offering the opportunity to perform reverberation mapping based on single-band photometric data. Based on simulated light
curves generated using a damped random walk model of quasar variability, we show that measurement of the size of the broad line
region can be achieved using this method, provided one spectrum has been obtained independently during the monitoring. This method
is complementary to photometric reverberation mapping and could also be extended to multi-band data. Because the effect described
above produces a variability pattern in difference light curves between pairs of lensed images that is correlated with the time-lagged
continuum variability, it can potentially produce systematic errors in measurement of time delays between pairs of lensed images.
Simple simulations indicate that time-delay measurement techniques that use a sufficiently flexible model for the extrinsic variability
are not affected by this effect and produce accurate time delays.
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1. Introduction

Gravitational lensing of distant quasars offers new opportunities
in the study of quasars and supermassive black holes. When a
galaxy happens to be on the line of sight towards a more distant
quasar, multiple images of the quasar are created, with a typical
separation of a few arcsecs. The (macro-) magnification of the
lensed images associated with this phenomenon eases the study
of those distant objects and allows one to reconstruct a high res-
olution image of the quasar’s host (Peng et al. 2006; Claeskens
et al. 2006; Suyu et al. 2013). Since the stars in the lens-
ing galaxy also act as many individual gravitational lenses, the
macro images are in fact composed of many unresolved micro-
images which are separated on the sky by a few micro-arcsec
corresponding to the Einstein radius η0 of the microlenses. The
microlensing effect can be used to probe the source at high res-
olution because microlensing selectively magnifies the source
emission as a function of the size of the emitting region, pro-
vided the latter is smaller than ∼10 η0 (Refsdal & Stabell 1997).
Nowadays, quasar microlensing is employed to measure the size
and temperature profile of the accretion disc, or the size and ge-
ometry of the broad line emitting region (Kochanek 2004; Sluse
et al. 2007, 2011; Eigenbrod et al. 2008; Morgan et al. 2010;
Blackburne et al. 2011; O’Dowd et al. 2011; Guerras et al. 2013).

The quasar continuum emitting region is more compact
than η0, and is therefore significantly microlensed. The more
extended broad line region (BLR) is generally less affected,
with typically 10–20% of its flux being microlensed (Sluse
et al. 2012). Consequently, microlensing effectively modifies the

contrast between the flux of the continuum and the flux from
the broad lines. Because a lensed system is composed of sev-
eral (two to four) lensed images of the quasar, we observe mul-
tiple realizations of the same intrinsic light curve with different
amount of microlensing of the continuum and broad lines. The
proposed technique of microlensing-aided reverberation map-
ping aims at taking advantage of this effect to measure the
time lag between the continuum and broad line variations. Our
method is not conceptually very different from photometric re-
verberation mapping (Haas et al. 2011; Chelouche & Daniel
2012; Chelouche & Zucker 2013; Pozo Nuñez et al. 2012; Edri
et al. 2012; Zu et al. 2014; Bachev et al. 2014). In that case,
multi-band photometry is used to disentangle the flux of the con-
tinuum and of the BLR, while our technique can already be ap-
plied to single-band data. The same data can now be used to de-
rive the size of the continuum emission based on the variability
of the microlensing signal (Kochanek 2004), and if multi-band
data are available, to measure the temperature profile of the ac-
cretion disc (Anguita et al. 2008). This opens the possibility of
studying the properties of the accretion disc and of the BLR in
the same population of AGNs.

In Sect. 2, we present a fiducial example of lensed quasar
light curves that demonstrates that imprints from the continuum
and broad line variations are present in the difference light curve
between pairs of lensed images under the simplifying assump-
tion of non-variable microlensing. We explain how we proceed
to simulate daily sampled lensed quasar light curves, and show
how to use them to measure the time lag between the continuum
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and the broad line variations. We also discuss how our results
depend on the properties of the source, and show that this signal
should be detected in time-delay light curves. In Sect. 3, we in-
crease the complexity of the simulations, producing mock light
curves with irregular sampling and seasonal gaps, as well as mi-
crolensing signal drawn from microlensing simulations. We pro-
pose a technique to detrend the time variable microlensing signal
with a B-spline model in order to recover the time lag. In the next
section (Sect. 4) we search for a bias on the measurement of the
time delay in mock light curves, which include continuum and
BLR flux. Finally, Sect. 5 summarizes our main results and out-
lines future work necessary to turn this technique into a robust
probe of the quasar structure at intermediate and high redshift.

2. Fiducial case and time-lag measurement

In this section, we explain how we simulate realistic light curves
of lensed quasars, and test simple techniques to measure the
time lag between the continuum and the response from the
BLR. We start with the ideal situation where a lensed quasar
has been observed for nine years on a daily basis. The dura-
tion of this mock light curve is chosen to mimic existing light
curves of lensed quasars as obtained by the COSMOGRAIL
collaboration (Courbin et al. 2011; Tewes et al. 2013b), and
light curves provided by future surveys like the Large Synoptic
Survey Telescope (LSST). We first assume a noise-free light
curve, and a constant amount of microlensing. Section 3 is ded-
icated to the simulation of more realistic light curves. Finally,
for simplicity, we assume that the time delay from the pair
of lensed images has been obtained independently and cor-
rected for, or is naturally close to zero. This situation occurs
for lensed systems where the four lensed images have a cross
like configuration around the lensing galaxy, e.g. the Einstein
Cross Q2237+0305 (Huchra et al. 1985), or where two (three)
of the four lensed images are “merging”, a situation that oc-
curs when the source is located close to a “fold” (“cusp”) caus-
tic, e.g. WFI 2033−4723 and RXS J1131−1231 (Morgan et al.
2004; Sluse et al. 2003). Preliminary investigation of the impact
of the presence of multiple sources of emission on time-delay
measurements is discussed in Sect. 4.

2.1. Intrinsic variability

First, we describe how we simulate the intrinsic variability of the
lensed quasar. Despite our limited understanding of the detailed
processes governing quasar variability, it has been shown by sev-
eral authors (e.g. Kelly et al. 2009; Zu et al. 2013; Graham et al.
2014) that Gaussian processes, and in particular damped random
walk (DRW), provides a satisfying mathematical description of
the AGN variability. Deviations from this model on timescales
smaller than five days, as well as possible turnover in the prop-
erties of the signal for timescales above 54 days have been sug-
gested (Mushotzky et al. 2011; Zu et al. 2013; Graham et al.
2014). However, those deviations are relatively subtle and over-
all the DRW process provide a good proxy of the AGN variabil-
ity. In the following, we generate mock AGN light curves using
the JAVELIN code (Zu et al. 2011, 2013, 2014).

The continuum variability is described by:

c(t) = GP
{
c̄, κ

(
t, t′

)}
, (1)

where the mean function of the DRW is c̄ (constant over
time), and its associated covariance function between two
epochs t and t′ is κ (t, t′). Following several authors, we use

an exponential covariance function of the form κ (t, t′) =
σ2 exp (−|t − t′|/τd) where σ2 and τd are the variance and char-
acteristic timescale of the process (Zu et al. 2014; Graham
et al. 2014). Note that instead of σ, various variability studies
(MacLeod et al. 2010; Butler & Bloom 2011) of AGNs use σ̂,
which is the amplitude of the DRW. It is related to σ through
the relation σ2 = 0.5 τσ̂2 (Kozlowski et al. 2010). On long
timescales, the variance of the light curve is σ̂(τd/2)1/2 and on
short timescales σ̂

√
t.

The variations in the BLR is modelled as the variation of the
continuum convolved with a time-lagging transfer function Ψ(t):

l(t) =

∫
Ψ(t − t′)c(t) dt′. (2)

Following (Zu et al. 2011, 2014), we use a top-hat transfer func-
tion centered on the time lag τ, with width w and amplitude A,
so that

Ψ(t) ≡ Ψ(t|τ, A, w) = A/w for τ − w/2 6 t < τ + w/2. (3)

Chelouche & Daniel (2012); Chelouche & Zucker (2013) sug-
gest that photometric reverberation mapping using time-lag mea-
surements based on cross-correlation methods are sensitive to
the choice of Ψ(t). However, the transfer function is observa-
tionally poorly constrained, as reverberation mapping studies
generally concentrate on the measurement of the time-lag τ̄ be-
tween the continuum and broad line variations, but not on re-
covering Ψ(t). Since this work is a proof-of-concept of the tech-
nique, we will only use Ψ(t) as defined in (3), which corresponds
to a thin shell geometry of the BLR (Peterson 1993; Pancoast
et al. 2011). On the other hand, we also choose the properties
of the intrinsic variability light curve to match qualitatively the
variability of the lensed quasar RXS J1131−1231 (Sluse et al.
2003, 2006; Tewes et al. 2013b). Future works should investi-
gate in more details whether results are biased by those particular
choices.

In the following, the total signal is assumed to be the sum
of the continuum and of a single emission line. Furthermore, we
fix τ = 100 days. Since the bulk of time lags observed for H β in
local AGNs is observed in the range 10–100 days (Kaspi et al.
2000; Bentz et al. 2009), a lag of 100 days may be representa-
tive of expected (cosmologically dilated) lags for high ionization
UV lines in lensed AGNs at intermediate redshifts.

2.2. Simulating the light curves

The light curves of a pair of lensed images (at a given wave-
length and to a good approximation in a given band; assuming
that differential extinction due to the lensing galaxy is negligible,
as commonly observed) can be expressed as:

F1(t) = M µ1(t) FMµ(t) + MFM(t),
F2(t) = µ2(t) FMµ(t) + FM(t), (4)

where F1,2 is the flux of the pair of lensed images, M is the rela-
tive macro-magnification ratio between the pair of images1, µ1(t)
(resp. µ2(t)) is the amplitude of microlensing of the most com-
pact region (i.e. the continuum) in image 1 (resp. 2), and FMµ(t)
(FM(t)) the part of the flux that is (not) affected by microlens-
ing. For the fiducial case, all the microlensed flux is emitted by
the continuum as defined in (1), hence FMµ(t) = c(t). On the
other hand, the flux that is not microlensed originates from the

1 If M1,2 are the macro-magnification of images 1 and 2, then M =
M1/M2.
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broad line only, such that FM(t) = fBLR l(t), with fBLR being
the flux ratio between the line and the continuum. We should
emphasize that in known lensed quasars, a small fraction (in
general 10–20%) of the flux from the BLR is microlensed (see
Sluse et al. 2012). Therefore, the above identification of the mi-
crolensed flux FMµ to the continuum (only) and of the non mi-
crolensed flux to the BLR is an approximation whose impact
is discussed in Sect. 3.2.2. In Eq. (4), and in the following, we
assume that the macro-magnification ratio M = M1/M2, which
corresponds to the continuum flux ratio that would be measured
in absence of microlensing, has been derived independently from
e.g. flux ratios measured from spectroscopy in narrow emission
lines, or at longer wavelengths such as mid-infrared (MIR) or ra-
dio wavelengths (however see Sluse et al. 2013 regarding pres-
ence of microlensing in the MIR). For simplicity, we set M = 1.

We start by using fBLR = 0.2. Although arbitrary, this choice
may be representative of a large population of quasars. Indeed,
the median equivalent width of the main UV emission lines
(Mg , C ], C ) is of the order of 40 Å (Croom et al. 2002;
Shen et al. 2011), while the width of red optical filters is typi-
cally 120 Å. One may also note that some planned surveys will
use narrow band filters (Benitez et al. 2014; Martì et al. 2014),
which would significantly increase fBLR. In addition, we assume
a constant microlensing in image 1, µ1(t) = 0.5 at all epoch,
and no microlensing in image 2. Simulations including more re-
alistic microlensing signal are presented in Sect. 3.2. Figure 1
shows the continuum and emission line light curves in the top
panel, and the simulated light curves of the pair of images in the
bottom panel. The latter panel also shows in magnitude the dif-
ferential light curve between images 1 and 2 (solid black line),
and the same signal if only the continuum was varying (dashed
line). Two important messages have to be kept from this figure.
First, the presence of a fraction of the flux (time variable or not)
that is not microlensed, leads to differential light curve that does
not only contain a signal from microlensing, as commonly as-
sumed, but is modulated at a detectable level (modulation of
about ±0.05 mag in Fig. 1) by a signal associated with the quasar
intrinsic variability. Second, the differential light curve shows a
different shape for a variable and a non variable BLR. In the next
section, we cross correlate the differential signal with the intrin-
sic signal to unveil the imprint of the time-lagged signal from
the BLR.

2.3. Cross correlation function

Figure 1 demonstrates that the difference light curve between
two lensed quasar images is not the same when the contribution
associated with the BLR is constant or responds to the contin-
uum variations. The cross correlation function (CCF) of the ratio
light curve F2/F1 with the microlensed signal F1 of the lensed
image2 displayed in Fig. 2, confirms that variations of the BLR
are imprinted in the differential signal. The CCF nicely peaks
at 100 days, namely the input time lag τ, but it also shows a pro-
nounced peak at 0 days, as the CCF obtained for a non-variable
emission line. In fact, if one calculates the CCF between F2/F1
and F2, this secondary peak becomes the main peak. We discuss
in Sect. 2.4 how the linear combination of F1 and F2 can be used
to reduce the power at a zero day lag, and more robustly retrieve
the peak at the time lag τ.

2 We choose F1 as a reference because it maximizes the flux from the
BLR while the differential signal F2/F1 contains mostly flux from the
continuum. This choice is dictated by our knowledge of the fiducial
signal.
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Fig. 1. Upper panel: fiducial realization of the continuum (black) and
emission line (red) light curves of a quasar (Sect. 2). The light curve
corresponding to the emission line has been divided by fBLR to show
more clearly the time lag τ ∼ 100 days between the continuum and the
line. A negligible amount of noise has been considered to ease legibility.
Bottom panel: corresponding light curves of the two lensed images in
magnitude (thick blue and red lines) and the corresponding difference
light curve (solid black). The dotted grey line shows the differential light
curve that would be observed if the broad line was not varying, the solid
green line a model F̂12 of the extrinsic variations, and the thick dashed
grey line is Â(t).

2.4. Macro-micro Decomposition (MmD)

We describe here a method to deblend the continuum and the
BLR signal from the intrinsic light curves. This technique is in-
spired by a similar method devised in Sluse et al. (2007, see
also Hutsemékers et al. 2010 and Sluse et al. 2012) but applied
to quasar spectra instead of time series. Simple linear combina-
tions of the signal of a pair of images, as expressed in Eq. (4),
allows us to isolate FM using the observed fluxes F1 and F2:

FM(t) =
−A(t)

A(t) − M

(
F1(t)
A(t)

− F2(t)
)
,

µ2(t) FMµ(t) =
M

A(t) − M

(
F1(t)

M
− F2(t)

)
, (5)

where we have introduced A(t) = M × µ(t) (with µ(t) =
µ1(t)/µ2(t) , 1). This quantity is preferred to M and µ(t) because
it is more closely related to observations, with A(t) = F1(t)/F2(t)
when there is no flux from the emission lines.
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Fig. 2. Cross correlation function (normalized to peak intensity)
of F2/F1 with F1 in the case of a time-lagged BLR (thin blue line) and
of a non-variable BLR (dashed black). The third curve (thick solid black
line) shows the CCF between the fraction of the quasar flux affected by
(free of) microlensing FMµ (FM), as obtained by linearly combining F1
and F2 (Sect. 2.4, Eq. (5)). The dotted-dashed vertical line shows the
fiducial time lag τ = 100 days between the variation of the continuum
and of the BLR in the simulation.

In order to perform this decomposition, it is necessary to
know M and to have a proxy to A(t). The acquisition of a spa-
tially resolved spectrum of the lensed images at an epoch t1 (ide-
ally part of the photometric monitoring period), with at least
the same wavelength range as the broadband data, allows one
to derive those two quantities. First, M is obtained based on the
flux ratio of the narrow emission lines, or of the broad lines if
the latter are at least partly unaffected by microlensing (Sluse
et al. 2007, 2012; Hutsemékers et al. 2010; Braibant et al. 2014;
Nierenberg et al. 2014). Second, the flux ratio measured in the
continuum of the spectra gives us A(t1). Third, it is possible to
model F1(t)/F2(t) with a smooth model F̂12(t), which encodes
the large scale extrinsic variations of F1(t)/F2(t). For the exam-
ple depicted in Fig. 1, the solid horizontal green line is such a
model. We can then define an empirical estimate of A(t) such
that:

Â(t) =
A(t1)

F̂12(t1)
F̂12(t). (6)

In general Â(t) , A(t), but the difference may not be large as
far as the flux from the continuum is much larger than the flux
from the BLR, and microlensing variations remain modest over
the time of the monitoring. This is further discussed in Sect. 3.2.

In summary, the MmD allows one to empirically deblend
the signal that is microlensed, and mostly originating from the
continuum emission, from the signal that is not affected by mi-
crolensing. The cross correlation of those two signals, is used
in the following to measure the time lag τ. Alternative method-
ologies may be developed, but we focus in this paper on the use
of a zero-padded CCF applied to FM and FMµ as derived with
the MmD.

2.5. Modification of microlensing and BLR contributions

Several properties of the signal might hamper the detectability of
a lag, such as the relative contribution of flux from the line, fBLR,
the amount of microlensing from the continuum, µ, and large

photometric errors. In order to test those effects, we have sim-
ulated light curves in the same way as our fiducial light curves
(i.e. time delay of 0 days, regular sampling of 1 point per day)
for nine different values of fBLR uniformly distributed in the
range [0.1, 0.9], and for six values of amplitudes µ, chosen such
that −2.5 log(µ) uniformly covers the range [–0.75, 0.75] mag
(µ = 1 excluded). First, we consider a noiseless situation. For
each couple ( fBLR, µ), we have generated 500 different light
curves, and for each light curve we have measured the time lag
using the peak of the CCF between FM and FMµ as described
in Sect. 2.4. Following this procedure we retrieve a median time
lag τ ∼ 99 days, with a standard deviation στ ∼ 2.2 days. The
median time lag is 1% smaller than 100 days because the distri-
bution of time lags is asymmetric. The peak of the distribution is
in fact found at 100 days. We have not identified the reason for
this asymmetry. The transfer function does not seem to be the
reason, as we obtained exactly the same average time lag when
using a delta-function for Ψ(t) in (2). A possibility could be low-
frequency variations of the quasar, known to produce similar bi-
ases in CCF analysis (Chelouche & Daniel 2012). Because time-
lag measurements will be affected by larger errors than this bias
at the percent level, we do not investigate it further as it will
produce only a second order effect.

Finally, we generate a second set of simulations, identical to
the above ones, but to which we have added uniform Gaussian
noise σ f / f = 0.01. Such a small photometric uncertainty is
aimed by upcoming surveys and is reached for good time-delay
light curves currently obtained by monitoring programmes such
as COSMOGRAIL. Figure 3 shows the results of this proce-
dure. At this noise level, the mean time lag agrees perfectly with
the time lag retrieved by noiseless simulations. Uncertainties
(at 68.2% confidence level) smaller than ten days can be ob-
tained. However, as expected, the distribution of time lags broad-
ens significantly (as revealed by the larger στ) when the ampli-
tude of microlensing is small (i.e. −2.5 log(µ) ∼ ±0.25 mag) or
for low values of fBLR (i.e., 0.1). The impact of the photometric
accuracy on the results is discussed in the next section.

2.6. Photometric accuracy

The signal to noise of the input light curves is expected to
limit the ability to measure τ. For various pairs ( fBLR, µ), we
generate 500 noiseless simulated light curves. Then, we gen-
erate realizations of those light curves for different amounts
of noise σ f / f ∈ [0.01, 0.09], and measure the time lag as
described earlier. As shown above, in such a situation, the un-
certainty in the results depends on the amplitude of microlens-
ing µ and on the relative contribution of flux from the emis-
sion line, fBLR. We study two cases: i) we fix fBLR = 0.2, and
vary µ = 0.5, 0.63, 0.79; ii) we fix µ = 0.5 and vary the ampli-
tudes of fBLR = 0.2, 0.4, 0.7. The median value of τ, and 1σ in-
terval (i.e. interval containing 68.2% of the distribution) are
displayed in Fig. 4 as a function of the noise. Three conclu-
sions can be drawn from that figure. First, the median of the
distribution agrees with the noiseless case, and is biased low
by 1.5% compared to the true time lag, because of the asym-
metry of the lag distribution. Second, for an amplitude of mi-
crolensing µ = 0.5, corresponding to a demagnification of the
continuum by 0.75 mag, the uncertainty on the time lag increases
by typically a factor 4 when the photometric uncertainty is in-
creased from 0.01 mag to 0.09 mag. Third, the ability to measure
a time lag at low signal to noise strongly depends on the ampli-
tude of microlensing. While a time lag can still be measured in
most cases for (µ, fBLR) = (0.79, 0.2) if the photometric accuracy
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Fig. 4. Impact of the photometric errors (x-axis) on the distribution of
retrieved time-lag measurements. Upper panel: µ = 0.5. Three different
values of fBLR are shown as squares, stars, and diamonds. Lower panel:
fBLR = 0.2. Three different values of µ are shown as stars, squares and
diamonds. The dashed black line shows the input time lag τ = 100 days
and the solid black line the median lag measured on light curves free of
noise. The points with the same photometric uncertainty (i.e. squares,
stars, and diamonds) have been slightly shifted between each other to-
wards larger uncertainty to ease legibility. In both panels, the solid
blue squares correspond to our fiducial case for different photometric
accuracies.

is better than 0.03 mag, this measurement becomes highly uncer-
tain for lower signal to noise. We should emphasize that these
trends should also depend on the amplitude of intrinsic variabil-
ity of the quasar (and to some extent of the macro magnifica-
tion M), and therefore are only representative of the variability
properties assumed for our fiducial quasar.

3. Simulations of more realistic light curves

In the previous section, we have demonstrated that light curves
of multiple imaged quasars can be used, in presence of mi-
crolensing, to perform reverberation measurement of the size
of the BLR. The fiducial light curves we presented are how-
ever highly idealized. Real light curves will be sampled on a
less regular baseline and with gaps between seasons, while mi-
crolensing will not be constant but vary with time. In addition,
a small amount of microlensing of the emission line may be ex-
pected. We consider the impact of all these features hereafter.
This may however not cover all possible complications encoun-
tered in nature, and future work is needed to quantify how the
method behaves when multiple emission lines fall in the same
broadband filter, or when emission which is not time variable
(e.g. host galaxy flux, narrow emission lines) is present.

3.1. Sampling and gaps in the light curve

Simulating sparsely sampled light curves with seasonal gaps can
be performed in a simple way. For a given mock light curve,
we first create a new light curve with regular gaps every year to
mimic an ensemble of observing seasons, and then we reduce
the sampling of each season by keeping a given fraction f of the
points per season. In practice, we create light curves with gaps
of 130 days and keep only f = 34% of the daily sampled points,
which corresponds to a mean frequency of observation of 1 point
every three days. This kind of sampling is representative of the
best light curves currently obtained for lensed quasars (Vuissoz
et al. 2008; Courbin et al. 2011; Tewes et al. 2013b).

The main complication when one works with sparsely sam-
pled light curves comes from the use of the CCF, that cannot
be applied to irregularly sampled time series. This problem is
common to all reverberation mapping measurements and several
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Fig. 5. Impact of gaps and sampling on the cross correlation. Upper
panel: realistic light curve (black circles) with irregular sampling and
seasonal observing gaps, generated based on the fiducial “continuous”
light curve (light solid grey). Bottom panel: DCF obtained for the fidu-
cial “continuous” light curve (black band), when data are obtained with
a mean sampling of 1 point every three days (green band), when data
are obtained with seasonal gaps of 130 days (blue band), and with a
sparse sampling and seasonal gaps as shown on the upper panel (red
points with error bars).

techniques have been introduced to address it. We use hereafter
the most simple techniques, namely the interpolated cross corre-
lation function (ICCF, Gaskell & Peterson 1987), which consists
of applying the cross correlation to the data set after interpola-
tion, and the discrete correlation function (DCF) introduced by
Edelson & Krolik (1988). An example of sparsely sampled light
curve is shown in Fig. 5, with the corresponding cross correla-
tion, calculated with a bin of three days (i.e. average seasonal
sampling of the light curves) for the DCF. The DCF is shown
for i) the fiducial “continuous” light curve; ii) with a sampling
rate of 1 point every three days; iii) with a daily sampling but
seasonal gaps; and iv) in case of sparse sampling and seasonal
gaps. A fifth case, with the same number of points as (iv) but no
gaps (i.e. a sampling rate of about 1 point every five days) has
also been tested but is not shown as the DCF is similar to (ii). In
all the cases, the amplitude of the correlation function is oscillat-
ing around zero, with a main peak around the true time lag. The
DCF obtained with only one third of the points is not very differ-
ent from the fiducial DCF, showing that the irregular sampling
has little impact on the time lag measurement for observing rates
of a few days. More critical however is the presence of gaps in

the light curves that lead to peaks with distorted shapes. Once
light curves with both irregular sampling and seasonal gaps are
considered, a secondary peak appears super-imposed to the main
peak, at τ ∼ 220 days. Interestingly, this secondary peak is not
visible if we calculate the ICCF instead of the DCF. As we show
hereafter, this secondary peak has important consequences for
measuring the time lag when seasonal gaps are present.

Instead of generating a large sample of different realizations
of the continuum variability c(t), we have repeated the proce-
dure outlined above with different gap locations and different
sampling of the input fiducial light curve. We have used the max-
imum of the correlation function to estimate the time lag. This
quantity is well defined for the CCF studied until now, but is
more sensitive to noise fluctuations when we calculate the DCF.
Therefore, we have compared different techniques to measure
the time lag3: 1) we search for the maximum of the correla-
tion function, assuming that the latter is positive and smaller
than 1000 days; 2) we fit a Gaussian to the main peak of the
correlation function; and 3) we measure the centroid of the cor-
relation function. In the last two cases, we search for the peak
after an automatic identification of the main peak, assumed to
be the signal located between the two minima of the correlation
function for τ ∈ [−200,+400] days. Figure 5 displays the dis-
tribution of lags derived using those three methods for the ICCF
and the DCF. The distribution of lags of the ICCF is well de-
scribed by a Gaussian with a width of ∼12 days, centered on the
input lag. Hence, the degradation of the observing conditions
mostly introduces noise, but does not bias the time-lag measure-
ment if the ICCF is used. This is not true when we use the DCF.
In that case the distribution becomes broader and multi-modal,
and the lag can either be biased low or high depending of the
method used to measure it. This behaviour is caused by the sec-
ondary peak visible in the DCF at τ ∼ 220 days. As suggested
by Fig. 5, this peak seems to be associated with the gaps in the
light curve, but it is not obvious that its location can be predicted
a priori. Indeed, this peak is only marginally detected in the DCF
of the continuous light curve with gaps (blue band in Fig. 5) but
for a smaller lag.

3.2. Time variable microlensing signal

Until now, we have assumed that µ is perfectly known and
does not vary with time. Although this assumption may be
valid in some realistic situations, the amplitude of microlens-
ing generally varies on timescales of several months to sev-
eral years (Mosquera & Kochanek 2011). Rapid microlensing
variations may be difficult to deblend from intrinsic variability
when both variations occur on the same timescale, as observed in
Q 0158-4325 (Morgan et al. 2012). Such a situation is rare how-
ever and in most of the known lensed systems, the microlensing
signal modulates the intrinsic variability with a lower frequency
signal (e.g. Vuissoz et al. 2008; Hutsemékers et al. 2010). In
practice, extrinsic variability can often be modelled as a low or-
der polynomial or a spline (Kochanek et al. 2006; Tewes et al.
2013a), corresponding to F̂12(t) in (6). In the following, we use
spline models of F̂12(t) and follow the prescription of Sect. 2.4
to derive FM and FMµ with the MmD (Eq. (5)). Then, we look
whether the cross correlation of FM and FMµ lead to an accurate
estimate of τ.

3 For a given light curve, a proper estimate of the noise associated with
the time lag, is discussed in Alexander (1997) and Peterson et al. (1998).
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Fig. 6. Distribution of lags τ measured on the fiducial light curve for
different realizations of the sampling and location of the gaps. The left
panel shows the result for the ICCF and the right panel the results for
the DCF. The distributions are shown for three different estimators of
the lag (cf. Sect. 3.1): 1) the maximum of the correlation function for
lags shorter than 1000 days (thick black); 2) the maximum of a Gaussian
function fitted on the main peak; 3) The centroid of the main peak.

3.2.1. Generating the microlensing signal

We generate mock light curves similar to the fiducial light curve
(i.e. fBLR = 0.2, τfid = 100 days, σ f / f = 0.01 and same
intrinsic signal FM , FMµ as Sect. 2), but now with time vari-
able microlensing. The synthetic microlensing light curve is
obtained by drawing 500 random trajectories in two different
microlensing magnification maps constructed with the inverse
ray-shooting code developed by Wambsganss (1990, 2001). We
used two maps representative of microlensing occurring in a
saddle-point image with macro magnification µ ∼ 20 ((κ, γ) =
(0.47, 0.57)), and a minimum image characterized by µ ∼ 12
((κ, γ) = (0.42, 0.50)). This arbitrary choice, which simulates
microlensing for the images A & B−C of the lensed quasar
RXS J1131−1231, should be representative of microlensing
in many lensed AGNs (Vernardos et al. 2014, their Fig. 2).
However, because of the large magnification of the images, the
fraction of large amplitude microlensing events over a period
of ten years may be larger than commonly observed. In addi-
tion, we set the fraction of objects in compact form towards the
lensed images to f∗ ∼ 7%, typical of the stellar fraction at a
galacto-centric distance of a few effective radii, i.e. where lensed
images are commonly located (Mediavilla et al. 2009; Pooley
et al. 2012; but see Jiménez-Vicente 2014 who derived f∗ ∼ 0.2).
We assume that the continuum arises from a disc with half-light
radius R1/2 = 0.06 η0 (where η0 is the Einstein radius of a mi-
crolens), and a track length of 0.45 η0, which corresponds to a
transverse velocity of 0.05 η0/year. Those estimates match ex-
pectations for known lensed quasars (Mosquera & Kochanek
2011).

3.2.2. Microlensing models and time-lag measurement

We use the PyCS package (Tewes et al. 2013a) to construct, from
the pair of simulated light curves, an empirical model of the vari-
ability (see Tewes et al. 2013a, Sect. 4). The intrinsic variability
signal, common to the pair of light curves, and the extrinsic sig-
nal, are simultaneously fitted to the data with separate free-knot

spline models4. In addition to the parameters of the spline model,
the magnitude shift between the curves and the time delay are
free to vary. We employ that technique because it is now com-
monly used for time-delay measurements (Courbin et al. 2011;
Tewes et al. 2013b; Eulaers et al. 2013; Kumar et al. 2013). It
provides very good fit to our synthetic light curves, for which
we also retrieve our input delay of 0 day. Figure 7 displays
various splines reproducing the differential light curve F1/F2,
and compares this signal to the input microlensing signal. We
compare three splines for the extrinsic variations, differing by
their number of “free knots”. The spline with the largest num-
ber of knots (32) reproduces best the extrinsic variations but in-
cludes variations that are not those of the microlensed contin-
uum. With a lower number of knots (5), the modeling of the light
curves is poorer but the model better represents the microlensing
variations.

Figure 8 shows the distribution of time lags derived with the
three spline models described above. The results for the fiducial
light curve, namely when microlensing does not vary with time,
are also shown. On the left panel, we show the lag as measured
using F̂12(t) in the MmD, while the right panel assumes that Â(t)
(Eq. (6)) has been used. If we focus on the fiducial case, we see
that the distribution of lags peaks at τ ∼ 150 days when F̂12(t) is
used. This bias is expected because FM contains a fraction of the
microlensed flux. Once we use Â(t), we recover the true lag for
the fiducial distribution. The latter is the reference towards which
lags derived in presence of time variable microlensing have to
be compared. The spline model with 5 knots leads to a distribu-
tion of measured lags similar to the fiducial distribution, while
more flexible spline models remove a fraction of the intrinsic
signal and bias, or even preclude, the lag measurement. When
using F̂12(t) in the MmD, we find for a significant fraction5 of
the light curves lags with τ < 50 days or τ > 200 days. Those
incorrect lags are derived in two cases: when the microlensing
signal varies so quickly that its variations are not adequately re-
produced by the spline model, and when both magnification and
demagnification occur during the monitoring. In the latter case,
the MmD fails once Â(t) ∼ M (i.e. µ ∼ 1). The use of the DCF in-
stead of the CCF, reduces the weight of those regions in the cor-
relation function, but generally still produces a peak at τ ∼ 0 day,
or occasionally at τ > 200 days. The correct time lag can be re-
covered for most of those light curves if the lag at τ ∼ 0 day
is ignored or if the error bars on FM − FMµ are artificially in-
creased for the time range where A(t) ∼ (1 ± 0.3) M. Similarly,
increasing the number of knots in the spline allows for the recov-
ery of the time lag for most of the light curves where F1/F2 is
poorly approximated by a 5-knots spline. When we use Â(t), we
find a distribution of lags compatible with the fiducial distribu-
tion. Although this procedure properly shifts the first peak of the
DCF to the correct lag, it often increases the height of the sec-
ond peak at τ > 500 days. Therefore, our automatic identifica-
tion of the peak of the DCF sometimes fails to identify the peak
at τ ∼ 100 days, artificially decreasing the number of retrieved
lags. A visual inspection of the DCF alleviates this problem.

The distribution of recovered lags does not perfectly match
the fiducial distribution, suggesting that a bias at a few percent
level might exist in the lag measurement. In addition, we find

4 The total number of knots used for the spline is fixed by the user but
the position of these knots is free.
5 For the chosen magnification maps, a wrongly estimated lag is de-
rived for about 50% of the curves. This fraction drops to 5% if the dis-
tribution of microlensing event shows smaller amplitude variations as it
is the case when e.g. the fraction of compact microlenses f∗ = 1.
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Fig. 7. Two examples of differential light curves and associated spline models F̂12. The grey points represent the simulated flux ratio with associated
error bars. The thin solid lines show the spline models. The thick solid black curve shows the true microlensing variability A(t) and the dashed
black curve shows Â(t) (Eq. (6)) when F̂12 is a spline with 5 knots.

0 50 100 150 200

τ (days)

0

20

40

60

80

100

120

N

32 knots
16 knots
5 knots
Fiducial

0 50 100 150 200

τ (days)

0

20

40

60

80

100

120

32 knots
16 knots
5 knots
Fiducial

Fig. 8. Distribution of lags τ measured on the fiducial light curve for different realizations of time variable microlensing (cf. Sect. 3.2). Left:
distribution of lags τ using F̂12(t) = A(t) (Eq. (6)). Right: distribution of lags using Â(t), and assuming that the lag τ < 210 days as suggested by
the left panel. Each panel shows the result for three different spline models of the extrinsic variability, and applying the same procedure to the
fiducial case where microlensing is constant over time.

that time lags are more likely to be correctly retrieved when the
average amplitude of microlensing over the monitoring period
is larger than typically 0.75 mag. Among all events, time lags
are more efficiently measured when the continuum is strongly
demagnified.

We have currently assumed that the amplitude of microlens-
ing of the BLR is negligible. However, it has been shown
that 10–20% of the flux of broad line is typically microlensed
(Sluse et al. 2012; Guerras et al. 2013). To test for this effect, we
have assumed that the whole BLR responds to the flux from the
continuum, and is microlensed according to its half-light radius
size RBLR

1/2 . We have chosen RBLR
1/2 ∼ 3η0, typical of the size of

the BLR in known lensed quasars (Mosquera & Kochanek 2011,
their Fig. 3). Because the BLR size is in units of Einstein radius
(and therefore depends on the source and lens redshifts) we do
not scale the time lag according to the BLR size. Considering
only reliable lags (i.e. such that τ ∈ [50, 200] days), we find a
distribution of lags in statistical agreement with those measured
for a non-microlensed BLR.

3.2.3. Summary

The above results demonstrate that it is possible to correct
empirically for the time variable microlensing signal without

removing the imprinted time-lagged signal from the BLR. As
expected, time lags are more easily retrieved when microlens-
ing evolves almost linearly over the period of monitoring, as of-
ten observed in lensed quasars light curves (Vuissoz et al. 2007,
2008; Courbin et al. 2011; Eulaers et al. 2013). When the mi-
crolensing variations are large, some fine tuning may be nec-
essary to detrend the light curves with a spline model. On one
hand, the spline used to model extrinsic variations should not
be too flexible, since it can then remove signal that is not as-
sociated with differential microlensing. On the other hand, re-
gions of the light curves where there is no differential microlens-
ing (i.e. µ ∼ 1) lead to an artificial peak at τ ∼ 0 day in the
DCF. Ignoring this peak, or artificially increasing the error bars
of the concerned points in FM and FMµ, often solves the prob-
lem and allows one to identify the peak produced by the lagged
BLR signal.

4. Impact on time-delay measurements

The presence of an intrinsic variability signal in the difference
light curve between pairs of lensed images could be a source
of systematic errors for the measurement of the (strong-lensing)
time delay between the light curves. To test for this effect, we use
PyCS to measure time delays of a set of mock light curves. The
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measurement of the time delay is a complex problem by itself
(see, e.g., Eigenbrod et al. 2005; Tewes et al. 2013a), which de-
pends on the length of the light curve, on the shape and ampli-
tude of the variability signal, on the time sampling, and presence
of observing gaps. Therefore, we will not quantify biases possi-
bly taking place depending of these properties but limit ourselves
to simple and well controlled situations.

Our intrinsic signal is the same as the fiducial signal,
with fBLR = 0.2 and τ = 100 days and Gaussian noise with
σ f / f = 0.01. The light curve is shortened to 3099 days, and the
observing rate is chosen to be one point every three days on av-
erage. Two groups of light curves, one with a slowly varying mi-
crolensing signal and one with a large amplitude microlensing,
as depicted in Fig. 7, are generated. For each group, three differ-
ent delays ∆t = 20, 100, and 200 days, shorter, similar, or larger
than the time lag τ, are assumed. We hope this ensemble of light
curves to be sufficiently representative of real light curves. For
each situation, we generate 500 light curves that have different
sampling and noise realizations.

To measure the time delay, we follow the prescriptions of
Tewes et al. (2013a), and fit a sum of two free-knot spline mod-
els, one for the intrinsic and one for the extrinsic light curve
(cf. Sect. 3.2). In addition, we also apply the same technique to
a set of reference light curves with the same characteristics as
above but containing only flux from the continuum (i.e. there is
no flux from the BLR). Following that procedure, we find that
time-delay measurements are unaffected by the lagged signal
from the BLR, provided the spline used to model the extrinsic
variability is flexible enough. A comparison of the three spline
models shown in Fig. 7 reveals that a small bias of a fraction
of a day may take place when the spline used for microlensing
has few knots. This suggests that methods employing an insuf-
ficiently flexible microlensing model could suffer from biases
due to the quasar structure, in addition to the biases due to the
poorly fitted microlensing variability. A detailed comparison of
time-delay measuring techniques in presence of quasar structure
is beyond the scope of the present paper.

5. Summary and conclusions

Nowadays, high quality photometric monitoring data of gravita-
tionally lensed quasars are obtained for more then 30 systems.
In the next decades, owing to the advent of large surveys like
the LSST, the time domain will be accessible for an increas-
ing number of astrophysical phenomena, and in particular for
quasar and gravitational lensing studies. Current analysis of op-
tical lensed quasars light curves implicitly assume that the flux
originates only from the accretion disc. Under this assumption,
the differential signal between pairs of light curves shifted by
the time delay, yields to the time variable microlensing signal
produced by the stars in the lensing galaxy. However, the hy-
pothesis that the entire broadband flux originates from a sin-
gle emitting region does not hold in general. Broad-band quasar
emission includes flux from the broad emission lines, and to a
lesser extent from narrow emission lines, and other sources of
emission (e.g. Balmer continuum, flux from the host galaxy).
Because the various emitting regions have different sizes, they
are affected differently by microlensing. The latter modifies the
contrast between the continuum and the other sources of emis-
sion, in particular the broad lines (Fig. 1). Since broad lines re-
spond to continuum variations, their light curve can be cross
correlated to that of the continuum to derive their size. This is
exactly what is performed by the reverberation mapping tech-
nique, which is one of our most powerful probe of the structure

of the BLR, and a robust proxy to the mass of the central black
hole. That technique, originally designed for spectrophotomet-
ric data (e.g. Peterson 1993; Kaspi et al. 2000; Bentz et al. 2009;
Denney et al. 2010; Pancoast et al. 2011), is currently extended
to multi-band photometric data (e.g. Chelouche & Daniel 2012;
Zu et al. 2014). The signal produced by microlensing on quasar
light curves is conceptually very similar to photometric reverber-
ation mapping, but is potentially applicable to single-band data.
In addition, since microlensing provides an independent probe
of the accretion disc and BLR size (Kochanek 2004; Eigenbrod
et al. 2008; Morgan et al. 2010; Blackburne et al. 2011; Sluse
et al. 2011; Garsden et al. 2011; Guerras et al. 2013), it offers a
potentially more complete picture of the same sample of objects.

We have studied the modulation of the differential microlens-
ing signal between pairs of lensed quasar light curves when
broadband emission originates from two regions: the accre-
tion disc and the BLR. Assuming intrinsic quasar variations of
about 0.5 mag, and ∼20% of the emission originating from the
broad line, we have shown that modulation of the microlens-
ing signal as large as 0.05 mag could be detected for differential
microlensing larger than 0.5 mag. We have introduced a tech-
nique to combine pairs of lensed quasars light curves which en-
ables one to disentangle the flux of the continuum and of the
broad line, provided a spectra of the lensed images have been
obtained once during the monitoring to derive the macro-lensing
flux ratio. The measurement of the time lag τ between the con-
tinuum and BLR variations obtained this way, is what we named
microlensing-aided reverberation mapping. This technique has
been applied to several sets of mock light curves, under the sim-
plifying hypothesis of constant microlensing, to test the ability
of the method to retrieve τ under various observational condi-
tions. We found that unbiased time lags could be retrieved for
fractional flux from the BLR as small as ∼10% of the continuum
flux, and amplitude of microlensing as small as 0.25 mag. The
precision on the time-lag measurement depends little on the frac-
tion of flux from the BLR (provided it is typically >10%), but
requires sufficiently large amplitude of microlensing, and photo-
metric uncertainties typically better than 0.04 mag, to measure a
time lag with small uncertainties. The precision depends signif-
icantly on the rate at which data points are observed, and more
crucially on the absence/presence of seasonal observing gaps.
Gaps and sparse sampling might bias the measurement of τ, de-
pending of the cross correlation technique used. We suggest that
more advanced methods, such as the damped random walk mod-
els designed by Zu et al. (2011) combined with microlensing
simulations, may offer a framework to tackle that problem.

We have tested if time variable microlensing is a strong ob-
stacle to time-lag measurements. We found the use of a spline to
model the extrinsic variability to be efficient in detrending light
curves from microlensing, but some fine tuning in the spline
model is often necessary to obtain optimal results. More prob-
lematic have been the light curves showing both deamplification
and amplification of the continuum during the observational pe-
riod. In that case, the decomposition method we introduced fails
to deblend the continuum and the BLR signal over the monitor-
ing period, and leads to spurious peaks in the cross correlation.
Ignoring the time range where there is no differential microlens-
ing between the quasar images allows one to generally solve the
problem and recover the correct lag.

Finally, we have performed a preliminary investigation of
the impact of the above discussed effect on the measurement
of the time delay between lensed quasar images. Multiple tech-
niques exist to measure time delays. We have focused on the
one introduced by Tewes et al. (2013a), which uses a free-knots
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spline function to model the intrinsic and extrinsic variability of
quasar light curves. This method, applied to mock light curves
with time delays larger, equal or shorter than τ, robustly retrieves
the input delay provided the spline modelling the extrinsic vari-
ability is flexible enough. In such a situation, the spline func-
tion does not only model the microlensing, but also the intrinsic
signal superimposed to it. We anticipate that methods which do
not account for extrinsic variations in a sufficiently flexible way
may lead to a biased estimate of the time delay. A time-delay
challenge has been recently set up to test the ability of current
techniques to measure accurate time delays from the thousands
of lensed quasars light curves that should be monitored with
LSST (Dobler et al. 2013; Liao et al. 2014). We suggest that
future time-delay challenges account for the effect outlined in
this paper.

Microlensing-aided reverberation mapping is a promising
technique to study the quasar structure from light curves of time-
delay lensed quasars up to high redshift. The natural magnifi-
cation of the lensed images, which happens as a consequence
of strong lensing, offers a natural boost of signal to noise. The
small image separation, the time delay between the lensed im-
ages and the microlensing produced by the stars in the lensing
galaxy were in the past a strong limitation in the use of lensed
systems to study quasars. Current observational techniques and
analysis methods allow one to tackle those difficulties, and use
those systems as powerful astrophysical laboratories. While the
analysis of the microlensing signal can be used to derive the
size and temperature profile of the continuum emission (Anguita
et al. 2008; Bate et al. 2008; Floyd et al. 2009; Eigenbrod et al.
2008; Poindexter & Kochanek 2010), the intrinsic variability can
be studied in the same systems to derive the size of the BLR.
Although, we have conceptually demonstrated the feasibility of
this technique, more exhaustive set of simulations need to be
carried out in the future. For example, it is necessary to estimate
the impact on time-lag measurements of subtle effects likely to
take place in real data, such as contribution of non variable flux
(from an intermediate line region, from the narrow lines and/or
from the host galaxy) to the broadband signal. It also has to
be seen how those results depend on the absolute value of the
time lag, on the properties of the intrinsic variability signal, and
on multiple observational constraints that might refrain us from
accurately modelling the time variable microlensing signal.
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