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Magmatic rocks containing economic concentrations of iron, titanium, vanadiumand phosphorous are commonly
associated with massif-type anorthosites and related rocks. This rock association is part of the anorthosite–
mangerite–charnockite–(rapakivi-)granite suites that are restricted to the Proterozoic. Understanding the
geochemistry and emplacement mechanisms of ilmenite, magnetite and apatite ore deposits is crucial for explo-
ration, efficientmining operations and ore processing. This reviewdiscusses the controlling factors on the grade of
an ore, its mineralogy, and its major and trace element distribution. We present petrogeneticmodels of currently
mined deposits (Lac Tio, Tellnes, Damiao) and discuss the characteristics of minor ore bodies from anorthosite
provinces worldwide (Grenville, North China Craton, East European Craton, Rogaland, Laramie). Models of
formation of anorthosite and related rocks are presented, as well as the nature of the possible parental magmas
of the suite. A mineralogical classification of Fe–Ti ores is proposed: (1) Gabbro-noritic ilmenite ore ± apatite ±
magnetite; (2) Ti-magnetite-dominated ore; (3) Nelsonite (Fe–Ti oxides + apatite); and (4) Rutile-ilmenite ore.
The stability of ilmenite andmagnetite is then critically reviewed and the influence of various factors, particularly
oxygen fugacity and crystallization pressure, is examined. We discuss liquidus compositions of Fe–Ti oxides and
the behavior of important trace elements such as Cr and V, both of which are sensitive to fO2 variations. Post-
cumulus evolution of both oxides can occur due to re-equilibration with trapped liquid, re-equilibration with
ferromagnesian silicates, exsolution, oxidation, reaction between ilmenite and magnetite, and metamorphic
overprinting. These various processes are described and their effects on the oxide geochemistry are emphasized.
Several potential ore-forming processes have been invoked and can explain the formation of huge concentration
of ilmenite,±magnetite,±apatite. Fractional crystallization can be combinedwith crystal sorting and plagioclase
buoyancy to produce relative enrichment of dense ore minerals. Silicate liquid immiscibility can segregate conju-
gate Si-rich and Fe-rich melts, the latter being enriched in Fe–Ti–P. Magma mixing can produce hybrid magmas
located in a single-phasefield of the phase diagramand precipitate a pure ilmenite cumulate. Alternative process-
es are also described, such as ejection of Fe–Ti-enriched residual melts by filter-pressing and compaction, solid-
state remobilization of ilmenite in veins, and hydrothermal transport of Fe and Ti from the host anorthosite
followed by concentration in veins and lenticular ore bodies. The magnetic properties of Fe–Ti ore deposits
present contrasting signatures, depending on whether the natural remanent magnetization is dominated by
hemo-ilmenite or multi-domain magnetite. Micro- and macro-scale deformation features of ore rocks are
intimately correlated with magma emplacement, and with ballooning of the anorthosite diapir associated with
gravitational sagging of dense ore bodies. Exploration perspectives show that oxide-apatite gabbronorites are
interesting targets because ilmenite in these rocks is poorer in Cr and Mg, and because the Ti-resource may be
combined with apatite and vanadiferous magnetite.
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1. Introduction

Ilmenite and rutile are the main sources of titanium with 90%
of commercial TiO2 coming from ilmenite and 10% from rutile. Hard-
rock deposits associated with Proterozoic anorthosites provide 30%
of ilmenite while the remaining 70%, and all rutile, comes from placers
(Gambogi, 2010). Despite an abundance of world resource for Ti ores,
the industry continues to prospect for better quality ilmenite, principally
because of processing costs and waste disposal problems associated
with the high iron and trace-element contents of ilmenite. The modern
chloride process is far less polluting than the older sulfate process
because it does not produce waste iron sulfate (Chernet, 1999). Both
processes have restrictions on the contents of chromophore elements
such as Cr andMn, but the chloride process also hasmuch stricter limits
on concentrations of the alkali elements, especially Ca and Mg, as well
as on grain-size. Moreover, the chloride process works best with high-
Ti low-Fe ores such as rutile or leucoxene from heavy mineral beach
sands.

Three hard rock deposits are currently mined: Lac Tio (Quebec;
Charlier et al., 2010b), Tellnes (SW Norway; Charlier et al., 2007),
and Damiao (China; Chen et al., 2013). In these mines it is becoming
essential to plan ore mixing from different locations in the pit to obtain
ilmenite concentrates with a constant composition. It is therefore im-
portant to understand compositional variations inside these ore
bodies, which a growing database is now documenting.

As a result of mineral processing constraints, oxide-apatite
gabbronorites are becoming new targets, partly because the recovery
of Ti ore may be combined with that of phosphorous in apatite and
vanadium in magnetite, but mostly because ilmenite in these rocks
commonly has significantly less Cr and Mg than ilmenite from other
mines. Examples of these types of deposits associated with anorthosite–
mangerite–charnockite–(rapakivi-)granite (AMCG) suites include the
Grader (Charlier et al., 2008), Bjerkreim–Sokndal (Duchesne, 1972;
Meyer et al., 2002) and Fedorivka (Duchesne et al., 2006) layered
intrusions.

The igneous origin of Fe–Ti deposits is widely accepted, but there are
many magmatic processes that produce these oxide concentrations.
Major processes commonly invoked are as follows: segregation of an
immiscible Fe–Ti–(P)-rich magma; fractional crystallization with
oxide settling (possibly accompanied by plagioclase flotation); magma
mixing; polybaric crystallization; and solid-state remobilization. These
ore-forming processes are not mutually exclusive, and several mecha-
nisms can concentrate ilmenite ± magnetite ± apatite during cooling
of the parental magma.
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Ti minerals encountered in these deposits are mainly members of
two solid solution series: the hematite–ilmenite series (Fe2O3–FeTiO3)
and the magnetite–ulvöspinel–Al-spinel series (Fe3O4–Fe2TiO4–

(Fe,Mg)Al2O4). Rutile is rare. Lenses of Al-spinel in ilmenite and external
granule exsolutions are evidence that a small amount of Al-spinel can
dissolve in hemo-ilmenite. Since Buddington and lindsley (1964),
many experimental studies have clearly shown that the primary com-
positions of coexisting Fe–Ti oxides depend on temperature and oxygen
fugacity. Another factor, the TiO2 content of parental melts, may control
the stability of (hemo-)ilmenite and (Ti-)magnetite (Toplis and Carroll,
1995). This is critical for mining considerations, since Ti in magnetite
has a low value and a limited market.

Controlling factors on the grade of the ore, the mineralogy and
composition of associated minerals, and the distribution of major and
trace elements in Fe–Ti oxides are highly variable. The chemistry of
the magnetite–ulvöspinel-spinel and hematite–ilmenite series is more-
over complicated by various subsolidus processes,mainly exsolution and
oxidation, which can drastically modify the primary compositions of
high-temperature liquidus phases. The concentration of some polluting
elements, particularly Cr and Mg, which affect industrial ilmenite pro-
cessing, thus depends on many processes.

In this study, we present a review of typical Fe–Ti±V±P-rich rocks
in several anorthosite provinces. The ore deposits display particular
characteristics concerning ore composition and grade, associated
minerals and deposit morphology. These case studies thus provide a
wide-ranging overview of Fe–Ti ore-forming processes and the factors
controlling ore composition. Particular attention is given to their
relation to their host rocks, commonly anorthosite plutons or layered
intrusions. Liquidus compositions and postcumulus evolution of oxides
are also discussed. The objective is to consider the range of ore-forming
processes in Proterozoic anorthosites and thereby extract general impli-
cations for the origin of Fe–Ti ores. This synthesis provides exploration
perspectives and proposes realistic targets for new Fe–Ti–V–P deposits.

2. Massif-type anorthosites and related rocks

2.1. Spatial and temporal distribution

Massif-type anorthosite plutons and associated mangerite,
charnockite and (rapakivi) granite (AMCG suite; Emslie, 1978; Emslie
et al., 1994) occur in various terranes but are restricted to the Proterozoic
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Fig. 1. Location of some anorthosite provinces with proved or potential resourc
(Fig. 1; Ashwal, 1993, 2010). A distinctionbetween andesine anorthosites
(An23–48) and labradorite anorthosites (An45–63) was proposed by
Anderson and Morin (1969). According to the experimental work
of Longhi (2005) and Longhi et al. (1999), these two groups refer to
different trends among the anorthosites' parental magmas that are
not related by a fractional crystallization process: andesine anorthosites
crystallize from magmas with higher concentrations of TiO2, K2O and
P2O5, and lower Mg#, while magmas parental to labradorite anortho-
sites have lower concentrations of those three elements and usually
higher Mg#. The most important Fe–Ti ores are associated with
andesine anorthosite (Anderson and Morin, 1969), but significant
resources of Ti-magnetite also occur in labradorite anorthosites
(Hébert et al., 2005; Charlier et al., 2009; Table 1).

The Mesoproterozoic Grenville Province of North America is
the largest AMCG suite. Four major pulses of AMCG-type magmatism
have been dated around 1320 Ma, 1160–1140 Ma, 1080–1050 Ma and
1020–1008 Ma (Higgins and van Breemen, 1996; Corrigan and van
Breemen, 1997; Hébert et al., 2005). The province contains many
anorthosite plutons and includes the composite Havre-Saint-Pierre
anorthosite, which is intruded by the Lac Tio deposit (Lister, 1966;
Charlier et al., 2010b) and the Grader layered intrusion (Charlier et al.,
2008). The Lac-Saint-Jean anorthosite complex has recently been
explored and is dominated by titaniferousmagnetite deposits in labrador-
ite anorthosite (Hébert et al., 2005). The Labrieville anorthosite, emplaced
around 1010 Ma (Owens et al., 1994), also contains some Fe–Ti–P-rich
rocks (Owens and Dymek, 1992). An overview of Fe–Ti–P–V deposits in
the Grenville province has been presented by Corriveau et al. (2007).

The Rogaland Anorthosite Province, which covers ca. 1000 km2 in
SW Norway (Duchesne and Korneliussen, 2003), intruded the
Sveconorwegian orogenic belt of Baltica, which is correlated with the
Grenvillian belt of Laurentia (Rivers et al., 1989; Romer, 1996; Rivers
and Corrigan, 2000). It comprises three anorthosite plutons dated at
ca. 930Ma (Schärer et al., 1996). The Tellnes ilmenite deposit is situated
in the center of the easternmost anorthosite body, theÅna-Sira anortho-
site massif (Krause et al., 1985; Charlier et al., 2006).

The Damiao anorthosite was emplaced in the North China Craton at
ca. 1.74 Ga (Zhang et al., 2007; Zhao et al., 2009). The area covered by
anorthosite is relatively small (ca. 80–120 km2) but contains major
ore deposits that have been mined for twenty years (Chen et al., 2013).

TheAMCG suite of the AdirondackMountains (NewYork), emplaced
at ca. 1155 Ma (McLelland et al., 2004), is known for the Sanford Hill
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Table 1
Major Proterozoic anorthosite provinces containing Fe–Ti–V–P ores.

Anorthosite
province

Country Areal
extent

Age
(Ma)

Type/An Main ore deposits Dominant ore References

Korosten Ukraine 2185 1789 ± 2 Labradorite/57.5 ± 2.5 Fedorivka Ilmenite–magnetite Amelin et al. (1994),
Duchesne et al. (2006)

Damiao China 80 1740 ± 20 Labradorite–andesine/46 ± 5 Damiao, Maying, Heishan Magnetite–ilmenite Zhao et al. (2009), Chen
et al. (2013)

Mazury Poland 8000 1559 ± 39 Labradorite–andesine/50 ± 5 Suwalki Magnetite–ilmenite Wiszniewska et al. (2002),
Charlier et al. (2009)

Kunene Angola–Namibia 18,000 1385 ± 25 Labradorite/66.5 ± 9.5 Oryeheke + Ni–Cu deposits Ilmenite Maier et al. (2013)
Laramie Wyoming, USA 800 1434 ± 3 Labradorite–andesine/50 ± 10 Iron Mountain, Sybille,

Strong Creek
Ilmenite–magnetite Scoates and Chamberlain

(1997), Lindsley (2003)
Rivière
Pentecôte

Quebec, Canada 600 1354 ± 3 Labradorite–andesine/50 ± 5 Rivière Pentecôte Ilmenite–magnetite Martignole et al. (1993),
Francis et al. (2000)

De La Blache Quebec, Canada 1500 1327 ± 16 Labradorite/55 ± 2 Hervieux, Schmoo, Lac
Dissimieu

Ilmenite–magnetite Hébert et al. (2005)

Lac St Jean Quebec, Canada 20,000 1156 ± 2 Labradorite/60.5 ± 1.5 Lac a Paul, Saint Charles,
Buttercup

Magnetite–ilmenite Higgins and van Breemen
(1996), Hébert et al. (2005)

Valin
(Labrieville;
Mattawa)

Quebec, Canada 1265 1010 ± 5 Andesine/35 ± 5 Mirepoix, la Hache, Lac
Brule

Magnetite–ilmenite Hébert et al. (2005),
Morisset et al. (2013)

Adirondacks New York, USA 3000 1154 ± 6 Labradorite–andesine/49 ± 6 Sanford Lake Magnetite–ilmenite McLelland et al. (2004),
Morisset et al. (2013)

Morin Quebec, Canada 2500 1155 ± 3 Labradorite–andesine/48 ± 6 Degrosbois, Ivry,
Saint-Hippolyte

Ilmenite–magnetite Doig (1991), Morisset et al.
(2013)

Oaxaca Mexico 400 1012 ± 12 Andesine/46 ± 2 Pluma Hidalgo Rutile Force (1991), Keppie et al.
(2003)

Havre St Pierre Quebec, Canada 5500 1060 ± 3 Andesine/42.2 ± 2.5 Grader, Allard Lake, Big
Island, Everett

Ilmenite Morisset et al. (2009)

Saint-Urbain Quebec, Canada 450 1053 ± 3 Labradorite–andesine/50 ± 15 Coulombe, Bignel, Dupont,
General Electric

Ilmenite Morisset et al. (2009)

Rogaland Norway 580 931 ± 2 Labradorite–andesine/47.5 ± 7.5 Tellnes, Storgangen, Hesnes,
Bjerkreim–Sokndal

Ilmenite Schärer et al. (1996)

Malagasy
graphite
sequence

Madagascar 250 660 ± 60 Labradorite–andesine/47.5 ± 6.5 Ashwal et al. (1998)
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deposit (Gross, 1968). The anorthosite complex also contains oxide-
apatite gabbronorites (Ashwal, 1982; McLelland et al., 1994; Seifert
et al., 2010). The Laramie anorthosite complex (SE Wyoming), dated at
1.43 Ga (Scoates and Chamberlain, 2003), is closely associated with the
Horse Creek anorthosite complex (1.78 Ga; Scoates and Chamberlain,
1997). Several Fe–Ti ores are present here, of which Iron Mountain, the
Sybille pit and Strong Creek have been described (Lindsley et al., 1988;
Frost and Simons, 1991).

The East European Craton contains two major AMCG suites: the
Mazury complex and the Korosten Pluton. TheMazury complex, situated
in northeastern Poland, is covered by a thick sequence of sedimentary
rocks and is known only from drill-cores studies. It is a 200 km E–W
trending complex with two large anorthosite plutons (Wiszniewska
et al., 2002; Skridlaite et al., 2003; Duchesne et al., 2010), including the
Suwalki anorthosite. Fe–Ti deposits in this anorthosite, dominated by
Ti-magnetite (Charlier et al., 2009), are dated at ca. 1560 Ma (Re–Os
ages; Morgan et al., 2000). The Korosten Pluton occupies about
12,500 km2 of the northwestern part of the Ukrainian shield. It contains
three massif-type anorthosites and associated rocks, which were
emplaced between 1800 and 1740 Ma (see the review of Bogdanova
et al., 2004). In this province, the Fedorivka layered intrusion has signif-
icant potential for Fe–Ti ores (Duchesne et al., 2006).

The KuneneComplex of SWAngola andNWNamibia covers 15,000–
18,000 km2 and is probably made up of several individual plutons with
small Fe–Ti ore bodies (Ashwal and Twist, 1994; Gleissner et al., 2010,
2011; Maier et al., 2013). U–Pb dating of zircon in a mangerite from
this complex gives an age of 1371 ± 2.5 Ma (Mayer et al., 2004).

Many other anorthosite complexes have been described (see the
review of Ashwal, 2010), in which no significant Fe–Ti resources have
been studied or discovered. The Lofoten–Vesterålen AMCG suite in
northern Norway (Markl et al., 1998; Markl and Frost, 1999) was
emplaced ca. 1.8 Ga (Corfu, 2004) into Early Proterozoic supracrustals
and Archean gneisses. Massive and disseminated Fe–Ti concentrations
occur in gabbros and anorthosites, and the layered Selvåg gabbroic
intrusion (Priesemann and Krause, 1985) represents a minor potential
for Fe–Ti ore. Massif-type anorthosites also outcrop in southwest
Madagascar (Ashwal et al., 1998) and India, which were both part of
East Gondwana. The Eastern Ghats Belt of India hosts four massif-type
anorthosite complexes (Bhattacharya et al., 1998; Krause et al., 2001;
Dobmeier and Simmat, 2002; Dobmeier, 2006; Chatterjee et al., 2008).
Other massifs are also described in south India (Janardhan and Wiebe,
1985), but no ore bodies have been discovered. Anorthosites from the
northern Oaxacan Complex (S Mexico), dated at ca. 1012 Ma (Keppie
et al., 2003), are correlated with Grenvillian AMCG suite. Casquet et al.
(2005) have reported thediscovery ofmassif-type anorthosites covering
ca. 50 km2 in the Andean basement of the Western Sierras Pampeanas
of Argentina, including an occurrence of magnetite–apatite-rich rock
(nelsonite). U–Pb zircon dating of a gabbronorite dyke yields an age
for these anorthosites of ca. 1070 Ma. The Nain Plutonic Suite of
Labrador, Canada (Emslie, 1978; Emslie et al., 1994; Ryan, 2000; Myers
et al., 2008) has no Fe–Ti deposits but hosts the giant Ni–Cu–Co deposit
of the Voisey's Bay intrusion (Li et al., 2000). Two important cupriferous
deposits related to anorthosites are found in the Koperberg Suite
in South Africa (Conradie and Schoch, 1986; Gibson et al., 1996;
Clifford et al., 2004; Duchesne et al., 2007) and the Caraiba complex in
Brazil (Oliveira and Tarney, 1995; Maier and Barnes, 1996, 1999).
Magnetite–hypersthene ores have been described in these localities
but Ti-resources are absent.

2.2. Crystallization conditions of anorthosites

Massif-type anorthosites are thought to crystallize in two stages
(Duchesne et al., 1985a, 1999; Emslie, 1985; Ashwal, 1993). The first
involves the accumulation of plagioclase at the top of deep-seated
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magma chambers (Kushiro and Fujii, 1977; Kushiro, 1980), followed by
the intrusion of buoyant plagioclasemushes intomid-crustal levels. The
ascent of the plagioclase crystal mush from the upper part of the deep
magma chamber results from gravitational instability due to its low
density relative to the crust. Even though the emplacement of an anor-
thositic massif by simple vertical diapirism has been successfully
modeled (Barnichon et al., 1999), the intrusions are probably favored
by zones of crustal weakness such as major lineaments (Corrigan and
Hanmer, 1997; Scoates and Chamberlain, 1997; Duchesne et al., 1999;
Ryan, 2000; Bogdanova et al., 2004).

The polybaric crystallization of anorthosites is largely deduced from
the occurrence of high-alumina orthopyroxene megacrysts (HAOM)
containing plagioclase exsolutions (Emslie, 1975). Experiments on the
stability of HAOM reveal that the Al-richest compositions are stable at
pressures of 11–13 kbar (Fram and Longhi, 1992; Longhi et al., 1993,
1999). The alumina content of orthopyroxene commonly displays a
continuous range from 2 to 8 wt.% Al2O3, supporting continuous
polybaric crystallization during diapiric rise of the anorthositic mush
(Charlier et al., 2010a). Final pressures of emplacement estimated
from mineral assemblages in the contact metamorphic aureoles
range from 3 to 6 kbar (Berg, 1977; Jansen et al., 1985; Westphal
et al., 2003).

Deformation features in anorthosites, such as strongly foliated
margins and the ubiquitous dynamic recrystallization of plagioclase
(primary crystals are replaced by smaller recrystallized grains;
e.g. Lafrance et al., 1996; Nasipuri and Bhattacharya, 2007), are
syn-emplacement features and can be accounted for by anorthosite
diapirism and ballooning (Martignole and Schrijver, 1970; Barnichon
et al., 1999). Gravitational instabilities are also responsible for the
sagging of dense Fe-rich rocks in host anorthosite (Paludan et al.,
1994; Bolle et al., 2000, 2002).

Anorthosite plutons in the Laramie complex do not have diapiric
structures; they appear to be magma chambers with characteristics
typical of mafic layered intrusions. They display a well-defined stratig-
raphy with alternating anorthosite and leucocratic gabbroic rocks
(Lindsley et al., 2010; Scoates et al., 2010). The building of these plutons
is interpreted as resulting fromsuccessive injections ofmagma containing
large amounts of plagioclase megacrysts. This emplacement scenario is
similar to that of the anorthositic base of the Bjerkreim–Sokndal layered
intrusion in the Rogaland Anorthosite Province (Wilson et al., 1996;
Duchesne and Charlier, 2005).

Various tectonic settings have been proposed for massif-type anor-
thosites, from anorogenic intraplate to convergent and divergent
settings (McLelland et al., 2010). However, most anorthosite provinces
seem to be associated with major lineaments (Corrigan and Hanmer,
1997; Scoates and Chamberlain, 1997; Duchesne et al., 1999; Ryan,
2000; Bogdanova et al., 2004), and a consensus is emerging that
anorthosites were emplaced in continental arc environments in a
post-collisional regime (Duchesne et al., 1999; Zhang et al., 2007;
Vander Auwera et al., 2011; Bybee et al., 2014).

Anorthosite complexes are emplaced into high-grade metamorphic
rocks and are surrounded by an aureole of contact metamorphism
(Berg, 1977) up to 20 km thick (Westphal et al., 2003; Drüppel et al.,
2013). Granulite-facies assemblages with orthopyroxene, pigeonite or
osumilite are common (Möller et al., 2003).

2.3. Composition and source for parental magmas: mantle vs. lower crust

The compositions of proposed magmas parental to massif-type
anorthosite range from high-Al basalt to jotunite (hypersthene-bearing
monzodiorite; Emslie, 1980; Fram and Longhi, 1992; Mitchell et al.,
1995; Vander Auwera et al., 1998; Charlier et al., 2010a). The major
contention concerning the petrogenesis of anorthosite is whether
parental magmas are produced by melting the mantle (Emslie, 1978;
Ashwal, 1993; Bybee et al., 2014) or by melting a mafic lower crust
(Duchesne et al., 1999; Longhi et al., 1999; Longhi, 2005). Rb–Sr and
Sm–Nd isotopic studies (e.g. Taylor et al., 1984; Emslie et al., 1994;
Scoates and Frost, 1996) have not been able to unambiguously deter-
mine the origin of these parental magmas because they cannot readily
distinguish a mantle-derived magma with crustal contamination from
a melt of mafic lower crust with only brief crustal residence (Demaiffe
et al., 1986). Re–Os isotopic studies on sulfide minerals in the Suwalki
anorthosite (Morgan et al., 2000) and the Rogaland Anorthosite
Province (Schiellerup et al., 2000) yield high initial 187Os/188Os ratios,
which require a crustal source. However, these interpretations have
been questioned by Hannah and Stein (2002) who have modeled
similar high initial 187Os/188Os by direct assimilation of crustal sulfide by
a mantle-derived magma. Further determination of initial 187Os/188Os
on silicates and oxides would be useful.

Experimental constraints on liquidus equilibria under dry
conditions (Longhi et al., 1999) have revealed a thermal divide on the
plagioclase + pyroxene liquidus surface at 10–12 kbar. This suggests
that a magma parental to anorthosite cannot be a mantle melt contam-
inated by the crust but should instead result from the directmelting of a
gabbronoritic source. Moreover, calculations of fractional crystallization
with and without assimilation (Longhi, 2005) have shown that it is
not possible to produce a high-Al liquid by melting typical mantle
peridotites or even anomalous Fe- and Al-enriched mantle (Olsen and
Morse, 1990) with sufficient TiO2 to make andesine-type anorthosite.
The alternative proposed by Longhi et al. (1999) involves partialmelting
of a mafic lower crust, which is more suitable for producing TiO2-rich
magmas.

2.4. Related rocks: comagmatic or simply coeval with massif-type
anorthosites?

Massif-type anorthosites are commonly associated with rocks of
intermediate composition. These are referred to as ferrodiorite
(Emslie, 1985; Mitchell et al., 1996), monzonorite (Duchesne et al.,
1974, 1985b) and jotunite (Owens et al., 1993; Vander Auwera et al.,
1998), and are all significantly enriched in Fe–Ti–P. They occur as
fine-grained rocks in dykes, chilled margins of leuconorite plutons
(e.g. Hidra body; Demaiffe and Hertogen, 1981) and layered intrusions
(e.g. Bjerkreim-Sokndal; Duchesne and Hertogen, 1988), as well as
cumulates in (layered) intrusions (Duchesne et al., 1987). Anorthosites
can be associated with more felsic compositions: mangerite (hyper-
sthene monzonite), quartz mangerite (hypersthene quartz monzonite)
and charnockite (hypersthene granite) (Duchesne and Wilmart,
1997).

Twomajor hypotheses are invoked for the origin of rocks associated
with massif-type anorthosites: (1) they are residual liquids after the
crystallization of anorthosite (Emslie, 1978; Morse, 1982; Emslie et al.,
1994; Mitchell et al., 1996; Scoates et al., 1996); (2) they are the direct
product of partial melting of a lower gabbronoritic crust and are the
parental magmas of andesine anorthosites (Duchesne and Demaiffe,
1978; Longhi et al., 1999). These two hypotheses are not mutually
exclusive; most authors agree that these rocks represent intermediate
compositions in the comagmatic sequence fromanorthosite tomangerite
and even to granitoids. Experimental studies (Vander Auwera et al.,
1998) have shown that evolved monzonitic and mangeritic rocks can
be produced by closed-system fractional crystallization from jotunitic–
ferrodioriticmagmas, although variable degrees of crustal contamination
might also be involved (Bolle et al., 2003). Scoates and Lindsley (2000)
suggest an important role for polybaric fractional crystallization in
producing compositional diversity in Proterozoic anorthosite plutonic
suites. The comagmatic origin of jotunitic to charnockitic melts is also
evidenced by the Tellnes dyke, closely associated with the Tellnes
ilmenite deposit, which is made up of this continuous series of compo-
sitions and can be modeled by closed-system fractional crystallization
(Wilmart et al., 1989).

Massif-type anorthosites are also commonly associatedwith ferroan
A-type granite and charnockite (Emslie, 1978; Duchesne and Wilmart,
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1997; Frost and Frost, 2011, 2013). None of these silicic rocks contain
any Fe–Ti–V–P ores.

3. Characteristics of major deposits

Three rock deposits are currently mined: Lac Tio (Quebec), Tellnes
(SW Norway), and Damiao (China). Together, these mines produce
5–6 million tons of ore with contrasting grades and ilmenite composi-
tions (Fig. 2). Each deposit also has its own structure, internal variations
and relationships with the host anorthosite as detailed below.

3.1. Lac Tio, Quebec

The Lac Tio (or Allard Lake) hemo-ilmenite ore body is situated on
the north shore of the Saint Lawrence estuary (Quebec). The deposit
outcrops in the 1.06 Ga Lac Allard anorthosite, which is part of the
Havre-Saint-Pierre anorthosite suite of the Grenville province in North
America (Emslie, 1978; Perreault and Hébert, 2003; Morisset et al.,
2009). It was discovered in June 1946 in the Allard Lake area near a
small lake named Lac Tio, during the first aeromagnetic survey for ore
exploration (Bourret, 1949). Following two years of drilling by Kennco
Explorations, it has been continuously exploited since 1951 as an
open-pit mine. The ore body is the world's largest known hard-rock
ilmenite deposit, with current reserves estimated at ca. 138Mt at grades
exceeding60wt.% hemo-ilmenite. The TiO2 content of the ore is variable
but is mainly between 32 and 38 wt.% TiO2, which is much higher than
the Tellnes and Damiao deposits (Fig. 2).

The main ore body is a funnel-shaped intrusion measuring 1.03 ×
1.10 km and 100–300 m thick. Two smaller bodies are separated
from the main deposit by faults and anorthosite. The ore is an
ilmenite-rich norite (or ilmenitite) made up of hemo-ilmenite
(Hem22.6–29.4, 66.2 wt.% on average), andesine plagioclase (An45–50),
aluminous spinel and locally orthopyroxene. Compared to other de-
posits, ilmenite in Lac Tio is significantly richer in hematite and has a
moderate MgO content (2.5–3.0 wt.%; Fig. 3).

The ilmenite-rich body has usually been considered to have formed
as an enormous drop of immiscible Fe–Ti-enriched liquid separated
from the magma remaining after the crystallization of the andesine
anorthosite (Hammond, 1952; Lister, 1966). However, whole-rock
compositions are controlled by the proportions of ilmenite and
plagioclase ± orthopyroxene, which supports a cumulate origin for
the deposit (Charlier et al., 2010b). Cr concentrations in ilmenite reveal
normal and reverse fractionation trends, suggesting multiple episodes
of magma emplacement and alternating periods of fractional crystalli-
zation and magma mixing. This mixing produced hybrid magmas
located in the stability field of ilmenite, resulting in periodic crystalliza-
tion of ilmenite alone. The unsystematic differentiation trends in the Lac
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Fig. 2. Histograms of the TiO2 content (wt.%) of whole rocks from Lac Tio (data from Charlier e
et al., 2013).
Tio deposit, arising from a succession of magma pulses, hybridization,
and the fractionation of hemo-ilmenite alone or together with
plagioclase, suggest that the deposit formed within a magma conduit
(Charlier et al., 2010b). This dynamic emplacement mechanism associ-
ated with continuous gravity-driven accumulation of Fe–Ti oxides, and
possibly plagioclase buoyancy in a fractionating ferrobasalt, explains
the huge concentration of hemo-ilmenite.

3.2. Tellnes, SW Norway

The Tellnes ore body is an ilmenite-rich norite averaging slightly
more than 18% TiO2. It was discovered in 1954 during an aeromagnetic
survey, and has been mined since 1960 by TITANIA A/S as an open-pit
(Krause et al., 1985). Reserves are estimated at 57Mt TiO2, representing
14% of theworld reserves of ilmenite and 12% of the total world reserves
of titaniumminerals (ilmenite+ rutile). By-products aremagnetite and
Ni–Cu sulfide concentrates. The Tellnes ore body is intruded into the
Åna-Sira anorthosite, which is part of the Rogaland anorthosite province
in SW Norway. The deposit crosscuts the anorthosite and thus is youn-
ger than its host; zircon U–Pb ages are 920± 3Ma for the ore body and
932 ± 3 Ma for the anorthosite (Schärer et al., 1996). It has a sickle-
shaped outcrop oriented WNW–ESE to NNW–SSE with a maximum
width and length of 400 m and 2700 m, respectively. Its 3D shape is
that of a gently plunging elongated trough. The intrusive character of
the ore body is evident from sharp contacts with the host anorthosite,
numerous apophyses and anorthosite xenoliths. The TiO2 content of
the ore is usually 16–20 wt.% (Fig. 2b), with concentrations generally
the highest in the center of the ore body and decreasing towards
the margins (Charlier et al., 2006). The MgO content of ilmenite (1.4–
4.4 wt.%; Fig. 3b) is systematically lower in samples from the margins
of the ore body. This has been interpreted to be due to extensive
postcumulus re-equilibration with trapped liquid and ferromagnesian
silicates, and is correlated with distance to the host anorthosite
(Charlier et al., 2007). The hematite content varies slightly between
Hem10 and Hem14 and is systematically higher in samples from the
margins of the ore body.

Tellnes was previously described as a rather homogeneous ore body
with plagioclase, ilmenite, and orthopyroxene as the major minerals
(Gierth and Krause, 1973). However, the deposit displays significant
variation in the compositions and proportions of minerals (Charlier
et al., 2006). The lower part of the ore bodymainly contains plagioclase
and ilmenite. Upsection, orthopyroxene and olivine appear. Marginal
zones are characterized by high plagioclase and apatite contents and
lower proportions of ilmenite. Variations in ilmenite composition with
stratigraphic height indicate that fractional crystallization was the
major differentiation process in the Tellnes ilmenite deposit. The calcu-
lated cotectic proportion of ilmenite in plagioclase–ilmenite cumulates
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is 17.5%, significantly lower than the proportion of cumulus ilmenite in
the bulk deposit (ca. 50%; Charlier et al., 2007). This implies sorting of
ilmenite and its preferential accumulation at the bottomof the chamber,
which has been interpreted to have had a sill shape that is now de-
formed into an elongated trough (Charlier et al., 2006).
3.3. Damiao, China

The Damiao deposit is hosted in the ca. 1.74 Ga Damiao andesine
anorthosite complex, located in the northern part of the North China
Craton (Xie, 1982; Zhao et al., 2009). The magmatic province hosts a
complete suite of rocks related to anorthosite, i.e. norite, gabbronorite,
ferrodiorite, mangerite, alkali granitoid, and rapakivi granite (Zhang
et al., 2007; Zhao et al., 2009; Chen et al., 2013). Trace element and
isotopic evidence (Sr–Nd–Hf) support derivation of the magmatic
suite by fractional crystallization of one parental high-alumina basalt
(Zhang et al., 2007; Zhao et al., 2009). The Damiao deposit has been
mined in open pits and underground for several decades at an annual
production of 2 Mt ore with economic concentrations of Fe, Ti, P and
V. The deposit is subdivided into many discordant ore bodies (more
than 90) occurring as irregular lenses, veins or pods crosscutting the
anorthosite (Sun et al., 2009; Chen et al., 2013; Li et al., 2014). The ore
has an average grade of about 36 wt.% Fe2O3tot, 7.0 wt.% TiO2, 0.3 wt.%
V2O5, and 2.0 wt.% P2O5 (Sun et al., 2009). The ore is hosted by massive
anorthosite and locally by leuconorite. Various types of ore rocks
are identified (Li et al., 2014): massive Fe ore with Ti-magnetite and
ilmenite (Fe–Ti ore); massive P ore containing more than 50% apatite
(nelsonitic ore); massive Fe–P ore with apatite, Ti-magnetite and
ilmenite (oxide-apatite gabbronorite ore); and disseminated Fe and
Fe–P ore representingmore than 60% of the total reserve. Unlike Tellnes
and Lac Tio, the ore is dominated by Ti-magnetite, which explains the
high Fe/Ti ratio (Fig. 3a). The whole-rock TiO2 content of the Damiao
deposit is also comparatively low, mainly between 6 and 12 wt.%
(Fig. 2c). However, the composition of the ilmenite is of much higher
quality with low Cr and Mg (Chen et al., 2013). Ilmenite contains less
than 0.5 wt.% MgO, and has a low hematite fraction (b7 mol%;
Fig. 3b). Immiscibility, promoted by oxidizing crystallization conditions
and high phosphorous concentration in the magma, and formation of a
nelsonitic melt (Fe–Ti–P-rich ferrobasalt) has been proposed as a major
ore-forming process (Chen et al., 2013). The crystallization products of
this melt, enriched in Ti-magnetite, ilmenite ± apatite, would have
been accumulated in residual melt pockets of the host anorthosite.
Hydrothermal remobilization of Fe and Ti from the host altered
anorthosite has also been suggested for the formation of massive Fe–P
ores (Li et al., 2014).

4. Mineralization styles, grades and sizes

The threemajor deposits described above have differentmineraliza-
tion styles. Internal variations in Fe–Ti deposits and relationships with
the host anorthosite and associated rocks are even more complex
when considering the huge number of minor deposits mentioned in
the literature. Based on themajor characteristics of selected occurrences
of Fe–Ti± P (Table 2), a fewmajormineralization styles can be defined.
Rose (1969) asserted that these deposits could occur within tabular
intrusives, stocks, sills or dykes in massive anorthosites but also “locally
as stratified accumulations in layered segments of anorthosite massifs
or in layered intrusions”. Compared to major deposits, other occur-
rences have significantly lower economic potential, as shown by lower
titanium grades and tonnage (Fig. 4), although some of them have
been exploited in the past, and still contain significant resources.

4.1. Massive deposits

Hemo-ilmenite (±Ti-magnetite in some deposits) occurs in mas-
sive deposits and commonly constitutes more than 90% of the
mineral assemblage. Accompanying phases are typically plagioclase,
orthopyroxene, and spinel. The rock is usually coarse-grained, with po-
lygonal, tabular crystals of hemo-ilmenite. Massive deposits are usually
discordant with the host anorthosite and can be variably deformed. The
Lac Tio deposit is the main example of massive ore, even though more
plagioclase-rich parts of the deposit display a conspicuous modal
layering. Other examples of massive ore are Jerneld, Blåfjell and part
of Kydlandsvatn in the Rogaland province (ilmenitite); part of the Iron
Mountain deposit in Wyoming (ilmenite + magnetite); and St Urbain
deposits in the Grenville province (ilmenite + rutile).

4.2. Stratiform deposits

Stratiform deposits are found in intrusions that are clearly distinct
from massif-type anorthosites. Major examples occur in the Layered
Series of the Bjerkreim–Sokndal layered intrusion, which outcrops
over 230 km2 and consists of a 7000 m-thick sequence of cumulates
made up of anorthosite, troctolite, leuconorite, norite, gabbronorite,
jotunite and mangerite (Wilson et al., 1996). Fe–Ti–P-enriched rocks
occur at the top of the Layered Series, where huge volumes of rocks
with 5–7 wt.% TiO2 and 4–5 wt.% P2O5 have been reported (Duchesne
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Table 2
Principal characteristics of representative Fe–Ti oxide deposits.

Deposit name Location Setting Rock type Main paragenesis Oxide composition Suggested origin References

Jerneld Helleren anorthosite,
Rogaland, SW Norway

Veins in massive
anorthosite

Massive
hemo-ilmenite

Ilmenite ± Al-spinel ± sulfides ± plag Cr-, V-, Mg-rich hemo-ilmenite
(Hem18; MgO: 5.3%; Cr: 0.3%; V:
0.22%)

Remobilized ilmenite
cumulate

1

Blåfjell Åna-Sira anorthosite,
Rogaland, SW Norway

Bodies in noritic pegmatite Massive ilmenitite Ilmenite ± plag (An40–50) Cr-, V-, Mg-rich hemo-ilmenite
(Hem20; MgO: 5.7%; Cr: 0.2%; V:
0.20%)

Cumulate in noritic melt 1, 2

Tellnes Åna-Sira anorthosite,
Rogaland, SW Norway

Dyke-like intrusion in
massive anorthosite

Homogeneous
ilmenite norite,
locally laminated

Plag (An42–45) + opx (En77–75) ± ol (Fo80) + Fe–Ti
oxides

Hemo-ilmenite (Hem10–15; MgO:
1.4–4.2%; Cr: 0.01–0.21%; V:
0.10–0.16%) ± magnetite (Cr: 0.8%;
V: 0.51%)

Cumulate enriched by
crystal sorting in a
ferrodioritic liquid

3, 4

Storgangen Åna-Sira anorthosite,
Rogaland, SW Norway

Concordantly layered dyke
intruded in massive
anorthosite

Melanoritic layers
in slightly deformed
layered norite

Plag (An43–55) + opx (En70–75) + Fe–Ti oxides Hemo-ilmenite (Hem13; MgO: 3.3%;
Cr: 0.03%; V: 0.2%) + magnetite (Cr:
0.2–0.7%; V: 0.65%)

Cumulate in a
differentiated sill

1, 5, 6, 6b

Kydlandsvatn Rogaland, SW Norway Strongly dipping ilmenite
layers in the contact zone
between Egersund–Ogna
and Helleren anorthosites

Ilmenite layers in
layered anorthosite
and leuconorite,
local nelsonite

Ilmenite ± plag (An40–50) ± opx ± apatite Hemo-ilmenite (Hem15–25; MgO:
3.5%; Cr: b0.03%; V:
0.25%) ± spinel ± magnetite (Cr:
0.2%; V: 0.7%)

Cumulate in a
differentiated sill
plastically deformed by the
anorthosite emplacement
process

1

Bjerkreim-Sokndal Rogaland, SW Norway Gabbronorite layers in a
layered intrusion

Oxide apatite
gabbronorite

Plag (An37–42) + opx (En55–67) + Fe–Ti
oxides + cpx + apatite

Cr-, Mg-poor ilmenite (Hem b 7;
MgO b 1%; Cr b 0.007%) + V-rich
magnetite (V: 0.3–0.7%)

Two-poles cumulates in a
ferrodioritic melt

7, 8

Hesnes Rogaland, SW Norway Veins in the contact zone
between Egersund–Ogna
and Håland anorthosites

Nelsonite with
planar orientation

Fe–Ti oxides + apatite + sulfides ± zircon Ti-rich magnetite (Usp22–31; Cr:
0.01–0.18%; V: 0.21%) + Cr-, V-poor
ilmenite (Hem5; Cr b 0.01%; V:
0.02%)

Cumulate in an immiscible
P–Ti–Fe-rich melt

1

Fedorivka Korosten pluton,
Ukraine

Layered intrusion in the
Volodarsk–Volynskyy
massive anorthosite

Fe-rich
olivine-gabbro

Plag (An39–42) + ol (Fo32–42) + augite
(En29–35Fs24–29Wo42–44) + Fe–Ti oxides + apatite

V-rich Ti-magnetite (Usp52–78; V:
0.3–1.9%; Cr b 0.01%) + ilmenite
(Hem1–6; MgO: 0.5%)

Cumulates from a
ferrodioritic melt

9

Suwalki Mazury complex, NE
Poland

Parallel layers and lenses of
ore in massive anorthosite

From Fe–Ti ore-rich
norite to norite

Fe–Ti oxides + plag (An43–60) + opx
(En60–77) + Al-spinel ± cpx ± ol
(Fo65–75) ± apatite

Ti-magnetite (Usp0–24; V:
0.20–0.67%; Cr:
0.02–0.53%) + ilmenite (Hem1–8;
MgO: 0.6–3.6%)

Cumulate enriched by
crystal sorting during
polybaric crystallization

12

(continued on next page)
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Table 2 (continued)

Deposit name Location Setting Rock type Main paragenesis Oxide composition Suggested origin References

Lac Tio Havre St Pierre
anorthosite, Grenville
Province, Quebec

Funnel-shape intrusion of
massive ore in anorthosite

Ilmenitite to
ilmenite-rich norite

Ilmenite + plag (An45–50) + Al-spinel + opx
(En58–76)

Cr-, V-, Mg-rich hemo-ilmenite
(Hem23–29; MgO: 1.6–3.2%; V:
0.18–0.24%; Cr: 0.05–0.23%)

Cumulate within a magma
conduit. differentiated
from a ferrodioritic melt

10, 17

Grader Havre St Pierre
anorthosite, Grenville
Province, Quebec

Layered intrusion in
massive anorthosite

Oxide apatite
(gabbro)norite
and massive
oxide layers

Plag (An46–49) + ilmenite ± magnetite ± opx
(En65–67) ± apatite ± cpx

Mg-poor hemo-ilmenite (Hem20–32;
MgO: 0.9–2.5%; V: 0.11–0.23%; Cr:
0.001–0.087%) + magnetite (Usp1–5;
V: 0.24%; Cr: 0.006–0.032%)

Cumulate enriched by
crystal sorting in a
ferrodioritic liquid

11

Big Island Havre St Pierre
anorthosite, Grenville
Province, Quebec

Massive Fe–Ti oxide dyke
crosscutting anorthosite

Ilmenitite Ilmenite + rutile + sapphirine ± plag Hemo-ilmenite (Hem20–30; MgO:
1.9–3.0%; Cr: 0.04–0.12%; V:
0.2%) + rutile

Accumulation in a conduit 13, 21

St Urbain Grenville Province,
Quebec

Lenses of massive ore along
foliation planes in
anorthosite

Ilmenitite, with
local nelsonite

Ilmenite ± rutile + biotite + sulfides + sapphirine Hemo-ilmenite (Hem11–27; MgO:
2.2–3.7%; Cr: 0.05–0.12%; V:
0.17–0.24%) + rutile

Accumulation at the base
of a magma chamber

13, 21

Desgrosbois Grenville Province,
Quebec

Irregular intrusion of Fe–Ti
oxide rich rock in a
gabbroic anorthosite

Fe–Ti oxide rich
gabbro

Fe–Ti oxides + opx + cpx + Al-spinel ± apatite Ti-magnetite + ilmenite Late stage 17

Ivry Grenville Province,
Quebec

Steeply-dipping lenses of
massive ore in massive
anorthosite

Ilmenitite Ilmenite + sulfides + Al-spinel Similar to Allard Lake deposit:
hemo-ilmenite (Hem33; MgO:
1–2.4%; V: 0.3–0.8%; Cr: 0.1%)

18, 19

Lac De La Blache La Blache anorthosite,
Grenville Province,
Quebec

Steeply dipping tabular
bodies in anorthosite

Magnetitite Fe–Ti oxides + Al-spinel + ol (Fo61) Ti-magnetite (Usp55–69; MgO:
2.5–4.7%; V: 0.26%) ± ilmenite
(Hemb6)

Probably cumulate
enriched by crystal sorting

17, 20, 21

Iron Mountain Laramie anorthosite
complex, Wyoming

Tabular bodies gradational
with an Fe-rich
leucotroctolite intruding an
anorthosite dome

Pure Fe–Ti
oxides Fe–Ti-rich
olivine gabbro
and troctolite

Fe–Ti oxides ± olivine ± plag ± cpx Ti-magnetite (Usp35; V: 0.75%; Cr:
0.14%) + Ilm (Hem4; MgO: 2.6%; V:
0.03%; Cr b 0.006%)

Crystallized from
Fe–Ti–P-rich silicate
liquids and emplaced as
crystal mushes or in the
solid state

14, 14b, 15

Sybille Laramie anorthosite
complex, Wyoming

Ore bodies gradational
with an Fe-rich
leucotroctolite intruding an
anorthosite dome

Fe–Ti oxide bodies Fe–Ti oxides + graphite (0.5–1%) + apatite
(b1–70%) + ol (Fo40–60) + plag (An45–98)

Possibly a Ti-magnetite
(Usp80Mt15Herc5) that resulted in
low- to medium Ti
magnetite + interstitial
ilmenite + spinel

Crystallized from
Fe–Ti–P-rich silicate liquids
and emplaced as crystal
mushes or in the solid state

15, 16

Sanford Lake Marcy anorthosite,
Adirondacks, New York

Concordant (ultra)mafic
layers and cross-cutting
dykes in anorthosite

Oxide-rich
metagabbro

Fe–Ti oxides + plag
(An24–47) + augite + opx/Fe-rich
ol + apatite + garnet

Ilmenite (Hem2–8; MgO: 0.9–2.3%; Cr:
0.01–0.1%; V:
0.09–0.4%) + magnetite (Usp0.2–10;
Cr: 0.25–2.6%; V: 0.8–2%)

Metamorphosed cumulates
and late-stage liquids
(dykes)

22

(1) Duchesne (1999); (2) Krause and Zeino-Mahmalat (1970); (3) Charlier et al. (2006); (4) Charlier et al. (2007); (5) Krause et al. (1985); (6) Duchesne and Korneliussen (2003); (6b) Force (1991); (7) Wilson et al. (1996); (8) Duchesne and
Charlier (2005); (9) Duchesne et al. (2006); (10) Charlier et al. (2010b); (11) Charlier et al. (2008); (12) Charlier et al. (2009); (13) Morisset and Scoates (2010); (14) Duchesne (1969); (14b) Ball (1907); (15) Lindsley et al. (1988); (16) Lindsley
(2003); (17) Corriveau et al. (2007); (18) Rose (1969); (19) Schrijver (pers. comm.); (20) Anderson and Morin (1969); (21) Perreault and Hébert (2003); (22) Ashwal (1982).
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and Charlier, 2005). The Grader intrusion in the Havre-Saint-Pierre
anorthosite (Charlier et al., 2008), the Fedorivka intrusion in the
Korosten Complex (Duchesne et al., 2006), and the Bøstølen intrusion
in the Rogaland Anorthosite Province (Krause et al., 1985) are other
examples. Melanocratic and leucocratic rocks alternate at various scales
(cm- to decameter), producing highly irregular patterns in the grade of
the ore. The rocks are thus characterized by cumulate textures with
abrupt changes in modal proportions.

4.3. Massive to layered tabular bodies

Some ore bodies in anorthosite plutons take the form of sills, some
tens of meters thick but extending for several kilometers. They can be
parallel to the foliation of the anorthosite and can be deformed. They
have sharp contacts with the host anorthosite and may contain large
anorthosite blocks. A major example is the Storgangen intrusion in
SW Norway, which is ca. 4 km long and a few meters to 50–60 m
thick (Schiellerup et al., 2003). Rocks are strongly modally-layered
and massive ilmenite occurs at the footwall contact. Upsection cryptic
layering is marked by evolving plagioclase composition and decreasing
Cr concentration in Fe–Ti oxides. The Tellnes deposit can also be thought
of as a massive, tabular and deformed igneous body. It is extended on
both sides for ca. 15 km by a 5 to 10 m-thick dyke which varies in
composition from jotunite to quartz mangerite (Wilmart et al., 1989).
The contact is also sharp between the massive ilmenitite and the host
anorthosite of the Big Island dyke (Morisset et al., 2010). This structure
is 30 m wide by 250 m long, with no systematic compositional or
mineralogical zoning along or perpendicular to strike.

In these structures, accumulation of oxideminerals in the lower part
of a dyke has been invoked (Charlier et al., 2007;Morisset et al., 2010). It
has been suggested that the upper, eroded part of the dyke should
contain most of the co-crystallizing plagioclase (±orthopyroxene and
olivine), or that plagioclase was transported laterally away through
the conduit system.

4.4. Lenticular ore bodies

Ore bodies intimately associated with the host rock are observed
locally in anorthosite plutons. The ore rocks do not represent well-
defined discordant intrusions but instead display gradation into the
host rocks. In the Suwalki anorthosite, individual ore bodies with
morphologies of lenses, veins or layers are common (Charlier et al.,
2009). Their orientations are parallel to the foliation and margins of
the anorthosite. Lenticular bodies are commonly deformed. The Blåfjell
deposit (Krause and Zeino-Mahmalat, 1970), minor deposits in the
Håland-Helleren and Åna-Sira anorthosites of the Rogaland anorthosite
province (Duchesne, 1999), and the major Damiao deposit in China
(Chen et al., 2013) can also be classified as lenticular ore bodies.

5. Sequence of crystallization in layered intrusions

The stratigraphic evolution of cumulus assemblages in layered intru-
sions associated with massif-type anorthosite provides information
about the formation of Fe–Ti oxide ores and the genetic relationships
among different types of ore. The crystallization sequence produced
during cooling of the parental magma is recorded in the successive
appearance of liquidus phases in intrusionswith well-defined stratigra-
phy (Fig. 5).

The Layered Series of the Bjerkreim–Sokndal layered intrusion
is subdivided into five megacyclic units (MCUs), the base of each
displaying a compositional reversal tomore primitivemineral composi-
tions as a result of a new magma influx (Duchesne, 1972; Jensen et al.,
1993;Wilson et al., 1996). EachMCU is subdivided into zones according
to cumulus mineral assemblages. Plagioclase is the first cumulus
mineral to appear and is present throughout the entire sequence. It is
followed by ilmenite, which is shortly followed by Ca-poor pyroxene.
Magnetite precedes apatite and Ca-rich pyroxene, which appear simul-
taneously. At the top of MCU IV, hypersthene is replaced by inverted
pigeonite. At the base of MCUs III and IV, themagma crystallizes olivine
and magnetite instead of hypersthene.

In the Fedorivka layered intrusion, the dominant cumulus
assemblage is plagioclase (An39–42), iron-rich olivine (Fo32–42), augite
(En29–35Fs24–29Wo42–44), ilmenite (Hem1–6), and then both Ti-magnetite
(Usp52–78) and apatite (Duchesne et al., 2006) appear simultaneously.

The Grader intrusion in the Havre-Saint-Pierre anorthosite has a
distinctive crystallization sequence: plagioclase and ilmenite are
followed by apatite, then orthopyroxene together with magnetite, and
finally clinopyroxene. This atypical sequence of crystallization resulted
in the formation of plagioclase–ilmenite–apatite cumulates or nelsonites
in plagioclase-free layers (Charlier et al., 2008).

In all these examples, plagioclase is always on the liquidus.
Orthopyroxene (or locally olivine) is usually the second liquidus phase
followed by ilmenite. In some intrusions, ilmenite appears before
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Fig. 6. Ilmenite-rich norite from Tellnes, Lac Tio, and Grader. (a) Tellnes deposit sample 16V-3S (6). This sample shows a faint preferred orientation of cumulus euhedral lath-shaped
plagioclase and stubby grains of orthopyroxene (with Schiller inclusions). Opaque minerals (with trace of reddish biotite) develop an interstitial structure with regard to the silicate
minerals but also occur as rounded inclusions in orthopyroxene and plagioclase. Note the undulating contacts between opaque minerals and plagioclase (plane-polarized light);
(b) Tellnes deposit sample 12V-3S (255). This sample shows a clear enrichment in plagioclase compared to sample (a). Its structure is isotropic. Note the undulating contacts of the opaque
minerals and inclusions in orthopyroxene and plagioclase (plane-polarized light); (c) Lac Tio deposit, sample T873-609. Euhedral stubby plagioclase crystals are completely enveloped by
an opaquemineral (hemo-ilmenite). Green aluminous spinel grainswith a thin clearer rim develop as granule exsolution products in hemo-ilmenite. Note the occurrence of small opaque
inclusions in the lower left plagioclase grain. Biotite develops locally at the contact between plagioclase and opaques (plane-polarized light); (d) Lac Tio deposit, sample T873-134.
Plagioclase–hemo-ilmenite cumulate. Lath-shaped plagioclase crystals show an ill-defined orientation in the cumulate structure (plane-polarized light); (e) Grader deposit, sample
146280. Gabbronoritic cumulate (pihma-C cumulate). A faint orientation of the cumulate minerals is most noticeable in small prismatic grains of apatite (plane-polarized light);
(f) Grader deposit, sample 146285. Fe–Ti oxide rich gabbronorite cumulate (pihma-C cumulate). The opaques are typically net-textured, though the origin of this texture is different
from that in sulfide-bearing ores. Here it results from subsolidus recrystallization (see text for discussion). The layering is marked by prismatic grains of orthopyroxene and apatite
(plane-polarized light).
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orthopyroxene. The early saturation of ilmenite, always before
clinopyroxene, is characteristic of the evolution of magmas related to
anorthosite provinces. Liquidus ilmenite also normally precedes the
appearance of liquidusmagnetite. Differences between the stratigraphic
sequences presented in Fig. 5 are related to parent magma composi-
tions, fO2 and degree of differentiation. For example, themost primitive
cumulates in the Fedorivka intrusion are clearly more evolved than in
other intrusions.

6. A mineralogical classification for Fe–Ti–V–P deposits

Several classification schemes have been proposed for Fe–Ti
deposits. Most of them stem from the observation of two types of
deposits in Grenville anorthosites (Anderson and Morin, 1969). The
first type is dominated by hemo-ilmenite and occurs in andesine
anorthosite; the second type has titanomagnetite as the principal min-
eral and is found in labradorite anorthosite. Gross (1996) has proposed
a similar division of the magmatic Fe–Ti ± V deposits based on the
principal ore minerals, with emphasis on the petrology and structure
of the host intrusion. The first type is mainly made up of ilmenite or
hemo-ilmenite with minor magnetite, and forms massive irregular
discordant bodies or layered intrusions hosted in massif anorthosites.
The second type mainly consists of titaniferous magnetite and minor
ilmenite forming complex Fe–Ti oxide mineral assemblages hosted
in layered and/or massive intrusions of (leuco-)gabbros, norites and
rocks of intermediate composition. Both types can contain resources
of apatite and vanadium.

A study of Fe–Ti oxides in the Bjerkreim–Sokndal layered intrusion
(Duchesne, 1972) showed a continuous evolution of ore composition,
starting with hemo-ilmenite as the only oxide in the lower part of the
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Fig. 7. Fe–Ti oxide-rich gabbronorites. (a) Ultramafic layers from the Transition Zone of the Bjerkreim–Sokndal layered intrusion (sample JCD 64-82). Ocima-C: euhedral olivine enveloped
by opaques (Ti-magnetite and ilmenite) and by minor amounts of clinoproxene (green). Small apatite crystals are surrounded by the opaques. Traces of interstitial biotite are visible
(plane-polarized light); (b) Suwalki deposit, sample U2-02 1169. Pmih-C. Large euhedral plagioclase crystals (partly cloudy) and smaller orthopyroxene grains are contained in opaque
minerals. Note the opaque inclusions in plagioclase and orthopyroxene (plane-polarized light); (c) Lower Zone of the Fedorivka layered intrusion, sample 581-289 (poci-C). Slightly
elongated grains of olivine (yellowish), augite (greenish) and plagioclase (plane-polarized light) define the (horizontal) layering plane. Note the numerous ilmenite inclusions in the
silicate minerals; (d) Main Zone of the Fedorivka layered intrusion sample 581-160 (pocima-C). Layering in the cumulate (from bottom-left to top-right) is evident in elongated olivine
(yellowish), augite (greenish) and plagioclase crystals, as well as small prisms of apatite. Opaques fill interstices, which are also oriented (plane-polarized light). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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macrocyclic units, joined upsection by Ti-poor magnetite, followed by a
Ti-magnetite + ilmenite + apatite assemblage in the upper part of the
sequence. Both oxides display continuous variation in composition and
relative abundance and are associated with andesine. This succession of
parageneses was interpreted as a simple fractional crystallization pro-
cess without being necessarily linked to an andesine or labradorite pla-
gioclase (Duchesne, 1972), which defies the simple classification based
on the anorthosite type (andesine vs. labradorite). The following classi-
fication was therefore adopted for the Rogaland deposits (Duchesne,
1973) on the basis of the principal minerals: Type I: hemo-ilmenite
alone; Type II: (hemo)-ilmenite + Ti-poor magnetite; and Type III: Ti-
magnetite + homogeneous ilmenite + apatite, including nelsonite.

Studies of the Lac St. Jean anorthosite suite support the suggestion
that titanomagnetite deposits are exclusively found in labradorite
anorthosites and are usually devoid of apatite (Perreault, 2003; Hébert
et al., 2005). Conversely, andesine anorthosites contain ilmenite +
magnetite ± apatite, and include nelsonite or oxide-rich apatite
gabbronorite. This is however not generally true. At Laramie
(Wyoming), the Sybille deposit is found in an andesine anorthosite
(Poe Mountain; Scoates et al., 2010); while the mainly similar Iron
Mountain deposit occurs in a labradorite anorthosite (Chugwater;
Lindsley et al., 2010).

Finally, Corriveau et al. (2007) distinguish afirst type of disseminated
Fe–Ti oxides ore from a second type of massive bodies. They also consti-
tute a distinct third typewith nelsonite, a fourth typewith late injections
of magnetitite, ilmenitite and oxide-rich norite, and a fifth type with
magnetite-bearing acidic dykes cutting anorthosites (without economic
potential).

We propose here a classification that separates ilmenite and Ti-
magnetite deposits but does not preclude the existence of transitional
types. We do not distinguish between massive, disseminated and
layered occurrences. We define nelsonite as a third deposit type
although apatite can be found in the first two types. We separate
nelsonites from other ore types because the process yielding an Fe–Ti
oxide + apatite assemblage in the conspicuous absence of silicates
requires very specific conditions. Finally, we propose a fourth type:
the rare ilmenite + rutile association, which has great potential
economic value.

Table 2 summarizes the principal characteristics of representative
Proterozoic ore deposits. It includes the composition of the accompany-
ing minerals and the composition of the Fe–Ti oxide minerals. It also
reports the various genetic processes that have been proposed in the
literature.

6.1. (Gabbro-)noritic ilmenite ore ± apatite ± magnetite

This type of ores includes the Tellnes deposit and the Lac Tio Mine
(Fig. 6). The ore is dominated by ilmenite containing variable amount
of hematite exsolutions. Accompanying phases are plagioclase,
±orthopyroxene, ±olivine, ±clinopyroxene, ±magnetite ± apatite.
One can distinguish two sub-types: massive or layered hemo-ilmenite
without magnetite, and (hemo)-ilmenite ± magnetite ± apatite.

Other localities with potential economic value occur in the Rogaland
anorthosite province: Storgangen, Bøstølen, and Blåfjell (Krause and
Zeino-Mahmalat, 1970; Krause and Pape, 1977; Krause et al., 1985;
Duchesne, 1999; Schiellerup et al., 2003). Combined with P-resources,
the upper part of MCU IV of the Bjerkreim–Sokndal layered intrusion
(Wilson et al., 1996) and the Grader layered intrusion (Charlier et al.,
2008) are of interest.

6.2. Ti-magnetite- ± apatite-dominated ore

The distinction of this ore type is necessary from an economic per-
spective because Ti fromTi-magnetite cannot presently be economically
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Fig. 8. Nelsonites (a) Kydlansvatn deposit (Rogaland), sample 79-19-1B. Hemo-ilmenite
contains euhedral grains of apatite and granules of green aluminous spinel with thin
clear rims (plane-polarized light); (b) Grader deposit, sample 146290 (pia-C). The
layering is defined by small apatite grains, embedded in ilmenite. Note two larger stubby
plagioclase crystals, also parallel to this plane (plane-polarized light).

Fig. 9. Rutile-bearing ore (a) Saint Urbain, Coulomb East, sample 2015-A4: leuconorite
with ilmenite and rutile grains defining the foliation (plane-polarized light). The blue
phase in the upper left corner is sapphirine; (b) Saint Urbain, General Electric, sample
2030-C4: euhedral crystals of rutile and plagioclase wrapped in an ilmenite matrix
(plane-polarized light) (samples from Morisset et al., 2010). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this
article.)
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recovered. However, the magnetite may represent a significant source
of V, so the economic potential has to be evaluated, especially when
combined with Ti from ilmenite and P from apatite (Fig. 7). Examples
of this ore type are present in the Magpie Mountain (Lac St Jean
anorthosite, Québec; Perreault, 2003), the Suwalki anorthosite (NE
Poland; Charlier et al., 2009), the Fedorivka layered intrusion (Korosten
Complex, Ukraine; Duchesne et al., 2006), the Krapivnia deposit
(Korosten Complex, Ukraine; Gursky et al., 2003) and in the Transition
Zone of the Bjerkreim–Sokndal layered intrusion (Duchesne et al.,
1987).

6.3. Nelsonite

Nelsonites are Fe–Ti-oxide-apatite rocks (Fig. 8). The term was
initially introduced by Watson and Taber (1910) for rutile–apatite and
(hemo-)ilmenite–(Ti-)magnetite–apatite rocks, located in the Roseland
andesine (antiperthitic) anorthosite in Virginia (Owens and Dymek,
1999). Unlike oxide-apatite gabbronorites (Owens and Dymek, 1992)
these rocks are devoid of silicates. Some nelsonites display modal pro-
portions close to one third apatite, two thirds Fe–Ti oxide (Philpotts,
1967; Kolker, 1982) but this is not a general rule. Apatite is commonly
fluorine-rich (Dymek and Owens, 2001) and REE-rich (Duchesne,
1999).

6.4. Rutile–ilmenite ore

Two localities associated with massif-type anorthosite are known
for their rutile–ilmenite associations: several occurrences in the
Saint-Urbain anorthosite, and the Big Island ore deposit in the Havre
Saint-Pierre anorthosite (Warren, 1912; Morisset and Scoates, 2008;
Morisset et al., 2009, 2010). This type of oremay also display an unusual
association with sapphirine (Dymek, 1984), which is found in close
association with pleonaste (Fig. 9). At Saint-Urbain and Big Island,
both rutile and sapphirine occur with hemo-ilmenite, plagioclase
(An39–51), high-Al orthopyroxene (5.2–9.1 wt.% Al2O3), and aluminous
spinel, with trace amounts of apatite, corundum and sulfide minerals.
In these rocks, sapphirine is interpreted as forming by subsolidus
reactions (e.g., hercynite + orthopyroxene + rutile ± corundum =
sapphirine + ilmenite). Morisset et al. (2010) interpret both ilmenite
and the larger rutile crystals to be magmatic phases that segregated
and accumulated by gravitational settling from Fe–Ti-enriched residual
magmas (ferrobasaltic, jotunitic) following crystallization of the host
anorthosite. There are, however, no experimental data supporting a
magmatic origin for rutile. Small lenses of rutile (10 to 200 μm thick)
within ilmenite and surrounded by hematite are related to late
oxidation.

7. The stability of ilmenite and magnetite

7.1. fO2 and parental magma composition

Since the work of Buddington and Lindsley (1964) experimental
studies have confirmed the strong influence of oxygen fugacity on the
stability fields of Fe–Ti oxides (Hill and Roeder, 1973; Grove and
Baker, 1984; Juster et al., 1989; Snyder et al., 1993; Toplis and Carroll,
1995). These one-atmosphere experiments on ferrobasalts show that
the stability field of magnetite expands with increasing fO2. Conse-
quently, at high fO2, the appearance of magnetite would precede that
of ilmenite. However, Toplis and Carroll (1995) have shown that fO2

only affects the stability field of magnetite whereas the saturation
point of ilmenite is controlled by the TiO2 content of the melt.
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Consequently, the larger stability field of ilmenite alone under reduced
conditions is a consequence of magnetite destabilization, and thus
iron-enrichment in the melt. On the other hand, even in oxidizing con-
ditions, melts with a high TiO2 content might reach ilmenite saturation
beforemagnetite, and in some casesmay only crystallize hemo-ilmenite
withoutmagnetite (Lattard et al., 2005). This situation is observed in the
Grader layered intrusion (Charlier et al., 2008),where the high hematite
content in ilmenite is an indicator of the high oxygen fugacity in the
melt (ca. NNO + 1). Ilmenite is the first liquidus Fe–Ti oxide and
remains modally more abundant than magnetite when this mineral
joins the crystallizing assemblage. The early saturation of hematite-
rich ilmenite instead of Ti-magnetite in the Grader intrusion is thus
controlled by the high TiO2 content of the parental magma.

7.2. The role of polybaric crystallization

The dynamic and polybaric crystallization of massif-type anortho-
sites may have a significant influence on the formation of Fe–Ti oxide
ores. The ascent of the anorthositemushmaymechanically sort dissem-
inated crystals of Fe–Ti oxides, while the phase equilibria of the melt
depend strongly on the crystallization pressure (Vander Auwera and
Longhi, 1994).

Charlier et al. (2009) and Chen et al. (2013) have highlighted the
role of polybaric crystallization in the formation of Fe–Ti oxide ores in
the Suwalki and Damiao anorthosites. These oxide ores crystallized
continuously as the anorthosite diapir ascended, as suggested by several
observations including variable Al2O3 content in orthopyroxene, which
is related to the pressure of crystallization (Longhi et al., 1993). The
crystallization of parental melts at varying pressure between 13 and
5 kbar also explains the different crystallization sequences observed
in anorthosites and related rocks. Experimental liquidus phases of
plausible parent magmas of massif-type anorthosite are initially
saturated in plagioclase + orthopyroxene at 10–13 kbar (Fram and
Longhi, 1992; Vander Auwera et al., 1998; Longhi et al., 1999). However,
inmany Fe–Ti oxide-rich rocks, plagioclasemay occurwith Fe–Ti oxides
(ilmenite or ilmenite + magnetite) but without orthopyroxene. For
example, in the Tellnes and Lac Tio deposits (Charlier et al., 2006,
2010b), orthopyroxene becomes a liquidus phase after plagioclase
and ilmenite. As shown in high-Ti mare basalts from the Moon
(Delano, 1980), it is more probable that the temperature–pressure
slope for the orthopyroxene liquidus is much steeper than that for the
ilmenite liquidus (Fig. 10). Consequently, although the assemblage
plagioclase+ high-alumina orthopyroxene crystallizes at high pressure
(13–10 kbar), the assemblage plagioclase + ilmenite (±magnetite)
may crystallize at lower pressure (8–5 kbar) from the same parental
magma. The occurrence of different cumulus assemblages may thus
result from different pressures of crystallization.

7.3. The role of P2O5

The effects of phosphorus on differentiation of ferrobasalts have
been investigated experimentally by Toplis et al. (1994a). P2O5 and
FeO mutually enhance their solubilities due to formation of
Fe3+(PO4)3− complexes in ferrobasaltic melts. The main role of P2O5

is thus to permit the formation of silicate melts with much higher Fe
contents than is possible for P-poor compositions, allowing the concen-
tration of Fe and Ti at higher levels. At a given temperature, the propor-
tion of liquid and the modal plagioclase/pyroxene ratio increase with
increasing P2O5 content. The addition of P2O5 to the melt decreases
the abundance of augite and favors the crystallization of pigeonite.
It also decreases the stability field of magnetite while the relative
abundance of ilmenite remains approximately constant. The high P2O5

content of ferrodioritic or jotunitic liquids associated with anorthosites
(e.g. Mitchell et al., 1996; Vander Auwera et al., 1998) is thus probably
responsible for some characteristics of anorthosite suites, such as the
leuconoritic character of rocks and the common early saturation of
ilmenite compared to magnetite.

8. Liquidus compositions of Fe–Ti oxides

8.1. Major elements

Ilmenite andmagnetite aremembers of two solid solutions (Fig. 11):
the hematite–ilmenite series (Fe2O3–FeTiO3) and the magnetite–
ulvöspinel series (Fe3O4–Fe2TiO4). It has been shown that themagnetite
content of magnetite–ulvöspinel series and the hematite content of
ilmenite–hematite series both increase with increasingly oxidizing
conditions (e.g. Buddington and Lindsley, 1964; Lattard et al., 2005;
Sauerzapf et al., 2008). At given fO2 conditions, the magnetite content
of magnetite decreases with increasing temperature. The ilmenite
composition is less sensitive to temperature but its behavior is
more complex due to the transition between the ordered R3 structure
and the disordered R3C structure. At oxygen fugacity conditions
below QFM + 2 (QFM = the quartz–fayalite–magnetite fO2

buffer), the hematite-content of ilmenite increases with increasing
temperature (Lattard et al., 2005). Conversely, at more oxidizing condi-
tions, the hematite content of ilmenite decreases with increasing
temperature.

The Al2O3 content in magnetite is positively correlated with the
Al2O3 content of the melt with a crystal/melt partition coefficient of
~0.3. The Al2O3 content of ilmenite is generally very low (b0.5 wt.%).
MnO and MgO in magnetite and ilmenite are also a function of
melt composition, with MgO partition coefficients ~1 for and MnO
partition coefficients ~2 for both minerals. The equilibrium MgO
content of the oxides is dependent on fO2, because it is dependent on
Fe–Mg exchange with the ferromagnesian silicates, which in turn are
strongly dependent on fO2 (see QUILF reactions in Lindsley and Frost,
1992).

8.2. Cr and V partitioning

Cr and V are compatible in ilmenite andmagnetite. However, exper-
iments in ferrobasalts by Toplis and Corgne (2002) have shown that
the partition coefficients of these two elements between magnetite
and liquid (DV

mt/liq and DCr
mt/liq) are closely related to oxygen fugacity

( fO2). In phosphorus-bearing systems, DCr
mt/liq increases from 27 to 291

with decreasing oxygen fugacity from NNO + 2.6 to NNO-0.7 (where
NNO is the nickel–nickel oxide buffer), while DV

mt/liq increases from 2
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to 29. Consequently, even at high fO2, Cr is compatible in the bulk
crystallizing assemblage (DCr

mt/liq N 1), as long as the proportion of
magnetite is more than 4%. However, for relatively high fO2 and thus
low DV

mt/liq, V could behave overall as an incompatible element. The
effect of fO2 on DV

mt/liq can explain the non-systematic relationship
between Cr and V in various Fe–Ti deposits. In the Fedorivka layered
intrusion (Duchesne et al., 2006), low fO2 values are responsible for
the late appearance of cumulus magnetite and the high V3+-content
of themelt, reflected in the high V-content of the initial liquidusmagne-
tite (up to 1.85% V). The high fO2 in the Suwalki anorthosite (Charlier
et al., 2009) is responsible for the relatively low V content of magnetite
(0.37–0.67 wt.% V). The effect of fO2 also explains the low V concentra-
tion (b0.5 wt.% V) of magnetite from Fe–Ti oxide deposits in the Panxi
region that crystallized under relatively high oxygen fugacity (Pang
et al., 2010). Conversely, in the Bushveld complex, V in magnetite
reaches 1.3 wt.% at the base of magnetite layers that crystallized under
more reducing conditions (Cawthorn and Molyneux, 1986).
Fig. 12. Exsolutions in magnetite. (a) Cloth-textured magnetite with ulvöspinel and
hercynitic spinel exsolutions in the {100} planes of magnetite. Coarser ulvöspinel
exsolutions around spinel lamellae define the “box-like” structures of Ramdohr (1980).
As frequently observed, the ulvöspinel lamellae, although still forming a well-preserved
microtexture with magnetite, have been oxidized subsolvus in ilmenite lamellae
(Bjerkreim–Sokndal layered intrusion, sample 64-82 of Duchesne, 1972); (b) Dendritic
lamellae of hercynitic spinel exsolutions in magnetite (Kagnuden deposit, sample 66-11
of Duchesne, 1999); (c) Cloth-textured magnetite in contact with an ilmenite grain.
Note the absence of re-equilibration textures between ilmenite and magnetite
(Bjerkreim–Sokndal layered intrusion, sample 66-216 of Duchesne, 1972). ilm ilmenite;
mt magnetite; sp hercynitic spinel.
9. Postcumulus evolution of Fe–Ti oxide minerals

9.1. Re-equilibration with trapped liquid

The crystallization of trapped liquid is known to have a strong
influence on the composition of primary cumulus minerals (Barnes,
1986). However, because Fe–Ti oxides are strongly affected by subsolidus
processes, the effect of trapped liquid is not easily deconvolved from
other mechanisms. Expected zoning of cumulus phases is likely to be
erased by later re-crystallization and intra-mineral diffusion.

The effect of trapped liquid on ilmenite composition in the Tellnes
ilmenite deposit has been quantified by Charlier et al. (2007) using
the compositions of cumulus and intercumulus ilmenite and their rela-
tive proportions. For compatible elements that are enriched in cumulus
ilmenite, the trapped liquid mainly has a diluting effect because of its
low concentrations of these elements. If the proportion of cumulus
ilmenite is high compared to the amount of ilmenite crystallized from
the trapped liquid, the influence of trapped liquid crystallization is
minor. For industrial purposes, the crystallization of ilmenite from the
trapped liquid usefully reduces the Cr content of ilmenite, as well as
other compatible element contents. Incompatible elements are
enriched in ilmenite crystallized from the trapped liquid, which in
turn increases the concentrations of these elements in re-equilibrated
ilmenite. However, trapped liquid crystallization has a negative effect
on the grade of the ore: it tends to decrease the TiO2 content of the
bulk rock because it is Ti-poorer than the cumulus assemblage.

9.2. Re-equilibration with ferromagnesian silicates

Re-equilibration with trapped liquid is prolonged during subsolidus
evolution by reaction with other phases, particularly ferromagnesian
silicates. The main effect of this re-equilibration is to drive down the
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Fig. 13. External granule exsolution of (hercynitic) spinel frommagnetite. (a) Large spinel grains between cloth-texturedmagnetite grainswith spinel exsolutions. Zones depleted in fine-
grained spinel exsolutions along the grain boundaries suggest that the large spinel grains are external granule exsolutions (Suwalki anorthosite, sample K20-03 of Charlier et al., 2009);
(b) Small external granule exsolutions of spinel connectedwith a large spinel grain. Themagnetite grains show ilmenite lamellae in a trellis structure (Suwalki anorthosite, sample J1-01 of
Charlier et al., 2009). ilm ilmenite;mt magnetite; sp hercynitic spinel.
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MgO content of Fe–Ti oxides. Such re-equilibration has been described
in the Kiglapait layered intrusion where Ti-magnetite has lost Mg to
associated olivine and augite (Morse, 1980). In the Tellnes deposit,
re-equilibration of ilmenite with the trapped liquid continued to lower
temperatures by re-equilibration with ferromagnesianminerals, partic-
ularly orthopyroxene (Charlier et al., 2007). The MgO re-equilibration
can be quantified using the QUILF algorithm (e.g. Frost and Lindsley,
1992; Lindsley and Frost, 1992).
Fig. 14. Ilmenite grains with exsolved zircon and baddeleyite. (a–b) Hemo-ilmenite in contact w
the contact between an ilmenite grain (with two large pleonaste exsolutions) and plagioclase (T
hemo-ilmenite in contact withmagnetite. The contact between ilmenite andmagnetite ismarke
the spinel rim (Kydlandsvatn deposit, Norway, sample 79-19-1b of Duchesne, 1999). ap apatite
spinel; zr zircon.
9.3. Exsolution, oxy-exsolution, oxidation

Fe–Ti oxides record complex subsolidus re-equilibration processes
resulting from miscibility gaps in the system FeO–Fe2O3–MgO–TiO2–

Al2O3 (see the review of Lindsley, 1991), which are responsible for
a large variety of microscopic textures (Fig. 12; Duchesne, 1972;
Ramdohr, 1980; Haggerty, 1991. The most common features result
from the miscibility gaps in magnetite–ulvöspinel (Lindsley, 1981)
ith plagioclase with a zircon rim (Grader layered intrusion); (c) Continuous zircon rim at
ellnes deposit, sample 12V-13N, 140 of Charlier et al., 2006); (d) Baddeleyite exsolutions in
d by a hercynitic spinel rim. Note the decreasing abundance of exsolved hematite towards
; bd baddeleyite; hem hematite; ilm ilmenite;mtmagnetite; plag plagioclase; sp hercynitic

image of Fig.�13
image of Fig.�14


Fig. 15. Re-equilibration textures between ilmenite and magnetite. (a) Magnetite grain in contact with ilmenite with a spineliferous ilmenite reaction rim. Note the variable sizes of the
spinel grains (Tellnes deposit, Rogaland, sample 8V-4N, 238 of Charlier et al., 2006); (b) Detail of a contact between ilmenite andmagnetite with a spineliferous ilmenite rim with coarse
spinel grains. Note the decrease in the abundance of hematite lamellae towards the magnetite (Tellnes deposit, sample 8V-4N, 238); (c) Ilmenite grain in contact with magnetite grains.
Note the spinel exsolution lamella parallel to hematite exsolutions. Spinel grains are present at the contact betweenmagnetite grains and, associatedwith ilmenite, at the contact between
ilmenite andmagnetite. Note the decrease in the abundance of hematite exsolutions towards themagnetite (Rødemyr deposit, Rogaland, sample 66-16 of Duchesne, 1999); (d) Ilmenite
grain within a magnetite grain with trellis-textured ilmenite exsolutions. This ilmenite grain is probably a granule exsolution that results from the super-solvus oxidation of ulvöspinel.
This ilmenite has subsequently reacted with magnetite to develop a rim of spineliferous ilmenite in several pulses. Note the connection between this rim and the spineliferous ilmenite
lamellae at the upper right corner of the ilmenite grain (Suwalki anorthosite, sample J1-01 of Charlier et al., 2009). ilm ilmenite;mt magnetite; sp hercynitic spinel.
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andhematite–ilmenite solid solutions (Carmichael, 1961). Ulvöspinel ex-
solutions in magnetite have been documented in various localities, e.g.
the Skaergaard intrusion (Vincent and Phillips, 1954; Vincent, 1960),
Host rocks

Co-crystallization of plagioclase and ilmenite
with flotation of plagioclase

Non-cotectic ilmenite-rich cumulates

a

Flotation cumulate

Fig. 16. Schematic illustrations of ore-forming processes for Fe–Ti–P-rich rocks by fractional cry
dense Fe–Ti-rich melt; (b) by lateral removal driven by convection.
the Fongen–Hyllingen complex (Thy, 1982), and the Fedorivka layered
intrusion (Duchesne et al., 2006). However, ilmenite exsolutions inmag-
netite are more common and result from the oxidation of the ulvöspinel
Host rocks

Lateral removal of plagioclase

Co-crystallization of plagioclase and ilmenite
with lateral removal of plagioclaseb
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stallization combined with plagioclase segregation: (a) by flotation of light plagioclase in a
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Fig. 17. Schematic illustrations of ore-forming processes for Fe–Ti–P-rich rocks by immiscibility. (a) Segregation and accumulation of Fe-rich immiscible melt with potential downward
percolation of the dense melt into partially molten cumulate; (b) Segregation of an immiscible Fe-rich melt and crystallization of an Fe–Ti oxide-rich cumulate.
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component in the reaction: 3Fe2TiO4 + 1/2 O2 → 3FeTiO3 + Fe3O4. This
reaction usually takes place above the magnetite–ulvöspinel solvus to
produce a trellis of ilmenite lamellae in magnetite. It is commonly ob-
served that this reaction can also affect cloth intergrowths of ulvöspinel
lamellae in magnetite by subsolvus transformation of ulvöspinel
into microlamellae of ilmenite without notably affecting the cloth
microtexture (Duchesne, 1970).

Ilmenite may exsolve lenses of hematite when the hematite content
exceeds 7–9 wt.%. It is then referred to as hemo-ilmenite (Basley and
Buddington, 1958). Two generations of hematite exsolutions may
develop above 18 mol% of hematite. Exsolutions of aluminous spinel
(hercynitic spinel, (Mg,Fe)Al2O4) commonly occur in Ti-magnetite
(Fig. 13) and, more rarely, in ilmenite (Fig. 14c). Small grains are also
observed in treillis lamellae of spineliferous ilmenite in magnetite, in
reaction rims at the contact between primary ilmenite and magnetite,
Magma mixing that produces a hybrid melt
saturated in ilmenite

Host rocks

Resident magma

Ilmenite cumulate

New
magma

Fig. 18. Schematic illustration of ore-forming process for ilmenite-rich rocks by magma
mixing and production of a hybrid magma located in the stability field of ilmenite.
and in external granules. This reflects high primary Al and Mg contents
of the host magnetite, and the low solubility of Al2O3 in ilmenite
(Spencer and Lindsley, 1981). Rare lamellae of magnetite parallel to
hematite exsolutions occur in hemo-ilmenite grains of the Lac Tio ore
(Robinson et al., 2013; Bolle et al., 2014). They result from a high-
temperature, localized reduction–exsolution process that preceded the
normal lower-temperature exsolutions of hematite (Robinson et al.,
2013).

Naslund (1987) has described baddeleyite lamellae in ilmenite from
the tholeiitic Basistoppen sill. This texture is interpreted as resulting
from subsolidus exsolution of Zr from the ilmenite lattice. Similar
textures with zircon, baddeleyite and srilankite (Ti2ZrO6) associated
with ilmenite have also been described by Bingen et al. (2001) in
high-grade meta-anorthositic rocks from Western Norway. They inter-
pret the occurrence of baddeleyite as external granule exsolutions
from ilmenite during subsolidus cooling of the magmatic intrusion.
Zircon would have been produced by the Sveconorwegian granulite-
facies metamorphism due to the reaction of baddeleyite with available
silica. The random position of zircon coronas relative to hematite
exsolutions in ilmenite suggests that Zr exsolution occurred before
hematite exsolution (Bingen et al., 2001). This is also a common feature
in Fe–Ti deposits (Fig. 14; Charlier et al., 2007; Morisset and Scoates,
2008).
9.4. Reaction between ilmenite and magnetite

Upon cooling, coexisting Ti-magnetite and ilmenite undergo
Fe2+Ti4+ for 2 Fe3+ exchange, with the magnetite gaining Fe3+ and
the ilmenite gaining Fe2+Ti4+, leading to natural “purification” of both
minerals (Fig. 15; Buddington and Lindsley, 1964; Duchesne, 1972). Of
course, no reaction rim of aluminous spinel is observed when primary
ulvöspinel exsolutions in magnetite are preserved (Fig. 12c), though it
is possible that some ulvöspinel contents may have reacted to ilmenite
above the ulvöspinel–magnetite solvus. This does not exclude that such
magnetites do show exsolution of aluminous spinel in the cubic planes,
probably formed earlier than the ulvöspinel lamellae. The relative
proportions of magnetite and ilmenite are crucial for determining the
degree of re-equilibration between these two phases (Frost et al.,
1988). If the proportion of magnetite compared to ilmenite is very
small, this reaction may completely convert the primary magnetite
into Ti-poor magnetite without significantly affecting the composition
of ilmenite.
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10. Ore-forming processes

10.1. Fractional crystallization, crystal sorting and plagioclase buoyancy

Magmas parental to anorthosite, and their residual liquids, are
Ti-rich, commonly having more than 4 wt.% TiO2 (e.g. Mitchell et al.,
1996; Vander Auwera et al., 1998). This may promote early ilmenite
saturation, as shown by Toplis and Carroll (1995), who have suggested
that crystallization of ilmenite as the first oxide is controlled by the TiO2

content of the melt. In the Tellnes deposit (Charlier et al., 2006), the
Grader layered intrusion (Charlier et al., 2008) and the Lac Tio mine
(Charlier et al., 2010b), plagioclase and ilmenite are the first liquidus
phases. In more differentiated cumulates, ilmenite and plagioclase
may be accompanied by olivine, orthopyroxene, clinopyroxene, magne-
tite and apatite. Calculations of the cotectic proportions of ilmenite in
ferrobasaltic liquids yield values of ca. 20 wt.% (Charlier et al., 2007,
2008). This proportion of ilmenite in a cumulate corresponds to
ca. 8 wt.% TiO2 in the rock, which is not sufficient to form a titanium
ore. Enrichment processes for ilmenite are therefore necessary.

Melts associated with anorthosite also have high concentrations of
FeOtot, which exert a strong influence on the density of themelt. Several
studies have discussed the “plagioclase-magmadensity paradox” (Morse,
1973; Campbell et al., 1978; Scoates, 2000), i.e. that intermediate-
composition plagioclase (An40–60) is less dense than the melt with
which it is in equilibrium. This is responsible for the buoyant accumula-
tion of plagioclase at the top of a deep-seated magma chamber in the
classical model of Emslie (1980). It also plays an important role in the
crystallization of rocks that are associated with anorthosite at the final
emplacement depth (Vander Auwera et al., 2006). In melts saturated
with plagioclase + Fe–Ti oxides, the different densities of these
minerals can result in flotation of plagioclase but sinking of the dense
Fe–Ti oxides (ρilmenite = 4.7, ρmagnetite = 5.2). This cumulate sorting
produces Fe–Ti oxide abundance greater than the cotectic proportions
would suggest (Charlier et al., 2007, 2009). Plagioclase can float
vertically and form anorthosite that is hard to distinguish from
the host anorthosite (Fig. 16a), or be transported laterally to form
leucocratic rocks in other parts of the magma chamber, such as in the
Grader layered intrusion (Fig. 16b; Charlier et al., 2008).

10.2. Immiscibility

Immiscibility between two silicate melts (ferrobasalt–rhyolite) has
been recognized experimentally and in natural systems as a potential
differentiation mechanism in evolved basaltic magmas (Roedder,
1978; Philpotts, 1982; Charlier and Grove, 2012; Charlier et al., 2013).
Philpotts (1967) proposed that immiscibility is responsible for the
origin of certain Fe–Ti oxide and apatite rocks. Kolker (1982) also
favored this model for the origin of nelsonites, mainly to explain field
evidence such as discordant veins and dykes intruding the host
anorthosite (Fig. 17a). A similar process was invoked by Force (1991)
to generate ilmenite deposits in general. However, data presented by
Philpotts (1967) for the immiscibility of an Fe–Ti–P-rich melt were
obtained at the unrealistically high temperature of 1420 °C. Lindsley
(2003) explains that he has never been able to generate Fe–Ti oxide
liquids experimentally. He concluded from experimental evidence that
oxide bodies crystallize from Fe–Ti–P-rich silicate melts and are
emplaced either as a crystal mush or in the solid state. Moreover, the
relative proportion of oxides and apatite, ca. 2/3 oxides and 1/3 apatite
(Kolker, 1982), does not necessarily indicate an origin related to immis-
cibility. This could instead simply reflect cotectic proportions of Fe–Ti
oxides and apatite crystallizing from a silicate melt, which are not
then sorted during the concentration process.

Duchesne (1999) and Dymek and Owens (2001) proposed instead
that nelsonites represent cumulates. The absence or low abundance of
ferromagnesian silicates could result from earlier saturation of ilmenite
and apatite compared to ferromagnesian silicates. Liquidus phases
would thus be plagioclase, ilmenite, ±magnetite, and apatite. This
unusual sequence of crystallization, with apatite crystallizing before
ferromagnesian silicates, occurs in the Grader layered intrusion
(Charlier et al., 2008). Liquidus plagioclase could also be removed by
crystal sorting or flotation.

Another hypothesis that has not been fully considered is that
nelsonites represent cumulates crystallized from iron-rich immiscible
melts, rather than crystallized immiscible melts (Fig. 17b; Namur
et al., 2012). In this scenario, the Fe-rich melt segregates from the Si-
richmelt. However, the ore-rock does not correspond to the immiscible
liquid. Instead, the ore is a cumulate crystallized from the Fe-rich melt.
The Si-rich melt will produce cumulate rocks with the same cumulus
assemblage but different phase proportions (much more leucocratic).

Immiscibility should therefore be carefully considered as an
important process in the formation of some Fe–Ti–P deposits. Liquid
immiscibility is known to occur in the late evolution of tholeiitic basalt,
and can potentially yield an Fe–Ti–P-rich melt that can produce
ilmenite–magnetite–apatite-rich rocks associated with evolved plagio-
clase and low Mg# ferromagnesian silicates (olivine, clinopyroxene).
However, while immiscibility hypotheses for the origin of nelsonites
and some evolved ferrogabbros deserve discussion and possibly further
experiments, pure ilmenite ore, such as that in Jerneld (Duchesne,
1999) and Lac Tio (Lister, 1966), cannot be produced by immiscibility.
Immiscibility in evolved ferrobasalts does not produce melts saturated
with a single-phase: a liquid of ilmenite composition would melt at
1360°, an unrealistically high temperature for crustal conditions.

10.3. Magma mixing

The Cr concentration in ilmenite from the Lac Tio deposit displays
normal and reverse fractionation trends upsection. Charlier et al.
(2010b) interpreted these compositional characteristics as evidence
for multiple pulses of magma emplacement and alternating periods
of fractional crystallization and magma mixing. By analogy with the
classical magma mixing hypothesis for the origin of some chromite
deposits (Irvine, 1977),mixing ofmagmaswould have produced hybrid
magmas located in the stability field of ilmenite, resulting in crystalliza-
tion of ilmenite alone after each mixing event. It is highly probable that
the natural plagioclase–ilmenite cotectic is curved and that mixing of
two magmas lying on the cotectic can produce a hybrid located in the
stability field of ilmenite, which will therefore crystallize only ilmenite
until the liquid joins the cotectic. This ilmenite would accumulate due
to a high density contrast with the liquid. However, the paucity of
rocks with cotectic proportions of ilmenite and plagioclase (15–
25 wt.% ilmenite and 85–75 wt.% plagioclase) leads us to suggest that
the liquid did not follow the cotectic during major periods of fraction-
ation (Fig. 18).

Robinson et al. (2003) suggested that magma mixing was responsi-
ble for the high proportion of ilmenite in Tellnes. However, in this
deposit, ilmenite does not occur as the sole liquidus mineral and is
usually associated at least with plagioclase. Additionally, the very
narrow range of Sr isotope values in the Tellnes deposit (Charlier
et al., 2006) does not favor such mixing as a mechanism for ilmenite
enrichment in Tellnes.

10.4. Filter-press compaction

Anorthosite plutons are emplaced as diapirs and crystallize during
the ascent of the plagioclasemush. This dynamic emplacement provides
the conditions necessary to produce stress-driven melt segregation in
partially molten rocks (Kohlstedt et al., 2010). The result is the forma-
tion of pure anorthosite (commonly N95%plagioclase) that is segregated
from the residual melt (enriched in Fe–Ti–P). The residual melt can be
collected in the margins of massif anorthosites, where mafic intrusions
are commonly observed (Fig. 19; Vander Auwera et al., 2006).
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10.5. Solid-state remobilization

It is not rare to observe veins or seams of pure hemo-ilmenite in
massif-type anorthosites. Their emplacement as a melt is highly ques-
tionable because the melting point of hemo-ilmenite (at least 1365 °C,
depending on the amount of dissolved hematite in the solid solution)
is hotter than typical magmatic temperature. In Fe–Ti-rich cumulate
rocks, ilmenite and magnetite are always interstitial to the silicate
minerals, even when they crystallize on the liquidus after plagioclase
and before pyroxenes, as observed in the Bjerkreim–Sokndal layered
intrusion (Wilson et al., 1996) and in experiments (Vander Auwera
and Longhi, 1994). In these rocks, ilmenite tends to concentrate in
low-stress zones such as pressure shadows (Paludan et al., 1994;
Duchesne, 1996). It is thus observed that ilmenite can easily recrystal-
lize and migrate by diffusion creep in subsolidus conditions. It can be
inferred that such a migration process also occurs on a larger scale
during high-temperature deformation linked to anorthosite emplace-
ment, giving rise to massive veins of ilmenite (Duchesne, 1996, 1999).
Fig. 20. Schematic illustration of ore-forming process for Fe–Ti–P-rich rocks byhydrothermal
remobilization of Fe and Ti followed by fluid concentration in veins and other discordant
bodies.
10.6. Hydrothermal remobilization

Plagioclase in anorthosite massifs is commonly altered to various
degrees and significant volumes of anorthosite can be affected. The
alteration produces white-colored altered anorthosite, as opposed to
dark-colored fresh anorthosite. This process has been observed in the
Damiao anorthosite by Li et al. (2014), who show that alteration of
plagioclase reduces the Fe and Ti contents of the anorthosite. They
thus interpret the formation of high-grade Fe–Ti–P ores as a hydrother-
mal process involving P- and F-rich fluids that migrate, alter the anor-
thosite and transport Fe and Ti. These elements would precipitate in
other parts of the anorthosite and form veined or lenticular massive
ore bodies (Fig. 20). This interpretation is further supported by low
homogenization temperatures of fluid inclusions in apatite, ranging
from 180 °C to 420 °C (Li et al., 2010). Simple mass balance calculations
taking into account the compositions of the altered and fresh anorthosite
make this hypothesis reasonable. However, more insights are needed
into the mobility of titanium and other immobile elements by fluids, al-
though Ti has been shown to be mobile in chloride and fluoride-bearing
fluids (Rapp et al., 2010).
Segregation of  Fe-Ti-rich interstitial
melt from uprising anorthosite mush

Host rocks

Anorthosite mush
Filter-pressed
residual melt

Fig. 19. Schematic illustration of ore-forming process for Fe–Ti–P-rich rocks by segregation
of Fe–Ti-enriched residual melts from uprising anorthosite mush.
11. Metamorphism: a natural beneficiation processes?

Fe–Ti oxide minerals undergo substantial chemical modification
through the various processes described in the previous sections. In
general, during subsolidus cooling, magnetite tends to lose Ti, Al and
Mg through external granule exsolution of spinel-bearing ilmenite and
primary ilmenite progressively reduces its hematite and hercynite
contents. Both oxides thereby approach their pure end-member
compositions and purge some of their minor elements. To what extent
these subsolidus modifications can increase the industrial value of an
ore is an interesting question to examine because it can influence
exploration strategy. One immediately thinks of deposits that have
been metamorphosed at greenschist-facies conditions and thus spent
a lot of time in the appropriate temperature range. Moreover, deforma-
tion could also have favored strain-induced exsolution and recrystalli-
zation of the minerals, as seen in the Rooiwater ore body (Reynolds,
1986). However, it must be stressed on theoretical grounds that this
natural purification process has its limits. The final major element
contents of both oxideswill be largely controlled by the T-fO2 conditions
during re-equilibration. The ilmenite Mg content will depend on
complex interactions with the accompanying silicates minerals, if any.
The trace elements will be redistributed between ilmenite, magnetite
and spinel. The bulk V and Cr contents of the ore body will not change,
but V and Cr contents in ilmenite will decrease with the ferric iron
content; these elements will probably then become concentrated
in magnetite or a spinel phase. These phenomena require further
investigation.

12. Magnetic signatures of Fe–Ti–V–P deposits

Aeromagnetic surveying is an essential geophysical tool for the
exploration of Fe–Ti–V–P ore bodies, as exemplified by the discoveries
of the world-class Lac Tio and Tellnes deposits, both of which were
found during aeromagnetic measurements campaigns (Bourret, 1949;
Gierth and Krause, 1973). The interpretation of such surveys strongly
depends on the magnetic properties of the rocks being explored, espe-
cially the ore deposits themselves. Characterization of rock magnetic
properties in the Rogaland Anorthosite Province led McEnroe et al.
(2001) to distinguish between two groups of Fe–Ti mineralization
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types that produce large and contrasting anomalies on aeromagnetic
maps, a classification that can be extended to Fe–Ti oxide deposits
worldwide.

The first group of Fe–Ti mineralizations encompasses noritic
rocks with relatively abundant coarse (multi-domain) magnetite and
homogeneous (near-end-member) ilmenite. Ores from this group
have high values of natural remanent magnetization (NRM) and
magnetic susceptibility (K), coupled with low values of coercivity and
Koenigsberger ratios (Q, the ratio of NRM to induced magnetization
i.e. K multiplied by the ambient magnetic field). They produce an
induced-current magnetic response parallel to the Earth's present-day
magnetic field, giving rise to positive anomalies on aeromagnetic
maps. Themagnetic properties of these rocks are dominated bymagne-
tite; in particular, the viscousNRMbehavior is “more or less as predicted
from the common behavior of multi-domain magnetite” (McEnroe
et al., 2001). Evolved cumulates from theupper part of the layered series
of the Bjerkreim–Sokndal intrusion are typical examples of magnetite-
rich noritic rocks with homogeneous ilmenite giving rise to induced
magnetic highs. Mean NRM, K and Q values for these layered units are
in the range of 2–10 A/m, 90–280×10−3 SI and 0.5–1, respectively (cal-
culated from McEnroe et al., 1996, 2009).

The second group of Fe–Ti ore deposits, with a magnetic signature
drastically different from the former group, includes hemo-ilmenite-
rich noritic rocks and massive hemo-ilmenite ores, containing no or
minor multi-domain magnetite. Rocks from this group have high NRM
and Q values, and moderate to high coercivities and susceptibilities.
They produce remanence-influenced to remanence-dominated
anomalies, and are thus strongly dependent on the orientation of the
Earth's magnetic field at the time of emplacement and cooling.
The strong and stable NRM of this group results primarily from
hemo-ilmenite; however, oxide exsolutions in silicates, chiefly exsolved
blades and rods of hemo-ilmenite and/or magnetite with ilmenite
oxy-exsolution in pyroxenes may contribute significantly to NRM in
some cases (McEnroe et al., 2001). The contributions of hemo-
ilmenite and pyroxene with oxide exsolutions may both be explained
by a peculiar ferrimagnetic substructure created in the exsolution
intergrowths (McEnroe et al., 2002, 2004, 2007), following the theory
of lamellar magnetism (e.g. Robinson et al., 2002). Most other magnetic
properties of hemo-ilmenite ores are also strongly influenced by lamel-
lar magnetism, with the notable exception of magnetic susceptibility:
at the grain-scale, the exsolution lamellae and their host contribute to
the intrinsic magnetic susceptibility according to their respective
proportions and susceptibilities.

The Tellnes and Lac Tio ore bodies are typical examples of Fe–Ti
deposits with NRM dominated by hemo-ilmenite. Both ore bodies
produce negative anomalies (magnetic lows) related to NRM acquired
during a time of reversed magnetic polarity (McEnroe et al., 2001,
2007). The anomaly over the Tellnes open-pit is hardly distinguishable
from the negative anomaly generated by the surrounding Åna-Sira
anorthosite. It is worth noting that not all anorthosite bodies generate
negative anomalies; anorthosites have quite variable magnetic proper-
ties and therefore, aeromagnetic signatures, depending on their oxide
mineralogy (Brown et al., 2011). The Tellnes and Lac Tio deposits have
very different average NRM and Q values (7 A/m and 7.5, and 47 A/m
and 100, respectively), with similar average K values (29 × 10−3 SI
and 32 × 10−3 SI, respectively; calculated from Hargraves, 1959; Diot
et al., 2003; McEnroe et al., 1996, 2007; Bolle et al., 2014). The K values
in both deposits are strongly influenced by the proportions of magne-
tite, when present either as discrete primary grains, exsolution lamellae
in pyroxenes or hemo-ilmenite, or secondary minerals, since this oxide
has a very strong intrinsic magnetic susceptibility. For example, in the
Lac Tio deposit, massive hemo-ilmenite samples with no or negligible
magnetite have K values lower than 7–8 × 10−3 SI, whereas ilmenitites
and hemo-ilmenite-rich noritic rocks containing minor magnetite have
susceptibilities up to 113 × 10−3 SI (data from Hargraves, 1959;
McEnroe et al., 2007; Bolle et al., 2014).
The magnetic signature may vary across a single deposit, as shown
by the Storgangen ore body. The magnetic anomaly over this deposit
grades westward from a negative remanence-dominated anomaly to a
positive induced anomaly, most likely related to an increase in the
magnetite/hemo-ilmenite ratio from east to west (McEnroe et al.,
2001). There are also Fe–Ti mineralizations that depart somewhat
from the classification ofMcEnroe et al. (2001). For example, a cumulate
unit from the upper part of the layered series of the Bjerkreim–Sokndal
intrusion has high NRM, K and Q values (average of 19 A/m, 112 × 10−3

SI and 5.8, respectively; calculated from McEnroe et al., 2009) and
produces a striking negative remanent magnetic anomaly, known as
the Heskestad anomaly, reflecting the coexistence of, and competition
between, multi-domain magnetite and hemo-ilmenite + oxide exsolu-
tions in pyroxenes (McEnroe et al., 2004, 2009). A synthesis of the
different types of Fe–Ti mineralization according to their magnetic
properties is presented in Table 3.
13. Structural analysis and deformation

The most conspicuous structural elements observed at the outcrop
scale in many Fe–Ti ore bodies are igneous layering and/or mineral
lamination (mostly defined by plagioclase and orthopyroxene crystals).
Fe–Ti oxides, especially hemo-ilmenite, commonly display a shape-
preferred orientation,with aflatteningplaneusually parallel to themin-
eral lamination. This can be coupledwith a lattice-preferred orientation
of the grains, as demonstrated using electron backscattered diffraction
on samples from the Lac Tio deposit and a nearby minor hemo-
ilmenite deposit (Robinson et al., 2013; Bolle et al., 2014). At the
microscale, evidence of intracrystalline deformation (undulose
extinction, subgrains, bending, kinking) is common in silicates (mostly
plagioclase and orthopyroxene) from all types of Fe–Ti deposits, as is
partial dynamic recrystallization into small grains (Paludan et al.,
1994; Duchesne, 1999; Diot et al., 2003; Bolle et al., 2014). Ilmenite
shows virtually no evidence of intracrystalline deformation, which
reflects its aptitude for recrystallizing, as discussed above. This recrys-
tallization does not only occur only during deformation, but commonly
continues after deformation has ceased (static recrystallization), as
demonstrated by the texture of massive ores: aggregated hemo-
ilmenite grains have polygonal shapes with boundaries tending to
make triple junctions with dihedral angles of ca. 120°, and they have
been coarsened, as suggested by the smaller size of ilmenite grains
included in plagioclase. Such a texture is typical of grain boundary
area reduction (also called textural coarsening in igneous rocks;
Higgins, 1998), a process of grain boundary migration resulting in
grain growth and straightening of grain boundaries, which is the
principal mechanism of static recrystallization (Passchier and Trouw,
2005).

The magnetic fabrics measured in the Tellnes and Lac Tio deposits
(Diot et al., 2003; Bolle et al., 2014) are dominated by shape-preferred
orientation of magnetite and/or lattice-preferred orientation of hemo-
ilmenite. The magnetic foliation, which proxies for igneous layering
and mineral lamination, displays patterns that (1) mimic the 3D shape
of the two deposits (namely an elongated trough for the Tellnes ore
body and a funnel for the Lac Tio deposit) and (2) express their cylindri-
cal folding around a gently-plunging axis. The magnetic lineation re-
veals in both deposits a linear arrangement of the rock-forming
minerals, most probably a mineral lineation that approximates the
axis of maximum finite stretching. On average, it is parallel in both de-
posits to the gently-plunging fold axis revealed by the layout of the
magnetic foliation. Bolle et al. (2014) also showed that the basin-
shaped Grader layered intrusion, which crops out only ca. 4 km SW of
the Lac Tio deposit, is folded around an axis with an orientation similar
to the stretching direction suggested by the AMS analysis of the Lac Tio
deposit. The Bjerkreim–Sokndal layered intrusion in the Rogaland anor-
thosite province is also folded into a complex synformal syncline,



Table 3
Types of Fe–Ti mineralization according to magnetic properties.

Typea,b Examplec

Magnetic mineralogy Magnetic properties Mineralization NRM K Q

(A/m) (10−3 SI)

Mag + homogeneous Ilm High NRM and K, low coercivity and Q
(induced, positive magnetic anomaly)

Mydland (BKSK SE lobe)d 5 181 0.7
Bakka (BKSK S lobe)d 10.5 279 1
MCUIVf (BKSK N lobe)b 2 90 0.5

Hem-Ilm ± Mag ± Ox in Px High NRM and Q, moderate to high coercivity and K
(remanence-influenced to remanence-dominated magnetic anomaly,
with sign dependent on the paleofield orientation)

Tellnes mined–f 7 29 7.5
Lac Tio deposite,g–i 47 32 100

Mag + Hem-Ilm + Ox in Px
(peculiar case)

High NRM, K and Q
(remanence-dominated magnetic anomaly)

MCUIVe', Heskestad
(BKSK N lobe)b,e

19 112 5.8

Symbols for minerals: Hem-Ilm, hemo-ilmenite; Ilm, ilmenite; Mag, magnetite; Ox, oxide; Px, pyroxene.
Other: NRM, natural remanent magnetization; K, magnetic susceptibility; Q, Koenigsberger ratio; BKSK, Bjerkreim–Sokndal layered intrusion.

a McEnroe et al. (2001).
b McEnroe et al. (2009).
c NRM, K and Q values are averages calculated from raw data.
d McEnroe et al. (1996).
e The associated magnetic anomaly is negative.
f Diot et al. (2003) (only for K).
g Hargraves (1959) (data recalculated).
h McEnroe et al. (2007).
i Bolle et al. (2014) (only for K).
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divided into three lobes intersecting in a central funnel-shaped trough
(Paludan et al., 1994; Bolle et al., 2000, 2002).

From the ideas developed above, it can be concluded that a high-
temperature, syn- to post-emplacement deformation overprinting
the primary magmatic structure is very common in Fe–Ti ore bodies
associated with anorthosites. According to Duchesne (1999), macro-
to microstructural deformation features observed in many deposits
enclosed in anorthosite bodies from the Rogaland anorthosite province
(e.g. Storgangen) would have been induced by the diapiric emplace-
ment of the anorthosite plutons (Barnichon et al., 1999). The morphol-
ogy, microstructures andmagnetic fabric of the Tellnes ilmenite deposit
were interpreted by Diot et al. (2003) as resulting from the syn-
emplacement deformation of a noritic crystal mush injected into a
strike–slip weakness zone cutting across the Åna-Sira anorthosite. This
interpretation has been challenged by Charlier et al. (2006), who
proposed that the Tellnes ore body represents a sill deformed during
gravity-induced subsidence due to the higher density of the Fe–Ti
oxide-rich rocks compared to the less-dense host anorthosite, possibly
coupled with up-doming of the latter. This deformation mechanism is
similar to that proposed to explain the deformation of the Bjerkreim–

Sokndal layered intrusion (Paludan et al., 1994; Bolle et al., 2000,
2002). Syn-emplacement, gravitational subsidence has also been
invoked to explain the boudinage of anorthosite layers and the
occurrence ofmeter-scale isoclinal slump folds in the Lac Tio andGrader
ore bodies (Bolle et al., 2014). However, the main deformation event in
both deposits, producing their folding and recorded by the magnetic
fabric in Lac Tio, would correspond to ballooning of the anorthosite,
which probably occurred during the gravitational deformation of the
ore bodies (Bolle et al., 2014).

14. Conclusions

Proterozoic massif-type anorthosites and associated rocks are com-
mon hosts for Fe–Ti–V–P-enriched rocks. Major deposits are dominated
by hemo-ilmenite, but Ti-magnetite and more rarely rutile are other
important Ti-bearing minerals. Accompanying phases are plagioclase,
orthopyroxene, clinopyroxene, olivine, and aluminous spinel. Apatite
is common in the more evolved rock types. A range of magmatic pro-
cessesmay be responsible for the formation of these deposits. Fractional
crystallization coupled with early saturation of ilmenite and plagioclase
flotation is an efficient mechanism that adequately explains composi-
tional variations in many deposits. Immiscibility of an Fe–Ti–(P)-rich
melt has commonly been invoked, but more careful examination of
this process should be undertaken, taking into account the most recent
work on phase equilibria. Additional processes such as magma mixing,
compaction, solid-state and hydrothermal remobilization deserve
consideration. The large diversity of Fe–Ti ores associated with massif-
type anorthosites is in accordance with the variety of their geological
environments and the controlling factors on Fe–Ti oxide stability,
composition and microtexture. Variables are as follows: parental
magma composition, oxygen fugacity, morphology of host magma
chamber and its deformation conditions, pressure of crystallization,
and postcumulus evolution.

The dominant, less polluting chloride process for the extraction of Ti
metal and TiO2 from ilmenite and rutile requires low MgO and Cr
contents of the feedstock minerals. Unfortunately these elements are
relatively abundant in ilmenite from the Tellnes and Lac Tio deposits,
particularly in the lower part of the Tellnes deposit. Oxide-apatite
gabbronorites are now considered as interesting targets because the
composition of ilmenite in these rocks is Cr- and Mg-poorer and the
Ti-resource may be combined with phosphorous-bearing apatite. Ores
from low-degree metamorphosed rocks should also be considered as
important targets.
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