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About the Uniform Hölder Continuity
of Generalized Riemann Function
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Abstract. In this paper, we study the uniform Hölder continuity of the
generalized Riemann function Rα,β (with α > 1 and β > 0) defined by

Rα,β(x) =

+∞∑

n=1

sin(πnβx)

nα
, x ∈ R,

using its continuous wavelet transform. In particular, we show that the
exponent we find is optimal. We also analyse the behaviour of Rα,β as
β tends to infinity.
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1. Introduction

In the 19th century, Riemann introduced the function R defined by

R(x) =
+∞∑

n=1

sin(πn2x)
n2

, x ∈ R,

to construct a continuous but nowhere differentiable function (see [6] for some
historical informations). The regularity of this function has been extensively
studied by many authors. In 1916, Hardy [9] showed that R is not differen-
tiable at irrational numbers and at some rational numbers. Decades later,
Gerver [8] and other people [12,13,21,22,24] proved that R is only differen-
tiable at the rational numbers (2p+ 1)/(2q+ 1) (with p ∈ Z and q ∈ N) with
a derivative equal to −1/2.

The Hölder spaces allow to define a notion of smoothness or regularity
for a function. Let us recall the general definition of Hölder spaces (see [5,15,
17,26]).
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Definition 1. Let α > 0, f ∈ L∞
loc(R) and x0 ∈ R.

(1) The function f belongs to Cα(x0) if there exist C > 0, ε > 0 and a
polynomial P of degree strictly less than α such that

|f(x) − P (x− x0)| ≤ C|x− x0|α
for all x ∈ (x0−ε, x0+ε). In this case, we say that f is Hölder continuous
with exponent α at x0.

(2) The function f belongs to Cα(R) if there exist C > 0 and a polynomial P
of degree strictly less than α such that

|f(x) − P (x− y)| ≤ C|x− y|α
for all x, y ∈ R. In this case, we say that f is uniformly Hölder continuous
with exponent α (on R).

In particular, these spaces provide an “intermediate level” between con-
tinuity and differentiability. This fact is more intuitive with the following
remark which gives another way to define them for α ∈ (0, 1).

Remark 2. In the case α ∈ (0, 1), pointwise and uniform Hölder spaces can
be expressed more simply in terms of r-oscillations (r > 0) of f , i.e. in terms
of the function oscr,f defined by

oscr,f (x) = diam(f(B(x, r))), x ∈ R,

where diam denotes the diameter and B(x, r) the open ball of centre x and
radius r (see [18,27]). On the one hand, we indeed have f ∈ Cα(x0) if and
only if there exist C > 0 and R > 0 such that

oscr,f (x0) ≤ Crα

for all r ∈ (0, R). On the other hand, f ∈ Cα(R) if and only if there exist
C > 0 and R > 0 such that

oscr,f (x) ≤ Crα

for all x ∈ R and r ∈ (0, R).

The pointwise and uniform Hölder spaces are embedded: if β > α > 0,
then Cβ(x0) ⊂ Cα(x0) for any x0 ∈ R and Cβ(R) ⊂ Cα(R). This property
allows to define a notion of regularity, known as Hölder exponent.

Definition 3. Let f ∈ L∞
loc(R) and let x0 ∈ R.

(1) The Hölder exponent of f at x0 is

hf (x0) = sup {α > 0 : f ∈ Cα(x0)} .
(2) The uniform Hölder exponent of f (on R) is

hf (R) = sup {α > 0 : f ∈ Cα(R)} .
Following this definition, if f is differentiable, then hf (R) ≥ 1. Moreover,

hf (R) < 1 implies that f is not differentiable. However, there exist non-
differentiable functions with a uniform Hölder exponent equal to 1; the Takagi
function (see [23,25]) is a famous example.

Based on a work with Littlewood [10], Hardy [9] showed that R is not
Hölder continuous with exponent 3/4 at irrational numbers and at some
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Uniform Hölder Continuity of Riemann Function

rational numbers. Using the continuous wavelet transform (of R), Holschnei-
der and Tchamitchian [12] established that R is uniformly Hölder continuous
with exponent 1/2 and gave some results about its Hölder continuity at some
particular points. With some similar techniques, Jaffard and Meyer [15,16]
determined the Hölder exponent of R at each point and proved that R is a
multifractal function, i.e. that the function x �→ hR(x) is not constant.

A generalization of R is given by the function Rα,β defined by

Rα,β(x) =
+∞∑

n=1

sin(πnβx)
nα

, x ∈ R, (1)

with α > 1 and β > 0. Other generalizations of R are possible; for example,
one can replace the element nβ in the definition of Rα,β by a polynomial with
integer coefficients (see [3,22]).

The function Rα,β defined in (1) is clearly continuous and bounded on
R. If β ∈ (0, α−1), it is easy to check that Rα,β is continuously differentiable
on R (because the series of derivatives uniformly converges on R). If β ≥
α + 1, Luther [20] proved that Rα,β is nowhere differentiable. If β ∈ [α −
1, α+ 1), several partial results about the differentiability of Rα,β are known
(see [20,22]). Moreover, some results are also known for the cases β = 2
(see [9,15]), β = 3 (see [7]) and β ∈ N \{0} (see [4]). Concerning the Hölder
continuity and also the Hölder exponent of Rα,β , several particular cases have
been studied (see [2,4,15,16,19,28]).

In this paper, we study the uniform Hölder continuity of Rα,β with
β ≥ α− 1 in complete and generalize a result of Johnsen [19] in 2010 which
claims that, if β > α − 1, then Rα,β is uniformly Hölder continuous with
an exponent greater or equal to (α − 1)/β. To achieve this, we use some
techniques different from the ones of Johnsen. Our approach is based on the
continuous wavelet transform of Rα,β related to the Lusin wavelet, and is
similar to the ones used to obtain the Hölder continuity of R in [12,15,17].
This method has two advantages: we can consider both the cases β = α − 1
and β > α−1 to study the uniform Hölder continuity of Rα,β and then show
the optimality of the so obtained exponent. In other words, we calculate the
uniform Hölder exponent of Rα,β for β ≥ α−1. These results are summarized
in the following theorem.

Theorem 4. For β ≥ α− 1, we have

hRα,β
(R) =

α− 1
β

.

If we fix α > 1, the uniform Hölder exponent of Rα,β decreases to 0 as β
increases to infinity. To illustrate this phenomenon, we give the graphical rep-
resentation of Rα,β for some β. For β large enough, we can observe that Rα,β
looks like the function x �→ sin(πx) with some “noise” or “oscillations” all
around. In fact, this function is simply the first term of the series defin-
ing Rα,β . We show that Rα,β can be, on average, compared to the function
x �→ sin(πx) and we measure the amplitude of these fluctuations.

The paper is organized as follows. In Sect. 2, we recall some helpful
properties about the continuous wavelet transform and the tool it provides to
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study the Hölder continuity of a function. We will extensively take advantage
of the properties of the Lusin wavelet. The proof of Theorem 4 is given in
Sect. 3. We analyse in Sect. 4 the behaviour of Rα,β as β increases. We
present the graphical representation of R2,β for some particular values of β.
In Sect. 5, we give some additional comments about the more general case of
nonharmonic Fourier series. We also show the limitations of the Lusin wavelet
to investigate the research of the maximal possible Hölder exponent of Rα,β
at a point.

2. Hölder Continuity and Continuous Wavelet Transform

Let us recall some notions about the continuous wavelet transform and the
Hölder continuity of a function (see [5,11,12,15,17,26]). The natural space
associated with the continuous wavelet transform is the Hilbert space L2(R).
Such a setting is of no interest for the function Rα,β , since it does not belong
to L2(R). As Rα,β is a continuous and bounded function on R, the continuous
wavelet transform of a function of L∞(R) is more appropriate.

Definition 5. The function ψ is a wavelet if ψ ∈ L1(R)∩L2(R) and ψ̂(0) = 0,
where ψ̂ denotes the Fourier transform of ψ:

ψ̂(ξ) =
∫

R

e−ixξψ(x) dx, ξ ∈ R .

Using the wavelet ψ, the continuous wavelet transform of a function f ∈
L∞(R) is the function Wψf defined by

Wψf(a, b) =
∫

R

f(x)
1
a
ψ

(
x− b

a

)
dx, a > 0, b ∈ R,

where ψ denotes the complex conjugate of ψ.

To study the uniform Hölder continuity of Rα,β , we will use a peculiar
wavelet, known as the Lusin wavelet:

ψ(x) =
1

π(x+ i)2
, x ∈ R . (2)

Since

ψ̂(ξ) =
{−2ξe−ξ if ξ ≥ 0

0 if ξ < 0 ,

this wavelet belongs to the second Hardy space

H2(R) =
{
f ∈ L2(R) : f̂ = 0 a.e. on (−∞, 0)

}
.

Such a property will be useful to obtain a simple explicit expression of WψRα,β
(in comparison with the derivatives of a gaussian function for example).

An exact reconstruction formula exists in such a situation: if ψ belongs
to H2(R) and if f belongs to a certain class of continuous and bounded func-
tions on R, we can recover f from Wψf using a second wavelet satisfying some
additional properties (see [12] with some adaptations to the case H2(R)).
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Theorem 6. Let ψ be a wavelet which belongs to H2(R). Let ϕ be a differen-
tiable wavelet such that x �→ xϕ(x) is integrable on R, such that Dϕ is square
integrable on R and such that

∫ +∞

0

ψ̂(ξ)ϕ̂(ξ)
dξ
ξ

= 1. (3)

If f is a continuous and bounded function on R and is weakly oscillating
around the origin, such that

lim
r→+∞ sup

x∈R

∣∣∣∣
1
2r

∫ x+r

x−r
f(t) dt

∣∣∣∣ = 0,

then we have

f(x) = lim
ε→0+

r→+∞
2
∫ r

ε

(∫ +∞

−∞
Wψf(a, b)

1
a
ϕ

(
x− b

a

)
db
)

da
a

for all x ∈ R.

Thanks to this reconstruction formula, the Hölder continuity of a func-
tion can be characterized with its continuous wavelet transform, provided
that the wavelet satisfies some additional conditions. We will use the follow-
ing result to study the Hölder continuity of the generalized Riemann function
(see [12,15,17]).

Theorem 7. Let α ∈ (0, 1), let ψ be a wavelet such that x �→ xαψ(x) is
integrable on R and let f be a function as in Theorem 6.

(1) We have f ∈ Cα(R) if and only if there exists C > 0 such that

|Wψf(a, b)| ≤ C aα

for all a > 0 and b ∈ R.
(2) Let x0 ∈ R. If f ∈ Cα(x0), then there exist C > 0 and η > 0 such that

|Wψf(a, b)| ≤ C aα
(

1 +
( |b− x0|

a

)α)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η). Conversely, if there exist
α′ ∈ (0, α), C > 0 and η > 0 such that

|Wψf(a, b)| ≤ C aα

(
1 +

( |b− x0|
a

)α′)

for all a ∈ (0, η) and b ∈ (x0 − η, x0 + η), then f ∈ Cα(x0).

Remark 8. Let us note that the proofs of the necessary conditions in Theo-
rem 7 do not use all the hypotheses on the function f : the continuity and the
weak oscillation around the origin of f are not useful for these implications.

The generalized Riemann function and the Lusin wavelet satisfy the con-
ditions of the two previous theorems. Indeed, we know that Rα,β is continuous
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and bounded and that the Lusin wavelet ψ belongs to H2(R). Moreover, Rα,β
is weakly oscillating around the origin because
∣∣∣∣

1
2r

∫ x+r

x−r
Rα,β(t) dt

∣∣∣∣≤
∣∣∣∣∣

1
2r

+∞∑

n=1

cos((x−r)πnβ) − cos((x+ r)πnβ)
πnα+β

∣∣∣∣∣≤
ζ(α+ β)

πr

for all x ∈ R and r > 0, and x �→ xαψ(x) is clearly integrable for α ∈ (0, 1).
Besides, it is easy to find a differentiable wavelet ϕ such that x �→ xϕ(x) is
integrable on R, such that Dϕ is square integrable on R and such that

∫ +∞

0

ϕ̂(ξ)e−ξ dξ = −1
2
.

In the following, ψ will systematically denote the Lusin wavelet [see (2)].

3. Hölder Continuity of Generalized Riemann Function

Since we know that the function Rα,β is continuously differentiable on R if
α > 1 and β ∈ (0, α−1), we can assume β ≥ α−1 in the study of the uniform
Hölder continuity of Rα,β . To prove Theorem 4, we first need to determine
the continuous wavelet transform of Rα,β related to the Lusin wavelet, as
in [12,15,17] where the case α = β = 2 is treated.

Proposition 9. We have

WψRα,β(a, b) = iaπ

+∞∑

n=1

eiπn
β(b+ia)

nα−β (4)

for all a > 0 and b ∈ R.

Proof. We can write

Rα,β(x) =
1
2

(
Tα,β(x) − T̃α,β(x)

)

for x ∈ R with

Tα,β(x) = −i
+∞∑

n=1

eiπn
βx

nα
and T̃α,β(x) = Tα,β(−x).

In other words, Rα,β is the odd part of Tα,β .
Let us fix a > 0 and b ∈ R. We have

WψTα,β(a, b) =
∫

R

Tα,β(x)
1
a
ψ

(
x− b

a

)
dx =

a

π

∫

R

Tα,β(x)
(x− (b+ ia))2

dx.

For η > 0 and r > 0, let us denote by γη,r the closed path formed by the
juxtaposition of the two following ones: the first path describes the segment
[−r + iη, r + iη] and the second one the half-circle of centre iη and radius
r included in H = {z ∈ C : 
z > 0}. The function Tα,β is holomorphic on
H because the series uniformly converges on every compact set of H. As the
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point b + ia is situated inside the curve described by γη,r for η ∈ (0, a) and
r > a, we obtain

WψTα,β(a, b) =
a

π
lim

r→+∞ lim
η→0+

∫

γη,r

Tα,β(z)
(z − (b+ ia))2

dz

= 2ia (DTα,β)(b+ ia)

= 2iaπ
+∞∑

n=1

eiπn
β(b+ia)

nα−β ,

thanks to Cauchy’s integral formula. Similarly, the continuous wavelet trans-
form of T̃α,β is given by

WψT̃α,β(a, b) =
∫

R

Tα,β(−x) 1
a
ψ

(
x− b

a

)
dx

=
a

π
lim

r→+∞ lim
η→0+

∫

γη,r

Tα,β(z)
(z − (−b− ia))2

dz = 0

by homotopy invariance, because the point −b− ia does not belong to H. We
thus have the conclusion. �

Let us now analyse WψRα,β to study the uniform Hölder continuity of
Rα,β with Theorem 7. We have

|WψRα,β(a, b)| ≤ aπ

+∞∑

n=1

e−aπnβ

nα−β = |WψRα,β(a, 0)| (5)

for a > 0 and b ∈ R. The function fα,β : x �→ xβ−α e−aπxβ

is differentiable
on (0,+∞) and

Dfα,β(x) = e−aπxβ

xβ−α−1
(
(β − α) − aπβxβ

)
, x > 0.

Then, fα,β is decreasing on (0,+∞) if β ∈ [α− 1, α) and on (((β − α)/
aπβ)1/β ,+∞) if β ≥ α.

We note that fα,β is integrable on (0,+∞) only if β > α − 1. We
therefore split the study of the uniform Hölder continuity and the calculus of
the uniform Hölder exponent of Rα,β into two cases: β > α−1 and β = α−1.

Proposition 10. If β > α− 1, then

hRα,β
(R) =

α− 1
β

.

Proof. 1. Let us first consider the case β ∈ (α − 1, α). The function fα,β is
decreasing on [1,+∞) and we have

|WψRα,β(a, b)| ≤ aπ

(
e−aπ +

+∞∑

n=2

e−aπnβ

nα−β

)
≤ aπ

⎛

⎝e−aπ +

+∞∫

1

e−aπxβ

xα−β dx

⎞

⎠
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for a > 0 and b ∈ R. For the second term of the right-hand side of the last
inequality, we obtain

∫ +∞

1

e−aπxβ

xα−β dx ≤
∫ +∞

0

e−aπxβ

xα−β dx =
1
β
π

α−1
β −1 Γ

(
1 + β − α

β

)
a

α−1
β −1

(6)

for a > 0, where Γ is defined by

Γ(x) =
∫ +∞

0

e−t tx−1 dt, x > 0,

as usual. For the first term, we note that the function a �→ e−aπa1− α−1
β is

bounded on (0,+∞) because α − 1 < β. Then, there exists Cα,β > 0 such
that

|WψRα,β(a, b)| ≤ Cα,β a
α−1

β

for all a > 0 and b ∈ R, which implies Rα,β ∈ C
α−1

β (R) using Theorem 7.
Let us show the optimality of this exponent (α − 1)/β related to the

uniform Hölder continuity. Let C > 0 and η > 0; we have

|WψRα,β(a, 0)| = aπ

+∞∑

n=1

e−πnβa

nα−β ≥ aπ

∫ +∞

1

e−aπxβ

xα−β dx

=
1
β

(aπ)
α−1

β Γ
(
β − α+ 1

β
, aπ

)

for a > 0, where Γ is the incomplete Gamma function defined by

Γ(x, y) =
∫ +∞

y

e−ttx−1 dt, (x, y) ∈ (0,+∞) × [0,+∞).

Let us recall that Γ(x, 0) = Γ(x) and Γ(x, y) converges to Γ(x) as y → 0+

for all x > 0. Since Γ((β − α+ 1)/β, aπ) → Γ((β − α+ 1)/β) and aη → 0 as
a → 0+, there exists A > 0 such that, for all a ∈ (0, A), we have

|WψRα,β(a, 0)| > C a
α−1

β +η.

Hence the conclusion using Theorem 7.
2. Let us now consider the case β ≥ α and let us write Na = �((β −

α)/aπβ)1/β� + 1, where �x� denotes the largest integer smaller than or equal
to the real x. If a > 1, then Na = 1 and we can proceed as in the previous
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case. Let us therefore suppose that a ∈ (0, 1]. We have

|WψRα,β(a, b)| ≤ aπ

(
Na∑

n=1

e−aπnβ

nα−β +
+∞∑

n=Na+1

e−aπnβ

nα−β

)

≤ aπ

(
NaN

β−α
a +

∫ +∞

Na

e−aπxβ

xα−β dx

)

≤ aπ

⎛

⎝
((

β − α

πβ

) 1
β

+ a
1
β

)β−α+1

a
α−1

β −1 +
∫ +∞

0

e−aπxβ

xα−β dx

⎞

⎠

≤ a
α−1

β π

⎛

⎝
((

β−α
πβ

) 1
β

+1

)β−α+1

+
1
β
π

α−1
β −1 Γ

(
1 + β − α

β

)⎞

⎠,

where we have used relation (6) to obtain the last inequality. We then have
Rα,β ∈ C

α−1
β (R) using Theorem 7.

Let us show the optimality of the exponent related to the uniform Hölder
continuity. Let C > 0 and η > 0; we have

+∞∑

n=1

e−πnβa

nα−β ≥
+∞∑

n=Na

e−πnβa

nα−β

≥
∫ +∞

Na

e−aπxβ

xα−β dx

=
1
β

(aπ)
α−1

β −1

+∞∫

aπNβ
a

e−u u
β−α+1

β −1 du

≥ 1
β

(aπ)
α−1

β −1 Γ

⎛

⎝β − α+ 1
β

,

((
β − α

β

)1/β

+ (aπ)1/β
)β⎞

⎠

for a > 0. As in the case β ∈ (α− 1, α), there exists A > 0 such that, for all
a ∈ (0, A), we have

|WψRα,β(a, 0)| > C a
α−1

β +η,

hence the conclusion using once again Theorem 7. �

Remark 11. In fact, by taking b = 2k with k ∈ Z, we can show that Rα,β ∈
C

α−1
β (2k) and that the exponent cannot be improved because WψRα,β

(a, 2k) = WψRα,β(a, 0) for all a > 0. In other words, we have

hRα,β
(2k) =

α− 1
β

.
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Since this quantity is strictly smaller than 1, Rα,β is consequently not differ-
entiable at 2k.

Proposition 12. We have hRα,α−1(R) = 1.

Proof. We have

|WψRα,α−1(a, b)| ≤ aπ

(
e−aπ +

∫ +∞

1

e−aπxα−1

x
dx

)

= aπ

(
e−aπ +

1
α− 1

E1(aπ)
)

for a > 0 and b ∈ R, where E1 is the exponential integral defined by

E1(x) =
∫ +∞

1

e−xt

t
dt, x > 0.

Since we have
1
2

e−x ln
(

1 +
2
x

)
< E1(x) < e−x ln

(
1 +

1
x

)
(7)

for all x > 0 (see [1] p. 229), we obtain

|WψRα,α−1(a, b)| ≤ aπ e−aπ
(

1 +
1

α− 1
ln
(

1 +
1
aπ

))

for a > 0 and b ∈ R. Let us fix δ ∈ (0, 1). There exists A > 0 such that, for
all a ∈ (0, A), we have

1
α− 1

ln
(
1 + 1

aπ

)
(
1 + 1

aπ

)δ < 1

and then

|WψRα,α−1(a, b)| ≤ aπ e−aπ
(

1 +
(

1 +
1
aπ

)δ)

≤ aπ

(
1 + 2δ

(
1 +

(
1
aπ

)δ))
.

There also exists A′ ∈ (0, A) such that, for all a ∈ (0, A′), we have

|WψRα,α−1(a, b)| ≤ C ′
δa

1−δ,

where C ′
δ is a positive constant (depending only on δ). Since the function

a �→ aδe−aπ
(

1 +
1

α− 1
ln
(

1 +
1
aπ

))

is bounded on [A′,+∞), we also have

|WψRα,α−1(a, b)| ≤ C ′′
δ a

1−δ

for a ∈ [A′,+∞), where C ′′
δ is a positive constant. We thus obtain

|WψRα,α−1(a, b)| ≤ Cδ a
1−δ

for all a > 0 and b ∈ R where Cδ = max{C ′
δ, C

′′
δ }, which implies Rα,α−1 ∈

C1−δ(R) using Theorem 7.
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Let us now show that this exponent of uniform Hölder continuity is
optimal. Let C > 0; we have

|WψRα,α−1(a, 0)|

≥ aπ

∫ +∞

1

e−aπxα−1

x
dx =

aπ

α− 1
E1(aπ) ≥ a

π

2(α− 1)
e−aπ ln

(
1 +

2
aπ

)

for all a > 0 thanks to (7) and so, there exists A > 0 such that, for all
a ∈ (0, A), we have

|WψRα,α−1(a, 0)| > Ca,

hence the conclusion using one last time Theorem 7. �

4. Behaviour of Rα,β as β Increases

If we fix α > 1, we know that the uniform Hölder exponent of Rα,β decreases
as β increases, thanks to Theorem 4. Moreover, we know that this exponent
is exactly the Hölder exponent of Rα,β at the origin. This phenomenon is
clearly illustrated in Fig. 1 in the case α = 2.

As β tends to infinity, we note that the graphical representation of Rα,β
looks like the one of the function s : x �→ sin(πx) with some noise or oscil-
lations all around (in some sense to establish). In the next two propositions,
we give a convergence result and show that the fluctuations have a constant
amplitude (i.e. independent of β). To do so, let us recall the usual definition
of the mean of an integrable function over a bounded interval.

Definition 13. Let a, b ∈ R be such that a < b and let f be an integrable
function on (a, b). The mean of the function f over the interval (a, b) is defined
by

ma,b
f =

1
b− a

b∫

a

f(x) dx.

Proposition 14. Let α > 1. For all a, b ∈ R such that a < b, we have

lim
β→+∞

ma,b
Rα,β

= ma,b
s .

Proof. We have
∣∣∣∣∣

∫ b

a

(Rα,β(x)− sin(πx)) dx

∣∣∣∣∣=
∣∣∣∣∣

+∞∑

n=2

cos(πnβa)−cos(πnβb)
πnα+β

∣∣∣∣∣ ≤
2
π

(ζ(α+ β) − 1)

and we know that ζ(x) → 1 as x → +∞, hence the conclusion. �

Proposition 15. Let α > 1 and let β ∈ N \{0}. The function Rα,β is periodic
of period 2 and we have

∫ 1

−1

(Rα,β(x) − sin(πx))2 dx = ζ(2α) − 1.
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Figure 1. Graphical representation of R2,1, R2,3/2, R2,2, R2,4

and R2,10

Proof. The periodicity of Rα,β is easy to check. Let us calculate the integral.
By developing x �→ Rα,β(x) − sin(πx) in Fourier series, we have

Rα,β(x) − sin(πx) =
a0

2
+

+∞∑

m=1

(am cos(πmx) + bm sin(πmx))

in L2([−1, 1]) where a0 = am = 0 and

bm = 2
∫ 1

0

(Rα,β(x) − sin(πx)) dx

=
+∞∑

n=2

1
nα

∫ 1

0

(
cos(xπ(nβ −m)) − cos(xπ(nβ +m))

)
dx
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Figure 2. Mean value and amplitude of oscillations of x �→
R2,10(x) − sin(πx)

=

⎧
⎨

⎩

1
mα/β

if m = kβ for one k ∈ N \{0, 1}

0 otherwise

for all m ∈ N \{0}. Consequently, by Parseval formula, we obtain
∫ 1

−1

(Rα,β(x) − sin(πx))2 dx =
+∞∑

m=1

b2m =
+∞∑

k=2

1
k2α

= ζ(2α) − 1.

�

The two previous propositions are illustrated in Fig. 2. Let us end this
section with a simple remark about the behaviour of Rα,β as α tends to
infinity.
Remark 16. Proposition 14 is also “satisfied” for α, we have

lim
α→+∞ma,b

Rα,β
= ma,b

s

for all β > 0 and all a, b ∈ R such that a < b. Moreover, by Proposition 15,
we have

lim
α→+∞

∫ 1

−1

(Rα,β(x) − sin(πx))2 dx = 0

for all β ∈ N \{0}. In fact, a stronger result holds: for any fixed β > 0, Rα,β
uniformly converges on R to s as α tends to infinity because we have

|Rα,β(x) − sin(πx)| ≤
+∞∑

n=2

1
nα

= ζ(α) − 1

for all x ∈ R.

5. Final Remarks

5.1. About Nonharmonic Fourier Series

A part of Theorem 4 can be adapted for particular nonharmonic Fourier
series. Let us first recall the notion of nonharmonic Fourier series (see [14,20,
29]).
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Definition 17. Let a = (an)n∈N \{0} be a sequence of complex numbers and
let λ = (λn)n∈N \{0} be an increasing sequence of positive numbers which
converges to infinity. A nonharmonic Fourier series (related to the sequences
a and λ) is a function S defined by

S(x) =
+∞∑

n=1

an eiλnx, x ∈ R,

if the series converges.

If the series
∑+∞
n=1 an is absolutely convergent, then the above series

(related to S) uniformly converges on R. We will assume that this is the case
in the remainder of this discussion. Such a function S is then continuous
and bounded on R. As for Rα,β , we can calculate the continuous wavelet
transform of S (related to the Lusin wavelet).

Since λn > 0 for all n ∈ N \{0}, S is a holomorphic function on H and
we have

WψS(a, b) = −2a
+∞∑

n=1

anλn eiλn(b+ia)

for a > 0 and b ∈ R, similarly to (4). If we assume that there exist positive
constants C1, C2 and C3, α > 1 and β > 0 such that

|an| ≤ C1

nα
and C2n

β ≤ λn ≤ C3n
β

for all n ∈ N \{0}, we then obtain

|WψS(a, b)| ≤ 2aC1C3

+∞∑

n=1

e−C2an
β

nα−β

for a > 0 and b ∈ R and we recover an expression similar to the one obtained
for |WψRα,β(a, b)| in (5). Using the same reasoning as in the study of the
uniform Hölder continuity of Rα,β with α > 1 and β ≥ α−1, we can formulate
the following result.

Corollary 18. With the previous assumptions on a and λ, we have S ∈
C

α−1
β (R) if β > α− 1 and S ∈ C1−δ(R) for all δ ∈ (0, 1) if β = α− 1.

5.2. About the Lusin Wavelet

If α = β = 2, we know that the largest Hölder exponent of R = R2,2 at a
point is 3/2 and that it is attained at the rational numbers (2p+ 1)/(2q+ 1)
with p ∈ Z and q ∈ N (see [16]). The continuous wavelet transform related
to the Lusin wavelet of R does not allow to find this exponent.

Indeed, for a > 0, we have

WψR(a, 1) = iaπ

+∞∑

n=1

eiπn
2(1+ia) = iaπ

+∞∑

n=1

(−1)ne−aπn2

=
iaπ

2

(
∑

n∈Z

eiπn e−aπn2 − 1

)
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and, by the Poisson summation formula,

|WψR(a, 1)| =
aπ

2

∣∣∣∣∣
∑

n∈Z

1√
a
e− (π+n)2

4aπ − 1

∣∣∣∣∣

=
aπ

2

∣∣∣∣∣
e− π

4a√
a

(
1 + 2

+∞∑

n=1

e− n2
4aπ cosh

( n
2a

))
− 1

∣∣∣∣∣ .

Let C > 0 and η > 0. We have

lim
a→0+

e− π
4a√
a

(
1 + 2

+∞∑

n=1

e− n2
4aπ cosh

( n
2a

))
= 0

since we have

2
+∞∑

n=8

e− n2
4aπ cosh

( n
2a

)
≤
∫ +∞

7

e− x2
4aπ

(
1 + e

x
2a

)
dx ≤ π

√
a+
∫ +∞

7

e− 1
2

(
x2
2π −x

)

dx

for all a ∈ (0, 1). The sum begins with the term related to n = 8 for two rea-
sons. On the one hand, the function g : x �→ e− x2

4aπ cosh
(
x
2a

)
is differentiable

on R and

Dg(x) =
e− x2

4aπ

2a

(
−x

π
cosh

( x
2a

)
+ sinh

( x
2a

))
≤ 0 ⇔ x ≥ π tanh

( x
2a

)
,

which implies that g is decreasing on [4,+∞). On the other hand, the function
x �→ x2

2π −x is positive on [7,+∞). Consequently, there exists A ∈ (0, 1) such
that, for all a ∈ (0, A), we have

π

2C

∣∣∣∣∣
∑

n∈Z

1√
a
e− (π+n)2

4aπ − 1

∣∣∣∣∣ > aη

and then

|WψR(a, 1)| > Ca1+η. (8)

In fact, the Lusin wavelet has only one vanishing moment since ψ̂(0) = 0
and (Dψ̂)(0) �= 0, because the function x �→ xψ(x) is not integrable on R.
Inequality (8) thus shows that the second vanishing moment is essential for
the study of the Hölder continuity of R when the exponent is (strictly) greater
than 1. We could otherwise find D > 0 and δ > 0 such that

|WψR(a, b)| ≤ Da3/2

(
1 +

( |b− 1|
a

)3/2
)

for all a ∈ (0, δ) and b ∈ (1 − δ, 1 + δ) and then |WψR(a, 1)| ≤ Da3/2 for all
a ∈ (0, δ), which is in contradiction with (8) by taking C = D, η = 1/2 and
a ∈ (0,min{δ,A}).
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reeller Argumente nach ihren Änderungen in den kleinsten Intervallen. J. für
Die Reine Und Andewandte Mathematik 79, 21–37 (1875)

[7] Gerver, J.L.: On Cubic Lacunary Fourier Series. Trans. Am. Math.
Soc. 355(11), 4297–4347 (2003)

[8] Gerver, J.L.: The Differentiability of the Riemann Function at Certain Rational
Multiples of π. Am. J. Math. 92, 33–55 (1970)

[9] Hardy, G.H.: Weierstrass’s Non-Differentiable Function. Trans. Am. Math.
Soc. 17, 301–325 (1916)

[10] Hardy, G.H., Littlewood, J.E.: Some Problems of Diophantine Approximation
(II). Acta Math. 37(1), 193–239 (1914)

[11] Holschneider M.: Wavelets, an Analysis Tool, Oxford Mathematical Mono-
graphs. Oxford Science Publications (1995)

[12] Holschneider, M., Tchamitchian, P.: Pointwise Analysis of Riemann’s “Nondif-
ferentiable” Function. Invent. Math. 105, 157–175 (1991)

[13] Itatsu, S.: Differentiability of Riemann’s Function. In: Proceedings of the Japan
Academy, Series A vol. 57(10), pp. 492–495 (1981)

[14] Jaffard, S.: Pointwise and Directional Regularity of Nonharmonic Fourier
Series. Appl. Comput. Harmon. Anal. 28, 251–266 (2010)

[15] Jaffard, S.: The Spectrum of Singularities of Riemann’s Function. Rev. Math.
Iberoam. 12(2), 441–460 (1996)

[16] Jaffard, S., Meyer, Y.: Wavelet Methods for Pointwise Regularity and Local
Oscillations of Functions. Mem. Am. Math. Soc. (Book 587) (1996)

[17] Jaffard, S., Meyer, Y., Ryan, R.D.: Wavelets: Tools for Science and Technolo-
gies, SIAM, (2001)

[18] Jaffard, S., Nicolay, S.: Space-Filling Functions and Davenport Series. Recent
Developments in Fractals and Related Fields, 19–34 (2010)

[19] Johnsen, J.: Simple Proofs of Nowhere-Differentiability for Weierstrass’s Func-
tion and Cases of Slow Growth. J. Fourier Anal. Appl. 16, 17–33 (2010)

[20] Luther, W.: The Differentiability of Fourier Gap Series and “Riemann’s Exam-
ple” of a Continuous, Nondifferentiable Function. J. Approx. Theory 48, 303–
321 (1986)

[21] Mohr, E.: Wo ist die Riemannsche Funktion nicht differenzierbar?. Annali di
Matematica Pura Ed Applicata 123(1), 93–104 (1980)

Author's personal copy
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