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GENERAL INTRODUCTION 

Hydrogels are a broad class of cross-linked polymeric networks, which often extensively swell in 

water or biological fluids while maintaining their three-dimensional (3D) structure.1 Because of their 

high water content, hydrogels are most of the time biocompatible and have been widely developed 

and used in biomaterial sciences. Since the first biocompatible hydrogel reported in 1960,2 Their use 

as biomaterials has evolved from static implants and devices to dynamic, bio-responsive scaffolds, 

drug delivery vehicles and cell culture platforms for regenerative medicine. As for nanogels, they are 

defined as soluble polymer networks with a dimension smaller than 100 nm,3 and display the same 

structural features as hydrogels. Nanogels have been proposed as robust drug delivery systems 

(DDS);4 the current trend in the field being to introduce both responsiveness and targeting 

properties in theses nanocarriers.  

Thanks to the increasing knowledge in polymer engineering, environment-stimuli responsive 

hydrogels and nanogels are now accessible.5,6 Depending on the polymer and cross-linker used, 

hydrogels/nanogels can, for example, be made responsive to pH or temperature changes. They can 

also exhibit an “on and off” response, depending on fluctuating properties, in order to answer to 

more precise and specialized needs, as it is the case to glucose concentration.7–10  

In the past decades, the use of polymeric materials has increased dramatically for biomedical 

applications. The main used polymers – polyether,11 polyesters,12 polycarbonates13 and polypeptides14 

- are biocompatible, the unconditional properties for biomedical applications. Another important 

feature in this field is the will to develop synthetic polymers with chemical structures as close as 

possible to natural polypeptides and proteins, in order to obtain bio-mimicking functional 

biomaterials. Synthetic peptide-based polymers are actually not new,15 but one of the current trend is 

to go towards increasingly complex polymer sequences that would display tunable properties, while 

presenting excellent biocompatibility and offering some potential biofunctionalities.  

The major goal of this PhD thesis work was to design responsive hydrogels and nanogels made from 

a specific class of polymers - poly(2-oxazoline)s (POx) - for biomedical applications. POx are, 

however, still relatively new in comparison to other polymers already established for such a use, but 

they definitely fall within this approach. POx are synthesized by living cationic ring opening 

polymerization, and are described as pseudo-polypeptides because of their similar structure. 

Nevertheless, the presence of tertiary amides in POx makes them more chemically and enzymatically 

stable than polypeptides, while having a similar biocompatibility.16  
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POx prove fully competitive as biocompatible hydrophilic polymer alternatives of poly(ethylene 

glycol) (PEG), poly(vinyl pyrrolidone) (PVP), and poly(N-(2-hydroxypropyl) methacrylamide) 

(PHPMA) for biomedical uses.17 More especially poly(2-methyl-2-oxazoline) (PMeOx) and poly(2-

ethyl-2-oxazoline) (PEtOx) are often compared to PEG because they present the same stealth 

behavior towards plasmatic protein. 

In addition to their advantageous biological properties, POx are chemically versatile allowing the 

synthesis of tailor-made polymers and copolymers with tunable properties. Finally, POx interests are 

not only recognized by researchers in Academia but also by the chemical industry: a pharmaceutical 

company, Serina therapeutics, is currently creating new pharmaceutical candidates using poly(2-

oxazoline)s for Parkinson’s disease, cancer, inflammation, pain and metabolic disorders.18 

 

In this context, we propose, in this work, to expand the POx toolbox towards the design of 

functional POx-based hydrogels and nanogels that are chemically or physically cross-linked, for 

possible biomedical applications. Different oxazoline monomers will be used, yielding (co)polymers 

with various chemical handles and/or properties.  

This manuscript is composed of five chapters. First, a literature review on engineering of POx and 

their use in biomedical applications is presented. The second chapter will describe the design of dual-

stimuli responsive hydrogels and nanogels made from partially hydrolyzed POx. The third chapter is 

devoted to the crystallization driven self-assembly of a particular diblock copolymer, namely poly(2-

isopropyl-2-oxazoline)-block-(2-methyl-2-oxazoline) copolymer; the manipulation of which can lead 

to the formation of different nanostructures. In the fourth chapter, the expansion of the POx 

toolbox by post-polymerization modification of ketal and aldehyde-functionalized POx, which could 

be further used to prepare hydrogels, so as will be exploited. In the last chapter, the optimization of 

POx nanogels presented in the first chapter to meet the specific needs of a drug delivery system, and 

their evaluation in term of cytotoxicity and interactions with proteins will be discussed.  
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This PhD work was carried out in the framework of a collaboration between three universities: the 

University of Bordeaux in the Laboratoire de chimie des polymères organiques (LCPO, France), the 

University of Waterloo (Canada) and the University of Liège (Belgium). It was part of the 

International Doctoral Programme in Functional Materials (IDS FunMat), with an Erasmus Mundus 

scholarship. 
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INTRODUCTION 

The aim of this literature review is to give to the reader the key elements for a critical reading of this 

PhD manuscript. This chapter is dedicated to the scope and applications of engineered poly(2-

oxazoline)s (POx, Scheme 1). The living cationic ring opening polymerization (CROP) leading to POx 

has been discovered more than 50 years ago by 4 different research teams simultaneously and since 

then, this special class of polymers has been studied meticulously, giving rise to versatile polymeric 

materials. However, it is only since 15 years, with the discovery of their remarkable properties for 

biomedical applications and their thermo-responsiveness, that POx arouse increasing interest by the 

scientific community. POx are now considered as smart bioinspired polymers,1 with an ability to 

form functional materials and nanostructures with tunable properties,1–3 leading to numerous 

applications.3 POx are claimed to be used in adhesives,4 coatings5,6 or ink formulations7 as well as in 

drug delivery applications.8,9 The reader should be advised that the former applications are out of the 

scope of this literature review but related information can be found elsewhere.4–9 

 

Scheme 1 Poly(2-oxazoline)s general structure 

First, the remarkable properties of POx making them attractive candidates for biomedical 

applications will be presented. Second, a description of the polymerization mechanism, and potential 

issues which could be encountered, will be discussed. In the third part, the POx versatility in terms of 

chemistry and properties will be illustrated through selected examples. A special focus will also be 

placed on the design of POx-based hydrogels, as this category of materials has been the main topic of 

this PhD thesis. In the last part, the use of POx as polymer therapeutics will be briefly reviewed, with 

a special emphasis on both self-assembled nano-structures (micelles, polymer vesicles and polyplexes) 

and nanogels.  



Chapter 1 
	  

16	  

I. ADVANTAGEOUS PROPERTIES OF POLY(2-OXAZOLINE)S FOR 

BIOMEDICAL APPLICATIONS 

I.1. BIOCOMPATIBILITY STUDIES 

POx are often viewed as amino-acid analogues3 or as pseudo-polypeptides, where each repeating unit 

contains a peptide bond, albeit on the side instead of the main chain (Scheme 2). One can thus 

expect POx to be biocompatible. In addition, poly(2-ethyl-2-oxazoline) (PEtOx) has been approved 

by the Food and Drug Administration (FDA) as an indirect additive used in food contact substances,10 

which was the case for poly(ethylene glycol) (PEG) before being accepted in pharmaceutical 

formulations. 

 
Scheme 2 Analogy between poly(2-oxazoline)s and synthetic or naturally occurring polypeptides3 

In order to evaluate the biocompatibility of both homopolymers and block copolymers based on 

POx, a series of studies has to be conducted. First, in vitro studies should be carried out, in order to 

check the cytotoxicity of POx on different cell lines as well as their hemocompatibility and cell 

internalization. If in vitro tests are conclusive, in vivo evaluation should be realized with a 

pharmacokinetic study (i.e. the study of the fate of the polymer in the body), and the biodistribution 

evaluation.  

First, an in vitro cytotoxicity study was conducted on a library of homopolymers and block 

copolymers based on POx, showing  that POx were well tolerated at polymer concentrations up to 

20 mg/mL,11  and even up to 80 mg/mL for PEtOx.12 

The POx molar mass also influenced cytotoxicity: the higher the molar mass, the lower the cell 

toxicity.12,13 POx purity matters too, as monomers appeared to be toxic.13 

Hemocompatibility evaluation of PEtOx with molar masses of 5, 10, and 20 kDa, at a polymer 

concentration up to 10 mg/mL, showed no adverse effect on red blood cells.14 Other studies 

reported even better blood compatibility with no damaging effect on red blood cells, regardless of 

the poly(2-methyl-2-oxazoline) (PMeOx) and PEtOx molar mass, and up to a concentration higher 

than that typically used in biomedical application (up to 80 mg/mL).12,15 More recently, zwitterionic 

POx (i.e. a globally neutral POx polymer but with positive and negative electrical charges along the 
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chain) were reported to not only exhibit high hemocompatibility and low cytotoxicity, but also a 

beneficial anticoagulant activity.16 

A cellular uptake study was also conducted on a POx library, at a polymer concentration below the 

critical micellar concentration.11 The results suggested that amphiphilic POx could efficiently enter 

cells. All polymers studied were water-soluble (> 100 g/L), but the more hydrophobic the polymer, 

the more readily it could enter the cell.11,12 PEtOx, which is one of the most water-soluble systems, 

displayed a low endocytosis (molecules absorption by the cells by engulfing them). Moreover, it was 

observed that the length of the hydrophilic block had no influence on cellular uptake, but it depended 

on the polymer concentration and on temperature (cellular uptake decreased when the temperature 

was increased).  

In vivo studies were conducted on PMeOx and PEtOx that were radio-labelled and injected into mice 

and both polymers were rapidly cleared from the body.17,18 PEtOx was safe when administered 

intravenously, and the maximum tolerated dose corresponding to a unique injection (MTD) was 

greater than 2 g/kg.14 However, in case of multiple intravenous injections, 20 kDa PEtOx appeared to 

be safe and non-toxic if injected every 2 days at doses of up to 50 mg/kg over a period of 2 

weeks.19,20 

In terms of biodistribution and cytotoxicity, POx were compared to other commonly used polymers, 

such as poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) or PEG.18,21  

In vivo POx pharmacokinetics have not been studied yet, but some in vitro studies suggested that 

PEtOx was not subjected to enzymatic degradation. First, a biodegradation study of PEtOx by 

Proteinase K, a non-human enzyme, was achieved via incubation.22 A partial hydrolysis reaction 

occurred at the amide bond, leading to the formation of a statistical copolymer made of PEtOx and 

poly(ethylene imine) (PEI, Scheme 3) and ultimately to linear PEI.  

 

Scheme 3 Poly(2-ethyl-2-oxazoline) degradation by Proteinase K 

Nevertheless, in vitro studies showed that the lower the percentage of linear PEI, the lower the 

cationic charge density.23,24  In such cases, a better cell viability was also observed,23,24 and even until 

10% of hydrolysis no cytotoxicity was detected.25 More recently, PEtOx degradation in presence of 

digestive enzymes and in an acidic environment, mimicking physiological conditions, revealed that 

PEtOx did not undergo hydrolysis.25 As a consequence, POx are most often described as non-

biodegradable polymers because only hydrolytic and proteolytic (enzymatic) degradation are 
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considered. However, a recent study by Luxenhofer et al. showed that POx were prone to oxidative 

degradation under physiologically relevant conditions.26 The generation of reactive oxygen species 

(ROS) led to a pronounced time and concentration dependent degradation, and in vivo degradability 

seemed feasible. In addition, there is a plethora of ROS in the body (mainly produced in 

mitochondria, a special sub-units found within eukaryotic cells), which could lead to oxidative stimuli 

system. 

I.2. STEALTH BEHAVIOR AND PROTEIN REPELLENT ACTION OF POLY(2-

OXAZOLINE)S  

PMeOx and PEtOx are not only compared to PEG because of their similar properties in the 

therapeutic relevant dosage range (i.e. non-toxicity and hemocompatibility properties), but most 

importantly because all these polymers exhibit a stealth behavior. “Stealth” nanoparticles are defined 

as possessing properties that allow them to evade clearance by the body and remain in circulation for 

extended periods of time. Their extended presence in the bloodstream allows for a greater 

percentage of compound cargo to reach target tissue, as well as to provide more consistent dosing 

of the tissue.  

The stealth behavior of PMeOx and PEtOx was first reported in 1994 by Woodle et al.27 who studied 

the fate of PMeOx or PEtOx coated liposomes injected into rats. The coated liposomes showed 

dramatic reticuloendothelial system (RES)-evasion and prolonged blood circulation effects compared 

to uncoated liposomes, which had a short blood lifetime and accumulated in the RES (Figure 1).  

  



Literature overview 
	  

	   	   	   19	  

 

Figure 1 A) Blood circulation time and B) Biodistribution of liposomes coated with poly(ethylene glycol) 

(PEG), poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-methyl-2-oxazoline) (PMeOx) and of uncoated liposomes, 

egg phosphatidyglycerol (EPG). Adapted from ref. 27 

Moreover, with the POx coated liposomes, the pharmacokinetics were dose-independent. The blood 

circulation time and biodistribution were compared between POx and PEG coated liposomes. The 

results showed that both systems presented the same stealth behavior, as confirmed by another 

study by Zalipsky et al.28 

The stealth behavior of PEG is due to a steric stabilization effect because PEG chains are mobile, 

present conformational flexibility and water binding ability.28 PMeOx and PEtOx possess similar 

solution properties and flexibility, the chain backbone of both polymers being composed of carbon-

carbon bonds featuring one heteroatom.28  

As a consequence, POx are increasingly regarded as a good alternative to PEG.12,29–31 PEGylated 

systems have been in the market for more than 20 years,20 mainly with protein PEGylation 

applications (i.e. attachment of PEG to a protein), as it enhances the permeability and retention effect, 

increases the biodistribution, the cellular targeting and the solubility of insoluble drugs in water or of 

enzymes in organic solvents due to its amphipatic properties.32 The new challenge is to be able to 

have site-selective PEGylation to increase the degree of homogeneity and to preserve the 

bioactivity.33 However, because of this intensive use of PEG, PEGylated systems lose their function 

when placed in vivo because of specific and nonspecific recognition of PEG by the immune system. 

Specific antibodies were detected in the serum of patients treated with PEG-asparaginase and PEG-

uricane. Anti-PEG antibodies were also identified in the case of patients who never received 

treatment based on PEG, due to the presence of PEG in food products.34 These antibodies have a 

neutralizing effect and cause the loss of therapeutic efficacy.35 
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Similarly to POx, PEG is described as a non-biodegradable (hydrolytic and enzymatic wise) polymer, 

but it is actually more sensitive to oxidative degradation than POx and the products resulting from 

the oxidative degradation of PEG were found to be toxic in humans.20  

Another disadvantage of PEG is its low drug content when used as a bioconjugate, as the only way to 

attach a drug molecule to a PEG chain is through the end functionalities. In contrast, due to the 

versatility of 2-oxazolines, such as in 2-oxazoline monomers bearing a functional group on their side 

chain, several drug molecules can eventually be coupled to the polymer chain. In addition, the end 

functionality can even be used to attach another active compound such as targeting moieties. POx 

functionalization will be discussed in greater details in section III of this chapter.  

Last but not least, POx are less viscous than PEG, which makes the pharmaceutical formulation 

easier.36 

The protein repellent action of POx is a direct consequence of their stealth behavior. It has been 

studied for comb-polymers made from a poly(L-lysine) backbone and PMeOx side chains (PLL-g-

PMeOx),35 deposited on negatively charged surfaces, forming a polymer coating. This coating was 

then exposed to human serum albumin (HSA), and the adsorption of protein was monitored by 

optical spectroscopy that allowed in situ measurement of the surface immobilization of biomolecules 

in an aqueous environment. Even after several exposure cycles to HSA, no mass uptake was 

observed, indicating that protein adsorption was below the detection limit of the instrument (< 2 

ng/cm²). Similar results were obtained for PEG-based systems. These results were corroborated with 

other POx architectures, such as polymer brushes,29 bottle-brush brushes copolymers,37 capsules,38 

hydrogels,39,40 or amphiphilic POx-based block copolymers41 where POx always presented a protein 

repellent character. Some compounds also showed an antimicrobial activity (i.e. bacteria repellent)29 

and were even cell repellent,37,39 leading to low or non-fouling systems. 

POx brushes were compared to the equivalent PEG brushes, and it appeared that the coating made 

of POx brushes had a better stability under physiological conditions, especially in an oxidative 

environment. In addition, the degradation of PEG surfaces under oxidation conditions led to protein 

adsorption.29 

Both POx architecture and composition are also of great importance: PLL-g-PMeOx brushes 

prevented protein adsorption and suppressed bacterial surface adhesion,29 whereas linear PEtOx and 

poly(2-nonyl-2-oxazoline) (PNonOx) showed no antimicrobial activity.42 Concerning the 

composition, it was shown that the more hydrophilic the system (i.e. the POx used), the better the 

non-fouling properties.37 Anti-microbial activities were also increased with the POx percentage of 

hydrolysis.42 
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To summarize, POx, and especially PMeOx and PEtOx, proved non-toxic to cells, hemocompatible 

and internalized by cells. In vivo, they presented the same stealth behavior as PEG and could also be 

used as protein repellent. Last, studies on their in vitro degradation showed that POx were not 

sensitive to hemolytic or enzymatic degradation under physiological conditions, but could be cleaved 

by oxidative degradation under the same conditions leading to a possible degradable polymer. POx 

thus appears as valuable competitors in terms of biological properties compared not only to PEG, but 

also to other hydrophilic polymers used in biomedical applications, such as poly(vinyl pyrrolidone) 

(PVP), or polymethacrylamides.43 

II. SYNTHESIS OF POLY(2-OXAZOLINE)S 

2-Oxazolines represent a special class of 5 membered cyclic imino-ethers. Their “controlled/living” 

polymerization was discovered in 1966 by four different research groups simultaneously.44–47 Since 

then, their ring-opening polymerization (ROP) has been described in several reviews48–50 and book 

chapters.51 Scheme 4 shows the general scheme of such a ROP of 2-substituted-2-oxazolines. 

 

Scheme 4 Polymerization of 2-substitued-2-oxazolines 

The first monomers studied in polymerization reactions were 2-methyl-2-oxazoline (MeOx) and 2-

phenyl-2-oxazoline (PhOx).44 These monomers, now with 2-ethyl-2-oxazoline (EtOx), are still the 

most commonly used because of their commercial availability. However a wide variety of 2-

substituted-2-oxazolines can be synthesized through various reaction schemes, such as the reaction 

of nitrile or isocyanides with amino-alcohols, the cyclization of haloamides, etc (Scheme 5). The 

different synthetic ways to 2-substituted-oxazolines were previously reviewed.48,49 
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Scheme 5 Examples of 2-oxazoline monomer synthesis 

II.1. POLYMERIZATION MECHANISM: INITIATION AND PROPAGATION 

The ROP of 2-oxazolines can be initiated by various reagents including Lewis acids (BF3, AlCl3,), 

strong protic acids (HClO4, HBr, H2SO4,), oxazolinium salts,51 strong cationic Bronsted acids,52 or 

more generally X of an electrophile RX, where the X typically stands for p-toluenesulfonate (OTs), 

trifluoromethanesulfonate (OTf), or Br, Cl or I. Polymerization can be conducted in relatively polar 

aprotic solvents, such as dimethylformamide (DMF), dimethylacetamide (DMAc) or in bulk, but the 

most commonly used solvent is acetonitrile (CH3CN).  

The termination agent has to be a nucleophilic species possessing a greater electron donating 

capacity than that of the monomer. Most common nucleophiles are water, alcohols or secondary 

amines (like piperidine).  

The choice of initiator and termination agent will thus determine the end functionalization of the 

polymer chain and will be discussed in greater detail in section III.  

Depending on the nucleophilic reactivity of the counter anion arising from the initiator, two different 

mechanisms, namely, the cationic and the covalent mechanism, can operate (Scheme 6).49,53 In the 

case of a cationic ROP, an electrophile species initiates the reaction, creating a cationic oxazolinium 

propagating species. The polymerization reaction corresponds to the nucleophilic attack of the 

subsequent monomer resulting in a ring opening step. Termination can be achieved by the addition of 

an external nucleophilic species. However, when an initiator generating a stronger nucleophile is 

used, the polymerization proceeds via covalent-bonded species. In this case, the 2-oxazolinium ring is 

eventually opened by the counter anion that has a higher nucleophilicity than the monomer. Last, 

when the nucleophilicity of the monomer and of the counter anion of the initiator are comparable 

both mechanisms can coexist. 
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Scheme 6 Polymerization mechanisms 

The reaction of the oxazolinium salt with the counter ion in the covalent mechanism is comparable 

to the termination reaction of the cationic mechanism. However, the covalent species proceed to 

react with the monomer and propagation continues. 

Most of the initiators used currently, such as methyl p-toluenesulfonate (MeOTs) and methyl 

trifluoromethanesulfonate (MeOTf), lead to a true cationic polymerization pathway because they give 

rise to stable (less nucleophilic) tosylate and triflate anions, respectively. 
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II.2. POLYMERIZATION MECHANISM: TRANSFER AND TERMINATION BY 

COUPLING 

In the ideal case, the ROP of 2-oxazolines can be controlled, but one has to be aware that some side 

reactions can occur. For instance, a transfer reaction takes place by the abstraction of a proton from 

the R1-carbon atom of the propagating species, by the nitrogen atom of a monomer.54 Consequently, 

a positively charged “activated” monomer and a non-charged polymer with a C=C double-bond are 

formed (Scheme 7). 

 

Scheme 7 Mechanism of chain transfer 

This mechanism has been highlighted by Litt et al. in 1975.54 They demonstrated that the major site of 

chain transfer is the carbon in α-position from the ring. A greater chain transfer is observed for POx 

with activated methylene groups such as 2-benzyl or 2-acetoxymethyl, whereas for polymers such as 

poly(2-isobutyl-2-oxazoline) where the α-methylene group is shielded, the chain transfer is reduced 

(Scheme 8). A greater chain transfer is also observed for PMeOx than for the polymerization of 

other 2-alkyl-2-oxazolines. 

 

Scheme 8 Extent of chain transfer depending on the monomer side-chain 

Once this chain transfer reaction has occurred, the dormant ene-terminated POx chain can act as a 

nucleophilic species via a process called chain coupling, which increases the molecular weight 

(Scheme 9). Nevertheless, the dormant chain being less nucleophilic than the monomer, it reacts 

more slowly, and most of the coupling reaction occurs during the last phase of the polymerization 

reaction.54,55 The mechanism of chain transfer and coupling has been confirmed by Warakomski et 

al.56 



Literature overview 
	  

	   	   	   25	  

 
Scheme 9 Mechanism of chain coupling 

In order to control the polymerization and to avoid such side reactions, specific conditions have to 

be fulfilled, i.e. high purity of monomer, solvent and initiator, low [M]/[I] ratio, a monomer with no α-

hydrogen, and a solvent with no protic hydrogen atoms.56 Another hindrance of the polymerization 

of 2-oxazolines is the rather long reaction time (reactions could last up to several days at 85 °C). 

Consequently, the optimization of the polymerization reaction conditions has been the subject of 

numerous studies, in order to reduce the reaction time. All parameters have to be considered to 

reach the optimum conditions: temperature, solvent, initiator and monomer used, monomer 

concentration, [M]/[I] ratio, and heating process.  

If chain transfer and coupling can be excluded, the polymerization proceeds in a “controlled/living” 

manner, which can be exploited in the design of well-defined systems and for block copolymer 

synthesis as well. In such a case, the concentration of propagating species is constant and the 

polymerization proceeds via a first order kinetic. As a matter of fact, the size exclusion 

chromatography (SEC) trace should be a narrow peak with no shoulder (coupling) or tail (transfer). 

One has to be aware, however, that the nitrogen atoms present on the backbone of the polymer can 

interact with the SEC column materials, and this may also contribute to the tail observed in the SEC 

traces. With the choice of a suitable solvent, such as DMF, most of the interactions with the column 

material can be suppressed.57 

Another interesting parameter that can be used to examine and elucidate the transfer and coupling 

reactions is the color of the reaction medium; it turns from clear to yellowish when chain transfer 

and/or coupling are occurring.58 

II.3. OPTIMIZATION OF THE REACTION PARAMETERS 

In order to study the influence of each parameter, systematic studies (i.e. by varying one parameter at 

a time) have been conducted, mainly by Hoogenboom et al., using an automated synthesizer 

(Chemspeed ASW200)59 allowing to conduct 16 experiments simultaneously and with high 

reproducibility. 
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First, the influence of temperature was studied.58 Sixteen PEtOx were synthesized under the same 

conditions (in DMAc using benzyl bromide as an initiator, with a [M]/[I] ratio of 60 and a reaction 

time of 16h), but the temperature varied between 80 °C to 130 °C. As expected, the reaction rate 

increased with temperature due to the activation energy. The number-average molecular weight 

(𝑀!) obtained from SEC increased linearly at 90 °C and 100 °C. Below 90 °C, no polymerization 

occurred and above 100 °C, it was not well-controlled. 

The influence of temperature was also studied for the CROP of PhOx under the same conditions.60 

Its polymerization was more difficult to initiate than EtOx. With benzyl bromide as the initiator, 

polymerization was observed only at 140 °C and 150 °C and not in a quantitative manner. When 

using MeOTs as the initiator, linear first-order kinetics were obtained with an optimal temperature 

reaction of 130 °C. At lower temperature, the initiation was too slow and not all the polymer chains 

were growing at the same time (dispersity Ð>1.40); at higher temperature, side reactions were 

observed. 

In addition, Park et al. used 2-isopropyl-2-oxazoline (iPrOx) and EtOx to synthesize homopolymers 

and gradient copolymers in acetonitrile, using MeOTs as initiator. They showed that mild 

temperature conditions, i.e. 42 °C, were optimum to avoid chain transfer and coupling (Figure 2).61 

 

 

Figure 2 SEC traces of poly(2-isopropyl-2-oxazoline) prepared at different temperatures. Reprinted from 

ref. 61 

The different POx obtained had a low dispersity (Ð =1.02) showing that the polymerizations were 

well controlled. However, as the temperature was decreased, reaction times were longer: up to 

476.5h to get a PiPrOx with a degree of polymerization (DP) of 86, which represents a severe 

limitation. 

The influence of the initiator was also studied for the CROP of MeOx, EtOx, PhOx and NonOx. The 

polymerization rate matched well with the decrease in nucleophilicity of the counter-ion: methyl 
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triflate (MeOTf) > MeOTs > methyl iodide (MeI) > benzyl bromide (BB).62 However, polymerizations 

initiated with MeOTf or MeOTs exhibited a loss of control, as indicated by a curved first-order 

kinetic behavior. This was ascribed to the fact that more active initiators were more sensitive to 

moisture and other contaminations. 

Monomer concentration was optimized for the CROP of EtOx. The optimal monomer concentration 

was between 4 and 7M when polymerization was conducted at 100°C in DMAc, using BB as the 

initiator, with a [M]/[I] ratio of 60.57 At lower concentration indeed, a deviation from the theoretical 

molecular weight was observed, and the dispersity values were high (between 1.6 and 1.9) with a tail 

at lower molecular weight, due to chain transfer reactions. At higher concentration, a shoulder 

characteristic of chain transfer and coupling was observed on the SEC trace. These differences were 

attributed to differences in the initiation process at low and high monomer concentration, but the 

exact mechanism is still being debated.55 

The reactions were also dependent on the solvent used: polymerization at 80 °C in acetonitrile was 

faster than at 90 °C in DMAc, but lower than at 100 °C in DMAc. This difference could be explained 

by the slightly higher dipole moment of acetonitrile that led to better solvation of the propagating 

oxazolinium rings.62 

The substituent group of the monomer has also a direct influence on the kinetics of the reaction and 

the occurrence of side reactions. The monomer reactivity increases with its nucleophilicity, but it 

also becomes more prone to side reactions.54,63 The higher nucleophilicity of MeOx resulted in a 

slightly faster polymerization rate compared to other monomers (EtOx, PhOx, NonOx). By co-

polymerizing monomers with different reactivities, side reactions could be avoided. For example, 

when MeOx was polymerized at 80 °C in acetonitrile, with MeOTs as an initiator, no polymer with a 

DP superior to 100 could be obtained without the occurrence of chain transfer. When MeOx and 

EtOx were copolymerized, EtOx being less susceptible to side reactions than MeOx, copolymers 

with DP up to 500 were obtained in a controlled manner.64 

Optimal conditions for a better control on the polymerization are thus different from one system to 

another, and the reaction times are still quite long, between 10h and a few days. In 2004, PEtOx was 

synthesized for the first time in a single mode microwave synthesizer, in acetonitrile, using MeOTs as 

the initiator and with a [M]/[I] ratio of 60.65 The reaction rate was significantly increased with 

temperature, as observed in conventional syntheses, but under microwave irradiation the solvent 

boiling point (82 °C for acetonitrile) was no longer a limiting factor as the pressure inside the vial 

also increased (up to 1 bar). Hence, the reaction could be performed even at 200 °C,65 with a 

reaction rate up to 350 faster. Nevertheless, below 100 °C and above 160 °C side reactions were 

still present; the optimal temperature was 140 °C, at which PEtOx synthesis was completed in 10 
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minutes, with a dispersity below 1.10. The living character of the polymerization was also retained at 

all studied temperatures (between 80 and 190°C). A control experiment at 140°C under 

conventional heating in a high pressure vial revealed the same reaction speed, meaning that the 

increase in reaction rate was eventually not linked to any “microwave effect”, the microwave reactor 

being only used as an efficient heating device. The fast and direct heating applied without contact and 

the use of a good microwave absorbing solvent like acetonitrile are thus the keys factors. The 

efficiency of the polymerization under microwave irradiation was later confirmed for other 

homopolymer syntheses (PMeOx, PPhOx, PNonOx), where polymerization was still controlled 

(Ð<1.2) while being up to 400 faster.66 Block copolymer synthesis was also possible under such 

conditions.67 

Thus microwave synthesizers seem to be powerful devices, overcoming the long reaction times 

necessary under conventional heating conditions, while producing polymers in a well-controlled 

manner and yielding products with lower dispersity values.68 This new synthetic approach has 

brought POx to the fore front, and since then, POx research is mainly focused on POx engineering 

and applications. 

III. POLY(2-OXAZOLINE)S: A VERSATILE POLYMER CLASS 

III.1. TAKING ADVANTAGE OF THE LIVING POLYMERIZATION: COPOLYMERS 

SYNTHESIS 

By taking advantage of the “controlled/living” character of the polymerization, statistic and block 

copolymers or even more complex architectures can be readily synthesized. The easiest and widely 

used method to obtain block copolymers is via the “one pot two stages” method where the second 

monomer is added once the first one is consumed.69,70 This method is also refered to as the 

sequential polymerization method. When two different monomers are added simultaneously, the 

composition of the copolymer can be predicted thanks to the reaction rate of each monomer: if the 

reactivities of both monomers are comparable, statistical copolymers are expected64 whereas if one 

monomer is less reactive than the other, gradient copolymers are obtained.61,71 In some cases, block 

copolymers can also be obtained by this method, as it was demonstrated for the synthesis of 

PMeOx-b-(2-heptafluoropropyl-2-oxazolines), on the basis of highly different reactivity between the 

two parent monomers.53 Some examples of statistical, block and gradient copolymers are given in 

Table 1. 
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Table 1 Example of copolymers synthesized in the literature 

Statistical 

rM1 ≈ rM2 

 

 Gradient 

rM1 > rM2 

 

M1 M2 Ref.  M1 M2 Ref. 

  

72 

 

 
 

71 

 
 

73 

 

  

71 

    

  

71 

Diblock 

rM1 >>> rM2 

 

 

M1 M2 Ref. 
 

  

74 

  

53 
 

  

61 

III.2. INTRODUCTION OF FUNCTIONALITIES 

By varying the initiator and termination agents, both α- and ω-chain ends of POx can be 

functionalized. The synthesis of POx with functional handles can also be achieved by resorting to 

specific functional 2-oxazoline monomers (Figure 3). 
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Figure 3 Possible ways to functionalize poly(2-oxazoline)s 

For the scope of this PhD thesis, recent examples of such functionalized POx will be presented. This 

list may not be exhaustive, but synthetic strategies to functionalized POx have been recently 

reviewed.1,43,75 In addition, a patent about chain-end POx functionalization has been filed,76 whereas 

the synthesis of monomers with various substituents was reported in papers.77,78 

III.2.1. IN-CHAIN FUNCTIONALIZATION THROUGH THE USE OF FUNCTIONAL MONOMERS 

The first option to functionalize POx is to directly polymerize a monomer bearing a reactive handle 

(R). Whatever the R group is, the side chain of the monomer may not interfere during the CROP 

process. Consequently, a protecting group has often to be used to avoid any side-reaction of the R 

group with the propagating species. For example, monomers with an unprotected hydroxyl79 or 

amino group80 gave rise to chain transfer leading to the synthesis of branched polymers of high 

dispersity. As illustrated in Table 2, monomers containing alcohol,79 carboxylic acid,79,81,82 amine,83,84 

aldehyde73 or thiol85 functionalities thus require protection in the form of ester groups, tert-

butyloxycarbonyl groups (BOC), ketal rings or methoxybenzyl groups, respectively. The resulting 

polymers were deprotected, most of the time in the presence of trifluoroacetic acid (TFA), before 

any post-polymerization modification.86–88 For example, POx with the aldehyde functionality (obtained 

from monomer 1, Table 2) further reacted in a quantitative way with amino-oxy compounds forming 

the corresponding oxime. POx with amino functionalities (from monomers 2 and 3) were able to 

react with different isocyanate compounds such as a fluorescence dye (tetramethylrhodamine 

isothiocyanate), or bifunctional isothiocyanates in order to form hydrogels.83 Hydrogels were also 

formed from POx with pendant amino functionalities (monomer 2) in reaction with 

epichlorohydrin.84,89 

On the other hand, alkene and alkyne functionalities are increasingly being used because they are 

compatible with the living cationic polymerization, consequently no protecting group is needed, and 

because of the possible coupling reactions by further “click chemistry”.90,91 For example, 2-(pent-4-
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ynyl)-2-oxazoline (monomer 13) could be copolymerized with MeOx and EtOx92 and pendant alkyne 

moieties could quantitatively yield triazoles by copper-catalyzed coupling. A monomer bearing an 

azide functionality has also been reported (monomer 14). 93 

The synthesis of a 2-oxazoline monomer bearing an alkyl chain with alkene functions from renewable 

raw materials, such as unsaturated fatty acids present in vegetable oils, was reported (monomer 

11).94,95 Thiol-ene chemistry could be performed on related POx using different mercaptans (RSH), 

resulting in the binding of protected glucose, fluorinated compounds,96 dodecane chain95 or 2-

mercaptoethanol (monomer 10 and 11).94 Diehl et al. synthesized thermoresponsive poly(2-

oxazoline)s with a wide range of tunable low critical solution temperature (LCST, i.e. the critical 

temperature below which the components of a mixture are  miscible for all compositions97) by 

“clicking” different α-functionalized thiols to a statistical poly[2-(isopropyl/3-butenyl)-2-oxazoline] 

copolymer.98 POx with aryl, ester, amine, and carboxylic acid side chains were synthesized using the 

thiol-ene coupling between a thiol and the pendant alkene of 2-isopropenyl-2-oxazoline before the 

polymerization (monomers 6 and 7).81 Apart from the classic azide-alkyne and thiol-ene coupling 

reactions, a reaction between a POx with an alkene side group with different functional acrylates, by 

cross-metathesis, was also reported.99 
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Table 2 R side groups of 2-R-2-oxazolines allowing for functionalization of POx pendant chains 

  Monomer side functionality Post-polymerization 
reaction Ref. 

Monomer 
with 

protected 
functionalities 

 

 
P = protective 
group 
R = reactive 
functionality 

1 

 

With amino-oxy 
compound 

73 

2 

 

With epichlorhydrin  84,89 

3 

 

With (di)isocyanates 83 

4 

 

With acrylamide or 
maleimide 

85 

5 

 

n.i. 79 

6 

 

n.i. 81 

7 

 

n.i. 81 

8 

 

n.i. 79 

With a secondary 
amine 

82 

9 

 

With a secondary 
amine 

82 

n.i.: not investigated 
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  Monomer side functionality Post-polymerization 
reaction Ref. 

Monomer 
with 

unprotected 
functionalities 

 

 

10  Thiol-ene 
16,96,98,

100–104 

11  

Epoxidation with 
3-

chloroperoxybenzoic 
acid  

105,106 

Thiol-ene  
38,39,94,

95,107,10

8  
Cross-metathesis 
with functional 

acrylates 
99 

12 
 

Cross-linking under 
UV-radiation 

2,106,109

–111 

13  Azide-alkyne  92 

14  Azide-alkyne  93 

 

In comparison to PEG, the ability to introduce various functionalities along the polymer backbone 

that could be involved in post-polymerization reactions to covalently attach, for instance a drug, 

represents a major advantage of POx.30 

III.2.2.  FUNCTIONALIZATION OF THE α-CHAIN END  

As illustrated in section II.1, a wide variety of initiators can be used to polymerize 2-oxazolines via 

either a cationic or a covalent mechanism. More recently, an array of initiators with reactive 

functionalities has been reported. Major examples are given in Table 3. As with functionalized 

monomers, if the initiator functionality is suspected to interfere with the polymerization process, it 

has to be protected (e.g. alcohol, amine or aldehyde functionalities). In addition, most of the designed 

initiators are oxygenated bases, with p-toluene sulfonate (OTs) or trifluoromethanesulfonate (OTf) 

functionalities operating in a true CROP process. 
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Table 3 Initiators with reactive functionalities for the CROP of 2-oxazolines 

  Initiator Deprotected 
function 

Post-
polymerization 

reaction 
Ref. 

Initiator with 
protected 

functionalities 

 
 
P = protective group 
X = OTs, OTf, Br, Cl 
or I. 

1 
 

Diol Acylation 112 

2 

 

Amine 
Reductive 
amination 

113 

3 

 

Diol 

Reaction with 
isocyanate and 

carbonate 
compounds 

114 

4 

 

Diol Acylation 112 

5 

 

Aldehyde - 115 

6 

 

Alcohol - 116 

Initiator with 
unprotected 

functionalities 
 

 
 

7 
 

- 
Polymerization 

of the vinyl 
unit 

117 

8 
 

- Azide-alkyne 
reaction 

118 

9 
 

- Azide-alkyne 
reaction 

118–

124 

10 

 

- - 125 

11 

 

- Diels-Alder 
reaction 

107 
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Most of the initiators presented in Table 3 were involved in post-polymerization reactions leading to 

more complex polymer structures. For instance, the azide-alkyne click chemistry reaction involving 

POx initiated by propargyl tosylate (initiator 9, Table 3) was extensively used. Propargyl tosylate 

initiated the CROP of MeOx and the polymer chain was further coupled to polydimethylsiloxane 

(PDMS) to produce an amphiphilic copolymer.121 Initiator 9 was also used to polymerize iPrOx, and 

subsequent coupling on fluorenylmethoxycarbonyl-tyrosine phosphate (Fmoc-pY) allowed forming a 

phosphatase/temperature responsive diblock copolymer.122 Last, Fijten et al. polymerized different 2-

oxazolines (MeOx, EtOx, PhOx, NonOx) with propargyl tosylate and clicked the acetylene-

functionalized PEtOx to heptakis-azido-β-dextrin giving rise to the formation of a star polymer.126  

Some initiators were not designed purposely for post-polymerization modification, but still illustrate 

the versatility of POx, as shown in Figure 4.  

 

Figure 4 (Macro-)initiators for the polymerization of 2-oxazolines 

Macro-initiators like fully brominated 1,2-polybutadiene,127 polyethylene glycol-tosylate,64 lipo-

triflates,128,129 lipo-tosylates,129,130 lipo-iodine131,132 or tris(triflate)benzene133 were used to initiate the 

polymerization of 2-oxazolines, resulting in graft, diblock and star copolymers, respectively. The 

capability of a range of protected glucose-, galactose-, and fructose-based tosylates and triflates to 
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initiate the CROP of EtOx was also investigated, leading to sugar-containing polymers.134,135 Last, 

EtOx polymerization was initiated by a fluorescent tosylate derivative.13 

Besides triflate and tosylate derivatives, EtOx was polymerized using acetyl bromide, acetyl chloride 

and acetyl iodide as initiator.136 This study broadened the range of possible acid halide initiators, 

which can be easily obtained from different commercially available carboxylic acid compounds. 

III.2.3. FUNCTIONALIZATION OF THE ω-CHAIN END  

Termination at the completion of CROP of 2-oxazolines proceeds via the addition of a compound 

with a higher nucleophilic power than the monomer. The most commonly used nucleophile is simply 

water, leading to a polymer with an alcohol terminal functionality. As a consequence, variation of the 

polymer chain end can either be achieved by post-polymerization modification of the terminal –OH 

group, or by direct attack of nucleophiles bearing a functionality, on the cationic polyoxazolinium 

species. In Table 4, an overview of the termination agents with protected or unprotected 

functionalities is provided.  

Table 4 Termination agents with reactive functionalities for the polymerization of 2-oxazolines 

  Termination agent 
Possible available 

function after 
deprotection 

Post-
polymerization 

reaction 
Ref. 

Termination agent 
with protected 

functionality 

 
P = protective 
group 
T = termination 
group 

1 

 

Amine 

- 116 

With carboxylic 
acid 

18 

With 
methacrylamide 
choroformiate 

137 

With carboxylic 
acid compound 

18 

2 

 

Silanol Intermolecular 
condensation 

138 

3 
 

Carboxylic acid 
With amine 
compounds 

139 
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  Termination agent 

Possible available 
function 

Post-
polymerization 

reaction 
Ref. 

Termination agent 
with unprotected 

functionalities 
 

 

4 
H2O/ 

KOH aqueous solution/ 
Na2CO3 aqueous solution 

Alcohol 
- 116 

With phtalimide 
compound 

115 

5 
 

Amine With anhydride 
compound 

140 

6 

 

Amine 

Cross-linking 
with dibromo, 
dialdehyde or 
diisocyanate 
compound 

141 

7 
 

Alkene Polymerization 
of the vinyl unit 

117 

8 

 

Acrylate/ 
methacrylate - 142 

9 
 

Acrylate - 143 

 
10 

 
Methacrylate 

- 143 
Polymerization 

of the 
methacrylate 

units by ATRP 

21,38,134,

144 

11 
 

Methacrylate 

Hydrogel 
formation with 

a 
trimethacrylate 

cross-linker 

145 

12 
 

Alkyne Azide-alkyne 146 

13 
 

Carboxylic acid - 143 

14 
 

Carboxylic acid - 143 

15 

 

Carboxylic acid - 147 

16  Azide Azide-alkyne 107,148 

17 
 

Cyclopentadienyl 

Diels-Alder 
reaction with N-

substituted 
maleimides 

149 

18 

 

Alkoxyamine 
Radical 

polymerization 
of styrene 

150 
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Another common termination agent is N-tert-butyloxycarbonylpiperazine (N-BOC-piperazine) 

(termination agent 1, Table 4), that leads to an amine functionality after treatment with TFA.18 The 

as-formed amine end-function was coupled with a common chelator (N,N’,N’’,N’’’–

tetraazacylododecane-1,4,7,10-tetra-acetic acid (DOTA)), leading to a radio-labelled polymer after 

chelation of 111In, and used for in vivo imaging studies.18 Alternatively, methacrylamide chloroformate 

was employed for post chemical modification and the methacrylamide function was further 

polymerized by free-radical polymerization, leading to brush-like polymers.137 Clickable functions 

were also introduced by quenching the polymerization with sodium azide (termination agent 16),148 

sodium cylcopentadienide (termination agent 17)149 or hexynoic acid (termination agent 12).146  

Some of these termination agents directly imparted a specific property to the POx. A dye, such as 

fluorescein, could for instance terminate the polymerization, leading to a fluorescent polymer. 

Quaternary ammonium groups, like N, N-dimethyldodecylamine (DDA), known as a biocide 

functional group, led to polymer with antimicrobial properties (Figure 5).151–153 

 

Figure 5 Termination agents used to quench the polymerization of 2-oxazolines 

In summary, a plethora of chemical functionalities can be introduced into the POx structure, either 

within the polymer backbone or at both chain ends, giving rise to a versatile POx toolbox, which may 

be used to achieve polymers with various architectures and properties. 

III.3. POLY(2-OXAZOLINE)S HYDROGELS 

A hydrogel is one specific architecture that could be obtained thanks to the introduction of specific 

functionalities into the POx chemical structure. A hydrogel is defined as a cross-linked network of 

hydrophilic polymer chains.154 To be able to form this network, the polymer chains need to bear 

reactive functionalities. Different routes can be used to produce POx hydrogels, depending on the 
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way functionalities are introduced on the POx chains. All these strategies have been recently 

reviewed.155 Hydrogels could be produced by one-, two- or three-step reactions. The most 

straightforward way to synthesize a hydrogel is to directly copolymerize a 2-alkyl-2-oxazoline 

monomer with a bis-oxazoline comonomer serving as a cross-linking coupling agent. The hydrogel 

will be synthesized in situ as the polymerization proceeds. As presented in the last section, 

functionalities can also be introduced on the monomer or polymer chain end, in which case 

hydrogels will be obtained by post-polymerization reaction with a specific cross-linker. Last, 

functionalities can be introduced on the polymer chain by post polymerization functionalization, 

followed by a cross-linking reaction. These different strategies are illustrated in Table 5. 

Table 5 Different strategies to synthesize POx hydrogels 

One-step hydrogel formation Two-step hydrogel formation Three-step hydrogel 
formation 

 

 
 

 

 

In this PhD work, we will provide a novel synthetic strategy to POx hydrogels and nanogels (chapter 

2). 

III.3.1. HYDROGELS PREPARED BY POLYMERIZATION WITH A BIS-OXAZOLINE MONOMER 

The first hydrogel prepared by copolymerization with a bis-oxazoline monomer was reported by 

Chujo et al. in 1989. They performed the ter-polymerization of MeOx with 2-alkyl-2-oxazoline (alkyl 

= n-butyl, n-octyl or n-dodecyl) and 2,2’-tetramethylenebis(2-oxazoline) (Figure 6),156,157 where they 

combined, respectively, hydrophilic, lipophilic and bifunctional monomers. By varying the monomer 

ratio, they thus tuned the hydrophilicity and the swelling properties of the resulting hydrogels.  
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Figure 6 Hydrogel preparation by copolymerization of 2-alkyl-2-oxazoline and bis-oxazoline156 

The respective monomer reactivities were determined and it appeared that the bis-oxazoline 

monomer had a higher reactivity than MeOx and than the other 2-alkyl-2-oxazolines. As a 

consequence, the bis-oxazoline was incorporated more rapidly into the gel and the chain length 

between two cross-linking points could be varied.144 

More recently, this technique was used to synthesize a library of hydrogels from EtOx, PhOx and 

phenylene-1,3-bis-2-oxazoline monomers.158 Again, the ratio of hydrophilic, lipophilic and bifunctional 

monomers was varied allowing for the comparison of the swelling degree of the gels. The authors 

showed that swelling in water was enhanced for lower degrees of cross-linking, and when a lower 

amount of PhOx was used. Moreover, dye molecules could be trapped into the hydrogels and 

released in a controlled way by solvent exchange (diffusion-mediated release), or by pH change, 

leading to slow degradation-mediated release. As the solvent exchange did not degrade the 

hydrogels, they were well-suited for repeated release/loading cycles. 

III.3.2. HYDROGELS PREPARED BY DIRECT POST-POLYMERIZATION REACTION 

Another way to prepare hydrogels is by a post-polymerization reaction between a POx bearing 

functionalities and a cross-linker. Functionalities could be introduced on the polymer backbone or at 

both chain ends, as presented in Section III.2.  

If a polymer with side chains functionalities is used, a reaction with a difunctional cross-linker leads to 

hydrogel formation. For example, a hydrogel was prepared from a statistical copolymer with MeOx 

and 2-(dec-9-enyl)-2-oxazoline (monomer 11, Table 2) followed by thiol-ene coupling with different 

dithiol molecules.39,108 2-3’-Butenyl-2-oxazoline (monomer 10) was also used as one of the building 

block of a copolymer, and post-polymerization by thio-ene coupling was conducted with a tetrathiol 

under UV irradiation.104 Copolymers with amine side chain functionalities (monomer 2) also formed 

hydrogels when reacting with epichlorohydrin.84,89 Such hydrogels had the ability to absorb and 

release DNA thanks to electrostatic interactions. Hoogenboom also polymerized an unsaturated 

soybean fatty acid-based 2-oxazoline monomer (SoyOx) (monomer 12) using microwave irradiation.2 
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The unsaturated fatty acid side chains of the resulting polymer were then cross-linked under UV 

irradiation, without the need of any cross-linker, leading to hydrogel formation. 

Functionalities can also be introduced at the polymer chain-ends by using functionalized initiators and 

termination agents already presented (respectively in Table 3 and 4). Most of the time, a difunctional 

initiator is used and functionalities are only introduced at the termination step. By this way, hydrogels 

were prepared from telechelic PMeOx bearing trimethoxy-silyl end-functionalities (termination agent 

2, Table 4), followed by deprotection of silanol groups and further intermolecular condensation 

reaction.138 The swelling degree was found directly dependent on the [M]/[I] ratio. Telechelic PMeOx 

was also functionalized at both chain ends with hydroxy groups (termination agent 4). Reaction with 

pluri-isocyanates led to hydrogels.159  

The synthesis of block copolymers made from MeOx and BuOx was terminated by the addition of 

N,N-bis(2-aminoethyl)ethylendiamine (termination agent 6), and hydrogel formation occurred by 

reaction with 1,4-dibromo-2-butene.141 Last, dimethacrylate-functionalized PEtOx (termination agent 

11) was reacted with a 3-arm poly(D,L-lactide) trimethacrylate under UV irradiation.145 The hydrogel 

swelling/deswelling behavior was tuned by varying both the temperature and pH. When the 

temperature was increased, the PEtOx chains became dehydrated, as the hydrogen-bonds previously 

formed with water were disrupted, hence the gel shrunk. The pH effect was linked to the presence 

of amide groups on the polymer backbone. The amide groups were ionized at low pH leading to 

swelling of the gel. As PEtOx is hydrophilic, whereas poly(D,L-lactide) is hydrophobic, the 

hydrophilicity of the gel could be manipulated, by varying the ratio of each macro-monomer. 

Hydrogels were also prepared from a star-shaped PMeOx.133 A trifunctional initiator was used (i.e. 

1,3,5-tris(iodomethyl)benzene or 1,3,5-tris(p-toluenesulfonyloxymethyl)benzene, Figure 4) leading to 

a 3-arm POx with amine end functionalities. The hydrogel was then formed in the presence of a 

difunctional isocyanate.  

Vinyl-functionalized PMeOx was also synthesized, but the functionalities were introduced thanks to 

both the initiator and termination agent to produce a bis-macromonomer (initiator 7, Table 3 and 

termination agent 7, Table 4).117 The hydrogel was formed either by free radical polymerization of 

the bis-macromonomer or by copolymerization with N-vinyl-2-pyrrolidone (NVP). The density of the 

network and swelling characteristics were controlled by the degree of polymerization of the PMeOx 

and by the molar ratio between the bis-macromonomer and NVP as well.  
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III.3.3. HYDROGELS PREPARED BY 2 STEP POST-POLYMERIZATION REACTION 

The third synthetic method used to prepare POx hydrogels involves a three-step reaction. First, 

MeOx or EtOx is polymerized, and second, the polymer is partially hydrolyzed to introduce amine 

functionalities on the polymer backbone leading to a statistical copolymer. Last, the hydrogels is 

obtained by reaction of a cross-linker with amine functionalities.  

In biomedical applications, POx were first used as a source for linear PEI obtained after hydrolysis 

and which was further used to form polyplexes with DNA and used as gene-vector (see further and 

see also Scheme 10).24,160 The hydrolysis rate of POx could be easily controlled, leading to randomly 

distributed amine functions along the POx chain. As mentioned in section 1, when the polymer 

backbone is hydrolyzed up to 10%, no cytotoxicity is observed.25 The hydrolysis reaction was studied 

for different monomers (mainly MeOx and EtOx), under different conditions (base, acid or in a 

water-ethanol mixture); more information can be found in the literature.70,161–168  

Hydrogels were prepared by reaction of the amine functions of partially hydrolyzed POx with 

different cross-linkers. Most of this work was carried out in the 1990s, by the group of Saegusa, on 

the basis of a partially hydrolyzed PMeOx, as illustrated in Scheme 10.  
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Scheme 10 Strategies adopted by Saegusa’s research group to form hydrogels with partially-hydrolyzed 

poly(2-methyl-2-oxazoline) 
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A hydrogel was produced under mild conditions, at room temperature, using hexamethylene 

diisocyanate in the presence of 1,8-diazabicycloundec-7-ene (DBU) as an organic catalyst in DMF 

(Scheme 10).169 With a diisocyanate cross-linker bearing a disulfide bridge, a hydrogel that was 

cleavable in a reductive environment was synthesized (Scheme 10).170 Photo-responsive hydrogels 

were also prepared when the amine functionalities were reacted with coumarin moieties ((7-

coumaryloxy)acetic acid). The hydrogel was formed by photo-dimerization of the coumarin moieties, 

by exposing the polymer to mercury lamp irradiation at a wavelength greater than 300 nm (Scheme 

10).171 The photosensitive gel obtained could be cleaved by exposing it again to irradiation at a 

wavelength lower than 300 nm; the cyclobutane ring was thus cleaved and the coumarin moieties 

were regenerated, thereby reversing the process. 

Partially hydrolyzed PMeOx were also modified with (9-anthracenyl)methyl hydrogen 3,3'-dithio- 

dipropanoate, in the presence of dicyclohexylcarbodiimide as a condensing agent (Scheme 10),172 

leading to a modified PMeOx bearing disulfide and anthracene functions. As in the previous example 

with coumarin moieties, a hydrogel was formed by the dimerization of anthracene moieties, when 

the modified PMeOx was irradiated with a mercury lamp at a wavelength greater than 300 nm. This 

system proved to be photo- and redox-sensitive by means of reversible conversion between 

disulfides and thiols and the photo-dimerization of anthracene moieties. 

Temperature sensitive-hydrogels were also prepared using a maleimide modified PMeOx that reacted 

with an antagonistic furan-modified PMeOx, via a Diels-Alder reaction (Scheme 11).173  

 
Scheme 11 Schematic of the thermosensitive hydrogel formed by Diels-Alder reaction173 
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The gelification process was reversible: if the hydrogel was heated at 80 °C for 2h, the retro Diels-

alder reaction occurred thereby regenerating the starting compounds. Without heating, the hydrogel 

only swelled in water. 

Some of the hydrogels presented in this section are potential candidates for drug delivery 

applications, but only one paper reported on the evaluation of a POx hydrogel for such an 

application.174 An ABA triblock copolymer, prepared from PEtOx-b-PCL-b-PEtOx, was used to 

encapsulate Bevazumab, an antibody used to cure intra-ocular diseases, known to be efficient but 

with a short half-life. The triblock copolymer was subjected to a sol-gel transition when the 

temperature was increased. At room temperature and in a balanced salt solution (standard saline for 

intraocular use), it existed as a “sol”, but when temperature was increased to the physiological 

temperature, it turned into a “gel”. When the temperature was further increased, PEtOx segments 

became dehydrated and formed micellar aggregates. The Bevazumab release in vitro was slow, with no 

burst release, and lasted for up to 20 days. The release was achieved first by diffusion and when the 

equilibrium concentration was reached, the release was controlled by gel degradation. In vitro 

cytotoxicity studies were conducted by co-culturing hydrogels with cells at 37 °C. After 24h, more 

than 90 % of cell viability was observed. The in vivo cytotoxicity study performed on rabbit eyes 

showed that the hydrogel and its degradation products were not toxic to neuroretinal tissues for at 

least two months. This hydrogel thus exhibited a good in vitro and in vivo biocompatibility for 

neuronal tissues with extended drug release. 

To summarize, numerous synthetic strategies leading to POx hydrogels have been described in the 

literature. In situ cross-linking can be conducted by the addition of bisfunctional 2-oxazolines to the 

polymerization mixture, but hydrogels can also be synthesized by post-polymerization reactions. 

Cross-linking reaction can alternatively involve functionalization of ethylene imine repeating units 

obtained by partial hydrolysis, or by the direct introduction of reactive handles to the POx backbone. 

III.4. STRUCTURE-PROPERTY RELATIONSHIPS 

By taking advantage of the POx versatility, i.e. the living ROP combined with the potential for 

functionalization at both chain ends and/or in the polymer side chains, not only POx chemistry allows 

designing polymers with different architectures, but also tuning their physico-chemical properties 

such as thermal transitions, mechanical properties, solubility and surface energy. All these properties 

are obviously linked together. For example, mechanical and thermal properties depend directly on 

the presence of crystalline phases. Herein, only thermal transitions correlated to the polymer 

behavior in solution will be discussed. This is because this aspect has been investigated in the context 
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of this PhD work, from specific POx-based copolymers (see Chapter 3). Additional information on 

the mechanical properties and surface energy of POx can be found elsewhere. 2,175,176 

The nature of the substituent (R) on the polymer side chain determines its hydrophilicity: PMeOx is 

water-soluble in the entire temperature range of liquid water under atmospheric pressure, PEtOx 

and poly(2-n-propyl-2-oxazoline) (PnPOx) exhibit a LCST behavior in aqueous solution, whereas 

longer substituents result in hydrophobic polymers (Figure 7).177 PMeOx and PEtOx are also known 

to be hygroscopic and the effect of the water uptake has an influence on their mechanical 

properties.178,179 Due to the current trend in the use of renewable resources, many of the 

hydrophobic POx reported in the literature are based on fatty acids as mentioned in section III.2.1.106 

The polymer behavior in solution is greatly affected by the solvent used, and in water-ethanol solvent 

mixtures, some POx also present an upper critical solution temperature (UCST).180–182 

 

Figure 7 Structure-properties relationship for poly(2-oxazoline)s 

The LCST values given in Figure 7 varied with the polymer molecular weight,183 polymer 

concentration and the presence of salt (salting-in or salting-out effect)184 or surfactant in the 

solution.177 The polymer chain-end functionality also influences the LCST: the LCST increases with 

the hydrophilicity of the chain-end.185  

By post-polymerization modification, a poly(benzyl ether) dendrimer with carboxylic acid functions at 

the periphery was coupled to PiPrOx by one of its chain-end, leading to a hybrid copolymer with a 

pH-tunable LCST.123  

Last, when the polymer contains branching in its side chains, the branching position has an important 

influence on the glass transition temperature (Tg)186 and on the LCST as well.  
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Numerous studies on the modulation of POx LCST and Tg by synthesizing block,67,175,187 gradient,61 

random175 or brush/graft188–190 copolymers have been also reported. Tuning the LCST by post-

polymerization modification is also an option.98,191  

The state of the polymer in bulk will also change drastically, from amorphous to semi-crystalline, 

depending on the length of the alkyl side chain. Polymers with short side chains such as PMeOx, 

PEtOx, and PnPOx are amorphous, whereas POx with 4 and more carbons on the side chains show 

a semi-crystalline behavior.176,192,193 Some POx have the ability to crystallize also when annealed in 

dilute solution. For example poly(2-isobutyl-2-oxazoline) and PNonOx form crystalline self-

assembled  structures,  in a water-ethanol mixture, below their UCST.194 PEtOx forms crystalline 

fiber visible with the naked eyes within a few weeks, when kept above its LCST in water.195 The 

crystallization of comb-like POx copolymers144 or chiral POx196  have also been reported.  

A closer look should be given to PnPrOx and its two different isomers, PiPrOx and poly(2-

cyclopropyl-2-oxazoline) (PcPrOx) (Figure 8).197 It is interesting to highlight the key role played by 

the side chain architecture on the polymer properties: the three polymers have a LCST, but PnPrOx 

and PcpPrOx are amorphous, with a Tg of 40 and 80 °C, respectively, whereas PiPrOx is semi-

crystalline. 

 

Figure 8 Structure-properties relationship for poly(2-propyl-2-oxazoline)s isomers 

PiPrOx has been more extensively studied than its other two isomers because of its remarkable 

properties. On one hand, it is a structural isomer of poly(N-isopropylacrylamide) (PNIPAAm) and 

poly(L-leucine)198 and like PNIPAAm, it has an LCST close to body temperature making it a 

particularly interesting candidate for biomedical applications.199,200 The phase transition for PiPrOx is 

reported to be sharper, with almost no hysteresis compared to PNIPAAm, due to the weaker H-

bonding capacity of PiPrOx.201 

But on the other hand, when PiPrOx is annealed above its LCST (at 65 °C) for 3 hours or more,  it 

forms crystalline structures in an irreversible manner.1,177,202,203 The crystal structure evolves with the 
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annealing time, from a network-like structure to a micron-size assembly composed of fibers mesh. 

The crystal structure has been identified by X-Ray Diffraction (XRD),203 and crystallization  is driven 

by hydrophobic and dipolar interactions. Thanks to vibrational spectroscopy analysis and molecular 

orbital calculation, Winnik et al. were able to associate the crystallization of PiPrOx to a change in 

the conformation of the polymer chains, from trans and gauche to all trans (Figure 9).204  

 

Figure 9 Schematic representation of the changes in the conformation of PiPrOx in water as a function of 

temperature. Reprinted from ref. 204 

At a specific temperature, the PiPrOx solution undergoes first liquid/liquid phase separation and 

PiPrOx then crystallizes in the polymer-rich phase by changing its conformation.204 In contrast to 

POx with long alkyl side chains, PiPrOx crystallinity appears in the main chain and not in the side 

chains. Last, solvation appears to be especially important in lowering the kinetic barriers in the 

crystallization process, similarly to the self-organization of polypeptides and proteins.203 

PiPrOx crystallization was further exploited in copolymer systems. A statistical copolymer made of 

iPrOx and 2-(3-butenyl)-2-oxazoline units was also synthesized and found to self-assemble and 

crystallize above its LCST into spherical micron-size structures, which was further used for 

carbohydrate protein recognition.205 The self-assembly and crystallization of a PiPrOx-grafted pullulan 

copolymer were also reported.206 Micron-sized ring-like structures with short fibrils emanating from 

the ring circumference or “sea urchin”–like morphology were obtained, but other morphologies 

were also observed depending on the experimental conditions (addition of salts, with/without 

stirring).  

In chapter 4, we will describe how to take advantage of this specific property of PiPrOx to crystallize 

in water, by arranging the polymer into a block copolymer architecture. 
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These systematic studies on libraries of POx (co)polymers revealed several structure–property 

relationships for the thermal properties as well as solubility and crystallization. This allows moving 

forward toward POx engineering in order to meet defined properties.  

IV. POLY(2-OXAZOLINE)S AS POLYMER THERAPEUTICS 

POx is an interesting platform for biomaterials development and especially for polymer therapeutics 

because it meets some specific needs, such as biocompatibility, stealth behavior, but also in terms of 

tunable thermo-responsiveness and variation of architecture and functionalities. The use of POx as 

polymer therapeutics has been recently reviewed.207,208  

Except for one paper reporting on the use of a PEtOx matrix as an excipient in the formulation of 

oral tablets,209 POx are most often involved in the design of drug nanocarriers. POx could be 

conjugated to biological molecules, such as proteins or drugs, or be part of self-assembled structures, 

such as micelles, polymer vesicles or polyplexes. Serina Therapeutics, a pharmaceutical company 

based in Huntsville, Alabama, is currently advancing novel therapeutics for Parkinson's disease, 

cancer, inflammation, pain and metabolic disorders based on POx nanocarriers.210 

IV.1. OVERVIEW OF THE DRUG DELIVERY PROBLEMATIC 

One of the major challenges that needs to be addressed in current nanomedicine research is to 

deliver drugs at a controlled place and time in order to improve the drug efficacy, while decreasing 

the side effects. In oncology for example, current chemotherapeutic treatments are administered 

intravenously and their biodistribution and pharmacokinetics are not well-controlled.211 The majority 

of anti-cancer drugs being hydrophobic, their circulation in body fluids is challenging and requires a 

large volume for distribution. In addition, when drugs are hydrophilic, it is difficult for them to cross 

membrane barriers and to reach their final target site. Because the size of drug molecules is small (< 

10 nm), they are rapidly cleared from the bloodstream by renal filtration before being able to reach 

the tumor site. As a consequence, drug accumulation at the tumor site is difficult to achieve. 

Moreover, due to their small size and molecular weight, drug molecules penetrate not only to the 

diseased tissues but also to healthy ones, thereby damaging these tissues and resulting in a significant 

number of side effects.  

By using polymeric nanostructures as drug carriers, a balance between efficacy and toxicity can be 

achieved, opening a wide range of new opportunities for cancer treatment. The use of polymer 
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nanotechnologies holds enormous promise for various reasons: they can improve the solubility of 

hydrophobic drugs, and drug cell penetration. Because of their larger size, nanocarriers would not be 

cleared as rapidly as free drugs from the blood stream. The drug delivery can also be targeted to 

specific tissues or even cells, improving drug efficacy. It can allow the delivery of drug cocktails and 

also of therapeutic and diagnostic agents, leading to a “theranostic” platform.212–214 For example, 

imaging agents can be delivered at the same time as a drug, making possible the visualization of the 

drug delivery site. Lastly, the release can be triggered in a controlled manner.215,216 

Nanocarriers can be made from inorganic or organic compounds. Inorganic nanocarriers are out of 

the scope of this literature review, but some additional information can be found elsewhere.217 

Organic structures made from polymeric systems218 can be prepared by self-assembly, leading to the 

formation of polymer vesicles (polymersomes) or micelles.219 They can alternatively be highly 

branched and shape-persistent as in the case of dendrimers220 or chemically cross-linked as in the 

case of nanogels.221 For all these structures, the polymers used should fulfill some specific 

requirements: they should be biocompatible and approved by FDA for use in biomedical applications. 

They may also be biodegradable and readily cleared by the body.  

All these nanocarriers end up being made from the main polymers presented in Table 6, depending 

on the properties needed.218,222 

Table 6 List of polymers commonly used in biomedical applications. Adapted from ref. 222 

Polymers Acronyms Properties 

Poly(ethylene glycol) PEG Biocompatible, hydrophilic, stealth, FDA approved 

Poly(D,L-lactide-co-glycolide) PLGA Biodegradable, hydrophobic, FDA approved 

Poly(acrylic acid) PAA Hydrophilic, pH-responsive  

Poly(lactic acid) PLA Biodegradable, hydrophobic 

Poly(caprolactone) PCL Biodegradable, hydrophobic, FDA approved 

Poly(N-isopropylacrylamide) PNIPAAm Thermo-responsive 

Poly(ethyleneimine) PEI Cationic, pH-responsive 

Poly(amino acids) - Biodegradable, anionic 

Polysaccharides  
cellulose, chitin, pullulan 

- Hydrophilic, natural polymers 

   

Research is not only conducted on the cargo itself, but also on improving the targeting of the drug 

delivery system (DDS) which could be passive or active. All currently approved nanotechnology 

platforms in cancer treatment deliver cancer drugs to the tumor site via passive targeting that relies 

on the properties of the delivery system and the disease pathology, in order to selectively 
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accumulate the drug at the site of interest, thereby avoiding non-specific distribution.223 In the case of 

cancer, tumor cells are growing faster than healthy tissues resulting in the development of a 

“permeable” vasculature that allows nanomaterials of up to several hundred nanometers to 

penetrate in the tumor site. In addition, tumor tissues are also characterized by poor lymphatic 

drainage, thus once nanocarriers reach the tumor site, they will not be rapidly cleared. For a 

treatment to be efficient, drug delivery carriers should be able to circulate in the body for an 

extended duration, hence they should possess stealth behavior to exploit the enhanced permeability 

and retention effect (EPR) that enables the accumulation of drug carriers at the tumor site.  One has 

to be aware that this EPR effect is not specific to cancer. It is also present for other diseases, such as 

chronic inflammation and infections.223  

So far, improvement of the circulation time was made possible by coating PEG on the surface of 

liposomes that prevents non-specific binding and avoids recognition by the phagocytic system, 

resulting in clearance from the body. As presented in section I, PEtOx and PMeOx are presented as 

alternatives to PEG for such applications. However, the accumulation level at the tumor site also 

depends on the inherent characteristics of the DDS, such as its size, hydrophilicity, charge, etc.222,224 

Nanotechnology platforms can also target specific tissues or cells by bearing ligands on their surface, 

such as antibodies, peptides or proteins, where the ligands can bind to receptors on the targeted 

site. However, the DDS must first reach the tumor cells, before being able to bind to them. Active 

targeting would not improve the accumulation at the tumor site due to the EPR effect. However, the 

drug carrier will definitely be more efficiently internalized by tumor cells as cell recognition and 

uptake by targeted cells will be improved.224,225 In addition, one should also take into account that the 

introduction of targeting moieties on the surface of nanocarriers will reduce their stealth behavior by 

increasing their immunogenicity and protein adsorption.211 Up to recently, only a few active targeting 

systems were at the clinical trial stage, and none has been approved for clinical use yet.211 

In order to produce a successful nanoparticle-based DDS, once the nanoparticles have reached the 

targeted site, the drug should be released. The stability of the nanocarriers is a key factor, i.e. they 

have to be stable under physiological conditions while the drug must be released at the targeted site. 

The release can be achieved by diffusion through the nanoparticles wall or by erosion of nanoparticle 

matrices. Physiologically relevant stimuli can be used to trigger the release of the drug, and the 

factors chosen should vary between normal tissues and some pathological sites.226–228 Temperature is 

one of the most commonly used triggers since the temperature increases by 1-2 degrees at the 

inflammatory tissue site.229 As a consequence, polymers that exhibit temperature-dependent phase 

transitions around the physiological temperature, such as in the range 10–42 °C, are the ones used 

to construct drug carriers.  
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pH variations are also widely used as a trigger, especially in the case of cancer, because tumor tissues 

are known to possess a lower pH than healthy tissues.230,231 The release could be mediated by ligand 

exchange, by an enzymatic reaction, or even by a chemical reduction reaction,232–235 as certain 

biological molecules are produced in excess at a target site in comparison to healthy tissues. For 

example, glutathione (GSH) is the most abundant reducing agent in the body. In the cell, its 

concentration can reach 10 mM, whereas in the extracellular environment it only approaches 0.002 

mM. This significant variation in concentration has been used to trigger intracellular delivery.236 

Moreover, tumor tissues are known to be highly reductive compared to healthy tissues, with at least 

four-fold higher concentration of GSH in tumor tissues than in normal tissues, which makes a trigger 

release based on redox conditions even more relevant in the case of cancer treatments.235 The most 

popular method to obtain this reductive sensitivity is to introduce disulfide linkages in the 

nanocarrier. This can be achieved in the polymer main chain, side chain, or in the cross-linker. This 

disulfide bond is known to be stable under normal physiological conditions, but is cleaved under 

reductive conditions through thiol–disulfide exchange reactions.  

Other “smart chemistries” can be used to control the drug release.237,238 External stimuli, such as 

light or application of heat for instance, can also be used to trigger the release. 

Nowadays, significant activity is being focused on the development of “smarter” and multifunctional 

DDS, to achieve higher efficacy with less toxicity and better targeting. By manipulating the surface 

chemistry of the nanocarriers, or by attaching specific ligands to their surface, nanocarriers could 

become responsive to environmental conditions and could also be actively targeted.215,239,240 One has 

to be aware that despite the increasing number of papers published on DDS, less than 10 

nanocarriers have been so far approved by the FDA, to deliver drugs to solid tumors, proving how 

challenging the development of a DDS is.241 

IV.2. POLY(2-OXAZOLINE) CONJUGATION TO BIOLOGICAL MOLECULES 

Polymers can be conjugated to drugs, peptides or proteins. Because the biological molecule is 

covalently attached to the polymer, it undergoes some modifications. The main challenge is to 

preserve the biological activity of the active (bio)molecule while its stability, pharmacokinetics and 

solubility are improved. 

Drug-polymer conjugates are the oldest drug delivery nano-systems and have been developed in the 

1950’s.222 The first study on the conjugation of POx to biological molecules was conducted in 1992, 

with PMeOx and PEtOx that were conjugated to a synthetic peptide.242 The peptide used, called 

HCPC[6-17] corresponded to residues 6-17 of the heavy chain of human protein C. Both PMeOx- 
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and PEtOx-peptide adducts retained avidity for the antibody directed against human protein C 

(HPC4-MAb) relatively to the underivatized parent peptide or the human protein C. Furthermore, 

the avidity of the adducts was not appreciably affected by the size of the polymer employed over the 

1 to 10 KDa molecular weight range. This study served as a proof that POx-peptide conjugates could 

be a suitable polymer-drug conjugate, and numerous studies followed on the conjugation of POx to 

different proteins.  

In 2011, Viegas et al. conjugated PEtOx to different enzymes including catalase, urinase and 

ribonuclease, but also to insulin and BSA proteins.14 From the POx-enzyme conjugates, they showed 

that the in vivo enzyme activity was dependent on the extent of their modifications: the less the 

enzyme was modified, the higher was its activity. The glucose-lowering activity of the PEtOx-insulin 

adduct was studied in vivo, by injection into rats (Figure 10-A). The polymer-insulin conjugate was 

more efficient than insulin alone, or even than one of the actual commercial products (Glargine-

insulin conjugate), as it lowered the glucose activity for a longer time period after injection. PEtOx 

was also conjugated to bovine serum albumin (BSA, a serum albumin protein often used as protein 

standard) and injected into rabbits to test their immune response. The results showed that the 

conjugation to PEtOx decreased the immunogenic properties of BSA, which meant that it was no 

longer detected by the body as a “foreign guest”, representing another way to take advantage of the 

POx stealth behavior (Figure 10-B). 

  
Figure 10 A) Effect of the subcutaneous injection of insulin, insulin glargine, and poly(2-ethyl-2-oxazoline)-

insulin on the blood glucose levels in male rats. B) 11 Relative immunogenicity of BSA, PEG-BSA, Poly(2-

ethyl-2oxazoline)-BSA in rabbits treated as measured by anti-BSA antibody levels. Treated on days 1, 14, 28 

and 42. Adapted from ref. 14 

PEtOx was also conjugated to the granulocyte colony stimulating factor (G-CSF). Protein activity was 

retained in vitro and in vivo, while the conjugation improved its stability toward aggregation at 37 °C, 

as compared to the protein alone, and prevented its premature degradation.139 Almost the same 

conclusions were drawn for a POx conjugated to the protein superoxide dismutase 1 (SOD1), 
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involved in some antioxidant therapies: the conjugate was highly stable in serum, while retaining 30 to 

50% of its activity and enhancing the cellular uptake as compared to the native protein or even the 

PEG-SOD1 conjugate.243 

POx copolymers were also used for protein conjugation, and the influence of POx composition and 

architecture on the protein activity was reported. Several homo-, random and block POx 

(co)polymers (MeOx, EtOx or 2-butyl-2-oxazoline (BuOx)) were conjugated with the horseradish 

peroxidase enzyme (HRP).244 Conjugation with P(MeOx-b-BuOx) led to the highest cellular uptake, 

in comparison to other conjugates. The inability of the conjugates produced from PMeOx or the 

copolymers P(EtOx-co-BuOx) in increasing the cellular uptake was attributed to the lack of a 

structurally ordered hydrophobic block, which could assist the hydrophilic enzyme in entering the 

cells. This was in agreement with results reported by Luxenhofer et al.11 The data showed that 

modification by amphiphilic POx block copolymers was a promising strategy to enhance cellular 

delivery and protein drug transport. 

PEtOx was also conjugated to a drug molecule employed for the treatment of acute and chronic 

human leukaemia, namely, cytosine arabinose, 1-(B-D-arabinofuranosyl)cytosine (Ara-C).32 

Accelerated stability tests to hydrolysis of Ara-C conjugates showed stability towards the degrading 

enzyme (cytidine deaminase), while the drug was released under physiological conditions. Finally, 

conjugation induced a decrease in the in vitro drug cytotoxicity (30 times less toxic than the drug 

alone).  

So far, all the systems presented were coupled by one polymer chain end, but an example of 

conjugate formed between a POx polymer with alkene functionalities on the side chain and an 

aptamer (a synthetic single strand nucleotide sequence with molecular recognition properties) has 

been recently reported.102 The aptamer was used against an allergy biomarker and the conjugate did 

not show any loss in activity. 

All these systems established that conjugating POx to a (bio)molecule with biological interest 

represents a viable strategy: it improves the protein/drug stability, while both maintaining its 

biological activity and taking advantage of the POx properties such as biocompatibility and stealth 

behavior. 
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IV.3. SELF-ASSEMBLY OF POLY(2-OXAZOLINE)S AND THEIR USE IN BIOMEDICAL 

APPLICATIONS 

As emphasized in the previous section, polymer-conjugates are one of the many possibilities for 

transporting a drug to a target site while using the stealth properties of POx. Most common DDS are 

self-assemblies issued from amphiphilic graft or block copolymers, and different structures can be 

obtained depending on the polymer characteristics: micelles, polymersomes (polymer vesicles) or 

aggregates. In these self-assembled structures, the drug is usually physically entrapped and not 

covalently linked to the polymer as in drug-polymer conjugates. 

In this section, a brief overview of some of the smart self-assembled systems derived from POx is 

presented; they are also all listed in Table 7 (see further). Some systems are derived from POx 

copolymers, while others are “mixed systems” containing POx as one block and another polymer as 

the other block. It has to be highlighted that these selected examples are at different stages in their 

evaluation as drug delivery systems. 

A statistical copolymer made of 2-decenyl-2-oxazoline (DecOx) (monomer 11, Table 2)  and EtOx 

monomer units formed nanoparticles with a size between 240 and 660 nm by nanoprecipitation in 

water.245  In vitro studies showed that, after 24 h of incubation with mice fibroblast cells, the cellular 

uptake was efficient, with a uniform distribution into the cytosol. No toxic effect was observed 

during incubation. DecOx not only introduces hydrophobicity, but it can also be used as functional 

sites. As a consequence, the next step with this system would be not only to examine the drug 

loading and release profiles but also to functionalize the particles. 

Milonzki et al. synthesized gradient copolymers from MeOx and PhOx and showed that different 

nanotructures (polymersomes, micelles and aggregates) were obtained depending on the monomer 

ratio, polymer chain length and solvent used.246 The encapsulation of a hydrophobic anti-

inflammatory drug, namely, indomethacin, led to an increase of the system size by almost 50% (from 

9 to 16 nm) compared to the unloaded structures. 

Hruby et al. designed thermoresponsive micelles from ABA triblock copolymers, PMeOx-b-(PiPrOx-

co-PButylOx)-b-PMeOx, with hydrophilic A blocks and a central thermoresponsive B block.247 Above 

the LCST of the copolymer, micelles were formed. The copolymer was radio-labelled with different 

iodine isotopes and these systems showed no cytotoxicity in vitro up to a concentration of 1 mg/mL. 

Depending on which isotope was attached, these micellar systems could be used for radio-diagnostic 

(123I or 124I, which are beta-emitting isotopes) or radiotherapy (131I, gamma-emitting isotope).  
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A complete study on another micellar system prepared from di- and triblock POx and used as drug 

delivery system was conducted by Luxenhofer et al. as depicted in Figure 11.248,249 

 

 
Figure 11 Structure of the triblock copolymers used to form micelles. Reprinted from ref. 249 

In vitro toxicity studies conducted on different cell lines showed that, after 2 hours of incubation, the 

polymer itself was not cytotoxic up to a concentration of 20 mg/mL.248 These micelles were tested 

for single- and multi-drug cancer therapy. First, Paclitaxel (PTX), an anti-cancer drug which has a low 

solubility in water of 1 µg/mL, was encapsulated within the micelles. With the single-drug loaded 

micelles, a high loading was achieved (8.2 mg/mL of PTX, corresponding to 45 wt.%) combined with 

promising in vitro and in vivo tests.248 When micelles were loaded with hydrophobic binary or ternary 

drug combinations, loading capacities were slightly improved as compared to the single-drug loaded 

micelles (up to 50 wt.%), but more importantly, the stability was enhanced.249 The in vivo antitumor 

effect of the PTX-loaded micelles was studied on mice with subcutaneous lung tumors. A reduction 

in tumor growth was visible even after only one injection. Between 11 days and 25 days after 

injection, tumors in animals treated with PTX-micelles became even smaller than in animals treated 

with a commercial product (Cremophor EL i.e. Taxol®). Interestingly, the drug loading of such self-

assembled structures could induce morphology changes. The drug loading of a micellar system made 

of a triblock polymer P(MeOx-b-BuOx-b-MeOx) changed, from worm-like micelles to spherical 

micelles, with also a raspberry-like micellar core when drug loading was increased.250 

Dual stimuli responsive self-assembled systems were prepared from PiPrOx coupled to 

fluorenylmethoxycarbonyl-tyrosine phosphate (Fmoc-pY).122 The polymer, Fmoc-pY-PiPrOx, is 

thermoresponsive and has an LCST around body temperature, whereas the Fmoc-pY function is 

enzyme-responsive. Dephosphorylation occurred in the presence of phosphatase, leading to the self-

assembly of FMoc-Y. By tuning the temperature and the phosphatase concentration, different 

nanostructures were obtained, such as micelles and mesoglobules (Figure 12). 
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Figure 12 Schematic representation of enzyme- and temperature-induced self-assembly behavior of the 

polymer bio-conjugate. Reprinted from ref. 122 

Knowing that phosphatase is present at the cell surface, one can expect to use such a system to 

release bioactive payloads, in response to cell surface phosphatase, but such tests have not yet been 

reported. 

Polymersomes produced from di- or triblock copolymers made of PMeOx and PDMS, and used as a 

DDS, have been extensively studied by Meier et al.251 Functionalities were introduced at the polymer 

chain-ends, which led to surface-functionalized polymersomes once self-assembled. Biotin-

functionalized polymersomes (Figure 13)252 were targeted against the scavenger receptor A1 from 

macrophages. Receptor-specific binding of these generic carriers was followed by vesicular uptake in 

human and transgenic cell lines, while low non-specific binding supported the stealth properties of 

the carrier with no toxicity being noted.252 
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Figure 13 A) Biotinylated poly(2-methyl-2-oxazoline)-b-PDMS-b-poly(2-methyl-2-oxazoline) B) 

Functionalized polymersomes by streptavidin bridging. Reprinted from ref. 252 

The same polymersomes were prepared from PDMS-b-PMeOx diblock copolymers functionalized 

with a secondary amine at the chain end.253 These amino-functional groups were then used to attach 

different antibodies to the surface of the polymersomes. Antibiotin IgG, which targets biotin surfaces, 

was first attached and specific attachment of these polymersomes to biotin patented surfaces was 

demonstrated. Functionalized polymersomes with Trastuzumab, an antibody known to target 

specifically HER2-positive breast cancer cells, were also prepared.253 Cellular uptake experiments 

with cells expressing the HER2 receptors on their surface were performed and, as expected, the 

uptake of polymersome-trastuzumab conjugates was significantly faster than for polymersomes 

without Trastuzumab. The in vitro cell proliferation inhibition activity was also studied and showed 

that after 24h, the conjugates were able to inhibit cell proliferation by a factor of 2. These studies 

showed how easy it could be to actively target a drug carrier by functionalizing the POx chain-ends 

to then functionalize the polymersome surface, providing a platform for targeting experiments. These 

polymersomes were also used as nanoreactors and as models to study the internalization of 

nanoparticles, thanks to polymersome properties that are similar to the one of phospholipids from 

cell membrane (fluidity and mechanical stability).254,255 

The self-assembly of PMeOx-grad-PPhOx in presence of  phospholipids, namely, dipalmitoylpho- 

sphatidylcholine (DPPC), led to the formation of chimeric vesicle-like nanostructures.256 

Indomethacin was successfully incorporated into these chimeric nanocarriers. 
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Micellar systems prepared from POx conjugated with other biocompatible polymers were also 

reported. Micelles formed from PEtOx coupled to a hydrophobic glycopolymer, namely, 

peracetylated maltoheptaose, were used to encapsulate Indomethacin.257 The micelles were 

thermoresponsive with an LCST around 45 °C. In vitro drug release studies showed that the higher 

the temperature, the faster the release. For temperatures close to the LCST or higher, burst release 

was observed because of a change in the morphology (micelle deformation due to the fact that 

PEtOx became hydrophobic). Micelles were also prepared by the self-assembly of the block 

copolymer PEtOx-b-poly(4-methyl-ε-caprolactone).258 They were loaded with a hydrophobic drug 

used in cancer chemotherapy, namely, Doxorubicin (DOX). Thanks to the DOX entrapment, the 

cellular uptake was faster as compared to the free drug and it could reach the intracellular 

compartment and enter the nucleus. 

Grafted copolymers can also serve to form micelle-like nanostructures. Star-shaped poly(ε-

caprolactone) (PCL) with PEtOx brush-like shell formed spherical nano-aggregates of 20 nm in 

diameter.21 No short term cytotoxicity was noted, nor adverse reaction with human blood in 

general. DOX was encapsulated successfully in these nano-aggregates.  

The self-assembly of a grafted copolymer consisting of a PCL backbone and PMeOx coupled via click-

chemistry was also reported.34 As both PCL and PMeOx moieties are non-cytotoxic and 

biocompatible, one can assume that the resulting copolymers may show a similar behavior, but no in 

vitro nor in vivo studies have been reported. 

Polyplexes are another kind of drug delivery carriers reported in the literature which can be 

prepared by the self-assembly of POx. As POx are neutral polymers, they have to be coupled to 

another charged polymer, to be able to form polyplexes. For example, block copolymers made from 

PEtOx attached to hyaluronan, a natural anionic polysaccharide, formed polyplexes with cationic drug 

like diminazene, an anti-infective drug for animals.113 Stable colloidal particles with a hydrodynamic 

radius (RH) around 130 nm were obtained.  

Most commonly, polyplexes are made from branched or linear PEI as a transfection vector for gene 

delivery. It turns out that linear PEI is obtained from hydrolysis of PMeOx or PEtOx as discussed 

earlier (section III.3.3). Diblock copolymers prepared from partially hydrolyzed PEtOx coupled to 

non-hydrolyzed PEtOx were also self-assembled in presence of DNA.24,259 A core-shell structure was 

obtained where the core was formed by the PEI-plasmid DNA complex. The core was sparingly 

soluble due to charge neutralization, but the shell containing the hydrophilic PEtOx improved the 

overall solubility of the complex. In vitro trials showed that the block copolymer was less toxic than 

linear PEI because PEtOx decreased the charge density, while the transfection was as high as for the 

linear PEI.  
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Table 7 Self-assembled nanostructures made from poly(2-oxazoline)s 

POx/Polymer NP 
morphology 

Size – d       
(nm) 

Drug 
loaded 

Biological 
test 

Ref. 

P(DecOx-stat-EtOx) Aggregates 240 to 660 -  In vitro  245 

P(MeOx-grad-PhOx) Micelles, 
polymersomes 
aggregates 

18 to 32            
82                       
- 

Indomethacin - 246 

 

PMeOx-b-(PiPrOx-co-
PButylOx)-b-PMeOx 

Micelles 200 - In vitro 247 

P(MeOx-b-BuOx-b-
MeOx) 

Micelles 24 to 44 Paclitaxel In vitro;     
In vivo 

248–

250 

P(MeOx-b-BuOx-b-
MeOx) 

Micelles 28 to 43 Drugs 
combinations 

In vitro 5 

Fmoc-pY-PiPrOx Micelles, 
mesoglobules 

Varies with pH - - 122 

PMeOx-PDMS-PMeOx Polymersomes 50 to 500 - In vitro 251–

255 

P(MeOx-grad-PhOx)      
+ DPPC 

Vesicle-like 
structures 

Varies with the 
ratio 

Indomethacin - 256 

PEtOx-b-peracetylated 
maltoheptaose 

Micelles 120 to 180 Indomethacin - 257 

PEtOx-b-poly(4-methyl-ε-
caprolactone) 

Micelles 127 to 318 Doxorubicin In vitro 258 

PCL-b-(PEtOx brush) Micelles 20 Doxorubicin In vitro 21 

PCL-b-PMeOx Micelles 70 to 80 - - 34 

PEtOx-hyaluronan Polyplexes 260 Diminazene - 113 

PEtOx-b-PEI Polyplexes 380 DNA In vitro 24 

P(EtOx-stat-EI)-b-PEtOx Polyplexes 100 to 200 DNA In vitro 259 
 

All these self-assembled DDS have major advantages, such as the possibility to functionalize the 

surface or to design multi-compartment systems, e.g. polymersomes. However, they have one major 
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drawback which is their low stability toward dilution or changes in the environmental conditions. To 

prevent the drug delivery vehicle from disintegrating in the blood stream, there is a great need to 

produce structures with enhanced stability or robustness against environmental stimuli.  

Chemically cross-linked structures, like nanogels (nanosize hydrogels154), could be appropriate 

candidates for this purpose. The aim of the last section of this literature review is to present the few 

POx-based nanogel structures reported in the literature. This is also one important direction that we 

took in this PhD work (see chapter 2 and 5). 

IV.4. POLY(2-OXAZOLINE)S CROSS-LINKED NANOSTRUCTURES 

As discussed in section III.3, different processes can be used to form POx hydrogels. Nanogels are 

defined as soluble polymer networks with a dimension lower than 100 nm.154 Hydrophilic nanogels 

possess the ability to swell in water or aqueous solution as they are soluble.260 The polymer network 

could be hydrophilic or amphiphilic, and the resulting nanogels may be composed entirely of a 

polymeric network or a core-shell structure with a hydrogel core or shell.261 A general overview on 

nanogels will be given below, but several reviews have been published on the use of microgels and 

nanogels as DDS and the reader is invited to refer to them for more details.221,262–265 

IV.4.1. BRIEF OVERVIEW OF NANOGELS  

As compared to other DDS, nanogels present some unique advantages. First, they are highly stable 

due to the fact that they are internally cross-linked. They can be highly hydrophilic and in biological 

environment, they will swell and contain a high level of water/body fluids making them generally 

biocompatible.260 In principle, higher drug-loading capacities can be expected for nanogels as 

compared to other drug nanocarriers, because in their swollen state, a larger inner space is available 

for the incorporation of drugs or macromolecules.266 

The soft structure of nanogels is another distinctive quality. Hendrickson et al. showed that if a 

pressure close to the renal filtration pressure is applied to nanogels, they can pass through pores 

more than ten times smaller than their size.267 Nanogels softness has a direct influence on their 

biodistribution and circulation time in the body: nanogels can bypass some organs more easily and by 

decreasing the modulus of nanogels by eight times, the circulation time in the body was increased by 

30 times.268 

Nanogels are thus versatile systems: by manipulating the polymer or cross-linker structure, nanogels 

with radically different properties can be produced.269 They can be responsive to environmental 
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factors, like changes in pH, temperature or redox conditions depending on their chemical 

composition. For example, by introducing disulfide bridges in their structure (most often using a 

disulfide-containing cross-linker), nanogels will break apart in reductive environment leading to the 

release of their payload. The release rates can also be controlled by manipulating the cross-linking 

density. The position of the cross-linking group in the nanogel structure (i.e. the homogeneity of the 

nanogels) also affects the degradation rate of the carrier: when the cross-linking groups are 

individually and evenly spaced in the nanogels structure, varying the percentage of cross-linking has 

negligible influence on the degradation rate.270 However, when cross-linker groups are placed in 

pairs, the degradation rate decreases as the percentage of cross-linker increases. Moreover, the 

release is up to eight times slower as compared to nanogels produced with individually spaced cross-

linking groups.  

Due to their high surface area, there is also the possibility to functionalize effectively their surface 

with ligands that could be particularly useful for targeting. 

IV.4.2. SYNTHETIC METHODS TO NANOGELS 

Nanogels can be synthesized by different methods that have already been reviewed in the 

literature.266,271–273 Some techniques like microfluidic, photolithography or even spray drying involved 

some special piece of equipment and, hence are not the focus of this section. The two main 

approaches to synthesize nanogels involve cross-linking of preformed polymers and polymerization in 

heterogeneous media.266,271–273 

IV.4.2.1. Nanogel synthesis by cross-linking preformed polymers 

This technique could either be used for natural or synthetic polymers that are water soluble. If there 

is no reactive group on the polymer backbone, the polymer has first to be functionalized (chemical of 

physical treatments). If the polymer is fully hydrophilic, the cross-linking reaction can be achieved 

either in dilute aqueous solution, or in an inverse emulsion. If the polymer exhibits amphiphilic 

character, it has to be self-assembled first in aqueous media, and the cross-linking reaction will then 

secure the self-assembled structure. 

IV.4.2.2. Nanogel synthesis by polymerization in heterogeneous media 

The advantage of this technique is that it is a one-pot process where the polymerization and the 

formulation of the nanogels are performed simultaneously. In this process, nanogels are commonly 

prepared by free-radical cross-linking copolymerization (RCC) directly in water. Recently, nanogels 

have also been prepared by atom-transfer radical-polymerization (ATRP)274 and reversible addition-
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fragmentation chain-transfer (RAFT)260,275, and in each case, a bifunctional monomer acting as the 

cross-linker and a controlling agent that delays macrogel formation were introduced.  

If both the monomer and the polymer are hydrophilic, the polymerization can take place in inverse 

emulsion. Monomer(s) and initiator are introduced in the aqueous dispersed phase and surfactant(s) 

are added to stabilize the emulsion. Polymerization occurs in the water droplets and the nanogels 

thus obtained have the size of the initial droplets. If the monomer and initiator are soluble in water 

but the polymer is not, it can be polymerized by so-called precipitation polymerization. To do so, the 

monomer and initiator are placed in an aqueous solution, and as the polymerization takes place, the 

polymer precipitates out of the water, forming nanogels. 

IV.4.3. POLY(2-OXAZOLINE)S CROSS-LINKED NANOSTRUCTURES/NANOGELS 

Cross-linked nanostructures prepared from POx were first reported by Nardin et al.251 

Polymersomes were produced from a PMeOx-b-PDMS-b-PMeOx triblock copolymer, with 

methacrylate groups at both chain ends. This copolymer formed vesicular structures in dilute 

aqueous solution with a size that could be tuned between 50 and 500 nm. Once the polymersomes 

were formed, the methacrylate end-groups could be polymerized by UV-induced RCC. The cross-

linking reaction did not lead to any morphological change, and the size and molecular weight were 

conserved.Thanks to this cross-linking reaction the vesicles maintained their integrity even after their 

isolation from the aqueous solution. 

The only fully POx cross-linked nanostructures that can be found in the literature are core cross-

linked micelles. First, a nanostructure was made from an amphiphilic P(EtOx-b-SoyOx) block 

copolymer (SoyOx corresponds to monomer 12 in Table 2).276 In aqueous solution, spherical 

micelles consisting of a PEtOx corona and a PSoyOx core were formed. The micellar core could 

then be stabilized by core-cross-linking under UV irradiation, as in the case of the hydrogel syntheses 

described above (see section III.3.2).2 The UV dose applied to the system had to be adjusted 

carefully, because if it was too low, the cross-linking density was insufficient, and if it was too high, 

inter-micellar cross-linking occurred. The morphology of such core-cross-linked micelles could be 

reversibly transformed, from spheres to small rods (rice grains), whenever the micelles were 

transferred from water into a non-selective solvent for the constituent blocks (e.g. acetone). This 

morphological transition was attributed to swelling of the slightly cross-linked core.  

The second example of core-cross-linked micelles made from POx was reported in 2011 by 

Brummelhuis et al.277 Amphiphilic poly(2-(3-butinyl)-2-oxazoline)-b-PEtOx formed micelles in water, 

which could be core-cross-linked by thiol-yne “click chemistry”. To do so, two different mercaptans 

were used: methyl 3-mercaptopropionate and 2-mercaptoethylaminehydrochloride.  Micelles cross-
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linked with methyl 3-mercaptopropionate bore carboxylate groups in their core, whereas micelles 

cross-linked with 2-mercaptoethylaminehydrochloride bore amino-group in their core. These 

micelles with core-confined ionic groups exhibited stimuli-responsive properties and were sensitive 

to changes in temperature, pH, ionic strength, and salt types.278 These systems are currently being 

evaluated as “smart drug carrier” and nanoreactors for catalysis.277 

Graft copolymers with thermo-sensitive PNIPAAm backbone and hydrophilic PEtOx graft chains 

demonstrated a typical amphiphilic behavior.279 Above the LCST of PNIPAAm chain, stable micelles 

with RH of 30-40 nm were obtained. They could be core cross-linked by electron-beam irradiation, 

and when the temperature was then lowered below the LCST of PNIPAAm, the core became 

hydrophilic and core/shell type nanogels were thus obtained. By substituting poly(2-carboxyethyl-2-

oxazoline) (monomer 8, Table 2) for PEtOx, the core/shell nanogels obtained were not only 

thermosensitive, but also pH sensitive, due to the carboxylic groups.280 As a consequence, the core 

size could be varied by manipulating the temperature, whereas the thickness of the poly(2-

carboxyethyl-2-oxazoline) corona could be tuned by changing the pH (Figure 14). 

 
Figure 14 Strategy for the production of bisensitive nanogels and their supposed reaction to changes in 

stimuli like pH value and temperature. Red: side chains of poly(2-carboxyethyl-2-oxazoline); Blue: main 

chains of poly(N –isopropylacrylamide). Adapted from ref. 280 

The other example of nanogels containing POx as one block was prepared from a triblock 

copolymer: PNIPAAm-b-POx-b-poly(2-hydroxyethyl methacrylate), where the POx segment 

corresponded to PMeOx or PEtOx.281 Telechelic POx was first synthesized, which was followed by 

nanogel preparation by precipitation free radical copolymerization of NIPAAm, 2-hydroxyethyl 

methacrylate (HEMA) with the POx multifunctional macromonomers. The swelling-deswelling 



Literature overview 
	  

	   	   	   65	  

behavior was directly related to the chemical composition (hydrophilic/hydrophobic balance) and the 

length of the inserted POx sequence, which could be controlled by synthesis. To study the ability of 

these nanogels as drug delivery carrier, BSA was encapsulated as model protein. The release of BSA 

was investigated with respect to variation in the cross-linking density. The higher the cross-linking 

density, the lower the swelling ability and the slower the release.  

Even though these nanogels are promising candidates as DDS, none was studied for drug 

encapsulation or even for cytotoxicity studies. Such investigations, on specifically designed POx 

nanogels, were conducted in this PhD work and will be part of chapter 5. 

Furthermore, no shell cross-linked nanostructures or nanogels prepared in inverse emulsion have 

been reported. 

V. CONCLUSIONS 

POx represent a special class of synthetic polymers that are regarded as analogues of polypeptides. 

They can be obtained by “controlled/living” cationic ring opening polymerization of 2-alkyl-2-

oxazolines (CROP), under specific experimental conditions. CROP often requires long reaction times 

and can be complicated by the occurrence of some side reactions (transfer, coupling), when the 

polymerization is settled under conventional heating. Yet, these issues can be overcome when the 

reaction is performed in microwave reactors.  

POx engineering has been already intensively studied and researchers have now at their disposal a 

substantial POx chemical toolbox. Both chain termini can be modified independently with specific 

functional groups, including hydroxyls, amines or carboxylic acid, and so on. A number of 2-oxazoline 

monomers are also commercially available and functional side chains (-OH, -COOH, -ene or -yne 

functions, etc.) can be introduced in the monomer, in a straightforward manner. In this context, 

clickable functionalities have first been considered, but some other chemical handles (e.g. aldehyde) 

may be further exploited. 

By taking advantage of all these synthetic tools, it is now relatively easy to design POx with various 

architectures and compositions (copolymers, graft, star, hydrogels), and thus to tune their physico-

chemical properties, such as thermal transitions (LCST and Tg), solubility and physical state 

(amorphous or semi-crystalline). 

In many cases, POx show properties equivalent to or even outperform polymers that are commonly 

used in biomedical applications.282 For instance, POx, and especially PMeOx and PEtOx, proved non-
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toxic to cells, hemocompatible and were internalized by cells. They also exhibit the same stealth 

behavior in vivo as PEG, and can be used as protein repellent. POx possess several advantages over 

PEG: they are less prone to oxidative degradation and side products are less cytotoxic than PEG 

ones and they offers much more possibilities for functionalization.  

Consequently, there is a tremendous opportunity to develop engineered POx as key building blocks 

of drug delivery carriers. The background literature has shown that POx can be conjugated to 

proteins or drugs, can be grafted onto liposome surface and formulated as part of self-assembled 

systems. Numerous papers have also been published on the design of stimuli-responsive hydrogels 

that are mainly prepared from partially hydrolyzed POx. However, so far, not so many studies have 

been reported on POx nanogels and the use of such nanogels as drug delivery carriers.  

On the basis of this literature overview on engineered POx, different orientations to this PhD work 

have been taken, as discussed in the following chapters. In chapter 2, the design of dual-responsive 

hydrogels and nanogels is presented. Chapter 3 focuses on the crystallization-driven self-assembly of 

POx block copolymers. The POx chemical toolbox is expended in chapter 4 by the development of 

post-polymerization reactions with a 2-oxazoline monomer bearing a protected aldehyde handle. 

Finally, in chapter 5, some biological properties of POx nanogels are evaluated.  
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Abstract: This chapter describes the synthesis of hydrogels and nanogels made from partially hydrolyzed 

poly(2-ethyl-2-oxazoline) (PEtOx). Firstly, different cross-linkers (diglycidyl ethers, diacrylates, N-

hydroxysuccinimide ester) were tested to achieve responsive and/or degradable PEtOx-based hydrogels. 

Secondly, nanogels were designed either in dilute aqueous media in the presence of 1,6-hexanediol diglycidyl 

ether (1) as the cross-linker or following an inverse w/o emulsion cross-linking process. In the latter case, in 

addition to cross-linker (1), a cleavable cross-linker homologue (2), namely 1,6-hydroxyethyl disulfide-bis-

diglycidyl ether was used so as to produce cleavable nanogels. The pH-responsiveness of all the cross-linked 

PEtOx nanogels was demonstrated in acidic environment, owing to the protonation of residual ethylene imine 

groups and/or tertiary amines formed during the cross-linking reaction. As expected, nanogels derived from 

cross-linker (2) could readily be cleaved in a reducing environment, due to the presence of disulfide linkages 

at the cross-linking points. 

Part of the work presented in this chapter has been published in Polymer Chemistry in 2013.12 

 	  

 
1 Legros, C.; De Pauw-Gillet, M.-C.; Tam, K. C.; Lecommandoux, S.; Taton, D. Polym. Chem. 2013, 4, 4801-4808  
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INTRODUCTION 

Hydrogels are 3D-cross-linked polymeric networks capable of swelling in water while maintaining 

their overall structure. Cross-linking can be permanent (via chemical bonds) or temporary (via weak 

reversible interactions, such as hydrogen bonds, van der Waals or ionic interactions).1 By selecting 

the polymer building block and the type of cross-linker, hydrogels can be made biocompatible and/or 

responsive to specific environmental conditions, two key attributes for a smart delivery system with 

a potential use in biomedical applications.2–4 

As for nanogels, they are defined as soluble polymer networks with a dimension smaller than 100 

nm.a5 Hydrophilic nanogels display the same structural features as hydrogels, as a result of their intra- 

and inter-molecular cross-linking points. They have emerged as a new class of nanocarriers for drug 

delivery applications.6–10 Formulation of nanogels can be achieved by different methods.6,8,11,12 Specific 

processes like microfluidics, photolithography or spray drying require specific processing equipment; 

hence they are not widely employed. Some of the more common synthetic approaches are radical 

cross-linking copolymerization (RCC) in heterogeneous media, or cross-linking of pre-formed linear 

polymers, e.g. by chemical post-modification or radiation with a high energy source. In the former 

case, nanogels can be generated in a one-pot process, where both polymerization and formulation 

are performed simultaneously.13 Cross-linking of a pre-formed polymer requires a polymer backbone 

with pendent reactive groups, which is referred to as a post-polymerization modification method.14–17 

With hydrophilic precursors, however, the cross-linking reaction can be achieved either in dilute 

aqueous solution, or in an inverse water-in-oil (w/o) emulsion.7,10,11 With amphiphilic copolymers, 

self-assembly in aqueous media can take place first, which is followed by the cross-linking reaction 

aimed at stabilizing the self-assembled structure.7,10,11 

Poly(2-oxazoline)s are a particularly interesting class of hydrophilic polymers, as they can be regarded 

as amino-acid analogues.18 They are potential candidates for biomedical applications, in particular as 

drug carriers. More particularly, poly(2-ethyl-2-oxazoline) (PEtOx) is a biocompatible polymer that 

can be internalized by cells and that is characterized by stealth behavior, a feature that is commonly 

associated with poly(ethylene glycol) (PEG).19–22 As a consequence, PEtOx can act as protein 

repellent23–25 and enhance antimicrobial properties.26 Previous studies demonstrated that PEtOx can 

be conjugated to proteins or drugs, or be grafted onto the surfaces of liposomes, and be formulated 

as part of self-assembled systems, such as polmeric micelles or polymersomes, and used as drug 

delivery carriers.27  

 
a Nanogels are defined by IUPAC as a particle of gel of any shape with an equivalent diameter of 
approximately 1 to 100 nm. There is indeed a misperception in the current literature between nanogels and 
microgels. As a consequence, in the following text, we will qualify some of our compounds as nanogels, 
although their size is greater than 100 nm. 
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Designing responsive hydrogels made from poly(2-oxazoline)s is relatively well documented,28 one of 

the major challenge being the introduction of a 2-oxazoline monomer bearing a reactive 

functionality.29 As presented in Chapter 1 (section 111.3.1), such materials can be prepared by 

copolymerization of 2-ethyl-2-oxazoline (EtOx) with a bis-2-oxazoline comonomer.30,31 Another 

strategy consists in the introduction of a 2-oxazoline co-monomer bearing a reactive functionality 

followed by post-polymerization modification.32,33 Hydrogels were also prepared from poly(2-

oxazoline)s functionalized at both chain ends; for example, methacrylate end-functionalized PEtOx 

can also be crosslinked to achieve hydrogels by reaction with a 3-arm polylactide analogue.26 Other 

examples of hydrogels formed with end-functionalized poly(2-oxazoline)s were reported.34–36 More 

recently, hydrogels were prepared by the copolymerization of a 2-oxazoline monomer bearing a Boc-

protected amino group on the side chain (BocOx) with EtOx and further treatment with 

epichlorohydrin.37 Hydrogels were also prepared by the copolymerization of 2-(dec-9-enyl)-2-

oxazoline with either 2-methyl-2-oxazoline or EtOx and further cross-linking with dithiol 

molecules.38 Lastly, amine functionalities can be statistically introduced by partial hydrolysis of pre-

formed poly(2-alkyl-2-oxazoline) (alkyl = methyl or ethyl). The latter method was developed by 

Saegusa and coworkers who prepared redox-, light-, or temperature-responsive hydrogels depending 

on the cross-linkers used (e.g. diisocyanate, dicarboxylic acid, etc.).39–43 (Chap 1, section 111.3.3, 

scheme 10) 

In contrast, true soluble nanogels made of poly(2-oxazoline)s and their use as drug delivery carriers 

have rarely been investigated. For instance, core-cross-linked micelles based on an amphiphilic 

poly(EtOx-b-2-“soy alkyl”-2-oxazoline) copolymer, where the 2-“soy alkyl”-2-oxazoline block was 

derived from a long fatty acid side chain bearing alkene functionalities, have been described by Huang 

et al.44 The cross-linking process was achieved by UV irradiation. Another recent example was 

reported by Brummelhuis et al.45 who cross-linked micelle-like nanostructures formed by self-

assembly of an amphiphilic poly(2-(3-butinyl)-2-oxazoline)-b-PEtOx, using thiol-yne “click chemistry”. 

These core-cross-linked micelles exhibited stimuli-responsive properties and were sensitive to 

changes in temperature or pH or ionic strength. 

The aim of the present work is to propose different synthetic methodologies to hydrophilic 

hydrogels and nanogels based on PEtOx. Secondary amine functionalities were first introduced into 

the polymer backbone by partial hydrolysis. The as-obtained statistical copolymers were then reacted 

with different cross-linkers (diglycidyl ethers, diacrylates, N-hydroxysuccinimide ester) (Scheme 1). 

Copolymer materials issued from the reaction with the bis-glycidyl ether cross-linker were studied 

more thoroughly. For instance, the redox-sensitive cross-linker containing a disulfide functionality 

was used to produce degradable poly(2-oxazoline) hydrogels and nanogels. Nanogel synthesis was 
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achieved following two distinct processes: in dilute aqueous media and in an inverse w/o emulsion. 

The redox and/or pH-responsive properties of nanogels obtained in this manner are demonstrated. 

I. SYNTHESIS AND PARTIAL HYDROLYSIS OF PETOX 

The cationic ring-opening polymerization (CROP) of 2-ethyl-2-oxazoline was performed in 

acetonitrile at 85 °C, using methyl trifluoromethanesulfonate as the initiator, following a well-

established procedure (see Scheme 1, further).46,47 A methanolic KOH solution was employed upon 

completion of CROP to quench the living polymer chain ends. The experimental degree of 

polymerization (DP) was 94 and a dispersity (Ð) of 1.28 was obtained (Figure 1). The absolute 

molecular weight of PEtOx was then determined by SEC equipped with a laser light scattering 

detector (Figure 2).  

 

Figure 1 1H NMR spectra (400 MHz, D2O) of poly(2-ethyl-2-oxazoline)94 
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Figure 2 SEC trace of poly(2-ethyl-2-oxazoline)94 in DMF obtained with a laser light scattering detector 

This PEtOx precursor was next partially hydrolyzed to introduce secondary amine functionalities 

along the polymer backbone (see Scheme 1). Such a hydrolysis procedure has previously been 

studied in both acidic and basic media,48–50 where the hydrolysis rate was found to depend both on 

the amount of acid or base added and on the reaction time. Upon performing the hydrolysis under 

basic conditions, a decrease in both the polymer solubility and the reaction rate was noted. The 

reduction in solubility can be explained by the crystallization of linear poly(ethylene imine) (PEI) 

domains. In contrast, the polymer solubility was retained by performing hydrolysis in acidic media, 

which resulted in better control over the hydrolysis rate. This can be explained by the fact that the 

pH of the reaction medium was lower than the pKa of PEI (pKa = 8.5), the ethylene imine 

functionalities being protonated. 

The hydrolysis kinetics were studied next with P(EtOx)94 at 50 g/L in a HCl solution at 18.5 %, under 

reflux. Aliquots were withdrawn periodically (0.5, 1, 2, 3, 4 and 6.5 h), and after 6.5 hours a 

significant tail at higher retention time was observed in the SEC trace (Supporting inforamtions - SI†, 

Figures S1 and S2). This could be due to polymer degradation or interactions of the polymer chains 

with the SEC columns, even in DMF, as previously described for similar polyamines.48 Hence, the 

PEtOx chains were hydrolyzed within a 4 hour time window. The degree of hydrolysis was evaluated 

both by 1H NMR spectroscopy and titration of the secondary amines (Figure 3 and Table 1).  
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Figure 3 1H NMR spectra (400 MHz, D2O) of poly((2-ethyl-2-oxazoline)88-stat-(ethylene imine)6) 

Table 1 Evolution of the degree of hydrolysis of poly(2-ethyl-2-oxazoline)94 with time  

Hydrolysis 
reaction time (h) 

Hydrolysis % 
(1H NMR) 

Hydrolysis % 
(Titration) 

0.5 3.4 - 
1 4.3 - 
2 6.7 5.3 
3 8.9 9.6 
4 11.3 12 

II. HYDROGEL FORMATION AND CLEAVAGE 

The critical concentration for gelation of P(EtOx)94 was determined by measuring the intrinsic 

viscosity (SI†, Figure S3) and the radius of gyration (Rg). A Rg value of 3.65 nm was obtained 

corresponding to a critical concentration of 56 mg/mL. 
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II.1. CROSS-LINKER SCREENING FOR THE HYDROGEL FORMATION 

Hydrogels were then prepared from a range of cross-linkers, as illustrated in Scheme 1 (see also 

Table 2).  

 

Scheme 1 Synthesis of hydrogels made from poly(2-ethyl-2-oxazoline): (a) Cationic ring-opening 

polymerization (CROP) of 2-ethyl-2-oxazoline. (b) Partial hydrolysis of the poly(2-ethyl-2-oxazoline). (c)-(e) 

Formation of hydrogels by reaction with cross-linker (c) N-hydroxysuccinimide ester (d) 

diepoxide/diglycidyl ether (e) diacrylate. 
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Table 2 Cross-linkers used to form hydrogel with partially hydrolyzed poly(2-ethyl-2-oxazoline) and 

conditions used for the hydrogel formation 
 

 

 

Solvent 
T 

(°C) 
Reaction 

time 
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1 

 

H2O 80 
60 

Overnight 
3 days 

2 

 

H2O 80 
60 

Overnight 
3 days 

3 
 

H2O 80 1 day 

4 

 

H2O 80 Overnight 

5 

 

H2O 80 
60 

Overnight 
3 days 

6 

 

THF: H2O 
2:3 80 2 h 

A
C

R
Y

LA
T

E 

7 

 

H2O 
60  
40 
30 

2h30 
3 h 

3h30 

8 

 

Phosphate 
buffer 
0.04M 
pH = 8 

80 
30 

1h30 
Overnight 

9 

 

Phosphate 
buffer 
0.04M 
pH = 8 

30 Overnight 

N
H

S 
ES

T
ER

 

10 

 

R = hexaglycerol core structure 

H2O RT 20 min 
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Three main families of cross-linkers were tested to react with secondary amines of the polyoxazoline 

backbone. Bis-epoxides (cross-linkers 1 to 8, Table 2) reacted via ring-opening of the epoxides with 

secondary amines. Diacrylates (cross-linkers 7 to 9) and secondary amines reacted via a Michael-type 

addition reaction under slightly basic conditions.51 The reaction of amines with N-hydroxysuccinimide 

ester compound (NHS ester, cross-linker 10) is used to cross-link or label peptides and proteins 

under physiological or slightly alkaline conditions (pH 7.2 to 9), yielding stable amide bonds. The 

reaction releases N-hydroxysuccinimide (NHS) as a by-product.52 However, hydrolysis of the NHS 

ester can compete with the amine reaction. The rate of hydrolysis increases with the buffer pH and 

contributes to less-efficient cross-linking in less-concentrated solutions.  

All the reactions were conducted at a constant ratio of reactive functionalities in aqueous solution, 

except for tris(4-hydroxyphenyl)methane triglycidyl ether (cross-linker 6) that was not soluble in 

pure water. Hydrogels were obtained with all of the cross-linkers shown in Table 2, except 1,3-

butadiene diepoxide (cross-linker 3). The flexibility of the cross-linker was found to be of great 

importance in order for the cross-linking reaction to proceed. A trial was carried out using cross-

linker 3, but no hydrogel was obtained due to the tight/constrained structure of this cross-linker. On 

the other hand, increasing the alkyl chain length between the two epoxide rings decreases the water 

solubility of the cross-linker. Nevertheless, a gel was formed with 1,2,7,8-diepoxyoctane (cross-linker 

4) despite the relatively poor water solubility of this cross-linker. This was confirmed by the 

formation of a white insoluble compound. In contrast, the use of diglycidyl ether cross-linker (cross-

linkers 1, 2, 5 and 6) led to transparent gels exhibiting a greater affinity for water (di-epoxides are 

less soluble in water than the equivalent diglycidyl ether molecules). Diacrylate cross-linkers are 

more reactive than the diglycidyl ones, forming gels even at temperatures as low as 30 °C, which is a 

major advantage in the design of drug delivery devices. However, hydrogels formed with diacrylate 

cross-linkers in aqueous solution could be completely cleaved within two weeks by ester hydrolysis. 

As expected, the most efficient cross-linker tested in this series was the 8-arm NHS-containing PEG. 

This is due to the higher functionality of this commercially available cross-linker. NHS ester-amine 

coupling is one of the most popular coupling reactions for bio-systems as a result of the ease of the 

reaction and the mild conditions required.52 Further hydrolysis was still possible with these hydrogels 

also, as a result of the ester functionalities present in the structure. Through modifications of the 

cross-linker R-group, some of the resulting hydrogels could be responsive to specific stimuli. 
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II.2. HYDROGEL FORMATION AND CLEAVAGE WITH DIGLYCIDYL ETHER CROSS-

LINKERS 

As the aim of the present study was to prepare hydrogels made of a polyoxazoline backbone that 

could be stimuli-responsive, only the compounds made from diglycidyl cross-linkers 1 and 2 (Table 2) 

were further studied. Hydrogels were formed using a non-cleavable cross-linker, namely 1,6-

hexanediol diglycidyl ether (1) (Scheme 2). The cross-linking reaction was optimized via a kinetic 

study, withdrawing aliquots of various hydrolysis degrees (shown in Table 1) at a polymer 

concentration of 100 mg/mL. These precursors were first dissolved in deionized (DI) water and the 

cross-linker (1) was added to obtain a concentration of 40 mg/mL. The solutions were stirred at 80 

°C overnight. The results suggest that a degree of hydrolysis of at least 6.7 % was required to 

observe gel formation. Thus, a new batch of P(EtOx)94 hydrolyzed to 6.7 % (P(EtOx88-stat- EI6)) was 

specifically synthesized and used for the rest of the study. Titrations were performed both before 

and after hydrolysis, as shown in Figure 4.  

 

Scheme 2 Synthesis of hydrogels made from poly(2-ethyl-2-oxazoline): (a) Formation of non-cleavable 

hydrogels by reaction with 1,6-hexanediol diglycidyl ether (1). (b) Formation of cleavable hydrogels by 

reaction with hydroxyethyl disulfide-bis-diglycidyl ether (2). (c) Hydrogel cleavage under reducing 

environment. 
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The dry gel was analyzed by FTIR and compared to the spectrum of the parent PEtOx. The 

appearance of a peak at 1109 cm-1 characteristic of an ether C-O stretch confirmed the 

incorporation of the cross-linker (SI†, Figures S4 and S5).  

 

Figure 4 Titration of the secondary amine by pH-metry and conductivity measurements A) of parent 

poly(2-ethyl-2-oxazoline)94 and B) of poly((2-ethyl-2-oxazoline)88-stat-(ethylene imine)6) copolymer 

Hydrogels that could be chemically cleaved in a reducing environment were also prepared, using the 

same partially hydrolyzed polymer precursor, P(EtOx88-stat-EI6), and hydroxyethyl disulfide-bis-

diglycidyl ether (2) as the cross-linker. The latter compound was synthesized following a procedure 

reported in the literature (SI†, Figures S7 and S8).53 The appearance of a peak at 1104 cm-1 in the 

FTIR spectrum of the dry gel, again confirmed incorporation of the cross-linker (2) (SI†, Figure S6). 

Cross-linking points with a central disulfide bridge in related PEtOx hydrogels could be cleaved in 

reducing environment. The cleavage reaction was implemented using 1 mL of a dithiothreitol (DTT) 

solution under nitrogen atmosphere. Within approximately 5 minutes, the central disulfide bridges 

were indeed cleaved and the gel transformed into a clear solution, as illustrated in Figure 5. 

 
Figure 5 A) Hydrogel formed by the reaction of ethylene imine groups on the polymer backbone with 

hydroxyethyl disulfide-bis-diglycidyl ether (2). B) Clear solution obtained after addition of DTT to the 

hydrogel.  
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III. SYNTHESIS OF PETOX NANOGELS  

III.1. IN DILUTE MEDIA 

By drastically decreasing the concentration of both the partially hydrolyzed PEtOx precursor to 10 

mg/mL (instead of 100 mg/mL used in the previous section) and that of the cross-linker (1) to 2.2 

mg/mL, nanogels could be formed in dilute media. The polymer and cross-linker were thus dissolved 

in a mixture of water (97 %) and ethanol (3 %) to improve the solubility of the cross-linker and the 

nanogel formation was monitored by dynamic light scattering (DLS). At the initial stage, all the 

species were soluble in the solvent mixture and the low scattered intensity attested to the presence 

of unimers in solution. Upon nanogel formation, the scattered intensity increased and both the size 

and size distribution of the as-formed compounds were directly determined. 

Non-cleavable nanogels were formed within 3 hours, using cross-linker (1). The variation of decay 

rate versus the squared scattering vector is shown in Figure 6A. The slope of the linear fit 

corresponds to the translational coefficient and the hydrodynamic radius can be calculated using the 

Stokes-Einstein equation. A hydrodynamic radius of 205 nm was thus obtained. The formation of 

spherical nanostructures was also evidenced by transmission electron microscopy (TEM), a size in 

agreement with the DLS results was achieved (Figure 6C). 

Attempts to derive cleavable nanogels using cross-linker (2) under the same conditions were less 

successful. Indeed, reduced solubility of cross-linker (2) was observed in the solvent mixture at the 

initial stage as compared to its non-cleavable analogue (1). Hence, no nanogels were successfully 

formed using this protocol; instead, macroscopic hydrogels were obtained after approximately 3 

hours. Tries to optimize the conditions, including changes in solvents ratio, solvent mixture 

(H2O/EtOH, H2O/DMSO), polymer concentration, cross-linker concentration and ratio of reactive 

functionalities, did not allow us to achieve nanogels from cross-linker (2) in dilute media. 
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Figure 6 DLS analysis and TEM of permanently cross-linked nanogels prepared in dilute media, using cross-

linker (1). A) Variations of decay rate versus squared scattering vector with a linear fit. B) Relaxation time 

plot obtained at 90°. C) TEM micrograph (scale bar = 500 nm) 

III.2. IN INVERSE EMULSION 

An inverse emulsion process was also implemented to access the targeted nanogels. The aqueous 

phase was composed of P(EtOx88-EI6) and the diglycidyl ether cross-linker (1) or (2) in 100 µL of DI 

water. The aqueous phase was added to 0.8 g of cyclohexane with 5% Span 80, a non-ionic 

surfactant. The emulsification was triggered by an ultrasonic probe and the reaction mixture was 

stirred at 80 °C overnight. The resulting compounds were then thoroughly washed, first with 

cyclohexane and THF, then by dialysis against water. The successful transfer of the materials into DI 

water confirmed the efficient removal of the surfactants. 

Non-cleavable nanogels were first prepared using cross-linker (1). The variation of nanogel size with 

pH was investigated, as summarized in Figure 7. At neutral pH, a hydrodynamic radius of 126 nm was 

obtained. Upon addition of diluted HCl, yielding a solution pH of 3-4, an increase in nanogel size to 

156 nm was noted, indicative of nanogel swelling. This can be explained by the protonation, in acidic 

environment, of residual ethylene imine groups and/or tertiary amines formed during the cross-

linking reaction. This protonation increases the hydrophilicity of the compounds and charge repulsion 

within the nanogels. Average sizes determined by TEM were smaller than those obtained by DLS. 

This effect was attributed to the shrinking of the nanostructures on the TEM grid, during the 

preparation process. The main difference between the two techniques is the state of the nanogel 

compounds during analysis (hydrated state in DLS and dried state in TEM).   

Nanogels were then successfully prepared with the cleavable cross-linker (2) via the inverse emulsion 

w/o process, and the influence of pH on nanogel size was studied (Figure 7). An increase in size, from 

154 to 179 nm, was noted upon addition of HCl solution (pH = 3-4), demonstrating the pH-

sensitivity of the compounds. The morphology was confirmed by TEM, the sizes being smaller as 
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compared to those obtained by DLS, which again may be explained by solvent evaporation (the large 

diffuse areas correspond to residue of surfactants or artefact due to solvent drying).  

 

Figure 7 DLS and TEM analysis of the cleavable and non-cleavable nanogels. Panel A: Variations of decay 

rate versus squared scattering vector with linear fits at different pHs. Panel B: Relaxation time plot obtained 

at 90° at different pHs. Panel C: TEM micrographs at neutral pH 

The influence of a second stimulus was then studied by the addition of a reducing agent. In the 

presence of DTT, indeed, the count rate decreased dramatically confirming the disruption of the 

nanogel structure (SI†, Figure S9). To confirm that this behavior was not linked to a dilution effect, 

the same volume of DI water (as DTT) was added to a second sample, also analyzed by DLS. In the 

latter case, the count rate decreased slightly but not as significant as in the case of DTT. Thus, the 

use of a cleavable cross-linker (2) enabled the synthesis of stimuli-responsive nanogels, responding to 

both a reducing environment and a pH change, as illustrated in Scheme 3.  

CONCLUSIONS 

We have demonstrated that partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx) can react with 

different of cross-linkers including bis-epoxides, bis-acrylates and bis-N-hydroxysuccinimide ester, in 

water to form cross-linked derivatives. Dual stimuli-responsive hydrogels and nanogels can be readily 

prepared from partially hydrolyzed PEtOx and hydroxyethyl disulfide-bis-diglycidyl ether.  
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Hoogenboom et al. recently reported that partially hydrolyzed PEtOx with up to 10 % of ethylene 

imine functions did not show any cytotoxicity in vitro.54 The extent of hydrolysis of the PEtOx used in 

our study (6.7 %) is below this in vitro cytotoxicity limit. Additional cell viability experiments are 

addressed in Chapter 5.  

Nanogel formation by cross-linking of the secondary amino groups can be triggered either in inverse 

w/o emulsion or in dilute aqueous media, using diglycidyl ethers as cross-linkers. The dilute medium 

process offers some noticeable advantages as nanogels were formed within a few hours in water, 

without the need of any surfactants or catalysts. However, this method is limited by the solubility of 

the reagents. For instance, no nanogels were obtained in the presence of the cleavable cross-linker, 

most likely due to its poor solubility in aqueous media. In contrast, non-cleavable and cleavable 

nanogels were synthesized using an inverse w/o emulsion process. Their sizes can potentially be 

tuned by adjusting the diameter of the emulsion droplet. The synthesized nanogels exhibited stimuli-

responsive behavior, swelling in acidic environment was observed for all nanogels. This was a result 

of the protonation of residual ethylene imine groups and/or tertiary amines formed during the cross-

linking reaction. In addition, nanogels made from the cleavable cross-linker could be readily disrupted 

in reducing environment due to the presence of disulfide bridges (Scheme 3).  

 

Scheme 3 Schematic illustration of the dual-responsiveness of PEtOx-based nanogels: swelling in acidic 

environment and chemical cleavage in reducing environment. 

These nanogels may potentially be used to encapsulate hydrophilic bio-macromolecules such as 

proteins which can be released specifically in tissues of low pH (acidic environment, i.e. inflamed 

tissues) and/or where reducing agents are present such as glutathione, a reducing peptide mainly 

found in tumor tissues.  
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EXPERIMENTAL SECTION 

Materials and reagents 

2-Ethyl-2-oxazoline (99%), methyl trifluoromethanesulfonate (96%) (MeOTf), and acetonitrile (99%) 

were purchased from Sigma-Aldrich, stored over calcium hydride and purified by vacuum distillation 

prior to use. Methanol purchased from Sigma-Aldrich was refluxed with sodium and distilled prior to 

use. Diethyl ether, ethanol, potassium hydroxide (KOH), sodium hydroxide (NaOH), hydrochloric 

acid solution (37%) (HCl), dithiothreitol (DTT), cyclohexane (99%), 1,4-butanediol diacrylate (90%) 

PEG diacrylate (Mn = 700 g/mol), tris(4-hydroxyphenyl)methane triglycidyl ether and sorbitan 

monooleate (Span 80) were used as received from Sigma-Aldrich. 1,6-Hexanediol diglycidyl ether 

(98%) was purchased from BOC sciences. 1,2,7,8-Diepoxyoctane (97%), 4- butanediol diglycidyl ether 

(>90%) were purchased from TCI. 4-arm PEG acrylate (pentaerythritol), Mw 10000 g/mol (99.8%) and 

8-arm PEG succinimidyl adipate (hexaglycerol) Mw = 15000 g/mol (94.7%) were purchased from 

Jenkem technology. Hydroxyethyl disulfide-bis-diglycidyl ether was synthesized following a procedure 

reported in the literature (see Experimental procedure).53 

Instrumentation  

NMR spectroscopy. 1H NMR measurements were carried out at room temperature, on a Bruker 

Avance 1 spectrometer operating at 400 MHz. The D2O signal was used as the reference signal (δ = 

4.79 ppm), and the relaxation time was fixed to 7.5 sec for all measurements.  

Size-exclusion chromatography. Size-exclusion chromatography (SEC) using dimethylformamide 

(DMF) with LiBr (1 g/L) as the eluent was performed at 80 °C at a flow rate of 0.8 mL/min. The 

column set consisted of two 7.5 mm x 300 mm PLgel, 5 µm Mixed-D columns (Polymer laboratories) 

coupled to a guard column, 7.5 mm x 50 mm, PLgel, 5 µm model (Polymer laboratories). Injections 

were carried out in a 20 µL loop and calibrated using polystyrene standards. Differential refractive 

index (RI) and UV detectors were used. To determine the absolute polymer molecular weight, 

analytical SEC measurements were performed on a system with a Waters 510 HPLC pump, a 50 µL 

injection loop, and a Waters 410 differential refractometer (DRI) detector. A Wyatt MiniDAWN 

laser light scattering detector operating at a wavelength of 690 nm served to determine the absolute 

molecular weight of the polymers (measured at an angle of 90°). The column used was a 250 mm x 

10 mm JORDI X-tream column Mixed bed model with a linear polystyrene molecular weight range of 

102–107. This column is coupled with a guard column, a 50 mm x 10 mm JORDI X-tream Mixed Bed 

model. DMF with LiCl (1 g/L, added to minimize adsorption of the polymer on the column) at a flow 

rate of 1.0 mL/min served as the mobile phase, at room temperature. 
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Titration. Titration was performed with a Metrohm 809 Titando autotitrator for simultaneous 

measurement of conductivity and pH. The titrator is equipped with Tiamo software, which doses µL 

quantities of titrants. All measurements were performed in a jacketed vessel at 25 °C while stirring at 

a medium speed. 50 mL of solutions of the samples at 0.8 g/L were prepared in DI water. The pH of 

the solutions was adjusted to ~3 by adding 0.5 M HCl. The solutions were titrated using 0.01 M 

NaOH under nitrogen blanket and stirring. Conductivity and pH of the solutions were measured 

simultaneously until the pH of the samples approached 11. Finally, the pH and conductivity values 

were plotted against the volume of NaOH (in mL). 

Intrinsic viscosity measurement. The intrinsic viscosities of partially hydrolyzed polymers were 

measured with an automated kinematic viscometer, MiniPV model, from the Cannon Instrument 

Company, at 25 °C. To do so, samples at different concentrations were prepared (1, 2, 4, 6, 8 

mg/mL). For a known volume of a sample, the time taken for the level of the liquid to pass between 

two marks was measured twice. The relative, specific and reduced viscosities are directly calculated 

from these time values. The intrinsic viscosity corresponds to the value of the reduced viscosity 

when the concentration approaches zero.  

Polymers dn/dc measurements. The refractive index increment (dn/dc) measurements were 

conducted on a Brookhaven instrument, BI DNDC, at a wavelength of 620 nm. Polymer solutions 

were prepared in DMF with LiCl (1 g/L, the same solvent used for SEC measurements) at the 

following concentrations: 0.5, 1, 2, 3 and 4 mg/mL. Analyses were carried out with the preparatory 

software supplied with the instrument. 

Infrared spectroscopy. Infrared spectra were obtained on a Thermoscientific Nicolet IS10 

spectrometer using the attenuated total reflection (ATR) mode. The spectra were acquired using 16 

scans at a resolution of 4 wavenumbers. 

Dynamic light scattering. Dynamic light scattering (DLS) experiments of the nanogels prepared in 

dilute media were performed using an ALV CGS-3 Compact Goniometer System, equipped with a 35 

mW HeNe linear polarized laser with a wavelength of 632.8 nm and an ALV/LSE-5004 light scattering 

electronic and Multiple Tau Digital correlator. The accessible scattering angles ranged from 30° to 

150°. Samples (2 mL in 2 cm diameter cylindrical glass cells) were immersed into a filtered toluene 

bath. Three independent 20 s measurements were carried out to obtain the dynamic data. Mean 

hydrodynamic diameters and size distributions were determined using a cumulant analysis method. 

Samples were first filtered with 0.8 µm nitrocellulose membrane. DLS measurements of nanogels 

prepared in inverse emulsion were performed using a Brookhaven BI-200SM instrument equipped 

with a He-Ne laser operating at λ= 636 nm, at 20 °C. Measurements were performed at different 
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angles and data analyses were carried out using the Gendist software. The samples were first filtered 

with 0.8 µm nitrocellulose membranes. 

Transmission electron microscopy. Transmission Electron Microscopy (TEM) images were 

recorded at Bordeaux Imaging center (BIC) on a Hitachi H7650 microscope working at 80 kV. 

Samples of nanogels synthesized in dilute media were prepared by drop depositing 0.7 µL of the 

nanogels solution in water onto a copper grid (200 mesh coated with carbon) and removing the 

excess after 5 min. Samples of the nanogels synthesized in inverse emulsion were prepared by drop 

depositing 0.7 µL of the solution of nanogels in THF onto a copper grid and left to dry. The grids 

were prepared in THF as it is miscible with both cyclohexane and water (the two emulsion phases), 

and if there is any surfactant left, it is also soluble in THF. As a matter of fact, only nanogels were 

observed. In both cases, they were subsequently stained with osmium tetraoxide vapour for 45 min. 

Experimental procedures 

Synthesis of hydroxyethyl disulfide-bis-diglycidyl ether (2). Cross-linker (2) was synthesized 

following an established synthetic protocol.53 In short, in a round bottom flask, 4.93 g of 2-

hydroxyethyl disulfide (32 mmol), 3.98 g of sodium hydroxide (100 mmol) and 72 mg of 

tetrabutylammonium bromide (TBAB) (223 mmol) were mixed and heated to 40 °C. 8.3 mL of 

epichlorohydrin (105.9 mmol) was added dropwise and the reaction was stirred for 3 h. The final 

product was purified by column chromatography (alumina column, cyclohexane/ethyl acetate 1:4) to 

obtain a yellow liquid (973 mg, 11%). 1H NMR (400 MHz, CDCl3): δ (ppm) 3.77 (m, 6H, 

CHCH2OCH2CH2S), 3.35 (m, 2H, CHCH2OCH2CH2S), 3.08 (m, 2H, CHCH2OCH2CH2S), 2.86 (t, 

4H, CHCH2OCH2CH2S), 2.74 (m, 2H, CH2OCHCH2OCH2CH2S), 2.54 (m, 2H, 

CH2OCHCH2OCH2CH2S). 13C NMR (400 MHz, CDCl3): δ (ppm) 71.8, 69.7, 50.8, 44.1, 38.6 

 

Scheme 4 Synthesis of cross-linker (2), hydroxyethyl disulfide-bis-diglycidyl ether 

Synthesis of poly(2-ethyl-2-oxazoline) (PEtOx). A typical procedure is as follows. In a flame 

dried Schlenk flask, 13 mL of acetonitrile was introduced under vacuum. 56 µL of MeOTf (0.5 mmol) 

was added. The flask was then placed in an ice bath at 0 °C and 5.7 mL of 2-ethyl-2-oxazoline (56.6 

mmol) was added. The flask was then heated to 85 °C where it remained for 3 days. The reaction as 

quenched via the addition of 2.7 equivalents of a 0.3 N KOH solution in methanol. The solution was 

left to stir at room temperature overnight and the polymer was precipitated twice into diethyl ether 

and dried under vacuum. Yield = 4.95 g (89%). 1H NMR (400 MHz, D2O): δ (ppm) 3.6-3.3 (d, 
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NCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.4-2.1 (m, NCOCH2CH3), 1.0-0.8 (q, NCOCH2CH3). dn/dc = 

0.0789 (in DMF + 0.1% LiCl). Mn (SEC) = 9259 g/mol, Ð = 1.28. DP = 94. 

Partial hydrolysis of PEtOx in acidic media. 1.14 g of P(EtOx)94 (1.22 × 10-4 mol) was dissolved 

in 10 mL of DI water and heated under reflux (at 100 °C). Subsequently, 10 mL of 37% HCl solution 

was added to the polymer solution yielding a final polymer concentration of 50 g/L. After 2 h, the 

solution was left to equilibrate to room temperature. A solution of 2.5 M NaOH was added to 

achieve a solution pH of 8. The polymer was purified by dialysis against DI water for 3 days and 

collected by lyophilization. Yield = 0.59 g (52%). 1H NMR (400 MHz, D2O): δ (ppm) 3.6-3.3 (d, 

NCOCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.9-2.7 (s, NHCH2CH2), 2.4-2.1 (m, NCOCH2CH3), 1.0-0.8 

(q, NCOCH2CH3). Ð = 1.20. IR: 3484 (m), 2977 (s), 2939 (s), 2880 (m), 1621 (s), 1470 (m), 1420 (s), 

1374 (s), 1320 (w), 1236 (m), 1194 (s), 1078 (w), 1061 (m), 969 (w), 915 (w), 877 (w), 813 (m), 761 

(w). %Hydrolysis: 1H NMR spectroscopy = 6.7%, titration = 5.3%. 

Hydrogel formation. To prepare the hydrogel, 10 mg of partially hydrolyzed poly(2-ethyl-2-

oxazoline), denoted as P(EtOx88-EI6) where EI stands for ethylene imine, was dissolved in 100 µL of 

DI water and 4 mg of 1,6-hexanediol diglycidyl ether (cross-linker 1) was added. The solution was 

stirred and heated at 80 °C overnight. The mixture was then left to equilibrate to room temperature 

and a hydrogel was obtained. The gel was purified by dialysis against DI water for 2 days and 

collected by lyophilization. IR (hydrogel 1, Scheme 2): 3431 (m), 2976 (m), 2938 (s), 2875 (m), 1621 

(s), 1470(w), 1420 (s), 1374 (m), 1321 (w), 1238 (w), 1194 (s), 1109 (w), 1079 (w), 1061 (m), 914 

(w), 814 (m), 761 (w). IR (hydrogel 2, Scheme 2): 3447 (m), 2976 (m), 2938 (s), 2875 (m), 1625 (s), 

1470 (w), 1420 (s), 1375 (m), 1321 (w), 1237 (w), 1194 (s), 1105 (w), 1079 (w), 1061 (m), 912 (w), 

814 (m), 759 (w). 

Hydrogels made from the additional cross-linkers were prepared following the same procedure, 

keeping the molar ratio of reactive functionalities constant. Only the temperature and solvent were 

varied according to Table 2. 

Chemical cleavage of hydrogels. Gels made with hydroxyethyl disulfide-bis-diglycidyl ether 

(cross-linker 2) may be cleaved in a reducing environment. To do so, the hydrogel was purged with 

nitrogen for 30 min and a solution of 30 mg (1.95 × 10-4 mol) of dithiothreitol (DTT) in 1 mL of 

degassed DI water was then added. The gel was stirred under nitrogen until complete dissolution of 

the gel was observed (within 5 minutes). 

Nanogel synthesis in dilute media. 10 mg of the partially hydrolyzed polymer P(EtOx88-EI6) was 

dissolved in 1000 µL of DI water. In another flask, a solution of 1,6-hexanediol diglycidyl ether (cross-

linker 1) at 80 mg/mL was prepared in ethanol. Both solutions were filtered through a 0.2 µm 

polypropylene filter and subsequently 28 µL of the cross-linker solution in ethanol was added to the 
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polymer solution. The mixture was stirred at 800 rpm at 80 °C for 3 hours. The cross-linking 

reaction and nanogels formation was followed by DLS at an angle of 90° on a Malvern ZetaSizer 

NanoZS instrument. Once the nanogels were formed, they were purified by dialysis for 2 days 

against DI water. 

Nanogel synthesis in w/o emulsion. Nanogels were prepared in an inverse emulsion (W/O) 

process using ultrasonication. An aqueous solution containing 100 µL DI water, 10 mg of the partially 

hydrolyzed polymer P(EtOx88-EI6), and 4 mg of cross-linker was prepared. In another flask, 0.25 g of 

Span 80 in 5 g of cyclohexane were mixed together to form the organic phase. 0.8 g of the organic 

phase was transferred into an Eppendorf tube and the aqueous phase was added. The mixture was 

utrasonicated with an ultrasonic probe Q sonica, LLC from Misonix sonicators (XL-2000 series), for 

2 min, at 6 W output. The emulsion was then transferred to a glass tube and placed in an oil bath to 

stir, at 80 °C, overnight. The product was then centrifuged and the supernatant (cyclohexane and 

surfactant) removed. The residue was then mixed with new cyclohexane, and the solution vortexed. 

This process was repeated 3 times. Subsequently, THF was added and the same process was 

repeated twice. Finally water was added and the resulting nanogel solution purified by dialysis for 3 

days prior to any DLS measurements. The size of the nanogels was measured in DI water (0.5 mL). 

To study the influence of pH on the size of the nanogels, 24 µL of a 0.5 N HCl solution was added to 

0.5 mL of the initial nanogels. When nanogels were prepared with the cleavable cross-linker (2), the 

nanogel sizes were measured after addition of DTT (16 µL of a DTT solution at 10 mg/mL was added 

to 0.5 mL of nanogel solution). 

SUPPORTING INFORMATION  

The 1H NMR spectrum of PEtOx94 shows protons of the α-end of the polymer chain (CH3-) 

appearing as a double peak (peak a in Figure 1). The splitting of this peak was attributed to its 

attachment to the amide backbone, which has two resonance states.55 The rotation around the C-N 

bond of the amide is not completely free which leads to delocalization of the nitrogen to give a 

partial “double-bond character” to the C-N bond.  
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Figure S1 SEC traces of poly(2-ethyl-2-oxazoline)94 and poly((2-ethyl-2-oxazoline)-stat-(ethylene imine)) 

copolymer obtained after 6.5 h of hydrolysis in DMF 

 

 

Figure S2 SEC traces of poly(2-ethyl-2-oxazoline)94 and poly((2-ethyl-2-oxazoline)88-stat-(ethylene imine)6) 

statistic copolymer after 2 h of hydrolysis in DMF 
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Figure S3 Determination of the intrinsic viscosity of poly(2-ethyl-2-oxazoline)94 by plotting the reduced 

viscosity as a function of the concentration. 

 

 

Figure S4 FT-IR spectrum of poly((2-ethyl-2-oxazoline)88-stat-(ethylene imine)6) 
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Figure S5 FT-IR spectrum of the dry hydrogel made with poly((2-ethyl-2-oxazoline)88-stat-(ethylene imine)6) 

and 1,6-hexanediol-diglycidyl ether 

 

 

Figure S6 FT-IR spectrum of the dry hydrogel made up of poly((2-ethyl-2-oxazoline)88-stat-(ethylene 

imine)6) and hydroxyethyl disulfide-bis-diglycidyl ether (2) 
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Figure S7 1H NMR spectrum (400 MHz, CDCl3) of hydroxyethyl disulfide-bis-diglycidyl ether (cross-linker 2) 

 

Figure S8 HSQC NMR spectrum (400 MHz, CDCl3) of hydroxyethyl disulfide-bis-diglycidyl ether (cross-

linker 2) 
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Figure S9 Decrease in relative count rate (%) measured by DLS at 90°, after addition of DTT or DI water.  

 

Appendix S1 – Determination of the critical concentration for gelation 

Once the intrinsic viscosity is known, the radius of gyration (Rg) of the polymer can be calculated 

using the Fox-Flory equation (1)56: 

𝑅!!   =
!   !
!!

      (1) 

where M is the polymer molecular weight, [η] its intrinsic viscosity and φ’ = 3.1 1024 (with [η] in 

cm3/g).  

The critical concentration corresponds to the concentration where the polymer chains start to 

entangle. Assuming polymer as hard spheres, the critical concentration can be written as follow: 

 

c* = 
!∗  !!

!!  !!!!"#
 where ϕ*=  𝑉𝑐ℎ𝑎𝑖𝑛  𝑉𝑡𝑜𝑡𝑎𝑙

 = 0.74 

and  

Vchain = !
!
𝜋𝑅𝑔! 
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Table S1 Determination of the critical concentration c* of poly(2-ethyl-2-oxazoline)94 

Polymer Mn 
(g/mol) 

PDI Mw 
(g/mol) 

[η] 
(dL/g) 

Rg 
(nm) 

V 
(m3) 

c* 
(g/L) 

P(Etox)94 9259 1.28 11851 0.1272 3.65 2.04 10-25 55.9 
 

Appendix S2 – DLS measurements/equations 

In DLS, a sample of particles in solution is placed in a laser beam. When the laser beam hits small 

particles, the light is scattered in all directions. DLS measurements rely on the fact that particles in 

solution undergo Brownian motions which lead to time-dependent fluctuations in the scattering 

intensity. The fluctuation rate is directly correlated to the size of the particles: the smaller the 

particle, the quicker they will move. 

The dynamic information on the particles is derived from an autocorrelation of the intensity trace 

recorded during the experiment (i.e. the cross-correlation of the intensity signal with itself, where 

the x axis corresponds to the delay time, τ). From the inverse Laplace transformation of the intensity 

correlation function, a distribution plot of the relaxation times can be obtained. 

Then from equation (1), where n0 corresponds to the refractive index of the solvent, λ the 

wavelength of the laser and θ the angle at which the measurement is done, one can plot the decay 

rate (Γ) as a function of q², small spherical particles show no angular dependence, hence no 

anisotropy, resulting in a horizontal line. The translational diffusion coefficient DT 

corresponds to the slope of this line. 

𝑞 =   
!!!!!"#  (

!
!)

!
     (1) 

𝐷! =   
�

!!
 where �   =    !

!
 

The hydrodynamic radius can be calculated thanks to the Stokes-Einstein equation (2): 

𝑅! =
!!!
!!�!!

        (2) 

Where T is the temperature, kB the Boltzmann constant (1.38 10-23 J/K), η is the viscosity of the 

solvent. 
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Abstract: A poly(2-isopropyl-2-oxazoline)-block-poly(2-methyl-2-oxazoline) copolymer, denoted as P(iPrOx-b-

MeOx), was synthesized by sequential cationic ring opening polymerization of the corresponding 2-alkyl 

oxazoline monomers. This copolymer exhibited a lower critical solution temperature (LCST) around 56 °C, 

due to the presence of the PiPrOx block. The ability of this polymer to crystallize in water above its LCST was 

further exploited to induce the self-assembly of the P(iPrOx-b-MeOx) block copolymer in aqueous solution. 

The influence of the hydrophilic stabilizing PMeOx block on the crystallization process and on the crystalline 

structures was then investigated in detail. Thus, spherical micelles of 32 nm diameter were observed by 

transmission electron microscopy (TEM) from an aqueous solution of the block copolymer solution above the 

LCST of PiPrOx. These micelles could be disassembled in a reversible manner when kept for a short period of 

time (i.e. t < 1h30) above the LCST and cooled down to room temperature. Annealing the copolymer solution 

for more than 1h30 at 65 °C induced the crystallization of PiPrOx, as evidenced by wide angle X-ray 

scattering (WAXS) experiments. This crystallization-driven self-assembly phenomenon resulted in a number of 

different morphologies, including core-crystallized spherical micelles, non-spherical micelle-like nanostructures 

(nano-aggregates) and micron-size fibers, depending on annealing time, as observed both by dynamic light 

scattering (DLS) experiments and TEM imaging. The three morphologies were found to coexist, their relative 

proportion varying with the annealing time. Formation of micron-size range fiber-like structures might be 

explained by a re-organization of both core-crystallized micelles and nano-aggregates. The crystal structure, 

as determined by WAXS, indeed appeared to be identical to that of the PiPrOx homopolymer. Lastly, the 

influence of both the polymer concentration and the heating rate on the morphological behavior was also 

studied: while concentration was varied, the same crystalline structures were obtained but they were not 

predominant at the same annealing time, whereas when the heating rate was slower, the crystalline objects 

seemed to evolve towards better defined micron-size structures. 
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INTRODUCTION 

Block copolymers (BCPs) are formed by two or more homogeneous polymer fragments joined 

together by a covalent bond.1 Recent advances in precision macromolecular synthesis have allowed 

designing BCPs with engineered properties that can meet specific needs.2 As a result of the 

incompatibility between the two blocks, BCPs can self-assemble in solution3,4 into well defined 

nanostructures, including micelles of different shapes (spheres, cylinders or toroids)5,6 or polymeric 

vesicles (also referred to as polymersomes).7–9 In many cases, the self-assembly is driven by 

hydrophobic interactions. Some examples can also be found in the literature where the self-assembly 

is driven by electrostatic interactions between a pair of oppositely-charged BCPs,10 or BCPs with 

complementary chirality.11 However, when multiple forces are involved, more complex 

nanostructures can be achieved.  

Interestingly, Manners and coworkers have reported that crystallization of one block can induce the 

self-assembly of specific BCPs based on polyferrocenylsilane (PFS) that was used as the hydrophobic 

and crystallizable block. When PFS was arranged with a synthetic polypeptide block, namely, poly(γ-

benzyl-L-glutamate), self-assembly occurred in dimethylformamide (DMF). However, annealing the 

same solution induced crystal growth of PFS, which resulted into well-defined truncated elliptical 

micelles from the less ordered original structures.12 When PFS was associated to poly(2-

vinylpyridine), the morphology of the self-assembled structures (spheres, cylinders, platelets) could 

be tuned, depending on the solvent selectivity, which was correlated to the different levels of 

crystallinity (amorphous, single core-crystal and polycrystalline, respectively).13 Cylindrical micelles of 

controlled length14 and fiber-like micelles15 were also obtained with other copolymer systems. 

O’Reilly and coworkers also described some crystallization-driven self-assembly systems made from 

diblock poly(L-lactide)-block-poly(acrylic acid) (PLA-b-PAA), where the morphology was tuned from 

spherical to controlled-length rod-like micelles upon annealing. Interestingly, no core-crystallization 

occurred when amorphous atactic poly(lactide) was used.16–19  

In the present chapter, we report on the self-assembly and further crystallization of a particular 

polyoxazoline-based block copolymer, towards the formation of physically cross-linked structures at 

the nano- or the microsize range.  

As highlighted in the literature overview (chapter 1), the cationic ring-opening polymerization 

(CROP) of 2-alkyl-2-oxazolines has been adapted for the synthesis of well-defined copolymers, which 

allows the tuning of their physico-chemical properties.20–22 For example, the hydrophobicity of the 

polymer is controlled by the length of the alkyl substituent, 2-methyl-, 2-ethyl-, and 2-isopropyl-2-

oxazolines resulting in water-soluble polymers at room temperature.23 Thermal properties of poly(2-
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oxazoline)s (POx) are also tunable over a broad range of temperature and are dependent on both 

their molar masses and their polymer architecture.24 The versatility of POx, associated with their 

interesting biological properties (structural similarities with polypeptides,25 biocompatible character 

and stealth behavior of some POx26–28) has led to their recent revival.  

Among the different 2-alkyl oxazoline monomers, the commercially available 2-isopropyl-2-oxazoline 

(iPrOx) is of particular interest. Its corresponding polymer, PiPrOx, is indeed a structural isomer of 

poly(N-isopropylacrylamide) (PNIPAAm). Like PNIPAAm, PiPrOx thus possesses a lower critical 

solution temperature (LCST) around 36 °C, 29–31 which makes it a good candidate for the design of 

thermo-responsive polyoxazoline-based compounds.32 In addition, and in contrast to PNIPAAm, 

PiPrOx is capable of crystallizing above its LCST.33  

Advantage of such a behavior has been taken by Schlaad et al. who observed hierarchical structures, 

such as micron-size assemblies of fibrils from the homopolymer.34,35 The morphology was eventually 

found to evolve with time for a 1wt% PiPrOx aqueous solution that was heated to 65 °C; network-

like structures developed into micron-size assemblies.36 A statistical copolymer made of iPrOx and 2-

(3-butenyl)-2-oxazoline units was also synthesized and found to self-assemble and crystallize above its 

LCST into spherical micron-size structures, which was further used for carbohydrate protein 

recognition.37 Self-assembly and crystallization of a PiPrOx-graft-pullulan copolymer were also 

reported.38 Micron-sized ring-like structures with short fibrils emanating from the ring circumference, 

or a “sea urchin”–like morphology were obtained but other morphologies were observed, depending 

on the experimental conditions (addition of salts, with/without stirring). It is worth pointing out that 

PiPrOx is not the only POx that can undergo crystallization. Chiral POx,39 PEtOx40 and a series of 

homopolymers with linear side chains of different alkyl length41 were also demonstrated to crystallize 

upon annealing.  

In this chapter, we investigate the aqueous solution behavior of poly[(2-isopropyl-2-oxazoline)-block-

poly(2-methyl-2-oxazoline)] BCP, denoted as P(iPrOx-b-MeOx), above the LCST of PiPrOx. The 

synthesis, self-assembly and crystallization of P(iPrOx-b-MeOx) are investigated in details. To the best 

of our knowledge, this is the first study describing the self-assembly properties of POx-based BCPs 

induced by a crystallization phenomenon. The self-assembly into spherical micelles, above the LCST 

of PiPrOx, is evidenced by dynamic light scattering (DLS), whereas the change in morphology due to 

crystallization is monitored by DLS and transmission electron microscopy (TEM). The crystallization 

is analyzed by differential scanning calorimetry (DSC) and wide-angle x-ray scattering (WAXS). Lastly, 

the influence of external parameters such as polymer concentration and heating rate on the 

morphologies formed is also discussed. 
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I. SYNTHESIS OF P(IPROX50-b-MEOX50) COPOLYMERS BY CATIONIC 

RING OPENING POLYMERIZATION 

The P(iPrOx-b-MeOx) BCPs were obtained by sequential CROP of corresponding 2-oxazoline 

monomers, as depicted in  Scheme 1.42,43 In order to achieve a well-defined BCP, iPrOx has to be 

polymerized first as its corresponding macro-cation is more prone to initiate the polymerization of 

MeOx for the growth of the second bock, than if one starts by the polymerization of MeOx first.44,45 

Indeed, SEC traces showed some homopolymer PMeOx left over for the copolymer obtained by 

starting by the CROP of MeOx first (SI†, Figure S3). In contrast, a complete shift to the higher 

molecular weight region was noted when iPrOx was polymerized first, suggesting that all macro-

PiPrOx chains could initiate the CROP of MeOx. Due to prolonged reaction times required for the 

synthesis of these BCPs (several days), some side reactions (chain transfer) also likely occurred to 

some extent, as a small tailing effect can be observed in the SEC traces (SI†, Figure S3). One possible 

way to obtain better defined copolymers would be to perform the sequential CROP in a microwave 

reactor, so as to dramatically shorten the reaction times.46 

The P(iPrOx-b-MeOx) block copolymer used in the rest of the study was obtained with a dispersity 

of 1.19 and a degree of polymerization of 50 for each block (SI†, Figures S2 and S3). 

 

Scheme 1 Synthesis of P(iPrOx50-b-MeOx50) BCP by sequential cationic ring-opening polymerization  

II. REVERSIBLE SELF-ASSEMBLY OF P(IPROX50-b-MEOX50) ABOVE 

THE LCST  

The cloud point, i.e. the temperature where turbidity first appeared,47 of a 10 mg/mL solution of 

P(iPrOx-b-MeOx) was evaluated by DLS measurements, and was determined to be approximately 57 

°C (SI†, Figure S4). Due to the presence of the hydrophilic PMeOx block, the LCST was thus found 

to be higher than that reported for the PiPrOx homopolymer (around the body temperature).29,48–50 

Below the LCST, the copolymer proved to be fully soluble in water. By increasing the temperature 

above the LCST, i.e. at 65 °C, the formation of well-defined micelles was noted, as shown in Figure 1. 

Sizes (d = 32 nm), as determined by DLS and TEM image statistical analysis, were in good agreement. 
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Figure 1 P(iPrOx50-b-MeOx50) micelle characterization at 65 °C A) DLS analysis with correlogram and size 

distribution obtained at 90°, B) TEM micrograph C) distribution of micelle size by TEM, determined by 

Image J. 

Micelle formation above the LCST of the BCP was found to be a reversible process, but only if the 

corresponding aqueous solution was kept above the LCST for a short period of time (< 1h30). Thus, 

unimers were observed when the solution was cooled down to 25 °C, after heating at 65 °C, as 

summarized in Figure 2. 

 

Figure 2 P(iPrOx50-b-MeOx50) micelles size evolution with temperature measured by DLS 

III. MORPHOLOGY EVOLUTION BY CRYSTALLIZATION OF P(IPROX50-b-

MEOX50) 

As mentioned above, PiPrOx has been reported to crystallize when kept for 2 hours or more above 

its LCST.34 In the present work, we studied the influence of the presence of the hydrophilic 

stabilizing PMeOx block on the crystallization process and on the as-formed crystalline structures.  
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To monitor the morphology evolution with time, in situ DLS measurements were performed on a 10 

mg/mL copolymer sample of P(iPrOx50-b-MeOx50) in water, at 65 °C. We noted that the initially 

well-defined and nearly monodisperse micelles progressively became unstable (Figure 3). Increase in 

polydispersity, count rate and size was indeed observed with time, indicating that micelles evolved 

into larger and increasingly less defined structures. Nevertheless, after about 4 hours, the system 

seemed to reach a steady state. 

 

Figure 3 in situ DLS measurements of P(iPrOx50-b-MeOx50) in water at 10 mg/mL and 65 °C 

The change in morphology also resulted in a change of the solution turbidity. Crystal formation could 

also be macroscopically detected. This morphology evolution was found to be irreversible. In order 

to get a better understanding on the assembly behavior, aliquots were taken at different annealing 

times (1h30, 3h, 4h30, 7h and 24h) and were allowed to cool back to room temperature. No 

significant change in the scattered intensity was observed by DLS, compared to the sample measured 

in situ at 65 °C (SI†, Table S1), suggesting that the previously formed nano/micro-objects remained 

stable. Structures obtained at the different annealing times were further characterized by TEM 

(Figure 4). Withdrawn samples were deposited onto the TEM grid after cooling to room 

temperature, the nanostructures being supposedly ‘locked’, as suggested by DLS.  
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Figure 4 TEM micrographs of 10 mg/mL of P(iPrOx50-b-MeOx50) solution in water heated at 65 °C for 1h30, 

3h, 4h30, 7h and 24h 
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At first glance, one can note that the P(iPrOx-b-MeOx) BCP did crystallize and that the 

morphologies obtained evolved with the annealing time. After 1h30, indeed, some anisotropic fiber-

like structures were observed, with a polydispersity (PdI) of 0.28 as determined by DLS. After 3h, the 

proportion of fiber-like structures increased and appeared to arrange into denser “fiber-nods”. 

Nevertheless, some micellar nanostructures still remained present, suggesting that these micelles 

experienced a core-cross-linking phenomenon due to the crystallization process. At longer annealing 

times, the proportion of fibers further increased until network-like structures were achieved. Yet, 

small non-spherical micelle-like nanostructures (nano-aggregates), around 30 nm in diameter, could 

still be detected. We assumed that the aforementioned structures could coexist at each annealing 

time, but differed only in their proportion. Due to the length scale difference, however, all of these 

structures could not be imaged. Our hypothesis is supported by the fact that small-sized nano-

structures (core-cross-linked micelles or nano-aggregates) were still detected even after 24 h, as part 

of the fiber-like structures. It is thus highly likely that these primary crystalline nanostructures took 

part of the fiber formation.  

It is worth mentioning that crystallization only occurred above the LCST of P(iPrOx50-b-MeOx50) in 

aqueous solution. As the copolymer concentration was kept constant, progressive increase in the 

amount of crystalline materials, as determined by TEM, suggested that the extent of reversible 

micelles decreased proportionally. Thus, the self-assembled micelles might act as crystallization seeds 

and the spatial restriction caused by the crystallization of the PiPrOx block could result in the 

formation of the observed nano-aggregates and fibers. A similar mechanism was described by 

O’Reilly et al. regarding the crystallization-driven self-assembly of PLA-b-PPA, where spherical 

micelles underwent crystallization that nucleated the growth of cylindrical structures.18 

The arrangement of the fibers seemed to evolve following specific steps. Firstly, individual growth 

was observed after which some fibers-nods were found. With increasing proportion of the fibers, 

inter-connection between fibers occurred leading, ultimately, to a more uniform fiber-network.  

TEM observations were in agreement with results delivered by DLS (Figure 3). Initially (in the first 

hour), an increase in polydispersity was noted, as individual anisotropic fibers were formed, which 

coexisted with a large number of reversible micelles (not observable by TEM prepared at room 

temperature). Subsequently, a drop in polydispersity was noted, corresponding to the formation of 

larger and more isotropic fiber-nods shielding the smaller nanostructures. In a final step, upon 

formation of the fiber network, an increase in polydispersity was again observed  

Morphologies observed herein with the P(iPrOx50-b-MeOx50) BCP differed from those observed with 

the PiPrOx homopolymer, for which fibers initially formed and further assembled into micron-size 

spherical structures.36 This difference can obviously be explained by the presence of the PMeOx 
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block, forming a hydrophilic stabilizing shell. Both core-cross-linked micelles and nano-aggregates 

were directly issued from the self-assembly of the BCP above its LCST, and the formation of a 

network -rather than a micro-spherical aggregated structure as observed by Schlaad et al.34,36- can be 

ascribed to the likely core-shell structure of the block copolymer fibers.   

Crystal formation was also evidenced by DSC experiments. Thermograms of the P(iPrOx50-b-

MeOx50) BCP obtained without any further post-treatment (dry polymer, at room temperature) and 

after 24 h of annealing at 65 °C are compared in Figure 5.  

 

Figure 5 DSC thermograms of P(iPrOx50-b-MeOx50) without any further post-treatment and after 24 h 

heating in aqueous solution at 65 °C 

The glass transition temperature (Tg) was clearly detected at 74 °C for the non-treated BCP, 

highlighting its amorphous character. After 24 h of annealing at 65 °C (10 mg/mL), however, no Tg 

could be detected (DSC trace is flat in this region). In addition, three endothermic and exothermic 

peaks appeared, respectively, upon heating and cooling the latter sample. These peaks could be 

attributed to the melting and crystallization of the PiPrOx block, respectively (peaks areas matching 

very well each other). Multiple melting peaks during the heating scan is a known phenomenon for 

semi-crystalline polymers, such as poly(ethylene),51 poly(ether ether ketone)52,53 or poly(ether 

terephtalate).54 More recently, crystal main-chain of enantiopure and racemic poly(2-butyl-4-ethyl-2-

oxazoline)s also showed a similar behavior.39 Multiple melting transitions can be explained by the 

following major mechanisms: partial melting-re-crystallization of original crystals and subsequent re-

melting during heating scan, namely, melt-recrystallization, or melting of coexistent lamellar stack 

populations with different lamellar thicknesses and/or different degree of ordering or perfection, 
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namely, dual lamellae population or finally melting and/or phase transformation between the different 

crystal structures.39,55  

It is interesting to note that, on the first heating curve of each copolymer (SI†, Figure S6), a melting 

peak was also detected around 200 °C, but that was not reversible in the time scale of the DSC 

experiment. This temperature corresponds to the melting temperature of the PiPrOx 

homopolymer.35 As the polymer was kept for over 2 years before DSC analyses, this peak might 

correspond to slow crystallization occurring under storage conditions. PMeOx and PiPrOx are both 

known to be hygroscopic polymers;35,56,57 thus, even small amounts of water uptake under storage 

conditions can induce crystallization, by increasing the polymer chain mobility, and favoring chain 

alignment.35 

In addition, the melting temperatures observed for the block copolymers on the DSC thermograms 

are lower than the melting temperature of the PiPrOx homopolymer, indicating that the crystals 

formed with the block copolymer are less perfect.  

In order to monitor the crystal structure with time, the same aliquots were dried and analyzed by 

wide angle X-ray scattering (WAXS; Figure 6).  

 

Figure 6 A) WAXS patterns of P(iPrOx50-b-MeOx50) after 1h40, 3h, 4h30, 7h and 24h of annealing at 65 °C. 

Peaks assignment according to ref. 35 B) Crystal structure adapted from ref. 35 

As in the case of the crystallization of the PiPrOx homopolymer, an amorphous halo was observed, 

and both the intensity and the sharpness of the crystalline peaks increased with time,36 confirming 

that the BCP exhibited semi-crystalline character. The majority of X-ray peaks could be assigned, 

matching those reported in literature (SI†, Figure S5 and Table S2).35,58 Thus, the two main peaks 
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were observed at the same scattering angle as that of the homopolymer (2θ = 8° and 18.25° 

corresponding to d = 11.25 and 4.85 Å, respectively). The first crystalline structure was thus identical 

to PiPrOx, with the polymer backbone being aligned along the [001] direction while the isopropyl 

side groups were alternately aligned along the [100] direction to either side of the backbone, and the 

amide dipoles oriented along the [010] direction, also alternating in direction (Figure 6 B).35 

To gain a better insight into the types of crystallites, the nature of the interactions into the crystal 

structure was evaluated. Hydrophobic interactions59 are expected to play a crucial role in the 

crystallization phenomenon of our POx-based BCP, the crystallization occurring above the LCST, 

when the copolymer becomes amphiphilic. However, and as reported earlier, dipolar interactions 

could also be involved in the crystallization process.20,33,35 Solubility tests were carried out to 

investigate that point. BCPs were first annealed for 24h at 65 °C, dried and dispersed in pure water 

or in a mixture of water and trifluoroacetic acid (TFA) (SI†, Figure S7). In the former case, a turbid 

suspension was obtained, confirming that nanostructures remained intact, while in the water/TFA 

mixture, a clear solution was observed, suggesting that crystalline structures were disrupted by TFA. 

TFA is often used as additive to minimize aggregation phenomena due to hydrogen bondings34 in 

naturally occurring or synthetic polypeptides. However, hydrogen bonding interactions are not 

expected to develop neither in PMeOx nor in PiPrOx, although Schlaad et al. have suggested the 

existence of such interactions in PiPrOx in his first report.34 In our case, it is highly likely that TFA 

could minimize strong dipolar Van der Waals interactions in water solution of our BCP, and prevent 

crystallization from developing. In absence of TFA, the crystallization mechanism might be similar to 

that proposed by Winnick et al.,33 where hydrophobic interactions initially enable to arrange PiPrOx 

blocks close to each other, while the polymer chain shifts from trans and gauche conformation to an 

all trans conformation, leading to the alignment of dipolar amide groups35 and the development of 

inter-chain dipolar interactions, which favors main chain crystallinity (Figure 7).56  

 

Figure 7 Schematic representation of the changes in the conformation of PiPrOx in water as a function of 

temperature. Reprinted from ref. 33 



Crystallization-driven self-assembly of P(iPrOx-b-MeOx) above its LCST 

125 

IV. INFLUENCE OF EXTERNAL PARAMETERS ON THE CRYSTALLIZATION 

PROCESS 

It was previously demonstrated that the annealing time significantly not only influenced the crystal 

structures (core-crystallized micelles, nano-aggregates or fibers), but also their relative proportion. 

Other parameters, such as the heating rate and the polymer concentration, were varied in order to 

elucidate their respective influence on the crystalline structures.  

IV.1. POLYMER CONCENTRATION 

Firstly, the influence of BCP concentration on the crystallization process was investigated. To do so, 

a solution of 1 mg/mL was annealed at 65 °C and compared to the results previously obtained at 10 

mg/mL. The crystallization and morphology evolution were monitored both by DLS (Figure 8) and 

TEM (Figure 9).  

 

Figure 8 In situ DLS measurements of P(iPrOx50-b-MeOx50) in water at 1 mg/mL and 65 °C 
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Figure 9 TEM micrographs of 10 mg/mL of P(iPrOx50-b-MeOx50) solution in water heated at 65 °C for 1h30, 

3h, 4h30, 7h and 24h 
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At this lower concentration, the three morphologies previously observed at 10 mg/mL, i.e. fibers, 

nano-aggregates and core-cross-linked micelles, were again evidenced. In this case, as the 

concentration was lower, smaller morphologies (nano-aggregates and core-cross-linked micelles) 

could be more easily detected. The polymer concentration was also found to have an influence on 

the kinetic of crystallization: at 10 mg/mL, core-cross-linked micelles were mainly observed after 7h 

of annealing at 65 °C, whereas at 1 mg/mL the same structures were predominant already after 4h30. 

In addition, an increase in the count rate and size was again noted after 7h, by in situ DLS 

measurements whereas a plateau was already reached after 3h30 at a concentration of 10 mg/mL. 

IV.2. HEATING RATE 

The influence of the temperature was then studied by monitoring the morphology evolution with 

temperature. The BCP concentration was maintained at 10 mg/mL, and the solution was gradually 

heated, from 25 to 65 °C, at a rate of 0.1 °C/min (Figure 10). 

 

Figure 10 In situ DLS measurements of a 10 mg/mL P(iPrOx50-b-MeOx50) solution in water heated at 0.1 

°C/min from 25 °C up to 65 °C. 

As long as the temperature was maintained below the LCST of the BCP, the count rate was close to 

the detection limit of the DLS, indicating that the BCP was well dispersed in water. Above the LCST, 

however, an increase in the count rate and size was observed, along with a decrease in 

polydispersity. A final size of 1100 nm (polydispersity of 0.20) was determined at 65 °C. In addition, 

when the solution was allowed to cool to 25 °C, a particle size of 1500 nm (polydispersity of 0.12) 

was found, with a count rate comparable to that obtained at 65 °C (4007 kcps). This was attributed 

to the crystallization of the micron-size aggregates. The increase in particle size upon cooling might 

be explained by re-swelling of the aggregates as the BCP chains became more hydrophilic: the 
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PMeOx blocks became more hydrated when the temperature was decreased to room temperature, 

and if all the PiPrOx blocks were not involved yet in the crystallization, the non-crystallized ones 

could swell. 

The heating rate had also a major influence on the nature of nanostructures:60 from micelle-like 

structures (16 nm of radius) to micron-size particles. The slower the BCP solution was heated, the 

longer the time was needed to reach and pass the LCST for all copolymer chains (LCST is molecular 

weight dependent).29 As a consequence, there is a temperature range where copolymer chains are 

partly amphiphilic, with other chains being still hydrophilic. Their organization being slower, self-

assembly competes with the crystallization process, leading to the formation of larger structures. 

However, when the copolymer solution is heated rapidly above its LCST, all the chains become 

amphiphilic more or less simultaneously, self-assembling into micelles. To get more insight into the 

micron-size structure formed, it would be worth trying to image them and study their crystalline 

morphologies (micelle-like structure or micron-size aggregates made of fibers, etc.).  

CONCLUSIONS 

In this chapter, the aqueous solution behavior of a particular block copolymer, P(iPrOx50-b-MeOx50), 

synthesized by sequential CROP, was investigated at temperatures above the cloud point (56°C) of 

the PiPrOx. When heated to 65 °C for a short period of time, well-defined and reversible micelle-

like nanostructures were evidenced by DLS and TEM imaging, with a hydrodynamic diameter of 32 

nm.  

Annealing this BCP above its LCST for a period of time higher than 1h30, induced the crystallization 

of PiPrOx, as attested by combined techniques, including WAXS, DSC, and TEM. The longer the 

annealing time, the higher the extent of crystallinity. Monitoring the crystallization process by DLS 

and TEM showed that three different morphologies, namely, core-crystallized micelles, nano-

aggregates and fibers were achieved, as illustrates in Scheme 2. 
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Scheme 2 Schematic representation of the nano-structures formed depending on the annealing time 

These structures were eventually found to coexist at varying ratios as a function of the annealing 

time. TEM analysis suggested that the initially formed nano-aggregates and/or micelle-like structures 

were involved in fiber formation. Different morphologies were thus obtained, in comparison to those 

previously observed for the PiPrOx homopolymer, which was attributed to the stabilizing effect of 

the hydrophilic PMeOx block. Investigations by WAXS showed that the observed crystal structure 

was the same as that of the homopolymer (PiPrOx), at the short range, despite achieving different 

morphologies by TEM. Main chain crystallinity was evidenced and proved to be driven by both 

hydrophobic and dipole-dipole interactions. These can be disrupted using a simple additive such as 

trifluoroacetic acid, that would minimize strong dipolar Van der Waals interactions in water solution 

of our BCP, and prevent crystallization from developing. Lastly, as the copolymer chains were in a 

non-equilibrium state, the final crystalline structures obtained were varying with external parameters: 

both the polymer concentration and heating rate were found to influence the final morphologies 

obtained. Further tuning of the annealing conditions and copolymer properties (block ratio, 

copolymer architecture) may be interesting to achieve control over the crystal evolution and the final 

morphology. It might also be possible to achieve other crystalline structures 
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EXPERIMENTAL SECTION 

Materials and reagents 

2-Methyl-2-oxazoline (99%) (EtOx), methyl trifluoromethanesulfonate (96%) (MeOTf), and 

acetonitrile (99%) were purchased from Sigma-Aldrich, stored over calcium hydride and purified by 

vacuum distillation prior to use. Methanol purchased from Aldrich was refluxed with sodium and 

distilled prior to use. Diethyl ether, potassium hydroxide (KOH), isobutyronitrile (99.6%) and 

cadmium acetate dehydrate (98%) were purchased from Sigma-Aldrich and used as received. 2-

Aminoethanol was purchased from Fisher Scientific. 2-Isopropyl-2-oxazoline (iPrOx) was synthesized 

as described elsewhere (see Experimental procedures).61 

Instrumentation and measurements 

NMR spectroscopy. 1H NMR measurements were carried out at 298K on a Bruker Avance I 

spectrometer operating at 400 MHz. CDCl3 or D2O were used as an internal reference (δ = 7.26 and 

4.79 ppm respectively), and the relaxation time was fixed to 5 sec for all measurements.  

Size-exclusion chromatography. Size-exclusion chromatography (SEC) using dimethylformamide 

(DMF) with LiBr (1 g/L) as the eluent was performed at 80 °C at a flow rate of 0.8 mL/min. The 

column set consisted of two 7.5 mm × 300 mm PLgel, 5 µm Mixed-D columns (Polymer laboratories) 

coupled to a 7.5 mm × 50 mm, PLgel, 5 µm guard column (Polymer laboratories). A 20 µL injection 

loop was used and calibration was performed with polystyrene standard. Differential refractive index 

(RI) and UV detectors were used. 

Dynamic light scattering. Dynamic light scattering measurements (DLS) were run in triplicate on 

a Malvern Zetasizer apparatus (Nano-ZS90 model), at a back scattering angle of 90 °. 

Transmission electron microscopy. Transmission Electron Microscopy (TEM) images were 

recorded at Bordeaux Imaging center (BIC) on a Hitachi H7650 microscope working at 80 kV. 

Samples were prepared by drop depositing 0.7 µL of a 0.05 wt% of the desired copolymer solution 

onto a copper grid (200 mesh coated with carbon) and removing the excess after 5 minutes. In order 

to image the reversible micelles observed only above the LCST of the copolymer, the grid was left to 

dry at 65 °C (i.e. above the LCST). Statistical size analyses of particles observed by TEM were carried 

out using Image J. 

Differential scanning calorimetry. Differential scanning calorimetry (DSC) measurements were 

carried out on a Q1000 apparatus from TA Instruments. DSC experiments were performed in 
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aluminium sealed pans, at a constant heating/cooling rate of 10 °C/min and gas purging (N2) at a flow 

rate of 100 mL/min.   

Wide angle X-ray scattering. Wide angle X-ray scattering experiments (WAXS) were carried 

out at the Centre de Recherche Paul Pascal (CRPP, Pessac, France). Measurements were carried out 

on a Rigaku Nanoviewer (XRF microsource generator, MicroMax 007HF ) with a rotating copper 

anode coupled to a confocal Osmic Max-Flux mirror (Applied Rigaku Technologies, Austin, USA), 

producing a beam with a wavelength of 1.5418 Å with an energy of 8 keV. Data were collected with a 

Mar345 detector (Marresearch, Norderstedt, Germany). Polymer solutions were freeze-dried and 

put into a 1.5 mm diameter glass capillary, placed at a distance of 150 mm away from the detector 

(diameter of 345 mm), providing access to 2θ angles in the range of 0.9° to 49°. 

Experimental procedures 

Synthesis of 2-isopropyl-2-oxazoline (iPrOx). 2-Isopropyl-2-oxazoline (iPrOx) was synthesized 

as described elsewhere: 61 

 

Scheme 3 Synthesis of 2-isopropyl-2-oxazoline 

2-Amino-ethanol (51 g, 0.83 mol) was added drop-wise to a suspension of isobutyronitrile (54.5 g, 

0.79 mol) and cadmium acetate dihydrate (10.65 g, 0.04 mol) at 130 °C. The solution was stirred for 

24 h at 130 °C and then fractionated by vacuum distillation. Yield: 64 g (0.57 mol, 72%). 1H NMR 

(400 MHz, D2O, δ): 1.1 (d, 6H, CCH(CH3)2 ), 2.35 (m, 1H, CCH(CH3)2), 3.7 (t, 2H, OCH2CH2N), 

3.96 (t, 2H, OCH2CH2N). NMR Spectrum: Figure S1. 

Synthesis of poly[(2-isopropyl-2-oxazoline)50-block-poly(2-methyl-2-oxazoline)50] 

(P(iPrOx50-b-MeOx50)). A typical procedure was as follows: in a flame dried Schlenk flask, 6.6 mL 

of acetonitrile was introduced under vacuum. 28.3 µL (0.25 mmol) of MeOTf was added. The flask 

was then placed in an ice bath at 0 °C and 1.48 mL (12.5 mmol) of 2-isopropyl-2-oxazoline was 

added. The flask was then maintained at 85 °C for 3 days, until complete consumption of the 

monomer (monitored by 1H NMR spectroscopy). 1mL of 2-methyl-2-oxazoline (11.7 mmol) was 

added and the reaction was quenched by adding 2.7 equivalents of a 0.3N KOH solution in methanol 

at 95% conversion (determined by 1H NMR spectroscopy). The solution was left to stir at room 

temperature overnight and the polymer was precipitated twice into diethyl ether and dried under 
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vacuum. Yield = 2.08 g (89 %). 1H NMR (400 MHz, D2O, δ): 3.7-3.3 (s, NCH2CH2), 3.1 (s, CH3-

NCH2CH2), 3.0-2.55 (d, COCH(CH3)2), 2.2-2.0 (m, NCOCH3), 1.15-1 (s, NCOCH(CH3)2). Ð = 1.19. 

Synthesis of poly[(2-methyl-2-oxazoline)50-block-poly(2-sopropyl-2-oxazoline)50] 

(P(MeOx50-b-IPrOx50)). The same procedure, as described above for P(iPrOx50-b-MeOx50) was 

also used to synthesize P(MeOx50-b-IPrOx50), except the monomers were added in the reverse 

order. Yield = 1.15 g (47 %). 1H NMR (400 MHz, D2O, δ): 3.7-3.3 (s, NCH2CH2), 3.1 (s, CH3-

NCH2CH2), 3.0-2.55 (d, COCH(CH3)2), 2.2-2.0 (m, NCOCH3), 1.15-1 (s, NCOCH(CH3)2). Ð = 1.33. 

DP(MeOx) = 52, DP(iPrOx) = 50. 

SUPPORTING INFORMATION 

 

Figure S1 1H NMR spectrum (400 MHz, CDCl3) of 2-isopropyl-2-oxazoline (iPrOx) 
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Figure S2 1H NMR spectrum (400 MHz, CDCl3) of poly[(2-isopropyl-2-oxazoline)-b-(2-methyl-2-oxazoline)] 

(P(iPrOx-b-MeOx)) 

 

 

Figure S3 SEC trace of A) poly[(2-methyl-2-oxazoline)-b-(2-isopropyl-2-oxazoline)] and B) poly[(2-

isopropyl-2-oxazoline)-b-(2-methyl-2-oxazoline)] in DMF 
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Figure S4 DLS measurements determining the cloud point of P(iPrOx-b-MeOx) (cloud point =  57 °C) 

 

Table S1 DLS measurements determined at 65 and 25 °C of aliquots taken at a various annealing times 

after annealing at 65 °C 

 65 °C  25 °C 

Annealing 
time 

Size 
d (nm) 

PdI Count rate 
(kcps) 

 Size 
d (nm) 

PdI Count rate 
(kcps) 

1h30 423 0.69 1898  796 0.28 1947 

3 h 2666 0.71 4810  2712 0.62 9879 

4h30 2956 1 4580  3793 0.85 9546 

7 h 3140 1 4510  2725 1 4676 
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Figure S5 WAXS patterns of P(iPrOx50-b-MeOx50) after 1h40, 3 h, 4h30, 7 h and 24 h of annealing at 65°C. 

Peak assignment according to ref. 35 

 

Table S2 WAXS scattering angles and corresponding spacing between the crystallographic planes obtained 

from Bragg’s law 

Crystallographic 
planes 

2θ 
(°) 

d 
(Å) 

(100) 7.89 11.21 
? 15.05 5.89 

(101) 16.56 5.35 
(010) 18.28 4.86 

? 19.22 4.62 
(201) 21.72 4.09 
(011) 23.59 3.77 
(210) 24.38 3.65 
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Figure S6 DSC thermograms of the first heat ramp of P(iPrOx50-b-MeOx50), non-treated and kept under 

storage condition (blue) and after 24 h of heating in aqueous solution at 65 °C (red) 

 

 

Figure S7 Appearance of P(iPrOx50-b-MeOx50) in water/trifluoroacetic acid mixture (1/5 v/v) and in pure 

water 
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Appendix S1 - WAXS measurement principle and determination of the crystal 

structure 

Wide-angle X-ray scattering (WAXS) is a non-destructive characterization technique which probes 

matter ordering on the angstrom-scale. It is often used to determine the crystalline structure of 

polymers. It consists of the observation of the scattered intensity of an X-ray beam hitting a sample 

as a function of the incident and scattered angles. As the angles for coherent and incoherent 

scattering from a crystal lattice are obtained (Figure S9), by using Bragg's law (equation 1), the spacing 

between the crystal planes can be calculated, and a crystal structure can be proposed. 

 

Figure S9 Illustration of constructive and destructive interferences. Adapted from ref. 62 

Bragg’s law:     λ = 2dsin(θ)       (1) 

Where  λ is the wavelength of the incident wave 

d is the spacing between the crystalline planes 

θ is the angle between the incident ray and the scattering planes 

Demirel et al.40 reported the structural model of the homopolymer PiPrOx crystal, based on WAXS 

and scanning force microscopy (SFM) data of the nanofibers, collected using Cerius 2 software. A 

periodicity of d = 11.25 Å (corresponding to WAXS peak at 2θ = 7.85°) could only be achieved 

when the side chains of neighboring polymers formed a bilayer. Steric constraints prevent the 

orientation of the neighboring side chains in the same direction, thus alternation of side chains on 

either side of the backbone was determined. This starting structure was then refined by rotations of 

the isopropyl groups and the carbonyl groups separately such that the calculated WAXS peaks by 

Cerius 2 software reproduced the experimental WAXS data. 
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Abstract: Protected and non-protected homopolymers and related statistical copolymers based on poly(2-

oxazoline) were synthesized by cationic ring-opening (co)polymerization, using a protected aldehyde 2-

oxazoline monomer, namely, 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx). The (co)polymer precursors 

were subsequently used as reactive platforms enabling the synthesis of miscellaneous derivatives, including 

graft and cross-linked copoly(2-oxazoline)s. Aldehyde-functional (co)polymers were first reacted with mono- or 

bi-functional amino- and hydrazido-containing reagents, forming grafted copolymers or chemically cross-linked 

networks, respectively. The latter compound consisting of hydrazone-type linkages formed hydrogels that 

could be slowly degraded at physiological pH over 3 days, but readily cleaved in a more acidic environment 

(pH = 3). Aldehyde-containing (co)polymers were also found to be subject to an intermolecular self-

aldolization reaction under acidic conditions, leading to branching and ultimately to the formation of dense 

3D-networks. As for (co)polymer precursors possessing protected aldehyde functions in the form of ketal 

rings, they could be directly reacted with a large excess of poly(ethylene glycol) (PEG), via transacetalization, 

forming PEG-grafted poly(2-oxazoline)s.  

Part of this chapter has been published in European Polymer Journal in 2014.12 

  

 
1 Legros, C.; Pauw-Gillet, M.-C. De; Tam, K. C.; Lecommandoux, S.; Taton, D. Eur. Polym. J. 2014,  
DOI: 10.1016/j.eurpolymj.2014.08.026. 
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INTRODUCTION 

Post-polymerization modification, also called polymer-analogous modification, is a powerful synthetic 

tool in polymer chemistry. It consists in accessing new polymers by modification of a preformed 

polymer carrying functional handles that are chemically or physically transformed. Interestingly 

enough, diverse polymer derivatives with different structures and properties can be achieved from 

one single reactive polymer precursor.1–3 For example, post-polymerization modification allows for 

chemical transformation of commodity polyolefins into value-added materials,4 or to tailor 

poly(carbonate)s for specific biomedical applications.5–7 A wide variety of chemoselective and/or 

orthogonal reactions, including thiol-ene addition,8 thiol exchange, Diels-Alder cycloaddition,9 

Michael addition or reactions with active esters,10 epoxides, anhydrides, isocyanates, ketones and 

aldehydes, have been applied to modify functional polymer precursors.11,12  

Aldehyde functional groups are of special interest owing to the diversity of reactions that can be 

implemented with antagonist functional groups, such as alcohols, amines and hydrazines, forming 

reversible acetal, imine, and hydrazone linkages, respectively. Moreover, aldehydes can also be 

reduced to hydrocarbons via the so-called Wolff-Kishner reaction.13 They are also involved in key 

reactions in molecular chemistry, such as Grignard, Wittig and aldolization reactions.14,15 Surprisingly, 

the number of reports describing polymers with pendant aldehydes is somewhat limited. The 

synthesis of polymers with aldehyde handles can be achieved by anionic16 and cationic 

polymerization,17 ring opening metathesis polymerization,18 reversible addition-fragmentation chain 

transfer19–22 or by the modification of biopolymers.23 Related (co)polymers have been further 

employed to engineer polymer materials for specific applications: injectable hydrogels,24–27 microgels 

via a microfluidic device,28 or shell cross-linked micelles29 obtained with dihydrazide cross-linkers. 

Nanoparticles were also formed using a copolymer based on vinylbenzaldehyde units; further cross-

linking or conjugation with chemotherapy compounds via Schiff base or imine formation was 

achieved.30 Lastly, poly(4-vinyl benzaldehyde) has also been successfully functionalized with desired 

compounds using the Kabachnik-Fields post-polymerization reaction.31 

Here, we investigate the potential of poly(2-oxazoline)s (POx) possessing pendant aldehyde functions 

for polymer-analogous modification. POx represent a special class of polymers that have (re)gained 

an increasing interest in the last decade. This is due, in particular, to their structural similarities with 

polypeptides,32 the biocompatible character and the stealth behaviour of some POx.33–35 In addition, 

the relatively easy access to POx by cationic ring opening polymerization36,37 allows the tuning of 

their physico-chemical properties, such as hydrophilicity and thermo-responsiveness.38–40 The 

synthesis of POx with functional handles can also be achieved by resorting to specific functional 2-

oxazoline monomers, which most often requires protection of the functional group prior to its 
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(co)polymerization, in order to avoid side reactions. Synthetic strategies to functionalize POx have 

been recently reviewed.41,42 Alkene- or alkyne-functionalized monomers can remain unprotected,43–45 

but monomers containing an amine46 or alcohol47 require protection in the form of tert-

butyloxycarbonyl (BOC) or ester groups, respectively. To the best of our knowledge, there is only 

one report about the synthesis and post-polymerization modification of aldehyde-functional POx, as 

described by Taubmann et al.,17 who employed a protected aldehyde oxazoline monomer in the form 

of a ketal ring. POx with pendant aldehyde functions was readily obtained after deprotection, and 

subsequent modification with amino-oxy-containing reagents yielding the oxime was reported. 

In this chapter, we wish to further exploit the reactivity of such POx-based (co)polymers bearing 

pendant protected and non-protected aldehyde functions. We demonstrate that aldehyde-containing 

POx can readily react with mono- and bi-functional amines and hydrazines, enabling the synthesis of 

both grafted POx and POx-based hydrogels that can be chemically cleaved off under acidic 

conditions. We also evidence that aldehyde-containing POx chains can undergo intermolecular 

aldolization under acidic condtions. Lastly, the functionalization of POx through transacetalization of 

ketal-containing POx (protected form) is also presented. 

I. SYNTHESIS OF PDPOX21 BY CATIONIC RING-OPENING 

POLYMERIZATION 

Following a similar protocol to the one employed for non-functional polymers, the aldehyde 

protected polyoxazoline, PDPOx, was obtained via cationic ring opening polymerization of 2-[3-(1,3)-

dioxolan-2-ylpropyl]-2-oxazoline (DPOx), in the presence of N-methyl-2-methyl-2-oxazolinium 

triflate (MeOxOTf) as initiator, and acetonitrile as solvent (see Scheme 1). Taubmann et al. showed 

that MeOxTf and methyl trifluoromethanesulfonate (MeOTf) were both efficient to initiate this 

polymerization,17 but an oxazolinium salt was used as initiator for the polymerization as a proof of 

concept for further synthesis of an end-functionalized PDPOx.36 PDPOx was obtained with a degree 

of polymerization (DP) close to the target based on the initial [DPOx]0/[MeOxOTf]0 molar ratio, 

with a narrow dispersity (Ð = 1.17) (SI†, Figure S3). Both 1H and 13C NMR spectra confirmed that 

the aldehyde functionality remained protected in the form of the ketal ring after polymerization (SI†, 

Figure S3). The deprotection step of PDPOx21 was next accomplished by hydrolysis, using a 5% TFA 

solution. As discussed by Taubmann et al.,17 this ketal hydrolysis is equilibrated, hence the reaction 

was carried out in a dialysis setup to achieve full conversion (see Scheme 1). Analysis by 1H NMR 

spectroscopy of the resulting compound attested to complete deprotection, as the characteristic 

signals due to the protons of the cyclic ketal rings vanished after hydrolysis; instead, the signal of the 
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aldehyde proton appeared at 9.7 ppm (SI†, Figure S4). In addition, two peaks appeared at 2731 cm-1 

and 1715 cm-1 in the FTIR spectrum, which could be assigned to the C-H and C=O stretches of the 

aldehyde group, respectively (SI†, Figures S5 and S6).  

 

Scheme 1 Cationic ring opening polymerization of 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline and 

subsequent deprotection (inspired from ref. 17) 

II. CONJUGATION OF POBOX WITH AMINO-CONTAINING REAGENTS 

Taubmann et al. have already reported the post-polymerization modification of POBOx through the 

reaction of aldehyde groups with amino-oxy compounds in methanol, at 50 °C.17 Our aim here was 

to further expand the reactivity of this polymer precursor with respect to a range of either mono- or 

bi-functional commercial amines and dihydrazines, under mild conditions. Both modifications involve 

a first step that is reversible, forming an imine and a hydrazone, respectively.48,49 The second step 

consists in the irreversible reduction of the functional polymer intermediate into a secondary amino-

functional polymer derivative. POBOx21 was thus treated with an excess of benzylamine in a sodium 

acetate solution at pH = 5.4,50 which was followed by a reduction using sodium cyanohydroborate 

(see Figure 1). Note that benzylamine is sparingly soluble in water, favoring precipitation of the 

imino-containing reaction product.48 The poor solubility of the polymer in aqueous solution and in 

common organic solvents, even after purification, suggested the formation of an amphiphilic 

compound due to efficient grafting of benzylamine onto POBOx21. This was verified by FTIR showing 

the disappearance of the two signals of the aldehyde (2731 cm-1 and 1715 cm-1), while signals 

characteristic of aromatic C-H and C=C bendings appeared at 736 cm-1 and 700 cm-1 and at 1570 cm-

1, respectively (SI†, Figure S7).  

Reductive amination was also carried out using Jeffamine D400 and adipic acid dihydrazide in sodium 

acetate solution. As both reagents are bi-functional, both could act as cross-linkers, giving rise to gels, 

as illustrated in Figure 1. FTIR of compounds purified by dialysis was again used to confirm the 

successful ligation, with complete disappearance of the aldehyde peaks along with the appearance of a 

characteristic ether C-O stretch at 1090 cm-1 for the polymer derived from Jeffamine D400, and of 

the amine N-H stretch at 3248 cm-1 from that issued from adipic acid dihydrazide (SI†, Figures S8 and 
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S9). In contrast, the same reaction performed with POBOx-based statistical copolymers did not lead 

to gel formation in aqueous solution (see further). 

 
Figure 1 Post-polymerization modification of POBOx21 with benzylamine, Jeffamine D400 and adipic acid 

dihydrazide  

Thus, the successful reaction of POBOx21 with several amine or hydrazine compounds confirmed the 

accessibility of the aldehyde functionalities, enabling the access to grafted or cross-linked polymer 

derivatives. In all cases, post-polymerization modification was effective under mild conditions, i.e. at 

room temperature in aqueous solution.17 The ligation with adipic acid dihydrazide can be considered 

as chemoselective as the amino-oxi “click” ligation reaction.51 

III. COPOLYMER SYNTHESIS AND DEPROTECTION OF P(MEOX41-STAT-

DPOX9)OH 

A statistical copolymer based on 2-methyl-2-oxazoline (MeOx) and DPOx was synthesized in order 

to tune the density of pendant reactive groups. In their report, Taubmann et al. established that both 

monomers are consumed at the same rate during copolymerization, providing statistical 

copolyoxazolines.17 A statistical copolymer with 20% of DPOx was thus prepared. The copolymer 
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was obtained with a DP for each monomer unit close to targeted values, and a dispersity of 1.14 (SI†, 

Figures S10, S11 and S12). Deprotection of the copolymer led to a derivative that was hardly soluble 

in DMF, hence SEC was performed in Tris buffer as the elution solvent. Broadening of the SEC trace 

and appearance of a shoulder in the high molecular weight region was noted after deprotection 

(Figure 2). Analysis by SEC of another copolymer sample, 10 days after deprotection, showed an 

even more noticeable molecular weight shoulder. This suggested the occurrence of subsequent 

intermolecular reactions involving the deprotected aldehyde functions in the dry state. 

 

Figure 2 SEC traces in Tris buffer of P(MeOx41-stat-DPOx9)OH before and after deprotection 

In the case of the P(OBOx)21 homopolymer discussed above, such intermolecular reactions were not 

studied in details; this sample was readily dissolved in acetate buffer after deprotection and the work-

up procedure was slightly different from the copolymeric samples. Nevertheless, P(OBOx)21 was less 

soluble in the acetate solution during the post-polymerization reaction, indicating that some 

intermolecular branching/cross-linking may have also occurred in this case.  

To explain these observations, we hypothesized that pendant aldehyde functions could be subjected 

to an aldolization reaction in the presence of catalytic acid traces. In a second step, the as-generated 

aldol units could undergo a dehydration step (referred to as the crotonization reaction15), leading to 

α,β-unsaturated groups (see Scheme 2). It should be noted that the alcohol terminal functionality of 

the copolymer chain could also be involved in aldol formation.  
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Scheme 2 Aldol condensation and subsequent dehydration resulting in α,β-unsaturated aldehydes 

To test our hypothesis the deprotected polymer, P(MeOx41-stat-OBOx9)OH, was analyzed by solid 

state 13C NMR at two rotation speeds (changing the rotation speed allows determining the presence 

of rotation peaks; SI†, Figure S15). Only one rotation peak was found (indicated by a star in Figure 3), 

and the observation of diagnostic peaks due to alkene groups clearly confirmed the occurrence of 

aldol formation, followed by dehydration.  

 

Figure 3 Solid state 13CNMR of the self-cross-linked P(MeOx41-stat-OBOx9)OH, rotation speed = 10000 Hz, 

ns = 160000 

A series of statistical copolymers based on DPOx were then synthesized (P(MeOx63-stat-DPOx14)pip, 

P(Me Ox124-stat-POx12)OH and P(MeOx93-stat-DPOx11)pip; see Table 1 in the experimental 

procedure section and SI†, Figures S13 and S14), in order to study the influence of aldehyde density 

on the occurrence of the aldol reaction. SEC traces show a bimodal distribution in some cases. For 

instance, a shoulder can be noted in the low molecular weight region of the SEC traces of both 

P(MeOx124-stat-POx12)OH and P(MeOx93-stat-DPOx11)pip (SI†, Figures S16 and S17). This minor 

population can be ascribed to chains grown by chain transfer reaction to the monomer. As for SEC 

traces of P(MeOx63-stat-DPOx14)pip (SI†, Figure S18), the side population appearing in the high 
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molecular weight region is presumably due to the occurrence of irreversible coupling of a small 

proportion of growing chains at the completion of the polymerization. Both side reactions have 

indeed been described, and related mechanisms are well established. 52–54 The three different 

polymerization reactions were run in parallel and only stopped after three days, i.e., once all the 

monomer was consumed. Total consumption of the monomer was confirmed only in one case, for 

P(MeOx93-stat-DPOx11)pip, and all the polymerizations were quenched at the same time. One can 

thus assume that the synthesis of the P(MeOx63-stat-DPOx14)pip sample, that is of a lower DP, was 

completed, in contrast to the two other polymers of higher DP. As a consequence, the occurrence 

of chain coupling was more likely for the former copolymer. Furthermore, the probability for chain 

transfer increases with the polymer molecular weight. Herein, the P(MeOx41-stat-DPOx9)OH sample 

had a lower molecular weight as compared to the three other copolymers, which can explain why no 

such side reaction was evidenced for the former copolymer. However, despite the existence of these 

side populations, it was decided to carry on the study with these samples, as they should not be 

detrimental to the reactivity of aldehyde functionalities.  

A P(MeOx90-stat-DPOx10)pip copolymer was also prepared in a stainless steel reactor following the 

procedure reported by Hoogenboom et al. (i.e. 140 °C at a monomer concentration of 4M).55,56 

Under these condition, the polymerization was completed within 1h, as compared to 3 days when 

conducting the copolymerization at 85 °C in a Schlenk flask. However, the copolymer had a higher 

dispersity, Ð = 1.61 at 140 °C, as compared to 1.34 at 85 °C, hence this sample was not used further 

in this study. This increase in polydispersity is likely due to the increased reaction temperature (140 

°C), monomer concentration and viscosity (the reaction was carried out above the boiling point of 

the solvent but the pressure was not monitored), leading altogether to a loss of control.  

Characterization by SEC in Tris buffer of the deprotected copolymers did not indicate any 

intermolecular aldolization in the investigated time scale (1, 3, 7 and 10 days after deprotection; see 

SI†), in contrast to the P(MeOx41-stat-DPOx9)OH sample showing significant tailing at high molecular 

weight, seven days after deprotection (see Figure 2). Four and a half months later, the deprotected 

copolymers were no longer soluble in Tris buffer, presumably owing to intermolecular self-cross-

linking of the samples under storage conditions.  

The influence of the aldehyde functionality content on the aldolization is illustrated in Figure 4 when 

comparing vials A and C (20% and 10% aldehyde, respectively). The influence of the end group 

functionality can be observed for copolymers with the same aldehyde content (vials B and C 

corresponding to samples with OH and piperidine end groups, respectively; see Figure 4). It can be 

seen that the copolymer with the alcohol terminus is more prone to self-cross-linking as compared 

to the sample with the piperidine end group. The sample combining a high content in aldehyde 
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functions and an alcohol terminal group, P(MeOx41-stat-DPOx9)OH, led to rapid intermolecular self-

cross-linking (see Figure 4).  

 

Figure 4 Solubility in Tris buffer, after 4 ½ months, of A) P(MeOx63-stat-DPOx14) pip B) P(MeOx124-stat-

DPOx12)OH C) P(MeOx93-stat-DPOx11)pip 

In conclusion, deprotected PDPOx-based copolymers can undergo branching by aldolization, the rate 

of which reaction depends on both the aldehyde and alcohol content. Prolonged reactions can lead 

to cross-linked networks. However, aldehyde-functional copolymers can be manipulated in solution 

and be used for further post-polymerization reactions even ten days after the deprotection step, 

without the occurrence of aldolization, in particular using the P(MeOx93-stat-DPOx11)pip sample.  

IV. HYDROGEL FORMATION BETWEEN P(MEOX93-STAT-OBOX11)PIP 

AND ADIPIC ACID DIHYDRAZIDE 

The synthesis of hydrogels was also achieved from the P(MeOx93-stat-OBOx11)pip copolymer 

precursor that was reacted with adipic acid dihydrazide as cross-linker. The first attempt was carried 

out in a 2% acetate solution, under the same aforementioned conditions employed for the reaction 

between POBOx21 and adipic acid dihydrazide. Hydrogel formation was instantaneous, though 

subsequent cleavage of the hydrazone linkages constituting the cross-linking points was also 

immediate under slightly acidic aqueous conditions (pH = 5.4).49 This rapid cleavage was not 

observed when the reaction was carried out with POBOx21, within a time scale of investigation of 

one hour, most likely because of the higher percentage of aldehyde functionalities. Keeping these 

observations in mind, hydrogel formation successfully occurred in dry DMSO, in the presence of 

sodium acetate and molecular sieves (3Å) at room temperature, such conditions favoring the 

formation of hydrazone linkages. The as-obtained gel was found to be stable over several weeks and 

was shown to swell when soaked in DMSO (Figure 5). This gel could be readily cleaved, however, by 

hydrolysis when immersed in an aqueous solution, and the reaction rate could be tuned by adjusting 

the pH. As shown in Figure 5, in 10 mM phosphate buffer (pH = 7.4), the hydrogel was completely 
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cleaved after 3 days, whereas it was readily cleaved within 3 minutes in acidic conditions (0.01 M 

HCl, pH = 3).  

 

Figure 5 Gel formation and cleavage between P(MeOx93-stat-OBOx11)pip and adipic acid dihydrazide 

V. TRANSACETALIZATION REACTION FROM P(MEOX41-STAT-DPOX9)OH 

WITH AN EXCESS OF PEG300 

Lastly, we investigated the possibility to directly modify the protected ketal-functional P(MeOx41-stat-

DPOx9)OH by an acid-catalyzed transacetalization reaction, using a large excess of PEG300 (see 

Scheme 3). It is important to note that, under such conditions, PEG300 plays both the role of reactant 

and solvent. 
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Scheme 3 Transacetalization reaction from P(MeOx41-stat-DPOx9)OH with an excess of PEG300 and its 

schematic representation 

In order to shift the equilibrium towards the PEG-functionalized derivative, ethylene glycol 

supposedly generated as by-product was removed by distillation (boiling point =197 °C). The 

P(MeOx41-stat-DPOx9)OH sample was directly dissolved in an excess of PEG300, in presence of p-

toluene sulfonic acid (PTSA) as catalyst. The polymer was subsequently purified by dialysis to remove 

the excess of PEG300.  

Analysis of the resulting compound by DOSY-NMR confirmed the successful grafting of PEG chains 

onto the poly(2-oxazoline) backbone (SI†, Figure S19). These data also suggested that 

transacetalization seemingly occurred by an intramolecular reaction rather than by intermolecular 

reaction pathway, as only one diffusion coefficient was observed.  

The 1H NMR spectrum (Figure 6) not only showed that characteristic peaks of ethylene glycol 

decreased significantly while the peak due to the protons of PEG appeared, but a small proportion of 

free (deprotected) aldehyde was also present. From the peak integration, the number of PEG grafted 

chains and of protected DPOx units left over was estimated to be 10 PEG chains per poly(2-

oxazoline)s chain, with 1.3 DPOx and 0.2 deprotected aldehyde. Since the initial P(MeOx41-stat-
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DPOx9)OH contained 9 ethylene glycol protecting groups per chain, which could theoretically lead 

to 18 PEG grafted chains for a complete modification, these results suggested that cyclic PEG-type 

grafts were likely formed by transacetalization (see Scheme 3). This might be due to the fact that 

cyclic acetals are thermodynamically more stable than non-cyclic ones, mainly for entropic reasons.  

 

Figure 6 1H NMR spectrum after transacetalization between P(MeOx41-stat-DPOx9)OH and PEG300 

Unfortunately, attempts to access hydrogels by intermolecular transacetalization reaction using 

substoichiometric amounts of PEG300 relatively to DPOx units were not successful. In contrast to the 

previous case, indeed, a co-solvent with a high boiling point was required because of the high solid 

content, in order to remove ethylene glycol as by-product. Use of a low molecular weight PEG 

dimethylether as co-solvent was unsuccessful due to solubility issues. Designing alternative 

monomers from protecting groups with lower boiling temperatures (e.g. dimethylacetal) might enable 

to achieve polyoxazoline-based hydrogels with PEG cross-linkers.  

CONCLUSIONS 

This study illustrates the versatility of protected and non-protected aldehyde-functional (co)poly(2-

oxazoline)s for post-polymerization modification under mild conditions. A library of statistical 
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copolymers derived from 2-methyl and 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline could be 

synthesized to this aim, with different contents of protected aldehyde and different polymer chain 

ends. Aldehyde handles along the polyoxazoline chains were shown to readily react with antagonistic 

groups, including amines and hydrazines, the functionality of which can be varied to generate grafted 

or 3D–cross-linked polymer derivatives. For instance, chemoselective ligation of adipic acid 

dihydrazide onto a statistical copolymer containing 10% of aldehyde enabled the synthesis of pH-

responsive hydrogels. As the chemistry used for cross-linking is selective, it could allow for the 

simultaneous encapsulation or entrapment of molecules, such as drugs and proteins during the cross-

linking process. Moreover, one could expect that the release of the encapsulated molecules could be 

controlled by the pH. 

The aldehyde functional copolyoxazolines were also found to undergo an acid-catalyzed 

intermolecular self-aldolization, leading to branched structures and ultimately to cross-linked 

networks under forced conditions. The cross-linking process could be time controlled by adjusting 

the copolymer composition (i.e. the aldehyde function density and polymer end group).  

Last but not least, copolymers with pendant aldehydes protected in the form of ketal rings could be 

directly modified by transacetalization using a large excess of a PEG precursor, generating 

preferentially cyclic pendant loops rather than PEG brushes. 

The versatility of post-polymerization modification of aldehyde-based reactive platforms developed in 

this work, combined with the known properties of poly(2-oxazoline)s, thus expand the range of 

possibilities of this special class of polymeric materials.  
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EXPERIMENTAL SECTION 

Materials and reagents 

2-Methyl-2-oxazoline (99%), methyl trifluoromethanesulfonate (96%) (MeOTf), and acetonitrile (99%) 

were purchased from Sigma-Aldrich, stored over calcium hydride and purified by vacuum distillation 

prior to use. Methanol (Sigma-Aldrich) was refluxed with sodium and distilled prior to use. 

Dimethylsulfoxide (DMSO, from Sigma-Aldrich), dichloromethane (CH2Cl2, from Sigma-Aldrich) and 

tetrahydrofuran (THF,) were cryo-distilled prior to use. 2-(2-Bromoethyl)-1,3-dioxolane (Sigma-

Aldrich) and piperidine (99%, from Acros) were distilled prior to use. Trifluoroacetic acid (99%) 

(TFA), diethyl ether, ethanol, potassium hydroxide (KOH), sodium hydroxide (NaOH), hydrochloric 

acid solution (37%) (HCl), cyclohexane (99%), p-toluene sulfonic acid (PTSA), sodium acetate and 

Jeffamine D400 were used as received from Sigma-Aldrich. Butyl lithium solutions in hexane (1.6 M), 

chloroform, magnesium sulfate (MgSO4), sodium hydrogenocarbonate (NaHCO3), ethyl acetate, 

cyclohexane and triethylamine were used as received. Tetramethylethylene diamine (TMEDA, from 

Sigma-Aldrich) was stirred with KOH pellets for 2 h before distillation. PEG300 was purchased from 

Fluka and used as received. Benzylamine (98%), adipic acid dihydrazide (98%), PEG350 monomethyl 

ether, molecular sieves 3Å (0.4-0.8 mm) and sodium cyanohydroborate (NaBH3CN) were used as 

received from Alfa Aesar. 

Instrumentation and measurements 

NMR spectroscopy. 1H NMR, 13C NMR and HSQC measurements were carried out at 298K on a 

Bruker Avance spectrometer operating at 400 MHz. CDCl3 was used as an internal reference (δ = 

7.26 ppm), and the relaxation time was fixed to 2 sec for all measurements.  

DOSY (Diffusion Ordered Spectroscopy) measurements were performed at 298K on a Bruker 

Avance III HD 400 spectrometer operating at 400.33 MHz and equipped with a 5 mm Bruker 

multinuclear z-gradient direct cryoprobe-head capable of producing gradients in the z-direction with 

strength 53.5 G/cm. The DOSY spectra were acquired with the ledbpgp2s pulse program from 

Bruker topspin software. The duration of the pulse gradients and the diffusion time were adjusted in 

order to obtain full attenuation of the signals at 95% of maximum gradient strength. The values were 

2.5 ms for the duration of the gradient pulses and 150 ms for the diffusion time. The gradients 

strength was linearly incremented in 32 steps from 5% to 95% of the maximum gradient strength. A 

delay of 3 s between echoes was used. The data were processed using 8192 points in the F2 

dimension and 64 points in the F1 dimension with the Bruker topspin software. Field gradient 

calibration was accomplished at 25 °C using the self-diffusion coefficient of H2O+D2O at 19.0 × 10-

10 m2/s. 
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13C CPMAS (cross polarization magic angle spinning) NMR measurements were carried out on a 9,4T 

spectrometer operating at 100.6 MHz and equipped with a CPMAS probe (impulsion at 90 °: 3.4 µs 

at 59.6 W, 2 ms contact time, 3 s relaxation time, 35 ms acquisition time). 

Size-exclusion chromatography. Size-exclusion chromatography (SEC) using dimethylformamide 

(DMF) with LiBr (1 g/L) as the eluent was performed at 80 °C at a flow rate of 0.8 mL/min. The 

column set consisted of two 7.5 mm × 300 mm PLgel, 5 µm Mixed-D columns (Polymer laboratories) 

coupled to a 7.5 mm × 50 mm, PLgel, 5 µm guard column (Polymer laboratories). Injections were 

realized in a 20µL loop and calibration was performed with polystyrene standard. Differential 

refractive index (RI) and UV detectors were used. 

SEC was performed at 40 °C at a flow rate of 0.6 mL/min, using Tris buffer as the eluent. The column 

set consisted of two 8.0 mm × 300 mm columns, OHpak, 10 µm and 6 µm respectively (Shodex) 

coupled to a guard column, 6.0 mm × 500 mm, OHpak (Shodex). Injections were realized in a 20µL 

loop and calibration was performed with PEG standards from Polymer Laboratories. Differential 

refractive index (RI) and UV detectors were used. Ethylene glycol was used as a flow marker. 

Infrared spectroscopy. Infrared spectra were obtained from a Thermoscientific Nicolet IS10 

spectrometer using the attenuated total reflection (ATR) mode. The spectra were acquired using 16 

scans at a resolution of 4 wavenumbers. 

Experimental procedures 

Synthesis of 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx) 

2-[3-(1,3)-Dioxolan-2-ylpropyl]-2-oxazoline (DPOx) was synthesized following a procedure reported 

in the literature.17 

 

Scheme 1 Synthesis of 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline 

In a flame-dried round bottom flask, under inert atmosphere, 8.2 mmol of TMEDA were dissolved in 

37.5 mL of dry THF and cooled to -78 °C. 7.8 mmol of a 1.6 M butyl lithium solution in hexane were 

added dropwise during 30 minutes, under strong stirring, with a syringe purged with nitrogen. The 

mixture turned yellow. The solution was stirred for 1 hour at –78 °C. 8.2 mmol of MeOx in 3.75 mL 

of dry THF was then added dropwise to the reaction mixture. After 2 hours of stirring at –78 °C, 6.9 



Ketal-‐	  and	  aldehyde-‐functional	  POx	  copolymers	  for	  post-‐polymerization	  modification	  

161 

mmol of 2-(2-bromoethyl)-1,3-dioxolane in 3.75 mL of dry THF was added slowly. The solution was 

allowed to re-equilibrate to room temperature under stirring overnight. 5 mL of methanol was 

added to quench the reaction by deactivating the butyl lithium. A color change from brownish to light 

yellow was observed at this point. The solvent was then removed under reduced pressure, and the 

oily yellow residue dissolved in a mixture of 25 mL of chloroform and 25 mL of a saturated NaHCO3 

solution. The aqueous phase was extracted twice with 12.5 mL of chloroform. The organic phases 

were combined, dried over MgSO4 and concentrated under reduced pressure. The crude product 

was subsequently purified by column chromatography (silica, mobile phase: ethyl 

acetate/cyclohexane/triethylamine, ratio 10/5/1), and distillation. A colorless liquid is obtained, yield = 

262 mg (49%). 1H NMR (CDCl3): δ (ppm) 4.8 (t, 1H, CH2CH(OR2)), 4.2 (t, 2H, NCH2CH2O), 4-3.75 

(m, 6H, NCH2CH2O/OCH2CH2O), 2.35 (t, 2H, NOCCH2CH2), 1.75 (m, 4H, CH2CH2CH2CH). 13C 

NMR (CDCl3): δ (ppm) 169 (NOCCH2), 105 (CH2CH(OR2)), 67 (NCH2CH2O), 64 (OCH2CH2O), 54 

(NCH2CH2O), 33 (NOCCH2CH2), 27 (CH2CH2CH2CH), 19 (CH2CH2CH2CH). NMR Spectrum given 

in Figure S1 

Synthesis of N-methyl-2-methyl-2-oxazolinium triflate (MeOxOTf) 

N-methyl-2-methyl-2-oxazolinium triflate (MeOxOTf) was synthesized following the procedure 

described by Kobayashi et al.57 

 

Scheme 2 Synthesis of N-methyl-2-methyl-2-oxazolinium triflate 

2 mmol of MeOx in 400 µL of CH2Cl2 was put into a flame dried Schlenk flask and cooled in ice. 4 

mmol of MeOTf was added dropwise to the reaction mixture. The mixture was then stirred for 2 

hours at room temperature and a color changed from clear to dark red was observed. The product 

was collected by precipitation into cold diethyl ether and dried under vacuum. Yield = 404 mg (81%). 

1H NMR (CDCl3): δ (ppm) 5 (t, 2H, NCH2CH2O), 4.3 (t, 2H, NCH2CH2O), 3.45 (s, 3H, NCH3), 2.5 

(s, 3H, CNOCH3). NMR Spectrum given in Figure S2 

Synthesis of poly(2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline) (PDPOx21). A typical 

procedure is as follows. In a flame dried Schlenk flask, 4.4 mL of acetonitrile was introduced under 

vacuum. 10.8 mg (0.043 mmol) of MeOxOTf and 200 mg (1.07 mmol) of DPOx were added. The 

flask was maintained at 85 °C for 3 days, and the reaction was quenched by adding 2.7 equivalents of 

a 0.3N KOH solution in methanol. The solution was left to stir at room temperature overnight and 

the polymer was precipitated twice into diethyl ether and dried under vacuum. Yield = 95 mg (48 %). 

Ɖ = 1.17. DP = 21. 1H NMR (CDCl3): δ (ppm) 4.86 (s, CH2CH(OR)2), 3.95-3.8 (m, OCH2CH2O), 



Chapitre	  4	  

162 

3.6-3.3 (s, NCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.4-2.1 (m, NCOCH2CH2), 1.7-1.4 (s, 

NCOCH2CH2CH2). 13C NMR (CDCl3): δ (ppm) 174-172 (NCOCH2), 104.4 (CH2CH(OR2)), 65 

(OCH2CH2O), 48-41 (NCH2CH2N), 34-32 (NCOCH2CH2CH2CH), 20 (NCOCH2CH2CH2CH). IR: 

3459 (w), 2947 (w), 2882 (w), 2767 (s), 1630 (m), 1566 (s), 1450 (w), 1366 (s) 1256 (s), 1224 (s), 

1132 (m), 1029 (m), 939 (m) cm-1. 

Synthesis of poly[(2-methyl-2-oxazoline)-co-(2-[3-(1,3)-dioxolan-2-ylpropyl]-2-

oxazoline)]: P(MeOx40-stat-DPOx10)OH, P(MeOx40-stat-DPOx10)pip, P(MeOx90-stat-

DPOx10)OH, P(MeOx90-stat-DPOx10)pip. Synthesis of P(MeOx40-stat-DPOx10)OH: In a flame 

dried Schlenk flask, 22.5 mL of acetonitrile was introduced under vacuum. 55 mg (0.22 mmol) of 

MeOxOTf, 407 mg (2.2 mmol) of DPOx and 750 mg (8.8 mmol) of MeOx were added. The flask was 

heated at 85 °C for 3 days, and the reaction was quenched by adding 2.7 equivalents of a 0.3 N KOH 

solution in methanol. The solution was left to stir at room temperature overnight and the polymer 

was precipitated twice in diethyl ether and dried under vacuum. 1H NMR (CDCl3): δ (ppm) 4.86 (s, 

CH2CH(OR)2), 3.95-3.8 (m, OCH2CH2O), 3.6-3.3 (s, NCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.4-2.1 (m, 

NCOCH2CH2), 2.2-2 (m, NCOCH3), 1.7-1.4 (s, NCOCH2CH2CH2). 13C NMR (CDCl3): δ (ppm) 174-

173 (NCOCH2), 172-170 (NCOCH3) 104.4 (CH2CH(OR2)), 65 (OCH2CH2O), 48-41 (NCH2CH2N), 

34-32 (NCOCH2CH2CH2CH), 20 (NCOCH2CH2CH2CH). 

P(MeOx40-stat-DPOx10)pip, P(MeOx90-stat-DPOx10)OH and P(MeOx90-stat-DPOx10)pip were 

synthesized following a similar procedure to that described above, using the respective 

[MeOx]0/[DPOx]0 ratio and termination agent (SI†). 

P(MeOx90-stat-DPOx10)pip was synthesized as follows in a stainless steel reactor at 140 °C. 1.55 mL 

of acetonitrile, 0.766 mg (9 mmol) of MeOx, 185 mg (1 mmol) of DPOx and 25 mg (0.1 mmmol) of 

MeOxOTf were added into the reactor, in the glovebox. The global monomer concentration was 

4M. The reactor was then heated at 140 °C for 1 hour and cooled in an ice bath. 2.7 eq. of piperidine 

was added to quench the reaction. The solution was left to stir at room temperature overnight and 

the polymer was precipitated twice into diethyl ether and dried under vacuum. 
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Table 1 Characteristics of DPOx-based copolymers 

𝐌𝐞𝐎𝐱 𝟎
𝐈 𝟎

 a) DPMeOx
b)

 
𝐃𝐏𝐎𝐱 𝟎
𝐌𝐞𝐎𝐓𝐟 𝟎

  a) DPDPOx
b) Yield 

(%) 
Ð c) T 

(°C) 
Termination 
agent 

Polymer 

40 41 10 9 91 1.14 85 Methanol 
KOH (0.3 N) 

P(MeOx41-stat-
DPOx9)OH 

40 63 10 14  1.28 85 Piperidine P(MeOx63-stat-
DPOx14)pip 

90 124 10 12  1.13 85 Methanol 
KOH (0.3N) 

P(MeOx124-
stat-
DPOx12)OH 

90 93 10 11 80 1.34 85 Piperidine P(MeOx93-stat-
DPOx11)pip 

90 101 10 10  1.61 140 Piperidine P(MeOx101-
stat-
DPOx10)pip 

a) Initial monomer to initiator molar ratio 
b) Experimental degree of polymerization as determined by 1H NMR spectroscopy 
c) Dispersity index as determined by SEC in Tris buffer  
 

Deprotection of the aldehyde functionality: synthesis of poly[2-(4-oxobutyl)-2-oxazoline] 

(POBOx). Deprotection of aldehyde functions of (co)polymers based on DPOx was carried out 

under acidic conditions, following a procedure described by Taubmann et al. 17. In a typical 

experiment, 150 mg of PDPOx21 was dissolved in 4 mL of 5% aqueous TFA solution (v/v). The 

solution was transferred into a dialysis membrane (Cut-off 1000 g/mol) and dialyzed for 2–3 h against 

400 mL of the same aqueous TFA solution. The polymer solution was then dialyzed twice against 2 L 

deionized water (2 h) until the pH returned to neutrality and lyophilised, yielding the following 

(co)polymers.  

POBOx21: Yield = 128 mg (86%). 1H NMR (CDCl3): δ (ppm) 9.7 (s, CH2CHO), 3.6-3.3 (s, 

NCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.4-2.1 (m, NCOCH2CH2CH2CHO), 1.7-1.4 (s, 

NCOCH2CH2CH2). 13C NMR (CDCl3): δ (ppm) 202 (CH2CHO), 174-173 (NCOCH2), 48-41 

(NCH2CH2N/ NCOCH2CH2CH2CHO), 34-32 (NCOCH2CH2CH2CHO), 18-15 

(NCOCH2CH2CH2CHO). IR: 3400 (w), 2938 (m), 2731 (s), 1714 (m), 1617 (m), 1418 (m), 1245 (s), 

1166 (s), 1123 (s), 1067 (s), 981 (s) cm-1. 

For P(MeOx41-stat-OBOx9)OH: 1H NMR (CDCl3): δ (ppm) 9.7 (s, CH2CHO), 3.6-3.3 (s, NCH2CH2), 

2.8 (d, CH3-NCH2CH2), 2.5-2.1 (m, NCOCH2CH2 CH2CHO), 2.2-2 (m, NCOCH3), 1.9-1.6 (s, 

NCOCH2CH2CH2). 13C NMR (CDCl3): δ (ppm) 202 (CH2CHO), 174-173 (NCOCH2), 172-170 

(NCOCH3), 48-41 (NCH2CH2N/ NCOCH2CH2CH2CHO), 34-32 (NCOCH2CH2CH2CHO), 20 

(NCOCH3), 18-15 (NCOCH2CH2CH2CHO).  
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Conjugation of POBOx with amino-containing reagents. A typical procedure is as follows. 5 

mg of POBOx21 was dissolved in 1 mL of a 2% sodium acetate solution (pH = 5.6) overnight. 3 µL of 

benzylamine was added into the polymer solution, and the mixture was stirred for 1h at room 

temperature. 43 µL of sodium cyanohydroborate (10 eq. of a 20 mg/mL solution) was added, and the 

solution was freeze-dried, re-dispersed in a mixture of chloroform and acetonitrile (1/1) and 

precipitated into diethyl ether. The polymer was dried under vacuum. IR: 3408 (w), 3000 (s), 2934 (s) 

1580 (m), 1407 (m), 1248 (s), 1183 (s), 1043 (m), 1012 (m), 923 (m), 736 (s), 700 (s), 646 (m), 609 

(m) cm-1.  

The same procedure was used for conjugation of adipic acid dihydrazide and Jeffamine D400 instead 

of benzylamine. 

IR - Adipic acid dihydrazide: 3420 (w), 3248 (w), 2938 m), 2865 (s), 1621 (m), 1556 (s), 1454 (m), 

1421 (m), 1367 (s), 1246 (s), 1175 (m), 1123 (s), 1057 (s), 935 (s) cm-1. 

IR - Jeffamine D400: 3305 (w), 2968 (w), 2929 (w), 2666 (w), 2322 (s), 1636 (m), 1449 (m), 1421 (m), 

1372 (m), 1344 (s), 1298 (s), 1246 (s), 1090 (w), 1017 (s), 923 (s) cm-1. 

Hydrogel formation from POBOx-based copolymers with the bis-hydrazido-containing 

cross-linker. 10 mg of P(MeOx93-stat-OBOx11)pip was dissolved in 50 µL of dry DMSO in the 

presence of molecular sieves (3Å). In a separate Schlenk flask, 10 mg of adipic acid dihydrazide was 

dissolved in 100 µL of dry DMSO. 5 µL of a 50 mg/mL sodium acetate solution in dry methanol was 

added to the polymer solution. Adipic acid dihydrazide solution was added to the polymer solution, 

and formation of a hydrogel was immediately observed.  

Transacetalization reaction from protected PDPOx with an excess of PEG300.  In a Schlenk 

flask, 20 mg of P(MeOx41-stat-DPOx9)OH, 300 mg of PEG300 and 3.5 mg of p-toluene sulfonic acid 

(PTSA) were added. Once the mixture was homogeneous, it was heated to 100 °C over 6 hours, in a 

distillation setup. The mixture was dialyzed against water (3500 MW cut-off) for 3 days and 

lyophilized. 1H NMR (CDCl3): δ (ppm) 9.7 (s, CH2CHO), 4.86 (s, CH2CH(OR)2), 3.95-3.8 (m, 

OCH2CH2O), 3.8-3.6 (m, PEG), 3.6-3.3 (s, NCH2CH2), 2.8 (d, CH3-NCH2CH2), 2.4-2.1 (m, 

NCOCH2CH2, CH2CHO), 2.2-2 (m, NCOCH3), 1.7-1.4 (s, NCOCH2CH2CH2, CH2CH(PEG)2). 
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SUPPORTING INFORMATION  

 

Figure S1 1H and 13C NMR spectra (400 MHz, CDCl3) of 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx) 
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Figure S2 1H NMR spectrum (400 MHz, CDCl3) of N-methyl-2-methyl-2-oxazolinium triflate 

 

Figure S3 1H NMR spectrum (400 MHz, CDCl3) of poly(2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline)21 

(PDPOx21) 
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Figure S4 1H NMR spectrum (400 MHz, CDCl3) of PDPOx21 after deprotection (POBOx21) 

 

Figure S5 FTIR spectrum of PDPOx21  
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Figure S6 FTIR spectrum of POBOx21 

 

 

Figure S7 FTIR spectrum of POBOx21 after reaction with benzylamine 
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Figure S8 FTIR spectrum of POBOx21 after reaction with Jeffamine D400 

 

 

Figure S9 FTIR spectrum of POBOx21 after reaction with adipic acid dihydrazide 
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Figure S10 1H and 13C NMR spectra (400 MHz, CDCl3) of P(MeOx41-stat-DPOx9)OH 
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Figure S11 SEC trace of P(MeOx41-stat-DPOx9)OH in DMF 

 

 

Figure S12 1H NMR spectrum (400 MHz, CDCl3) of P(MeOx41-stat-DPOx9)OH after deprotection 

(P(MeOx41-stat-OBOx9)OH) 
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Figure S13 1H NMR spectrum (400 MHz, CDCl3) of P(MeOx101-stat-DPOx10)pip 

 

Figure S14 1H NMR spectrum (400 MHz, CDCl3) of P(MeOx101-stat-OBOx10)pip 
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Figure S15 Solid 13C NMR spectrum of the self cross-linked P(MeOx40-stat-OBOx10)OH, rotation speed = 

8000 Hz, ns = 7000 

 

 

Figure S16 Evolution with time of the SEC traces in Tris buffer of P(MeOx124-stat-OBOx12)OH 
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Figure S17 Evolution with time of the SEC traces in Tris buffer of P(MeOx93-stat-OBOx11)pip 

 

Figure S18 Evolution with time of the SEC traces in Tris buffer of P(MeOx63-stat-OBOx14)pip 
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Figure S19 DOSY spectrum after transacetalization between P(MeOx41-stat-DPOx9)OH and PEG300 
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Abstract: Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in 

dilute aqueous media in the presence of 1,6-hexanediol di-glycidyl ether as a cross-linker. Nanogel formation 

was monitored by DLS and HSQC NMR spectroscopy, and the final nano-objects were characterized by DLS, 

TEM, AFM and NanoSight analyses. Nanogels with a hydrodynamic radius of 78 nm exhibiting a slight 

positive surface charge were obtained. MTS assays (cell metabolic activity test) evidenced that the nanogels 

were non-toxic in the investigated concentration range (i.e. 0.1 to 400 µg/mL), and that no specific interaction 

with bovine serum albumin was observed. Altogether, such nanogels showed a great potential as drug delivery 

systems, as they combined some of the major properties required for this application, namely appropriate 

size and morphology, robustness and flexibility, slightly positively charged surface, no cytotoxicity and potential 

stealth behavior. 

Part of this chapter has been published in Biomacromolecules in 2014.12  

 
1 Legros, C.; Wirotius, A.; De Pauw-Gillet, M.-C.; Tam, K. C.; Taton, D.; Lecommandoux, S. Biomacromolecules 
2014, DOI: 10.1021/bm501393q. 
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INTRODUCTION 

Drug delivery nanotechnologies have been studied for several decades1 and only a few therapeutic 

nano-carriers have been approved for clinical use by the FDA.2 These systems are currently 

commercialized, mainly for cancer therapy, most of them being based on liposomes3 or polymer-drug 

conjugates.4 Nevertheless, these systems are still far from ideal drug delivery systems (DDS) and one 

of the remaining challenges is to create DDS with increasing targeting efficiency while decreasing 

therapeutic side effects.2 As a consequence, an array of alternative nano-carriers is currently being 

developed. They can be produced from a wide variety of materials including inorganic materials,5 

lipids6 or polymers,7,8 and load different cargos such as drugs, proteins, DNA, siRNA, or magnetic 

nanoparticles, to address specific requirements. A rational design of a DDS requires taking into 

account specific parameters including morphology, size, stability, degradability, surface chemistry, 

charge, stealth properties and stimuli-responsive behavior.7,9 By controlling the aforementioned 

parameters, it may be possible to achieve less toxic DDS with improved pharmacokinetic and 

targeting properties.  

Polymeric nanoparticles have a great potential in this area due to their versatility. A wide range of 

polymer-based nano-systems have thus been designed, such as self-assembled polymeric micelles and 

polymersomes,8,10,11 dendrimers,12 microgels9 and nanogels,13 their properties being tuned by the 

nature, composition and architecture of the (co)polymer used. For all these nano-structures, the 

biocompatible character of the polymer is crucial to ensure the safety of patients which somewhat 

restricts the polymers that may be used in clinics. Poly(ethylene glycol) (PEG), poly(N-

isopropylacrylamide), polysaccharides and poly(amino acid)s are the most commonly used polymer 

building blocks in this application. The group of S. Lecommandoux (LCPO, Bordeaux) has been, in 

particular, very interested over the last years in the development of polypeptide-based nanocarriers, 

taking advantage of the biocompatibility and responsiveness properties of poly(amino acid)s.14 In 

addition, poly(2-oxazoline)s (POx) represent a special class of polymers of particular interest for a 

use in biomedical applications, and especially as DDS. Indeed, POx are often viewed as pseudo-

polypeptides,15 as the chemical composition of both families of polymers is very similar, and do not 

display any degradation issue. Moreover, biological studies carried out on poly(2-ethyl-2-oxazoline) 

(PEtOx) have established the biocompatibility of this polymer,16 and its non-toxicity for systems with 

molecular weights up to 15 000 g/mol.17 PEtOx can be internalized by cells18 and does not 

accumulate in the body.19 It also exhibits a stealth behavior similar to that of PEG.20–23 As part of a 

DDS, PEtOx has already been conjugated to proteins, drugs, or has been grafted onto the surface of 

liposomes and formulated as part of self-assembled systems, such as polymeric micelles and 

polymersomes.24  Because of the intensive use of PEG, especially in the food industry, some anti-PEG 

antibodies have been recently detected in the serum of patients who did not even receive any 
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medical treatment based on PEG.25 As a consequence, researchers are currently seeking PEG 

substitutes, and PEtOx is regarded as an interesting alternative candidate.20,21,26 

Self-assembled DDS can eventually show a low stability toward dilution or change in the 

environmental conditions, especially if they have a rather high critical micellar concentration. To 

prevent the drug delivery vehicle from disintegrating in the blood stream, there is a need to produce 

structures with enhanced stability or robustness against environmental stimuli. In this context, 

nanogels are particularly relevant, as they are expected to maintain their structural integrity in 

biological conditions. A nanogel is defined by IUPAC as a soluble polymer network with a dimension 

lower than 100 nm.27 Nanogels are also highly hydrophilic, and in a biological environment, they swell 

and contain a high level of water/body fluid making them biocompatible.28 The soft structure of 

nanogels is another distinctive quality. Hendrickson et al. showed that, if a pressure close to that of 

the renal filtration is applied to nanogels, they can pass through pores more than ten times smaller 

than their size.29 

In this contribution, we report on the synthesis of nanogels derived from reactive poly(2-ethyl-2-

oxazoline) chains. The same synthetic strategy reported in chapter 2 is used. Secondary amine 

functionalities were first introduced into the polymer backbone by partial hydrolysis, and used to 

form a cross-linked network using a bis-glycidyl ether cross-linker in aqueous dilute media. This 

cross-linking reaction was monitored by DLS and HSQC NMR spectroscopy. Nanogels were fully 

characterized by multi-angle laser light scattering (MALLS), transmission electron microscopy (TEM), 

atomic force microscopy (AFM) and NanoSight analyses. Their cytotoxicity towards fibroblast-like 

L929 cells and their potential interaction with proteins present in human serum were also 

investigated.  

I. PETOX SYNTHESIS AND PARTIAL HYDROLYSIS 

The PEtOx precursor was synthesized by cationic ring opening polymerization, following a well-

established procedure (Scheme 1).30,31  

 

Scheme 1 Cationic ring opening polymerization of 2-ethyl-2-oxazoline followed by partial hydrolysis 
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Polymerization went to completion, leading to a polymer with a degree of polymerization (DP) of 

100 and a dispersity of 1.23 (SI†, Figures S1, S2 and S3). In order to introduce secondary amine 

functionalities along the polymer backbone, partial hydrolysis was conducted in acidic media.32 A 

percentage of hydrolysis of 26 % was achieved, as confirmed by 1H NMR analysis (SI†, Figures S4 and 

S6). SEC trace of the as-hydrolyzed statistical copolymer, denoted as P(EtOx74-stat-EI26), displayed a 

larger retention time compared to the non-hydrolyzed PEtOx precursor, presumably due to polymer 

interactions with the SEC columns, as already reported (SI†, Figure S5).33 

II. NANOGEL FORMATION IN AQUEOUS DILUTE MEDIA 

Nanogels were next obtained in aqueous dilute media, by reacting the secondary amines of the 

polymer backbone with 1,6-hexanediol di-glycidyl ether as a cross-linker, following a slightly modified 

procedure developed in our group (see Chapter 2).32 The number of reactive secondary amine 

functionalities available for cross-linking was indeed increased to 26 % (as compared to 7 % in our 

previous study), allowing the formation of denser nanogels. The molar ratio of reactive functionalities 

was kept constant, i.e. the amount of cross-linker was increased. Note that 3% of ethanol was added 

to the aqueous solution so as to improve the solubility of the cross-linker. Nanogel formation could 

be monitored by DLS, upon heating at 80 °C for 6 h. Higher concentrations in cross-linker led to a 

non-homogeneous reaction mixture, even in the presence of up to 6% of ethanol. Under such 

conditions, nanogel formation could not be monitored only by DLS because of the formation of 

nano-aggregates at the early stage of the reaction.  

However, DLS measurements performed on the reaction mixture after heating and stirring it at 80 

°C for 6 h followed by purification by dialysis against ethanol and water, evidenced the formation of 

nano-objects. It is worth mentioning that nanogels of small size do not scatter much light (small size 

and low compactness inherent to the nanogel structure itself), making their analysis challenging. In 

order to differentiate the small aggregates observed after mixing the reactants and the final nanogels, 

control experiments were monitored by DLS, changing one parameter at a time: in the absence of 

polymer, in the absence of cross-linker, and without heating (Table 1).  
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Table 1 DLS measurements confirming nanogel formation 

Reactiona) 

Before reaction  After dialysis 

Count rate 
[Kcps] 

PDI 
 

Size, d 
[nm] 

 Count rate 
[Kcps] 

PDI 
 

Size, d 
[nm] 

Nanogels 963 0.08 288  43 0.31 172 

No polymer 1151 0.08 139  3.5 0.47 - 

No cross-linker 15.5 0.8 3  8.8 0.54 3 

No heating 2296 0.09 377  10 0.39 156 

a) Size given as the average of three measurements 
 

These experiments showed that nano-aggregates were only observed at the early stage of the 

reaction when the cross-linker was introduced in the reaction medium. This confirmed that initial 

nano-objects corresponded to nano-aggregates arising from the presence of the cross-linker, due to 

its low solubility. In the absence of polymer and without heating, nano-aggregates were observed at 

the initial stage but not at the final stage of the reaction. In fact the final count rate was low, in the 

same range as that of the solvent. This suggested that ‘cross-linker nano-aggregates’ observed at the 

initial stage had a higher solubility at 80 °C than at room temperature and are no longer observed at 

the final stage. In the absence of cross-linker, no nano-objects were detected at the initial or final 

stage of the reaction, meaning that the polymer alone is fully soluble in the reaction mixture. Lastly, 

no nano-objects were observed when the polymer and cross-linker were mixed and left at room 

temperature, confirming that the final nano-objects observed when heated at 80 °C correspond to 

real cross-linking between the polymer and cross-linker.  

The nanogel formation was also monitored by HSQC NMR experiments. These experiments were 

carried out in an NMR tube in the appropriate mixture of D2O and deuterated ethanol (EtOD), at 80 

°C. HSQC measurements were recorded every hour (Figure 1 and SI†, Figures S7 and S8).  

Figure 1 shows the progressive disappearance of both signals of the NHCH2CH2 of the polymer 

backbone (signal e) and of the diglycidyl ether (signal f and g), along with the appearance of new 

signals that are characteristic of linkages formed between the P(EtOx74-stat-EI26) and the cross-linker 

(signal g’). Moreover, broadening of peaks in the 1H NMR spectra was observed with time, indicating 

an increase in sample inhomogeneities, which is consistent with nanogel formation. 



Optimized POx nanogels: towards a biocompatible drug delivery system 

187 

 

Figure 1 HSQC NMR spectra of the nanogel formation a) T0, b) T6h at 80 °C 
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III. NANOGEL CHARACTERIZATION 

Nanogels were first characterized by multi-angle laser light scattering (MALLS). The variation of 

decay rate versus the squared scattering vector is shown in Figure 2. From the Stokes-Einstein 

equation and the translational coefficient obtained from the slope of the linear fit, the hydrodynamic 

radius was directly calculated. A hydrodynamic radius (RH) of 78 nm with a polydispersity of 0.3 was 

obtained. The formation of spherical nanostructures was also confirmed by TEM and AFM (Figure 2 

and SI†, Figures S9 and S10).  

 

Figure 2 Nanogel characterization. Top: DLS analysis; left: variation of decay rate versus squared scattering 

vector with linear fits; right: relaxation time plot obtained at 90°. Bottom, left: TEM micrograph. Bottom, 

right: Taping mode AFM image and section profile of the AFM imaging 

By statistical analyses of the images, radii of 99 ± 37 nm and 43 ± 13 nm were obtained, respectively, 

by TEM and AFM. The size obtained by AFM analysis was significantly smaller than that obtained by 

MALLS and TEM. This is expected because, compared to TEM statistical analyses where more than 

100 nanogels were taken into account, the number of nanogels present on the AFM mica surface was 
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lower, leading to less reliable statistics. In addition, surface interactions and spreading/contractions of 

the nanogels strongly depend on the surface properties. Indeed, one can expect that the slightly 

positively charged nanogels (see further) interact significantly with the negatively charged mica 

surface, then resulting to a nanogel contraction. 

Nanogels previously reported in the first chapter were made from P(EtOx-stat-EI) with a percentage 

of hydrolysis of 7% and exhibited a RH of 205 nm by MALLS. By comparing these two systems, a 

decrease in nanogel size was noted with increasing number of reactive functionalities involved in the 

cross-linking process. In this contribution, denser and smaller nano-systems were formed. 

In view of using these nanogels as DDS, an optimum size should be in the range from 20 to 200 nm. 

Below 20 nm, indeed, nano-systems would be cleared by renal filtration or extravasion, whereas 

above 200 nm clearance by opsonisation would occur.2,7 With a RH of 78 nm, our nanogels are in the 

expected range, and would be able to circulate for longer in the blood stream. Pharmaceutical 

carriers with a long longevity in the blood, tend to accumulate in pathological sites with affected and 

leaky vasculature via the enhanced vascular permeability and retention effect (EPR), leading to passive 

targeting of the cargo.2,34 Such a behavior is aimed for our nanogels.  

Conductivity titration also proved that not all the amine functionalities were involved in the cross-

linking process, since 12.8 % remained in solution, 13.2 % being involved in the cross-linking reaction 

(SI†, Figure S11). The zeta potential of the nanogel solution was measured at different pH values, 

from 3 to 10.5, and was always positive, varying from +44 mV to +6 mV (SI†, Figure S12). This could 

be linked to the protonation of the tertiary amines present in the structure and/or the free ethylene 

imine functions. If these extra ethylene imine functionalities were accessible, they could potentially be 

used to covalently attach a fluorescent dye molecule for further biological studies, such as cell 

internalization, or to functionalize the surface with a targeting ligand for active targeting, leading to 

the formation of “smart DDS”.35,36 They could also be used as a gene carrier, for DNA or siRNA 

binding, as already mentioned in the literature for cationic nanogels37,38 and for P(Ox-stat-EI) 

hydrogels.39,40 

Additional nanogel analyses were carried out with the NanoSight LM10 apparatus. This technique is 

based on an optical microscope allowing monitoring the particles movement in a cell of a known 

volume illuminated by a laser light source. Particles can thus be observed individually as they diffuse 

due to Brownian motion. By tracking them, the number of particles present in the cell can be 

evaluated. Measurements were carried out at different concentrations within the linear range of the 

device. Above 1×109 particles/mL, the measured number of particles/mL no longer varied linearly 

with the mass concentration. If the concentration is too low, there are not enough particles for 

accurate statistical measurements. The final number of particles/mL obtained in a solution at 4.7 
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mg/mL was 4.3×1010 particles/mL. From these measurements, the approximate mass of a single 

nanogel and the number of polymer chains per nanogel could be evaluated (see Table 2). 

Table 2 Nanogel characteristics calculated from NanoSight results 

Cma) 

[mg/mL] 

Cnb) 

[particles/mL] 

mc) 

[g/nanogel] 

Npolymer 

chains/nanogel c) 

4.7 4.3×1010 1.09×10-13 7.8×106 

a) Concentration measured by solvent evaporation 
b) Concentration measured by the NanoSight LM10 apparatus 
c) Calculated from Cm and Cn, considering M = 8420 g/mol for one polymer chain 

 

Finally, no aggregation or increased polydispersity of particles was observed by DLS monitoring over 

6 months, indicating that our nanogels were colloidally stable when stored at 4 °C. 

IV. CYTOTOXICITY TEST AND EVALUATION OF NANOGEL-PROTEIN 

INTERACTIONS 

Nanogels produced from P(EtOx-stat-EI) contained remaining ethylene imine functionalities even 

after cross-linking with 1,6-hexanediol di-glycidyl ether, as determined by titration. Cytotoxicity of 

both PEtOx and poly(ethylene imine) (PEI) have already been reported in the literature: PEtOx is an 

amino-acid analogue (= pseudo-polypeptides),15 and is thus expected to be biocompatible. PEtOx is 

already approved by the FDA as an indirect food contact agent (which was also the case for 

polyethylene glycol (PEG) before being approved for biomedical applications), and can now rival with 

commonly hydrophilic polymers used for drug delivery applications,23 especially PEG.20,22,41 

Cytotoxicity of a library of poly(2-oxazoline)s with different pendant chains has been recently 

evaluated: no cytotoxicity has been observed even at high concentration.16 Another study has shown 

that PEtOx, even up to 15 000 g/mol, is non-cytotoxic.17 The potential cytotoxicity of PEtOx-drugs, 

proteins42,43 or enzyme conjugates44 or of nano-assembled systems, such as micelles45–47 or 

nanoparticles48 with one block made of PEtOx, has also been assessed and no cytotoxicity has been 

evidenced. 

The cytotoxicity of partially hydrolyzed PEtOx has been reported to increase with increasing 

percentage of hydrolysis, and PEI is also known to be cytotoxic,49–51 mainly because of its high 

positive charges. However, up to the percentage of hydrolysis of 9%, at a concentration up to 5 

mg/mL, no cytotoxicity has been found.52 However, due to the positive zeta potential values at 



Optimized POx nanogels: towards a biocompatible drug delivery system 

191 

physiological pH (ζ = 15 mV) (SI†, Figure S12), cellular toxicity and some interactions with the 

immune system can be suspected. 

The cell proliferation and viability were assessed with our nanogels, using the MTS cell metabolic 

activity test. The fibroblast-like L929 cells were incubated for 72 hours (a time long enough to reveal 

any eventual toxicity exerted by the nanoparticles) with increasing nanogel concentration. Metabolic 

activity, directly related to cell viability, was measured by spectrophotometry via the reduction of 

MTS into the colored formazan product by active mitochondrial dehydrogenases. As can be seen on 

Figure 3, nanogels do not show any cytotoxicity to the L929 cells in the concentration range tested 

(from 0.1 to 400 µg/mL).  

 

Figure 3 MTS assay conducted on mouse fibroblast-like L929 cells. 

In addition, even after 72 hours of incubation, the cells were nicely spread in the wells, and some 

were still going through mitosis (SI†, Figure S13). Hence, our synthesized nanogels did not exhibit any 

cytotoxicity despite their positive surface charge. These characteristics are particularly interesting 

considering previous reports claiming that nanoparticles smaller than 200 nm and with slight positive 

charge are preferentially accumulated and remain within tumor sites compared to neutral or 

negatively charged nanoparticles. 53 

When administered in the blood stream, nanogels could interact with plasma proteins. Nanogel-

proteins interactions strongly depend on nanogel surface characteristics (e.g. functionalities,54 

hydrophobicity55 or charges).56 Herein, nanogels might interact with negatively charged serum 

proteins (such as albumin, the main protein of human blood plasma) or red blood cells, forming big 

aggregates. The aggregation behavior of cationic nanogels in serum has already been demonstrated 

elsewhere.57 In our case, nanogel stability study in serum via DLS measurement was not feasible, as 

the count rate of the nanogels alone was already low. Bovine serum albumin (BSA) was chosen as a 
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model protein to study the interactions between plasma proteins and nanogels. BSA was incubated 

with the nanogels overnight, at different incubation concentration (IC, corresponds to the mass ratio 

BSA over nanogels) (75%, 50%, 25%, 12.5%, 6.25% and 3.5%), and the potential interactions were 

assessed by gel retardation assay. BSA is negatively charged at physiological pH (IP = 4.95 mV, SI†, 

Figure S14) and could potentially create electrostatic interactions with nanogels. The gel 

electrophoresis was run for each IC and the intensities of the bands obtained were compared to the 

ones of BSA alone, at the same concentration. Nanogels being more than 10 times larger than the 

protein, they should remain in the well and not migrate on the gel, or in the worst case situation 

migrate more slowly than the free BSA. As can be seen in Figure 4, for each IC, the intensity of the 

bands for BSA and for nanogels incubated with BSA overnight was similar, suggesting there was no 

retardation in BSA mobility and that BSA did not significantly bind to the nanogels.  

 

Figure 4 Native gels run for BSA and nanogels-BSA mixture at different incubation concentrations 

This can be attributed to their stealth behavior, as reported in the literature for PEtOx,58,59 one of 

the gold parameters to achieve for a DDS. These results were corroborated with other POx 

involved polymer brushes,60 bottle-brush brushes,61 capsules,62 hydrogels,63,64 or simply amphiphilic 

POx block copolymers65 which were reported as protein repellent systems. 
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V. COMPLEMENT SYSTEM ACTIVATION 

V.1. MEASUREMENT PRINCIPLES 

If administered intravenously, DDS could be rapidly cleared from the blood stream by different ways: 

renal and hepatic clearance, destabilization, aggregation, opsonization and clearance by the 

mononuclear phagocytic system (MPS).7,66 MPS is a part of the immune system that consists of 

phagocytic cells, such as blood monocytes and macrophages accumulated in lymph nodes, spleen and 

other tissues.67,68 The biochemical cascade that removes pathogens is known as the complement 

system: it consists of numerous plasma and membrane-bound proteins, numbered at more than 50 in 

2010.69–71 A number of complement proteins are proteases that are themselves activated by 

proteolytic cleavage and such enzymes are called zymogens. In the case of the complement system, 

the precursor zymogens are widely distributed throughout body fluids and tissues without adverse 

effect. At sites of infection, however, they are activated locally and trigger a series of potent 

inflammatory events. The complement system activates through a triggered-enzyme cascade. In such 

a cascade, an active complement enzyme generated by cleavage of its zymogen precursor then 

cleaves its substrate, another complement zymogen, to its active enzymatic form. This in turn cleaves 

and activates the next zymogen in the complement pathway. In this way, the activation of a small 

number of complement proteins at the start of the pathway is hugely amplified by each successive 

enzymatic reaction, resulting in the rapid generation of a disproportionately large complement 

response.72 

There are three pathways of complement activation: the classical pathway, which is initiated by 

antigen-antibody complexes or by direct binding of complement component C1q to the pathogen 

surface; the MB-lectin pathway, which is triggered by mannan-binding lectin, a normal serum 

constituent that binds some encapsulated bacteria; and the alternative pathway, which is triggered 

directly on pathogen surfaces. The three main consequences of complement activation are 

opsonization of pathogens, the recruitment of inflammatory cells, and direct killing of pathogens.70–72 

The opsonization corresponds to the interaction/adsorption of plasma proteins (opsonins) onto the 

pathogen which signals it as a foreign material and will subsequently lead to its ingestion by 

macrophages by phagocytosis. It is considered as the main barriers to nanoparticles stability and 

delivery in vivo, especially opsonization by the most abundant plasma proteins such as albumin, 

apolipoprotein, immunoglobulins, complement and fibrinogen.  

It was previously demonstrated in this work that BSA did not adsorb to our nanogels, but protein 

binding to the surface of nanoparticles does not only depend on particle surface characteristics, such 
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as hydrophilicity, charge and surface functional groups,54,55,73 but also on the protein properties. In 

order to evaluate in depth the potential stealth properties of the nanogels, complement activation 

assay, one of the standard hemo-compatibility assay,69 was investigated. To do so, different methods 

could be used69,74,75 such as CH50 and APH50 hemolytic assays,76,77 2D-immuno electrophoresis,78 

enzyme immunoassay (EIA) or liposome immunoassay (LIA).76 A comparative study between CH50, 

EIA and LIA showed good correlation between the three, but better sensitivity for EIA and LIA.76  

V.2. EIA AND LIA RESULTS 

EIA and LIA assays were run at the same nanogel concentration as for the cytotoxicity assay, to 

ensure their biocompatibility. For both methods, negative and positive controls were used. 

Poly(methyl methacrylate) (PMMA) nanoparticles were suspended in sterile PBS and used as a 

positive control as previously reported in the literature.79,80 As poly(ethylene glycol) (PEG) is often 

used as the gold standard for stealth properties, poly(ethylene glycol)-b-poly(lactic acid) (PEG-PLA) 

micelles were used as a negative control.75,81 Lastly, hyaluronan-b-poly(γ-benzyl-L-glutamate) (Hya-

PBLG) micelles and discs were also used as negative controls as hyaluronan is known to not activate 

the complement system.82–84 The efficacy of nanogels treatment was established by comparison with 

control levels.  

Before evaluating the complement activation of our samples by the EIA method, a calibration was run 

using standards with known activity. The intensity measured evolved linearly with the activity up to 

400 U/mL. 

 

Figure 5 Results for complement activation by A) the EIA method, B) the LIA method 

As shown in Figure 5, a nanoparticle concentration of 0.1 µg/mL is too little to lead to any 

complement activation as all the nano-particles tested (i.e. nanogels, positive and negative controls) 
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presented really low complement activation. On the other hand, at 400 µg/mL, a clear difference in 

activity was noticed between the positive (PMMA nanoparticles) and negative controls. Surprisingly, 

the complement activity measured in the presence of nanogels appeared to be comparable to that of 

the positive control. A relatively low activity was measured at a concentration of 100 µg/mL for the 

nanogels, but unfortunately no control experiments were run at this concentration. 

Concerning the LIA assay, regardless of which nanoparticle were tested and their concentration, the 

activation levels measured were close to the one of the serum alone and at the limit of the linear 

range (see Figure 5). Some measurements were run with another serum presenting a higher activity, 

but again the activities measured were equal to the activity of the serum tested without 

nanoparticles, which means that no complement activation was detected. The LIA technique is used 

routinely in hospitals to analyze patients’ sera, but doesn’t seem appropriate for our nanoparticles. 

The fact that liposomes are in the same size range as some of the nanoparticles tested could be part 

of the problem.  

Finally, the experiments on complement activation are not conclusive and further analyses are 

needed to get clear information. 

V.3. DISCUSSION 

One of the most successful strategies to avoid interaction of nanoparticles with components of 

biological fluids is coating with a neutral hydrophilic flexible polymer to prevent adsorption of plasma 

proteins and avoid recognition by the MPS and subsequent clearance, PEG being the most commonly 

used polymer. The current increasing interest for poly(oxazoline)s, and especially for poly(2-methyl-

2-oxazoline) and poly(2-ethyl-2-oxazoline), is mainly due to their reported stealth properties, similar 

to PEG.20–23  

In the present work, BSA appeared not to interact with or adsorb on the nanogels. This is in good 

agreement with the literature where interactions between human serum albumin and micelles with 

the outside shell made of PEtOx was reported to be really low65 and where PEtOx is even presented 

as a good candidate to design non-fouling surface coatings.60 On the other hand, at a concentration of 

400 µg/mL, nanogels seemed to activate the complement system from EIA method, even though no 

activation could be seen by the LIA method, in our hands. The fact that BSA did not adsorb on the 

nanogel surface but that nanogels activated the complement system could be perceived as 

contradictory. It is actually reported in the literature that when biomaterials enter in contact with 

body fluids such as serum, the serum proteins immediately adsorb and cover the surface of the 

biomaterial. The complement upon activation, first associate to the already adsorbed proteins on the 
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surface of the biomaterial and the extent of covalent complement protein adsorbing directly to the 

biomaterials is minor.85,86 There is also competitive protein exchange on surfaces, in which proteins 

already adsorbed on a surface could be displaced by subsequently arriving proteins (also called the 

Vroman effect).87 That is to say that the adsorption of the complement protein should takes place 

after that of serum albumin and biomaterials that adsorbed much larger amounts of serum proteins 

are being thus strong activators of the complement system.88 

Even though our nanogels had no specific affinity for BSA, other serum proteins such as globulin or 

fibrinogen for example could have been adsorbed, which could explain the complement activation. 

On the other hand, we are also well aware that particle characteristics such as the size, surface 

charge, surface polarity and morphology influence their in vitro and in vivo fate.89 Herein, we 

compared activation level of particles with different morphologies (nanogels, micelles, discs, plain 

nanoparticles) and different sizes (from 27 nm to 210 nm) which could definitely influence the 

complement activation. 

One has to take into consideration that these results are preliminary: the BSA-nanogels interactions 

were evaluated by gel electrophoresis, which cannot be fully considered as a quantitative method. In 

addition, EIA complement activation assays were only run in duplicate at two different 

concentrations. Complementary assays will have to be carried out before reaching final conclusions 

(additional concentrations run in triplicate). Moreover, there is substantial inter-individual variation in 

complement response to an activator. This necessitates the testing of multiple sera in order to 

evaluate the frequency of reactions and the extent of activation in reactive sera.69  

CONCLUSIONS 

Hydrophilic nanogels based on partially hydrolyzed poly(2-ethyl-2-oxazoline) were synthesized in 

aqueous dilute media, in the presence of 1,6-hexanediol di-glycidyl ether as the cross-linker. The 

nanogel formation could be precisely monitored by DLS and HSQC NMR spectroscopy, where the 

disappearance of signals corresponding to the reactive functionalities of the polymer and cross-linker 

together with the appearance of new signals characteristic of the new linkages confirmed the 

successful nanogel formation. 

The nanogels thus obtained exhibited a spherical structure with a hydrodynamic radius of 78 nm. 

Overall, the influence of the extent of hydrolysis on the final nanogel size was clearly demonstrated: 

the size decreased when increasing the extent of hydrolysis, that was, by increasing the percentage of 

reactive amino-functionalities reacting with the bis-epoxide cross-linker. The nanogel size was found 
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to be within the optimal range for drug delivery system (DDS), with a view at taking advantage of the 

EPR effect in order to reach the targeted site. By further characterizing the nanogels using the 

NanoSight LM10 apparatus, it was possible to obtain the approximate mass of a single nanogel and 

the number of polymer chains per nanogel, which were found to be 1.09×10-13 g/mol and 7.8×106, 

respectively. 

In addition, the nanogel surface was positively charged, but did not induce any cytotoxicity, as 

attested by the MTS assay carried out on fibroblast-like L929 cells. Furthermore, no specific 

interactions with bovine serum albumin were observed. This was attributed to the stealth behavior 

of PEtOx. Last, the synthesized nanogels remained stable over at least a 6 months period, as 

monitored by DLS: the robustness of such systems will enhance their in vitro and in vivo stability. 

These nanogels thus have great potential as DDS, as they combine some of the crucial properties 

required: appropriate size and morphology, robustness and flexibility, slight positive surfaces charge 

without any cytotoxicity and with potential stealth behavior. However, some additional assays should 

be conducted before drawing any conclusion on the complement activation ability of these nanogels. 

Last, these nanogels were synthesized by a straightforward and surfactant free-method, which can be 

easily scalable and transferred to clinical trials. 
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EXPERIMENTAL SECTION 

Materials and reagents 

2-Ethyl-2-oxazoline (99%) (EtOx), methyl trifluoromethanesulfonate (96%) (MeOTf), and acetonitrile 

(99%) were purchased from Sigma-Aldrich, stored over calcium hydride and purified by vacuum 

distillation prior to use. Methanol (Sigma-Aldrich) was refluxed over sodium and distilled prior to 

use. Diethyl ether, ethanol, potassium hydroxide (KOH), sodium hydroxide (NaOH), hydrochloric 

acid solution (37%) (HCl), cyclohexane (99%), 1,4-butanediol di-acrylate, bovine serum albumin 

(fraction V, approximately 99 %) (BSA) were used as received from Sigma-Aldrich. 1,6-Hexanediol di-

glycidyl ether (98%) was purchased from BOC sciences and used as received.  

Instrumentation  

NMR spectroscopy. 1H NMR measurements were carried out, at room temperature, on a Bruker 

Avance I spectrometer operating at 400 MHz. The D2O signal was used as reference (δ = 4.79 ppm), 

and the relaxation time was fixed to 7.5 sec for all measurements.  

Phase sensitive HSQC experiment was used to acquire the 2D spectra giving DEPT type information 

in addition to the 1H-13C connectivity. This experiment was performed at 353 K on a Bruker Avance 

III HD NMR spectrometer operating at 400 MHz. The spectral widths were 4800 and 16000 Hz for 

the 1H and 13C dimensions, respectively. The number of collected complex points was 2048 for the 

1H dimension with a recycle delay of 2s. The number of transients was 4, and 256 time increments 

were always recorded in the 13C dimension. The 1JCH used was 145 Hz. Prior to Fourier 

transformation, the data matrices were zero filled to 1024 points in the 13C dimension. The D2O 

signal was used as the reference signal (δ = 4.25 ppm). Data processing was performed using Mnova. 

Size-exclusion chromatography. Size-exclusion chromatography (SEC) using dimethylformamide 

(DMF) with LiBr (1 g/L) as the eluent was performed at 80 °C at a flow rate of 0.8 mL/min. The 

column set consisted of two 7.5 mm × 300 mm PLgel, 5 µm Mixed-D columns (Polymer laboratories) 

coupled to a guard column, 7.5 mm × 50 mm, PLgel, 5 µm model (Polymer laboratories). Injections 

were done in a 20 µL loop and calibration was performed with polystyrene standard. Differential 

refractive index (RI) and UV detectors were used. 

Infrared spectroscopy. Infrared spectra were obtained on a Thermoscientific Nicolet IS10 

spectrometer using the attenuated total reflection (ATR) mode. The spectra were acquired using 16 

scans at a resolution of 4 wavenumbers. 
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Dynamic light scattering. Dynamic light scattering experiments were performed using an ALV 

CGS-3 Compact Goniometer System, equipped with a 35 mW HeNe linear polarized laser with a 

wavelength of 632.8 nm and an ALV/LSE-5004 light scattering electronic and Multiple Tau Digital 

correlator. The accessible scattering angles ranged from 30° to 150°. Samples (2 mL in 2 cm 

diameter cylindrical glass cells) were immersed in a filtered toluene bath. Three independent 20s 

measurements were carried out to obtain dynamic data. Mean hydrodynamic diameters and size 

distributions were determined using a cumulant analysis method. The samples were first filtered with 

0.8 µm nitrocellulose membranes. 

NanoSight analyses. NanoSight analyses were conducted on a LM10 apparatus. This technique 

combines a conventional optical microscope with a laser light source to illuminate nano-scale 

particles within a 0.3 mL sample introduced to the viewing unit with a disposable syringe. Particles 

appear individually as point-scatters moving due to Brownian motion. Measurements were done in 

triplicate, at room temperature, over a period of 60s. The particles size and concentration were 

evaluated thanks to the Nanoparticle Tracking Analysis (NTA) software.  

Transmission electron microscopy. Transmission Electron Microscopy (TEM) images were 

recorded at the Bordeaux Imaging Center (BIC) on a Hitachi H7650 microscope working at 80kV. 

Samples were prepared by spraying a 4.7 mg/mL aqueous solution of the nanogels onto a copper grid 

(200 mesh coated with carbon) using a homemade spray tool. They were subsequently stained with 

osmium tetraoxide vapor for 45 minutes. 

Atomic force microscopy. Atomic force microscopy (AFM) images were recorded in air using a 

Veeco Dimension Icon System equipped with a Nanoscope V controller and operating in tapping 

mode. The probes were commercially available silicon tips with a spring constant of 42 N/m, a 

resonance frequency of 285 kHz and a typical radius of curvature in the 8-10 nm range. Freshly 

cleaved Mica was used as sample substrate materials. For the observation of isolated nanogels, 

sample solutions in water at a concentration of 4.7 mg/mL were deposited on the substrate (20 µL) 

and immediately spin-coated (duration: 60 s; rate: 2000 rpm). Measurements of diameter were done 

using the section Particle Analysis tool provided by the AFM software (Nanoscope Analysis V1.20 

from Bruker). 

Titration. Titration was performed with a pH 730 pH-meter from inOLab (WTW series) and a 

conductivity meter K912 5.0 from Consort for simultaneous measurement of pH and conductivity. 

All measurements were performed at 25 °C while stirring at a medium speed 30 mL of nanogels 

solutions at 0.8 g/L in DI water. The pH of the solutions was adjusted to ~2 by adding 0.5M HCl. The 

solution was titrated using 0.01M NaOH under stirring. Conductivity and pH of the solutions were 
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measured simultaneously until the pH of the samples approached 11. Finally, the pH and conductivity 

values were plotted against the volume of NaOH added (in mL). 

Electrophoretic mobility measurements. Zeta potential measurements were performed on a 

Malvern Nano ZS ZetaSizer at 25 °C. Laser Doppler electrophoresis in phase mode was conducted 

with sequential fast and slow field reversal applying a potential of ± 150 V. The so-measured 

electrophoretic mobility (µ) was then converted to zeta potential (ζ) using the Smoluchowski 

approximation. Samples were prepared at 4.7 mg/mL in DI water. 0.01M HCl or 0.01M KCl solutions 

were added respectively to adjust the pH. 

Experimental procedures 

Synthesis of poly(2-ethyl-2-oxazoline) (PEtOx). A typical procedure is as follows. In a flame 

dried Schlenk flask, 14 mL of acetonitrile was introduced under vacuum and 56 µL (0.5 mmol) of 

MeOTf was added. The flask was placed in an ice bath at 0 °C and 5.05 mL (50 mmol) of 2-ethyl-2-

oxazoline was added. The flask was then heated at 85 °C for 3 days, and the reaction was quenched 

by adding 2.7 equivalents of a 0.3N KOH solution in methanol. The solution was left to stir at room 

temperature overnight, and the polymer was precipitated twice into diethyl ether and dried under 

vacuum. Yield = 4.51 g (89 %). 1H NMR (400 MHz, D2O, δ): 3.7-3.45 (d, NCH2CH2), 3.1 (d, CH3-

NCH2CH2), 2.5-2.3 (m, NCOCH2CH3), 1.15-1 (q, NCOCH2CH3). Ɖ = 1.23. dn/dc = 0.0789 (in DMF 

+ 0.1% LiCl). Degree of polymerization (DP) = 100. IR: ν = 3481 (m), 2977(s), 2939 (s), 2880 (m), 

1621 (s), 1470 (m), 1420 (s), 1374 (s), 1320 (w), 1238 (m), 1194 (s), 1078 (w), 1061 (m), 969 (w), 915 

(w), 877 (w), 814 (m), 756 (w), 637 (s), 571 (s). 

Partial hydrolysis of PEtOx in acidic media: synthesis of P(EtOx-stat-EI). The partial 

hydrolysis was adapted from our previously reported procedure.32 3.54 g (3.57 10-4 mol) of 

P(EtOx)100 was dissolved in 35 mL of DI water and heated under reflux (oil-bath set at 100 °C). 

Subsequently, 35 mL of 37 % HCl solution was added to the polymer solution, yielding a polymer 

concentration of 50 g/L. Once the targeted percentage of hydrolysis was achieved, the solution was 

left to equilibrate to room temperature. A solution of 2.5M NaOH was added to reach pH = 8. 

Samples were then dialyzed against DI water for 3 days and freeze-dried. Yield = 1.84 g (52%). 1H 

NMR (400 MHz, D2O, δ): 3.6-3.3 (d, NCOCH2CH2), 3.1 (d, CH3-NCH2CH2), 3.0-2.7 (s, 

NHCH2CH2), 2.5-2.3 (m, NCOCH2CH3), 1.15-1 (q, NCOCH2CH3). Ɖ = 1.201. IR: ν = 3484 (m), 

2977(s), 2939 (s), 2880 (m), 1621 (s), 1470 (m), 1420 (s), 1374 (s), 1320 (w), 1236 (m), 1194 (s), 

1078 (w), 1061 (m), 969 (w), 915 (w), 877 (w), 813 (m), 761 (w). Percentage hydrolysis: 1H NMR = 

26 %. 
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Nanogel synthesis in dilute media under sterile conditions. 1.35 g of the partially hydrolyzed 

polymer P(EtOx74-stat-EI26) was dissolved in 135 mL of DI water. In another flask, a solution of 1,6-

hexanediol di-glycidyl ether at 80 mg/mL was prepared in ethanol. Both solutions were filtered 

through a 0.2 µm polypropylene filter and 8.37 mL of the cross-linker in ethanol was subsequently 

added to the polymer solution. The mixture was stirred at 800 rpm at 80 °C for 6 hours. The cross-

linking reaction and nanogel formation were monitored by DLS at an angle of 90° on a Malvern 

ZetaSizer NanoZS instrument. Once the nanogels were formed, they were dialyzed for 2 days first 

against ethanol to sterilize the nanogel solution and to remove excess cross-linker, secondly against 

DI water to remove any unreacted polymer chains. 229 mL of the nanogel aqueous solution was 

obtained at a concentration of 4.7 mg/mL. 

Cell culture and cell cytotoxicity assay against fibroblast-like L929 cells. The mouse 

fibroblast-like L929 cells were routinely cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, 

Lonza) supplemented with 10% fetal bovine serum (FBS, Gibco, Grand Island, NY, United States), 1% 

of antibiotics (penicillin/streptomycin 10 000 U/ 10 000 µg/ml, Lonza), 1% sodium pyruvate and 1% 

Glutamax (Gibco). Cells were maintained at 37 °C in a 5% CO2 humidified incubator. After rinsing 

with PBS (Ca2+/Mg2+ free, Lonza) buffer solution to remove the serum, the cells were detached with 

0.5% Trypsin-EDTA solution 10 × (Gibco, Grand Island, NY, United States) diluted 10 fold in PBS 

(Ca2+/Mg2+ free) buffer solution. 

For cytotoxicity measurements, the cells were first seeded in 96-well plates at a density of 2000 

cells/well and grown in DMEM complete medium for 24 h prior to treatment. Cells were then 

exposed to the nanogels in a mixture of 10% PBS buffer solution (pH = 7.4, 154 mM NaCl, Ca2+/Mg2+ 

free) and 90% DMEM complete medium with different concentrations (100, 10, 1, 0.1, 0.01 µg/mL) 

for 72 h. After 72 h, the cells were rinsed with PBS (with Ca2+/Mg2+, Lonza) buffer solution (100 

µL/well), and cell viability was evaluated via the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) solution (Promega) assay. Specifically, 20 

µL of MTS and 100 µL of PBS (with Ca2+/Mg2+) buffer solution were added to each well, and then the 

plates were incubated at 37 °C for 30 min. The absorbance at 490 nm was measured using a Power 

wave X (Biotek instrument Inc.) micro-plate UV-vis spectrometer. For the positive control, cells 

were incubated with the media alone. Results were expressed as the percentage of metabolic activity 

of treated cells relative to untreated cells. Independent experiments were carried out 3 times with 8 

replicates per condition. 

Nanogel-protein interaction evaluation by gel retardation assay. The native polyacrylamide 

gel electrophoresis was performed according to the Laemmli procedure.90 BSA proteins were left to 

incubate with a 4 mg/mL nanogel solution in phosphate buffer, 10 mM, pH = 7.4, at different 

incubation concentrations (IC), overnight. The incubation concentration corresponding to the mass 
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ratio of BSA over nanogels. The next morning, the nanogel-BSA solutions were mixed with 6 µL of 

loading buffer to achieve a final BSA content of 5 µg in each well (for the IC of 3.5%, only 2.8 µg 

were put in the well). The mixtures were loaded on a 7.5 % tris-acrylamide gel. Euromedex pre-

stained protein ladder was used as reference. The gel run was performed in a Mini-Protean tetracell 

system from Bio-Rad. The run in the stacking gel was carried out with a constant voltage of 100 V. 

After the bromophenol blue band attained the resolving gel, the voltage was changed to 200 V. 

Staining was achieved by shaking the gel overnight in a solution of coomassie brilliant blue R-250. 

Destaining was performed in a solution of 40% ethanol and 10% glacial acetic acid.91 

Complement system activation - Samples preparation. To measure complement activation in 

vitro, we determined nanogel-induced rise of human serum complement activation products using 

respective ELISA kits or LIA immunoassay. First, sterile nanogels aqueous solution was diluted with 

PBS 10× (purchased from Lonza) in order to obtain the desired concentrations (4000, 1000 and 1 

µg/mL). The reaction was initiated by diluting the previous nanogel solutions with undiluted fresh 

human serum (Serum from human male AB plasma, USA origin, sterile-filtered purchased from 

Sigma-Aldrich), at a typical nanoparticles/serum volume ratio of 1/9, in Eppendorf tubes (in duplicate). 

Solutions were incubated at 37 °C for 1 h.  

Control nanoparticles were synthesized following procedures described in the literature, reported in 

Table 1. Control serum incubations contained PBS (the same volume as the nanogels) for assessing 

background levels of complement activation products. The efficacy of nanogels treatment was 

established by comparison with control levels.  

Table 3 Characteristics of the control nanoparticles used for the complement system activation assay 

Control Particles Size (PDI) 
[nm] 

Ref 

+ PMMA 210 (0.12) 79 

- PEG-PLA micelles 27 92,93 

- Hya-PBLG micelles 40 (0.2) 94,95 

- Hya-PBLG discs 211 (0.13) 94,95 

 

Enzyme  immunoassay (EIA) principle. Measurements were carried out using the human total 

50% complement hemolytic unit (CH50) ELISA kit from BlueGene. CH50 ELISA kit applies the 

quantitative sandwich enzyme immunoassay technique (see Figure 6). A microtiter plate had been 

pre-coated with a monoclonal antibody specific for complement activation (CA). Standards or 

samples were then added to the plate wells and complement if activated, would bind to the antibody 

pre-coated wells. In order to quantitatively determine the amount of CA present in the sample, a 
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standardized preparation of horseradish peroxidase (HRP)-conjugated polyclonal antibody, specific 

for CA were added to each well to “sandwich” the complement immobilized on the plate. The 

microtiter plate was incubated, and then the wells were thoroughly washed to remove all unbound 

components. Next, substrate solutions were added to each well. The enzyme (HRP) and substrate 

were allowed to react over a short incubation period. Only the wells that contain complement 

activated and enzyme-conjugated antibody would exhibit a change in color. The enzyme-substrate 

reaction was terminated by addition of a sulphuric acid solution and the color change was measured 

spectrophotometrically at a wavelength of 450 nm. A standard curve was plotted relating the 

intensity of the color (O.D.) to the concentration of standards. The CA concentration in each sample 

was interpolated from this standard curve. The experimental data are the average of two 

independent experiments and measurement sensitivity is of 1 U/mL. 

 

Figure 6 Enzyme immunoassay (EIA) principle (adapted from ref. 96) 

Liposome immunoassay (LIA) principle.97 Measurements were made at the Hospital CHR 

Citadelle in Liège, Belgium, in the medical analysis laboratory Labo Cita, using a Wako AutoKit 

CH50. Dinitrophenyl (DNP)-coated liposomes that contain the enzyme glucose-6-phosphate 

dehydrogenase was used (see Figure 7). When a sample is mixed with the reagent, the complement 

in the sample is activated by the antigen-antibody complex on the liposomes. The activated 

complement breaks the membrane of the liposome. The enzyme glucose-6-phosphate dehydrogenase 

(G6PDH) contained in the liposome reacts with nicotinamide adenine dinucleotide (NAD) and 

glucose-6-phosphate (G6P) in the reagent. During this enzyme reaction the NAD is reduced to 

NADH and an increase in absorbance at 340 nm is observed. The absorbance increase is 

proportional to the total complement activity in the sample. The experimental data are the average 

of two independent experiments. The measurable range is from 10 to 60 U/mL and the sensitivity is 

4 U/mL. 
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Figure 7 Principle of the LIA assay (adapted from ref. 97) 

SUPPORTING INFORMATION  

 

Figure S1 1H NMR spectrum (400 MHz, D2O) of PEtOx100 
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Figure S2 SEC trace of PEtOx100 in DMF 

 

 

Figure S3 FT-IR spectrum of PEtOx100 
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Figure S4 1H NMR spectrum (400 MHz, D2O) of P(EtOx74-stat-EI26) 

 

 
Figure S5 SEC trace of P(EtOx74-stat-EI26) in DMF 
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Figure S6 FT-IR spectrum of P(EtOx74-stat-EI26) 

 
Figure S7 HSQC NMR spectrum of nanogel formation after 2 h at 80 °C 
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Figure S8 HSQC NMR spectrum of nanogel formation after 5 h at 80 °C 

 

 

Figure S9 TEM micrograph of nanogels with size measurements 
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Figure S10 Statistical distributions of TEM particle hydrodynamic radii 

 
Figure S11 Titration of the secondary amine by pH-metry and conductivity measurements 
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Figure S12 Variation of the zeta potential of nanogels with pH 
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Figure S13 Images obtained on inverted IX81 microscope of fibroblast-like L929 cells after 72 h exposure to 

nanogel solutions 
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Figure S14 Measurement of isoelectric point of BSA by zetamety 

 
Table S1 NanoSight measurements on the nanogel solution, c = 4.7 mg/mL 

Dilution 
factor 

Cn measureda) 

[particles/mL] 

Cn calculatedb) 

[particles/mL] 
Measurement 
error min 

Measurement 
error max 

Comment 

10 2.25E+09 2.25E+10 1.91E+10 2.59E+10 Over concentrated 

50 6.23E+08 3.12E+10 2.65E+10 3.58E+10 Linear range 

100 4.30E+08 4.30E+10 3.66E+10 4.95E+10 Linear range 

1000 2.63E+08 2.63E+11 2.24E+11 3.03E+11 Not enough 
particles  

10000 1.03E+08 1.03E+12 8.73E+11 1.18E+12 Not enough 
particles  

a) Concentration measured by the NanoSight apparatus 
b) Concentration in the initial nanogel solutions calculated from Cn measured and the dilution factor 
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Appendix S1 - AFM procedure 

The distinct spread of particles onto the mica surface allowed the analysis of section dimensions. This 

spreading can be modelled as a disc-like structure. The radius of nanogels (RAFM) can then be 

estimated from the dimensions of the observed discs (diameter D radius R and height h), assuming 

that the volume of the discs (V) is equal to the volume of spherical nanogels (VAFM): 

Volume of spherical nanogels: 𝑉!"# = !
!
𝜋  𝑅!"#!  

Volume of disc: 𝑉 = 𝜋𝑅!ℎ 

Assuming V= VAFM, we obtained: 𝑅!"# = !
!
𝑅!ℎ

!/!
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GENERAL CONCLUSION AND PERSPECTIVES 

The goal of this PhD project was to engineer polyoxazolines (POx) (co)polymers into 3D-networks for 

potential use in biomedical applications. This has been achieved at different levels: from the identification 

of chemical handles (through ethylene imine units generated by partial hydrolysis or through the use of a 

monomer featuring a protected aldehyde functionality) and their capability for forming hydrogels, up to 

the design of tailored nanogels and the study of their biological properties (cytotoxicity and protein 

repellent properties).  

First, dual-stimuli responsive nanogels were prepared from partially hydrolyzed poly(2-

ethyl-2-oxazoline) (PEtOx). The cross-linking strategy, involving the ethylene imine units arising from 

the partial hydrolysis of PEtOx, and diglycidyl ether cross-linkers, allowed us to obtain POx nanogels in 

aqueous media. Nanogels were indeed prepared either in dilute media and in w/o inverse emulsion. 

Because of the presence of tertiary amines and residual ethylene imine units that were not involved in 

the cross-linking process, nanogels were pH-responsive and could swell in acidic media. In addition, by 

choosing an appropriate cross-linker bearing a disulphide bond, the nanogels could be cleaved in a 

reductive environment. These conditions can be found intra-cellularly or in the vicinity of tumour 

environments, making these nanogels specifically interesting for spatial control drug release 

systems. 

The latter method conducted in dilute media was optimized to meet the requirements of an optimized 

DDS. The size of the nanogels was in particular decreased, from 400 nm to 160 nm, by increasing the 

cross-linking density, with a view at taking advantage of the enhanced permeation and retention (EPR) 

effect, in order to passively increase their accumulation at the tumor site. These nanogels were further 

characterized by MALLS, TEM, AFM and NanoSight analyses. They proved to be non-cytotoxic, as 

attested by the MTS assay carried out on fibroblast-like L929 cells, despite the fact that they were slightly 

positively charged. Last, our nanogels showed no interaction with BSA, in agreement with the stealth 

behavior of PEtOx. On the other hand, some preliminary tests regarding their potential interaction 

with the complement system were not conclusive. Further assays should be conducted before drawing 

any conclusions on this point. Such nanogels systems have thus a great potential as robust DDS. The 

next step would be to encapsulate hydrophilic drugs or proteins and study their release under different 

conditions, especially by changing the pH. The most efficient way to achieve a successful encapsulation 

would be operating in situ, i.e. during the cross-linking reaction. In such a case, however, the drug/protein 

should not take part in the cross-linking reaction, and the cross-linking should be performed under mild 
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conditions to prevent the drug/protein from degrading. So far, the cross-linking chemistry that was 

developed in this work was non selective. 

In order to go further in this direction, a library of statistical POx copolymers, derived from 2-methyl-2-

oxazoline (MeOx) and a 2-oxazoline monomer featuring a protected aldehyde functionality in the form 

of a ketal ring, namely 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx), was elaborated. Aldehyde 

functional groups are of special interest owing to the diversity of reactions that can be 

implemented with antagonistic functional group, including alcohols, amines and hydrazines, just to cite a 

few. Some of the conjugation reactions are chemoselective, such as the reaction with hydrazine 

derivatives or amino-oxy derivatives. In this work, we have expanded the scope of aldehyde and ketal 

containing POx, in particular for hydrogel formation. The aldehyde functions were established to react 

with mono- and bi-functional amine and hydrazide compounds, enabling the synthesis of both grafted 

POx and POx-based hydrogels that could be chemically cleaved off under acidic conditions. As the 

chemistry used for cross-linking is selective, it could be further exploited for instance for the 

simultaneous encapsulation or entrapment of molecules, such as drugs and proteins during the cross-

linking process. Moreover, one could expect that the release of the encapsulated molecules could be 

controlled by the pH. 

The aldehyde functional copolyoxazolines were also demonstrated to undergo acid-catalyzed 

intermolecular self-aldolization, leading to branched structures and, ultimately, to cross-linked 

networks. The cross-linking process could be time controlled by adjusting the copolymer composition 

(i.e. the aldehyde function density and polymer end group). It would be interesting to check whether this 

self-aldolization could actually be triggered and controlled in aqueous solution, in order to produce 

nanogels in dilute media without the need for adding any external cross-linker. On the other hand, a way 

to completely avoid aldolization would be to design a new monomer bearing protected aldehyde 

functionality which does not possess any hydrogen on the α-position of the aldehyde (such as 

benzaldehyde). 

Last, chemical modification could also be achieved directly on the copolymers in its protected form. 

Transacetalization using a large excess of a PEG precursor indeed proved successful, forming cyclic 

pendant loops rather than PEG brushes. The main limitation of this post-chemical modification by 

transacetalization was however the release of ethylene glycol and no commodity solvent could be used. 

The transacetalization reaction was thus conducted using PEG300 in which the copolymer could be 

solubilized and that has a higher boiling point than ethylene glycol. Using ionic liquids as solvents could be 

a solution for the reaction to proceed. 
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As a result, the versatility of post-polymerization modification of aldehyde-based reactive platforms 

developed in this work, combined with the known properties of poly(2-oxazoline)s, expand the range of 

possibilities of this special class of polymeric materials. 

The ability of a particular POx, namely, poly(2-isopropyl-2-oxazoline) (PiPrOx) to 

crystallize was next exploited in another part of this work. Our aim was to study the influence of a 

hydrophilic stabilizing block on the PiPrOx crystallization. Thus, a block copolymer, PMeOx-b-PiPrOx, 

was purposely synthesized and its self-assembly induced by crystallization was studied in aqueous 

solution. When heated above its LCST for a short period of time (< 1h30), well-defined and reversible 

micelle-like nanostructures were obtained. However, upon annealing for longer times, irreversible 

crystalline structures were observed. Monitoring the crystallization process showed that three different 

morphologies, namely, core-crystallized micelles, nano-aggregates and fibers were achieved, the 

proportion of which varied with the annealing time. When annealed, the copolymer is in a non-

equilibrium state leading to crystalline structures depending on different external parameters such as 

polymer concentration, heating rate, etc. However, the influence of the latter parameters has not been 

studied in depth, and it would be worth evaluating whether the crystalline nano-objects could be 

achieved by tuning such parameters. Since the crystallization process is driven by hydrophobic and 

dipolar interactions, it could be also interesting to study the influence of salt, co-solvent or surfactants, 

to disrupt such interactions. In addition, WAXS analyses confirmed that the crystal structure obtained 

was similar to the one obtained for the homopolymer, and was governed by the polymer chain shift to 

an all trans conformation. One could wonder if a PiPrOx with a shorter block length could also induce 

crystallization, or if a statistical copolymer composed of iPrOx units could also crystallize and how this 

would affect the crystal structure and the resulting morphology.  

Perspectives on POx engineering for biomedical applications are multiple. Their use to design 

DDS made from hydrogels or nanogels are in their early stages. Even though POx are regarded as strong 

competitors to PEG, owing to their stealth properties, it should not be the only properties exploited. 

POx functionalization has been widely investigated leading to a real POx toolbox. Unfortunately, only 

few POx DDS were designed while taking advantage of this toolbox and of their resulting properties. 

There is a high potential to go towards the formation of multifunctional biomimetic and smart DDS, with 

tunable properties and functionalities allowing the conjugation with specific ligands for active targeting for 

example. However, one has to keep in mind that, as for any other system, an increase in material’s 

complexity can also limit the future clinic development. However, the control of the chemical structure, 

composition and functionality in POx make them interesting candidates for future biomaterial design. 
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Titre: Ingénierie des poly(2-oxazoline)s pour un usage dans 
le domaine du biomédical 
Résumé: Ce travail décrit d'abord l’élaboration de nanogels hydrophiles 
stimulables, sensibles à un changement de pH et à un environnement où les 
propriétés d’oxydo-réduction peuvent varier. Ils ont été synthétisés en milieu dilué, 
d’une part, et en émulsion inverse, d’autre part; dans les deux cas à partir d’un 
copolymère statistique composé d’unités 2-éthyl-2-oxazoline et éthylène imine. Ces 
nanogels n’ont pas montré d’interactions spécifiques avec des protéines telles que la 
BSA et se sont avérés non-toxiques in vitro. Une plateforme à base d’un copolymère 
POx statistique porteur de fonctions aldéhydes a par ailleurs permis d’accéder à une 
librairie de POx, incluant des structures greffées et réticulées. Enfin, l’auto-
assemblage en solution d’un copolymère à blocs de type poly(2-methyl-oxazoline)-b-
poly(2-isopropyl-2-oxazoline) (PMeOx-b-PiPrOx), a été étudié en détail. Des micelles 
ont été observées à des temps courts au-dessus du point trouble du PiPrOx. Pour 
des temps plus longs, la formation de fibres et de micelles réticulées physiquement 
ont été mise en évidence, comportement expliqué par la cristallisation des chaines 
de PiPrOx stabilisées par les blocs PMeOx hydrophiles. 

Mots clés: poly(2-oxazoline), nanogel, hydrogel, stimulable, cristallisation, point 
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Title: Engineering of poly(2-oxazoline)s for a potential use 
in biomedical applications  
Abstract: This PhD work is based on the design of poly(2-oxazoline) (POx) 
hydrogels and nanogels, by chemical or physical cross-linking, aimed to be used for 
biomedical applications. Nanogels were first prepared in dilute media and in inverse 
emulsion based on a statistical copolymer made of 2-ethyl-2-oxazoline and ethylene 
imine units. These stimuli-responsive nanogels were swelling in acidic media and 
were cleaved in reductive environment. They proved to be non-cytotoxic and act as 
protein repellent. Second, a reactive platform based on a statistical POx polymer 
bearing aldehyde functionalities was engineered, enabling the synthesis of graft and 
cross-linked POx. Last, a block copolymer made of 2-methyl- and 2-isopropyl-2-
oxazoline units, proved to self-assemble into micelles when heated above its LCST, 
for a short period of time (< 1h30). When annealed for a longer time (> 1h30), 
crystallization-driven self-assembly led to the formation of different morphologies 
(fiber rods and cross-linked micelles). 
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