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Abstract 
 
 
 
The design of navigation lock gates requires to account for accidental loads such as ship 
impacts or earthquakes, but it is quite difficult to handle with them. The most satisfactory way 
to investigate their effects is to perform numerical simulations. Such an approach can be 
justified at the late design stage, but it is quite commonly accepted that it is not well suited 
during the conception process. This may be justified by the calculation and modeling efforts 
that are usually prohibitive. Consequently, the aim of this thesis is to develop simplified 
methods to circumvent these difficulties. The dissertation is divided into two main parts. 
 
The first part is devoted to ship collisions on plane and mitre gates. An analytical procedure is 
followed to derive the evolution of the impact force with the vessel penetration. Two different 
solutions are derived to get the collision resistance. The first one is done under the assumption 
that there is only a crushing of some structural elements in a confined area located near the 
contact point. This corresponds to a local deforming mode because the damages remain 
localized in a small part of the gate. Using such an assumption, the resistance is evaluated by 
the super-elements method. The second calculation is based on the hypothesis that there is an 
overall bending motion of the structure, which may be seen as a global deforming mode. 
 
Once the local and global solutions are obtained, the final gate resistance is found by 
combining them. In order to validate this analytical evaluation, comparisons are made with 
finite element simulations. The agreement with the numerical curves is found to be 
satisfactory for a pre-design stage, which tends to corroborate the collapse modes considered 
in this thesis. Although this is already an important achievement, a challenge for the future 
developments would be to have a better integration of rupture in the global mode. 
 
The second part of the dissertation is devoted to the seismic analysis of lock gates. The 
preliminary study focuses on fluid-structure interaction in large reservoirs with two opposite 
flexible walls. As a first step, the Rayleigh-Ritz method is applied by using the dry 
eigenmodes of plates as generating functions, which leads to the wet modal properties. The 
virtual work principle then allows for a dynamic analysis of the structure. As a result, the 
hydrodynamic pressure acting on the flexible walls is computed. Comparisons with finite 
element solutions show a quite satisfactory agreement in almost all the cases. In addition to all 
these developments, the influence of various geometrical parameters on the fluid-structure 
interaction is investigated. 
 
After dealing with reservoirs, the stress is put on plane lock gates with a single plating. The 
procedure followed during the analytical derivation is nearly the same. The Rayleigh-Ritz 
method is used this time to get the dry modal properties of the stiffened structure. For a given 
accelerogram, the time evolution of the hydrodynamic pressure is evaluated by the virtual 
work principle and validated by comparisons with numerical results. Apart from these 
developments, some particular points are also investigated, such as the added mass method. 
The validaty of this approach is questioned and some examples are provided as a matter of 
justification. Finally, a method is proposed for an easier integration of the seismic action in 
the design of lock gates.  
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1.1. Context of the research 
 
From statistical data compiled by EUROSTAT

1, it is a fact that the freight transport demand is 
constantly growing since 1995. According to Figure 1.1a, 76	% of the European goods transit 
by road and only 6	% by water. Of course such a situation is not viable because the road 
capacity is progressively reaching a maximum. The modal split has therefore to be changed, 
and a serious alternative is to develop the river transport. This choice can be motivated by the 
following reasons: 
 
• The environmental impact is reduced: in Europe, the road traffic is responsible for a 

quarter of all the CO2 emissions and also produces a lot of other gases and volatile particles 
that reduce the air quality. According to the European Environment Agency [56], although 
stricter international emission standards have been published during the last decades, the 
pollution emitted by the road sector in terms of CO2 rejections is still four times higher 
than the one attributed to waterborne transport (Figure 1.1b). 
 

• Even though it is not easy to have an objective quantification, Rohacs and Simongati [136] 
estimate that the noise nuisance due to ships is not relevant in comparison with other 
transport modalities such as trucks, planes or trains. As many people are already leaving in 
noisy environments, this is a non negligible social advantage. 
 

• From a compilation of statistical data [136], it appears that the number of accidents, 
fatalities or injuries is very small regarding other transport modes. Consequently, inland 
waterway ensures a high degree of safety, particularly in case of dangerous goods. 
 

• Unexpected congestion problems are very seldom on inland waterways, which reduce the 
risk of accident and the energy consumption. Moreover, this allows for a better 
organization of the transportation, as the time required for conveying goods from one point 
to another is not influenced by hazardous delays due to potential traffic jams. 
 

• In terms of land take, for a given carrying capacity, waterways are more efficient than road 
or rail. 

 
In addition to the points listed here above, it is often claimed that the total cost (including 
infrastructure) is lower if goods are conveyed by water. Nevertheless, this assertion seems to 
be arguable for short distances because contradictory information is sometimes found when 
reading articles. So this argument has to be carefully considered. 
 
For the reasons listed above, it appears that waterborne transport is an interesting alternative 
to road. This is particularly true in Europe, where the five biggest sea ports are all connected 
to more than 37	000 kilometers of navigable inland waterways. Furthermore, it is a fact that 
this network is currently under-utilized, so the potential development is not negligible. This 
policy is precisely the one of the European Commission, who has decided to promote the 
waterborne transport through the NAIADES I and II  action programs. Amongst all the measures 
suggested by these plans, one of them consists in building new locks or improving the 
existing ones. On a practical point of view, this can be illustrated by some important 
achievements such as the "Seine-Nord-Europe" project in France, the "Seine-Scheldt-East" in 
Wallonia, the Lanaye lock in Belgium... 

                                                                    
1 European Statistics Institute - http://epp.eurostat.ec.europa.eu 
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(a) Modal split of freight transport in Europe (b) CO2 emissions [56] 

 
© http://epp.eurostat.ec.europa.eu 

 

Figure 1.1. Freight transport properties 

The direct consequence of such policies should be an increase of the waterborne traffic in the 
upcoming years. This means that the number of vessels passing though locks will be more 
important, which is also the case for potential accidents. Therefore, in order to keep a 
sufficient level of safety and to avoid any unexpected inconvenience for the navigation, locks 
have to be dimensioned more carefully. To achieve this goal, engineers need to have efficient 
tools for designing such structures. 
 
From the previous presentation, it can be said that the context of this research is closely linked 
to the design and the calculation of lock structures, but with due consideration for stricter 
safety requirements in relation with the future increase of the waterborne traffic. 
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1.2. Aim of the research 
 
Most of the international standards impose to consider the effects of accidental actions when 
calculating structures. According to Eurocode 0 [50], these ones are "usually of short duration 
but of significant magnitude" and are "unlikely to occur on a given structure during the design 
working life". Nevertheless, accounting for them is nowadays more and more required. This is 
mainly due to exceptional events such as floods, storms, earthquakes... that take place at 
higher frequencies and therefore increase the probability of damaging the constructions.  
 
This last observation is also valid for locks and is quite problematic in the context exposed in 
section 1.1. Indeed, as the future development of the waterborne transport requires to improve 
the safety level of locks, these structures have to be carefully studied within the frame of 
exceptional loads. This point is particularly sensitive, because any failure may have important 
economic, environmental and social consequences. More investigations are therefore 
valuable, but considering all the possible exceptional loads is unfortunately an overwhelming 
task, so a choice has to be made. 
 
It is known that lock gates are statistically impacted by ships several times per year, but these 
collisions remain quite negligible. These structures are also involved in major collisions once 
or twice in their lifespan (20 to 40 years), but there is no consensus on the way to account for 
them during the design. This is also the case for earthquakes, as their effects remain 
complicated to integrate in the conception phases, principally because of the difficulty to 
quantify them. Consequently, these two accidental loads are definitely key issues and this is 
why we have decided to focus the research on them. For example, they constitute the main 
difficulties for the new lock gates of the Panama canal, which is one of the most important 
project of civil engineering in the world.  
 
Of course, the purpose is not to design lock gates such that they are capable to withstand ship 
impacts or earthquakes without damage. On the contrary, the idea is that the potential 
consequences of such events have to remain proportionate. To respect this requirement, it is 
necessary to reach a sufficient security level, but the overall cost has to remain as reasonable 
as possible. Therefore, one of the crucial phase is the pre-design of the structure, where the 
general shape and the main geometrical dimensions of the gate are chosen. It is quite intuitive 
that this operation will be more successfully achieved if it is possible to perform detailed 
analyses including all the loads acting on the structure. Doing so usually requires the use of 
finite element software to properly investigate the effects of ship impacts and earthquakes.  
 
However, working with numerical tools is not always possible in the pre-design stage because 
of time and cost limitations. Indeed, building finite element models, running simulations and 
post-processing the results may be a quite long procedure. This is particularly true when 
dealing with ship impacts and earthquakes, for which quite complex dynamic analyses are 
usually required. In addition, as a structural optimization is often desired, an iterative 
procedure has to be followed and it is definitely not reasonable to restart numerical 
simulations at each step.  
 
Another problem is also due to the difficulty of defining the most critical scenario when 
dealing with accidental loads. In the case of a ship collision for example, once the vessel 
properties have been chosen, the main questioning point remains to detect the impact location 
causing the most severe damages to the gate. Usually, many different situations have to be 
tested separately and using finite element is not always convenient. 
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Regarding all these difficulties, an option to avoid them could be to neglect accidental loads 
during the pre-design phase. In this way, the structural configuration is first chosen by 
considering the main actions and is later checked with the exceptional ones. If these 
verifications are not successful, then a reinforcement is required. Of course, such an approach 
could only be efficient in a limited number of cases, where the magnitude of the accidental 
actions is very small with respect to the others. Furthermore, the problem of finding the most 
severe scenario is not solved. 
 
The previous considerations point out that an efficient tool is missing for integrating the 
seismic action and ship collisions in the pre-design of lock gates. The aim of the research is 
precisely to solve this problem by developing simplified analytical tools allowing for: 
 
• A quick estimation of the force opposed by plane and mitre lock gates when they are 

impacted by a ship of given shape. The goal is to assess the crushing resistance as a 
function of the vessel penetration for any impact point. 
 

• A rapid prediction of time evolution of the total hydrodynamic pressure applied on a plane 
lock gate during a seism. The purpose is to have an analytical evaluation that also accounts 
for the proper vibrations of structure. 
 

Of course, it is illusory to believe that these simplified tools will provide the same accurate 
results than finite element software. Nevertheless, such a precision is not really required at the 
pre-design stage. In fact, the analytical approach is complementary to the numerical one. 
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1.3. Organization of the thesis 
 
The dissertation is divided into three main parts. The first one is concerned with ship impacts 
on lock gates, the second one deals with the seismic design, while the last one contains all the 
appendices. 
 
The first part of the manuscript contains four chapters numbered from 2 to 5. Chapter 2 is 
entitled Background for the ship collisions on lock gates and starts by reviewing some of the 
methods currently available in the literature to study vessel collisions. It also gives some 
general indications for the evaluation of the initial kinetic energy and exposes the fundamental 
theorems that are required to develop an analytical method. These theorems are applied in the 
Chapter 3 Analytical derivation of the collision resistance of plane lock gates to treat the case 
of a gate with a simple plating and an orthogonal stiffening system. The resistance is first 
calculated in the local deforming mode by dividing the structure in large components called 
super-elements. This solution is then coupled with the one evaluated in the global mode to get 
the final resistance of the gate. As a matter of validation, these analytical results are compared 
with those provided by finite element software. The same procedure is applied in the Chapter 
4 to treat the case of mitre gates. Finally, the conclusions of all these investigations are 
reported in Chapter 5. 
 
The second part of the manuscript is also divided into four chapters number from 6 to 9. 
Chapter 6 Literature review on the seismic design of lock gates presents a general overview 
about the fluid-structure interaction in various situations. The case of dams, liquid storage 
tanks and lock gates are considered. As a preliminary to the seismic analysis of lock gates, 
Chapter 7 Seismic analysis of large flexible reservoirs proposed an analytical method to 
evaluate the total hydrodynamic pressure in a reservoir made of two parallel rigid walls and 
two flexible ones. The goal of this chapter is to account for the effect of the structural 
vibrations on the seismic pressure and to investigate the influence of some geometric 
parameters. Comparisons with finite element results are made to validate the analytical 
developments. After that, in the Chapter 8 Seismic analysis of plane lock gates, a similar work 
is done for these structures. The Rayleigh-Ritz method is first applied to evaluate the dry 
eigenfrequencies and eigenmode shapes. The analytical derivation of the hydrodynamic 
pressure is then performed through the virtual work principle and is validated by numerical 
comparisons. In addition, the well-known added mass method is also investigated. Finally, 
this second part is closed by Chapter 9 that summarizes the conclusions. 
 
The third part contains five appendices numbered from � to �. All of them are related to one 
of the chapters mentioned here above. They mainly provide some additional mathematical 
developments that are included to have a kind of "stand-alone" manuscript. 
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CHAPTER 2. Background for the ship collisions on lock 
gates 

 
 
 
 
 
 

The purpose of this chapter is to give a general insight about ship collisions on lock 

gates. As this topic is not really documented in the literature, it seems important to 

properly expose the methods and the theoretical bases available to study ship 

impacts on such structures. 

 

To do so, a general review of the existing approaches is first proposed in section 

2.1. As they are extensively used in this dissertation, the focus is made on the 

simplified analytical techniques and on the finite element method. In particular, 

the problem of defining realistic failure criteria is briefly discussed. 

 

In section 2.2, some indications are given on the way the initial kinetic energy of 

the striking vessel should be chosen. This is achieved by determining the mass and 

the striking velocity of the ship. To do so, a detailed compilation of the 

recommendations available in the literature is proposed to set these two 

parameters. 

 

Finally, section 2.3 presents the theoretical method followed to evaluate the 

internal energy dissipated by the gate during the collision. The fundamental 

theorems used to establish the simplified analytical approach are also exposed in 

this section. 

 

*** 
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2.1. Review of the existing methods 
 
The approaches that can be used to study the collision resistance of lock gates are the same as 
those already listed by Zhang [180] in the field of ship-ship collisions. Amongst them, 
experimental methods are probably the most reliable way to evaluate the collision resistance. 
Usually, they consist in studying the structural components (stiffeners, plates...) individually, 
because performing a true scale experiment is a technical and economical challenge. In the 
literature, most of the available test results have been realized for the shipbuilding, in order to 
check the safety of vessel regarding oil spills. Amongst others, experiments were conducted 
by Akita et al. [3], Amdahl [8], Cho et al. [31], Pedersen et al. [130] or Qvist et al. [131] . In 
an illustrative purpose, Figure 2.1 shows the deformation of a tanker double side collided by a 
rigid ball simulating a striking bow. 
 

 
Figure 2.1. Experimental study of a tanker double side [131] 

Apart from experimental approaches, there are two remaining other possibilities to evaluate 
the collision resistance: the finite element methods and the simplified analytical techniques. 
Both of them are used in this thesis, numerical solutions being used as a validation for the 
analytical ones. They are briefly presented hereafter. 
 
2.1.1. Finite element methods 
 
Finite element methods are a powerful tool to study ship collisions on lock gates. They allow 
for a quite refined study of the local strains and stresses that develop inside the structure, 
which is always valuable for the design procedure. Most of the time, they lead to accurate and 
reliable results that are in good accordance with experiments, but this is not always true. 
Ideally, one should always try to corroborate numerical solutions with physical ones. 
 
Another advantage of finite element methods is the ability of investigating complex models, 
in which a true representation of the support conditions and of the striking vessel can be 
included for example. Nevertheless, this has to be nuanced by the computing capacities 
required to perform very refined analyses, which is particularly true in the field of collisions 
due to the great number of elements usually required. In addition, such dynamic problems 
have to be solved using step by step integration solvers, which is also time demanding.  
 
As a matter of illustration, the equivalent Von Mises stresses in a collided lock gate are 
depicted on Figure 2.2. They have been obtained by using the commercial software LS-DYNA , 
but many other codes are also available such as ABAQUS or MSC DYTRAN. In the literature, 
these software have been used in various domains. The purpose here is not to realize a 
detailed review of all the available publications but to give some typical illustrations of what 
can be achieved using these numerical tools. For example, in the field of shipbuilding, 
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numerical simulations were performed by Oh et al. [116] to study ship-ship impacts, by Alsos 
and Amdahl [7] to investigate ship grounding or by Donner et al. [44] for ship-submarine 
collisions. In the field of structural engineering, ship impacts on lock gates were considered 
by Le Sourne et al. [99] or by Buldgen et al. [22] and more recently, the damages caused by 
an accidental collision between a vessel and the jacket of an offshore wind turbine was 
studied by Vredeveldt et al. [160]. 
 

 
 

Figure 2.2. Equivalent Von Mises stresses in a collided lock gate (MPa) 

Nevertheless, one of the main challenge when working with finite element is to model rupture 
consistently. This is quite important, because defining realistic failure criteria is closely 
related to the need of designing crashworthy structures. Therefore, in order to evaluate the 
collision resistance of the struck gate, it is valuable for engineers to perform realistic finite 
element simulations and a crucial point is to use material laws that can properly represent the 
true behavior of steel.  
 
In the literature, this problem has been studied to some extent and is not easy to solve. This 
can be illustrated by the work performed by Ehlers et al. [47], where the impact responses of 
three different ship side structures are analyzed by performing finite element simulations 
using LS-DYNA . The curves showing the crushing force as a function of the penetration are 
obtained by considering the same non linear stress-strain relation but three different failure 
criteria defined in accordance with the mesh size. The numerical results are then compared to 
those collected from large scale experiments. The conclusions of this benchmark study are: 
 
• Considering the same rupture criterion but various mesh sizes leads to different force-

penetration curves. This tends to show that the current definitions of the failure criteria are 
not consistent for all element sizes. 
 

• Considering the same mesh size but various rupture criteria leads to different force-
penetration curves, which implies that choosing one or another law is not equivalent. 
 

• There is a contradiction in the fact that the stress-strain curves are independent of the mesh 
size, while the failure strain is determined in accordance with the elements lengths.  

 
In order to overcome all the previous difficulties, Ehlers and Varsta [48] suggested a new 
method to get a realistic stress-strain relation until fracture. The material law is obtained by 
performing a tensile test on steel dog-bone specimens. During this experiment, an optical 



CHAPTER 2. Background for the ship collisions on lock gates 

19 
 

measuring system is used to capture the surface displacements over a recorded area, which 
allows to define the strain reference length as a function of the pixel size (Figure 2.3). 
 

 
Figure 2.3. Definition of the strain reference length as a function of the pixel size [48] 

By post-processing these measurements, it is possible to get the true local deformation as a 
function of the tensile force applied on the specimen. Furthermore, dividing this force by the 
actual cross-section area provides an evaluation of the true stress. Combining these results, the 
material law and the rupture criteria can be derived as a function of the strain reference length. 
These curves may then be implemented within a finite element software. This was achieved 
by Ehlers and Varsta [48], who reproduced their tensile tests using LS-DYNA  and calibrated the 
element length in accordance with their previous findings. Doing so, they obtained numerical 
results that were in incredibly good agreement with the experimental ones. 
 
In another paper, the same operation was performed by Ehlers [46] to study the collision 
response of a circular plate. Here again, the results were perfectly satisfactory. In addition, it 
was shown that the numerical rupture pattern was in good agreement with the experimental 
observations, which indicates that the erosive law consisting in deleting ruptured elements is, 
in this case, an adequate way to simulate fracture propagation. 
 

 
Figure 2.4. Experimental and numerical rupture pattern of the plate specimen [45] 

From the previous considerations, it transpires that modeling failure properly is not easy. Of 
course, the methodology suggested by Ehlers and Varsta [48] is a powerful way to overcome 
this difficulty. Nevertheless, such an approach requires to perform sophisticated tensile tests 
and to carefully post-process the measurements, which is not always possible during the pre-
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design of lock gates. For this reason, it remains quite common to resort to other easier laws, 
such as the one suggested by Lehmann and Peschmann [93] for example (see section 3.3.4). 
 
2.1.2. Simplified analytical methods 
 
Simplified analytical methods have been developed to compensate the drawbacks of too time 
demanding numerical simulations. Therefore, they are typically well suited in the pre-design 
stage of a structure, when an approximate evaluation of the collision resistance is sufficient. 
In the literature, the available analytical developments are mainly devoted to evaluate the 
crashworthiness of individual structural elements, such as plating components, girders, 
frames, bulkheads... (see sections 2.3, 3.3, 3.4 and 3.5 for more detailed reviews) but some 
papers have also been published to treat larger entities, such as ship or lock gates.  
 
According to Zhang [180], some of the earliest simplified methods were developed by 
McDermott et al. [107], Kinkead [86] and Reckling [135] in the field of ship-ship collisions. 
More recently, Le Sourne et al. [98] also focused on this topic by applying the super-elements 
approach. Regarding the analytical techniques to evaluate the impact resistance of lock gates, 
the initial work realized by Le Sourne et al. [99] has been completed and extended by 
Buldgen et al. to plane [22] and mitre [24] lock gates. Usually, these simplified methods give 
a reasonable prediction of the resistance in a very short time. They are classically 
corroborated by comparisons with finite element simulations, but using experimental results is 
of course more recommended as a matter of validation.  
 
The theoretical basis for developing analytical approaches is nothing else than an energy 
balance. During the collision on a lock gate, it is assumed that the ship keeps on moving as 
long as its initial kinetic energy �
 has not been entirely dissipated by the structure. When the 
equilibrium is reached, we have: �
 = ���� (2.1) 

where ���� is the internal energy of the gate. At this moment, the vessel does not move 
anymore. Nevertheless, it is worth noting that the previous energy balance is only valid when 
there is no other dissipative effect involved in the collision process, which means that two 
other hypotheses are necessary. 
 
As a first assumption, the striking vessel is assumed to be perfectly rigid. This seems to be 
reasonable, as the stiffness of the most critical ship is usually attempted to be more important 
than the one of the gate. Moreover, doing so is conservative, as the total initial kinetic energy 
of the ship has to be entirely dissipated by the impacted structure. Nevertheless, it is worth 
noting that some analytical methods have already been established to account for the 
deformability of the bow. These ones were developed for ship-ship collisions, as the rigidities 
of the two vessels may be quite similar in this case. A general presentation of the 
methodology is done by Le Sourne [97] and many other details can be found in references [8], 
[94], [98], [103], [104] and [130]. 
 
The second hypothesis consists in neglecting all the other phenomena that may also dissipate 
the initial kinetic energy �
. These ones have been carefully investigated by Simonsen [140] 
in the case of ship grounding on rocks. In the present analysis, an additional term that could 
be potentially included in the energy equilibrium (2.1) is the friction that may appear between 
the vessel and the gate, but also at the supports of the structure. This is particularly the case if 
sliding is expected on the lock walls. Equation (2.1) is then modified: 
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���� + �� = �
 (2.2) 

where �� is the energy dissipated by friction. Nevertheless, the evaluation of �� is not easy 
because it is influenced by many other parameters, such as the roughness the lock walls, the 
seal integrity... Consequently, this additional contribution is neglected in the present method. 
Doing so is a conservative approach, as it tends to overestimate the structural deformations.  
 
From the previous considerations, it appears that the crucial points of the analytical methods 
is to consistently derive �
 and ����. The first one can be evaluated by considering the mass 
and the velocity of the striking vessel (section 2.2), while the second one may be obtained 
with help of some fundamental theorems (section 2.3). 
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2.2. Evaluation of the initial kinetic energy 
 
To evaluate the initial kinetic energy, it is required to define the total mass �� and the initial 
velocity �
 of the striking ship, but there is no clear recommendation on the way these 
parameters have to be chosen. Of course, when a lock gate has to be checked against collision 
events, �� and �
 can be set by the client according to the security level he wants to reach. As 
an example, for the new locks that are currently built at the Panama canal, it was contractually 
imposed [124] to the designers to consider a total displacement of 160000 tons and a velocity 
of 0.5	�/� for the collisions analysis. Nevertheless, �� and �
 are not always so clearly 
specified. In this case, it is the responsibility of the designers to determine reasonable values, 
but this is not straightforward. To achieve this goal, some indications are however of interest 
and are briefly detailed hereafter. 
 
Regarding the mass ��, it has to be chosen in accordance with the vessels that are currently 
navigating on the inland waterway where the considered lock is located. A detailed analysis of 
the traffic could therefore be of precious help. If the required statistical data are not available, 
some other tools may used. In Europe for example, the ECMT2 has published a resolution 
[55] in which the waterways are classified according to different parameters (see Table A.1 in 
Appendix A.1). According to this table, if a new lock has to be built on a class Va waterway 
for example, then the designer knows that �� ranges from 1500 to 3000 tons. 
 
Concerning the velocity �
, there is no particular recommendation on the way it has to be 
chosen if not contractually specified. Nevertheless, to have a better idea of �
, some 
information has been collected in the literature or by contact with designers. It is summarized 
hereafter: 
 
• In 2011, Meinhold [108] investigated numerically the crashworthiness of a mitre gate for 

the German Federal Waterways Engineering and Research Institute (BAW). All the 
simulations were conducted by considering an initial velocity of 1	�/�.  
 

• In 2002, Le Sourne et al. [99] performed numerical simulations to investigate plane lock 
gates crashworthiness. Two different ships were considered for this study. The first one 
was a carrier travelling at 1	�/�, while the second one was a passenger vessel with 
velocities of 1	�/� and 2	�/�. 
 

• In a quite old French ministerial circular from 1980 [111], it is claimed that the devices 
protecting locks against collisions have to be able to withstand an impact at 0.75	�/�. 
 

• According to the German standard DIN 19703:1995-11 [42] dealing with the design of 
lock gates, the collision protection devices have to be able to withstand an impact by a ship 
travelling at the speed of 0.9	�/� for motor barges and 1	�/� for pushing units. 
 

• In 2013, the U.S. Army Corp of Engineers (USACE) made different full-scale experiments 
to study ship impacts on lock walls. The results are described in references [11] and [129]. 
Even if these analyses are not directly related to the gate, they give however an idea of 
what could be the speed inside the lock chamber. A total of 44 collisions experiments were 
performed. The initial velocities for these tests were ranging from 0.15 to 1.2	�/�.  

                                                                    
2 European Conference of Ministers of Transport 
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• For the new lock that is currently constructed in Ivoz-Ramet on the Meuse River 
(Belgium), the design has been done by considering an initial velocity of 0.75	�/� [145]. 
 

• According to the CETMEF
3
 [26], the drawing speed of a vessel is ranging from 0.35	�/� to 1	�/�, depending on its tonnage. This gives an idea of the velocity range near a lock. 

 
• As mentioned earlier, for the design of the set of locks in the Panama canal [124], the 

striking speed was fixed to 0.5	�/� for a vessel with a displacement of 160000 tons. An 
additional analysis with a ship of 100000 tons and a velocity of 1	�/� was also required. 

 
Finally, it is worth mentioning that another method for designing lock gates against collision 
may be to consider an equivalent static force to apply on the structure. Such an approach is 
followed in the United States for example, where the U.S. Army Corps of Engineers has 
published several manuals (see references [152] and [153] for more details) providing 
information dealing with ship collision on lock gates. A similar method is also exposed in the 
European standard EN 1991-1-7 [51] dealing with accidental actions on structures. The design 
values of the force are given according to the class of the inland waterways. They were 
derived for a striking velocity of about 2	�/� and by assuming that the energy dissipated by 
the structure was negligible. Of course, this is valid for massive structures such as bridge piers 
for example but is not realistic for lock gates, except in case of minor impacts. Consequently, 
one has to be extremely careful before applying an equivalent static force method. These 
approaches are often too conservative or not accurate enough. 
 
As a conclusion, from all the references mentioned here above, it transpires that a reasonable  
initial striking velocity has to be chosen within a range of 0.15 to 2	�/�. Once �� and �
 are 
fixed, it is suggested in [26] to correct these values to account for the two following 
phenomena: 
 
• During the motion of the ship inside the lock, some water is also displaced by the vessel, 

which means that the total mass is no more equal to �
 but has to be emphasized by a 
mass coefficient �� ≥ 1 to get ����. �� depends on the shape of the striking stem and a 
value of 1.2 is recommended in [26]. 
 

• When the ship is entering the lock, some water is confined between the stem and the 
structure, which creates a piston effect and a reduction of the striking velocity. Therefore, �
 may be reduced by a confinement coefficient �� ≤ 1 to get ���
. Evaluating �� is 
difficult, as it depends on the shape of the bow and on the lock configuration. In [26], it is 
suggested to choose �� = 0.9. 

 
Finally, accounting for the previous considerations, the total initial kinetic energy �
 of the 
striking vessel is given by: 

�
 = !����" !���
"#2 = ����#���
# ≃ 0.97���
#2  (2.3) 

From equation (2.3), �
 is only 3	% lower than the uncorrected value �
�
#/2. It seems 
therefore more relevant to carefully choose the values of �� and �
 than those of �� and ��. 
It is worth recalling that �
 has to be entirely dissipated by the deformation of the gate, as the 
striking bow is assumed here to be perfectly rigid.  
                                                                    
3 CETMEF: Centre d'Etudes Techniques Maritimes et Fluviales (France). 
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2.3. Evaluation of the internal energy 
 
On a theoretical point of view, the problem of evaluating the collision resistance of a lock gate 
consists in deriving the corresponding collapse load. To do so, one may resort to the theorems 
of limit analysis in plasticity that are briefly exposed hereafter. It is well known that the exact 
solution to a problem of the mechanics of deformable solids has to satisfy simultaneously the 
equilibrium, compatibility and constitutive equations. However, in the frame of limit plastic 
analysis, two different types of solutions are of interest: 
 
• The lower-bound solutions are those for which only the equilibrium and the yield criterion 

are verified, so they are said to be statically admissible. Generally, it is possible to find an 
infinite number of stress states that satisfy these two conditions. 
 

• The upper-bound solutions, for which only the compatibility and equilibrium equations are 
respected, so they are said to be kinematically admissible. Usually, there are an infinite 
number of velocity fields that simultaneously respect these two requirements. 

 
2.3.1. Exact theory 
 
Let us now consider a solid of arbitrary shape that is submitted to a collision. Typically, this 
solid can be a lock gate for example. Because of the impact, one can imagine that this element 
is progressively transformed from its initial configuration Ω
 to the current one Ω (Figure 
2.5). It is worth noting that Ω is subjectively chosen and does not necessarily describes the 
real impacted shape of the solid.  
 

u3

 
Figure 2.5. Definition of the velocity field 

During this deformation from Ω
 to Ω, a point &
 with the coordinates !'(, '#, '*" is moved to 
another point & with coordinates !+(, +#, +*". The displacement and velocity fields 
characterizing this movement are respectively designated by , and ,- . If .� and .- � are the 
components of , and ,-  along the axes !'(, '#, '*", then [157]: 

+� = '� + .�!'(, '#, '*" ⟺ +-� = .- �!'(, '#, '*" (2.4) 

As Ω is not uniquely defined, , and ,-   may be arbitrarily selected, provided that they remain 
kinematically admissible, which implies that they have to respect the compatibility and the 
boundary conditions. 
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Let us further analyze the work performed by the external forces acting on Ω. The first ones 
are the reactions applied at the supports, but they do not work under the assumption that there 
is no displacement at the boundaries. Another force to consider is the one exerted by the 
impacting vessel on the deforming solid. By equilibrium, this one is precisely equal to the 
resistance 0 opposed to the penetration of the ship. Consequently, if 1 is the striking velocity, 
the external work rate 2-  is simply as follows: 

2- = 0 ∙ 1 (2.5) 

in which the vector 1 is known as the vessel is assumed to move perpendicularly to the gate 
with an initial velocity �
. On the other hand, the internal energy rate �-��� associated to the 
deformation of the solid can also be evaluated. This one is given by: 

�-��� =4567 ∙ 5å7
9

:; =46�<å�<9
:;										å�< = 12=>.- �>+< + >.-<>+�? (2.6) 

In this last expression, ; is the volume of Ω, 567 is the Cauchy stress tensor and 5å7 is the 
Rivlin-Eriksen rate of the Almansi strain tensor (see Appendix A.2 for more details). In the 
absence of any other dissipative phenomenon (such as friction), it is clear that the collision 
energy has to be entirely absorbed by the deforming structure. Therefore, 2- = �-���, which 
allows for the derivation of the sought collision resistance 0. 
 
As a conclusion, equating (2.5) and (2.6) allows to determine the resistance of any collided  
structural element. Nevertheless, it is worth recalling that the derivation is performed for a 
velocity field ,-  that is arbitrarily chosen. In other words, the method exposed here above 
provides an upper-bound solution to the collision problem, which does not violate the 
compatibility requirement and the equilibrium equations, but does not respect the yield 
condition. Furthermore, there is only an overall energy balance that is obtained by equating 
(2.5) and (2.6). By applying the virtual velocity principle, it can be demonstrated [28] that 
doing so leads to overestimate the real collision resistance. 
 
In fact, this last assertion is based on the upper-bound theorem. This latter states that [28] "If a 
compatible mechanism of plastic deformation is assumed which satisfies the boundary 
conditions, then the loads determined by equating the rate at which the external forces do 
work to the rate of internal dissipation will be either higher than or equal to the actual 
collapse load". From this theorem, it also transpires that choosing ,-  in good agreement with 
the true velocity field characterizing the impacted structure leads to an external force 0 that is 
a closer estimation of the real collision resistance. Consequently, the deformation patterns 
should be quite properly postulated while evaluating the crashworthiness of an impacted 
structure. 
 
2.3.2. Approximate theory 
 
The validity of the previous limit theorems of plasticity is in fact limited to the field of small 
displacements [28]. During a collision, this hypothesis is not realistic as the structure may be 
subjected to very important damages characterized by large displacements and sometimes 
large deformations. Unfortunately, no general theory is available to deal with finite 
displacements. As detailed hereafter, various authors have developed some procedures to treat 
this kind of situations, but these ones remain quite approximate as they do not have any 
rigorous theoretical basis. Nevertheless, these solutions are commonly accepted to some 
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extent because they have been corroborated by numerical and sometimes experimental results. 
In the literature, two different approaches are singled out for analyzing the crashworthiness of 
impacted structures submitted to finite displacements. They are referred to as the upper-bound 
and equilibrium methods. 

2.3.2.1. The upper-bound method  
 
The upper-bound method simply assumes that the exact theory presented in 2.3.1 may be 
extended to structures exhibiting moderate strains and displacements. The procedure is 
formally similar and kinematically admissible, but some differences lie in the way of 
evaluating the internal dissipation �-���. The main modification to equation (2.6) is obtained 
by performing the integration with respect to the undeformed configuration Ω
. This means 
that the initial volume � is considered in (2.6) instead of the actual one. This simplification is 
of practical importance, as it avoids having very cumbersome equations that may usually not 
be solved analytically. Nevertheless, working with respect to Ω
 implies that the stress and 
strain rate tensors have to be consistently chosen [157]: 

�-��� =45@7 ∙ AΕ- C
D

:; =4@�<Ε- �<D
:�										Ε- �< = 12=>.- �>'< + >.-<>'� + >.E>'� >.-E>'< + >.E>'� >.-E>'<? (2.7) 

where 5@7 is the second Piola-Kirshhoff stress tensor and 5E- 7 is the Green strain rate tensor. It 
is worth noting that the coordinates !'(, '#, '*" involved in (2.7) are the ones defining the 
initial configuration Ω
 and not the actual ones as it was the case in (2.6). Unfortunately, 
evaluating �-��� by applying (2.7) usually leads to very cumbersome equations that may not be 
treated analytically. Therefore, in order to overcome this difficulty, the upper-bound method 
is simplified by making additional hypotheses on the material behavior. 
 
In reality, the stress-strain curve of mild steel in tension is made of a first linear elastic phase 
(Figure 2.6) that ends when the deformation G
 is reached. The associated stress is denoted by 6
 and is the starting point of the plastic phase. During this one, the material is submitted to 
strain hardening, until necking occurs for a given deformation GH. Beyond this point, the 
stress starts decreasing from its maximal value 6H, but this phase is limited by the material 
failure in GI. 
 

 
Figure 2.6. Actual (1) and idealized (2) stress-strain curve of mild steel 

Of course, it would be too difficult to capture all these successive phases, so the assumption is 
made of a rigid-plastic material, which implies that the initial elastic regime is disregarded. 
From the experiments reported by Alsos and Amdahl [6], Cho and Lee [30], Simonsen and 
Lauridsen [143] or Wang [162], it appears that the plastic deformations largely dominate the 
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process, so this hypothesis seems to be quite reasonable. Furthermore, doing so also supposes 
a non-hardening material, but some authors such as Lützen [103], Simonsen [141] or Zhang 
[180] consider that neglecting the strain hardening by taking a flow stress equal to 6
 is too 
conservative. They suggest to work with the mean value !6
 + 6H"/2, but this 
recommendation will not be followed here. The principal reason is that working with a too 
high flow stress leads to an increased value of the collision resistance and it is known that 
applying the upper-bound method already provides an overestimation.  
 
Under the hypothesis of a rigid-plastic material, the plastic flow theory is applicable and it can 
be shown  that in this case, the internal dissipation (2.7) may be evaluated with help of the 
equivalent Green-Lagrange strain rate E- J (see Appendix A.2, section A.2.5):  

�-��� =46
Ε-J:�D
 (2.8) 

In the literature, the upper-bound method was mainly used for deriving the resistance of 
plated structures. One of its first application was done by Alexander [71] in 1960 to study the 
axial crushing of cylinders, but some recent papers show that this upper-bound approach is 
still of interest. For example, Hong and Amdahl [71] applied it to derive analytically the 
patch-loading resistance of ship plates, while upper-bound solutions were obtained by 
Kotelko et al. [89] for various resistance modes of thin-walled structures submitted to 
compression. Many investigations were also performed on stiffened plates, such as the 
analytical developments currently achieved by Cho and Lee [30].  
 
The previous references provides only a short illustration on the way the upper-bound method 
can be applied to determine the collapse load. Other applications dealing with plated 
components have also been derived by various authors. For clarity, they have not been 
reported here but are concisely presented in sections 3.3, 3.4 and 3.5. 

2.3.2.2. The equilibrium method  
 
Another way to investigate structures submitted to finite displacements is the equilibrium 
method, which simply uses the translational and rotational static equations to get statically 
admissible solutions. Most of the time, these ones are written in the deformed configuration 
and account for the actual shape of the impacted element, but some simplifications are 
required to get closed-form solutions. One of them consist in postulating that the material is 
rigid-plastic. 
 
As expressing the equilibrium of plates in finite displacements is usually a quite arduous task, 
the main applications of this second method are devoted to beams. The analysis is made by 
assuming that a plastic collapse mechanism is reached. Usually, this latter involves a certain 
number of plastic hinges where the bending effects concentrate.  
 
One of the first author to consider the problem of large deflection of beams was 
Haythornthwaite [69] in 1957. Since this pioneer work, many other authors have investigated 
this question. In particular, Jones [80] pointed out the potential effect of in-plane 
displacements in case of beams with partial lateral restrains. Similarly, the question of non-
symmetrical impacts was addressed by Tin-Loi [148], who also considered some extensional 
and rotational flexibilities at the supports. A more complicated application of the equilibrium 
method was done by Jones et al. [82], who treated the case of an impact occurring at the 
centre of a beam grillage. 
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An interesting point to note is that applying the equilibrium or the upper-bound method  
usually does not lead to the same analytical solutions. This may only be the case if a 
consistent set of equations is used to evaluate the strain rates and to express the equilibrium of 
the structure. As explained by Jones [79], these ones can be artificially constructed by 
applying the virtual velocity principle. 
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CHAPTER 3. Analytical derivation of the collision 
resistance of plane lock gates 

 
 
 
 
 
 

This chapter presents an analytical method to derive the resistance opposed by 

plane lock gates during a collision involving a vessel of given shape. The striking 

bow and the structure properties postulated for this study are clearly established 

in section 3.1.   

 
Before performing any developments, the general methodology followed for the 

mathematical derivations is first briefly presented in section 3.2. 

 
The resistance is then derived under the assumption of a local deforming mode by 

applying the super-elements method. Three types of structural components are 

studied separately. For each of them, the analytical developments are briefly 

exposed and the corresponding formulae are validated by numerical comparisons 

in sections 3.3, 3.4 and 3.5. 

 
In section 3.6, the calculation is made for the global deforming mode by dividing 

the gate into a set of horizontal beams. The derivation is done in both the 

elastoplastic and rigid-plastic regimes. The resistance obtained in this way is then 

combined to the local one in order to get the final resistance of the gate. 

 
The results obtained by using the simplified method are validated in section 3.7 by 

comparing them to finite element solutions. The discrepancies are systematically 

analyzed and interpreted. 

 
Finally, the main steps and achievements presented in this chapter are summarized 

in the conclusion. Some additional comments are also provided in this last section. 

 
The developments presented in this chapter have been partly published by Buldgen 

et al. [22] in the International Journal of Applied Mathematics. 
 

***  
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3.1. Introduction 
 
The goal of this chapter is to develop a method that allows for a rapid prediction of the 
resistance opposed by a plane lock gate impacted by a ship. The basic idea is to derive 
simplified analytical formulations using the so-called upper-bound method. As a first step, let 
us start by describing the struck gate and the striking vessel. 
 
3.1.1. Description of the impacted gate 

3.1.1.1. Structural properties 
 
This chapter deals with plane lock gates having a single plating and an orthogonal stiffening 
system. The total height is denoted by ℎ, while the width is designated by L (Figure 3.3). Such 
a kind of structure may be used for the following cases (see references [38], [170] and [171] 
for more details): 
 
• Lifting gates (Figure 3.1a and Figure 3.2a), which are raised and lowered vertically to open 

or close the lock chamber. A tower constructed over the gate allows to pull it out of the 
water. This motion is achieved by cables, hydraulic cylinders... Counterweights may also 
be used to assist the hoisting machinery. 
 

• Single leaf gates (Figure 3.2b), which are quite similar to mitre gate (see Chapter 4) but 
have only one leaf rotating around a vertical axis. They are mainly used for locks having 
an important head and a small width (i.e. for ℎ ≫ L) such in the pleasure navigation. The 
leaf is typically maneuvered by a jack when the upstream and downstream levels are equal.  
 

• Horizontally moving gates (Figure 3.1b), for which many configurations are possible. They 
are maneuvered perpendicularly to the navigation way and an additional lateral chamber is 
required for retracting them. In the first configuration (Figure 3.2c), the gate is simply 
rolling on a track fixed at the bottom of the lock. An alternative solution to this 
configuration is simply to have a gate sliding on a particular floor placed on the ground (as 
Hydrolift gate in the Netherlands). In the second case (Figure 3.2d), the structure is still 
equipped with wheels at the bottom, but is simultaneously held at the rightmost upper 
corner by a wagon moving on rails. Finally, the last configuration (Figure 3.2e) is a 
laterally moving gate attached by cables to an additional superstructure (Figure 3.1b).        

 
(a) Vertical lifting gate of the John Day lock on 

the Columbia River (United States) 
(b) Horizontally moving gate of the Lanaye lock on the 

Meuse River (Belgium) 

 
© http://www.kval.com 

 
© http://www.trekearth.com 

Figure 3.1. Lock gates examples 
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(a) Lifting gate 

 
(b) Single leaf gate 

 

(c) Horizontally moving gate - Configuration 1 

 
(d) Horizontally moving gate - Configuration 2 

 
(e) Horizontally moving gate - Configuration 3 

 
Figure 3.2. Illustration of the different types of gates considered in this chapter 
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3.1.1.2. Geometrical properties 
 
In order to develop a simplified tool allowing for a quick estimation of the crashworthiness 
for such gates, a formal description of their configuration is required. To do so, an orthogonal 
reference frame !', N, O" is placed at the rightmost lower corner of the structure (Figure 3.3). 
The vertical reinforcing elements (parallel to the N axis) are called the frames and are placed 
at different locations O� on the horizontal O axis. Usually, they are regularly spaced along the 
width L of the gate, but this is not always the case. The total number of vertical components 
will be denoted by P9. 

 
Figure 3.3. General geometry of the reinforced gate 

The horizontal reinforcing elements (parallel to the O axis) are called the girders and are 
placed at discrete locations N� on the vertical N axis. Most of the time, they are not regularly 
distributed over the height of the gate. Indeed, the reinforcement is often more important near 
the bottom of the lock, as the hydrostatic pressure increases with the depth. The total number 
of horizontal components is called PQ. 
 
In addition to the basic system described above, some horizontal and/or vertical smaller 
stiffeners may be added to reinforce the portion of the plating located between two frames and 
two girders. Their role is mainly to avoid the buckling and large deflections of the panels and 
to provide enough stiffness against light shocks. 
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All the reinforcing elements are assumed to have a T-shaped cross-section, as depicted on 
Figure 3.3. The web height and thickness are respectively denoted by ℎR and SR, while the 
flange width and thickness are designated by ℎ� and S�. T-shaped cross-sections are very 
common for frames and girders, but they may also be replaced by flat bars. This is achieved 
by choosing ℎ� = S� = 0. Once again, all the vertical frames usually have similar cross-
sections, while it is not always the case for the horizontal girders. 
 
The smaller stiffeners are usually flat plates. Some other cross-sections are however possible, 
such as those depicted on Figure 3.4. As it will be explained hereafter, defining the precise 
shape of the stiffeners is not really essential. The only useful properties are their sectional area �� and their distribution over the height of the gate.  
 

 
Figure 3.4. Some examples of cross-sections used for the smaller stiffeners 

The plating thickness is denoted by SJ. For convenience, it is assumed to be uniform over the 
gate height. Nevertheless, this is not always realistic, as the plates are commonly thicker near 
the bottom of the lock (where the pressure is higher). Accounting for such a particularity may 
be achieved by adapting the present simplified methodology but this has not been done so far. 
Moreover, the plating thickness has to be corrected to account for the stiffeners. Indeed, for 
ship-ship collisions, it has been shown in various references (see [121], [122], [144] or [180] 
for example) that these components mainly resist through an extensional membrane process, 
the bending effects being negligible. Consequently, it is suggested to smear them over the 
thickness, as explained in Appendix B.1 (section B.1.1). 

3.1.1.3. Boundary conditions 
 
The boundary conditions of a lock gate are particularly difficult to model. Most of the time, 
they remain quite approximate because a lot of external elements may interfere with their 
definition.  

1

2 3

4

5

6

7

8

 

1 - Girder flange 
2 - Plating 
3 - Girder web 
4 - Track 
5 - Wheel 
6 - Guiding system 
7 - Lock wall 
8 - Seal 

Figure 3.5. Top view of the rolling system attached to a vertical lifting gate 

For example, in the case of a vertically moving gate, the support can be provided by fixed 
wheels attached to the body of the gate and rolling on a track fixed in the lock walls. This is 
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roughly depicted on Figure 3.5, which is a view in the !', O" plane of the rolling system that 
may equip this kind of lifting structures. Of course, a proper numerical modeling of such 
boundary conditions is very difficult to achieve, espacially when using an analytical approach. 
Consequently, it is proposed here to work in the following way (Figure 3.6):  
 
• Along the vertical lines loacted in O = 0 and O = L (supports 1 and 2 on Figure 3.6), the 

structure is modeled as being simply supported by the lock walls, which prohibits any 
displacement in the ' direction and allows for free rotations around the N axis at these 
locations. It is worth noting that such an assumption also implies that the gate is free to 
move along the O axis, but it is clear from Figure 3.5 that this is not necessarily realistic, as 
the real supports are likely to provide a small lateral restrain. One should also account for 
the friction appearing between the structure and the lock gate. Consequently,  allowing for 
a free displacement in the O direction tends to be conservative for both the numerical an 
analytical models.   
 

• If the gate rests against a sill along the horizontal line in N = 0 (i.e. at the bottom of the 
lock), then translations in the ' direction are prohibited and free rotations around the 
horizontal O axis have also to be imposed at this place (support 3 on Figure 3.6). 

 
In addition to the two previous points, it is evident that vertical displacements have also to be 
forbidden along support 3 (Figure 3.6), as the gate is in contact with the bottom of the lock. 
 

 
Figure 3.6. Boundary conditions for the gate 
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3.1.2. Description of the collision scenario 
 
The complete definition of the collision requires first to specify the properties of the striking 
vessel because the shape of the bow is an important parameter that influences the extent of 
damages caused to structure. Apart from the definition of the ship, it is also needed to specify 
its relative position with respect to the struck gate. In the present simplified approach, this is 
achieved as detailed hereafter. 

3.1.2.1. Definition of striking vessel 
 
There are various vessels that may be encountered on inland waterways, such as passenger 
ships, cargos, barges, yachts... (Figure 3.7). For most of them, the bow has a more or less 
rounded shape, but it can be seen on Figure 3.7d that this is not the case for barges. Moreover, 
it is quite common for cargos to have a bulbous bow, in particular if they also have to 
navigate in the sea. It could be therefore very fastidious to develop a simplified methodology 
for every possible ship.  
 

(a) Mathematical model of the striking vessel (b) Passenger vessel for inland navigation 

 

 
© http://www.nauticexpo.com 

(c) Cargo for inland navigation 

 
© http://commons.wikimedia.org 

(e) Yacht (d) Barge 

© http://www.marineinsight.com 
 

© http://www.marineinsight.com 
Figure 3.7. Striking vessels 

Hopefully, doing so is not really necessary. Indeed, from the investigations performed by Le 
Sourne et al. [99], it transpires that an impact by a rounded bow is more critical than a 
collision implying a barge. The main reason is that in the first case, the impact is rather 
localized in a reduced area of the gate, while it is much more distributed over the structure in 

T 

ℬ 
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the second case. Consequently, for a given initial kinetic energy of the striking vessel, the 
total penetration and the damages to the gate are likely to be more severe for a sharp bow than 
for a flattened one. Nevertheless, it is worth noting that this conclusion has to be nuanced 
because it is only valid for ships having the same initial kinetic energy. Obviously, a barge 
with an important mass and a high initial velocity may be more dangerous and should be used 
for determining the critical collision scenario. This choice has to be done in accordance with 
the kind of navigation expected in the lock or by accounting for the classification of the inland 
waterways [55], as detailed in Appendix A.1. 
 
Regarding the arguments exposed here above, the simplified analytical method only considers 
ships having a rounded stem and an eventual bulb, without accounting for particular vessels 
such barges. The striking ship is idealized as depicted on Figure 3.7a. It has a total height ℎV 
and is potentially made of two different parts: the stem T and the bulb ℬ. Let us denote by @ 
the summit of T and by !+�, W�, X�" the local coordinate system attached to it. If the stem is 
limited by a horizontal plane at a given level W� (with −ℎV ≤ W� ≤ 0), the mathematical 
equation of T is assumed to be a parabola: 

T ≡ +� = ![ + W� cot_" = X�#!` + W� cota"# − 1? (3.1) 

where ̀  and [ are the radii of T in the uppermost deck (i.e. for W� = 0), _ is the stem angle 
and a is the side angle. Consequently, according to (3.1), T is nothing else than a set of 
parabolas whose radii are linearly increasing along the W� axis. 
 
Similarly, let us denote by b the center of the bulb ℬ and by !+V , WV , XV" the local coordinate 
system attached to it. According to Zhang [180], it is more or less realistic to idealize ℬ as a 
paraboloid with an elliptic base. Following the same assumption leads to: 

ℬ ≡ +V = cd =WV#ce# + XV
#
cf# − 1? (3.2) 

where cd, ce and cf are the radii of the bulb respectively measured along the +V, WV and XV 
axes. It is worth noting that these parameters are not required for all the ships, as some of 
them may not have a bulbous bow. As a conclusion, the striking vessel is defined by `, [, _, a, ℎV and eventually by cd, ce, cf if necessary (see also Figure 3.8). All these values have to 
be chosen to get a more or less realistic representation of the hull. 

3.1.2.2. Definition of the impact location 
 
There are a lot of possible configurations to define the collision scenario, but most of them are 
not necessarily relevant. Some considerations have been published by the CETMEF [25] in 
order to choose an appropriate impact situation. They are briefly summarized hereafter. 
Considering first the upstream gate, the following conclusions may be drawn: 
 
• In the case of a ship moving downstream, the collision takes place at the top of the 

structure, where it is quite vulnerable. Moreover, if the water levels in the lock chamber 
and in the reach are not equal, the hydrostatic pressure is acting in the same direction than 
the impact force, which is unfavorable. However, such scenarios are very rare in practice. 
 

• In the case of a ship moving upstream, the collision occurs on the lower part of the gate, 
where it is usually quite resistant. Moreover, the hydrostatic pressure is favorable and the 
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ship entering into the lock is slowed down by the piston effect of water. Therefore, even if 
these accidents are more frequent than in the previous case, they have reduced 
consequences because of all these mitigating actions. 
 

From the previous considerations, it appears that an upstream collision is usually not the worst 
scenario to consider. For the downstream gate, the CETMEF [25] conclusions are as follows: 
 
• In the case of a ship moving downstream, the contact point is located in the upper part of 

the structure, where the reinforcement is weak. In addition, the hydrostatic pressure is 
unfavorable and the piston effect is reduced because of the higher water level. This kind of 
accident is frequently encountered in practice, because the ships try to keep their velocity 
as long as possible when entering in the lock chamber to keep their initial direction.  
 

• In the case of a ship moving upstream, the impact takes place in the lower part of the gate 
and the hydrostatic pressure is favorable. Once again, this kind of accident is very rare. 
 

As a conclusion, it can be said that according to the CETMEF [25], the worst and most frequent 
case to consider occurs when the downstream gate is impacted by a ship entering the lock 
chamber (Figure 3.8). With this conclusion, it is still necessary to locate the impact point & 
(Figure 3.6). This is achieved by giving its coordinates Ng and Og in the !', N, O" reference 
frame. Equivalently, one may also precise the coordinates Nh and Oh of point @ to position the 
vessel with respect to the structure (Figure 3.8). This is only true if the ship collides the gate 
at a right angle, which is almost the case. Only vessels having a rather small size in 
comparison with the lock dimensions are likely to impact the structure with a certain angle, 
but such situations are not really critical. Therefore, a right angle collision is considered here. 
 

 
Figure 3.8. Relative position of the ship with respect to the gate 
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3.2. General methodology 
 
3.2.1. Deformation sequence 
 
According to the hypotheses exposed in section 2.1.2, when the gate is collided by a perfectly 
rigid vessel, the ship keeps on moving forward as long as the total initial kinetic energy �
 
calculated by (2.3) has not been entirely dissipated. Consequently, simulating the impact 
behavior of a lock gate requires to determine the internal energy ���� absorbed by the 
structure for a given value of the penetration i. To do so, one may resort to the general energy 
theorems presented in section 2.3, but it is now required to have a more detailed overview of 
the analytical derivation of ����. 
 

(a) Local and global deforming modes (b) Collision resistance and internal energy 
according to Le Sourne et al. [99] 

Y

Z

ZI

YI

I

(2)

(1)

 

 
Legend: 

(1) Local deforming mode 
(2) Global deforming mode i� : transition from local to global mode i� : final penetration reached by the vessel 

Figure 3.9. Local and global deformation processes 

Finite element simulations performed on lock gates show that two different processes are 
involved during the impact (Figure 3.9). At the beginning of the collision, for low values of 
penetration i, the damages caused to the gate remain mainly located in a rather small area 
confined around the initial contact point &. This region is submitted to important plastic 
deformations that may sometimes lead to the rupture of some structural elements. 
Concomitantly, an elastoplastic overall bending motion of the entire gate is superimposed to 
this localized indentation and is responsible for quite small out-of-plane displacements 
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affecting the whole structure. In such a case, the gate is said to withstand through a local 
deforming mode. This is roughly illustrated on Figure 3.9a, where a localized out-of-plane 
motion of the plating is depicted near point &.  
 
On the other hand, numerical simulations also show that the impact may lead to large out-of-
plane displacements affecting the entire structure (Figure 3.9a). In this situation, a generalized 
rigid-plastic mechanism develops on the entire gate and this second process is called the 
global deforming mode. 
 
In order to derive analytically the internal energy ����, the structure is first supposed to resist 
through a local deforming mode. Nevertheless, with increasing values of i, it becomes more 
and more difficult for the vessel to keep on moving in this way. Consequently, for a given 
penetration i�, the collision force reaches a sufficient level to activate an overall plastic 
mechanism and a switch is supposed to occur from the local to the global mode. 
 
Of course, when a lock gate is impacted by a ship, the two aforementioned phenomena are in 
fact concomitant. The ship moves forward by locally and globally deforming the structure, 
especially before the activation of an overall plastic mechanism on the entire gate. 
Unfortunately, accounting for such a particularity is quite arduous when developing an 
analytical model. To overcome this difficulty, a solution could be to adopt the hypothesis 
suggested by Le Sourne et al. [99] of having two distinct processes. Doing so, the coupling 
between the local indentation and the global displacements is neglected and the transition 
occurs when the resistances in the local and global deforming modes are equal (Figure 3.9b). 
However, finite element have shown that this approach is not necessarily conservative 
because it tends to overestimate the resistance when i < i� and to anticipate the transition. 
Consequently, another approach is proposed here in order to approximately account for the 
elastoplastic coupling between local and global deformations when i < i�. These particular 
points, together with the determination of i�, are discussed in more details in section 3.6.1.2. 
 
3.2.2. Analytical derivation of the resistance 
 
From the considerations detailed in section 3.2.1, it can be concluded that the main issue is to 
get a realistic evaluation of the gate resistance k!i". Before detailing the procedures followed 
to get the local and global resistances, it is of prior importance to define them properly: 
 
• The local resistance kl!i" is defined as the one opposed by the gate under the assumption 

that the striking vessel only moves forward through a localized crushing. It is only derived 
for a rigid-plastic material by applying the super-elements method described hereafter, but 
does not account for any overall motion of the gate. It is only a part of the resistance in the 
local deforming mode (see section 3.6.1.2). 
 

• The global resistance km!i" is defined as the one opposed by the gate under the 
assumption that the striking vessel only moves forward by imposing an overall bending 
motion to the whole structure. An elastoplastic solution of km!i" is first derived and is 
combined with kl!i" to get the resistance during the local deforming mode, while a rigid-
plastic solution of km!i" is used to evaluate the resistance during the global deforming 
mode (see section 3.6.1.2). 
 

The previous definitions of kl!i" and km!i" are summarized on Figure 3.10 and the method 
followed for their derivations are respectively explained in sections 3.2.2.1 and 3.2.2.2. 
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Figure 3.10. Definition of the local and global resistances 

More details about the way to combine kl!i" with km!i" are given in section 3.6.1.2. The 
method used to evaluate i� is also presented there. 

3.2.2.1. Local resistance 
 
In order to perform an analytical derivation of kl!i", the architecture of the gate is modeled 
with a limited number of nodal points and some large-sized structural components. This basic 
idea was initially suggested by Ueda and Rashed [150] and is often referred to as the idealized 
structural unit method (ISUM). This one has been applied by Paik and Thayamballi [120] to 
analyze plated structures, and also by Paik and Pedersen [118] to predict the resistance for 
ship-ship collisions. 
 
One of the major characteristics of the idealized structural unit method is that the 
deformations taking place on an individual component have an effect on the surrounding 
ones, which means that there is a coupling between all of them. Another philosophy is to 
make the assumption that the structural units are independent. Doing so leads to the simplified 
technique described by Lützen et al. [104] and called the super-elements method. 
 

(a) Type 1 (SE1) (b) Type 2 (SE2) (c) Type 3 (SE3) 

 
 

 

Figure 3.11. Three different types of super-elements used to decompose plane gates 

kl!i" Local resistance 

Overall bending 
motion of the gate 

km!i" Global resistance 

Localized crushing 
of the gate 

Rigid-plastic solution 
(super-elements method) 

Elastoplastic 
solution 

Rigid-plastic 
solution 

Resistance during the 
local deforming mode 

Resistance during the 
global deforming mode 
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To apply this approach to the impact analysis of lock gates, three different types of super-
elements are required for analyzing these plane structures. Each of them is characterized by 
some geometrical and mechanical properties, but also by a closed-form expression giving 
their impact resistance as a function of the penetration (see sections 3.3, 3.4 and 3.5). They are 
represented on Figure 3.3 and briefly detailed hereafter (see Figure 3.11): 
 
• Type 1: the first type of super-element (SE1) introduced here is used to model the portions 

of the plating that are bounded by two horizontal girders and two vertical frames. The 
super-elements of this type are treated as plates clamped on their four edges and submitted 
to an out-of-plane impact load. 
 

• Type 2: the second type of super-element (SE2) designates the portions of the frames 
limited by two girders, but also the parts of the girders bounded by two frames. In the first 
case, the super-elements of this type are vertical, while they are horizontal in the second 
one. They are treated as plates supported on three edges and impacted in their plane. 
 

• Type 3: the third type of super-element (SE3) corresponds to the intersections of the 
vertical frames with the horizontal girders. They are treated as X or T-shaped elements that 
are crushed along their axis.  

 
The decomposition of a plane lock gate into super-elements is quite straightforward. As 
explained in section 3.1.1, the structure is assumed to be made of P9 vertical frames and PQ 
horizontal girders. Therefore P9 × PQ nodes can be defined, each of them being located at the 
intersection of two components. From this point, it can be shown that the gate may be divided 
into Po = !2P9 − 1" × !2PQ − 1" − 4 super-elements (see Table 3.1). 
 

Type Number Type Number 

Type 1 (SE1) !P9 − 1" × !PQ − 1" 
Type 3 (SE3) 

T-shaped 2!P9 − 2" + 2!PQ − 2" 
Type 2 (SE2) 

Horizontal !PQ − 1" × P9 X-shaped !P9 − 2" × !PQ − 2" 
Vertical !P9 − 1" × PQ Total P9 × PQ − 4 
Total 2P9PQ − P9 − PQ Total number Po = !2P9 − 1" × !2PQ − 1" − 4 

Table 3.1. Number of super-elements used for decomposing a plane lock gate 

As mentioned earlier, all these structural components are assumed to be uncoupled, which 
means that they do not influence each others. As a consequence, a super-element remains 
inactive as long as it has not been impacted by the striking bow. As shown by Figure 3.6, this 
means for example that the vertical SE2 associated to the frame portion �b is not deforming 
as long as the displacement of the bow is not equal to i
, even though the adjacent SE1 has 
already been impacted. In fact, for each super-element p (with 1 ≤ p ≤ Po), one may define an 
activating distance i
,� measured from the bow, with i
,� → ∞ if no geometrical contact is 
possible between the component and the vessel. Consequently, denoting by k�!i" the 
individual impact resistance associated to super-element p, kl!i" is calculated by summing up 
all the contributions coming from the activated components: 

kl!i" =sk�!i"�t
�u(  with  k�!i" = 0  if  i < i
,� (3.3) 

By following the general methodology explained here above, it is possible to derive kl!i", 
which is only a part of the resistance during the local deforming mode (Figure 3.10). In fact, 
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kl!i" has to be corrected to account for the coupling with the elastoplastic overall motion of 
the gate when i < i�. As mentioned earlier, the idea developed by Le Sourne et al. [99] of 
considering only kl!i" during the local deforming mode may lead to unsafe solutions, and 
this is why another approach is proposed in section 3.6.1.2 to correct kl!i". The next step is 
now to establish a procedure to evaluate the global resistance. As explained on Figure 3.10, 
this latter should not be mistaken with the resistance during the global deforming mode. 

3.2.2.2. Global resistance 
 
Of course, the super-elements method is not entirely relevant for analyzing impacts on lock 
gates. Indeed, it is not realistic to imagine that the gate is only made of large structural 
components that are decoupled from each others. It is clear that many elements located near 
the impact point are likely to deform, even though they are not in contact with the striking 
bow. This particular phenomenon is due to the coupling between the different gate 
components and may therefore not be captured by using only super-elements. However, the 
method may be improved through the concept of global resistance, which allows for a better 
representation of the gate behavior. 
 

 
Figure 3.12. Beam grillage used to idealize the gate in the global deforming mode 

As mentioned earlier, when the structure exhibits an overall bending motion as depicted on 
Figure 3.9, the displacements take place over the entire gate and consequently, the 
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deformations field affects all the gate components. The internal energy ���� is therefore 
calculated as the sum of three different terms: 

���� = �J + �9 + �Q (3.4) 

where �J, �9 and �Q denote the deformation energy associated to the plating (including the 
reinforcing small stiffeners if any), the vertical frames and the horizontal girders respectively. 
In order to derive km!i" analytically, the main contribution to ���� is assumed to come from 
the horizontal members. This hypothesis seems quite reasonable, as the gate is bent between 
its lateral supports during the global mode. Consequently, �9 is neglected as compared to �J + �Q in equation (3.4) and the work consists now in evaluating �J and �Q. 
 
To do so, one can imagine that the structure deforms through a global mode like a set of 
horizontal beams weakly connected by the vertical frames. In other words, the structure is 
supposed to behave like a kind of grillage with the same boundary conditions than the initial 
gate (Figure 3.12).  
 
In this configuration, I-shaped cross-section beams are defined at the discrete locations N� of 
the girders. Their cross-sections are composed by the girders initial one (Figure 3.3), to which 
is attached a portion coming from the plating (Figure 3.12). This additional part is supposed to 
account for the amount of energy �J dissipated by the overall motion of the gate. During the 
impact, a beam located at the vertical position N� along the N axis (Figure 3.12) is submitted to 
a given out-of-plane displacement field .!N�, O", but lateral movements v(!N�" and v#!N�" are 
also permitted as the gate is likely to slide on the lock walls (Figure 3.13). Regarding the 
vertical frames, as their internal energy �9 is neglected, they are assumed to remain 
unaffected by .!N�, O", v(!N�" and v#!N�" but have the following structural functions: 
 
• They provide a kind of collaboration between the beams, which allows for a proper 

transmission of the displacement field over the whole grillage. 
 

• They are acting as fork supports (Figure 3.12), which prevents the lateral torsional 
buckling. 
 

• Together with the plating, they exert a small axial restraint on the beams. This means that 
they have a limiting effect on v� (Figure 3.13), so the gate is not allowed to move freely on 
its lateral supports. 

 
The previous points are based on the assumption that the frames are weaker than the girders. 
Therefore, each horizontal component may be seen as being submitted to a simple bending 
described by .� and v�. Therefore, by applying the classical beam theory, it is possible to 
evaluate the corresponding internal energy and also the equivalent static force k�!i" as a 
function of the striking ship penetration (see section 3.6).  
 
In accordance with the previous considerations, it is worth recalling that k�!i" has to be 
calculated for both the elastoplastic and rigid-plastic regimes. The global resistance km!i" is 
then finally obtained by summing up all the individual contributions k�!i" coming from the PQ horizontal beams: 

km!i" =sk�!i"�w
�u(  (3.5) 
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It is worth noting that all the structural components are supposed to be simultaneously 
involved in the overall bending motion, so there is no need to define an activating penetration 
as it was the case for the local deforming mode. 
 

(a) Displacement field applied on a beam (b) Beam cross section 

 
 

Figure 3.13. Top view and sectional view of a beam 

From the brief presentation of the local and global deforming modes that is made here above, 
it transpires that the crucial point is to determine the individual resistances k�!i" that are 
involved in equations (3.3) and (3.5) for the derivation of kl!i" and km!i" respectively. In 
order to establish closed-form expressions for k�!i", one may of course resort to the theorems 
of limit analysis in plasticity briefly exposed in section 2.3. 
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3.3. Local resistance for super-elements of type 1 
 
Before giving some details about the derivation of the local resistance, it is first required to 
develop the analytical formulae describing the striking vessel in the global reference frame !', N, O" depicted on Figure 3.8. As shown on Figure 3.7a, the ship is composed of the stem T 
and the bulb ℬ, whose vertices are respectively the points @ and b. Consequently, at the 
beginning of the collision, the gate may be first impacted by one of these two parts. From 
Figure 3.8, it is obvious that the contact first occurs between the stem and the plating if: 

cd ≤ !ℎV − 2ce" cot_ (3.6) 

If point @ is the vertex of the stem T and point b the vertex of the bulb ℬ, it is easy to show 
that their locations 'h and 'x along the horizontal axis are as follows: 

'h = [ +max|cd − !ℎV − 2ce" cot_	; 0~ 
'x = max|cd	; !ℎV − 2ce" cot_~ (3.7) 

Moreover, as explained in section 3.1.2, the definition of the collision scenario requires to 
specify the coordinates !Ng , Og" of the first contact point & between the gate and the stem 
(Figure 3.6). From Figure 3.8, it is clear that: 

Nh = Ng 					Oh = Og Nx = Nh − ℎV + ce					Ox = Og (3.8) 

With the previous relations, it is possible to transform equations (3.1) and (3.2) to get the 
expressions of ℬ and T in the global reference frame. For a given penetration i, it can be 
shown that: 

T ≡ 	' = 'h − i + ![ + !N − Nh" cot_" = !O − Oh"#!` + !N − Nh" cota"# − 1? (3.9) 

ℬ ≡ ' = 'x − i + cd =!N − Nx"#ce# + !O − Ox"#cf# − 1? (3.10) 

where all the geometrical parameters have to be specified while defining the striking vessel 
and the collision scenario (section 3.1). 
 
3.3.1. Literature review 
 
As presented in section 3.2.2.1, the first type of super-element to consider is a vertical plate 
that is simply supported on its four edges and submitted to an out-of-plane impact (Figure 
3.11a). The goal is to derive a closed-form expression relating the resistance opposed by this 
panel to the penetration i of the striking vessel. This problem has already been largely studied 
in the literature by various authors, mainly to assess the strength of plating elements during 
collisions involving two ships. Very detailed studies have been performed by Zhang [180] and 
Jones [81], who investigated the plastic collapse of plates submitted to punctual, linear or 
surface out-of-plane loads. Similarly, Simonsen [141] developed interesting formulae to 
evaluate the plastic resistance in case of a concentrated load and validated its theoretical 
approach by experimental data. The influence of other concomitant in-plane forces was 
treated by Paik et al. [122], but only in the elastic range.  
 
In practice however, the plating of a lock gate is usually reinforced by smaller stiffeners that 
have to be considered while deriving the resistance of super-elements. The crashworthiness of 
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stiffened panels was investigated experimentally and theoretically by Cho and Lee [30] or by 
Alsos and Amdahl [6], amongst others. From these studies, it transpires that the influence of 
the stiffeners is mainly to increase the membrane resistance of the plates, in particular when 
these latter are submitted to quite large out-of-plane motions.  
 
All the papers mentioned here above provide a quasi-static evaluation of the resistance, but 
some dynamic analyses are also available, such as those performed by Jones [81] and Shen 
[138]. However, regarding the range of velocities involved in collision on lock gates (section 
2.2), it is clear that the local acceleration of the impacted area remains quite small, so the 
corresponding inertia forces may be neglected. Another problem that is more important to 
assess is to account for the true shape of the striking body. Indeed, for ship-ship collisions, the 
dimensions of the plating elements may be thought to be sufficiently large to treat collisions 
on plates as punctual impacts. Nevertheless, this is not necessarily true for lock gates, where 
the panels are much smaller and may consequently be more deeply influenced by the 
geometry of the bow. This topic has already been addressed by various authors, such as 
Simonsen and Lauridsen [143], Wang [162], Wang and Ohtsubo [164] or Zhang [180], who 
developed some formulae to evaluate the crashworthiness of plates collided by a bulb 
described by a given mathematical function. This problem was also already investigated by 
the U.S. Administration [154] in the frame of a research program on ships initiated after an 
important oil spill in 1995.  
 
3.3.2. Analytical derivation for an impact by the stem 

3.3.2.1. Derivation of the displacement field 
 
In the optic of applying the upper-bound method, the first step is to define a kinematically 
admissible displacement field that more or less represents the true shape of the deformed 
structure.  

 
Figure 3.14. Deformation pattern and displacement field u(y,z) for an impact by the stem 
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To do so, one may start by considering the local reference frame !+, W, X" of the super-element 
(Figure 3.14) that is parallel to the global one !', N, O" depicted on Figure 3.3. Under the 
assumption that the out-of-plane displacements .!W, X" are predominant, then each point !W, X" of the plate is assumed to move only along the + axis. 
 
The first contact point with the vessel is denoted by & and has the coordinates !Ng , Og" in the 
global reference frame (Figure 3.6). It divides the plate in four distinct sub-areas having 
respectively the dimensions �( × �(, �# × �(, �( × �# and �# × �# that can be specified by 
the relative position between the ship and the super-element. In order to have a better 
description on the way these surfaces are deforming, it is worth looking at the situation in the 
horizontal plane W = �( passing through the uppermost deck of the stem, where the 
displacement field is denoted by �!X" = .!�(, X". For a given value of the penetration i, this 
one is assumed to be made of two different parts �(!X" and �#!X": 
 
• On the portion �b of Figure 3.15, the deformation pattern is supposed to follow the shape 

of the stem. Consequently, �(!X" has to be defined in accordance with the parabolic 
equation of the uppermost deck (3.1). 
 

• On the portions �� and b� of Figure 3.15, the displacements have to respect the support 
conditions �# = 0 and >�#/>X = 0 at the boundaries � and � of the super-element. 
Moreover, in points � and b, the compatibility condition requires that �( = �# and >�(/>X = >�#/>X. As a consequence, it appears that �# has to be a quadratic expression 
of X. 

 
Even if the impact is not necessarily symmetric (i.e. �( ≠ �#), it is clear that the displacement 
field for 0 ≤ X ≤ �( must be similar to the one over the portion �( ≤ X ≤ �( + �#. 
Consequently, in order to avoid any redundancy, it is sufficient to focus only on one half of 
the model. 
 

 
Figure 3.15. Plane view of the out-of-plane displacements imposed by the uppermost deck 

As detailed in section 3.1.2.1, the stem T is idealized as a set of parabolas whose radii are 
progressively growing along the vertical N axis, as detailed by equation (3.1). Consequently, 
the curve Γ describing T in the plane of the uppermost deck (i.e. for W� = 0) is also a parabola 
whose radii are ̀ and [. According to (3.9), it is obvious that Γ has the following equation, 
from which the definition �( can be easily derived: 

Γ ≡ + = 'h − i + [ =!X − �("#`# − 1? ⇒ �(!X" = [ =1 − !X − �("#`# ? − 'h + i (3.11) 

Regarding the displacement field over the portion ��, let us denote by i
 the out-of-plane 
displacement of point � and by �
 the horizontal distance with respect to point & (Figure 
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3.15). In order to respect the compatibility conditions detailed here above, �# has to be given 
by the following quadratic equation: 

�#!X" = i
!�( − �
"# X# (3.12) 

In order to have a complete definition of �!X", it is finally necessary to specify how the 
parameters i
 and �
 are calculated. They have to be such that the continuity is respected at 
the junction point �. Consequently, one should have: 

• �( = �# = i
 ⇔ i
 = [ =�
#`# − 1? − 'h + i ⇒ �
 = `#�([ ![ − 'h + i" (3.13) 

• 
>�(>X = >�#>X  ⇔ i
�( − �
 = [̀# �
 ⇒ i
 = [̀# �
!�( − �
" 

It is worth noting that �
 and i
 are varying with the penetration. As expected, both are 
increasing with i. Once the displacement field is completely characterized by equations 
(3.11) and (3.12) in the horizontal plane passing through the stem, the goal is to extend its 
definition over the entire plate. To do so, the hypothesis is made that the deformation pattern 
may be simply obtained through a linear interpolation of �!X" along the vertical W axis. As 
the plate is also supported along the horizontal edges W = 0 and W = �( + �#, the boundary 
condition .!W, X" = 0 has to be respected at these locations. Consequently, the interpolation 
function �!W" may be chosen as follows: 

• �(!W" = W�( if  0 ≤ W ≤ �( 
(3.14) 

• �#!W" = �( + �# − W�2  if  �( < W ≤ �( + �# 
With the previous definitions, the displacement field is now characterized over the entire 
surface of the plate. For 0 ≤ W ≤ �( + �# and 0 ≤ X ≤ �( + �#, it is simply given by: 

.!W, X" = �!X"�!W" (3.15) 

It is worth noting that (3.15) implies that .!W, X" is not kinematically admissible as the slope >./>W is discontinuous along W = �(. This is also valid along the supports W = 0 and W = �( + �#, but such difficulties can be overcome by supposing that horizontal plastic hinges 
develop at these locations. 

3.3.2.2. Derivation of the internal energy rate 
 
The second step of the upper-bound method is now to evaluate the internal energy rate �-���. 
This one can be calculated by (2.8), but evaluating Ε-J for the deforming plate of Figure 3.14 
leads to very cumbersome equations that are not tractable analytically.  
 
To overcome this difficulty, another mechanical simplification is introduced, which is called 
the plate strip formulation by Wierzbicki and Simonsen in [154]. The idea is to replace the 
plate by a set of horizontal and vertical fibers that are still submitted to .!W, X" but are free to 
move without shearing. Considering first a vertical fiber of length �( + �# and of width :X 
(Figure 3.14) that is parallel to W axis, according to Jones [81], the internal energy rate (2.8) 
may be rewritten as follows: 
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:�-��� = �2�
��-( + �-#� + � P
Ε-��:W
V��V�



�:X (3.16) 

where P
 = 6
SJ and �
 = 6
SJ#/4, SJ being the plating thickness. The first term in (3.16) 
corresponds to the bending energy dissipated because of the rotations �( and �# occurring in 
the plastic hinges located at W = 0, W = �( and W = �( + �# (Figure 3.16a), while the second 
one is due to the membrane straining Ε�� along the W axis. 
 

(a) Deformation of a vertical fiber (b) Deformation of a horizontal fiber 

  
Figure 3.16. Plate strip model 

Similarly, for a fiber of length �( + �# and of width :W that is parallel to X axis (Figure 
3.16b), the internal dissipation is obtained by summing the contribution coming from the axial 
straining along the X axis, but also from the continuous change of curvature. Consequently, 
the corresponding energy writes: 

:�-��� = :W � ��
Κ- �� + P
Ε- ���
�����



:X (3.17) 

where Κ- �� is the curvature rate. In fact, in (3.16) and (3.17), it is supposed that the maximal 
unitary bending moment �
 and tensile force P
 may be reached simultaneously, which does 
not respect the plasticity theory (see Appendix A.2, section A.2.5). Theoretically, an 
interaction formula should be use. Nevertheless, if the thickness is sufficiently small, then �
 
may be neglected with respect to P
. Moreover, within the frame of moderate displacements, 
the membrane effects are largely predominant. For these two reasons, it is suggested to 
neglect the bending contributions in (3.16) and (3.17). Consequently, according to the plate 
strip model, the internal energy rate over the entire plate is given by: 

�-��� =�P
�E- �� + E- ����
:W:X					; 					E- �� = >.>W >.->W 					E- �� = >.>X >.->X (3.18) 

where � is the area of the initial configuration and the strain rates E- �� and E- �� are found by 
applying (2.7).  

3.3.2.3. Derivation of the local resistance 
 
The last step of the upper-bound method consists in evaluating the external power. In the 
present situation, the only force acting on the plate is the one imposed by the striking vessel, 
which is in fact equal to the resistance k!i" opposed by the super-element. If this force is 
assumed to be applied at point & with the same direction than the displacement of the vessel 
(Figure 3.14), then according to (2.5), the external power is simply given by 2- = ki-. 
Consequently, equating 2-  with �-��� leads to the sought resistance. Doing so for the four sub-
areas of Figure 3.14, it can be shown that the different individual contributions to k!i" are 
given by the following expressions: 
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• k(!i" = 6
SJ �
�( =i + [ − 'h − �

#3c + 4�(#9c + !�( − �
"#5c ?			 ; 			�
 = c�( ![ − 'h + i" (3.19) 

• k#!i" = 6
SJ �
�# =i + [ − 'h − �

#3c + 4�##9c + !�( − �
"#5c ?			 ; 			�
 = c�( ![ − 'h + i" (3.20) 

• k*!i" = 6
SJ �
�( =i + [ − 'h − �

#3c + 4�(#9c + !�# − �
"#5c ?			; 			�
 = c�# ![ − 'h + i" (3.21) 

• k�!i" = 6
SJ �
�# =i + [ − 'h − �

#3c + 4�##9c + !�# − �
"#5c ?			; 			�
 = c�# ![ − 'h + i" (3.22) 

where c = `#/[. As a final result, the total resistance k!i" is obtained by summing up the 
four contributions given by (3.19) to (3.22).  
 
It is worth noting that all these developments are valid as long as there is no failure of the 
material. Indeed, as depicted on Figure 2.6, the tension in the plate fibers should be released 
when the rupture strain GI is reached. Nevertheless, predicting and simulating the failure of 
structure is quite complex as it is influenced by the type of load. Moreover, as explained by 
Simonsen [142], the simplified approach exposed here above is only based on an overall 
hypothetic deformation mechanism, which does not allow for estimating the strains at a 
detailed level. In other words, this means that the upper-bound method is sufficient for 
predicting the overall behavior of a super-element, but fails to provide an accurate estimation 
of local fields such as stresses or strains. Consequently, as suggested by various authors like 
Zhang [180], Lützen [103] or Wang [162], it is convenient to use the maximum strain failure 
criteria when developing such analytical models. This latter simply states that rupture will 
take place when a critical level G� is reached. In the case of an impacted plate, this writes: 

max� �E��	, E��� = G� (3.23) 

where E�� and E�� are the Green-Lagrange deformations in the horizontal and vertical fibers 
predicted by the upper-bound method. The main arduous task when using (3.23) consists in 
choosing an appropriate value for G� because taking G� = GI leads to unsafe predictions of 
failure. Consequently, some unrealistic values are often affected to G�. According to Amdahl 
et al. [9] and Mc Dermott et al. [107], G� should be chosen within a range of 5 to 10	%. In the 
present case, the selection of G� is based on finite element simulations (see section 3.3.4). 
 
(a) Front view of a ruptured plate 

impacted by a cone [163] 
(b) Rear view of a ruptured plate 

impacted by a cone [163] 
(c) Theoretical model of a four 

petals mechanism 

   
Figure 3.17. Four petals mechanism of a ruptured plate impacted by a cone 

As soon as equation (3.23) is satisfied, the plate is assumed to have no resistance anymore and k!i" is set to 0. This approach is quite conservative, because numerical simulations (see 
section 3.3.4) have shown the existence of a residual resistance. This has also been 
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investigated experimentally by Wang et al. [163], who pointed out that the ruptured plates still 
dissipated energy through a four petals mechanism (Figure 3.17a and b). Based on these 
observations, a theoretical model was derived by assuming that plastic dissipation mainly 
takes place during the rotation of the four petals around the moving plastic hinge lines �b, b�, �� and �� (Figure 3.17c). Of course, these developments could be easily integrated in 
the present analytical model, but the main difficulty is that they are highly dependent on the 
shape of the striker. Other types of post-failure mechanism could be observed if other 
indenters were used. Consequently, it is decided here to neglect the residual strength after 
rupture.  
 
Another important point to raise is the fact that for most lock gates, the plating is reinforced 
by additional smaller horizontal and/or vertical stiffeners that also dissipate energy during the 
impact. These ones may be easily included by smearing them over the plate surface, as 
exposed in Appendix B.1 (section B.1.1).  
 
As a final remark, it is also worth mentioning that formulae (3.19) to (3.22) are only valid as 
long as one of the support of the plate has not been impacted by the stem. However, if this is 
the case, then the resistance is changed and has to be derived in another way. Additional 
information on this topic may be found in Appendix B.1 (sections B.1.2 and B.1.3). 
  
3.3.3. Analytical derivation for an impact by the bulb 

3.3.3.1. Derivation of the displacement field 
 
The displacement field that is postulated for an impact by the bulb ℬ is more difficult to 
define than for a collision involving the stem T. Ideally, .!W, X" should be such that the 
deforming plate follows the shape of ℬ (Figure 3.18). 
 

 
Figure 3.18. Deformation pattern and displacement field u(y,z) for an impact by the bulb 
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Nevertheless, doing so leads to very cumbersome equations that are not easily tractable within 
an analytical approach. For this reason, as in section 3.3.2, an approximate formulation will be 
used for .!W, X". To do so, it is first required to express the equation of ℬ in the local 
reference frame !+, W, X" of the super-element. This is easily achieved by considering (3.10), 
where ℬ is described in the global !', N, O" axes. Indeed, for a penetration i, it can be shown 
that the current description of the striking bulb is as follows: 

ℬ ≡ + = 'x − i + cd =!W − �("#ce# + !X − �("#cf# − 1? (3.24) 

where cd, ce, cf are the three radii (Figure 3.18) and 'x is given by (3.7). As for the case of 
the stem, this expression could be used to calculate the mathematical expression of the 
deformation pattern by assuming that this latter has to be tangent to ℬ. However, as the bulb 
is usually narrower than the stem, it is not reasonable to think that the entire plate will be 
involved in the collision process.  
 
Indeed, from numerical simulations (see section 3.3.4), it transpires that only a portion of the 
plate located near the initial contact point & really deforms during the impact. Of course, this 
region increases when the ship moves forward and can be defined by considering the 
intersection curve Γ made by the current description of bulb (3.24) and the initial plane of the 
plate. As depicted on Figure 3.19, the assumption is made that the resistance only comes from 
the horizontal and vertical fibers located inside the areas 2ℓ�!�( + �#" and 2ℓ� × !�( + �#" 
respectively.  
 

 
Figure 3.19. Definition of the portions of the plate involved in the collision process 

The displacement field .!W, X" is supposed to act only on the shaded parts of Figure 3.19, the 
other regions being unaffected. For a given penetration i, the extensions ℓe and ℓf may be 
found by considering the mathematical expression of the ellipse Γ. From (3.24), it is easy to 
show that: ℓe = ce�i/cd					; 					ℓf = cf�i/cd (3.25) 

In order to obtain a consistent description of the displacement field, let us start by considering 
first the deformation pattern for a horizontal fiber (Figure 3.20) located at a certain level W 
along the vertical axis. For a given value of the penetration i, it is assumed that the out-of-
plane displacements .!W, X" are largely predominant. In order to follow the shape of the bulb, 
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.!W, X" is split into two different parts .(!W, X" and .#!W, X" satisfying the same conditions 
than �(!X" and �#!X" in the case of an impact by the stem (see section 3.3.2.1). The junction 
between them occurs at point � (Figure 3.20) that is located at a distance �
!W" from the 
center of the bulb and submitted to an out-of-plane motion i
!W".  

 
Figure 3.20. Definition of the displacement for a horizontal fiber impacted by the bulb 

By following a similar procedure than in section 3.3.2.1 and considering this time equation 
(3.24), it can be shown that for �( − ℓe ≤ W ≤ �(, .!W, X" has the following definition: 

• .(!W, X" = cd =1 − !W − �("#ce# − !X − �("#cf# ? − 'x + i if  �( − �
!W" ≤ X ≤ �( (3.26) 

• .#!W, X" = i
!W" !X − �("#�
#!W"  if  0 ≤ X ≤ �( − �
!W" (3.27) 

with: i
!W" = cdcf# �
!W"��( − �
!W"�	; 	�
!W" = cf#cd�( =cd =1 − !W − �("
#ce# ? − 'x + i? (3.28) 

 
Focusing now on a vertical fiber (Figure 3.20), it is obvious that a similar reasoning holds in 
this case. The displacement field is also divided into two parts: the first one .(!W, X" is still 
given by (3.26) and sticks to the bulb, while the second one .*!W, X" is such that it respects 
the compatibility requirements with the horizontal supports of the plate. By analogy with the 
previous equations, for �( − ℓf ≤ X ≤ �(, it is found that: 

• .(!W, X" = cd =1 − !W − �("#ce# − !X − �("#cf# ? − 'x + i if  �( − �
!X" ≤ W ≤ �( (3.29) 

• .*!W, X" = i
!X" !X − �("#�
#!X"  if  0 ≤ W ≤ �( − �
!W" (3.30) 
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with: i
!X" = cfcd# �
!X"��( − �
!X"�	;	�
!X" = ce#cd�( =cd =1 − !X − �("
#cf# ? − 'x + i? (3.31) 

From the previous considerations, it is obvious that .!W, X" is nothing else than a 
generalization of the developments performed in section 3.3.2.1, but restricted to the areas 2ℓ�!�( + �#" and 2ℓ� × !�( + �#" of Figure 3.19. With the previous definitions of .!W, X", it 
is now possible to evaluate the internal energy rate. 

3.3.3.2. Derivation of the internal energy rate 
 
The procedure to get �-��� in the case of a collision involving the bulb is quite similar to the 
one exposed in section 3.3.2.2 for the stem. If the energy dissipation associated to the bending 
effects is disregarded, then according to the plate strip model, the internal energy rate comes 
mainly from the membrane extension of the vertical and horizontal fibers. For the sub-area �( × �(, these latter are respectively given by: 

• �-���!�" = � P
:W � �>.*>W >.-*>W + >.*>X >.-*>X �:W	
V��V�



��
���ℓ 

 

⇒ �-��� = �-���!�" + �-���!�" (3.32) 

• �-���!�" = � P
:W � �>.#>W >.-#>W + >.#>X >.-#>X �:X	
�����



V�
V��ℓ¡

 

It is worth noticing that there is obviously no energy rate on the portion of the plate sticking to 
the bulb, which explains why .(!W, X" does not have to be consider in (3.32). Another point 
that is important to remember is the fact that (3.32) is valid if the out-of-plane displacements 
are predominant with respect to the in-plane ones, which is usually true in a collision event. 

3.3.3.3. Derivation of the local resistance 
 
According to the upper-bound theorem, the super-element resistance k!i" can be calculated 
by equating the external power 2-  to the internal dissipation. If the resistance is acting at point & (Figure 3.18) and has the same direction than the ship velocity, then k!i" = �-���/i-, where �-��� is given by (3.32). If the expressions of .#!W, X" and .*!W, X" are substituted in (3.32) for 
the four sub-areas �( × �(, �( × �#, �# × �( and �# × �#, then the total resistance k!i" is 
obtained by summing up all the corresponding contributions. These latter are as follows: 

• k(!i" = 836
SJ£ icd ¤ce�( =13 + 15cf
#ce#? + cf�( =13 + 15ce

#cf#?¥i (3.33) 

• k#!i" = 836
SJ£ icd ¤ce�( =13 + 15cf
#ce#? + cf�# =13 + 15ce

#cf#?¥i (3.34) 

• k*!i" = 836
SJ£ icd ¤ce�# =13 + 15cf
#ce#? + cf�( =13 + 15ce

#cf#?¥i (3.35) 

• k�!i" = 836
SJ£ icd ¤ce�# =13 + 15cf
#ce#? + cf�# =13 + 15ce

#cf#?¥i (3.36) 
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Obviously, equations (3.33) to (3.36) are valid as long as there is no failure in the material, 
but if the maximal strain arising in the plate exceeds a critical value G�, then k!i" is set to 
zero. Moreover, these formulae are no longer applicable if one of the supports has been 
impacted by the bulb. In this case, some additional developments are required. They are very 
similar to those performed for the impact by the stem (see Appendix B.1, sections B.1.2 and 
B.1.3) and are therefore not presented here. 
 
3.3.4. Numerical validation 
 
In an attempt to validate the developments performed here above, the analytical results may 
be confronted to those obtained with finite element. To do so, many collision scenarios were 
investigated using the LS-DYNA  software, involving plates and vessels of various dimensions. 
 

Young modulus �e  210000	�k� 

Poisson coefficient ¦ 0.33 

Mass density § 7850	¨©/�* 

Tangent modulus �ª 1018	�k� 

Flow stress 6
 240	�k� 

Rupture strain GI Variable 
  

Table 3.2. Material properties Figure 3.21. Stress-strain curve for the simulations 

The material law that is used for the simulations is defined by the stress-strain curve of Figure 
3.21. This one is composed of a first elastic phase, characterized by a Young modulus �e and 
a yield stress 6
. The second part of the curve corresponds to a linear strain hardening with a 
tangent modulus �ª. All these parameters have the values listed in Table 3.2. Rupture is 
assumed to occur when a maximal deformation GI is reached. Axial tensile test performed for 
various steel grades have shown that the rupture strain usually ranges from 15 to 25	%. 
 
Nevertheless, simulating correctly the initiation and propagation of failure is still difficult. In 
the present case, an erosive law based on shear criterion is used, which means that the 
elements where the effective plastic strain exceeds GI are simply deleted from the model. 
Selecting a consistent value for GI is therefore of prior importance and this choice has to be 
done in accordance with the mesh size. Indeed, when some elements are removed from the 
model, a stress concentration appears near the holes that have been created. Obviously, the 
stresses will increase in a larger proportion if the mesh around the perforated areas is very 
refined, which will cause the elements to disappear more quickly. Consequently, it can be said 
that for a same value of GI, the coarser the mesh, the slower the erosion.  
 
In order to account for this phenomenon, Lehmann and Peschmann [93] suggested to 
calculate GI by accounting for the element length Lo and thickness So: 

GI = G« + GoSo/Lo	 (3.37) 

where G« and Go are respectively the uniform and necking strains. For mild steel, it is of 
current practice to choose G« = 0.056 and Go = 0.54. This empirical relation was found by 
performing direct measurements during experimental collision tests and is only valid for mild 
steel. If another material is used, then the law has to be recalibrated. According to Vredeveldt 
et al. [160], equation (3.37) has been validated for steel grades having a yield stress ranging 
from 235 to 355	�k�. Therefore, (3.37) should be convenient for lock gates. Nevertheless, 
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having a proper simulation of rupture is quite challenging on a numerical point of view. As 
discussed in section 2.1.1, various laws are available in the literature to define a rupture 
criteria accounting for the size of the finite element, but they do not necessarily lead to the 
same results.  
 
As a first validation example, the analytical formulae developed in section 3.3.2 for a collision 
by the stem are confronted to numerical results given by LS-DYNA . The geometrical data 
describing the vessel (Figure 3.22) and the impacted structure are listed in Table 3.3. In an 
illustrative purpose, the equivalent plastic strain in the plate is plotted on Figure 3.22, from 
which it can be seen that the deformation pattern is more or less similar to the one postulated 
on Figure 3.14. 
 ` 3.5	� [ 7	� ℎV 3.5	� _ 70° a 79° �( 3.5	� �# 1.2	� �( 1.5	� �# 2.5	� SJ 0.01	� 

  
 

Table 3.3. Geometrical 
properties 

Figure 3.22. Equivalent plastic strain in the plate ; Striking bow used 
for the simulations 

In order to investigate the importance of accounting for the shape of stem, some simulations 
have been performed without considering failure. The corresponding curves showing the 
evolution of the force with the penetration are plotted on Figure 3.23a and it can be concluded 
that using the analytical model is quite satisfactory.  
 

(a) Without rupture (b) With rupture 

  
Figure 3.23. Comparison between the analytical and numerical results for an impact by the stem 
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As a matter of comparison, Figure 3.23a also shows a linear prediction such as the one 
derived by Zhang [180] for a punctual impact. In this case, it is apparent that the collision 
resistance is underestimated. This may be explained by the fact that the vessel dimensions are 
usually much more important than those of the plate. Therefore, the deformations are not 
correctly assessed if the impact is modeled by a concentrated load. However, a linear formula 
may be consistent for ship-ship collisions as the plating elements are often larger. 
 
Other simulations were also performed in which failure was taken into account. For the data 
reported in Table 3.3, the analytical and numerical resistance curves are plotted on Figure 
3.23b. Here again, a quite good agreement is found between both of them. In this particular 
case, the rupture strain GI is set to 16	% as the element size and thickness are equal to 5	­� 
and 1.5	­� respectively. Regarding the theoretical model, the value of the critical strain G� is 
found to be equal to 7	%, which is quite close to the recommendations made by Lützen [103] 
or Zhang [180]. It is worth mentioning that this value of G� is based on many numerical 
simulations and is chosen to have a satisfactory prediction of failure in most of them. 
 �( 1.31	� SJ 0.015	� �# 1.31	� cd 2	� �( 1.5	� ce 0.8	� �# 1.5	� cf 0.3	� 

Table 3.4. Geometrical properties for an impact by the bulb 

The case of an impact involving the bulb is now considered. The material used for these 
simulations is still the one described here above, but the geometrical data are now those listed 
in Table 3.4. In accordance with (3.37), the failure strain GI is set to 22	%. The resistance 
curves with and without rupture are plotted on Figure 3.24, from which it can be seen that the 
agreement is rather good. As in the case of a collision by the stem, the analytical prediction of  
Figure 3.24b is obtained by considering G� = 7	% in equation (3.23). 
 

(a) Without rupture (b) With rupture 

  
Figure 3.24. Comparison between the analytical and numerical results for an impact by the bulb 

From Figure 3.24a, it appears that the linear approximation is much more satisfactory in this 
case. This is due to the fact that the bulb chosen for this example (Table 3.4) is quite sharp 
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and the hypothesis of a punctual impact is therefore quite acceptable. Nevertheless, other 
simulations performed with larger values of cd, ce and cf shows that the discrepancy is 
more important in those cases. 
 
As a final remark, it can be concluded that the results depicted on Figure 3.23 and Figure 3.24 
validate the analytical model presented in sections 3.3.2 and 3.3.3 for the first type of super-
element.  
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3.4. Local resistance for super-elements of type 2 
 
As briefly exposed in section 3.2.2.1, the second type of super-element to consider is a 
horizontal or a vertical plate supported on three edges and impacted in its plane (Figure 
3.11b). A major difference with the developments exposed in the previous section is that the 
shape of the striking bow is assumed to have little effect on the deformation pattern. In other 
words, a punctual impact is assumed when deriving the local resistance k!i". 
 
3.4.1. Literature review 
 
Experiments (Figure 3.25) and numerical simulations have shown that the deformation mode 
of the component is a folding mechanism. From these observations, some simplified 
analytical formulations have been derived. This subject was initially investigated by 
Alexander [5], who studied the collapse of thin cylinders submitted to an axial compressive 
force. Amdahl [8] was also one of the first to propose a comprehensive model for the crushing 
of structural elements in offshore platforms. 

(a) Initiation of plate folding [70] (b) Subsequent folding and concertina tearing [180] 

  
Figure 3.25. Folding mechanism of a plate impacted on its free edge 

Since this primary work, the problem has been successfully treated by Simonsen and Ocakli 
[144], who derived closed-form solutions by assuming a two successive folds deformation 
mode. Similar developments were also performed by Wang and Ohtsubo [164], Hong and 
Amdahl [72], Wierzbicki and Abramowicz [168], Simonsen [140], and Zhang [180], but all of 
them postulated a plastic collapse mechanism involving only one fold. Most of these authors 
confronted their theoretical predictions with experimental or numerical results. A quite good 
agreement was found in almost all the cases. 
 
Nevertheless, as pointed out by Wierzbicki and Culbertson-Driscoll [169] in a very 
comprehensive work, considering only one collapse mode is usually not sufficient because 
other mechanisms are often involved. Indeed, besides the local folding process, they also 
investigated global bending and shear failure modes. However, their developments lead to 
quite cumbersome equations that required numerical tools to be solved. 
 
In all the previous references, an analytical model was derived by assuming that the plate is 
submitted to a concentrated force. In a very interesting paper, Hong and Amdahl [71] derived 
the patch-loading resistance of web girders submitted to a uniformly distributed load. The 
theoretical model was based on two different collapse modes (a "roof-top" and a "double 
diamond" mechanism) and a good agreement with finite element simulations was found. 
However, the main drawback of this method is that the equations are not easily tractable 
within a simplified analytical tool and have to be solved numerically. In addition to all these 
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theoretical models, a simplified formula was proposed by Choi et al. in references [32] and 
[33]. They used empirical factors calibrated through a certain number of experiments 
performed on thin plates. However, this method was restricted to shallow web girders.  
 
Finally, it is worth mentioning that a comparative literature review was recently performed by 
Hong and Amdahl [70] on the topic of plate crushing. They also proposed a new theoretical 
model involving a deformation pattern deduced from numerical simulations.  
 
3.4.2. Analytical derivation 
 
This section mainly focus on a horizontal element, but the developments could be easily 
extended to the case of a vertical one. This component has a total length equal to �( + �# 
(Figure 3.26). The web height and thickness are denoted by ℎR and SR respectively, while ℎ� 
and S� are the corresponding properties for the flange. It is worth noting that there is no 
collaborative part coming from the plating, as this latter is treated as a SE1 for the evaluation 
of the local resistance (section 3.3). 
 
The analytical derivation will be divided into two parts, each of them corresponding to a 
potential collapse mechanism. In the case of deep plates (i.e. for which ℎR is comparable to �( + �#), it is sufficient to consider only one folding mode, as it was done by Simonsen and 
Ocakli [144] for example. For shallow structures, the investigations carried out by Wierzbicki 
and Culbertson-Driscoll [169] pointed out the need to account for several collapse modes. 
Therefore, a folding mechanism and a bending collapse mode are introduced in this section. 

3.4.2.1. Folding mechanism 
 
A general overview of the folding mechanism is depicted on Figure 3.26. This one is assumed 
to develop under a localized force, which means that the shape of the striker is disregarded. In 
particular, there is no need to distinguish between the bulb or the stem, as it was done in 
section 3.3. This approach may be justified by the need of deriving tractable formulae, which 
requires to avoid the very difficult deformation patterns postulated by Hong and Amdahl [71] 
in the case of a distributed contact force.   
 

 
Figure 3.26. Folding mechanism 

As depicted on Figure 3.26, one fold may be split into a right and a left wing. The 
developments are similar for both of them, so it is sufficient to focus on the right one only. 
This latter has a length equal to �( and a height of 2® (Figure 3.27), ® being kept as a 
parameter so far. The crushing process involves the extension and the rotation of the two 
triangles ̄ �b and ̄ b� (Figure 3.27). 
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H

 
Figure 3.27. Three dimensional view of one wing 

In order to apply the upper-bound method, the first step is to postulate a kinematically 
admissible displacement field. For convenience, this will be done by working with a local 
coordinate frame !+, W, X" that is parallel to the global one depicted on Figure 3.3. Here again, 
the plate strip model is invoked, which means that the super-element is seen as set of fibers 
parallel to the X axis weakly connected to a set of fibers parallel to + axis.  
 
Let us first start by considering a horizontal fiber initially located at a given level + ∈50	; 2®7. There are several admissible displacement fields that could explain how this fiber 
reaches its current configuration, but the goal is precisely to choose a quite realistic one. From 
experiments conducted by Choi et al. [32], it appears that the plates are predominantly 
submitted to axial straining. Consequently, it seems reasonable to suppose that each 
horizontal fiber is only affected by a displacement v!W, X" parallel to the X axis.  
 
In order to evaluate v!W, X", it is further assumed that the plastic dissipation is restricted to the 
surface ̄ ��. Consequently, for a horizontal fiber initially located at the level +, this last 
hypothesis implies that the portion before the line ¯� remains unaffected, while the part 
behind ̄ � has to support the total axial extension. In the particular case of �b, this means 
that only the segment b� is deforming, the part �� keeping the same length. For a given 
penetration i, it can be shown that the current lengths ¯�±±±± and b�±±±± are as follows: 

¯�±±±± = ²�(# + i# ≃ �( + i#2�( 					 ; 					b�±±±± = ²�(#/4 + ®i ≃ �(2 − ®i�(  (3.38) 

and are only valid if the fold height ® is negligible with respect to �(, which is usually the 
case. Accounting for these results, the displacements of points � and b along the X axis are 
simply given by: 

2� = ¯�±±±± − �( = i#/2�(					; 					2x = ¯b±±±± − �(/2 = ®i/�( (3.39) 

The procedure followed to get 2� and 2x could be generalized to find the displacement 2!+" for each point along the line �� (Figure 3.28a), but doing so leads to very cumbersome 
equations that are not well suited within an analytical approach. Consequently, as suggested 
by Zhang [180] or Simonsen and Ocakli [144], it can be assumed that 2!+" is simply 
obtained by a linear interpolation: 

2!+" = 2� ³1 + +®´ −2x +® if −® ≤ + ≤ 0 
(3.40) 2!+" = 2x + + 2®®  if −2® ≤ + ≤ −® 
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The displacement field v!+, X" for any point of the surface ¯�� is then found by postulating 
that it is simply increasing linearly from 0 along the line ̄� to 2!+" along �b:  

v!+, X" = 2!+" X + �(+/2®�(!1 + +/2®" (3.41) 

It is worth mentioning that this last expression of v!+, X" is not kinematically admissible, as it 
implies different slope discontinuities. The first ones occurs along ¯b and ̄ � because of the 
rotations imposed to the triangles ¯�b and ̄ b�. For similar reasons, there is also a slope 
incompatibility between the two deforming wings along the edges �b and b�. Therefore, all 
these lines have to be seen as plastic hinges for the horizontal fibers.  
 

(a) Fiber parallel to X axis (b) Fiber parallel to the +axis 

  
Figure 3.28. Displacement field for a fiber parallel to the x or z axis 

Regarding a vertical fiber parallel to the + axis (Figure 3.28b) and located at any position X ∈ 50	; �(7, it is submitted to an indentation �!X" = iX/�( (Figure 3.28b) and is folded by 
rotating around three plastic hinges located along ¯�, ¯b and ¯�. If the initial length 2®X/�( of the fiber is kept unchanged, then the rotation angle � is given by: 

2®X�( cos � = 2®X�( − �!X" 			⟺ 			� = arccos 	�1 − i2®� (3.42) 

In the optic of applying the upper-bound theorem, the next step is to evaluate the internal 
energy rate �-���. This one may be obtained by summing up the dissipation due the fibers that 
are parallel to + and X axis. According to the plate strip model, these ones are supposed to 
deform without shearing, so according to (3.17), their contributions to �-��� are as follows:  

:�-���!·" = :X � ��
Κ- �� + P
E- ··�:+

�#¸

					:����!�" = :+ � ��
Κ- ·· + P
E- ���:X
��

	

 (3.43) 

where Κ- ·· and Κ- �� are the curvature rates. Nevertheless, as the axial straining along the X axis 
is predominant, the bending energy rate �
Κ- ·· may be neglected with respect to P
E- ��, 
which means that the rotations of the horizontal fibers along the plastic hinges ¯b, ¯�, �b 
and b� are disregarded. Furthermore, as there is no modification of the length along the + 
axis, it is obvious that �-·· = 0. Consequently, accounting for all these observations and 
integrating (3.43) over the deforming surface ¯�� leads to: 

�-��� = � :+� ��
Κ- �� + P
�-���
��



:X

�#¸

= �-V + �-� (3.44) 
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which may be seen as the sum of a bending and a membrane energy rate denoted by �-V and �-� respectively. The first contribution �-V is only due to the rotation � along the plastic hinges ¯�, ¯b and ̄ �. Consequently, if ® ≪ �(, then the length of these segments is more or less 
equal to �(, so for the two wings of the fold, �-V is given by:  

�-V = 4�
!�( + �#"�- 					; 					�- = i-/2®�1 − !1 − i/2®"# (3.45) 

where �-  is found by deriving (3.42) and �
 = 6
SR# /4. From this last equation, it is clear that �-V tends to infinity when i = 0. On a theoretical level, this may be simply assimilated to the 
buckling phenomenon that takes place before the activation of the plastic folding mechanism. 
The usual way to overcome this particularity is to approximate �-V by an average value 
calculated over one fold, i.e.: 

12®� �-V!i":i#¸



= �
!�( + �#"º® i- (3.46) 

Regarding the evaluation of the membrane energy rate �-�, it first requires to get the strain 
rate component E- ��. According to (2.7), it can be shown that: 

E- �� = >v->X = 2- !+"�(!1 + +/2®" 					⟹				 �-� = P
®2 �( + �#�(�# !i + 2®"i- (3.47) 

where 2- !+" is obtained by deriving (3.40) and P
 = 6
SR. Finally, applying the upper-bound 
theorem with an external power given by 2- = k�i- leads to: 

k�!i" = �-V + �-�i- = �
!�( + �#"º® + P
®2 �( + �#�(�# !i + 2®" (3.48) 

It is important to bear in mind that the approach exposed here above is only consistent under 
the hypotheses ® ≪ �( and ® ≪ �#, but ® is still unknown so far. As suggested by many 
authors such as Simonsen [140], this parameter can be derived by minimizing the mean 
crushing force k calculated over one fold, i.e.: 

k±� = 12®� k�!i":i#¸



			⟹			 >k±�>® = 0 ⟺ ® = ² º12�(�#SR¼
 (3.49) 

but this theoretical value is sometimes corrected to have a better modeling of the physical 
process. Indeed, instead of considering that the closure of one fold occurs when i = 2®, an 
effective crushing distance of 2½® (with ½ ≤ 1) may be considered. This correction should be 
done to account for the radius and the thickness of the folded parts which do not allow the 
actual plate to be entirely compressed. In a quite detailed literature review, it is mentioned by 
Hong and Amdahl [71] that the values suggested for ½ range from 2/3 to 1. Nevertheless, by 
considering different ½, it was found that this parameter has little influence on the resistance k!i", so it is decided here to keep ½ = 1. 
 
It is worth noting that formula (3.48) is valid as long as 0 ≤ i ≤ 2®. For i > 2®, a new fold 
is created (Figure 3.29), with the same pattern than the one depicted on Figure 3.26. In this 
case, (3.48) may be generalized by following the procedure described in Appendix B.2. As 
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long as the web is not completely crushed, if ¨ is the current fold number, it can be shown 
that the resistance is given by: 

k�!i" = �
!�( + �#"º® + P
®�( + �#�(�# =i �2¨ − 32� + 2¨® �32 − ¨�? (3.50) 

However, if P is the maximal number of folds that can be created over the web height, for i > 2P®, equation (3.50) is no longer valid and has to be corrected in the following way: 

k�!i" = �
!�( + �#"º® + �( + �#�(�# �2P
P#®# + 6
��!i − 2P®"� (3.51) 

where �� = !ℎR − 2P®"SR + ℎ�S� is the area of the cross-section that has not been crushed. 
Of course, the two previous formulae are only valid as long as there is no rupture. Two 
different failure modes are possible when the super-element is impacted in its plane. The first 
one is the plate tearing (Figure 3.29b) phenomenon, which usually occurs from the very 
beginning of the impact. In this case, the folding process described here above does not take 
place. This rupture mechanism has been theoretically and experimentally studied by 
Simonsen [140], Zhang [179] or Ohtsubo and Wang [117] amongst others. These authors 
developed an upper-bound solution to the problem of plate tearing and validated their 
developments by comparison with numerical and experimental results. These studies point out 
that this phenomenon mainly occurs with sharp indenters, so it is not really relevant in case of 
an impact by a ship bow. 
 

(a) Subsequent folding (b) Plate tearing [179] 

 
 

Figure 3.29. Subsequent folding and plate tearing in case of a large penetration 

Apart from this failure mode, another one that is more likely to appear is the concertina 
tearing (Figure 3.25b). This latter has been theoretically studied by Wierzbicki [167], who 
found the following constant resistance: 

k = 4.336
SR¿/*!�( + �#"(/* + 83c�SR (3.52) 

where c� is the tearing resistance of steel, usually ranging from 300 to 1000	À/��. Once 
again, the initiation of rupture will be detected by the strain failure criteria, i.e. when the 
maximal value of ��� calculated by (3.47) reaches a critical limit G� that will be fixed later 
(section 3.4.3). Consequently, the local resistance for this super-element will be given by 
(3.50) or (3.51) as long as there is no concertina tearing, and by (3.52) if this mechanism has 
been activated. 

3.4.2.2. Bending mechanism 
 
In the case of a deep plate, it is sufficient to consider only the folding mechanism briefly 
detailed here above, but doing so is not relevant for shallower structures like web girders. In 
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fact, these latter have an impact response that may be divided into two different phases. At the 
beginning of the collision, the folding process is activated and the resistance formulae derived 
in section 3.4.2.1 are still valid. Nevertheless, when the penetration is getting larger, it is more 
difficult for the ship to progress by crushing the plate. A beam-like behavior is then activated, 
such as depicted on Figure 3.30.  
 

 
Figure 3.30. Three dimensional view of the bending mechanism 

During this phase, the super-element is submitted to a plastic bending and may no longer be 
assimilated to a plate. Three hinges are required for initiating this new collapse mechanism 
(Figure 3.31), but it is worth noting that the full plastic bending moment �
 of the initial T-
shape cross-section (Figure 3.3) is not necessarily reached at these locations.  
 

 
Figure 3.31. Three-hinge mechanism for a plastic beam 

Indeed, at the left support, as the beam is not perfectly clamped, only a reduced value Á(�
 
(with Á( ≤ 1) has to be considered. The parameter Á( is quite difficult to evaluate and is 
influenced by the stiffness of the other structural elements connected to the impacted one. It 
has to be chosen to reflect the actual rotational restraint. A conservative approach is to take Á( = 0 (simple supports) because this leads to the minimal energy dissipation. The same 
considerations are also valid for the right support, where a reduced bending capacity Á#�
 is 
used (with Á# ≤ 1). 
 
For the cross-section immediately located under the initial contact point, the folding process 
has of course an incidence on its ability to develop the full plastic moment �
. Indeed, if the 
beam has been crushed over a distance i during the primary denting mechanism, only a 
reduced bending capacity Á∗!i"�
 can be reached. Deriving Á∗!i" is not straightforward but 
may done by a simplified procedure detailed in section B.2.2 of Appendix B.2.  
 
If an indentation i is reached during the initial folding phase, by following a similar 
procedure than for the global deforming mode (see section 3.6), it can be shown that the force kV∗!i" required to activate the beam collapse mechanism of Figure 3.31 is given by: 

k∗!i" = �
 �(�Á# + Á∗!i"� + �#�Á( + Á∗!i"��1�2  (3.53) 

which is a piecewise linear function of i (Figure 3.32a) because of the approximation made 
on Á∗!i" described in Appendix B.2. Consequently, the first folding process will be activated 
as long as the resistance k�!i" calculated by (3.50) or (3.51) is not equal to k∗!i". When i = i∗ (Figure 3.32a), the force developed during the first folding phase is sufficient to 



CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates 

66 
 

initiate the collapse mode of Figure 3.31, which means that there is a theoretical change in the 
structural behavior. 
 

(a) Final resistance curve (b) Beam mechanism for i > i∗ 

 

a1 a2

M1
N

M2
N

δ *

 
Figure 3.32. Three-hinge mechanism and resistance curves for a SE2 

For i > i∗, the super-element is resisting through the three-hinge mechanism of Figure 
3.32b, where the central cross-section is characterized by a reduction coefficient Á∗ evaluated 
for i = i∗ as there is no more folding in this second phase. During the plastic collapse, the 
beam is of course submitted to bending, but also to a tensile membrane force À (Figure 3.32a) 
that can be largely influenced by the actual restraints of the supports (see Jones [80] for more 
details). As detailed Appendix B.2 (section B.2.2), it is assumed that the folding process has 
no effect on the structure ability to develop membrane forces, which means that À could 
theoretically reach a maximal value À
 calculated for the initial T-shape cross-section (Figure 
3.3). 
 
With the model presented here above and considering the developments of Appendix B.2, the 
resistance kV!i" associated to the bending mechanism may be evaluated by following a 
similar procedure than for the global deforming mode (see section 3.6). It can be shown that: 

kV!i" = �
 �#!Á( + Á∗" + �(!Á# + Á∗"�(�# =1 − À#À
#? + À �( + �#�(�# !i − i∗" 
(3.54) 

with: À = min= À
#2�
 !�( + �#"!i − i∗"�#!Á( + Á∗" + �(!Á# + Á∗"	; 	À
? 

Of course, for i = i∗, it is obvious that kV = k∗ in these equations. The evolution of the 
resistance kV!i" for the bending mechanism is depicted on Figure 3.32a.  

3.4.2.3. Final resistance of the super-element 
 
Finally, the super-element resistance k!i" is found by combining k�!i" and kV!i". As long 
as i < i∗, then k�!i" < k∗!i", which means that the force applied by the vessel during the 
folding process is not yet sufficient to activate a beam mechanism. Consequently, the 
resistance is governed by k�!i" during this first phase. Nevertheless, when the penetration 
increases, creating new folds becomes more and more difficult for the ship. At this moment, 
the super-element is forced to deform like a beam and a three hinge mechanism if formed. 
The theoretical transition between the two modes occurs when i = i∗ and obviously, the 
resistance when i > i∗ is ruled by kV!i". In other words, the resistance is given by: 
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k!i" = k�!i"  if  i ≤ i∗ or k!i" = kV!i"  if  i > i∗ (3.55) 

which is depicted on Figure 3.32a. As a final remark, it is should be recalled that if the failure 
criteria is satisfied, then k!i" has to be calculated by (3.52). Furthermore, all the previous 
developments are only valid as long as there is no contact between the striking vessel and one 
of the supports of the super-element. In this case, the resistance is no longer given by (3.55) 
but is set to zero because a super-element of type 3 is now involved in the analytical 
derivation. The corresponding formulae are therefore presented in section 3.5. 
 
3.4.3. Numerical validation 
 
In order to corroborate the analytical formulae derived here above, some finite element 
simulations were performed using LS-DYNA . As an example, the case of the horizontal girder 
with the properties reported in Table 3.5 is considered in this section. The impact scenario is 
non-symmetric, as �( ≠ �#. The material properties used for the numerical simulations are 
those previously listed in Table 3.2. 

ℎR  0.9	� SR 0.02	� ℎ� 0.4	� S� 0.02	� �( 1.5	� �# 2.5	� 
 

 
Table 3.5. Geometrical properties 

of the impacted element 

Figure 3.33. Equivalent plastic strain in the folded 
element 

In an attempt to give a general insight on the deformed configuration obtained with LS-DYNA , 
the equivalent plastic strains have been reported on Figure 3.33. The purpose of this picture is 
only to show the agreement with the theoretical crushing process. Obviously, the folding 
pattern is not really similar to the one postulated on Figure 3.26, but it is worth bearing in 
mind that a ship with quite large dimensions is used for the numerical simulations, which is 
not exactly similar to a point load. Therefore, it is not surprising to have some differences 
with the analytical model. 
 

(a) Without rupture (b) With rupture 

  
Figure 3.34. Comparison between the analytical and numerical results 
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The resistance curves are compared on Figure 3.34. In order to illustrate the need of 
accounting for the two mechanisms detailed in sections 3.4.2.1 and 3.4.2.2, a first simulation 
is run in which rupture is disregarded. The LS-DYNA  curve reported on Figure 3.34a clearly 
shows that there is a modification of the girder behavior when i is more or less equal to 0.7	�. In fact, the slope modification can be explained by the important membrane straining 
that takes place if failure is not considered. In the analytical model, this precisely corresponds 
to the transition from the folding to the bending mechanism, which is theoretically predicted 
to occur for i∗ = 0.63	�. This value is quite close to the 0.7	� found by LS-DYNA . 
 
The influence of rupture is investigated in a second simulation. The failure strain GI is 
calculated in accordance with (3.37). As the element length and thickness are respectively Lo = 0.05	� and So = 0.02	�, a value of 27	% is used for GI. The critical strain G� to be 
considered in the theoretical model is found to be more or less equal to 12	%. Of course, this 
value is not only based on the results presented on Figure 3.34b. It is derived by adjusting the 
analytical and numerical curves for many other simulations with different mesh sizes. G� = 12	% corresponds to a mean value that allows for a reasonable failure prediction in 
almost all the cases. 
 
Furthermore, when rupture is taken into account, it appears from Figure 3.34b that the 
membrane straining depicted on Figure 3.34a does not appear. This is not surprising, as the 
concertina tearing prohibits the development of axial forces in the bending mechanism, which 
is also reflected by the theoretical curve.  
 
As a final remark, it can be concluded that the good agreement between the results of Figure 
3.34 corroborates the analytical model presented in section 3.4.2 for the second type of super-
element. 
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3.5. Local resistance for super-elements of type 3 
 
The third type of super-element to consider is directly related to collisions occurring on 
intersections between a horizontal girder and a vertical frame (Figure 3.11c). This situation 
may appear in the case of a direct impact (Figure 3.35a) or because of a subsequent contact 
with one of the supports of a SE2 (Figure 3.35b). According to their location on the gate, 
these intersections may have three or four wings and are respectively designated by T or X-
shaped elements. In the local deforming mode, these latter are known to be crushed axially 
through a folding process (see section 3.5.2). 
 

(a) Direct impact on an intersection (b) Subsequent contact on a intersection 

  
Figure 3.35. Impact on the intersection between a frame and a girder 

3.5.1. Literature review 
 
In the literature, many authors investigated the axial crushing resistance of plated structure by 
applying the upper-bound method. Since the primary developments of Alexander [5], this 
problem has been revisited by Wierzbicki and Abramowicz [168], Amdahl [8] or Yang and 
Caldwell [174] amongst others. They developed simplified formulae to estimate the resistance 
of L, T or X-shaped elements by postulating various crushing mechanisms.  
 
Abramowicz [1] also derived theoretical formulae for T-shaped sections by assuming 
symmetric and asymmetric deformation patterns. Based on these researches, Paik and 
Wierzbicki [123] proposed generalized equations by combining various kinematically 
admissible collapse modes. Additional developments on this topic were also performed by 
Wang and Ohtsubo [165], who slightly modified the crushing mechanisms of Yang and 
Caldwell [174] for L, T and X elements.  
 
In the purpose of evaluating the resistance of offshore platforms to vessel impacts, Amdahl 
[8] suggested to use a straight edge crushing mechanism combined to a folding process. This 
pioneer work was later used by Paik and Perdersen [119] to estimate the ultimate strength of 
plated structures. Zhang [180] also extended these results to evaluate the crushing resistance 
of intersections during ship-ship collisions. 
 
To conclude this brief literature review, it is worth mentioning that an extensive summary of 
many existing methods was performed by Yamada and Pedersen [173] in the optic of 
analyzing the axial crushing of bulbous bows. 
 
3.5.2. Analytical derivation 
 
The first part of the analytical derivation of the local resistance for this third type of super-
element concerns an impact occurring directly on an intersection (Figure 3.35a). For 
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conciseness, the case of a subsequent contact on the support of a SE2 (Figure 3.35b) is treated 
in Appendix B.3, but the developments are quite similar to those presented here. 

3.5.2.1. Folding mechanism 
 
As illustrated on Figure 3.36, experimental investigations of impacts on intersections have 
shown that these latter were crushed axially during the collision process [8]. The deformation 
pattern depicted on Figure 3.37a is therefore postulated in the optic of applying the upper-
bound theorem. It is worth mentioning that for convenience, only two wings are represented 
on Figure 3.37a, but three or four wings may be involved in the crushing process for T or X-
shaped intersections respectively. 

 
Figure 3.36. Complete axial crushing of a X-shaped intersection [8] 

The purpose of this section is to derive the local resistance for such a plastic mechanism. As 
the analytical developments are strictly similar for all the wings involved in the deformation 
pattern, only a horizontal one will be considered so far (Figure 3.37a). This latter has a length 
denoted by � and is decomposed into two different parts numbered ① and ② respectively.  
 

(a) Deformation pattern of an intersection (two wings are 
only represented) 

(b) Crushing process of the central 
element 

  
Figure 3.37. Folding mechanism in the case of an impact occurring directly on an intersection 

The resistance kR!i" opposed by the wing during the crushing process can be obtained by 
summing up the individual contributions k(!i" and k#!i" associated to part ① and ②. As k#!i" may be obtained by using the developments of section 3.4.2.1, only k(!i" still needs to 
be evaluated. To do so, the deformation pattern depicted on Figure 3.37b can be considered 
for part ①. It is made of two triangles �b� and b�� that are submitted to a membrane 
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extension and rotate around the plastic hinges �b, b�, �b, �� and ��. During this 
movement, the distances �b±±±± and b�±±±± are constant and equal to their initial value denoted by ®, while the two remaining surfaces ¯�� and �Å� simply follow an axial compressive 
motion. The horizontal length of part ① is assumed to be proportional to the folding height 2® and is designated by Æ®, where Æ is a coefficient determined hereafter. 
 
The resistance opposed by this plastic mechanism has been evaluated by Amdahl [8]. 
Nevertheless, combining these results with those obtained in 3.4.2.1 for the remaining part of 
the wing is not straightforward on a theoretical point of view. Indeed, in order to evaluate k#!i", the displacement field of Figure 3.28 is postulated, from which it is evident that the 
main part of the membrane dissipation is produced in the area near the edges �b and b�. 
However, in the derivation performed by Amdahl [8], these latter are precisely supposed to 
move rigidly during the plastic rotations around the hinges, which is in apparent contradiction 
with the developments of section 3.4.2.1. Consequently, in order to be consistent with Figure 
3.28, it is required to consider another displacement field than the one used in [8]. Doing so is 
not conflicting with the upper-bound method, provided that the compatibility requirements 
and the kinematic conditions are respected. Of course, this leads a formula for k(!i" that is 
different from the one given in [8].  
 
As the derivation of the contribution k(!i" opposed by part ① during the plastic collapse is 
similar to the procedure followed in 3.4.2.1, it is not detailed here but is reported in Appendix 
B.3 (section B.3.1). It is found that:  

k(!i" = P
®√6 ÈÉ!�" +�
º ��Æ# + 1 + Æ6 + 25� (3.56) 

where ÈÉ!�" is a function defined by (B.37), Æ = 0.8601 and � is the opening angle (Figure 
3.37b) related to the indentation i by (3.42). This result can be compared to the solution 
proposed by Amdahl [8]: 

k(!i" = P
Æ®√3 �1 + cos�Æ £ 4Æ# + 14Æ# + sin# 2�� +�
º2 !2Æ + 1" (3.57) 

in which Æ is this time equal to 0.573. In the two previous formulae, the optimal value of ® is 
determined by minimizing the mean value of kR!i". This achieved in Appendix B.3 (section 
B.3.1.2), where it is found that: 

® = �3º/8�SR (3.58) 

In this last equation, SR is the web thickness of the horizontal wing. It can be shown that 
(3.58) is very close to the expression proposed by Amdahl [8]. Therefore, it could be 
interesting to have an idea of the difference on k(!i" when using (3.56) or (3.57). As an 
example, it is proposed to consider the following values for the parameters involved in these 
formulae: 6
 = 240	�k�, SJ = 0.01	� and � = 2	�. The corresponding curves are plotted 
on Figure 3.38, from which it can be seen that the difference of the present approach with the 
one followed by Amdahl [8] is very small.  
 
Regarding the resistance k#!i" opposed by part ② during the plastic collapse, the 
developments performed in section 3.4.2.1 are still valid but some adaptations need to be 
done. As explained in section B.3.1.2 of Appendix B.3, k#!i" can be evaluated by: 
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k#!i" = �
!� − Æ®"º® + P
®2!� − Æ®" !i + 2®" (3.59) 

The resistance kR!i" of one wing is then obtained by summing up k(!i" and k#!i". 
Therefore, gathering (3.56) and (3.59) leads to: 

kR!i" = �
º ��Æ# + 1 + Æ6 + 25 + � − Æ®® � + P
®=ÈÉ!�"√6 + i + 2®2!� − Æ®"? (3.60) 

where Æ = 0.8601, ÈÉ!�" is a function defined by (B.37) and ® is calculated in accordance 
with (3.58). 
 

 
Figure 3.38. Crushing resistance of an intersection according to Amdahl and the present solution 

It is important to mention that formula (3.60) is valid as long as 0 ≤ i ≤ 2®. As in section 
3.4.2.1, for i > 2®, (3.60) can be generalized by assuming that a new fold is created with the 
same pattern than the one represented on Figure 3.37b. As soon as part ① is completely 
crushed, it is clear that it does not provide any contribution to the resistance. Therefore, if ¨ is 
the current fold number, k(!i" is still given by (3.56), but (3.42) is no more valid to evaluate � as i should be replaced by i − 2!¨ − 1"® in this relation, i.e.: 

� = arccos �¨ − i2®� (3.61) 

The situation is not the same for part ② because it should be accounted for the additional 
contributions coming from the ¨ − 1 folds already completely closed. This can be achieved 
simply by adapting the developments performed in Appendix B.2. Doing so leads to: 

kR!i" = �
º ��Æ# + 1 + Æ6 + 25 + � − Æ®® � + P
®=ÈÉ!�"√6 + i!4¨ − 3" + 2¨®!3 − 2¨"2!� − Æ®" ? (3.62) 

Of course, the previous formula is valid as long as the wing is not completely crushed. In this 
case, the maximal fold number P is reached and for i > 2P® and equation (3.62) becomes: 

kR!i" = �
º ��Æ# + 1 + Æ6 + 25 + � − Æ®® � + P
®ÈÉ!�"√6 + 2P
P#®# + 6
��!i − 2P®"2!� − Æ®"  (3.63) 

where �� has the same meaning than in section B.2.1. Finally, the total resistance k�!i" for 
the crushing of T or X-shaped intersections is simply found by adding the individual 
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contributions (3.62) or (3.63) coming from the three or four wings. It is worth noticing that if 
these latter do not have the same length � and web thickness SR, the value of ® calculated by 
(3.58) will not be the same for each of them. However, in order to respect the compatibility 
along the super-element axis, a unique value is strictly required.  
 
On a theoretical point of view, this one has to be derived by minimizing the mean total 
resistance k±�, but doing so is not very practical. Consequently, a most convenient way is to 
take ® as the average of all the folding heights calculated individually for each wing. By so 
doing, the parameter ¨ involved in (3.61) and (3.62) is still obtained by (B.23), in which ® is 
actually this mean value. Similarly, (B.23) is also valid to evaluate the maximal number of 
folds P, but the meaning of ℎR is different. Indeed, if the web heights are not the same for 
each wing4, then ℎR has to be taken as the minimum value between all of them. 

3.5.2.2. Bending mechanism 
 
Apart from the folding mechanism described here above, it is not reasonable to suppose that 
there is no other way for the super-element to oppose a local resistance. Indeed, this could 
only be the case for very deep intersections, such as those between the decks and the 
transverse bulkhead of a ship. In the present situation, as the web heights are quite short, a 
beam-like behavior is recovered after an indentation i∗ for which the whole intersection starts 
moving backward (Figure 3.39). 

a
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Figure 3.39. Bending mechanism in the case of an impact occurring directly on an intersection 

As an example, the cruciform intersection between a horizontal girder and a vertical frame is 
considered in this section. As depicted on Figure 3.39, eight plastic hinges are required to 
activate the mechanism. Four of them are located at the center of the super-element, while the 
remaining ones simply lie at the boundaries. Denoting by �Q and �9 the respective plastic 
bending capacities of the girder and the frame, for similar reasons than the ones detailed in 
section 3.4.2.2, only the reduced values ÁQ�Q and Á9�9 can be reached at the supports �, b, �, � (Figure 3.39). Similarly, regarding the four central plastic hinges, the maximal bending 
                                                                    
4 This situation may appear at the junction between a horizontal girder and a vertical frame for example. 
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moments at these locations are only equal to ÁQ∗!i"�Q and Á9∗!i"�9 because the sections have 
already been indented over a distance i∗ during the folding phase. More details on this topic 
can be found in Appendix B.3 (section B.3.1.3). 
 
By applying the plastic theory of beams, it is possible to evaluate the force k∗!i" that is 
required to activate the bending phase. Its derivation is partly reported in Appendix B.3, 
where it is shown that: 

k∗!i" = �Q =ÁQ + ÁQ∗!i"�( − Æ® + ÁQ + ÁQ∗!i"�# − Æ® ? +�9 =Á9 + Á9∗!i"�( − Æ® + Á9 + Á9∗!i"�# − Æ® ? (3.64) 

Here again, the transition from the folding to the bending process takes place at a particular 
value i∗ of the penetration for which k�!i" is equal to k∗!i", as depicted on Figure 3.32a. 
 

 
Figure 3.40. Beam-like behavior of one wing 

For i > i∗, each of the four wings represented on Figure 3.39 is submitted to a plastic 
rotation in the central and support hinges, but also to an axial straining (Figure 3.40). As 
detailed in Appendix B.3, the resistance kV!i" for the bending mechanism is given by: 

kV!i" = ¤�Q!ÁQ + ÁQ∗" =1 − À(#ÀQ#? + À(!i − i∗"¥ �( + �# − 2Æ®!�( − Æ®"!�# − Æ®" 
(3.65)  + ¤�9!Á9 + Á9∗" =1 − À##À9#? + À#!i − i∗"¥ �( + �# − 2Æ®!�( − Æ®"!�# − Æ®" 

with: À( = min= ÀQ#!i − i∗"2�Q!ÁQ + ÁQ∗"	; ÀQ?			 ; 			À# = min= À9
#!i − i∗"2�9!Á9 + Á9∗"	; À9? 

where À( and À# are the normal forces in the horizontal and vertical wings respectively. In 
the previous formulae, it is worth noticing that the parameters ÁQ∗ and Á9∗ are evaluated for i = i∗, i.e. when the transition from the folding to the bending mechanism occurs. 
Furthermore, as discussed in Appendix B.3, it should noted that (3.65) is only applicable to 
cruciforms and is not strictly valid for T-shaped intersections.  

3.5.2.3. Final resistance of the super-element 
 
The final resistance k!i" for this third type of super-element can be obtained by combining k�!i" and kV!i" in accordance with (3.55). Doing so is only valid as long as there is no 
failure in the material. From numerical simulations, it transpires that rupture (Figure 3.41) 
mainly occurs because of an important tensile tearing which appears along the supports. As 
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postulated for the analytical derivation of section 3.5.2.2, this is simply due to the membrane 
straining developing in the wings for large penetrations. 
 
As it was done for the two previous types of super-elements, failure is included in this 
simplified approach by defining a critical strain G�. In the present case, for most of the 
numerical simulations, a value of 12	% is found to be quite convenient but it should be 
mentioned that a convergence on the failure criteria was rather difficult to obtain. This is 
mainly due to the fact that the elements located near the intersection axis are strongly 
deformed during the impact. Therefore, the rupture modeling is highly sensitive to the mesh 
size and quite small elements are required to reach a more or less satisfactory convergence. Of 
course, for all the simulations, the rupture strain is chosen by applying (3.37), which leads to 
quite important values. 

 
Figure 3.41. Failure mode during the denting or bending process 

The post-failure resistance may be evaluated as follows. If the critical strain G� is reached 
during the crushing phase, then the contribution of the wing is restricted to the bending part of 
(3.62) or (3.63) because it is postulated that there are no membrane effects anymore, i.e.: 

kR!i" = �
º ��Æ# + 1 + Æ6 + 25 + � − Æ®® � (3.66) 

On the other hand, if rupture develops during the bending mechanism, then the contributions 
of the wings where failure takes place have to be ignored in (3.65). Nevertheless, adapting 
this equation is not straightforward, as it should be accounted for some particularities 
regarding the normal forces. As an example, let us assume that a tensile tearing appears at 
point � on Figure 3.39. À( has then to be set to zero as there are no more membrane effects in 
the horizontal wings. There is only a bending dissipation at point � and rupture may now 
occurs at this support because of an excessive rotation, so we have: 

kV!i" = �Q!ÁQ + ÁQ∗"�( − Æ® + ¤�9!Á9 + Á9∗" =1 − À##À9#? + À#!i − i∗"¥ �( + �# − 2Æ®!�( − Æ®"!�# − Æ®" (3.67) 

3.5.3. Numerical validation 

3.5.3.1. Impact on a X-shaped intersection 
 
In the optic of checking if the results obtained from the analytical developments detailed here 
above are more or less realistic, numerical simulations were performed with LS-DYNA . As an 
example, the impact on a cruciform is considered here. The geometrical dimensions of the 
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horizontal and vertical wings are listed in Table 3.6, from which it can be seen that the 
intersection is doubly symmetric, as �( = �# and �( = �#. The frame and the girder have 
nearly the same cross-section, the only difference is coming from the flange width.  
 

 

Horizontal wings 

Length �( = 2.6	� �# = 2.6	� 

Web height ℎR = 1	� ℎR = 1	� 

Web thickness SR = 0.015	� SR = 0.015	� 

Flange width ℎ� = 0.5	� ℎ� = 0.5	� 

Flange thickness S� = 0.015	� S� = 0.015	� 

Vertical wings 

Length �( = 3	� �# = 3	� 

Web height ℎR = 1	� ℎR = 1	� 

Web thickness SR = 0.015	� SR = 0.015	� 

Flange width ℎ� = 0.3	� ℎ� = 0.3	� 

Flange thickness S� = 0.015	� S� = 0.015	� 
 

Figure 3.42. Von Mises stresses in the 
impacted cruciform (for δ = 0.9 m) 

Table 3.6. Geometrical properties characterizing the 
horizontal and vertical wings of the cruciform 

The material properties used for the present finite element analysis are those listed in Table 
3.2. However, failure having already been discussed above, GI is not considered for this 
simulation. Doing so, the major advantage is to clearly point out the developments of 
membrane effects for large penetrations. This is already visible on Figure 3.42 showing the 
equivalent Von Mises stresses in the impacted structure. It transpires from this picture that the 
stress field is nearly uniform and equal to 6
 = 240	�k�, which simply means that due to 
membrane straining, the axial tensile capacities À9 and ÀQ are reached in the vertical and 
horizontal wings. Furthermore, it also appears from Figure 3.42 that the folding and bending 
collapse mechanisms respectively presented in sections 3.5.2.1 and 3.5.2.2 are indeed 
activated during the collision process. 
 

 
Figure 3.43. Comparison between the analytical and numerical results for a X-shaped intersection 

The numerical and analytical resistances are compared on Figure 3.43. Considering the results 
obtained with LS-DYNA , it can be observed that the curve is made of three different parts. For 
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i ≤ 0.3	�, the resistance is more or less constant because this phase is associated to the 
plastic folding of the four wings. For 0.3 < i ≤ 0.8	�, the beam-like deforming mode is 
activated and the cruciform starts moving as a whole. During this phase, the small increase 
can be imputed to predominant bending effects. For i > 0.8	�, the curve grows more rapidly 
because strong the membrane forces are now developing in the structure. Obviously, if 
rupture had been considered in the model, this would not be the case. 
 
The analytical resistance also reflects this three-phase behavior. In this simplified approach, 
the switch from the folding to the bending mechanism is found to take place for i∗ = 0.37	�, 
which explains why a slope discontinuity occurs for this particular value of the penetration. 
This is more or less in agreement with what is observed from the finite element simulation. 

3.5.3.2. Impact on a T-shaped intersection 
 
As detailed in Appendix B.3 (section B.3.1.3), in the case of a T-shaped intersection, the 
development of large membrane forces in the vertical wing is prohibited because the 
horizontal girders usually do not have sufficient shear stiffness. In the purpose of validating 
the analytical resistance predicted by (B.62) for these particular intersections, it could be 
interesting to perform comparisons with numerical solutions given by LS-DYNA . 
 

 
Figure 3.44. Comparison between the analytical and numerical results for a T-shaped intersection 

To do so, the upper wing of the cruciform considered here above (Figure 3.42) has been 
removed in order to transform it into a T-shaped intersection. The material and geometrical 
properties respectively listed in Table 3.2 and in Table 3.6 are kept unchanged. Here again, 
the simulation is run without considering rupture. 
 
The results are reported on Figure 3.44, from which it can be seen that the agreement is 
satisfactory. In comparison with Figure 3.43, it can be stated that the three-phase behavior 
discussed previously is also valid in the present case, but it can be noted that the development 
of the membrane forces is not as important than for a cruciform. Of course, this can be 
explained by the fact that one wing is missing, but also because the axial straining is reduced 
in the vertical part. 
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3.6. Resistance in the global deforming mode 
 
When the gate exhibits an overall bending motion (Figure 3.9), the main difference with the 
developments performed so far for the local deforming mode is coming from the elastic phase 
that is not necessarily negligible. Indeed, when developing super-elements, it is reasonable to 
postulate a rigid-plastic material because the deformations are localized and increase therefore 
rapidly. Nevertheless, in the present case, this assumption is not valid anymore, so the 
derivation of the global resistance has to be done in two steps, by distinguishing between the 
elastoplastic and rigid-plastic regimes. 
 
3.6.1. General procedure 
 
Before starting the analytical evaluation of the global resistance, it is necessary to give more 
precisions about the procedure that will be followed. This is particularly true for the definition 
of the equivalent mechanical model of the gate, but it is also required to provide some details 
on the way to combine the local and global components to get the total resistance k!i".  
3.6.1.1. Mechanical model 
 
The mechanical model for the global deforming mode has already been discussed in section 
3.2.2.2. As this topic is not really reported in the literature, it is mainly based on observations 
coming from numerical simulations. The only paper providing some information is the one 
written by Le Sourne et al. [99], where the global dissipation is treated by dividing the gate 
into a set of horizontal beams and postulating an overall plastic mechanism. The same 
procedure is followed in the present section and therefore, in accordance with Figure 3.12, the 
structure is divided into a set of horizontal beams obtained by combining the gross cross-
section of the girders with a collaborating portion of the plating. According to Paik and 
Thayamballi [121], this latter has to be derived by accounting for the following phenomena: 

 
• The shear-lag effect occurring at the junction between the plating and the web of the 

horizontal girders. This is mainly due to the action of lateral loads and out-of-plane 
bending that are responsible for a non-uniform stress distribution in wide flanged beams.  
 

• The buckling of plate elements under predominantly axial compressive forces that also 
results in a non-uniform stress distribution. As depicted on Figure 3.45, two different 
situations may be of interest: (a) an overall buckling of the stiffened panel located between 
two girders or (b) a local instability of the plating between two stiffeners.  
 

Paik [121] suggested some practical formulae to evaluate the effective widths �ÊËË,( and �ÊËË,#  
(Figure 3.45) on both sides of each horizontal girders. According to Eurocode 3 [52], the 
procedure is much more difficult because there are many others instabilities to consider. For 
example, one should also account for a column type buckling of the plating together with the 
stiffeners, which leads to a very cumbersome method. On a practical point of view, it is not of 
prior importance to have a precise calculation of the effective width because the present 
approach dealing with the global deforming mode of the gate is already quite approximate. 
 
Another simplification is also introduced here, as the derivation of �ÊËË,( and �ÊËË,# does not 
lead to the same values if the stiffening configurations are not the same on both sides of the 
girders. This causes the resulting cross-section to be asymmetric, which is not convenient for 
the beam plastic theory. Consequently, to work with a conventional symmetric I-shaped 
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cross-section (Figure 3.45), the collaborating portion of the plating is characterized by an 
equivalent height given by: ℎoÌ = 2min��ÊËË,(	; 	�ÊËË,#� (3.68) 

which is conservative. On the contrary, it should be mentioned that the hypothesis made by Le 
Sourne et al. [99] of a fully effective cross-section may be too optimistic, in particular if there 
is a large distance between two successive girders. 
 

  
Figure 3.45. Calculation of the effective width 

As a final result, accounting for the hypotheses presented in section 3.2.2.2, the beam located 
at a level N� with the above-mentioned properties can be modeled as depicted on Figure 3.46. 
It is assumed to be simply supported at its two extremities, which means that the rotational 
restraint provided by the torsional stiffness of the vertical frames is neglected. Furthermore, if 
these latter are weaker than the girders, it can be postulated that they simply follow the overall 
out-of-plane displacements .!N�, O" imposed by the beams. The only roles of the frames are 
then to prevent the lateral torsional buckling and limit the in-plane displacements v(!N�" and v#!N�". 

 
Figure 3.46. Equivalent mechanical model of a beam 

The model depicted on Figure 3.46 will be used to evaluate the individual resistance k�!i" 
characterizing each of the beam constituting the gate in the global deforming mode. 

3.6.1.2. Combination of the local and global resistances 
 
A first idea to calculate the penetration i� for which there is a switch from the local to the 
global deforming mode occurs when kl!i" reaches a sufficient value k�!i" that is required to 
activate an overall collapse mechanism over the gate (Figure 3.9). For consistency, as kl!i" is 
derived in the plastic regime, this should also be the case for k�!i". Therefore, similarly to 
what has been done for the transition between the folding and bending mechanisms in SE2 or 
SE3, one could simply derive the total resistance k!i" in the following manner: 

• If i ≤ i� : k!i" = kl!i" → Local deforming mode 
(3.69) 

• If i > i� : k!i" = km!i" → Global deforming mode 

which may be illustrated by the curves depicted on Figure 3.47a. Nevertheless, this approach 
is not really appropriate because it transpires from numerical simulations that before reaching 
a full plastic state and activating the global deforming mode (i.e. for i ≤ i�), the local 
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crushing process develops concomitantly with a limited elastoplastic overall bending motion 
of the gate. In other words, accounting only for kl!i" when i < i� could lead to an unsafe 
evaluation of the resistance. For this reason, (3.69) must be adapted by performing a rigid-
plastic derivation of km!i" when i > i�, but also an elastoplastic evaluation of km!i" when i ≤ i�. Doing so, instead of using (3.69) to obtain the gate resistance, the subsequent formula 
is suggested: 

• If i ≤ i� : k!i" = min�kl!i"	; km!i"� → Local deforming mode 
(3.70) 

• If i > i� : k!i" = km!i" → Global deforming mode 

which corresponds to the situation of Figure 3.47b. For clarity, the procedure to combine the 
local resistance kl!i" with the global one km!i" is also summarized on Figure 3.48. 
 

(a) Gate resistance k!i" according to (3.69) (b) Gate resistance	k!i" according to (3.70) 

 

P PL(δ)

PG(δ)

δ
δt

Pt(δ)
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Figure 3.47. Calculation of the gate resistance 

The only parameters that are still unknown to apply (3.70) are the global resistance km!i"  
and the force k�!i" required to activate an overall plastic mechanism over the gate. As 
mentioned earlier, the derivation of km!i" has to be done in both the elastoplastic (if i ≤ i�) 
and rigid-plastic (if i > i�) domains. 
 
Finding an elastoplastic solution for km!i" is however not straightforward, the main difficulty 
being to account for the influence of the crushing process during this phase. To solve this 
problem, it is proposed to evaluate km!i" by applying equation (3.5), where the individual 
resistances k�!i" are calculated by following the subsequent steps: 

 
1) For a given kinematically admissible displacement field (Figure 3.49b), the elastic 

bending theory of beams is first used to evaluate k�!i", as detailed in section 3.6.2. 
2) This solution is only valid as long as there is no plastic collapse of beam p, which occurs 

when k�!i" reaches a certain level k�,�!i". 
3) An elastoplastic solution for beam p is then simply found by taking the minimum value 

between k�!i" and k�,�	!i". 
4) Of course, if there is a simultaneous indentation of beam p due to the local crushing 

process, k�!i" and k�,�!i" have to be derived by considering that the cross-section is not 
fully efficient. 

 
Applying the following procedure leads to a coupled elastoplastic evaluation of km!i" for i ≤ i�. Regarding the rigid-plastic solution, there is no real difficulty because a lot of 
theoretical results are already available on this topic (see section 3.6.3). 
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Figure 3.48. Procedure to combine the local and global resistances 

From the procedure exposed here above, it is clear that an overall plastic mechanism will be 
activated as soon as k�!i" is equal to k�,�!i" for all the beams. Consequently, k�!i" may be 
simply found by summing up all the threshold values k�,�!i". The derivations of k�!i", km!i", k�,�!i" and k�!i" are discussed in more details in the following sections. 
 
3.6.2. Elastoplastic solution 
 
As explained here above, for i ≤ i�, the beam depicted on Figure 3.46 may be first studied in 
the elastic range. This phase is assumed to end when the applied force is equal to a limit value k�,�!i" for which a plastic mechanism is initiated. At this moment, the bending resistance of 
the beam is reached, so the first step in the analysis is now to provide some formulae allowing 
for its derivation.  

3.6.2.1. Derivation of the resistant bending moment 
 
The resistant bending moment depends on the cross-section classification and is not 
necessarily the same in all the cases. Indeed, according to Eurocode 3 [52], the distinction 
should be made between the following situations: 
 
• Class 1 cross-sections that are characterized by a full plastic bending resistance �J,�. They 

are able to develop a plastic hinge and have the required rotation capacities for a plastic 
analysis.  
 

• Class 2 cross-sections, for which �J,� can also be reached but the rotation capacities are 
limited due to local buckling.  
 

• Class 3 cross-sections, where the elastic bending resistance �o,� should be considered 
because the local buckling prevents important yielding.  
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• Class 4 cross-sections, in which buckling takes place before the occurrence of any plastic 
deformation. Only an effective elastic bending moment �Ío,� can be reached. This latter is 
obtained by assuming that the cross-section is not entirely efficient. 
 

From this brief recall, it appears that developing a collapse mechanism involving plastic 
hinges is not relevant for all the girders because of a too early local buckling. This is an 
important restriction that has not been considered so far, in particular when establishing the 
resistance of SE2 and SE3 during the beam-like behavior5. Another conclusion that can be 
drawn from the previous considerations is that the force k�,�!i" causing a plastic mechanism 
is such that the maximal bending moment over the beam is equal to the resistance �J,�, �o,� 
or �Ío,� according to the cross-section class. 
 
As explained in section 3.6.1.2, one of the crucial point is now to evaluate the reduced 
bending capacities ÁJ,�!i"�J,�, Áo,�!i"�o,� or Áo̅,�!i"�Ío,� by accounting for the coupling with 
the local mode. The reduction coefficients have to represent the effect of the crushing and a 
very simple way to achieve this goal is to generalize what has already been proposed in 
Appendix B.2. 
 
To do so, let us consider the particular situation for which the initial I-shaped cross-section 
has been indented over a distance i = 2¨®. In this case, ̈  folds are already completely 
closed (Figure 3.49a) and the uncrushed web height is equal to ℎE. In order to evaluate the 
bending resistance for such a configuration, it is proposed to focus only on the intact area ΩE 
(Figure 3.49a). Associating the collaborative part of the plating to ΩE is questionable, because 
this region also suffers important plastic disorders coming from the simultaneous folding 
process, so this will be conservatively omitted here. The derivation of the bending resistance �E of ΩE then leads to a plastic, elastic or effective elastic solution according to the initial 
cross-section classification. It is worth noticing that this latter is based on the uncrushed web 
height ℎ
 and is not recalculated for each value of ℎE, which implies that the coefficients ÁJ,�!i", Áo,�!i" and Áo̅,�!i" are monotonically decreasing functions of the penetration. 
 
(a) Bending resistance of a crushed beam (b) Compatible displacement field of an horizontal beam 

Ωk

hk

k folds

  
Figure 3.49. Geometrical data for the elastic solution 

Finally, to get the bending resistance ÁJ,�!i"�J,�, Áo,�!i"�o,� or Áo̅,�!i"�Ío,� for any value of 
the local indentation i, the linear interpolation (B.26) suggested in Appendix B.2 can be used. 

                                                                    
5 See sections 3.4.2.2, 3.5.2.2, B.2.2, B.3.1.3 and B.3.2.2. For conciseness, it was voluntarily omitted to precise 
that these developments were only valid for class 1. Of course, if the T-shaped cross-section of a SE2 or a SE3 
does not satisfy this requirement, the procedure exposed here is applicable. 
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Of course, for a given value of the local penetration i, as long as the beam has not been 
impacted by the vessel, the derivation has to be done for the initial undamaged cross-section 
obtained by combining the girder and the collaborating part of the plating, which leads to �J,�, �o,� or �Ío,�. 
 
The method proposed here above is arguable because it has no real theoretical basis. It is 
simply an approximate, practical and conservative approach that is only corroborated by finite 
element analyses of entire lock gates (see section 3.7). This way of doing allows for a better 
agreement between the analytical and numerical curves, in particular at the beginning of the 
collision, when the local deforming mode sometimes overestimates the resistance.  

3.6.2.2. Derivation of the global resistance 
 
The derivation of the global resistance in the elastic regime (i.e. for i ≤ i�) can be achieved 
by postulating kinematically admissible expressions for .� and v� (Figure 3.46). In fact, 
before the transition, there is no need to account for the in-plane component v� because this 
one is very small. Consequently, for a beam located at a level N� along the vertical axis, the 
following cubic functions may be used to define an acceptable deformation profile: 

• For 0 ≤ O ≤ Og : .!N� , O" = 12 OOg 2LOg − Og
# − O#Og!L − Og" ©!N� , i" 

(3.71) 

• For Og < O ≤ L : .!N� , O" = 12 L − OL − Og 2LO − Og
# − O#Og!L − Og" ©!N� , i" 

where Og is the horizontal coordinate of the impact point & (Figure 3.6) and L is the total width 
of the gate (Figure 3.3). The function ©!N�, i" gives the maximal displacement of the beam 
(Figure 3.49b). It is supposed to occur in the vertical plane O = Og passing through the first 
contact point &. In order to have a quite realistic global deformation pattern, the definition of 
the function ©!N, i" has to be done by accounting for the shape of the striking vessel. In 
particular, the presence of a bulb may have a great influence on the overall bending motion 
exhibited by the gate. Furthermore, in order to be compatible, ©!N, i" has also to respect the 
boundary conditions of the structure. For conciseness, only the case of a gate free at the 
bottom and impacted by a raked bow is considered here. The other situations are presented in 
Appendix B.4 (section B.4.1). 
 
As explained previously, for i ≤ i�, the plastic mechanism is not yet activated. The gate 
suffers a local plastic indentation (Figure 3.50c) coupled with a global elastoplastic movement 
(Figure 3.50a). In the vertical plane O = Og, this latter is described by a bilinear function ©!N, i" such that ©!Ng , i" = i. The only difficulty lies in having reasonable estimations for 
the displacements ©!ℎ, i" and ©!0, i" of the uppermost and lowermost beams. To achieve 
this goal, one can consider the situation where the impact point & is progressively nearing the 
top of the gate. In this case, it may be thought that ©!ℎ, i" → i and ©!0, i" → 0. It seems 
therefore interesting to use the coefficients Ng/ℎ and 1 − Ng/ℎ in their definitions, but this is 
not sufficient. Indeed, because of the concomitant local indentation, the vertical distance 
between the lowermost beam and the vessel is progressively reduced by i tan_ (Figure 
3.50c), which means that ©!0, i" becomes more and more sensitive to the penetration of the 
ship. When the ship is completely in contact with the gate, i tan_ = ℎV and it seems 
consistent to use the ratio i tan_ /ℎV as a second coefficient for ©!0, i". Gathering all the 
previous considerations leads to the following results: 
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©!0, i" = i �1 − Ngℎ�min �i tan_ℎV 	 ; 	1�			 ; 			©!ℎ, i" = Ngℎ i (3.72) 

Using these definitions, it is now possible to extend the definition of ©!N, i" by interpolating 
linearly between ©!0, i", ©!Ng , i" and ©!ℎ, i", which leads to: 

• For 0 ≤ N ≤ Ng : ©!N, i" = i NNg + i �1 − NNg� �1 − Ngℎ�min�i tan_ℎV 	 ; 	1� 
(3.73) 

• For Ng < N ≤ ℎ : ©!N, i" = i �1 − N − Ngℎ � 
Of course, in (3.73), only the discrete locations N = N� of the horizontal girders are of interest 
to evaluate .!N�, O" by (3.71). This latter being completely defined, the resistance k�!i" can 
be found by applying the elastic beam theory.  
 

(a) Three dimensional view (b) Global elastic movement (c) Local plastic indentation 

   

Figure 3.50. Global and local displacements before the activation of the plastic mechanism 

As long as the overall motion of the gate remains small, it can be shown that the bending 
moments ��!O, i" in the beam and the equilibrium equation are simply as follows: 

��!O, i" = −�&� >#.>O# 					 ; 					��!i" = k�!i" !L − Og"OgL  (3.74) 

where ��!i" = ��!Og , i" is the maximal bending moment located in the central cross-section 
and &� is the relevant inertia. It is worth noting that this latter has to be calculated by 
accounting for the crushing process if the beam is also indented by the vessel. This can be 
achieved by applying the same technique than the one presented in Appendix B.2 for the 
bending capacities of a beam. Substituting (3.71) in (3.74) leads to: 

k�!i" = minÏ 3L�&�Og#!L − Og"# ©!N�, i"; k�,�!i"Ð			 ; 			k�,�!i" = L!L − Og"Og Ñ
ÁJ,�!i"�J,�Áo,�!i"�o,�Áo̅,�!i"�Ío,�Ò (3.75) 

where it is worth noting that k�!i" is a piecewise non-linear function of i due to the 
definitions of &� and ©!N�, i". In this last equation, it may be worth recalling that according to 
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section 3.6.2.1, k�,�!i" is the force required to activate a plastic mechanism on the beam. This 
happens when the maximal bending moment ��!i" reaches the plastic, elastic or effective 
elastic resistance of the cross-section. The coefficients ÁJ,�!i", Áo,�!i" and Áo̅,�!i" are only 
useful if the beam is simultaneously indented during the crushing process, otherwise they are 
equal to unity. 
 
The evolution of the individual resistance k�!i" given by (3.75) during the local deforming 
mode is depicted on Figure 3.51a for an impacted beam. From this picture, it can be seen that k�!i" is not increasing continuously with i because discontinuities are noticeable at the 
initiation of each new fold, which is simply due to the change of inertia.  
 
(a) Individual resistance k�!i" of 

an impacted beam 
(b) Individual resistance k�!i" of 

non-impacted beam 
(c) Derivation of the total 

resistance k!i" 

   
Figure 3.51. Individual and total resistances during the local deforming mode 

As soon as the force k�,�!i" required to activate a global mechanism on the beam is reached, 
then k�!i" simply follows k�,�!i", which is a discontinuously decreasing function of i 
because of the coefficients ÁJ,�!i", Áo,�!i" or Áo̅,�!i". On the contrary, if the beam is not 
impacted, its individual contribution k�!i" is monotonically growing with the penetration, 
until k�,�!i" is reached (Figure 3.51b). This latter is constant, as there is no need to reduce the 
resistant bending moment �J,�, �o,� or �Ío,� of the beam. As a final result, the elastoplastic 
global resistance km!i" in the local deforming mode is obtained with help of equation (3.5), 
i.e. by summing-up the contributions k�!i" coming from all the horizontal beams.   
 
3.6.3. Perfectly plastic solution 
 
The threshold value k�!i" that is required to activate a global plastic mechanism on the entire 
gate is simply obtained by adding the forces k�,�!i" that are necessary to initiate a plastic 
behavior for each individual beam. As soon as the resistance k!i" calculated by (3.70) in the 
elastoplastic local deforming mode reaches k�!i", then i = i� and the transition occurs. 
Consequently, in accordance with section 3.6.1.2, there will be a switch from the local to the 
global deforming mode when the two following expressions are equal: 

k!i" = min�kl!i"	;	km!i"�					 ; 					k�!i" =sk�,�!i"Ów
�u(  (3.76) 

such as depicted on Figure 3.51c. In accordance with (3.70), for i > i�, the gate resistance k!i" is derived by considering this time only a global plastic solution km!i". As usual, this 
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latter is obtained by applying (3.5), where the individual contributions k�!i" coming from 
each beam are now calculated under the hypothesis of a perfectly plastic material.  

3.6.3.1. Derivation of the displacement field 
 
Before deriving the resistance, it is first necessary to define the displacement field for i > i�. 
As in the previous section, the case of a raked bow impacting a gate free at the bottom is 
investigated (other situations are reported in section B.4.2 of Appendix B.4). In this 
configuration, all the beams are assumed to collapse individually through a plastic mechanism 
(Figure 3.52a) where the out-of-plane displacements are given by ©!N, i" while the in-plane 
ones are characterized by the functions v(!N" and v#!N" at the two ends. 
 

(a) (b) (c) (d) 

    
Figure 3.52. Displacement field after the activation of the plastic mechanism 

In order to have a reasonable evaluation of ©!N, i", one can consider the local penetration of 
the striking vessel when the transition occurs. For i = i�, it can be seen from Figure 3.52b 
that the vertical distance between the lowermost beam and the impact point & is reduced to Ng − i� tan_. Consequently, by using similar arguments than those exposed in section 
3.6.2.2, it seems reasonable to postulate that the coefficients 1 − Ng/ℎ and i� tan_ /ℎV should 
be involved in the definition of ©!0, i". Here again, assuming that ©!0, i" and ©!ℎ, i" are 
proportional to the displacement i − i� of the contact point leads to: 

©!0, i" = !i − i�" �1 − Ngℎ�min �i� tan_ℎV 	 ; 	1�			; 			©!ℎ, i" = Ngℎ !i − i�" (3.77) 

A linear interpolation can then be used to get the vertical profile of Figure 3.52c. However, if i� tan_ ≤ ℎV, then (3.77) is not always valid. Indeed, if the stem angle is close to 90°, then a 
subsequent contact may appear between the stem and the deforming gate (Figure 3.52d). This 
occurs for a given penetration i( that can be calculated from simple geometrical 
considerations. From this point onwards, ©!0, i" grows more rapidly as the distance between 
the bottom of the ship and the lowermost beam is now only equal to Ng − ℎV. Consequently, 
the coefficient 1 − Ng/ℎ	should be replaced by 1 − !Ng − ℎV"/ℎ in (3.77) to get: 

©!0, i" = !i( − i�" �1 − Ngℎ�min�i� tan_ℎV 	 ; 	1� + !i − i(" �1 − Ng − ℎVℎ � (3.78) 
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in which the first term is simply the displacement reached by the gate when the subsequent 
contact happens. Of course, the definition of ©!ℎ, i" remains unaffected for i > i(. To 
achieve the derivation of the displacement field, it is still required to precise the functions v(!N" and v#!N" for the in-plane movements. Ideally, these latter should be calculated by 
accounting for the true flexibility of the structure in the plastic regime.  
 

(a) Axial membrane extensions (b) Top view of a beam locally indented before the transition 

  
Figure 3.53. Definition of the in-plane displacement field 

However, in this simplified procedure, as the vertical frames are consider to have little 
influence in the global deforming mode, it seems reasonable to follow the hypothesis 
formulated by Jones [80] and postulate that the in-plane displacements v(!N" and v#!N" are 
proportional to the axial extensions Δ( and Δ# of each part of the beam in the case of fixed 
supports (Figure 3.53a). These latter are given by: 

Δ( = ²Og# + ©#!N�, i" − Og ≃ ©#!N�, i"2Og 		 ; 		Δ# = �!L − Og"# + ©#!N�, i" ≃ ©#!N�, i"2!L − Og" (3.79) 

in which the approximations are valid within the frame of moderately large displacements, i.e. 
for ©!N�, i" ≪ min!Og	; 	L − Og". In addition to (3.79), another hypothesis is made to account 
for the actual distance separating the bow from the lateral supports. To do so, one can 
consider the situation depicted on Figure 3.53b showing the indentation of a beam during the 
local deforming mode. When the transition occurs, it appears that the left and right horizontal 
distances are reduced to L − Og − : and Og − : respectively, : being calculated by 
considering the intersection of the stem with the vertical plane ' = 0. As the maximal value 
for : is ̀  (Figure 3.7a), it is suggested here to use the coefficient :/` when defining v(!N" 
and v#!N". Finally, interpolating linearly leads to: 

• For 0 ≤ N ≤ Ng : v(!N" = 12©#!N�, i"Og �1 − OgL � �1 + N − Ngℎ �min�:̀ 	; 	1� 
(3.80) 

• For Ng < N ≤ ℎ : v(!N" = 12©#!N�, i"Og �1 − OgL � �1 − N − Ngℎ �min�:̀ 	; 	1� 
in which : = `�i�/[. Of course, the definition of v#!N" is similar, except that Og has to be 
replaced by L − Og in (3.80). 

3.6.3.2. Derivation of the resistance 
 
Once a kinematically admissible displacement field is postulated for i > i�, the individual 
resistance k�!i" provided by each horizontal beam can be calculated by applying the 
equilibrium method (see section 2.3.2.2). As briefly discussed here above, the calculation of k�!i" has to be done by accounting carefully for the classification. Indeed, from Eurocode 3 
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[52], only class 1 cross-sections have the required rotation capacities for a plastic analysis. In 
this single case, the mechanism depicted on Figure 3.54 can be postulated, where a central 
plastic hinge is formed. This kind of situation has already been quickly analyzed when dealing 
with the beam behavior of folded super-elements in sections 3.4.2.2 and 3.5.2.2. Therefore, it 
could be of interest to perform a quite more detailed theoretical investigation in the present 
situation. 

 
Figure 3.54. Plastic collapse in case of a class 1 cross-section 

In fact, when the transition occurs (i = i�), the cross-section located in O = Og is only 
submitted to a bending moment ��!i" equal to ÁJ,��J,�, where ÁJ,� corresponds to the 
particular value of ÁJ,�!i" when i = i�, which is only relevant if the beam has been 
previously impacted during the local mode. Nevertheless, because of the moderately large 
out-of-plane displacements, some additional membrane effects develop because the structure 
is also submitted to an axial straining. Consequently, a normal force À�!i" and a bending 
moment ��!i" simultaneously act on the central cross-section. These two internal forces are 
not independent from each other because they are related by a yield criterion. In the present 
case, the interaction formula should be the one characterizing an I-shape cross-section. Ueda 
and Rashed [150] have elaborated a very refined and cumbersome description of this yield 
locus, but as suggested by Paik and Thayamballi [121], another easier and conservative 
approach is to adopt the following parabolic formula: 

��ÁJ,��J,� + = À�ÀJ,�?
# = 1⟺ ��!i" = ÁJ,��J,� =1 − À�#!i"ÀJ,�# ? (3.81) 

which was already encountered in Appendix B.2. and where �J,� and ÀJ,� are respectively the 
bending and axial capacities of the I-shaped cross-section depicted on Figure 3.45. Because of 
the combination of both membrane and bending effects, the central hinge is simultaneously 
submitted to a rotation �� and an extension Δ� (Figure 3.54). These latter are related by the 
normality rule: >��>À� = −Δ- ��-� ⟺À�!i" = ÀJ,�#2ÁJ,��J,� Δ- ��-�  (3.82) 

which, as explained by Jones [81], simply states that there is no acceptable combination of ��!i" and À�!i" outside the yield locus with non-hardening materials. This relation is quite 
important, as it allows for the evaluation of the internal normal force if Δ� and �� are known. 
These two parameters can be easily obtained from the displacement field defined in 3.6.3.1. 
Indeed, under the assumption that ©!N�, i" is small in comparison with Og and Õ − Og, from 
Figure 3.54, it can be shown that: 

�� = LOg!L − Og" ©!N�, i"					; 					Δ� = ©
#!N�, i"2 LOg!L − Og" − v(!N�" − v#!N�" (3.83) 

Deriving (3.83) with respect to time and substituting the ratio Δ- �/�-� in (3.82) leads to À�!i". 
As À�!i" ≤ ÀJ,� to have a statically admissible solution, the following result is found: 
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À�!i" = min Ö ÀJ,�#2ÁJ,��J,� ¤©!N�, i" − Og!L − Og"L �>v(>i + >v#>i �¥	; ÀJ,�× (3.84) 

which can be introduced in (3.81) to get the bending moment ��!i". Once ��!i" and À�!i" 
are known, the equilibrium of the gate can be expressed in a similar manner than Tin-Loi 
[149], which finally leads to: 

k�!i" = LOg!L − Og" ���!i" + À�!i"©!N� , i"�	 (3.85) 

Of course, when the transition occurs in i = i�, this equation is exactly the same as (3.75) 
and leads to k�,�!i". However, the analytical developments performed here above are based 
on a plastic analysis, which is only possible if the central cross-section of is class 1. As 
explained in section 3.6.2.1, if this is not the case, the web will be submitted to an early 
buckling, so the model of Figure 3.54 is irrelevant for these situations. 
 
In order to evaluate k�!i" for class 2, 3 or 4 cross-sections, the beam can be treated as a thin-
walled structure. In this approach, the web is seen a classical plate that is likely to buckle 
because of the compressive stresses induced by the bending moment. As detailed by Kotelko 
[88], during this phenomena, the structural behavior may be divided into the four phases 
depicted on Figure 3.55a. In the present analysis, the elastic and elastoplastic post-buckling 
stages (denoted by ② and ③ on	Figure 3.55a) are disregarded and the evolution of the beam 
resistance curve is only divided into three successive parts. As presented on Figure 3.55b, the 
elastic solution derived in section 3.6.2.2 is first considered, until the maximal value k�,�!i" is 
reached. The second portion is then assimilated to an elastoplastic phase that ends when the 
transition occurs, i.e. for i = i�. From this point onwards, the beam collapses by following a 
mechanism that still needs to be investigated.  
 
The plastic collapse of a thin-walled structure can be studied by the upper-bound method. To 
do so, a given deformation pattern has first to be postulated. Of course, this choice is arbitrary 
and has to be done in accordance with some numerical or physical observations. In the present 
case, the buckling model that is commonly observed when performing LS-DYNA  finite element 
simulations is the one depicted on Figure 3.56. It is made of a unique asymmetric fold created 
over the total web height6 and allows for a relative rotation of the two arms of the beam as it 
is progressively closed. The horizontal extension 2ℓ of the folded area may be expressed as a 
fraction of the web height and will be derived later.  
 

(a) Thin-walled structure model (b) Beam model 

 

① Pre-buckling elastic phase 
 
② Post-buckling elastic phase 
 
③ Post-buckling elastoplastic phase 
 
④ Plastic collapse phase 

 
Figure 3.55. Evolution of the resistance with the penetration 

                                                                    
6 If necessary, instead of working with the initial total web height ℎR, the uncrushed portion ℎE should be 
considered. This is particularly the case when the plastic mechanism of Figure 3.56 has to be used for modeling 
the beam behavior of SE2 and SE3, as explained in sections 3.4.2.2 and 3.5.2.2. 
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Of course, besides the mechanism represented on Figure 3.56, many others can be postulated 
such as all those collected in the database of Ungureanu et al. [151]. Choosing the most 
appropriate one depends on the web slenderness, the stress state and the imperfections. 
Selecting a proper folding geometry is therefore not easy and has to be done carefully to get a 
true characterization of the post-buckling behavior. Nevertheless, from all the numerical 
simulations realized on entire lock gates (see section 3.7), it results that the one considered 
here is quite convenient as the total collision force is more or less correctly approximated, so 
only this particular collapse model will be used. 
 
In an attempt to derive the plastic resistance k�!i", it is required to evaluate the energy rate �-� 
associated to the folding process. Unfortunately, the buckling pattern suggested here is not 
listed in the database of Ungureanu et al. [151] and very little information are given by 
Kotelko [88] about the analytical derivation �-�. Consequently, as for super-elements, the 
derivation has to be achieved by applying the upper-bound method, but this will be done in 
Chapter 4, when dealing with mitre gates. 
 

 
Figure 3.56. Collapse mechanism in case of a class 2, 3 or 4 cross-section 

In addition to �-�, there is also an energy dissipation that is coming from the membrane effects 
in the two arms of the beam. These latter have initial lengths equal to Og − ℓ and L − Og − ℓ 
and are submitted to a total axial straining also given by (3.83), except that Og has to be 
replaced by Og − ℓ. Consequently, the total internal energy �-��� dissipated by the plastic 
collapse of the beam is equal to: 

�-��� = ÀJ,� = !L − 2ℓ"©!N� , i"!Og − ℓ"!L − Og − ℓ" − >v(>© − >v#>© ?>©>i i- + >��>© >©>i i-	 (3.86) 

On the other hand, the work rate 2-  coming from the external forces has to be calculated by 
accounting for the contribution of k�!i", but also for the one coming from the reaction forces 
because of the displacements v(!N�" and v#!N�" at the supports, i.e.: 

2- = k�!i" >©>i i- − ÀJ,� �>v(>© + >v#>© �>©>i i-	 (3.87) 

According to the upper-bound method, (3.86) and (3.87) can be equated to get k�!i". Doing 
so leads to: 

k�!i" = ÀJ,� !L − 2ℓ"©!N�, i"!Og − ℓ"!L − Og − ℓ"	+ >��>©  (3.88) 

As a conclusion, the global plastic resistance after the transition can be obtained by applying 
(3.5), where k�!i" is given by (3.85) in the case of a class 1 cross-section, or by (3.88) in the 
other cases. Furthermore, the curves of Figure 3.51a and b can now be completed to get the 
final evolution of k�!i" with the penetration. Doing so leads to the diagrams presented on 
Figure 3.57a and b for an impacted or non-impacted beam respectively. 
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(a) Resistance k�!i" for an impacted beam (b) Resistance k�!i" for non-impacted beam 

2H 4H 6H δt

δ

P(δ)

Pt,i(δ)

Pi(δ)

Class 1

Class 2, 3 or 4

① ② ③

  
Figure 3.57. Individual resistances during the local deforming mode 

On these two pictures, it is worth noticing that even though there is an unstable plastic 
collapse during the global deforming mode (i.e. for i > i�), the resistance keeps growing 
because of the membrane effects. If these effects were not present after the transition, then k�!i" would be a constant or decreasing function of i according to the cross-section class. As 
a final remark, it should be noted that the three successive elastic, elastoplastic and plastic 
phases discussed here above are also represented on Figure 3.57. They are affected with the 
numbers ①, ② and ③ respectively. 
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3.7. Numerical validations 
 
The aim of this section is to check if the analytical developments performed for the local and 
the global deforming modes provide a realistic estimation of the collision resistance. To do so, 
numerical simulations were run using the finite element software LS-DYNA  that is capable of 
solving dynamic non linear problems [66]. 
 
3.7.1. Preliminary considerations 
 
Before exposing the results, it is of interest to give some information about the numerical 
models and about the collision scenarios used for the simulations. 

3.7.1.1. Finite element model 
 
For all the simulations of the validation process, both the striking vessel and the impacted gate 
are entirely modeled using Belytschko-Tsay shell elements, based on a combined co-
rotational and velocity strain formulation. This means that a coordinate system is embedded in 
the element while the Rivlin-Eriksen rate of the Almansi strain tensor 5å7 is used in 
conjunction with Cauchy stresses7. For the structure, five integration points are placed over 
the thickness, but only two are required for the ship as it is assumed to be perfectly rigid.  
 
Concerning the mesh size, many attempts were made before reaching an acceptable 
configuration. Starting from an initial size, the element dimensions are progressively reduced 
until the numerical results stabilize. From this convergence process, the following conclusions 
may be drawn:  
 
• In the area near the first impact point, the mesh size has to be quite refined in order to have 

a proper modeling of the deformation mechanisms involved during the collision. This is 
particularly true for the folding of horizontal and vertical members but is not of prior 
importance to represent tensile effects in the plating. Furthermore, it is worth bearing in 
mind that the contact zone between the structure and the ship is progressively extending 
when the penetration increases, which implies that the mesh size has to be sufficiently 
small in a large area around the impact point. Consequently, the case of a vessel with a 
more or less rectangular hull form is quite unfavorable regarding the meshing effort.  
 

• Similarly, in the regions near the boundaries, it is advisable to avoid a too coarse mesh 
because the deformations involved during the global mode may also be non-negligible 
along these places. This observation was already made by many authors who worked with 
finite element during ship-ship collisions, such as Lützen [103], Simonsen [141] or Zhang 
[180]. 
 

• In the remaining parts of the gate, there is no real need to have a very refined mesh as the 
bending deformations due to the global mode are moderate enough. This allows for a 
reduction of the total time needed to simulate the impact. 

 
In the present situation, it was finally found that the element dimensions should be of about 10	­� in order to preserve an acceptable precision on the numerical results without requiring 
an excessive calculation time. 

                                                                    
7 See the LS-DYNA theory manual [66], section 2.3.1 and Appendix A.2 for more details. 
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The boundary conditions applied on the gate are those mentioned in section 3.1.1.3. They are 
briefly recalled on Figure 3.58 and in Table 3.7. For edges ② and ④, there is only a 
translational constraint along the horizontal ' axis, which conservatively supposes that the 
structure remains free to move in its plane without friction. At the bottom of the lock 
chamber, the '-displacements are also prohibited if a sill is present. Finally, for the uppermost 
girder ③, if some cables are supporting the gate (Figure 3.2), this can be taken into account 
by imposing a vertical restraint along the N axis. Nevertheless, finite element simulations 
have shown that imposing this additional constraint has very little influence on the impact 
resistance, so the suspension cables can be disregarded during the collision process. 
 

Y

Z

①

②

③ ④

 

Edge DOF Boundary condition 

① 

' Constrained with a sill and free otherwise N Constrained O Constrained along the impact line 

② 

' Constrained because of the lock walls N Free O Free 

③ 

' Free N Constrained with cables and free otherwise O Free 

④ 

' Constrained because of the lock walls N Free O Free 

Remark: on Figure 3.58, the horizontal ' axis is defined 
perpendicularly to the initial plane of the gate. 

 

Figure 3.58. Definition of the edges Table 3.7. Summary of the boundary conditions 

The contact between the vessel and the structure is modeled by using the general surface-to-
surface penalty contact algorithm of LS-DYNA . In the optic of providing ideal conditions, the 
elements dimensions of striking vessel are closed to 10	­� in the regions near the impact 
point. A coarser mesh is used outside these areas. As a conservative hypothesis, the ship is 
assumed to be perfectly rigid, while the gate still has the properties listed in Table 3.2.  

3.7.1.2. Collision scenarios 
 
In order to define the collision scenarios useful for the validation process, it may be 
interesting to stress the following points: 
 
• Regarding the impact velocity, the finite element simulations have shown that the 

resistance curves were nearly identical for an initial speed �
 equal to 0.5, 1 or 2	�/�. 
This means that the inertia effects do not have a significant influence on the collision 
process, so it is sufficient to only consider the maximal value of 2	�/�. Furthermore, it is 
also worth noting that the previous conclusion tends to corroborate the quasi-static 
approach used in the previous sections for developing the analytical model. 
 

• Finally, regarding the mass �� of the striking vessel, as barges are not considered here, it 
appears from Table A.1 that choosing a value of 4000	S should be consistent enough. 

 
In conclusion, from the previous considerations, it transpires that performing finite element 
simulations with a vessel of 4000	S and travelling at an initial speed of 2	�/� should lead to a 
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reasonably unfavorable situation. Only the impact location needs to be varied to get different 
collision scenarios. As explained in section 3.2.1, the simulation is stopped when the initial 
kinetic energy has been entirely absorbed by the gate. 
 
3.7.2. Impact on a gate supported by a sill 
 
Different gates were considered for the validation. For conciseness, this section only focuses 
on the one represented on Figure 3.59, but other results are available in Appendix B.5. The 
geometrical properties of the structure are listed in Table 3.8, from which it can be seen that 
the total length L and height ℎ are both equal to 13.1	� for this first gate. The cases of a raked 
or bulbous striking bow are considered separately. 
 

 

Horizontal girders N (�) ℎR  (�) SR (�) ℎ� (�) S� (�) 0 1 0.02 0.6 0.025 2.3 1 0.02 0.5 0.025 4.8 1 0.02 0.5 0.025 7.8 1 0.02 0.6 0.035 13.1 1 0.025 0.4 0.025 

Vertical frames O (�) ℎR  (�) SR (�) ℎ� (�) S� (�) 0 1 0.02 0.3 0.025 2.62 1 0.02 0.3 0.025 5.24 1 0.02 0.3 0.025 7.86 1 0.02 0.3 0.025 10.48 1 0.02 0.3 0.025 13.1 1 0.02 0.3 0.025 

Horizontal stiffeners Plating ℎR  (�) SR (�) SJ (�) 0.021 0.009 0.01 
 

Figure 3.59. Three dimensional view of gate 1 Table 3.8. Geometrical properties of gate 1 

In order to corroborate the analytical model presented here above, the comparison is made 
between the numerical and analytical curves showing the evolution of the total collision force 
with the penetration. The same is done for the internal energy dissipated by the structure. 

3.7.2.1. Impact by a raked bow 
 
The case on an impact by a raked bow was treated by using two different vessels (Figure 
3.60). The first one has a stem angle _ that is close to 90°, while the second one is much 
sharper. For each of them, the initial contact point is such that Ng = 8	� and Og = 6.5	� 
(Figure 3.6). Considering two different ships principally aims to check that the transition from 
the local to the global deforming mode is more or less correctly assessed. Indeed, for vessel 1, 
as _ is quite important, the contact area between the bow and the gate grows rapidly, which 
means that the transition should occur earlier than for vessel 2. 
 
The numerical and analytical curves showing the evolution of the resistance with the 
penetration are represented on Figure 3.61. From these results, it can be concluded that the 
simplified approach leads to a reasonably conservative estimation of the impact force and of 
the total penetration. 
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(a) Vessel 1 (b) Vessel 2 (c) Geometrical dimensions 

  

 Vessel 1 Vessel 2 ` 6	� 5.5	� [ 8	� 6.2	� ℎV 5	� 4.5	� _ 84° 45° a 84° 71° 
 

Figure 3.60. Three dimensional views of the raked bows 

The only unsafe approximation appears for large values of i, where the curves given by LS-
DYNA  tend to stabilize while the analytical ones keep growing. This is particularly visible on 
Figure 3.61b and can be explained by the fact that the membrane effects in the beams during 
the global mode are too generously calculated by the present approach. In fact, the postulated 
in-plane displacements v(!N" and v#!N" given by (3.80) are only based on geometrical 
considerations, but do not account for any mechanical properties of the gate. As claimed in 
section 3.6, doing so is only consistent under the assumption that the frames are weaker than 
the girders, which is not exactly the case in the light of the values listed in Table 3.8. 
Consequently, (3.80) is only acceptable as long as the values of i are not too large, but the 
influence of the frames is increasing with the penetration and they finally force v(!N" and v#!N" to become more or less linear over the gate height. This is not totally reproduced by 
the analytical model, which leads to an underestimation of v(!N" and v#!N" and to increased 
membrane forces. 
 

(a) Resistance for vessel 1 (b) Resistance for vessel 2 

  
Figure 3.61. Comparison of the analytical and numerical resistance curves 

Nevertheless, an overestimation of the resistance for important values of i is not really 
problematic because in this case, the geometrical disorders on the gate are such that they are 
definitely not acceptable. In other words, in this situation, the crashworthiness is much more 
influenced by a serviceability limit state than by ultimate strength.  
 
The curves showing the internal energy dissipated by the structure are depicted on Figure 
3.62. As there is no other dissipative effect, the value reached at the end of the penetration is 
equal to the initial kinetic energy of 8	�Ü. Furthermore, as these curves are obtained by 
integrating the resistance, it seems logical that they also reflect the conclusions detailed 
above. 
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(a) Energy for vessel 1 (b) Energy for vessel 2 

  
Figure 3.62. Comparison of the analytical and numerical energy curves 

As a final comment, it can be seen from Figure 3.61 that the analytical model gives an 
acceptable prediction of the transition in the two cases. The switch from the local to the global 
mode occurs more or less around i ≃ 0.25	� for both vessel 1 and 2. 

3.7.2.2. Impact by a bulbous bow 
 
The bulbous bow that is used here for the simulations is depicted on Figure 3.63. The 
geometrical dimensions are such that the contact first occurs between the bulb and the gate, 
with Ng = 5	� and Og = 6.5	�. The numerical and analytical curves showing the evolution of 
the resistance and of the internal energy with the penetration are reported on Figure 3.64. It 
can be seen that the overall agreement is quite satisfactory. As expected, the observations 
made in section 3.7.2.1 regarding the membrane effects still hold as the resistance is 
overestimated for large values of i. 
 

(a) Vessel 3 (b) Geometrical dimensions 

 

 Vessel 3 ` 6	� [ 8	� ℎV 5	� _ 84° a 84° cd 2.1	� ce 1.05	� cf 0.7	� 
 

Figure 3.63. Three dimensional view of the bulbous bow 

However, from Figure 3.64a, another divergence may also be pointed out during the local 
deforming mode and can be explained in the following way. At the beginning of the 
simulation, only the bulb is involved in the collision process but when the penetration is more 
or less equal to 0.15	�, a subsequent contact develops between the gate and the stem. 
Numerically, this is assimilated to a slight shock and explains why the resistance computed by 
LS-DYNA  is suddenly increasing. However, in the analytical approach, as the subsequent 
contact only implies local deformations of plating super-elements, there is no theoretical 
reason for having an abrupt increment. 

0

1

2

3

4

5

6

7

8

0 0,3 0,6 0,9 1,2 1,5

E
n

er
gy

 (
M

J)

δ (m)

LS-DYNA Analytical

0

1

2

3

4

5

6

7

8

0 0,3 0,6 0,9 1,2 1,5

E
n

er
gy

 (
M

J)

δ (m)

LS-DYNA Analytical



CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates 

97 
 

(a) Resistance for vessel 3 (b) Energy for vessel 3 

  
Figure 3.64. Comparison of the analytical and numerical resistance and energy curves 

In conclusion, there is no physical shortcoming in the simplified approach that may justify the 
divergence in the local mode. Furthermore, neglecting the shock caused by the stem leads to a 
conservative estimation of the resistance. This is particularly visible on Figure 3.64b, from 
which it can be observed that the energy dissipation is always safely predicted. 
 
3.7.3. Impact on a gate free at the bottom 
 
In order to investigate a gate that is free at the bottom, the same impact situations than those 
considered in section 3.7.2 can be relevant. For conciseness however, only two vessels will be 
used and the energy curves will not be presented. 
 
The evolution of the collision force with the penetration is depicted on Figure 3.65 for an 
impact by a raked or a bulbous bow. By comparing these results with those of Figure 3.62 and 
Figure 3.64, it is clear that the resistance is strongly reduced if the gate is not supported by a 
sill. After reaching a maximal value that is more or less equal to 6000	¨À in both cases, the 
curves start decreasing slowly with the penetration, which is quite typical of an unstable 
behavior. This phenomenon is also reported by the analytical approach and can be explained 
in the following manner. During the global mode, when the plastic mechanism is activated, 
some membrane effects tends to develop in the horizontal beams (see section 3.6.3) and each 
of them is submitted to an extension rate Δ- � that is given by (3.83). At the beginning of the 
penetration, the lateral displacements v(!N" and v#!N" are still sufficiently small, so Δ- � is 
positive and the resistance is growing. Nevertheless, this is not the case anymore with larger 
values of i and for some of the beams, the axial straining increment in negative, which 
implies that their contribution k�!i" calculated by (3.85) or (3.88) decreases. 
 
On a physical point of view, having Δ- � < 0 can be justified as follows. In fact, the in-plane 
displacements are more important for the beams located near the impact point than for the 
other ones because they are strongly influenced by striking bow. Ideally, each beam tends to 
keep a constant axial length (Δ- � ≃ 0) in order to minimize its internal dissipation. However, 
this is practically impossible because they are connected to each other by the frames and 
submitted to the out-of-plane displacement field ©!N, i" imposed by the vessel (Figure 
3.52a). As a consequence, the beams located near the impact point are put into tension by the 
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others because these latters have a smaller axial reduction. This explains why the resistance 
still increases at the beginning of the collision. When the penetration gets larger, the 
mechanism simply works the other way round: the beams located near the impact point force 
the others to follow them, which finally leads to an unstable configuration.  
 

(a) Resistance for vessel 1 (b) Resistance for vessel 3 

  
Figure 3.65. Numerical and analytical resistance curves 

The phenomenon explained here above is of course influenced by the stiffness of the frames 
because they transfer the displacement field to all the beams. If these latter are slightly 
connected to each other, then it is probable that this kind of instability will only happens for 
very large indentations. Another factor that also plays an important role is the distance 
between the contact point and the supports. If the impact is located near the lock walls, then it 
is also to fear that the in-plane displacements will be quite important. These observations are 
confirmed by the results reported in Appendix B.5.  
 
As a final remark, it can be noted from Figure 3.65b that the analytical resistance leads to a 
drastic underestimation when i > 1.5	�. In fact, this is exactly the same problem than the 
one already noticed in section 3.7.2 regarding the membrane forces that are also too 
generously estimated, but in the negative range this time. 
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3.8. Conclusions 
 
The purpose of this chapter was to develop an analytical model to predict the collision 
resistance of a plane lock gate with a single plating. The mathematical procedure followed is 
briefly summarized hereafter. 
 
As a first step, the gate behavior was studied in the local deforming mode, by supposing that 
the deformations were essentially located in a confined area near the impact point. The super-
elements method was used to evaluate the collision resistance under this hypothesis and three 
different types of structural entities were considered. For each of them, the upper-bound 
method was applied to get an analytical estimation of their individual contribution to the local 
resistance (sections 3.3, 3.4 and 3.5). 
 
As a second step, to account for the coupling that occurs between all the super-elements, 
another analytical solution was derived by assuming that the structure was submitted to an 
overall bending motion. During this global deforming mode, the gate was modeled as a set of 
horizontal beams weakly connected to each other by the frames. The resistance was evaluated 
by applying the equilibrium method in both the elastoplastic and rigid-plastic regimes (section 
3.6). 
 
Finally, a method was proposed to combine the local and the global calculations in order to 
approximate the resulting gate resistance. As matter of validation, the results of this simplified 
method were directly compared to those obtained by simulating numerically ship collisions on 
lock gates (section 3.7).  
 
In addition to the mathematical and numerical efforts listed here above, it is also important to 
stress the following points: 
 
• Applying the upper-bound method to get the local resistance for each type of super-

element leads to analytical solutions that reasonably match the numerical results. This 
assertion is confirmed by the numerical validations presented in sections 3.3.4, 3.4.3 and 
3.5.3. Nevertheless, one of the major difference with similar developments performed to 
study ship-ship collisions is the need to include the beam-like behavior when working with 
SE2 or SE3. 
 

• Similarly, applying the equilibrium method to get the global resistance also provides a 
quite acceptable approximation of the resistance when the gate is submitted to an overall 
bending motion. However, the agreement with finite element results is conditioned to a 
realistic evaluation of the lateral displacements occurring at the lock walls. If this 
requirement is not fulfilled, the simplified approach could lead to an overestimation of the 
resistance. The same observation is also valid regarding the stiffness of the vertical frames, 
as the analytical solution is found to be more satisfactory if these latter are quite weak.   
 

• As expected, when studying numerically and analytically collisions on lock gates, it was 
found that the impact resistance was higher if the structure is supported by a sill. 
Moreover, it was also pointed out that an unstable behavior is possible for quite large 
penetrations. This is roughly illustrated on Figure 3.66 for the gate studied in section 3.7. 
The equivalent Von Mises stresses during the overall bending mechanism are plotted when 
the bulbous bow penetration is equal to 1.6	� (the red portions indicate where the flow 
stress is reached). From these pictures, if the gate is not supported at the bottom (Figure 
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3.66a), it appears that the structure simply slides on the lateral supports and rotates at the 
same time around a generalized plastic hinge, which explains the instability. On Figure 
3.66b, this phenomenon is much less pronounced because of the additional support 
provided by the sill. 

 
(a) Gate 1 not supported at the bottom (b) Gate 1 supported at the bottom 

  
Figure 3.66. Comparison of the plastic mechanisms for gate 1 (δ = 1.6 m) 

As a conclusion, it can be said that an analytical tool has been developed to evaluate the 
impact resistance of plane lock gates with a single plating. Both the situations of a structure 
supported or free at the bottom have been treated under the assumption that the frames are 
weaker than the girders. The results given by this simplified tool are essentially the evolutions 
of the total collision force and internal energy with the penetration and the internal energy 
curve. Nevertheless, one of the main limitation is due to the method used. Indeed, as the main 
theoretical basis is the virtual work principle, only the overall equilibrium is satisfied. 
Consequently, trying to evaluate local fields such as stresses, strains or reaction forces is 
illusory with the present energy approach.  
 

(a) Load case (b) Analytical and numerical resistance curves 

  
Figure 3.67. Influence of the hydrostatic pressure 
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Finally, it is worth recalling that the impact on a lock gate has to be studied in parallel with 
other load cases, which can be done by applying the combination methods of Eurocode 0 [50]. 
Accounting for this remark is of prior importance to evaluate the final resistance. As a matter 
of illustration, if the lock gate studied in section 3.7.2.1 is simultaneously submitted to an 
impact by a raked bow and a 10	� hydrostatic pressure (Figure 3.67a), the resistance curves 
depicted on Figure 3.67b are obtained. This picture shows that the collision force is 
approximately reduced by 25	% if the action of water is retained. By the same time, the final 
penetration reached by the vessel is increased by 4	%, which is not really significant. 
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CHAPTER 4. Analytical derivation of the collision 
resistance of mitre gates 

 
 
 
 
 
 

This chapter presents an analytical method to derive the collision opposed by mitre 

lock gates during a collision involving a vessel of given shape. The structure 

properties postulated for this study are presented in section 4.1.   

 
The resistance is first derived under the assumption of a local deforming mode by 

applying the super-elements method. Three types of structural components are 

studied separately. The analytical developments are performed by accounting for 

the inclination due to the mitre angle. The upper-bound method is applied to 

derive kinematically admissible formulae that are each time validated by 

numerical comparisons in section 4.2. 

 
In section 4.3, the calculation is made for the global deforming mode by dividing 
each leaf into a set of horizontal beams supported at their extremities by the 
lateral and central studs. The derivation is done for both an elastoplastic and a 
perfectly plastic material. 
 
The analytical results of the simplified method are validated in section 4.4 by 

comparing them to those obtained numerically.  

 
Finally, the main steps and achievements presented in this chapter are summarized 
in the conclusion. 
 
The developments presented in this chapter have been partly published by Buldgen 

et al. [24] and presented in the 32nd International Conference on Ocean, Offshore 

and Arctic Engineering [23]. 
 

*** 
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4.1. Introduction 
 
This chapter is devoted to the analytical study of ship collisions with mitre gates (Figure 4.1). 
They are one of the oldest gate type encountered in lock structures but are still commonly 
used today, especially for modest locks but also for larger ones (up to a width of 25 to 35	�). 
In an attempt to develop a simplified tool to evaluate their impact resistance, the first step is 
probably to have a proper description of the structure considered here.  
 
4.1.1. Description of the impacted gate 

4.1.1.1. Structural properties 
 
The structure of a mitre gate is represented on Figure 4.2 (in order to have a better insight, 
some additional pictures are also reported in Appendix C.1). As shown by the top view of 
Figure 4.2a, such gates are made of two leafs that are usually symmetric and maneuvered by 
hydraulic jacks. At the middle of the gate, they are simply resting against each other through 
the action of central blocks, while the contact with the lock walls is provided by some lateral 
blocks that may be seen on Figure 4.1b. The link between the leaf and its supports is made by 
rigid vertical studs. 
 

(a) Miter gate (upstream side) (b) Miter gate during extraction 

 

 

(c) Miter gate (downstream side) 

 
Figure 4.1. Mitre gate of the Evergem lock (Belgium) 

The plane view of one leaf is depicted on Figure 4.2b. It is only a simplification of the real 
structure because it does not account for the various other reinforcing components that may be 
placed on the downstream face (Figure 4.1b). These latter are disregarded in the present study 
to keep only the regular structure made of the plating and reinforced by horizontal girders and 
vertical frames, which constitute the principal stiffening system of the gate. These elements 
are of prior importance when dealing with collisions, as they provide the major contribution to 
the crashworthiness of the struck structure. As for plane lock gates, they also have a T-shaped 
cross-section (Figure 3.3). In some cases, transverse and/or vertical stiffeners are added to 
prevent the plating from buckling, but they do not play an important role in the capacity of the 
gate to withstand collisions.  
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At the bottom of the lock chamber, the gate is placed on a pivot that allows for its rotation 
during the opening. This motion is also possible because one or several ties are placed at the 
top of the lock walls and prevent the leaf from falling into water. Sometimes, one or two 
additional diagonal diaphragms link the upper left and lower right corners (Figure 4.2b) in 
order to reduce the in-plane deformations and bending of the leaf under its dead weight during 
the opening movement. However, as these latter do not play a crucial role for the 
crashworthiness of the structure, they will not be considered here. 
 

(a) Top view of a mitre gate 

 
(b) Plane view of a mitre gate Legend: 

 

 
1 - Lock wall 
2 - Lateral contact block 
3 - Lateral stud 
4 - Central stud 
5 - Vertical frame 
6 - Horizontal girder 
7 - Plating 
8 - Central contact block 
9 - Tie (upper hinge) 
10 - Pivot (lower hinge) 
11 - Diaphragm 
12 - Sill 

Figure 4.2. Top and plane views of the structure of a miter lock gate 

Finally, it should be mentioned that the gate is usually supported by a sill whose primary 
functions are to ensure watertightness and provide a supplementary support to structure in 
some cases. As additional contacts are likely to develop in this region during the collision, the 
sill may constitute an indirect restraint to the motion of the gate.  

4.1.1.2. Geometrical properties 
 
In order to derive analytically the collision resistance, all the previous structural data need to 
be formalized mathematically. To do so, two different global reference frames are introduced 
(Figure 4.3). The first one !', N, O" is the same as for plane gates and is such that the axes ' 
and O are respectively parallel to the longitudinal and transversal directions of the lock 
chamber. The second one !'′, N′, O′" is placed in the plane of the gate and is simply obtained 
by rotating !', N, O" around the vertical axis.  
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As for plane gates, the horizontal girders and the vertical frames are placed in some discrete 
positions that are defined to properly characterize the structure. This time, instead of working 
in the !', N, O" coordinate system, it is probably more convenient to use directly the rotated 
frame !'′, N′, O′". Doing so, the reinforcing elements are located along the N′ and O′ axes by 
introducing their respective positions N�Þ and O�Þ. 
 

l c

 
Figure 4.3. Geometrical data characterizing one leaf 

Regarding the orientation of each leaf, two different angles are required to have a proper 
positioning. The first one is called the mitre angle denoted by ß and measured between the O 
and O′ axes (Figure 4.3). Usually, for classical gates, it is more or less equal to 20°. The 
second one is the support angle designated by ß′ and introduced to precise the inclination of 
the leaf with respect to the lock wall. Most of the time, it is of current practice to choose ß′ = ß. 
 
In order to define more specifically the shape of the upstream side, many other geometrical 
parameters are still required, such as the lengths L(, L#, L* and the angles à( and à#. They are 
mainly useful to locate the initial contact point between the stem and the gate, but also to 
detect the super-elements that are activated for a given penetration. As they will be 
extensively used in this chapter, length L� of the central contact block and the maximal web 
height ℎ
 of the girders (Figure 4.3) are also introduced.  

4.1.1.3. Boundary conditions 
 
The boundary conditions of a mitre gate are essential to ensure its overall stability. As 
mentioned previously, the contact between the leafs and the lock walls is provided by lateral 
contact blocks that are placed at the same discrete levels N�Þ than the girders. Ideally, these 
latter may be assimilated to hinges, as they allow for rotational movements. Their role is 
mainly to transmit compressive forces, even though some shearing components may develop 
because of friction. Of course, it is obvious that no tensile forces are likely to appear at these 
locations. 
 
Similarly, at the center of the gate, the two leafs rest against each other through the central 
blocks. Consequently, neither bending moment nor tensile forces are expected at these 
locations. In the case of an off-centered impact however, the friction forces are of prior 
importance to define a non-sliding condition but this will be discussed later. 
 
Finally, at the bottom of the lock chamber, the downstream displacements along the '′ axis 
are prohibited by the sill. Of course, in practice, short displacements are required before 
having a contact due to the rubber seal.  
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4.1.2. Description of the collision scenario 
 
The striking vessel that is considered here is the same as the one described in section 3.1.2.1 
for plane lock gates. On a mathematical point of view, it is still made of a stem T and 
eventually of a bulb ℬ whose summits are respectively denoted by @ and b (Figure 3.7a). In 
the local reference frames !+�, W�, X�" and !+V , WV , XV" attached to @ and b, the mathematical 
equations describing the stem and the bulb are strictly identical to (3.1) and (3.2). They can be 
used to derive the position !'g , Og" of the first impact point simply by imposing a tangency 
condition between the bow and gate. Finding the initial position of the striking vessel is thus a 
bit more complicated than with a plane situation. 
 
Another difference with Chapter 3 is that two distinct situations have to be considered 
regarding the collision scenario: 
 
• If the ship dimensions are sufficiently small in comparison with those of the lock chamber, 

then an off-centered collision is possible (Figure 4.4a). In this case, only one leaf is 
impacted, the other one remaining undamaged. 
 

• On the other hand, it is also possible to have a configuration such that the two leafs are 
both simultaneously impacted. This situation is called a "centered collision" and is 
represented on Figure 4.4b. 

 
Of course, because of their particular design, mitre lock gates are not able to withstand severe 
collisions if the ship moves upstream. In such a case, the impact force can be only 
compensated by the action of the hydraulic jacks and by the hydrostatic pressure if the 
downstream and upstream water levels are not the same. Consequently, only the two 
collisions configurations of Figure 4.4 will be treated in this chapter. 
 

(a) Off-centered impact on a mitre gate (b) Centered impact on a mitre gate 

  
Figure 4.4. Collision scenario 

Predicting the worst scenario for mitre gates is an arduous task. Obviously, it can be argued 
that off-centered impacts are only possible with quite small vessels that may only induce 
minor collisions. However, if the initial kinetic energy of the striking ship is such that the 
contact between the two leafs is lost, then the integrity and the watertightness of the lock gate 
is no longer be preserved. Such a situation may have severe consequences, such as a 
progressive individual collapse of the leafs because of the water pressure or an emptying of 
the upstream reach. Moreover, it is also to fear that important potential damages will be 
caused to the striking bow. On the contrary, a centered impact is more likely to lead to a 
stable deformed configuration. Consequently, it cannot systematically be claimed that the 
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most severe damages to the structure appear when it is impacted by a large vessel. Of course, 
the recommendations given in 2.2 regarding the choice of the mass and of the initial velocity 
are still valid for mitre gates. 
 
4.1.3. General methodology 
 
Under the conservative hypothesis that the ship is perfectly rigid, all its initial kinetic energy �
 calculated by (2.3) has to be entirely absorbed by the deforming impacted structure. To 
achieve this goal, the deformation sequence for the two collision scenarios of Figure 4.4 is 
exactly the same as for plane gates. The local mode is first activated, in combination with an 
overall elastoplastic bending motion of the gate. Three different calculations are done during 
this phase: 
 
• The first one is performed by decomposing the structure into large uncoupled entities made 

of a rigid-plastic material (Figure 4.6a). In accordance with (3.3), it is possible to derive 
the local resistance kl!i" by summing up the individual contributions k�!i" coming from 
the activated super-elements. Three different types are also required here. They are strictly 
identical to those presented in section 3.2.2.1, but unlike plane gates, it is important to 
stress that a careful distinction has to be made between an impact involving a girder or a 
frame (SE2). The definitions are briefly recalled in Table 4.1. 
  

• The second one is based on the assumption that each leaf may be idealized as a set of 
horizontal elastoplastic beams that are simply bent between the central and the lateral studs 
(Figure 4.6b). Doing so provides the global resistance km!i" given by (3.5), where k�!i" is 
the elastoplastic contribution of each individual beam. 
 

• The third one is also carried out by considering the mechanical model of Figure 4.6b, in 
which the beams are this time assumed to be made of a rigid-plastic material. Using this 
model, it is possible to evaluate the force k�!i" that is required to activate an overall 
plastic mechanism over the gate. 
 

The resistance during the local mode is then found by combining the results of the 
aforementioned calculations. Here again, it is proposed to use the same formula than for plane 
gates and to take the minimum value between kl!i" and km!i" as an approximation of the 
resistance. This is roughly depicted on Figure 4.5 for i < i�. 
 

SE1 
Plating elements limited by two horizontal 
girders and two vertical frames. 

SE2 

Portion of a horizontal girder limited by two 
vertical frames. 

Portion of a vertical frame limited by two 
horizontal girders. 

SE3 
Intersection between a vertical frame and a 
horizontal girder. 

  
Table 4.1. Definition of the super-element types for 

mitre gates 

Figure 4.5. Combination of the local and 
global resistances 

As soon as the collision force applied during the local mode reaches k�!i", it is sufficient to 
activate an overall plastic mechanism, so there is a switch to the global deforming mode. This 
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transition occurs for a given particular value i� of the penetration that may be found by 
resolving the following equation: 

min�kl!i"	;	km!i"� = k�!i"	 (4.1) 

where km!i" is the global elastoplastic solution mentioned here above. Consequently, all the 
beams depicted on Figure 4.6b are in a perfectly plastic state if i > i�. In this situation, it is 
possible to perform a new rigid-plastic calculation of the resistance km!i" and to consider this 
solution for the global deforming mode. To do so, equation (3.5) is still valid, but k�!i" is this 
time the rigid-plastic contribution of each individual beam. 
 

(a) Local resistance (b) Global resistance 

  
Figure 4.6. Mechanical models to derive the local and global resistances 

From the procedure detailed here above, it appears that the methodology to evaluate the 
collision resistance of a mitre gate is strictly identical to what has been done in Chapter 3 for 
plane configurations. Nevertheless, the mathematical expressions of kl!i" and km!i" are 
somewhat different because there is now a relative inclination between the vessel and the 
structure, due to the mitre angle ß. 
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4.2. Resistance in the local deforming mode 
 
The analytical derivation of kl!i" in the case of a mitre gate is similar to what has been done 
in Chapter 3. The main difficulty is to account for the relative inclination between the gate 
and the impacted leaf. In fact, the developments of this section can be seen as a generalization 
of those already performed for plane gates, so there is probably no need to have an extensive 
presentation of all the mathematical calculations leading to the local resistance. The various 
super-elements of Table 4.1 will be considered in sections 4.2.1, 4.2.2 and 4.2.3 respectively.  
 
4.2.1. Super-elements of type 1 

4.2.1.1. Analytical derivation of the resistance 
 
For conciseness, only an impact implying the stem T will be treated in this section, the case of 
a collision by the bulb ℬ being strictly similar. The mathematical equation of T in the global 
reference frame !', N, O" is still given by (3.9), in which the coordinates Nh and Oh of the 
summit @ are two parameters specifying the collision scenario. The position 'h along the 
horizontal ' axis is calculated by imposing a tangency condition between the gate and the 
vessel.  

 
Figure 4.7. Deformation pattern and displacement field u(y,z) 
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In order to derive mathematically the resistance opposed by plating elements, let us start by 
introducing a local reference frame !+, W, X" such that the W and X axes are in the plane of the 
super-element, while the + axis is perpendicular to the !W, X" plane (Figure 4.7). This new 
frame is not parallel to the global one, but makes a certain angle with it. On Figure 4.8, for 
convenience, this latter is denoted by ß, but from Figure 4.3, it is clear that it could also be 
equal to ß + à( or ß − à# according to the position of the impacted gate element along the O′ 
axis. 
 
Under the hypothesis that the out-of-plane motions are predominant, the evaluation of the 
internal energy rate can be done by considering only a kinematically admissible displacement 
field .!W, X" that is parallel to the local + axis. This remark is of prior importance: even 
though the ship is travelling along the global ' axis, the displacements imposed to the plate 
remains perpendicular to its initial plane, which means that a free sliding condition is 
supposed between the bow and the plating. Of course, this would not be the case if friction 
was implied during the contact. 
 

 
Figure 4.8. Plane view of the out-of-plane displacements imposed by the uppermost deck 

The particular profile of .!W, X" in the plane of the uppermost deck is denoted by �!X". The 
displacement pattern is depicted on Figure 4.8 and is made of two parts. The first one is 
restricted on the portion bounded by points � and b, placed in X( and X# along the local X axis 
respectively. It is worth noting that X( decreases with the penetration, while X# is an 
increasing function of i, which means that there is an extension of �b when the vessel moves 
forward. The derivation of X( and X# is not straightforward as it has to be achieved by 
imposing continuity conditions at points � and b. The analytical derivation is detailled in 
Appendix C.2. 
 
From Figure 4.8, it can be seen that there is a continuous contact between the bow and the 
plate along the portion �b, which means that �(!X" has to follow the shape of the stem. 
Consequently, the displacements have to be defined in accordance with the curve Γ that 
models the elliptic profile of the uppermost deck. To do so, it is first required to express 
equation (3.9) in the local reference frame, which can be achieved by considering the 
following formulae: 

' = 'á + + cosß + X sinß			; 			O = Oá − + sinß + X cosß (4.2) 
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where 'á and Oá are the coordinates of point � in the global axes. These two coordinates are 
not unknown because they have to be specified while defining the gate geometry. Introducing 
(4.2) in (3.9) and solving with respect to + leads to the following result for �(!X": 

�(!X" = â( + X cot ß − â#�â* + X sinß + i sin# ß (4.3) 

where â(, â# and â* are constant parameters that may be expressed with help of the position !'h, Oh" of the summit @ in the global reference frame. It can be shown that: 

â( = `# cotß2[ sinß − 'h − 'ásinß 	; 	â# = `�[ sin# ß	; 	â* = `
#[ !1 − tan# ß" − !'h − 'á" tan ß (4.4) 

Once �(!X" is completely defined, the next step is to perform the same work for the two 
remaining portions �� and b�. For compatibility reasons, �#!X" and �*!X" are defined as 
parabolic functions of X that are adjusted to fulfill the following requirements: 

• If X = 0 : �# = 0			;			>�#>X = 0 • If X = � : �* = 0			;			>�*>X = 0 

(4.5) 

• If X = X( : �# = �(!X(" = +( • If X = X# : �* = �(!X#" = +# 
where +( and +# can be easily found with help of equation (4.3). These considerations leads 
to: 

�#!X" = −+( � XX(�
# 			 ; 			�*!X" = −+# � X − �X# − ��

#
 (4.6) 

where !+(, X(" and !+#, X#" are calculated in Appendix C.2. Finally, the displacement field 
over the entire element is found by interpolating linearly over the heights �( and �# (Figure 
4.7), with the particular conditions that .!W, X" = 0 if W = 0 and W = �( + �#. With this 
assumption, equation (3.15) remains valid, in which �!W" may still be found by applying 
(3.14). Unlike plane gates, it is worth noting that this linearity is only effective in a plane that 
is perpendicular to plate, but not in the direction followed by the striking vessel. This 
deformation pattern correctly reflects numerical simulations (see section 4.2.1.2 hereafter). 
 
Once the displacement field .!W, X" is properly defined, the resistance provided by the plate 
may be calculated. This can be achieve by considering the same theoretical basis as the one 
postulated in sections 2.3.2 and 3.3.2.2 for a rigid-plastic material (Figure 2.6). According to 
the plate strip model of Wierzbicki and Simonsen in [154], the internal energy rate associated 
to a fiber of length �( + �# and width :X (Figure 4.7) can be evaluated by (3.16), while (3.17) 
is also still relevant for a horizontal strip. Furthermore, assuming that the out-of-plane 
displacements parallel to the + axis are predominant and that the bending effects are 
negligible, formula (3.18) allows for a consistent derivation of the internal energy rate �-���. 
The analytical calculation of �-��� is a quite fastidious task that has been performed by 
Buldgen et al. [21] for an inclined plate. Even though the present problem is quite similar, the 
formulae presented in [21] may not be directly extended to mitre gates. For conciseness, the 
detailed formulae to determine �-��� are reported in Appendix C.2.  
 
In accordance with the upper-bound method, the external power 2-  is equated to �-��� to find 
the resistance. Under the assumption that there is no friction between the striking vessel and 
the plate, k!i" may be assumed to remain always perpendicular to the initial plane of the 
plate (Figure 4.8). Consequently, if the velocity of the striking vessel is equal to i-, the impact 
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point & is only moving with a speed of i- cos ß along the + axis. The external power 2-  is then 
calculated in the following manner: 

2- = k!i"i- cos ß 			⟹ 			k!i" = �-���i- cosß (4.7) 

However, equation (4.7) is only valid as long as there is no rupture of the super-element. As 
in Chapter 3, this is assumed to occur when the deformations exceed a critical value G� that 
may be set to 7	% to have a satisfactory agreement with finite element simulations. As a final 
remark, it is also worth mentioning that all the formulae exposed here above degenerate into 
the ones developed for a plane gate when ß tends to 0. 

4.2.1.2. Numerical validation 
 
As a matter of validation, the results given by the analytical developments performed here 
above were compared with numerical ones obtained using LS-DYNA . In most of the cases, the 
agreement was found to be quite satisfactory. This can be illustrated by the example presented 
hereafter. The impacted plate is characterized by a length � of 5.89	�, a total height �( + �# 
of 4	� and a mitre angle ß equal to 17°. Its material properties are those of Table 3.2. The 
rigid striking vessel involved in the collision is the one depicted on Figure 3.60b. It is placed 
such that the first contact point & is located in Wg = 2.9	� and Xg = 3.3	� (Figure 4.7). 
 

(a) Top view (c) Comparison of the numerical and analytical resistances 

 

 

(b) Plane view 

 
Figure 4.9. Comparison of the numerical and analytical results 

In an illustrative purpose, the equivalent Von Mises stresses calculated by LS-DYNA  are 
represented on Figure 4.9a. This top view of the collision process shows that the plate more or 
less truly follows the shape of the stem in the central part, which tends to corroborate the 
deformation pattern postulated on Figure 4.8. Similarly, from Figure 4.9b, it can be seen that 
the displacement profile in a plane perpendicular to plate is roughly made of two straight 
lines, which also justifies the linear interpolation suggested in section 4.2.1.1. 
 
The comparison of the analytical and numerical resistances is presented on Figure 4.9c, from 
which the agreement is shown to be satisfactory. In order to point out the need of accounting 
for the true shape of the stem, the curve obtained by using the formulae suggested by Zhang 
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[180] is also plotted on this graph. This latter is obtained by assuming a punctual impact, 
which leads to the following equation: 

k!i" = P
3 �!�( + �#"i cosß= Xg!� − Xg" + i# sin# ß!Xg − i sinß"#!� − Xg − i sinß"# + 1�(�#? (4.8) 

where Xg is the position of the initial contact point along the X axis and � is the length of the 
plate (Figure 4.7). It is obvious from Figure 4.9c that (4.8) tends to underestimate the 
resistance, in particular at the end of the impact. Such a conclusion was already noticed in 
section 3.3.4, where it was pointed out that postulating a linear displacement field leads to 
smaller values for the resistance and the internal energy. Once again, these results show that 
regarding plating elements, it is quite important to account for the shape of the bow if this 
latter has more or less the same dimensions than the plate. 
 
4.2.2. Super-elements of type 2 
 
The second type of super-element is introduced to treat the impact on the portion of 
longitudinal girders limited by two vertical frames (Figure 4.10a). Here again, two 
deformation modes need to be investigated: a folding and a bending mechanism. 

4.2.2.1. Folding mechanism 
 
Regarding the folding mechanism, the situation is nearly the same as the one investigated in 
section 3.4, except that the collision occurs obliquely because of the mitre angle ß (Figure 
4.10b).  
 

(a) Three dimensional view of the collision (b) Deformation pattern 

β

  

Figure 4.10. Impact on a horizontal girder 

The deformation pattern is also a fold made of two wings of height ®, but in comparison with 
the situation depicted on Figure 3.26, two mains differences can be pointed out: 
 
• Instead of considering an indentation equal to i, the folding process has now to be derived 

for a local penetration of i cos ß. 
 

• The lengths of each wing are no longer constant: they are equal to �( + i sin ß and �# − i sinß, which means that one wing increases, while the other decreases. 
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From the previous observations, it transpires that the connection between the two wings is 
nothing else than a moving plastic hinge line that is travelling with a velocity v- = i- sin ß 
along the local X axis (Figure 4.10b). On a theoretical point of view, this particularity should 
have some implications on the deformation pattern in the central region. However, as the 
folding height ® is supposed to be quite small, the bending effects at the junction can be 
neglected, so the questioning issue of having a moving hinge will be discussed later (see 
section 4.2.2.2). 
 
In order to develop the formulae leading to the collision resistance, one can consider the 
generalized crushing process of Figure 4.11 for which the height and length of the current 
wing are respectively equal to 2® and �( + i sinß. From this picture, it appears that (3.38) 
and (3.39) are no more valid and have to be corrected in the subsequent manner: 

• ¯�±±±± = �!�( + i sinß"# + i# cos# ß ⟶2� = i# cos# ß2!�( + i sinß" 
(4.9) 

• b�±±±± = £!�( + i sinß"#4 + ®i cosß ⟶2x = ®i cosß�( + i sinß 

where 2� and 2x are the displacements of points � and b along the X axis. Using these new 
definitions, the same linear interpolation than (3.40) is applied to get the function 2!+" 
characterizing the horizontal motion of any point located along the junction �b� of the two 
wings (Figure 4.11). Doing so, the following displacement field can be postulated: 

v!+, X" = 2!+" X + !�( + i sinß"+/2®!�( + i sinß"!1 + +/2®" (4.10) 

which is coherent with the assumption already made in section 3.4.2.1 that only the portion of 
the horizontal fibers located beyond the straight line ¯� is submitted to an axial straining. 
This latter is responsible for a membrane dissipation that can be quantified by calculating the 
energy rate �-�, which can be achieved by applying (3.47). The procedure is similar to the one 
followed in section 3.4.2.1 but leads to quite cumbersome equations because of the more 
complex definition of v!+, X".  
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Figure 4.11. Deformation pattern for one wing 

Apart from the axial straining, there is also an energy dissipation due to the plastic rotations 
along the segments ¯�, ¯b, ¯�, �b and b�. Under the hypothesis that ® is small with 
respect to the lengths �( and �#, the contributions of the central hinges can be neglected, 
which leads to a simplified evaluation of the bending energy rate �-V. The detailed analytical 
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developments leading to �-� and �-V are not reported here but some additional information can 
be found in Appendix C.2 (section C.2.2.1). It can be shown that: 

�-� = P
®	 =�(!i + 2®" + i# sin2ß /4!�( + i sinß"# − �#!i + 2®" − i# sin 2ß /4!�# − i sinß"# ?i- cos ß 

(4.11) 

�-V = º�
!�( + �#"® i- cos ß 

where, as a reminder, P
 = 6
SR and �
 = 6
SR# /4 are respectively the linear axial and 
bending capacities of a plate with a thickness SR. Finally, in the optic of applying the upper-
bound theorem, the last step consists in calculating the external work 2- . Here again, if the 
collision force is supposed to act perpendicularly to the element orientation, 2-  can still be 
obtained using (4.7). Equating 2-  to the internal energy rate �-��� leads to: 

k�!i" = �-V + �-�i- cos ß  (4.12) 

where �-V and �-� are given by (4.11). In order to derive the crushing resistance, the folding 
height ® needs to be determined. This can be done by minimizing the mean crushing force 
over one fold, but doing so leads to very cumbersome equations (see section C.2.2.1 of 
Appendix C.2). As the mitre angle is usually quite small (ß ≃ 20°), a good approximation is 
to keep using (3.49), which is also justified by the fact that all the formulae presented here 
above degenerate into those developed for plane gates when ß tends to 0. Another possibility 
is to work with the following approximate relation (see section C.2.2.1 of Appendix C.2 for 
more details): 

® = ² º12�(�#SR/ cosß¼
 (4.13) 

Of course, the analytical derivation of k�!i" is only valid as long as the fold is not completely 
closed, which occurs when i = 2®/ cos ß. When indentation is reached, a new fold is simply 
supposed to be created immediately after. In this case, the resistance can be easily generalized 
by applying a similar procedure than the one discussed in section B.2.1 of Appendix B.2 to 
get formulae that are very close to (3.50) and (3.51). 
 
Apart from the resistance k�!i", it is also required to calculate the one associated to a beam-
like behavior of the super-element, which is the topic of the next section. 

4.2.2.2. Bending mechanism 
 
For a given indentation i∗, the collision force reached during the folding process is sufficient 
to activate the bending of the super-element. At this moment, if the web is of class 1, the 
three-hinge mechanism of Figure 4.12a is activated. It can be shown (see section C.2.2.2 of 
Appendix C.2) that the resulting force k∗!i" required to initiate this transition is equal to: 

k∗!i" = �
 = Á( + Á∗!i"�( + i sinß + Á# + Á∗!i"�# − i sinß? (4.14) 

where Á( and Á# have the same meaning than in section 3.4.2.2. The derivation of Á∗!i" is 
also based on the method detailed in section B.2.2 of Appendix B.2, except that i has to be 
replaced by i cos ß in all the expressions. 
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(a) 

l2

δ
–

δ
*

 

(b) 

Figure 4.12. Initiation and development of the bending mechanism 

When i > i∗, the resistance has to be derived according to the plastic collapse of Figure 
4.12b. As shown in section C.2.2.2 of Appendix C.2, if Á∗ is the particular value of Á∗!i" 
when i = i∗, the impact force k is given by: 

kV!i" = �
 =1 − À#À
#?� Á( + Á∗�( + i sinß + Á# + Á∗�# − i sinß� + À !�( + �#"!i − i∗" cosß!�( + i sinß"!�# − i sinß" (4.15) 

where the normal force À can be calculated by using the formulae listed in Appendix C.2. 
Before closing this section, a final remark regarding the theoretical model still needs to be 
done. In the present simplified approach, the moving plastic hinge is not treated in a rigorous 
way. According to Hopkins [73], only stationary plastic hinges allow for a slope 
discontinuity. If moving hinges are used in the model, there must be a continuous change of 
slope between the collapsing arms. This can be achieved by considering two distinct hinges � 
and b, moving at the same velocity v- = i- sin ß and connected together by a smooth line of 
constant curvature �b (Figure 4.13a). The total rotation is still � = �( + �# but is imposed 
this time without any discontinuity. 
 

 (a) Compatible model (b) Simplified model 

  
Figure 4.13. Discontinuity at moving plastic hinges 

However, in the present simplified approach, the central connection �b is neglected and it is 
assumed that there is only one plastic hinge, moving at the velocity v-  and imposing an abrupt 
rotation � (Figure 4.13b). This is not theoretically exact but may be justified by the fact that �b is usually quite small with respect to L( and L#. Furthermore, if this simplification was not 
introduced, deriving a consistent collision resistance is rather impossible to do analytically 
(see section C.2.2.2 of Appendix C.2 for more details). 

4.2.2.3. Extension to vertical super-elements 
 
All the previous developments are in fact only valid for impacts occurring on girders and the 
goal is now to extend them to frames. Unlike plane gates, it is of importance to distinguish 
between horizontal girders and vertical frames because of the inclination due to the mitre 
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angle ß. Indeed, in sections 4.2.2.1 and 4.2.2.2, the impact could be assimilated to an oblique 
collision (Figure 4.10b), but this is not true in the present situation. 
 

(a) Three dimensional view (b) Plane view 

  
Figure 4.14. Impact on a vertical frame 

This last assertion can be understood by considering the three dimensional view of Figure 
4.14a. Initially, the first contact point between the deck of the striking vessel and the super-
element occurs at point &, where a tangent condition is imposed in case of a direct impact. 
When the ship moves forward, it simply follows the direction of the longitudinal axis +�, but 
the frame is folded or bent in its plane, i.e. along the local + axis (Figure 4.14b). 
Consequently, for a given penetration i, the indentation to consider for the super-element is 
given by a function ­!i" that may be found by calculating the current intersection &′ of the 
uppermost deck with the super-element. 
 
In order to derive ­!i", let us denote by � the lower node of the super-element (Figure 4.14a) 
that is characterized by its coordinates !'á, Ná , Oá" in the global axes. In the local reference 
frame !+�, W�, X�" placed at the initial location of point @ but not moving with (Figure 4.14b), 
the position of � is given by: 

+�,á = 'á − 'h			; 			W�,á = Ná − Nh			; 			X�,á = Oá − Oh (4.16) 

where !'h, Nh, Oh" is known because the ship has to be tangent to the gate at point & for a given 
collision scenario (Figure 4.4). Using these new parameters, it may be shown that: 

­!i" = £=`# cotß2[ sinß + X�,ásin ß?
# + `#i[ sin# ß − =`# cotß2[ sinß + X�,ásin ß? (4.17) 

in which, as a reminder, ` and [ are the two radii describing the shape Γ of the uppermost 
deck. Apart from this modification, the situation is strictly similar to the one studied in 
sections 4.2.2.1 and 4.2.2.2 with ß = 0, except that i has to be replaced by ­!i". Doing so, 
the following formula is found for the folding mechanism: 

k�!i" = �
!�( + �#"º® + P
®2 �( + �#�(�# !­!i" + 2®" (4.18) 
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where ® is still given by (3.49). Of course, equation (4.18) is only valid as long as the current 
fold is not complete closed, which occurs when ­!i" = 2®. For larger values of the 
penetration, an identical deformation pattern is assumed to be immediately repeated. In this 
case, applying the same procedure than the one followed in Appendix B.2 leads to generalized 
formulae similar to (3.50) and (3.51). 
 
Regarding the force k∗!i" required to activate the bending mechanism, for an indentation ­!i", adapting (4.14) provides the subsequent result: 

k∗!i" = �
 =Á( + Á∗!­"�( + Á# + Á∗!­"�# ? (4.19) 

in which (B.26) can be used to get Á∗!­", provided that i is replaced by ­!i". As usual, when 
the folding resistance is equal to k∗!i", then the penetration i∗ is reached and the transition 
takes place. Denoting by Á∗ and ­∗ the particular values of Á∗!i" and ­!i" at this moment, 
one may write: 

k!i" = �
 =1 − À#À
#? �Á
∗ + Á(�( + Á∗ + Á#�# � + À!­ − ­∗" �( + �#�(�#  (4.20) 

In this last relation, À is the normal force due to the membrane effects calculated by using 
(C.35), provided that ß is set to zero, i is replaced by ­!i" and ­∗ is substituted to i∗. As a 
closing remark, it should be recalled that all the formulae derived in sections 4.2.2 and 4.2.3 
are only valid if there is no subsequent contact between the stem and one of the boundaries of 
the super-element. If this is the case, the resistance is set to zero because a super-element of 
type 3 is activated, as detailed hereafter (section 4.2.3). 

4.2.2.4. Numerical validation 
 
In an attempt to check the formulae established here above, many numerical simulations were 
performed using the LS-DYNA  software. For all of them, a mesh size smaller than 5	­� was 
used to correctly represent the folding process. As usual, Belytschko-Tsay shells [66] were 
used for the finite element models of both the rigid striking vessel and the deformable oblique 
girder.   
 
The local failure of the super-element was also investigated in this validation process. To do 
so, the threshold strain value was calculated by equation (3.37) and it was found that choosing G� of 11	% leads to a safe approximation of the rupture initiation. Furthermore, it was also 
pointed out that formula (3.52) proposed by Wierzbicki [167] for the concertina tearing also 
provides an adequate evaluation of the resistance when G� is exceeded. The results presented 
here aim to focus on the two possible behaviors mentioned in sections 4.2.2.1 and 4.2.2.2. 
Two different impact configurations are therefore considered.  
 
The first one is a collision occurring on a quite deep girder with a moderate span. The 
geometrical data are those listed in Table 4.2, while the material properties are the same as in 
section 3.3.4. In an illustrative purpose, the equivalent Von Mises stress in the deforming 
girder is plotted on Figure 4.15, from which it is clear that only a folding process is initiated 
in the case of a deep girder. The disorders are mainly located in the web, the flange remaining 
nearly unaffected. Moreover, it can be observed that the folding process develops along the 
inclined direction followed by the vessel, which tends to confirm the presence of moving 
central plastic lines. 
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ℎR 1	� �( 1.6	� SR 0.02	� �# 1	� ℎ� 0.5	� ß 20° S� 0.02	� G� 11	% 

Table 4.2. Geometrical date for the first 
simulation 

  
Figure 4.15. Folding process in the case 

of a deep girder 

Figure 4.16. Comparison of the numerical and analytical 
resistances for the first simulation 

The comparison of the analytical and numerical resistances for this first case is plotted on 
Figure 4.16. At the beginning, the simplified approach tends to overestimate the solution 
found by LS-DYNA . This is essentially due to the fact that the theoretical model is based on a 
rigid-plastic material, while an elastoplastic behavior is first observed at the initiation of the 
finite element simulation. On the contrary, when the penetration is getting larger, the 
analytical solution turns out to be conservative because an overall plastic state develops 
almost everywhere on the impacted structure. This may be observed on Figure 4.15, where it 
can be seen that the flow stress is nearly reached over the entire web height. 
 ℎR 0.63	� �( 2.45	� SR 0.06	� �# 3.55	� ℎ� 0.3	� ß 20° S� 0.06	� G� 11	% 

Table 4.3. Geometrical date for the first 
simulation 

  
Figure 4.17. Folding process in the case 

of a slender girder 

Figure 4.18. Comparison of the numerical and analytical 
resistances for the second simulation 

The second configuration presented here aims to investigate a collision occurring on a slender 
girder having a smaller web height and a larger span than in previous case (see Table 4.3). 
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From the equivalent Von Mises stresses plotted on Figure 4.17, it transpires that only a beam-
like behavior is activated this time. Furthermore, it can also be seen that the flow stress is 
reached near the supports and in the central cross-section immediately located under the 
impact point, which tends to corroborate the three-hinge mechanism of Figure 4.13b. 
 
The resistance curves of Figure 4.18 show that the agreement is quite satisfactory and is an 
additional validation for the theoretical model discussed in section C.2.2.2 of Appendix C.2. 
 
Nevertheless, one can argue that this good concordance is only due to the fact that the mitre 
angle is quite small (ß = 20°), so that the collision situation is not too far from a 
perpendicular impact. Therefore, in order to check this assumption, other simulations were 
run with a more important inclination (ß = 60°). Even though these configurations are not 
realistic for mitre gates, the purpose here is only to verify if the theoretical model could also 
provide satisfactory results when ß is increased. 

 
Figure 4.19. Numerical and analytical resistances for a mitre angle of 60° 

The numerical and analytical results for an angle of 60° are reported on Figure 4.19. On this 
picture, it can be observed that the resistance curve obtained by the simplified approach is 
first slightly decreasing. This can be explained by the fact that the additional energy dissipated 
by the membrane straining is not sufficient to balance the reduction of the bending effects 
coming from the diminution of the moments in accordance with the interaction criteria. This 
phenomenon is also reflected by the finite element simulation, which tends to corroborate the 
theoretical solution proposed for the beam-like behavior. 
 
4.2.3. Super-elements of type 3 
 
Super-elements of type 3 are introduced to deal with collisions occurring on the intersection 
between horizontal girders and vertical frames (Figure 4.6). As in Chapter 3, they may be 
activated in case of a direct impact or if there is a subsequent contact between the stem and 
the support of a SE2 or a SE3 (Figure 3.35).  

4.2.3.1. Analytical derivation 
 
When the vessel immediately collides the gate on one of its intersections, the deformation 
pattern associated to the folding process is still the one depicted on Figure 3.37, but instead of 
considering an indentation equal to i, one should account for the current intersection &′ 
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between the uppermost deck and the super-element axis (Figure 4.20). In this case, the true 
penetration of the striking stem ­!i" is given by a formula very similar to (4.17). 
 

 
Figure 4.20. Three dimensional view of an impact on an intersection 

From this observation, it transpires that all the formulae developed in section 3.5.2.1 are also 
valid for the present situation, provided that i is replaced by ­!i". In particular, equations 
(3.62) and (3.63) are still relevant to get the contribution of each wing, but the following 
modifications must be noted for the opening angle � (Figure 3.37b) and the fold number ¨: 

� = arccos �¨ − ­!i"2® �			 ; 			¨ = ä­!i"2® å (4.21) 

Similarly, regarding the bending process, the eight-hinge mechanism of Figure 3.39 can be 
easily extended to an oblique impact by considering that the out-of-plane displacement of the 
central node is not equal to i but to ­!i". Doing so, if the transition from the folding to the 
bending process takes place when i = i∗, the resistance can be calculated by applying 
equation (3.65) with the subsequent corrections: 

i ⟼ ­!i"		; 		i∗⟼ ­∗		; 		­∗ = ­!i∗"		; 		Á9∗ = Á9∗!­∗"		; 		ÁQ∗ = ÁQ∗!­∗" (4.22) 

Furthermore, in the case of an impact arising near the top of the gate, it is likely that T-shaped 
intersections may be involved during the collision process. Of course, if this is the case, the 
bending resistance can still be obtained with help of equation (3.67), but the modifications 
introduced in (4.22) have to be taken into account. 
 
On the other hand, when a super-element of type 3 is activated because of a subsequent 
contact, the corresponding resistance formulae have to be derived by generalizing the 
developments performed in section B.3.2 of Appendix B.3. The approach is very similar to 
what has been done so far, the major difficulty being the fact the lengths �( and �# are now 
continuously varying with the penetration. Here again, the analytical derivation has to be done 
for both a bending and a folding mechanism. The mathematical procedures are not 
particularly arduous but require cumbersome developments. For the sake of conciseness, these 
ones have been partly reported in sections C.2.3.1 and C.2.3.2 of Appendix C.2. Even though 
these calculations are not always rigorous on a theoretical point of view, they are at least 
consistent with those performed for plane gates as taking the limit for ß ⟶ 0 leads to the 
formulae established in Chapter 3. 
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4.2.3.2. Numerical validation 
 
In order to illustrate the numerical validation process, the cruciform having the geometrical 
properties of Table 4.4 is used here (the notations corresponds to those of Figure 3.39). It is 
made of more or less 6000 Belytschko-Tsay shells [66] elements having a regular size of 5	­�. The material properties are the same as in section 3.3.4 for the impacted elements, 
while the striking vessel is still assumed to be perfectly rigid. In order to account for rupture 
in the numerical model, the failure strain is calculated in accordance with equation (3.37) and 
it is found that a critical strain G� of 10	% in the analytical approach is quite adequate to 
reproduce the numerical observations.   
 

 Length Web height Web thickness Flange height Flange thickness 

Horizontal 
wings 

�( = 2.5	� ℎR = 1	� SR = 0.02	� ℎ� = 0.5	� S� = 0.02	� �# = 3	� ℎR = 1	� SR = 0.02	� ℎ� = 0.5	� S� = 0.02	� 

Vertical 
wings 

�( = 2.5	� ℎR = 1	� SR = 0.015	� ℎ� = 0.3	� S� = 0.015	� �# = 2.6	� ℎR = 1	� SR = 0.015	� ℎ� = 0.3	� S� = 0.015	� 

Table 4.4. Geometrical properties of the impacted cruciform 

The validation has been performed for eleven different cruciforms having various geometrical 
properties. The mesh size was selected after a convergence study and was progressively 
reduced from a value of 0.2	� to 0.05	� for which there is a stabilization of the collision 
resistance.  
 

 
Figure 4.21. Comparison between the analytical and numerical results 

The results that are presented in this section corresponds to a direct impact with a mitre angle ß of 20°. The curves showing the analytical and numerical resistances are plotted on Figure 
4.21. From this picture, the agreement is found to be quite satisfactory, even though there is a 
slight overestimation at the beginning of the indentation. Once again, this may be explained 
by the fact that the theoretical model is based on a rigid-plastic material, while the simulations 
are run for an elastoplastic behavior. Therefore, when the collision starts, the force opposed 
by the cruciform is lower than the one predicted analytically as the plastic deformations are 
predominant. 
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Another point that is also interesting to investigate is the transition from the folding to the 
bending mechanism. From Figure 4.21, it can be seen that this one takes place for i∗ ≃ 0.4	� 
because there is a discontinuity in the curve of the analytical resistance. To check if this 
prediction is more or less realistic, one can investigate the out-of-plane displacement of the 
central rear node (Figure 4.22a). 
 
(a) Folding process for a cruciform (b) Rear and front node displacements 

�: front node ; b : rear node 

Figure 4.22. Comparison of the displacements due to the beam-like behavior 

According to the present simplified approach, the motion due to the beam-like behavior of the 
cruciform is given by ­!i" − ­∗, so there is no activation of the bending phase as long as i < i∗. Of course, this approach is only an idealization as it transpires from numerical 
simulations that there is a coupling between the crushing and bending mechanisms. This is 
particularly true at the beginning of the penetration, where both of them develop 
concomitantly.  
 
A simple way to verify the previous assertion is to consider the numerical curve ② of Figure 
4.22b showing that the central rear node is submitted to an out-of-plane displacement since 
the beginning of the collision. As far as i < 0.4	�, this latter remains quite negligible with 
respect to the one of the central front node, which tends to confirm the predominance of the 
crushing process during this first phase. Nevertheless, when i > 0.4	�, the data provided by 
LS-DYNA  leads to the conclusion that the beam-like behavior is activated, as curves ① and ② 
are now nearly parallel. 
 
Regarding the analytical prediction, it appears that the transition penetration i∗ is more or less 
realistic. As expected, the displacements associated to the beam-like behavior are slightly 
overestimated, but this does not lead to a noticeable divergence of the resistance. 
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4.3. Resistance in the global deforming mode 
 
The previous analytical developments are only valid under the hypothesis that the structural 
elements located near the impact point are locally crushed. Nevertheless, this situation is not 
relevant for larger values of the penetration when an overall motion is activated. In 
comparison with plane gates (Chapter 3), the global deforming mode is not so strongly 
marked for mitre gates because the connection between the two leafs does not usually allow 
for an efficient bending. This particular point is quite important to correctly assess the 
resistance of such structures and is deeply investigated in this section.  
 

 
Figure 4.23. Local (1) and global (2) deforming mode for a mitre gate 

In an illustrative purpose, the deformed configuration of an impacted mitre gate is depicted on 
Figure 4.23, from which a clear distinction can be made between the local and global 
deforming modes. As in Chapter 3, both an elastoplastic and a rigid-plastic calculation of the 
global resistance km!i" have to be performed. Nevertheless, the situation is a bit more 
complicated than for plane gates as the distinction should also be made between a centered or 
an off-centered impact (Figure 4.4). 
 
4.3.1. Preliminary considerations 

4.3.1.1. Mechanical model 
 
As mentioned in section 4.1.3, during the global mode, each leaf of the gate is seen as a set of 
horizontal beams weakly connected by the frames (Figure 4.6b). Along the vertical N axis, 
they are placed at the same discrete locations N� as the horizontal girders but they do not have 
an exactly identical shape. Indeed, as shown on Figure 4.3, the girders have a variable web 
height that is smaller at their extremities. Consequently, an equivalent model (Figure 4.24a) is 
considered in order to avoid working with a non-uniform beam8. In fact, the web height is 
simply supposed to be the same as the one characterizing the cross-section placed at the level 
of the first contact point & (Figure 4.24a). By using the notations of Figure 4.3, if OgÞ is the 
position of point & along the horizontal OÞ axis, one can write: 

ℎR = ℎ
 + !OÞ − L(" tan à( if 0 ≤ OgÞ ≤ L( 
(4.23) ℎR = ℎ
 if L( ≤ OgÞ ≤ L( + L* 

ℎR = ℎ
 − !OÞ − L( − L*" tan à# if L( + L* ≤ OgÞ ≤ L( + L# + L* 
From the previous equations, it is clear that the web height is unchanged if the impact is 
initially located on the central part of the leaf. In practice however, having an off-centered 
collision such that OgÞ is outside the area 5L(	; 	L( + L*7 is rather unlikely because the lengths L( 
                                                                    
8 Apart from an important reduction of the mathematical complexity, working with a uniform cross-section also 
allows the use of Eurocode 3 [52]. 
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and L# are usually quite small with respect to the dimensions of the striking vessel. This is 
particularly visible on the two pictures of Figure 4.24b showing L( and L#. 
 

(a) Equivalent beam model (b) Actual dimensions of l1 and l2 

  
Figure 4.24. Calculation of the equivalent web height 

From (4.23), it can be argued that the approach suggested here is not necessarily conservative 
as it tends to overestimate the resistance of the beam in the inclined portions. In practice 
however, this argument is not always valid. Indeed, because of the important local forces due 
to the contacts at the central or lateral blocks (Figure 4.2), the gate is often reinforced there. 
Its resistance may therefore be thought to be higher at these locations than at the center of the 
leaf, so increasing the web height is in fact a way to account for this particularity. 
 
Apart from the equivalent web, the remaining parts of the cross-section are the girder flange 
and the collaborating portion coming from the plating. As for plane gates, this latter is found 
by applying the recommendations of Eurocode 3 [52]. A conservative symmetric shape is 
obtained by working with the minimum effective length in accordance with equation (3.68). 

4.3.1.2. Effect of the hydrostatic pressure 
 
Regarding the hydrostatic pressure, this one has little influence on the resistance opposed by 
the various super-elements analyzed in section 4.2, but the action of water should be carefully 
accounted for when developing the mathematical formulae for the global deforming mode. 
This is a major difference with the approach followed in Chapter 3. The justification lies in 
the very particular functioning conditions of mitre gates. Indeed, apart from additional 
bending moments in the structure, another effect of the hydrostatic pressure is to generate 
compressive normal forces that are crucial to insure the overall stability of each leaf (see 
Dehousse [38] for a more detailed study). Of course, this is likely to have a relative influence 
on the global resistance and it is of prior importance to account for this phenomenon. To do 
so, one can consider the simplified model of Figure 4.25b showing the situation of a 
horizontal beam before the impact. This one is assumed to be submitted to a uniformly 
distributed load ̀� that is the resulting force associated to the trapezoidal hydrostatic pressure 
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of Figure 4.25a. In order to provide the overall equilibrium, it can be shown that the following 
reactions forces are required (Figure 4.25c): 

P� = `�L2 sinß 			; 			�p = 0			; 			cp = `pL2 sinß (4.24) 

where P� and �� are the horizontal and vertical components at the central block respectively, 
while c� is the reaction at the lock wall. Ideally, this latter is only acting with an inclination ß. 
 

(a) Resulting hydrostatic pressure (b) Simplified model for a beam 

 

β

pi
Z’X’

l

 
(c) Reaction forces due to the hydrostatic pressure 

 
Figure 4.25. Hydrostatic pressure and reaction forces acting on an equivalent beam 

By using (4.24), it is easy to derive the normal compressive force À� and the bending 
moments ��!OÞ" acting on each beam. It is found that:  

À� = `�L2 cot ß			 ; 			��!OÞ" = `�OÞ2 !L − O′" (4.25) 

where O′ is the horizontal coordinate measured in the plane of the gate. From (4.25), it can be 
concluded that the gate is initially bent and compressed before the collision, which has an 
influence on the global resistance. 
 
4.3.2. Off-centered impact 
 
As in Chapter 3, the derivation of the global resistance km!i" has to be done for both an 
elastoplastic or rigid-plastic material. The method applied in this section is nearly similar than 
the one followed for plane gates, except that the inclination due to the mitre angle ß and the 
effects of the hydrostatic pressure have now to be considered. 

4.3.2.1. Elastoplastic solution 
 
In order to derive an elastic solution, the cubic displacement field .!N�, OÞ" of Figure 4.26 is 
assumed, where the maximal out-of-plane displacement ©!N�, i" is reached at the first contact 
point &. If OgÞ denotes the position of & along the OÞ axis, it can be shown that the analytical 
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expression of .!N�, OÞ" is the same as (3.71), provided that O and Og are replaced by O′ and OgÞ 
respectively. On Figure 4.26, it is worth noticing that only the impacted gate leaf is submitted 
to a displacement field, the other one remaining unaffected. In reality, when the portion �b is 
bent, there is a short motion of point b such that the length of �b remains more or less 
unchanged, which implies that b� rotates as a rigid body. Nevertheless, these phenomena are 
negligible during the elastic phase. 
 

 
Figure 4.26. Displacement field for an off-centered impact 

The bending moments ��!OÞ, i" due to .!N�, OÞ" can be found by applying the fundamental 
equation for elastic beams recalled by (3.74). With this result, the reaction forces P�, �� and c� 
(Figure 4.25c) may be easily derived by writing the translational and rotational equilibrium 
for each leaf individually. Accounting also for the effects of the hydrostatic pressure 
calculated in (4.24), it can be shown that the maximal bending moment ��!i" and the normal 
force À�!i" acting in the beam are given by: 

À�!i" = `�L2 cotß + 3�&� cot 2ßOgÞ!L − OgÞ"# 	©!N�, i"		; 			��!i" = `�Og
Þ2 !L − OgÞ" + 3�&�©!N� , i"		OgÞ!L − OgÞ"	  (4.26) 

where � is the Young modulus and &� the inertia of the cross-section. A rapid comparison of 
equations (4.24) and (4.26) when ©!N�, i" = 0 shows that there is a continuity in the 
definition of the normal force and the bending moment.  
 
Regarding the reaction forces, it is worth noting that initially, when only the hydrostatic 
pressure is acting on the structure, the situation is ideally symmetric (Figure 4.27a), so the 
reaction forces on the left and right lateral contact blocks are perfectly the same. However, for 
an off-centered impact, the symmetry is lost and the reaction forces c� and ç� (Figure 4.27a) 
on the lateral blocks do not necessarily have the same magnitude and orientation (c� is usually 
greater than ç�). In particular, the inclination of c� is no longer equal to ß (Figure 4.27b), 
which means that there are additional components c� cos Δß and c� sin Δß that have to be 
balanced at the lock wall. Therefore, one should always take care that the compensation is not 
made by unexpected contacts between the gate and some other weaker parts, such as the pivot 
for example.  
 
Once the bending moments ��!OÞ, i" and the normal force À�!i" are known, let us calculate 
the contribution k�!i" to the global resistance. Applying the equilibrium method leads to: 

k�!i" = 3�&�LOgÞ#!L − OgÞ"# ©!N� , i" (4.27) 

in which the last unknown is the maximal displacement ©!N�, i" of the first contact point & 
(Figure 4.26). In fact, this function can be obtained by holding the same reasoning as in 
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Appendix B.4 for a gate supported by a sill (Figure B.17a and c). Therefore, (B.69) and 
(B.70) are still valid in the present case. 
 

(a) Reaction forces at the lateral contact blocks before and 
during the impact 

(b) Reaction force at the lateral contact 
block during the impact 

  
Figure 4.27. Reaction forces at the lock walls 

Of course, (4.27) is only valid as long as the beam resistance k�,�!i" is not reached. In order to 
calculate k�,�!i", the following definitions are recalled (in order to clarify all these notations, 
a summary is provided at the end of Table C.1 in Appendix C.3): 
 
• As detailed in section 3.6.2.1, the maximal allowable bending moment is equal to �J,�, �o,� or �Ío,� according to the classification. Furthermore, in order to account for the 

coupling with the local deforming mode, these values have to be reduced if the horizontal 
girder is simultaneously crushed. To do so, the coefficients ÁJ,�!i", Áo,�!i" and Áo̅,�!i" may 
be introduced. They are calculated by applying the linear interpolation suggested in 
Appendix B.2. 

 
• Regarding the normal force, whatever the classification, the tensile resistance is always 

equal to the plastic limit ÀJ,� even though there is a simultaneous crushing due to the local 
mode. However, this is not true in compression. For classes 1, 2 and 3, the compression 
resistance is also equal to ÀJ,�, but this is not valid if buckling is likely to occur. In this 
case, one may only consider the contribution ÀÍJ,� of the efficient portion. 

 
The evaluation of the beam resistance k�,�!i" can now be achieved with help of the previous 
definitions. To do so, the philosophy is the same as in section 3.6.2.2, but the situation is a bit 
more complicated here because the structure is simultaneously bent and compressed. 
Therefore, a combination formula has to be used in accordance with the classification. By 
adapting the recommendations of Eurocode 3 [53], the resistance for class 1 and 2, 3 or 4 
cross-sections is reached when the following criteria are respectively met: 

��!i"ÁJ,�!i"�J,� + =À�!i"ÀJ,� ?
# = 1			; 			 ��!i"Áo,�!i"�o,� +À�!i"ÀJ,� = 1			; 			 ��!i"Áo̅,�!i"�Ío,� +À�!i"ÀÍJ,� = 1 (4.28) 

where À�!i" and ��!i" are the maximal normal force and bending moment given by (4.26). 
Consequently, introducing (4.26) in (4.28) allows to determine the value of ©!N�, i" for which 
the resistance is reached. This result may then be introduced in (4.27) to get the resistance k�,�!i". Finally, the contribution of beam p during the elastoplastic phase is found by 
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admitting that once k�,�!i" is reached, the resistance remains equal to k�,�!i" until the 
transition to the global plastic mechanism is activated (i = i�). In other words, for i < i�, 
the contribution of beam p to the global resistance may be obtained by adapting (4.27) in the 
following manner: 

k�!i" = min Ï 3�&�LOgÞ#!Õ − OgÞ"# ©!N� , i"	; 	k�,�!i"Ð (4.29) 

which is strictly similar to the procedure applied in section 3.6.2.2. The curves depicted on 
Figure 3.51 are therefore also applicable to the present case. With (4.29), the global 
elastoplastic resistance km!i" can be calculated by (3.5).  

4.3.2.2. Perfectly plastic solution 
 
As for plane gates (Chapter 3), when the resistance during the local deforming mode reaches a 
sufficient value k�!i", an overall plastic mechanism is activated over the entire structure. This 
second phase starts when the transition penetration i� is reached, i.e. when the two terms of 
equation (3.76) are equal. In order to evaluate the global resistance km!i" when i > i�, it is 
assumed that all the beams of the equivalent mechanical model are made of a rigid-plastic 
material and collapse according to a predefined scheme.  
 

l

l2

 
Figure 4.28. Plastic mechanism for a class 1 cross-section in the case of an off-centered impact 

For a class 1 cross-section, the mechanism considered here is depicted on Figure 4.28 and 
only involves one moving plastic hinge. This one is initially placed at point &, but travels with 
a velocity ©-!N�, i" tanß along the O′ axis. During the collapse procedure, the non-impacted 
leaf is assumed to rotate as a rigid body, which implies that the b�±±±± = L. On the other hand, it 
is further postulated that the total length of �b remains unchanged, with the consequence that L( + L# = L. This last assumption is also used by Paik and Thayamballi [121] when deriving 
the post-ultimate behavior of a column under pure compression. Nevertheless, such a way of 
doing is arguable because it does not respect the normality rule. Indeed, when a structural 
element is submitted to a normal compressive force À� (Figure 4.29), according to (3.82), the 
axial reduction rate Δ-  should not be equal to zero, but this requirement is not verified if L( + L# = L.  
 
As a consequence, applying the equilibrium method to find the resistance k�!i" leads to a 
solution that is not entirely statically admissible because it violates the normality criterion. Of 
course, this approach is not really satisfactory but finding a totally consistent solution leads to 
equations that are impossible to solve analytically. More details about the exact application of 
the equilibrium method to the present problem can be found in section C.3.2 of Appendix C.3. 
 
Under the hypothesis that there is no axial shortening of �b, it is possible to find the current 
lengths L( and L# characterizing the two parts of the impacted leaf. It may be shown that: 
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L( = OgÞ − ©!N� , i" tanß + ©#!N�, i"2!OgÞ − ©!N� , i" tanß"			 ; 			 L# = L − L( (4.30) 

where OgÞ is the coordinate along the OÞ axis of the initial contact point & (Figure 4.28). 
Furthermore, if b�±±±± only suffers a rigid rotation, the current coordinates !'x, Ox" of point b in 
the !', O" axis can be obtained by solving simultaneously the subsequent set of equations: 

='x − OgÞ sin ß − ©!N� , i"cosß ?
# + !Ox − OgÞ cosß"# = L##			; 			'x# + !Ox − 2L cosß"# = L# (4.31) 

which allows to calculate the components .x and vx along the '′ and O′ axes of the 
displacement imposed to point b. From these results, it can be shown that the rotation angles �(, and �# at the plastic hinge (Figure 4.28) are given by: 

�( = ©!N� , i"OgÞ − ©!N�, i" tan ß			 ; 			�# = ©!N�, i" − .xL − OgÞ −vx + ©!N� , i" tanß (4.32) 

In the attempt of applying the equilibrium method, one can consider the internal forces À� and è� acting at the central contact block (Figure 4.29). For moderately large displacements, they 
may be supposed to act along the '′ and O′ axes and equation (3.81) can still be used as an 
interaction criteria with the bending moment ��. Furthermore, if ®� and �� are respectively 
the horizontal and vertical components of the reaction at the lateral block, expressing the 
overall equilibrium of the gate allows to determine them as a function of the resistance k�!i". 
Similarly, if only the impacted leaf is considered, the stability requirements impose that: 

À� = ®� cosß − `�L( sin�( + `�L# sin �# + �� sin ß ≤ À
 
(4.33) è� = ®� sinß + `�L# cos �( + `�L# cos�# − �( cosß + k� 

�� = À�!©!N� , i" − .x" + è�!L − OgÞ −vx + ©!N� , i" tanß" − `�L##/2 
where �( and �# are given by (4.32). As suggested by Paik and Thayamballi [121], the 
contribution k�!i" of the beam to the global resistance km!i" may then be obtained by using 
the yield criterion (3.81), in which À� and �� are replaced by their expressions given in (4.33). 
Doing so, it is worth noting that the approach allows for a continuous transition between the 
solutions obtained during the elastoplastic phase and the present ones. 
 

 
Figure 4.29. Definition of the internal and reaction forces for an off-centered impact 

As a final comment, it should be mentioned that the displacement function ©!N�, i" is 
unknown so far. In fact, this latter may still be evaluated with help of the formulae listed in 
Table B.1 of Appendix B.4 for a gate with a sill.  
 
Of course, all the previous developments are only valid for class 1 cross-sections. If this 
condition is not fulfilled, then the plastic mechanism of Figure 4.28 cannot be used because 
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the beam is submitted to an early buckling. In this case, another plastic solution involving a 
folding process has to be derived (Figure 3.56). For conciseness, the details are reported in 
section C.3.3 of Appendix C.3.  
 
Finally, the individual resistance k�!i" provided by the beam is obtained by combining the 
elastoplastic and perfectly plastic solutions as discussed in section 3.6.3.2 (Figure 3.57). 

4.3.2.3. Sliding condition 
 
The elastoplastic and perfectly plastic solutions that were derived here above are in fact only 
valid as long as there is a sufficient collaboration between the two parts of the gate. Indeed, 
the shearing force �� should be transmitted from one leaf to the other in order to insure the 
overall stability of the structure. 
 

 
Figure 4.30. Internal forces at the central contact block 

If the contact blocks are not physically connected, friction is the only phenomenon that may 
put the non-impacted leaf into motion. Consequently, for a beam located at the level N� along 
the vertical axis, only a shearing force �� can develop at the central junction as long as no 
sliding occurs (Figure 4.30). If the two contact blocks are pushed against each other by a 
normal force P�, according to the Coulomb criterion, sliding takes place as soon as the 
following condition is fulfilled: 

|��| > êP� (4.34) 

in which ê is a friction coefficient (usually ranging from 0.3 to 0.6) and where the 
components P� and �� can be simply obtained from equivalence considerations: 

P� = À� cosß + è� sin ß			 ; 			�� = è� cosß − À� sinß (4.35) 

where À� and è� are given by (4.33) for a class 1 cross-section. Of course, the duration of the 
sliding phase is limited because the contact between the two parts of the structure is lost when 
the central displacement is equal to the length L� of the blocks (Figure 4.3). At this moment, 
the contribution k�!i" is set to zero, which means that the beam does not contribute anymore 
to the global resistance of the gate.  
 
4.3.3. Centered impact 
 
In the case of a centered impact, the collision scenario is symmetric (Figure 4.4b) and this 
should be also the case for the global deformation pattern. In order to derive km!i", the 
mechanical model introduced in section 4.3.1.1 is also used, so the gate is represented as a set 
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of horizontal beams having a uniform web height that is calculated in accordance with Figure 
4.24a and equation (4.23). 

4.3.3.1. Elastoplastic solution 
 
In the elastic regime, the beam located at a level N� along the vertical axis is submitted to an 
out-of-plane displacement ©!N�, i" at the central contact blocks (Figure 4.31). On a theoretical 
point of view, this can be assimilated to a support settlement and it is assumed that this 
motion is only responsible for an axial reduction Δ of the two segments �b and b� given by: 

Δ� = L − �L# + ©#!N�, i" − 2L©!N�, i" sinß (4.36) 

where L is the initial length of each leaf. In order to generate this shortening, �b and b� 
should be submitted to a total compressive force À�!i" parallel to O′ and having the following 
magnitude: 

À�!i" = ��� Δ�L + `�L2 cotß (4.37) 

where � is the Young modulus and �� is the cross-section area. In (4.37), it is worth noting 
that the first term only is due to the axial reduction, the second one coming from the 
hydrostatic pressure. Another effect of the surrounding water is to produce bending moments 
that are also given by (4.25) with a maximal value ��!i" = `�L#/8 obtained when OÞ = L/2. 
 

 
Figure 4.31. Displacement field for a centered impact 

Under the assumption that the elastic regime only involves small displacements, the 
equilibrium can be expressed in the initial configuration and it can be shown that the 
individual contribution k�!i" to the global resistance writes: 

k�!i" = 2À�!i" sinß = 2���L ³L − �L# + ©#!N�, i" − 2L©!N� , i" sin ß´ sinß (4.38) 

In fact, (4.38) is only valid as long as the beam resistance k�,�!i" has not been reached. This 
arises when the appropriate interaction criterion given by (4.28) is satisfied. At this moment, it 
is assumed that the contribution to the total resistance is simply given by k�,�!i" until the 
transition penetration i� is reached. So instead (4.38), one should write: 

k�!i" = min ë2���L ³L − �L# + ©#!N�, i" − 2L©!N� , i" sinß´ sinß	; 	k�,�!i"ì (4.39) 

where ©!N�, i" can still be calculated with help of the formulae provided in section B.4.1 of 
Appendix B.4 for a gate with a sill. 

4.3.3.2. Perfectly plastic solution 
 
For i > i�, the global resistance km!i" is calculated by assuming that an overall mechanism 
is activated over the whole gate. The contribution k�!i" of a beam located at the level N� along 
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the vertical axis is obtained by assuming a perfectly plastic material and a given collapse 
scheme. For a centered impact, this latter is symmetric, as depicted on Figure 4.32. Each leaf 
is made of two rigid arms �& and &b separated by a stationary plastic hinge at point & such 
that their initial lengths remain unchanged, i.e. �&±±± = &b±±± = L/2. As mentioned in section 
4.3.2.2, doing so is not theoretically acceptable because the normality rule is not satisfied, 
which implies that the present solution is not statically admissible. However, unlike the off-
centered configuration, all the compatibility requirements are respected here as no moving 
hinge is involved in the plastic mechanism, so the solution is at least kinematically 
admissible. 

 
Figure 4.32. Plastic mechanism for a class 1 cross-section in the case of a centered impact 

In the optic of using the equilibrium method, let us denote by !'g , Og" the current coordinates 
of point & in the !', O" axes (Figure 4.32). From geometrical considerations, it can be shown 
that these parameters are obtained by solving simultaneously the two subsequent equations: 

'g# + Og# = L#/4			; 			!L sinß − ©!N� , i" − 'g"# + !L cosß − Og"# = L#/4 (4.40) 

where the displacement function ©!N�, i" is still given by the formulae listed in Table B.1 of 
Appendix B.4 for a gate with a sill. With these results, the rotation angles �( and �# at the 
plastic hinge (Figure 4.32) are found to be as follows: 

�( = arctan �'gOg� − ß			 ; 			�# = ß − arctan=L sinß − ©!N�, i" − 'gL cosß − Og ? (4.41) 

Once all the required geometrical properties are calculated, the next step consists in writing 
the overall equilibrium of the structure. This allows to express the reaction forces ®� and �� at 
the lateral contact blocks (Figure 4.33) as functions of the resistance k�!i". From these 
relations, one can calculate the internal forces è� and À� respectively acting along the '′ and O′ axes at point b as well as the bending moment �� at point &. These latter are found to be: 

À� = ®� cosß + `�L2 sin �( − `�L2 sin �# + �� sin ß ≤ À
 
(4.42) è� = ®� sinß + `�L2 cos �( + `�L2 cos�# − �( cosß + k� 

�� = À�L2 sin �# + `�L#2 − è�L2 cos �# 
in which the angles �( and �# are given by (4.41). Once again, the contribution k�!i" of the 
beam to the global resistance km!i" can be calculated by introducing (4.42) in the yield 
criterion (3.81). Of course, doing so is only valid for a class 1 cross-section. For the other 
cases, the mechanism of Figure 4.32 can still be used, but instead of having a plastic hinge at 
point &, the folding pattern of Figure C.12 can be used. Doing so, the resistance k�!i" is 
evaluated by following a procedure very similar to the one exposed in section C.3.3 of 
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Appendix C.3, except that �� is this time obtained by summing up the rotations �( and �# 
given in (4.41). 

 
Figure 4.33. Definition of the internal and reaction forces for a centered impact 

Finally, the individual resistance k�!i" is calculated by combining the elastoplastic and 
perfectly plastic solutions derived here above.  
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4.4. Numerical validations 
 
The goal of this section is to present comparisons between the resistance curves obtained 
numerically and analytically. To do so, the finite element software LS-DYNA  is used to 
simulate collisions on mitre lock gates. 
 
4.4.1. Description of the finite element model 
 
Building a realistic finite element model for a mitre lock gate is not straightforward because 
the boundary conditions are quite particular. In an attempt to properly represent the supports 
of the structure, the lock walls and the sill are also modeled (Figure 4.34) but considered as 
rigid. The contact between the leafs and the sill is provided by the lowermost horizontal 
girder, while the support at the lock walls is made though lateral blocks. At the middle of the 
gate, the central blocks are also modeled to insure the contact between the two leafs. All these 
components are meshed with Belytschko-Tsai shell elements [66] and the general surface to 
surface penalty contact algorithm of LS-DYNA  is used to avoid any relative penetration. In 
order to model friction, the static and dynamic coefficients are set to 0.3. 
  
When the gate is pushed against the lock walls, the forces are transmitted through the lateral 
blocks. On the contrary, when the structure tends to separate from the walls, this motion is 
prohibited by the tension in the ties and the shearing of the pivots. Therefore, these two 
components are modeled with cable elements that are infinitely stiff in tension but do not have 
any stiffness in compression. Such a representation has the advantage of being quite easy to 
implement, but it also avoids introducing rotational restraints on the lateral studs. 
 

 
1 - Left tie ; 2 - Left pivot ; 3 - Right tie ; 4 - Right pivot ; 5 - Left lock wall ; 6 - Right lock wall 

7 - Sill ; 8 - Plating ; 9 - Horizontal girder ; 10 - Vertical frame ; 11 - Central studs ; 12 - Lateral stud 

Figure 4.34. Finite element model of a mitre gate 

Regarding the material properties, except for the lock walls and the sill that are perfectly stiff, 
all the remaining parts are affected with the mild steel properties listed in Table 3.2, the 
stress-strain relation being still the one depicted on Figure 3.21. The strain-rate effect is not 
taken into account because the striking velocities are quite low. Concerning the mesh size, the 
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same remarks than those mentioned in section 3.7.1.1 are applicable. In particular, the 
refinement should be sufficient near the central and lateral blocks because these areas are very 
sensitive due to large contact forces. Typically, the elements dimensions vary between 5 and 10	­� to keep a sufficient precision on the results provided by LS-DYNA .  
 
As a final remark, it should be mentioned that the hydrostatic water was applied on the lock 
gate by loading the immerged shell elements with an appropriate distributed pressure. 
 
4.4.2. Off-centered impact 
 
It is focused here on an off-centered impact (Figure 4.4a) occurring on the gate of Figure 4.34. 
The corresponding geometrical data are listed in Table 4.5, using the notations introduced on 
Figure 4.3. For this scenario, the first striking vessel shown on Figure 3.60 is used for the 
simulation and its geometrical dimensions are listed in the associated table. It has a total mass 
of 4000	S and an initial velocity of 2	�/�. The simulation is stopped when the total initial 
kinetic energy of 8	�Ü is completely dissipated or when the contact between the two leafs is 
lost. In the !', N, O" axes of Figure 4.4, the position of the summit @ of the stem is such that Nh = 8.2	� and Oh = 7.15	�. 
 

General data Plating L( (�) L# (�) L* (�) ß ß′ à( à# ℎ
 (�) L�  (�) SJ (�) 3.35	 3.15	 7	 19°	 19°	 6°	 10°	 1.5	 0.1	 0.022	
Horizontal girders Vertical frames N (�) ℎR  (�) SR (�) ℎ� (�) S� (�) O′ (�) ℎR  (�) SR (�) ℎ� (�) S� (�) 0 1.5	 0.016	 0.4	 0.012	 1	 1.5	 0.012	 0.3	 0.012	2.53 1.5	 0.016	 0.4	 0.012	 3.35	 1.5	 0.012	 0.3	 0.012	5.23 1.5	 0.016	 0.4	 0.012	 6.85	 1.5	 0.012	 0.3	 0.012	9.06 1.5	 0.016	 0.4	 0.012	 10.35	 1.5	 0.012	 0.3	 0.012	10.3 1.5	 0.016	 0.4	 0.012	 12.7	 1.5	 0.012	 0.3	 0.012	

Table 4.5. Geometrical properties of the gate 

The numerical and analytical curves showing the evolution of the resistance are depicted on 
Figure 4.35. From this comparison, it can be observed that the simplified approach provides a 
reasonable approximation of the collision force in the present case.  
 
According to the analytical solution, the gate resistance is first provided through the local 
deforming mode until the transition penetration of 0.6	� is reached. This is particularly 
visible on Figure 4.35, where the abrupt discontinuities for i ≤ 0.6	� correspond to the 
successive activations of various super-elements. For i > 0.6	�, the global mode is initiated 
and the resistance becomes more or less constant. Such a situation is not really surprising and 
is due to the plastic mechanism detailed in section 4.3.2.2. After that, when i > 0.9	�, the 
theoretical sliding condition (4.34) is satisfied, which allows for a progressive relative motion 
of the leafs. Each time the contact between two central blocks is lost, there is a sudden 
decrease in the resistance, as depicted on Figure 4.35. 
 
From the numerical simulation, it appears that sliding is initiated when i is close to 0.8	�, 
which means that the theoretical prediction is a bit unsafe. This is due to the difficulty to get a 
refined analytical prediction of internal forces P� and �� involved in equation (4.34). 
Nevertheless, it can be concluded from Figure 4.35 that the agreement on the resistance is 
quite satisfactory for a pre-design stage. Even though they have not been reported here, this 
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conclusion is also valid for the curves showing the evolution of the internal energy with the 
penetration. 
 

 
Figure 4.35. Comparison of the analytical and numerical resistance curves for an off-centered impact 

As a closing remark about off-centered collisions, it is worth mentioning that all the 
simulations performed with LS-DYNA  systematically lead to a loss of contact between the two 
leafs for an initial kinetic energy of 8	�Ü (i.e. for a vessel of 4000	S with an initial velocity of 2	�/�). In practice, this situation is of course not acceptable because it produces a loss of 
watertightness and the potential emptying of the upstream reach to the downstream one. In 
addition, apart from the important damages caused to the gate, the vessel itself could be 
severely damaged. One should therefore carefully account for such a dangerous situation. 
 
4.4.3. Centered impact 
 
The case of a centered impact (Figure 4.4b) is now investigated. The initial position of the 
striking vessel in the !', N, O" axes of Figure 4.4 is such that Nh = 7.7	� and Oh = 12.8	�. 
The gate used for the simulation is the same as the one presented in the previous section. The 
corresponding analytical and numerical resistance curves are shown on Figure 4.36. 
 
From this picture, it can be seen that initially, there is a sudden increase of the resistance that 
is simply due to the local deforming mode. After that, when i is close to 0.18	�, there is 
another discontinuity in the curve because other super-elements are impacted. At this 
moment, the local resistance is sufficient to activate the overall plastic mechanism of Figure 
4.32 and consequently, for the subsequent values of i, the analytical impact force is 
calculated in accordance with the formulae detailed in section 4.3.3.2. As this collapse process 
is unstable, it is not surprising to have a decreasing curve. 
 
Once again, the agreement of the simplified approach with the finite element solution is 
satisfactory. Nevertheless, for i > 0.7	�, the curve given by LS-DYNA  starts growing again 
and stabilizes around 0.82	�. This is simply due to the fact that for large values of the 
penetration, as the stem angle _ is close to 90°, there is a second contact between the stem 
and the gate, which is assimilated as a shock and explains the divergence. On a mathematical 
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point of view, this situation is also considered by modifying the definition of the displacement 
function ©!N�, i" such as discussed in section B.4.2 of Appendix B.4. However, doing so only 
produces a small slope modification of the analytical curve but finally leads to a conservative 
estimation. 
 

 
Figure 4.36. Comparison of the analytical and numerical resistance curves for an off-centered impact 

For i = 0.82	�, the simulation is stopped because the initial kinetic energy of 8	�Ü has been 
entirely converted into internal one. Consequently, one may argue that a centered collision is 
a less critical impact configuration than an off-centered one.  
 
The influence of various parameters such as the impact point, the stiffening system... on the 
collision resistance are briefly investigated in Appendix B.4. Some other comparisons 
between the analytical and numerical results are also available in this section. 
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4.5. Conclusions 
 
The purpose of this chapter was to develop an analytical model to predict the resistance of a 
mitre lock gate. To achieve this goal, the structural behavior was first studied in a local 
deforming mode, which required to develop the three super-elements introduced in section 
4.2. These ones are mainly similar to those already introduced in Chapter 3 for plane lock 
gates, except that the mathematical derivation had to be performed by accounting for the mitre 
angle ß. The developments realized here may be seen as a generalization of the former ones. 
Furthermore, for ß → 0, the results of sections 3.3, 3.4 and 3.5 can be recovered. This 
explains why the presentation was a bit more succinct in this chapter. 
 
As a second step, the gate was studied in the global deforming mode by assuming that each 
leaf may be decomposed into a set of horizontal beams weakly connected by the vertical 
frames. The equilibrium method was applied to derive analytical solutions for an elastoplastic 
and a perfectly plastic material. These ones were detailed in section 4.3. 
 
In order to validate these mathematical developments, numerical simulations were performed 
with the finite element software LS-DYNA . The agreement was found to be satisfactory and the 
simplified approach tends to be conservative. From this validation procedure, the following 
important remarks may be stressed: 
 
• The analysis of the numerical and analytical results shows that a major difference as 

compared to plane gates (Chapter 3) appears during the global deforming mode. Indeed, 
from the figures presented in section 4.4 and in Appendix C.4, it transpires that the impact 
force tends to decrease (or at least to stabilize) when an overall mechanism is activated. 
Such an observation can be theoretically explained by the fact that the solutions 
characterizing the plastic collapse are unstable. This was not necessarily the case for plane 
structures, where tensile membrane effects may cause an increase of the global resistance. 
For mitre gates however, as compressive forces dominate, such a situation is not possible. 

 
• For a striking vessel with an initial kinetic energy of 8	�Ü (i.e. a mass of 4000	S and a 

velocity of 2	�/�), all the simulations have shown that in case of an off-centered impact, 
the contact between the two leafs was systematically lost before having an entire internal 
dissipation. Of course, if the two parts of the gate separate, the watertightness is not 
preserved and severe damages may be caused to both the gate and the striking vessel, 
which is not acceptable. 
 

• The direct implication of the previous observations is that unlike plane gates, the most 
dangerous impact configurations are not necessarily those with huge vessels. Indeed, if the 
ships are quite large, a centered collision is more likely to occur than an off-centered one. 
In such a case, the contact between the two leafs will never be lost as they are forced to 
move in unison. Consequently, in this situation, the striking ship may be stopped by the 
structure if this latter is capable of absorbing the initial kinetic energy. 
 

• Another reason for arguing that a centered impact is less dangerous is due to the fact that 
the two legs are deformed under the impact, which allows for a better internal absorption 
and a higher resistance. On the contrary, for an off-centered collision, only the impacted 
leaf is mobilized to stop the penetration of the striking vessel, which is much less efficient. 
This reasoning can be corroborated by comparing the results presented in section 4.4.2 and 
4.4.3, from which it appears that the maximal resistance reached for a centered impact 
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(Figure 4.36) is approximately two times higher than the one observed (Figure 4.35) for an 
off-centered configuration. 

 
From the last three previous points, it can be concluded that an off-centered impact involving 
a vessel with a reasonable initial kinetic energy may be the most dangerous scenario to 
consider when designing lock gates. 
 
As a final remark, it should be mentioned that all the previous mathematical and numerical 
efforts were performed by accounting explicitly for the hydrostatic pressure. Unlike plane 
gates, the effect of the surrounding water is quite important in the present case, in particular 
for off-centered impacts. Indeed, the pressure exerted on the non-impacted leaf contributes to 
its rotational stability and prevents a too early separation of the two parts of the gate9. In order 
to illustrate this last comment, a finite element simulation was run without modeling the 
action of water. By so doing, the separation arises at the very beginning of the impact and the 
non-impacted leaf starts rotating as a rigid body (Figure 4.37), which causes the immediate 
collapse of the other one. 
 

 
Figure 4.37. Opening of the non-impacted leaf if the hydrostatic pressure is not modeled 

Apart from insuring the rotational stability, the hydrostatic pressure is also quite important for 
the collaboration between the two leafs because it tends to push them against each other. As a 
direct implication, the criterion (4.34) requiring that �� > êP� is more difficult to satisfy, 
which delays the initiation of sliding. Consequently, one should always account for the 
hydrostatic pressure when analyzing the crashworthiness of mitre lock gates. 

                                                                    
9 This assertion may be easily understood by considering the resulting hydrostatic force �̀L acting on the non-
impacted leaf of Figure C.8. 
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5.1. Scientific developments 
 
The purpose of this first part was to develop an analytical method to evaluate the collision 
resistance of plane and mitre lock gates. In addition to the particular conclusions already 
presented in sections 3.8 and 4.5, we would like to insist on the main innovative scientific 
developments that have been required to achieve this goal.  
 
The fundamental assumption is that there are two possible ways for a lock gate to withstand 
ship impacts. The first one is known as the local deforming mode and only involves a 
localized crushing of structural components, while the second one is called the global 
deforming mode and implies an overall bending of the structure (Figure 3.9a). 
 
The resistance during the local deforming mode is evaluated by using the super-elements 
method. In this approach, the gate is divided into large structural entities. Each of them is 
characterized by some geometrical and mechanical properties and is assumed to be decoupled 
from the others. Three different types of super-element are introduced. Their individual 
resistance is derived by applying the energy theorems. In addition to the results already 
available in the literature, the following original developments are performed in the 
framework of this thesis: 
 
• The resistance of impacted plating elements (Figure 3.11a) is derived to account for the 

true elliptic shape of the stem (Figure 3.14) and of the bulb (Figure 3.18). Doing so is 
highly required, as the classical developments corresponding to a punctual impact are 
found to lead to prohibitively conservative results. Using these new formulae, the local 
resistance is evaluated in a more realistic way. 
 

• The theoretical approach to derive the collision resistance of horizontal girders and vertical 
frames (Figure 3.11b) is unified to be consistent with the plate strip formulation. 
Furthermore, it is shown that considering only a folding process (Figure 3.26) is not 
sufficient for slender elements because they are likely to bend during the impact (Figure 
3.30). Considering an abrupt transition between the two mechanisms is found to be quite 
realistic.  
 

• Another original contribution concerning girders and frames is that the resistance provided 
during the above-mentioned bending mechanism is calculated by accounting for the 
preliminary crushing of the cross-section occurring during the first folding phase (Figure 
3.32b). To do so, it is proposed to evaluate the plastic bending moment by neglecting the 
portion of the web that is completely crushed and by interpolating linearly for the 
intermediate configurations. 
 

• For a direct impact occurring on the intersection between horizontal and vertical stiffening 
elements (Figure 3.35a), the resistance is theoretically developed with a consistent 
assumption on the displacement field. In addition, it is also shown that considering only a 
folding process (Figure 3.37) is not conservative as an overall bending of the super-
element is also likely to occur (Figure 3.39). Consequently, new formulae are developed to 
include this particularity. They also account for the influence of the crushing process. 
 

• The same work is done in the case of an impact occurring on an intersection because of a 
subsequent contact (Figure 3.35b). Such a situation has never been treated in the literature, 
which means that the suggested folding and bending mechanisms are totally original. 
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• In the case of mitre lock gates (Figure 4.1), all the previous developments have been 
extended to account for the inclination angle ß of the leafs (Figure 4.3). On a mathematical 
point of view, this is equivalent to an oblique impact, so the corresponding formulae are in 
fact a generalization of the previous ones, these latter being recovered when ß tends to 0. 
 

• Apart from the mathematical efforts mentioned previously, the case of a collision on a 
mitre lock gate also requires to treat the particular case of a beam impacted obliquely 
(Figure 4.12). Such a situation has never been treated in the literature and finding a 
theoretical solution that is entirely satisfactory is not yet achieved. The resistance proposed 
in this thesis is not strictly admissible but is found to be sufficient for the present purpose. 
 

However, the previous derivation of the local resistance cannot account for the coupling 
between the super-elements, so considering only a localized impact leads to a drastic 
overestimation of the collision force. To solve this problem, a second calculation is performed 
in the global deforming mode by assuming that the gate is forced into an overall motion. In 
this case, the resistance is calculated by assuming that the gate is seen as a set of independent 
beams (Figure 3.12). Each of them corresponds to a horizontal girder, to which is attached a 
collaborating part of the plating. The innovative achievements of this thesis related to the 
global mode may be summarized as follows: 
 
• An elastoplastic evaluation of the bending resistance is performed for each beam. Even 

though this is not theoretically exact, this is simply achieved by combining an elastic and a 
rigid-plastic calculation. The elastic derivation is carried out without difficulty but 
regarding the plastic solution, the Eurocode cross-section classification is considered. 

 
• In the case of class 1 cross-sections, the resistance is calculated by assuming a collapse 

mechanism involving a sufficient number of hinges. For each of them, the plastic capacity 
is calculated by accounting for the potential web folding that may take place during the 
local mode. A simplified formula is proposed in this purpose. 
 

• For other cross-sections that do not have a sufficient rotation capacity, the post-buckling 
resistance is evaluated by supposing that a localized folding mechanism occurs over the 
uncrushed web height (Figure 3.56).  
 

• In the particular case of mitre lock gates, the calculations are done with due consideration 
for the inclination angle ß of the two leafs (Figure 4.3). In addition, a sliding criterion is 
proposed to detect the penetration for which there is a separation of the two parts of the 
gate (Figure 4.30). 

 
Finally, in order to have a more realistic evaluation of the final lock gate resistance, a method 
is suggested to combine the local and global calculations. This approximate procedure allows 
for a better assessment of the coupling between the two deforming modes. 
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5.2. Perspectives 
 
The results provided by the simplified analytical procedure described in chapters 3 and 4 are 
the curves showing the resistance and the internal energy as functions of the vessel 
penetration. If a new lock has to be designed, these results can be used in the following 
purposes: 
 
• One of the main concerns regarding collision is the definition of the worst collision 

scenario, but this problem can be circumvented with help of the present tool. Indeed, the 
position of the impact point and the striking vessel properties can be varied within a certain 
range of values. In each case, the final resistance can be quickly evaluated and the 
configurations leading to the lowest values may then be retained as the most critical ones. 
 

• During the pre-design phase of lock gate, the precision of the simplified method may be 
thought to be sufficient and the collision resistance can be assessed in this way. Therefore, 
this approach is quite convenient if an optimization is performed. Indeed, if the 
geometrical and mechanical properties of the gate are varied in order to reduce the 
construction cost for example, the consequences on the ability of the new structure to 
withstand an impact can be quickly reevaluated. 
 

• If a more refined design is required at the final stage, believing that the simplified approach 
is sufficient would be too presumptuous. It is evident that local fields (such as stresses and 
strains for example) cannot be correctly evaluated without resorting to other software. In 
fact, numerical and analytical tools are complementary in the framework of ship collisions. 
Indeed, the simplified method can be seen as a good way to isolate the most critical impact 
scenarios, these latter being investigated later into more details by using finite element.   

   
From the previous points, it can be concluded that some applications may be found in design 
offices where engineers are dealing with the conception of new lock gates. However, the 
approach may also be interesting to realize a rapid strength assessment of existing structures, 
which can be useful for the administrations managing the inland waterways. Such a tool may 
help them to decide whether a gate should be reinforced or if protection devices (such as 
cables) are needed for example.  
   
Regarding the future potential developments, it is probably valuable to draw a non exhaustive 
list of the subjects that may be investigated in future research: 
 
• Derivation of simplified criteria to account for rupture during the global deforming mode. 

So far, only the failure localized on super-elements has been considered during the 
derivation, which means that rupture is only integrated in the local resistance. 
Nevertheless, it is desirable to extend these developments to the global one. Doing so is a 
quite sensitive problem, particularly because of the difficulty to perform realistic numerical 
simulations as a validation. 
 

• Investigation of the real support conditions of the gate. The hypotheses made for the 
analytical derivation of the global resistance do not necessarily reflect the real boundary 
conditions. Therefore, it could be valuable to perform numerical simulations in which the 
contact between the gate and its supports would be explicitly modeled. Of course, doing so 
is a quite fastidious and arduous procedure that requires a lot of skill with finite element 
software. 
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• Extension of the simplified method to other lock gates. So far, only plane and mitre gates 
have been treated, but many other configurations could be considered, such as radial sector 
gates (Figure 5.1a) or double side gates (Figure 5.1b) that are quite currently encountered 
in maritime conditions. Adapting the analytical developments to this last case should not 
be too challenging, but facing with curves elements is maybe a more arduous task. 
 

From the three subjects mentioned here above, it is clear that there is still a lot of work to be 
done in the field of collisions on lock gates, leading to various industrial applications. 

 
(a) Sector gate (b) Double side gate 

 
Figure 5.1. Other lock gates configurations 
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CHAPTER 6. Literature review on the seismic design of 
lock gates 

 
 
 
 
 
 

The purpose of this chapter is to provide a general overview of what has already 

been done for the seismic design of lock gates. In order to perform this literature 

review, it is first proposed to focus on dams and on liquid storage tanks. Even 
though they are not really similar to lock gates, gathering information about the 
seismic design of these two structures is appreciable because they are typical 
examples on the way fluid-structure interaction can be treated. Therefore, some 
valuable indications about the methodology may be extracted from the references 
published on these topics. 
 
Consequently, the present chapter will be divided into three main parts. Section 6.1. 

proposes a non-exhaustive summary of what is currently available in the literature 
regarding the dam-reservoir interaction. 
 
In section 6.2, the fluid-structure interaction in liquid storage tanks is briefly 
reviewed. The case of perfectly rigid structures is first considered, but after that,  it 
is proposed to focus on cylindrical and rectangular configurations. For each 
situation, some indications are given on some analytical and numerical methods 
available. 
 
Finally, section 6.3 focuses on the seismic design of lock gates. Two different 

examples are presented to give an insight of what is done in practice. 
 

*** 
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6.1. Dam-reservoir interaction 
 
The analytical evaluation of hydrodynamic pressure induced during a seism is a quite difficult 
topic that has been investigated first by Westergaard [166] who treated the case of a rigid dam 
with a vertical upstream face and an infinite reservoir. Denoting by © the acceleration due to 
gravity, the structure was supposed to be submitted to a sinusoidal acceleration along the + 
axis (Figure 6.1) with an amplitude equal to Æ©. Under the hypothesis of small water motions, 
the Laplace equation was solved with the appropriate boundary conditions, which led to the 
following formula for the pressure acting on the dam: 

`!W" = 78Æ©§��ℎ�!ℎ� − W" (6.1) 

where §� is the fluid mass density, ℎ� is the water level and W is the vertical coordinate 
measured from the bottom of the lock (Figure 6.1). 
 

 
Figure 6.1. Geometry of the flexible reservoir 

The results of Westergaard were later extended by Chopra [34] to the case of a similar dam 
submitted to a horizontal or a vertical arbitrary ground acceleration. An impulse response was 
first derived in both situations. The convolution integral was then used to get the final 
hydrodynamic pressure. One of the main achievement in this paper is to propose an analytical 
solution for the case of a vertical acceleration that also integrates the sloshing at the free 
surface. Indeed, due to analytical complexities, many authors such as Haroun [67] or Kim et 
al. [85] considered only a horizontal free surface for the derivation. In fact, it can be shown 
[17] that this hypothesis is only valid if the water level ℎ� is sufficient, which is almost always 
the case for dams. Nevertheless, the work performed by Chopra has the advantage of 
completeness. It was applied in another paper [35] to assess the safety of concrete dams 
during earthquake where some practical applications were detailed. 
 
One of the main hypothesis in the work performed by Chopra [34] or Westergaard [166] is 
that the dam is assumed to be perfectly rigid. With such an approach, the pressures are the 
same as if a body of water was forced to move in unison with the dam, which means that the 
fluid-structure interaction is neglected. In order to investigate the influence of the dam 
vibrations, an analytical approach was suggested by Rashed and Iwan [134] for short-length 
gravity dams. In this study, the structure was modeled as a thick plate. The eigenfrequencies 
and mode shapes of the coupled system were first derived by applying the Rayleigh-Ritz 
method, in which four eigenmodes of a dry plate were used as admissible functions. After 
that, a forced vibration analysis was performed by solving the local equilibrium equations. 
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Some application examples were then proposed, but without performing any comparison with 
other approaches. 
 
Apart from the previous analytical approaches, some numerical studies are also available in 
the literature. Amongst them, Pani and Bhattacharyya [127] investigated the case of a flexible 
plate attached to a rigid dam and subjected to a horizontal sinusoidal ground acceleration. A 
finite element technique was developed, in which the pressure in the fluid and the 
displacements of the plate are treated as independent nodal variables, but the interaction was 
provided through an iterative procedure such that the equilibrium and compatibility equations 
were respected at the interface. A far boundary condition was developed in order to use a 
truncated domain to simulate an infinite one. No sloshing was considered in the solution and 
the plate was supposed to have only one dominant mode. With all these hypotheses, a finite 
element formulation was developed and implemented to treat some examples. It was shown 
that the plate flexibility increases the pressure and that the fluid compressibility may have 
some important effects, particularly for high frequencies of the ground excitation. A bit later, 
Pani and Bhattacharyya [128] extended their previous developments to include sloshing.  
 
Instead of developing finite element techniques, another way to perform seismic analyses is to 
resort to commercial software. As an example, this was done by Muto et al. [115] who used 
ABAQUS to study the dam-reservoir interactions. They modeled the fluid domain with acoustic 
elements that only track the pressure but not the displacements. Such an approach is of course 
only valid under the assumption that the fluid motions remain sufficiently small. A non-
reflecting boundary was used to model an infinite reservoir. Two different simulations were 
run with a sinusoidal excitation. In the first one, the dam was modeled with rigid shell 
elements. The pressures obtained in this situation were then compared to the theoretical 
solutions of Housner [74] in order to validate the finite element model. In the second 
simulation, deformable solid elements were used for the structure, which led to a pressure 15	% higher than the one predicted by Housner [74]. This conclusion tends to refute the 
commonly accepted hypotesis that dams may be considered as rigid structures.  
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6.2. Fluid-structure interaction in containers 
 
The hydrodynamic pressures induce in containers during an earthquake is an important 
practical case because it allows for the design of storage tanks, which are quite commonly 
encountered in civil engineering. For this reason, the subject has been treated by various 
authors in the literature. As a lot of references deal with rigid reservoirs, a short review of the 
existing solutions is first proposed. After that, a summary of the main achievements for 
flexible cylindrical and rectangular containers is performed. 
 
6.2.1. Hydrodynamic pressure in rigid containers 
 
Under the hypothesis of a perfectly rigid reservoir, the fluid-structure interaction can be 
disregarded and it is possible to solve the Laplace equation with simplified appropriate 
boundary conditions. The corresponding theoretical bases of such an approach are extensively 
described in the book of Currie [37] or Ibrahim [76], amongst others. 
 
Cylindrical and rectangular storage tanks submitted to a horizontal ground acceleration were 
both treated by Epstein [49]. The pressure was derived under the assumption of a rigid 
structure. The sloshing of the free surface was considered by writing the boundary condition 
in the deformed configuration, which led to simplified expressions that can be used to check if 
an overtopping was likely or not. The same work was performed by Housner [74] in a more 
physical approach, while a very refined analytical method was proposed by Graham and 
Rodriguez [63]. 
 
The previous developments were later extended by Haroun [67] to a rectangular concrete 
container submitted to simultaneous horizontal and vertical seismic accelerations. Here again, 
the classical potential flow theory was used to estimate the pressure, but the sloshing was 
neglected. As a matter of application, some formulae were presented to calculate the internal 
bending moments in the tank due to the earthquake. 
 
In addition to the previous references, it is worth mentioning that some formulae are also 
available in international standards. This is the case for example in Eurocode 8 [54], where 
both cylindrical and rectangular containers are considered. 
 
6.2.2. Hydrodynamic pressure in flexible cylindrical containers 
 
In practice however, liquid storage tanks may not necessarily be assimilated to perfectly rigid 
structures. For this reason, some investigations were performed to account for their flexibility 
when deriving the hydrodynamic pressure. On an analytical point of view, due to their 
axisymmetric configuration, flexible cylindrical reservoirs have been more extensively treated 
in the literature than rectangular ones. Even though they are not particularly similar to lock 
gates, it may be useful however to quickly review some examples to have a better 
understanding of the methodology. 
 
An extensive analytical derivation was performed by Fischer [57], who treated the case of a 
flexible cylinder with due consideration for the free surface displacements. The boundary 
condition at the fluid-structure interface was expressed by postulating three different given 
shapes for the radial displacements of the tank wall. With this hypothesis, the Helmholtz 
equation was solved by applying the Galerkin method, which led to an approximate solution 
for the hydrodynamic pressure. In an attempt to provide a more practical procedure for the 
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seismic analysis, the author suggested to replace the actual coupled system by a dry cylinder 
with a modified mass density. This latter was iteratively calculated such that the total shearing 
force and overturning moment at the base of the structure were preserved. Such an approach 
is also suggested in Eurocode 8 [54]. 
 
The same procedure was followed by Fujita and Shiraki [60], except that they considered 
separately the vibration of the couple-system and the sloshing. In order to validate these 
developments, a reduced-scale model of a cylindrical tank was placed on a shaking table and 
submitted to a seismic acceleration. The experiment values were found to be in good 
agreement with the analytical prediction. They were also used by Fischer [57] to corroborate 
its own calculations. 
 
The idea of working with a fictitious equivalent mass density was later used by 
Rammerstorfer et al. [133] within an engineering approach that also includes the vertical 
ground acceleration. As a first step, it was first suggested to perform a numerical modal 
analysis of the cylinder with the modified mass density to get the fundamental 
eigenfrequencies of the coupled system. These ones were then used in response spectra to get 
the relevant horizontal and vertical accelerations. Finally, the pressure obtained in this way 
were combined with the SRSS formula to derive a design value. Another application example 
of this method was also proposed by Fischer and Rammerstorfer [58] to check the stability of 
shell under dynamic load. 
 
In addition to the previous references, it is also quite interesting to mention the developments 
performed by Yang [172], in which the dynamic response of the cylinder was derived 
analytically by postulating three different eigenmodes for the coupled system. The Laplace 
equation was analytically solved to get the pressure and the virtual work principle was used to 
derive the cylinder displacements. This approach is more or less the same as the one followed 
here (see Chapter 7) for rectangular reservoirs. 
 
In order to close this short review on flexible cylinders, a final remark can be made on 
numerical approaches. Some references dealing with this topic are available in the literature, 
the oldest being probably the one published by Haroun and Housner [68]. However, this paper 
is still quite interesting because it provides a clear summary of the method. In addition to that, 
some applications are presented that clearly stress the real need to account for the structural 
flexibility when evaluating the seismic pressure.    
 
6.2.3. Hydrodynamic pressure in flexible rectangular containers 
 
In comparison with cylindrical reservoirs, the case of rectangular ones is more difficult to 
treat because the situation is not axisymmetric anymore. This may explain why there are very 
few references available in the literature. One of them is due to Kim et al. [85] for both 
horizontal and vertical ground motions. The solutions were obtained by applying the 
Rayleigh-Ritz method, where the vibration modes of simply supported or cantilever beams 
were used as admissible functions. The developments were validated by comparison with 
numerical results and it was clearly pointed out that the hydrodynamic pressure tends to be 
amplified and that its distribution largely differs from the one obtained for a rigid 
configuration. 
 
Regarding numerical solutions, Chen and Kianoush [29] focused on the total hydrodynamic 
pressure in a flexible rectangular tank submitted to a horizontal earthquake excitation. To do 
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so, the sequential technique was applied. This approach may be summarized as described on 
Figure 6.2, where the hydrodynamic pressure `!S" is seen as an external force. Instead of 
solving simultaneously the equations for the solid and fluid domains, each of them is treated 
separately. Let us imagine that the flexible tank response .!S" is known at time S for a given 
seismic acceleration 'í !S". With .!S", it is possible to evaluate analytically the hydrodynamic 
pressure ̀!S" acting on the reservoir. At the next time step S + ΔS, this latter may be used for 
a numerical evaluation of .!S + ΔS", which means that the pressure and the displacements 
considered for the analysis are not concomitant. 
 

 
  Figure 6.2. Sequential technique 

This method was implemented in the finite element code SAP IV developed at the Berkeley 
University and two reservoirs were investigated with the north-south component of the El-
Centro accelerogram. From the time-history analyses performed, it was concluded that the 
effects of the tank wall flexibility should be considered in the calculation of hydrodynamic 
pressures. This procedure was later extended by Kianoush and Chen [83] to the case of a 
vertical ground acceleration. 
 
In all the previous references, the sloshing of the free surface was neglected. In order to 
account for this phenomenon, Kianoush et al. [84] proposed a new approach to account for the 
motion of the free surface in the 2D analysis of rectangular flexible tanks. A more detailed 
study on this topic was proposed by Ghaemmaghami and Kianoush [61], who gave an 
extensive presentation of the finite element formulation used to model the fluid domain. 
These developments were first validated by comparing the results with theoretical solutions 
known for rigid walls conditions. From these investigations, it was concluded that the 
structural vibrations have practically no influence on the convective response. Only a slight 
increase in the pressure was observed, which tends to corroborate that the free surface 
motions can be evaluated under a rigid assumption. Similar conclusions were also addressed 
by Mitra and Sinhamahapatra [113]. 
 
Finally, regarding the numerical investigations of the fluid-structure interaction, it is worth 
mentioning that this topic can be also investigated by using various commercial software such 
as LS-DYNA , ABAQUS, MSC NASTRAN, ADINA , ANSYS... Most of them proposes various refined 
techniques, such as the arbitrary Lagrangian-Eulerian approach. In the literature however, 
most of the scientific papers are based on finite element codes directly developed by the 
authors, which renders real industrial examples rather hard to find.   
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6.3. Seismic analysis of locks 
 
There are very few papers in the literature dealing with the seismic design of lock gates. Some 
recommendations are however provided by the World Association for Waterborne Transport 
Infrastructure [170] that suggests to use the equivalent static method. The idea is to apply a 
static force on the structure to model the action of the fluid for a particular ground 
acceleration. This latter can be read on a response spectrum at the frequency corresponding to 
the fundamental mode of the coupled system. Therefore, the method is only applicable if the 
dynamic response is driven by one unique mode.  
 
This last assumption is an important limitation of the method because an immerged lock gate 
is not necessarily characterized by a dominant mode. Furthermore, the derivation of the 
pseudo-static force is not a priori easy to achieve and very few recommendations are available 
in the literature. In [170], it is proposed to use the Westergaard formula (6.1) to evaluate the 
hydrodynamic pressure. The parameter Æ should be chosen as follows: 

Æ = �/© if � > 0.2© Æ = 13 ��/©¼  if � < 0.2© (6.2) 

where � is the peak ground acceleration of an earthquake with a return period of 5000 years. 
Of course, such an approach is arguable because it is based on the Westergaard formula, 
which is only valid for perfectly rigid structures (see section 6.1) and therefore does not 
account for any interaction with the surrounding fluid. Furthermore, the choice of the non-
dimensional acceleration Æ is done without considering the frequency of the coupled system, 
which is also questionable. For these reasons, as mentioned in [170], it is suggested to use 
equations (6.1) and (6.2) only in the very early pre-design stage. 
 
Another approach that is sometimes cited in the literature is known as the added mass method 
and was used by Forsyth and Porteous [59] for the seismic design of the entrance lock at the 
Rosyth Royal Dockyard in the United Kingdom (Figure 6.3). For this application, a finite 
element model of the gate was build and the action of the surrounding water during the 
earthquake was modeled by attaching some lumped masses to the immerged nodes. These 
latter were calculated with help of the Zangar formula [176], which is a generalization of the 
Westergaard equation (6.1) to a dam with a non-vertical upstream face. The seismic analysis 
was then carried out with acceleration response spectra. 
 

 
Figure 6.3. Rosyth Royal Dockyard [59]  

Nevertheless, regarding the methodology, the previous way of doing is questionable because 
the lumped masses are calculated as if the gate was perfectly rigid, which means that the 
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fluid-structure interaction is not taken into account when deriving them. Furthermore, the use 
of response spectra is also arguable because it is not established that the eigenfrequencies of 
the gate with the added mass are the same as those of the real coupled system. On a practical 
point of view however, as the structure is quite stiff (the total width is equal to 6	�, as shown 
on Figure 6.3), this procedure may be more or less consistent in the present case. As a final 
observation anyway, the damping coefficient used to calibrate the response spectra is not 
clearly identified in the paper of Forsyth and Porteous [59]. As discussed in [17], this has to 
be done carefully because the added mass of water should not interfere in this process. 
 
As another example of good practice, it is also interesting to focus on the new set of locks at 
the Panama canal [125]. The seismic design was performed as described hereafter. 
 
As a first step, a finite element model of the gate alone was considered, the superstructure 
being disregarded so far. The action of the hydrodynamic pressure was taken into account by 
the added mass method, for which the Westergaard formula (6.1) was used. This approach is 
therefore strictly similar to the one followed by Forsyth and Porteous [59], with the same 
restrictions. A response spectrum analysis was performed with ANSYS for both the horizontal 
and vertical excitations, which allows for a structural optimization.  
 
These calculations were performed by using a damping coefficient of 5	% to calibrate the 
spectra, but this value has been extensively discussed during the design process. Indeed, it 
was first argued that the added mass of water attached to the structure does not provide any 
additional damping and should therefore be disregarded when evaluating the coefficient. To 
account for this observation, it was suggested to choose a much lower value but this idea has 
not finally been retained for the final design. More details about this topic can be found in 
[17]. 
 
Once a quite optimized model was obtained, a more refined seismic analysis was performed 
to account for the interaction between the lock gate and the surrounding superstructure. To do 
so, the initial finite element model was enhanced to include also the lock head and the 
foundation. Seven time-history analyses were then performed, which allows to account for the 
soil-structure interaction and to model the real contacts between the gate and its supports. 
However, the fluid domain was not explicitly represented and the fluid-structure was still 
considered through the added mass method. As this new finite element model was quite huge, 
the purpose of these analyses was not to improve the design of the gate but only to check if 
the response spectrum analysis performed previously was conservative or not. 
 
From the literature review briefly exposed here above, it appears that modeling the fluid-
structure interaction during the seismic design of lock gates is still questioning so far. Indeed, 
using lumped mass with flexible structures is not entirely satisfactory and representing the 
fluid with finite element leads to very huge models that are too prohibitive for a standard 
design process. Consequently, deriving an approximate simplified technique could be highly 
valuable. 
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CHAPTER 7. Seismic analysis of large flexible 
reservoirs 

 
 
 
 
 
 

In this chapter, the seismic behavior of large reservoirs is considered. These 

structures are made of two parallel flexible plates connected by two rigid walls. 

They are submitted to a longitudinal earthquake acceleration and it is the aim of 

this chapter to find a simplified analytical evaluation of the hydrodynamic 

pressures appearing in such a situation.  

 
To solve this fluid-structure interaction problem, it is proposed to work in three 

different steps. The first part of the chapter is devoted to the modal analysis of a 

dry plate. This section indicates how to derive the vibration frequencies and mode 

shapes of an unstiffened dry plate that is simply supported on three edges. 

 
In the second part of the chapter, the presence of water is investigated. The flexible 

plate is this time assumed to be in contact with a liquid on one side. The goal is 

then to evaluate the wet modal properties in this case. To do so, the Rayleigh-Ritz 

method is applied, in which the dry mode shapes obtained in the previous section 

are taken as admissible functions. This leads to an analytical evaluation of the 

vibration characteristics of the immerged structure. In order to have a kind of 

validation, comparisons are made with some numerical results obtained by using 

the finite element software NASTRAN. Finally, some closure remarks on the fluid-

structure interaction in flexible reservoirs are presented. 

 
As a last step, the third part of the chapter is devoted to the dynamic analysis of 

containers. This time, the effect a longitudinal seismic acceleration is investigated. 

An analytical method is developed to get the hydrodynamic pressures acting on the 

flexible plate during such an event. To achieve this goal, the virtual work principle 

is used in conjunction with the Newmark integration scheme, which quickly 

provides the time evolution of the pressure. Once again, as a validation process, the 

simplified analytical results are compared with those obtained by simulating 

numerically the earthquake with LS-DYNA. As a conclusion, the end of the section 

contains some considerations about the fluid-structure interaction and the added 

mass method. 

 
The developments presented in this chapter have been partly exposed in the 9th 
International Conference on Structure Dynamics [18]. 

 

*** 
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7.1. Introduction 
 
In this chapter, the case of a lock gate is not immediately considered. It is first proposed to 
work on a simple flexible reservoir. The goal here is to draw some general conclusions on the 
fluid-structure interaction characterizing such kind of structures, which can be useful for 
investigating further the dynamic behavior of stiffened gates.  
 
7.1.1. Description of the structure 
 
The rectangular reservoir depicted on Figure 7.1 is consider. It has a total length Õ (along the 
longitudinal + direction), a total width L (along the transversal X direction) and is filled with 
water at a level ℎ�. The reservoir is made of two longitudinal rigid walls located in X = 0 and X = L, while two identical transverse flexible walls are positioned in + = 0 and + = Õ. In the 
plane W = 0, the floor is also supposed to be rigid. 
 

 
Figure 7.1. Geometry of the flexible reservoir 

The flexible walls are assumed to be simply connected to the rigid ones, which means that 
rotations around the W axis are free along the vertical edges in X = 0 and X = L. In addition, 
free rotations around the X axis are also permitted along the horizontal edges in + = 0 and + = Õ. In other words, the flexible plates are considered having three simply supported edges, 
while the upper one is free. In this situation, if the plate were submitted to an out-of-plane 
loading, it would typically exhibit the displacements pattern depicted on Figure 7.2. 
 
The total height of the flexible walls is denoted by ℎ and the thickness is designated by SJ. In 
an attempt to analyze flexible reservoirs to draw some conclusions on the seismic behavior of 
lock gates, it is required to choose more or less realistic values for ℎ and L. As an order of 
magnitude, these parameters will be close to 10	�. However, as it is quite common for 
simply-reinforced lock gates to exhibit a bending behavior, the thickness SJ of the plate has to 
be chosen so that it will work in a similar way. Consequently, if ℎ and L are not far away from 10	�, then it is required to select quite large values of SJ in order to avoid dominant 
membrane effects. Currently, one should have SJ ≥ 10	­�. 
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Figure 7.2. Typical deformation of the plate due to an out-of-plane loading 

This reservoir is then submitted to an earthquake and the component of the seismic 
acceleration along the horizontal + axis is denoted by 'í !S". As the water is forced to move, 
some additional hydrodynamic pressures `!W, X, S" are induced on the structure (Figure 7.2). 
The goal is now to provide some analytical formulae to evaluate these actions. 
 
7.1.2. Evaluation of the hydrodynamic pressure 
 
It is well known that the total pressure `!W, X, S" acting on the structure during the earthquake 
is due to both static and dynamic forces and may be written as:  

`!W, X, S" = `Q!W" + `I!W, S" + `�!W, X, S" (7.1) 

In this expression, ̀Q!W" represents the hydrostatic action, while `I!W, S" + `�!W, X, S" is the 
impulsive pressure induced by the seism. This one is obtained by summing up the rigid and 
flexible contributions, respectively denoted by `I!W, S" and ̀ �!W, X, S". An additional term 
may eventually be added in (7.1) to account for the convective pressure. This last one is 
coming from the sloshing corresponding to the motion of the free surface. Nevertheless, in the 
present case, this contribution will be disregarded as it is known to be insignificant for 
reservoirs where both Õ and L are quite large [17]. Moreover, according to Eurocode 8 [54], 
this convective term is reputed to have very little effect on the vibrations characterizing the 
structure, which is an additional reason for neglecting its contribution.   
 
The analytical derivation of the hydrodynamic pressure may be conducted by assuming that 
the fluid is irrotational, incompressible and has no viscosity. With these hypotheses, it can be 
demonstrated (see [17] or [37] for example) that the total hydrodynamic pressure is given by 
the following relation:   

` = −§� >ℋ>S  (7.2) 

where §� denotes the fluid mass density and ℋ!+, W, X, S" is the potential function. This last 
one may be shown to satisfy the Laplace equation [17]: 

ïℋ = 0 ⇔ >#ℋ>+# + >#ℋ>W# + >#ℋ>X# = 0 (7.3) 

over the fluid domain. In order to have a unique solution, the following boundary conditions 
are assorted with (7.3):  
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(a) 
>ℋ>W = 0 for W = 0 The vertical component of the fluid velocity has to be 

set to zero at the bottom of the reservoir. 

(b) 
>ℋ>S = 0 for W = ℎ� The hydrodynamic pressure has to be set to zero at the 

free surface, as it is equal to the atmospheric pressure. 

(c) 
>ℋ>X = 0 for X = 0 The horizontal X component of the fluid velocity has to 

be set to zero at left wall as this one is perfectly rigid.  

(d) 
>ℋ>X = 0 for X = L The horizontal X component of the fluid velocity has to 

be set to zero at right wall as this one is perfectly rigid. 

(e) 
>ℋ>+ = '-!S" + >.>S  for + = 0 The horizontal + component of the fluid velocity has to 

be equal to the one of the upstream wall. 

(f) 
>ℋ>+ = '-!S" + >.>S  for + = Õ The horizontal + component of the fluid velocity has to 

be equal to the one of the downstream wall. 
 
where .!W, X, S" denotes the proper displacements of the flexible walls, as it was already 
depicted on Figure 7.2. The problem defined by (7.3) may be solved by dividing the boundary 
conditions (e) and (f)  in two different parts. As a first step, it can be assumed that each wall 
of the reservoir is perfectly rigid, which means that (e) and (f) have to be replaced by: 

>ℋ>+ = '- !S" for + = 0 and + = Õ (7.4) 

If (7.3) is solved together with (7.4) and conditions (a) to (d), the so-called rigid impulsive 
contribution ̀ I!W, S" introduced in (7.1) is obtained. As the analytical derivation of this 
pressure is quite extensively documented in the literature, it is not our purpose here to report 
all the corresponding mathematical developments. More information about this topic has been 
reported by Abramson [2], Buldgen [17], Curie [37], Epstein [49], Graham and Rodriguez 
[63], Haroun [67], Housner [74], Ibrahim [76] or Kianoush et al. [84] amongst others (see also 
section 6.2.1). Practical formulae are also available in Eurocode 8 [54]. 
 
As a second step, it is now assumed that the reservoir is no longer submitted to the earthquake 
event, but that the proper displacements .!W, X, S" exhibited by the flexible walls are this time 
not equal to zero. Consequently, the following condition has to be substituted to (e) and (f): 

>ℋ>+ = >.>S  for + = 0 and + = Õ (7.5) 

Solving (7.3) together with (7.5) and conditions (a) to (d) leads to the flexible impulsive 
contribution ̀ �!W, X, S" in (7.1). It is not difficult to find a closed-form solution to this 
problem, but once again, all the detailed developments will not be provided here. Further 
information is provided by Chen et al. [27], Chen and Kianoush [29], Ghaemmaghami and 
Kianoush [61], Kim et al. [85], Malhotra [105], Meskouris et al. [109] or Veletsos [155] 
amongst others (see also section 6.2.3). 
 
Following the two steps described here above, it is possible to find analytical expressions for 
both the rigid and flexible pressures. As a final result, one can establish that the three terms 
introduced in (7.1) are given by the subsequent relations: 

`Q!W" = §�©!ℎ� − W" (7.6) 
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`I!W, S" = −§� ¤s 4ß�#Õ cosh!ß�W"cosh!ß�ℎ�"
�ñ
�u( − Õ2¥'í!S" (7.7) 

`�!W, X, S" = −s s ­�� cos!Æ�W" cos!à̅�X"� �.í !W, X, S" cos!Æ�W" cos!à̅�X":W:Xò



Qó



�ñ
�u


�ñ
�u(  (7.8) 

in which ß� = !2P − 1"º/Õ. The other parameters involved in the previous equations are 
defined as follows: 

­�� = 2§� 1 − cosh	!Á��Õ"ℎ�L�Á�� sinh!Á��Õ" à̅� = �ºL  Æ� = !2P − 1"º2ℎ�  Á�� = ²Æ�# + à̅�#  (7.9) 

where L� = L if � = 0 and L� = L/2 if � > 0. With the formulae given in (7.6) to (7.8), it is 
possible to evaluate the total pressure acting on the flexible walls. It is worth noting that these 
results are not just valid for a flexible plate, but are still holding for the case of a stiffened 
structure like a plane lock gate. 
 
It is also important to mention that equation (7.8) has been derived under the assumption that 
the proper displacements .!W, X, S" in + = 0 are the same as those in + = Õ. In other words, 
the reservoir is supposed to be perfectly symmetric, with two flexible walls that are strictly 
identical. Asymmetric configurations will not be considered for the moment. 
 
 
  
  



CHAPTER 7. Seismic analysis of large flexible reservoirs 

160 
 

7.2. Free vibration analysis of a dry plate 
 
The vibrations of a plate are quite different if it is surrounded by a fluid or not. The goal of 
this section is to derive the natural frequencies and mode shapes of a plate that is not in 
contact with water. Before considering the wet case, some information will first be given on 
free vibrations of dry plates. 
 
7.2.1. Characteristic equation 
 
In this section, the free vibrations of the isotropic and homogenous plate depicted on Figure 
7.2 are considered. It is simply supported along the edges W = 0, X = 0 and X = L, while the 
last edge in W = ℎ is free. The plate is made of a material with a mass density §, exhibiting a 
linear elastic behavior characterized by a Young modulus � and a Poisson ratio ¦. The out-of-
plane displacements along the + axis are denoted by .!W, X, S", while the in-plane components 
along the W and X axes are designated by ;!W, X, S" and v!W, X, S" respectively. The structure 
might be submitted to a transverse pressure `!W, X, S", but this is not the case for a dry 
situation. 
 
The plate is expected to follow the classical bending theory developed by Kirchhoff. Under 
the assumption that there is no extension of the mid-surface of the plate, the in-plane 
displacements ;!W, X, S" and v!W, X, S" are simply given by: 

;!W, X, S" = −+ >.>W					 ; 					v!W, X, S" = −+ >.>X (7.10) 

Furthermore, if the out-of-plane displacements are not too large, then small deformations may 
be assumed. As stated by Shames and Dym [137], it is commonly accepted that this 
hypothesis is holding, provided that the maximal deflection is less than SJ/10. In such a case, 
one may resort to the Cauchy tensor and derive the following relations: 

G�� = −+ >#.>W# 							G�� = −+ >#.>X# 							G�� = −+ >#.>W>X (7.11) 

where G��, G�� and G�� are the strain components. Additionally, admitting that the material is 
elastic and linear, the stresses may be related to the strains by using Hooke's law by the 
following equations: 

6�� = �1 − ¦# �G�� + ¦G��� = −+ �1 − ¦# =>#.>W# + ¦ >#.>X#? 

6�� = �1 − ¦# �G�� + ¦G��� = −+ �1 − ¦# =>#.>X# + ¦ >#.>W#? 

6�� = �1 + ¦ G�� = −+ �1 + ¦ >#.>W>X 
(7.12) 

where 6��, 6�� and 6�� are the stress components. Equations (7.10) to (7.12) are the basis of 
the Kirchhoff bending theory that is mainly applicable to the case of thin plates in small 
deformations. Nevertheless, as mentioned previously, the value of the thickness SJ may be 
expected to be quite large. Therefore, it is first necessary to carefully examine the validity of 
applying such an approach in the present case. The most sensitive point to discuss is the effect 
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of the shearing forces. Indeed, if the plate is quite thick, these latter may be expected to play 
an important role in the deformation of the plate. Applying the Kirchhoff theory to such a 
situation may then be irrelevant. However, one has to bear in mind that the value of SJ has 
always to be compared to the extensions ℎ and L. According to Shames and Dym [137], if the 
following condition on the ratios ℎ/SJ and L/SJ is fulfilled: 

min�ℎ/SJ		; 	L/SJ� ≥ 10 (7.13) 

then the transverse shears ô·� and ô·� are negligible in comparison with the midplane shear ô��. This is also the case for the transverse normal stress 6·· which may be disregarded in 
comparison with the midplane normal stresses 6�� and 6��. As condition (7.13) is respected in 
the present study, the dynamic equilibrium of the plate depicted on Figure 7.2 is simply given 
by the classical equation (in À/�#): 

§SJ >#.>S# + � =>�.>W� + 2 >�.>W#>X# + >�.>X�? = −`!W, X, S" (7.14) 

where � = �SJ*/12!1 − ¦#" is the flexural rigidity of the plate and `!W, X, S" is the external 
pressure acting on the structure. It is worth noting that (7.14) supposes that there is no 
stretching of the middle surface along the W and X axes. In other words, there is no action of 
in-plane membrane forces. This last assumption seems reasonable, as the out-of-plane 
displacements .!W, X, S" may be thought to be kept sufficiently small in comparison with SJ.  
 
To the equilibrium equation (7.14) are associated various boundary conditions. According to 
Bazant and Cedolin [13], the corresponding mathematical expressions are as follows: 
 
• As the plate is simply supported along the vertical edges X = 0 and X = L, the first 

requirement is to prohibit any displacement along the + axis. The second restriction is that 
the bending moments around the W axis have to be set to zero. Mathematically, one has:  

.!W" = 0 and 
>#.>X# + ¦ >#.>W# = 0 (7.15) 

• Similarly, as simple supports are also assumed along the horizontal edge W = 0, the 
following conditions have to be respected: 

.!X" = 0 and 
>#.>W# + ¦ >#.>X# = 0 (7.16) 

• Finally, as the last horizontal edge in W = ℎ is free, the bending moments and the effective 
shear forces have both to be set to zero, i.e.: 

>#.>W# + ¦ >#.>X# = 0 and 
>*.>W* + !2 − ¦" >*.>W>X# = 0 (7.17) 

In order to obtain the free vibrations characteristics of a dry plate, we further postulate that the 
out-of-plane displacement field has the following form: 

.!W, X, S" = i�!W, X"sin	!õ�S" (7.18) 

where i�!W, X" is the mode shape associated to the pulsation õ�. This result and the 
equilibrium equation (7.14) may now be used to derive the characteristic equation. In (7.14), 
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as the plate is not in contact with water, it is evident that ̀ !W, X, S" = 0 and consequently, 
inserting relation (7.18) into (7.14) leads to: 

§SJõ�# −� =>�i�>W� + 2 >�i�>W#>X# + >�i�>X� ? = 0 (7.19) 

which, together with the boundary conditions (7.15) to (7.17), constitutes the characteristic 
equation for a dry plate.  
 
7.2.2. Vibration properties 
 
The vibrations of a dry plate are entirely characterized by determining the eigenvalues õ�# and 
the eigenfunctions i�.  The admissible values of õ� are those leading to a singular solution for 
the set of equations (7.15), (7.16), (7.17) and (7.19). As shown by Leissa [95], õ� has to be 
found by solving a transcendental equation:  

=à�#!1 − ¦" − ­�#à�#!1 − ¦" + ­�#?
# ½̅� tan!½�®" − ½� tanh�½̅�®� = 0 (7.20) 

where ­�# is the unknown related to õ� by (7.21). The other different parameters also present 
in (7.20) are defined by the following expressions: 

½� = ²­�# − à�#					½̅� = ²­�# + à�#					à� = P�ºL 					­�# = õ�£12§!1 − ¦#"�SJ#  (7.21) 

with P� ∈ ℕ
. For a given value of õ�, it may be shown [95] that the corresponding dry mode 
shape i�!W, X" is given by: 

i�!W, X" = �� =sin �½�WL � − b� sinh=½̅�WL ?? sin ³P�ºXL ´ (7.22) 

where �� is the modal amplitude used to normalize the vibration mode i�!W, X". In (7.22), the 
coefficient b� is related to the other parameters by: 

b� = à�#!1 − ¦" − ­�#à�#!1 − ¦" + ­�# sin!½�ℎ"sinh�½̅�ℎ� (7.23) 

The physical meaning of P� appears now more clearly. In fact, this parameter corresponds to 
the number of half-waves along the horizontal X axis. Equation (7.20) clearly shows that it is 
possible to find an infinite number of solutions õ� for each value of P� ∈ |1, 2, … ~. Of course, õ� is rapidly increasing with P�, which means that the activation of corresponding mode of 
vibration becomes more and more unlikely. As an example, Figure 7.3 gives a broad 
approximation of the first mode shapes associated to P� = 1 and P� = 2. 
 
It also is worth noting that equations (7.20) to (7.23) are only valid for eigenvalues ­� greater 
than à� = P�º/L. If this is not the case, other analytical solutions are available [95]. However, 
for the reservoirs considered here, the relation ­� < à� is always satisfied and there is no need 
to resort to additional analytical developments. 
 
As a final remark, it should also be mentioned that the dry modes are orthogonal to each 
others. This result is quite important and will be used later to simplify the mathematical 
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calculations. Considering two different modes (i.e. if p ≠ ø), this property allows to write the 
following result: 

��i�!W, X"i<!W, X":W:Xò



= 0Q



 (7.24) 

 
(a) First mode shape for P� = 1 (b) First mode shape for P� = 2 

  
Figure 7.3. First vibration mode shapes for two different values of nj 
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7.3. Free vibration analysis of an immerged plate 
 
7.3.1. Characteristic equation 
 
The vibration properties of a plate immerged in water are quite different from those 
previously derived for the dry situation. The surrounding liquid has an effect on both the 
natural frequencies and modes of vibration. Indeed, one may intuitively predict that the 
frequencies will be lowered in the case of a wet plate, but also that the mode shapes will be 
influenced by the pressure acting on the vibrating structure. Therefore, it is quite important to 
account for these phenomena while performing the seismic analysis of flexible reservoirs. 
Evaluating the natural frequencies and mode shapes of a wetted plate is precisely the goal of 
this section. 
 

  
Figure 7.4. Hydrodynamic pressure on a plate vibrating in a fluid 

It is more difficult to derive the characteristic equation for a wet plate than for a dry one. The 
main reason is that the accelerations of the flexible walls of the reservoir produce an 
additional hydrodynamic pressure. This phenomenon was already mentioned previously, and 
it was found that this pressure could be evaluated by using equation (7.8). This last expression 
is recalled hereafter: 

`�!W, X, S" = −s s ­�� cos!Æ�W" cos!à̅�X"� �.í !W, X, S" cos!Æ�W" cos!à̅�X" :W:Xò



Qó



�ñ
�u


�ñ
�u(  (7.25) 

where the coefficients ­��, à̅� and Æ� are defined in (7.9). When the plate exhibits free 
vibrations (Figure 7.4), the acceleration term .í !W, X, S" appearing in (7.25) may be derived 
from the classical expression: 

.!W, X, S" = Δ�!W, X" sin!Ω�S" (7.26) 

where Ω� and Δ�!W, X" are respectively the pulsations and mode shapes characterizing the free 
vibrations of the immerged plate. With this relation, one may write: 

`�!W, X, S" = Ω�# sin!Ω�S"s s I��!�" ­�� cos!Æ�W" cos!à̅�X"�ñ
�u


�ñ
�u(  (7.27) 
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In this last expression, I��!�"  is a coefficient that is only related to the mode shape Δ�!W, X" of 
the wet plate. It is simply given by: 

I��!�" = � �Δ�!W, X" cos!Æ�W" cos!à̅�X" :W:Xò



Qó



 (7.28) 

As the plate is now subjected to `�!W, X, S", referring to the equilibrium equation of the 
structure, (7.14) has to be completed to account for this external force. Introducing (7.26) and 
(7.27) in (7.14) leads to: 

Ω�# ¤§SJΔ� −s s I��!�" ­�� cos!Æ�W" cos!à̅�X"�ñ
�u


�ñ
�u( ¥ − � =>�Δ�>W� + >�Δ�>W#>X# + >�Δ�>X� ? = 0 (7.29) 

which, together with the boundary conditions expressed in (7.15) to (7.17), constitutes the 
characteristic equation for a wet plate. However, finding an exact solution to a such problem 
is not easy. For this reason, the Rayleigh-Ritz method will be used. 
 
7.3.2. Rayleigh-Ritz solution 

7.3.2.1. Mathematical approach 
 
The characteristic equation of a wet plate (7.29) may be rewritten in a more compact form. To 
do so, let us denote by ℒ( and ℒ# the two linear differential operators associated with (7.29). 
These ones are such that this equation simply becomes:  

Ω�#ℒ(!∆�" − ℒ#!∆�" = 0 (7.30) 

which is the classical form of a generalized eigenvalue problem. In this last expression, it is  
obvious that ℒ( and ℒ# are defined by: 

ℒ(!∙" = §SJ!∙" −s s ­�� cos!Æ�W" cos!à̅�X"�ñ
�u


�ñ
�u( � �!∙" cos!Æ�W" cos!à̅�X":W:Xò



Qó



 (7.31) 

ℒ#!∙" = � =>�!∙">W� + 2 >�!∙">W#>X# + >�!∙">X� ? (7.32) 

Let now Δ(!W, X" and Δ#!W, X" be two arbitrary functions satisfying the boundary conditions 
(7.15) to (7.17) associated to (7.29). For each of them, it may be shown [137] that the 
operators ℒ( and ℒ# are self-adjoint [40] over the surface �	of the plate, i.e.: 

ûℒ(!Δ("|Δ#ü = ûΔ(|ℒ(!Δ#"ü ûℒ#!Δ("|Δ#ü = ûΔ(|ℒ#!Δ#"ü (7.33) 

where û∙ | ∙ü denotes the inner product10 of two functions. This property is fundamental to 
apply the Rayleigh-Ritz method. Indeed, if ℒ( and ℒ# are self-adjoint, it may be 

                                                                    
10 The inner product (or scalar product) of two functions �!+, W, X" and ©!+, W, X" over a domain � of the space is 
written as:  

û�|©ü =4 �!+, W, X"©!+, W, X":+:W:XD  
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mathematically stated [137] that the admissible eigenvalues Ω�# in (7.30) are the stationary 
values of the so-called Rayleigh quotient: 

c = ûΔ|ℒ#!Δ"üûΔ|ℒ(!Δ"ü (7.34) 

which means that the only admissible eigenfunctions Δ� in (7.30) are those who minimize 
(7.34). However, it is not easy to find particular expressions of Δ for which the Rayleigh 
quotient is stationary. A brief literature review shows that a classical approach to overcome 
this problem is to express Δ�!W, X" as a linear combination of admissible predefined functions. 
For example, this procedure was followed by Rajalingham et al. [132] to get the vibration 
modes of a dry rectangular plate with clamped edges11. Another application was made by 
Liew and Wang [101], who studied the vibrations of plates with curved boundaries or 
reentrant corners. Lam and Liew [90] used the Gram-Schmidt recurrence algorithm to derive 
orthogonal functions, which were then employed in the Rayleigh-Ritz method to study free 
vibrations of elliptical plates. Finally, a particularly interesting application was made by Lamb 
[91] and Liang et al. [100], who also applied this method to get the frequencies and modes of 
submerged plates.  
 
Following the ideas suggested in the literature, it is proposed here to express the wet modes Δ� 
as a linear combination of � dry ones: 

∆�!W, X" =s;<�i<!W, X"ý
<u(  (7.35) 

where the analytical expression of the dry modes is given by (7.22). The functions i<!W, X" are 
reputed to be admissible, as they satisfy the boundary conditions (7.15) to (7.17) and linearly 
independent (as they are orthogonal to each others). Consequently, this is also the case for Δ�!W, X". The next step is then to evaluate the Rayleigh quotient c with help of (7.35): 

ûΔ�|ℒ(!Δ�"ü =ss;<�;E��i<!W, X"ℒ(!iE!W, X""�
ý
Eu(

ý
<u( :W:X =ss;<��èÉ<E −2þ<E�;E�ý

Eu(
ý
<u(  (7.36) 

ûΔ�|ℒ#!Δ�"ü =ss;<�;E��i<!W, X"ℒ#!iE!W, X""�
ý
Eu(

ý
<u( :W:X =ss;<��þ<E;E�ý

Eu(
ý
<u(  (7.37) 

where � is the surface of the plate. èÉ<E, 2þ<E and �þ<E are to be found by considering the 
expressions (7.31) and (7.32) of the operators ℒ( and ℒ#: 
èÉ<E = §SJ�� i<!W, X"iE!W, X":W:X¸



ò



 2þ<E = s s ­��I���!<" I���!E"�ñ
�u


�ñ
�u(  (7.38) 

�þ<E = ��� i<!W, X" =>�iE>W� + 2 >�iE>W#>X# + >�iE>X� ?:W:X
¸


ò



 (7.39) 

                                                                    
11 It is mentioned by Blevins [14] and Leissa [95] that it is possible to find exact solutions to the characteristic 
dry equation (7.19) only for plates having at least two simply supported edges. This is rather impossible for other 
boundary conditions. 
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where I���!<"  and I���!E"  are given equation (7.28), in which Δ�!W, X" is replaced by i<!W, X" and iE!W, X" respectively. The detailed expressions of èÉ<E, 2þ<E and �þ<E are not reported here but 
may be consulted in section D.1.1 of Appendix D.1. The Rayleigh quotient may now be 
rewritten as:  

c = �ss;<��èÉ<E −2þ<E�;E�ý
Eu(

ý
<u( �÷ �ss;<��þ<E;E�ý

Eu(
ý
<u( � = ��ª�AèÉC − 52þ 7�����ª5�þ7��  (7.40) 

where 5èÉ7, 52þ 7 and 5�þ7 are the !� ×�" matrices associated to èÉ<E, 2þ<E and �þ<E. �� is a !� × 1" vector containing the coefficients ;<� and ��ª is the corresponding transpose. In order 
to get the stationary values of c, the particular vectors �� minimizing (7.40) have to be found. 
As ℒ( and ℒ# are self-adjoint, these stationary values of c are reputed to be the eigenvalues Ω�#. It may be demonstrated [137] that these ones are found by solving the classical equation: 

det ³A�þC − Ω�#�AèÉC − 52þ 7�´ = 0 (7.41) 

As Δ�!W, X" is expressed as linear combination of � dry modes, it is possible to find only � 
particular values Ω� verifying (7.41). The associated � eigenvector �� are then derived by: 

³A�þC − Ω�#�AèÉC − 52þ 7�´�� = � (7.42) 

Finally, it appears that solving (7.41) provides an estimation of the vibration frequencies of an 
immerged plate. As stated by Shames and Dym [137], these approximations always tend to 
overestimate the real frequencies of the structure, but it is possible to get better values by 
increasing the number � of admissible functions considered in (7.35). Additionally, the 
solutions of (7.42) lead to the coefficients ;<� that may be introduced in (7.35) to get the wet 
mode shapes.  
 
It is worth noting that the dry modes i<!W, X" are orthogonal. As a consequence, matrices 5�þ7 
and 5èÉ7 are diagonal, but this is unfortunately not the case for the matrix 52þ 7 which is simply 
symmetric. 

7.3.2.2. Energy approach 
 
In section 7.3.2.1, the Rayleigh-Ritz method was introduced in a purely mathematical way, 
but it is also possible to consider this approach in a energy manner. Doing so is more common 
and will be useful for further developments on stiffened plates. Let us start by recalling some 
basic results for elastic plates in plane-stress state. By definition, the potential energy � (or 
the strain energy) of a such structure is given by: 

� = 12��6��G�� + 6��G�� + 26��G���:W:X�
 (7.43) 

Considering equations (7.11) and (7.12) relating 6�< and G�< to the out-of-plane displacements .!W, X, S", developing (7.43) leads to the following classical expression: 

� = �2�¤=>#.>W#?
# + =>#.>X#?

# + 2¦ >#.>W# >#.>X# + 2!1 − ¦"= >#.>W>X?
#¥

�
:W:X (7.44) 
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which is widely used in the literature (see references [90], [100], [101] and [132], amongst 
others). For the particular case of modal displacements, since Δ�!W, X" is an eigenfunction 
minimizing the Rayleigh quotient and .!W, X, S" = Δ�!W, X" sin!Ω�S", introducing this relation 
in (7.44) gives: 

� = �2 sin#!Ω�S"�¤=>#Δ�>W# ?
# + =>#Δ�>X# ?

# + 2¦ >#Δ�>W# >#Δ�>X# + 2!1 − ¦" =>#Δ�>W>X?
#¥

�
:W:X (7.45) 

As a second step, a similar procedure can now be followed to get the total kinetic energy 	 of 
the plate. Doing so, it can be established that 	 is given by: 

	 = 12�§SJ.- #!W, X, S"�
:W:X = §SJ2 Ω�# cos#!Ω�S"�Δ�#!W, X":W:X�

 (7.46) 

Finally, as the plate is in contact with a fluid, a last step is to evaluate the potential 
 of the 
hydrodynamic pressure (7.25) acting on the vibrating structure. As no rational development of 
this potential has been found in the literature, more details about its derivation are given in 
section D.1.3 of Appendix D.1. It is found that: 


 = s s ­��2 �� �.- !W, X, S" cos!Æ�W" cos!à̅�X":W:Xò



Qó



�
#�ñ

�u

�ñ
�u(  (7.47) 

which is very similar to the definition of a kinetic energy. For this reason, 
 may be seen as a 
kind of energy associated to the water put in motion by the own vibrations of the plate [137]. 
Once again, for modal displacements, one gets: 


 = Ω�# cos#!Ω�S"2 s s ­���ñ
�u


�ñ
�u( I��!�" I��!�"  (7.48) 

Considering now the amplitudes of total kinetic and strain energies, equations (7.45), (7.46) 
and (7.48) show that: 

max� |	 −
~ = Ω�#2 �§SJ�Δ�#!W, X":W:X�
−s s ­���ñ

�u

�ñ
�u( I��!�" I��!�" � = Ω�#2 ûΔ�|ℒ(!Δ�"ü (7.49) 

max� |�~ = �2�¤=>#Δ�>W# ?
# + =>#Δ�>X# ?

# + 2¦ >#Δ�>W# >#Δ�>X# + 2!1 − ¦" =>#Δ�>W>X?
#¥

�
:W:X (7.50) 

If Δ�!W, X" satisfies the boundary conditions of the plate (which is the case in the present 
situation), it may be shown that expression (7.50) can be simplified to get: 

max� |�~ = ûΔ�|ℒ#!Δ�"ü2  (7.51) 

Unfortunately, a complete mathematical proof of (7.51) has not been in the literature. Since 
the entire demonstration of this statement is quite fastidious, it will not be provided as an 
appendix and the result will be simply admitted. As there is no dissipation in the system, the 
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maximum kinetic energy may be equated to the maximum strain energy, which leads to the 
following relations: 

max� |�~ = max� |	 −
~ ⇔ Ω�#2 ûΔ�|ℒ(!Δ�"ü = ûΔ�|ℒ#!Δ�"ü2 ⟺ Ω�# = ûΔ�|ℒ#!Δ�"üûΔ�|ℒ(!Δ�"ü (7.52) 

As a conclusion, the energy approach detailed here above shows that if Δ�!W, X" is an 
eigenfunction which minimizes the Rayleigh quotient, this latter is nothing else than the 
eigenvalue Ω�# associated to Δ�!W, X". 
 
The mathematical procedure detailed in section 7.3.2.1 to get the eigenvalues and 
eigenfunctions may now be revisited in terms of energy parameters. Indeed, for a given 
function Δ�!W, X" satisfying the boundary conditions, one may first evaluate the associated 
maximal kinetic and strain energies. These ones will be denoted by 	, 
 and �, even if their 
expressions bellow are not formally similar to those introduced previously. From (7.49) and 
(7.50), let us now rewrite: 

	 −
 = §SJ2 �Δ�#!W, X":W:X�
−s s ­��2

�ñ
�u


�ñ
�u( I��!�" I��!�"  (7.53) 

� = �2�¤=>#Δ�>W# ?
# + =>#Δ�>X# ?

# + 2¦ >#Δ�>W# >#Δ�>X# + 2!1 − ¦" =>#Δ�>W>X?
#¥

�
:W:X (7.54) 

With these new definitions of 	, 
 and �, the Rayleigh quotient may now be expressed as 
the ratio between the maximal kinetic and potential energies: 

c = 	 −
�  (7.55) 

and the next step is then to find the particular expressions Δ�!W, X" for which c is minimized. 
This can be achieved by following a procedure similar to the one given by equations (7.35), 
(7.41) and (7.42). Doing so, it is worth noting that: 

	 −
 = 12ss;<��èÉ<E −2þ<E�;E�ý
Eu(

ý
<u( 										� = 12ss;<��þ<E;E�ý

Eu(
ý
<u(  (7.56) 

where èÉ<E, 2þ<E and �þ<E are still given by (7.38) and (7.39). Alternatively, one may also resort 
to the following expression: 

�� =>#i<>W# >#iE>W# + >#i<>X# >#iE>X# + ¦ >#i<>W# >#iE>X# + ¦ >#iE>W# >#i<>X# + 2!1 − ¦" >#i<>W>X >#iE>W>X?:��
 (7.57) 

to evaluate �þ<E. This latter is directly obtained by developing equation (7.54). It is shown to 
be strictly similar to (7.39) because of the equality stated in (7.51), but this is only true as long 
as the functions i<!W, X" satisfy the boundary conditions. The approach mentioned here above 
is commonly encountered in the literature and will be extensively used later when dealing 
with lock gates. Nevertheless, before going any further in the analysis of immerged plates, it 
is probably useful to perform a numerical validation of all the previous analytical 
developments. 



CHAPTER 7. Seismic analysis of large flexible reservoirs 

170 
 

7.3.3. Numerical validation 
 
In order to check the validity of the present procedure, the analytical solutions can be 
compared to those obtained numerically. To do so, it is proposed here to consider the 
reservoir depicted on Figure 7.5. The flexible walls are slightly rectangular, with a width L of 7	� and a height ℎ of 6	�. The thickness SJ may take three different values, as depicted on 
Figure 7.5. The reservoir has a total length Õ of 15	� and is filled up to a level of 3.5 or 5	�. 
Other reservoirs with different geometrical properties were also used for the validation 
process, but the obtained results are not presented here to avoid any redundancy. The 
conclusions found for these other cases are similar to the ones summarized here. 
 
As it was already discussed before, the thicknesses chosen for the flexible walls may appear 
to be quite large. Nevertheless, one should always bear in mind that the ratios L/SJ and ℎ/SJ 
have to be kept sufficiently high to limit the effect of shearing forces. Moreover, if the plates 
were too thin, it is to fear that the out-of-plane displacements would be such that the structure 
would exhibit a membrane behavior. The classical Kirchhoff bending theory used in the 
analytical approach would be irrelevant for this situation.  
 
Additionally, some comments need to be done about the dimensions considered for this 
reservoir, which are definitely not similar to those of a real lock chamber. Nevertheless, the 
geometrical properties have been restricted due to computational limitations when performing 
finite element simulations. Indeed, modeling the fluid with solid elements quickly leads to 
large models, for which a modal analysis requires unfortunately a lot of numerical capacities. 
 

L = 15 m
l = 7 m

tp =	5,	10	

or	20	cm
hs =	3.5	

or	5	m

	
Figure 7.5. Main	characteristics	of	the	reservoir	used	for	validation	

The pre-processor PATRAN is first used to realize a finite element model of the reservoir. The 
flexible walls are modeled by using isoparametric quadrilateral CQUAD shell elements with 
four grid points, while hexahedral CHEXA solid elements with eight grid points are used for 
the fluid12. The material parameters are given in Table 7.1. Steel properties are taken for the 
structure, which is assumed to have a linear elastic behavior defined by a Young modulus � 
and a Poisson coefficient ¦. The fluid has the characteristics of water. Its mass density is 
denoted by §�, while the bulk modulus and speed of sound are respectively identified by â� 
and ­�.  

                                                                    
12 See the Nastran reference manual [114] for additional information on these elements. 
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The finite element software NASTRAN is then used to perform a modal analysis of the 
reservoir. Doing so provides a numerical estimation of the wet frequencies and mode shapes 
characterizing the flexible walls. In order to check the validity of the present analytical 
developments, it is the aim of this section to compare the solutions obtained by the Rayleigh-
Ritz method to those given by NASTRAN. 
 

Material properties of the walls Material properties of the fluid 

Young modulus � 210	Èk� Bulk modulus â�  2.25	Èk� 
Poisson coefficient ¦ 0.3 Speed of sound ­� 1500	�/� 
Mass density § 7850	¨©/�* Mass density §� 1000	¨©/�* 

Table 7.1. Material properties for the flexible walls and for the fluid 

7.3.3.1. Comparison of the frequencies 
 
As a first validation step, comparisons are first performed for the wet frequencies obtained for 
the reservoir. The results for the first seven modes are reported in Table 7.2 and Table 7.3, 
considering a water level of 3.5	� or 5	� respectively. For the different thickness values (5, 10 or 20	­�), the dry frequencies are first given, then the theoretical wet frequencies are 
compared to the ones obtained by NASTRAN. For each mode, the relative error is computed 
from the formula: |�ª − �Ó|�Ó 	!%" (7.58) 

where �ª and �Ó are respectively the theoretical and NASTRAN wet frequencies. The agreement 
between the numerical and theoretical results is found to be satisfactory, as the maximal 
discrepancy does not exceed 6	%. For the first mode, the agreement is even better, with a 
maximal error of 1	%.  
 

 
Figure 7.6. Evolution of the theoretical dry and wet frequencies (first mode) with the thickness for 

reservoir 1 

Figure 7.6 shows the evolution of the fundamental dry and wet eigenfrequencies for different 
values of the thickness SJ. For the dry solutions, it may be analytically shown that the curve is 
linear, but this is not true for the wet solutions. For large values of SJ, the wet curves tends to 
increase linearly with the thickness, but this is not the case if SJ is becoming smaller. 
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Water level: �� = 
.�	� 

Mode	number	 Thickness:	SJ = 5	­�	 Thickness:	SJ = 10	­�	 Thickness:	SJ = 20	­�	
	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	1	 3.13	 2.40	 2.41	 0.23	 6.25	 5.44	 5.43	 0.22	 12.51	 11.66	 11.55	 0.94	2	 8.56	 5.55	 5.52	 0.61	 17.11	 12.50	 12.36	 1.12	 34.22	 27.96	 27.30	 2.43	3	 10.65	 7.76	 7.80	 0.60	 21.30	 18.27	 18.27	 0.01	 42.59	 39.78	 39.42	 0.92	4	 16.70	 12.44	 12.35	 0.76	 33.41	 26.52	 26.12	 1.53	 66.82	 57.25	 55.37	 3.40	5	 20.34	 14.63	 14.65	 0.14	 40.68	 32.79	 32.37	 1.28	 81.36	 70.92	 68.08	 4.17	6	 23.13	 16.63	 16.80	 1.03	 46.25	 39.44	 39.44	 0.01	 92.51	 86.62	 85.15	 1.73	7	 28.80	 21.68	 21.52	 0.74	 57.61	 48.37	 47.20	 2.49	 115.22	 103.81	 100.85	 2.94		 1.03	 	 2.49	 	 4.17	

Table 7.2. Comparison between the dry frequencies and the wet frequencies calculated theoretically or by nastran for reservoir 1, with a water height of 3.5 m 

Water level: �� = �	� 

Mode	number	 Thickness:	SJ = 5	­�	 Thickness:	SJ = 10	­�	 Thickness:	SJ = 20	­�	
	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	 Dry	!®X"	 Wet	!®X"	 NASTRAN	!®X"	 Error	!%"	1	 3.13	 1.69	 1.68	 0.18	 6.25	 4.23	 4.21	 0.41	 12.51	 9.96	 9.86	 1.05	2	 8.56	 5.13	 5.13	 0.06	 17.11	 11.78	 11.65	 1.09	 34.22	 26.41	 25.65	 2.95	3	 10.65	 6.18	 6.22	 0.70	 21.30	 15.33	 15.36	 0.19	 42.59	 35.59	 35.28	 0.90	4	 16.70	 11.24	 11.27	 0.24	 33.41	 25.57	 25.30	 1.06	 66.82	 56.05	 54.23	 3.37	5	 20.34	 12.71	 12.65	 0.49	 40.68	 29.60	 29.12	 1.65	 81.36	 66.74	 63.60	 4.93	6	 23.13	 14.39	 14.58	 1.31	 46.25	 35.02	 35.12	 0.31	 92.51	 79.83	 79.71	 0.15	7	 28.80	 19.39	 19.16	 1.19	 57.61	 44.19	 43.00	 2.76	 115.22	 98.04	 92.56	 5.92		 1.31	 	 2.76	 	 5.92	

Table 7.3. Comparison between the dry frequencies and the wet frequencies calculated theoretically or by nastran for reservoir 1, with a water height of 5 m
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7.3.3.2. Comparison of the mode shapes 
 
As a second validation step, comparisons are now performed for the wet mode shapes. It is 
commonly accepted that the approximated solutions derived by the Rayleigh-Ritz method are 
better for the eigenfrequencies than for the eigenmodes. As a consequence, the present 
agreement between the theoretical and numerical solutions is not expected to be as good as 
for the frequencies.   
 
The two first mode shapes are plotted on Figure 7.9 and Figure 7.10 for a water level ℎ� of 3.5 or 5	� respectively. These figures correspond to a thickness of 10	­�. For each mode, 
two different illustrations are proposed. The first one is a plot of the profile in the vertical 
plane X = L/2 (plane º( on Figure 7.8), while the second one corresponds to the profile in the 
horizontal plane W = ℎ (plane º# on Figure 7.8). For the horizontal profile, it is clear that a 
sine half-wave seems to be a good approximation. Concerning the vertical one, the agreement 
appears to be satisfactory, even if some discrepancy may be observed near the top of the gate 
where water is not present. 
  

 
Figure 7.7. Evolution of the vertical profile in z = l/2 (first mode shape) with the thickness of reservoir 1 

for hs = 3.5 m; the wet curves are coming closer to the dry one as the thickness is increasing 

 

�� = 
.�	� 

Thickness Maximal gap Location 5	­� 0.164 W/ℎ = 0.4 10	­� 0.094 W/ℎ = 0.4 20	­� 0.049 W/ℎ = 0.4 30	­� 0.034 W/ℎ = 0.4 �� = �	� 

Thickness Maximal gap Location 5	­� 0.169 W/ℎ = 0.44 10	­� 0.127 W/ℎ = 0.44 20	­� 0.084 W/ℎ = 0.44 30	­� 0.063 W/ℎ = 0.44 
 

Figure 7.8. Horizontal and vertical profile 
locations 

Table 7.4. Maximal amplification and corresponding 
location for the first mode shape of reservoir 1 

Figure 7.7 shows the evolution of the vertical profile of the first mode shape for different 
values of the thickness. For increasing values of SJ, the wet curves are coming closer to the 
dry one, which shows that the fluid-structure interaction is progressively reduced. 
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(a) First mode shape - Vertical profile in X = L/2 (b) First mode shape - Horizontal profile in W = ® 

 
 

 
 

 
(c) Second mode shape - Vertical profile in X = L/2 

 
(d) Second mode shape - Horizontal profile in W = ® 

  

Figure 7.9. Comparison between the dry and wet mode shapes (calculated theoretically or by NASTRAN) for reservoir 1, with a water height of 3.5 m   
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(a) First mode shape - Vertical profile in X = L/2 (b) First mode shape - Horizontal profile in W = ® 

 
 

 
 

 
(c) Second mode shape - Vertical profile in X = L/2 

 
(d) Second mode shape - Horizontal profile in W = ® 

  

Figure 7.10. Comparison between the dry and wet mode shapes (calculated theoretically or by NASTRAN) for reservoir 1, with a water height of 5 m 
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Table 7.4 also provides additional information on the first wet mode shape. This table shows 
the maximal absolute gap between the dry and wet vertical profiles, denoted by i!W, L/2" and Δ!W, L/2" respectively. This gap is defined as follows: 

max|i!W, L/2" − Δ!W, L/2"~					 ; 					0 ≤ W ≤ ℎ (7.59) 

It is evident from Table 7.4 that the deviation is also progressively reduced as the thickness 
increases. On the contrary, it can be seen that the vertical location W where this maximal gap 
may be measured does not change with SJ. For ℎ� = 3.5	�, it is equal to 0.4ℎ, while it is 
equal to 0.44ℎ for ℎ� = 5	�. As expected, this shows that the point of the vertical profile 
where the fluid-structure interaction is maximum is progressively elevating as the water level 
is also getting higher. 

7.3.3.3. Additional investigations 
 
The comparisons performed here above for this reservoir show that the agreement between 
the analytical and numerical results is satisfactory. This tends to validate the theoretical 
derivation of the vibration properties for an immerged plate by using the Rayleigh-Ritz 
method. The present analytical approach is also corroborated by other comparisons made with 
different reservoirs. From this validation process, some additional results can be emphasized. 
They are briefly summarized hereafter but a more detailed parametric study is available in 
section D.1.2 of Appendix D.1. Regarding the plate thickness, the two following particular 
points may be highlighted: 
 
• If the structure is not in contact with water, the corresponding natural dry frequencies of 

vibration are directly proportional to the thickness SJ of the plate. However, this statement 
is not exact while considering an immerged structure. This is particularly true for small 
values of the thickness, for which a strong non-linearity may appear. On the contrary, the 
relation becomes nearly linear if SJ is growing.  
 

• The relative difference between the dry and wet eigenfrequencies tends to reduce if the 
thickness of the plate increases. This simply means that the fluid-structure interaction is 
more important for thin plate, as it could be expected. 

 

 
Figure 7.11. Evolution of the relative difference between the dry and wet frequencies with the thickness 
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This last assertion may be illustrated by considering the relative difference between the dry 
and wet fundamental frequencies for the two water levels considered here above. This one is 
simply defined by the classical relation: 

�� − �g�� 	!%" (7.60) 

where �� and �g denote the fundamental frequencies of vibration for the dry and immerged 
configurations respectively. The results are plotted on Figure 7.11, from which it is evident 
that the reduction becomes more and more important as the thickness is getting smaller. On 
the contrary, this picture also shows that the effect of the surrounding water tends to disappear 
if the plate is thicker. This is particularly true for the lowest value of the water level (ℎ� =3.5	�). 
 
Apart from the influence of the plate thickness, it is also interesting to know how the other 
geometrical parameters act on the fluid-structure interaction. For a given plate thickness, the 
main conclusions of the detailed investigation presented in section D.1.2 of Appendix D.1 can 
be summarized as follows: 
 
• As expected, the fluid-structure interaction is always more important if the water level ℎ� 

is close to the reservoir height ℎ. On the contrary, neglecting the surrounding water in a 
modal analysis is therefore only valid if ℎ� is very small. 
 

• If the ratio L/Õ does not exceed 0.1 (which is usually the case for classical lock chambers), 
then it can be stated that the fluid-structure interaction is more important if the ℎ/L ratio is 
large (i.e. for high reservoirs). 
 

• If the ratio L/Õ does not exceed 0.1, this latter is found to have very little influence on the 
modal properties of an immerged plate. 
 

• Finally, if the length Õ of the reservoir is at least equal to 3ℎ�, it is observed that the 
eigenvalues and the mode shapes do not depend on this parameter anymore. 
 

All the previous conclusions are quite interesting to get a quantitative overview of the results 
expected during a modal analysis. Furthermore, they may also have some practical 
consequences, particularly for numerical simulations, but this last point will be discussed in 
more details in section 7.4.  
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7.4. Dynamic analysis of flexible reservoirs 
 
The modal analysis of flexible walls immerged in water performed in the previous chapter 
provides a global insight on the way such structures respond to a seismic excitation. The next 
step is now to consider the situation described in section 7.1, where a reservoir is submitted to 
an earthquake having a longitudinal acceleration component denoted by 'í !S". The two 
remaining vertical and transversal components Ní !S" and Oí!S" acting along the axes W and X of 
Figure 7.1 respectively will not be considered so far. Of course, all the hypotheses listed in 
7.2 regarding the plate properties are still holding here. 
 
7.4.1. Equilibrium equation 
 
The direct form of the equilibrium equation given in (7.14) and the boundary conditions 
(7.15), (7.16) and (7.17) may also be used to study the forced vibrations of an immerged 
plate, but two modifications are now required. The first one concerns the inertial forces: in 
addition to the proper displacements of the structure .!W, X, S", one should also account for the 
motion '!S" of the support, which results in supplementary inertial forces §SJ'í !S". The 
second one is introduced to avoid reasoning phenomena, by considering that damping forces ��!W, X, S" are also present in the model. With these two corrections, (7.14) becomes: 

§SJ�.í !W, X, S" + 'í !S"� + ��!W, X, S" + � =>�.>W� + 2 >�.>W#>X# + >�.>X�? = −`!W, X, S" (7.61) 

In order to characterize a bit further the term ��!W, X, S", these additional forces will be 
assumed to be directly related to the velocity .- !W, X, S". They may be seen as having two 
different contributions: a first one coming from the mass of the structure and a second one 
coming from its stiffness. The mass-proportional damping force is simply written as:   

Æ§SJ.- !W, X, S" (7.62) 

where §SJ is the surface mass of the plate and Æ is a constant. On the other hand, stiffness 
proportional damping is known to produce additional internal stresses that are related to the 
velocity .- !W, X, S" by the classical formulae: 

6��� = ß�1 − ¦# �G-�� + ¦G-��� = − ß�+1 − ¦# =>².->W² + ¦ >².->X²? 

(7.63) 6��� = ß�1 − ¦# �G-�� + ¦G-��� = − ß�+1 − ¦# =>².->X² + ¦ >².->W²? 

6��� = ß�1 + ¦ G-�� = − ß�+1 − ¦# >².->W>X 
where G-��, G-�� and G-�� are the strain rates, � is the Young modulus and ß is a constant. By 
applying a development similar to the one leading to the classical Kirchhoff equilibrium 
equation (7.14), the stresses given in (7.63) can be easily transformed into the following 
stiffness-proportional internal damping force: 

ß� =>�.->W� + 2 >�.->W#>X# + >�.->X�? (7.64) 
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where � is still the plate flexional rigidity. Finally, gathering (7.62) and (7.64) in (7.61) leads 
to the dynamic equation characterizing the forced vibrations of an immerged plate: 

§SJ�.í + 'í� + Æ§SJ.- + ß� =>�.->W� + 2>�.->W#>X# + >�.->X�? + � =>�.>W� + 2>�.>W#>X# + >�.>X�? = −` (7.65) 

where it is worth remembering that the total hydrodynamic pressure ̀!W, X, S" is the sum of 
the rigid and flexible impulsive contributions respectively given by (7.7) and (7.8). So far, the 
two parameters Æ and ß are still undetermined, but they will be fixed later on. They are 
known as the Rayleigh damping coefficients. 
 
7.4.2. Virtual work principle 
 
An analytical way to study the forced vibrations of an immerged plate is to apply the virtual 
work principle, which simply states that a necessary and sufficient condition for equilibrium 
is to equate the external and internal virtual works for any kinematically compatible 
displacement field. Consequently, to express the equilibrium of the plate, it is first required to 
consider a compatible virtual field i.!W, X, S", i;!W, X, S" and iv!W, X, S" acting on the plate. 
Under the hypothesis of preponderant out-of-plane displacements, one can write: 

i;!W, X, S" = −+ >i.>W 					 ; 					iv!W, X, S" = −+ >i.>X  (7.66) 

which is consistent with (7.10). Furthermore, because of the developments performed in 
section 7.2, it seems reasonable to express that the motions .!W, X, S" exhibited by the 
immerged structure during the seismic excitation are based on the wet mode shapes. In other 
words, it is postulated that: 

.!W, X, S" =s[<!S"Δ<!W, X"Ó
<u( 					 ; 					i.!W, X, S" = si[E!S"ΔE!W, X"Ó

Eu(  (7.67) 

where À is the number of wet modes Δ<!W, X" that are used for developing .!W, X, S". At this 
stage, the modal amplitudes [<!S" and i[E!S" are still unknown but will be determined by 
applying the virtual work principle. To do so, let us start by developing the mathematical 
expressions of the virtual work performed by each of the different forces involved in the 
present problem. Rearranging (7.65) leads to: 

�=>�.>W� + 2>�.>W#>X# + >�.>X�? = −=§SJ�.í + 'í� + Æ§SJ.- + ß =>�.->W� + 2>�.->W#>X# + >�.->X�? + `? (7.68) 

which may be identified as the equilibrium equation of a plate submitted to an external 
resulting horizontal action �o·�!W, X, S" given by the right hand side: 

�o·�!W, X, S" = §SJ�.í + 'í� + Æ§SJ.- + ß =>�.->W� + 2>�.->W#>X# + >�.->X�? + ` (7.69) 

This expression is the sum of the pressure, damping and inertial forces. It is important to bear 
in mind that, by essence, these forces are always opposed to the displacements .!W, X, S", as 
recalled on Figure 7.12. Therefore, it is not surprising that the work performed by these 
actions will always be affected by a minus sign. 
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Figure 7.12. Orientation of the resulting external force acting on the plate 

The left hand side of equation (7.68) corresponds to the internal forces ����!W, X, S". They 
always produce a positive work, that is sometimes referred to as an internal energy. 

7.4.2.1. Internal virtual work 
 
In a more conventional approach of the virtual work principle, the contribution of the internal 
forces are seen as a virtual energy. For a given virtual displacement field, it is possible to 
derive the associated virtual strain tensor iG�< and the subsequent internal energy: 

i2��� = ���6��iG�� + 6��iG�� + 26��iG���:W:Xò



Q



 (7.70) 

where 6�< is the stress tensor. If we account for (7.11) and (7.12), it is shown by Shames and 
Dym [137] that developing (7.70) leads to the widely used expression for i2���: 
�� =>#.>W# >#i.>W# + >#.>X# >#i.>X# + ¦ >#.>W# >#i.>X# + ¦ >#i.>W# >#.>X# + 2!1 − ¦" >#.>W>X >#i.>W>X?:��

 (7.71) 

Nevertheless, another way will be adopted here to evaluate the contribution of the internal 
forces. Indeed, it can be stated that the virtual work performed by ����!W, X, S" during any 
virtual displacement i.!W, X, S" is simply: 

i2��� = ������!W, X, S"i.!W, X, S":W:Xò



Q



 (7.72) 

The left hand side of (7.68) shows that this last equation can be developed in the following 
more explicit (but quite unusual) form: 

i2��� = ���=>�.>W� + 2>�.>W#>X# + >�.>X�?i.!W, X, S":W:X
ò



Q



 (7.73) 

In fact, it may be demonstrated that (7.71) and (7.72) are strictly identical, provided that the 
functions .!W, X, S" and i.!W, X, S" both satisfies the plate boundary conditions expressed in 
(7.15) to (7.17), which should be the case as these displacement fields are kinematically 
admissible. As a last step, introducing the modal decomposition (7.67) in (7.73) leads to: 

i2��� =si[E �s[<��� =>�Δ<>W� + 2>�Δ<>W#>X# + >�Δ<>X� ?ΔE:W:X
ò



Q



Ó
<u( �Ó

Eu( =si[Es[<�<EÓ
<u(

Ó
Eu(  (7.74) 
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where �<E is directly constructed by using the wet mode shapes. As it will be detailed later, �<E may also be expressed as a function of the dry modes of vibration. 

7.4.2.2. External virtual work 
 
Developing the second part of the virtual work theorem, the work associated to the external 
forces during an horizontal virtual displacement i.!W, X, S" has now to be evaluated. This one 
is simply written as: 

i2o·� = −���o·�!W, X, S"i.!W, X, S":W:Xò



Q



 (7.75) 

and subsequently, the contributions coming from all the terms involved in the expression of �o·�!W, X, S" given in (7.69) have to be examined. This task is quite fastidious, so we will only 
provide here a short summary of the final results, obtained after incorporating the modal form 
(7.67) in (7.75). It can be proved that: 
 
• For the inertial forces corresponding to the first term of (7.69), the associated virtual work 

is as follows: 

−si[E �s[í<��§SJΔ<ΔE:W:Xò



Q



+ 'í ��§SJΔE:W:Xò



Q



Ó
<u( �Ó

Eu(  (7.76) 

• For the damping forces given by the second and third terms in equation (7.69), the virtual 
work is written as: 

−si[E �s[-<��¤Æ§SJΔ< + ß� =>�Δ<>W� + 2>�Δ<>W#>X# + >�Δ<>X� ?¥ΔE:W:X
ò



Q



Ó
<u( �Ó

Eu(  (7.77) 

Concerning the total hydrodynamic pressure force, which is the last term in (7.69), both the 
rigid and flexible contributions denoted by `I!W, S" and ̀ �!W, X, S" respectively have to be 
considered. Their mathematical expressions are given in section 7.2 by equations (7.7) and 
(7.8). During any kinematically admissible displacement i.!W, X, S", these forces are always 
opposed to the motion of the plate and will therefore produce a negative virtual work. 
Moreover, it is worth noting that the pressure is not acting on the whole surface of the plate, 
so the integration has only to be conducted on the wet area of the structure. Accounting for 
these remarks, the virtual work associated to `I!W, S" and ̀ �!W, X, S" is given by: 

−� ��`I!W, S" + `�!W, X, S"�i.!W, X, S":W:Xò



Qó



 (7.78) 

Introducing the modal decomposition in the mathematical expressions of ̀I!W, S" and `�!W, X, S" given in (7.7) and (7.8), one can develop (7.78) in the following form: 

si[EÓ
Eu( �'í � �¤s 4§�ß�#Õ cosh!ß�W"cosh!ß�ℎ�"

�ñ
�u( − Õ2¥ΔE:W:X

ò



+s[í<ss ­��I��!<" I��!E"�ñ
�u


�ñ
�u(

Ó
<u(

Qó



� (7.79) 
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where the coefficient ß�, ­��, Æ� and à̅� have the definitions listed in section 7.2. The 

functions I��!<"  and I��!E"  were already encountered in (7.28). Finally, gathering (7.76), (7.77) 
and  (7.79), the external virtual work associated to �o·�!W, X, S" can be expressed in a more 
compact form: 

i2o·� = −si[E �s[í<�è<E −2<E�Ó
<u( +s[-<�Æè<E + ß�<E�Ó

<u( − �E'í�Ó
Eu(  (7.80) 

where �<E has the same definition than in section 7.4.2.1. è<E, 2<Eand �E are directly extracted 
from (7.76), (7.77) and (7.79): 

è<E = §SJ��Δ<!W, X"ΔE!W, X":W:Xò



Q



 2<E = s s ­��I��!<" I��!E"�ñ
�u


�ñ
�u(  (7.81) 

�E = � �¤s 4§�ß�#Õ cosh!ß�W"cosh!ß�ℎ�"
�ñ
�u( − Õ2¥ΔE:W:X

ò



Qó



− §SJ��ΔE!W, X":W:Xò



Q



 (7.82) 

7.4.2.3. Global equilibrium equation 
 
After having briefly developed the analytical expressions of the internal and external virtual 
works i2��� and i2o·�, in accordance with the theorem, (7.74) and (7.80) can be equated to 
get the global equilibrium equation: 

si[E �s[í<�è<E −2<E�Ó
<u( +s[-<�Æè<E + ß�<E�Ó

<u( +s[<�<EÓ
<u( − �E'í�Ó

Eu( = 0 (7.83) 

As the displacement field i.!W, X, S" is arbitrary, this equation has to be satisfied for any 
particular values of the À coefficients i[E. Consequently, the only way to satisfy (7.83) is to 
verify the following equation for ̈= 1,… ,À: 

s[í<�è<E −2<E�Ó
<u( +s[-<�Æè<E + ß�<E�Ó

<u( +s[<�<EÓ
<u( = �E'í  (7.84) 

Denoting by 5è7, 527, 5�7 and 1 the matrices and vector associated to è<E, 2<E, �<E and �E 
respectively, (7.84) can be rewritten as: 

!5è7 − 527" í !S" + !Æ5è7 + ß5�7" - !S" + 5�7 !S" = 1'í!S" (7.85) 

where Æ5è7 + ß5�7 can be recognized as the classical Rayleigh damping matrix. Let us now 
give some particular comments on the matrices involved in (7.85). By carefully examining 
equations (7.76) to (7.79), it is possible to identify the differential operators ℒ( and ℒ# already 
mentioned in (7.31) and (7.32). In fact: 

è<E −2<E = !Δ<"ℒ(!ΔE"#					; 					�<E = !Δ<"ℒ#!ΔE"# (7.86) 

Even if this is quite fastidious, it can be shown that the wet modes are orthogonal to the 
operators ℒ( and ℒ#. In other words, the internal products between these modes and the 
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corresponding differential operator ℒ( or ℒ# have to satisfy the following traditional 
perpendicularity property: 

!Δ<"ℒ(!ΔE"# = !Δ<"ℒ#!ΔE"# = 0     if     ø ≠ ¨ (7.87) 

which means that the wet mode shapes are orthogonal to the matrices 5è7 − 527 and 5�7, as it 
could be expected. Consequently, these matrices are diagonal. Nevertheless, this is not the 
case for the damping matrix, because the mass proportional damping term Æ5è7 is not reputed 
to have the same property. This due to the fact that the wet mode shapes are not perpendicular 
to each others13, and are not orthogonal to the matrix 5è7 as they verify this property with 5è7 − 527. Therefore, the À equations given in (7.85) may not be decoupled and have to be 
solved as a whole, by applying the Newmark method for example. After having determined 
the modal amplitudes  , it is possible to rebuild the displacement by (7.67) and also the 
hydrodynamic pressure with (7.7) and (7.8). 
 
As a final remark, it is worth mentioning that the matrices 5è7, 527 and 5�7 can be directly 
calculated with help of 5èÉ7, 52þ 7 and 5�þ7 introduced during the modal analysis: 

è<E = �<ªAèÉC�E								2<E = �<ªA2þ C�E								�<E = �<ªA�þC�E (7.88) 

These last formulae may be directly justified by using equation (7.35) relating the dry and wet 
modes. 
 
7.4.3. Numerical validation 
 
To corroborate the procedure exposed previously, the analytical solutions obtained by 
applying the virtual work principle can be compared to those provided by finite element 
simulations. It is proposed here to focus again on the same reservoir than the one considered 
in section 7.3.3 (Figure 7.5). The material and fluid properties are still those listed in Table 
7.1. This reservoir is submitted to a seism having the longitudinal acceleration component 'í !S" depicted on Figure 7.13 (synthetic accelerogram). 
 

 
Figure 7.13. Longitudinal component of the seismic acceleration 

                                                                    
13 It is recalled that, as mentioned by Delhez [40], the eigenmodes found by solving a generalized eigenvalues 
problem are linearly independent, but not necessarily orthogonal to each others. They are only orthogonal to the 
matrices defining the eigenvalues problem. 
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Figure 7.14. Fourier transform of the longitudinal seismic acceleration 

The Fourier transform of this signal is represented on Figure 7.14. It shows that the main part 
of the seismic excitation is located in the frequency range going approximately from 1	®X to 15	®X.  
7.4.3.1. Numerical model 
 
The numerical analysis is performed with the finite element software LS-DYNA . Before 
presenting the results, some indications are first given on the model itself. To account for the 
fluid-structure interaction, it is required to represent these two entities separately, as detailed 
hereafter: 
 
• The flexible walls are modeled with Belytschko-Tsay shell elements [66] of uniform 

thickness SJ. They have a linear elastic behavior, characterized by a mass density §, a 
Young modulus � and a Poisson ratio ¦. The stress and strain tensors are related according 
to the classical Hooke's law. 
 
The mesh of the solid domain is quite coarse, with a more or less regular size of 20 ×20	­� for the shell elements. This choice is due to the necessity of limiting the size of the 
model. Nevertheless, simulations on more refined models with a meshing of 5 × 5	­� or 10 × 10	­� were also performed, and the results do not show important discrepancies with 
the present ones. 
 

• The fluid is modeled with constant stress solid elements [66] affected by a particular 
material law (MAT_ELASTIC_FLUID). The liquid is seen as an elastic medium with a mass 
density §� and a bulk modulus â�, for which the stress and strain rates are related by: 

-̀ = 6-·· = 6-�� = 6-�� = â��G-·· + G-�� + G-��� 
(7.89) 6-·� = 6-·� = 6-�� = 0 

where ̀  is the pressure inside the solid elements. As shown by (7.89), there is no shearing 
with this material. This is coherent with the behavior of water. 
 
The mesh of the fluid domain is also regular, with an approximate size of 19 × 19 ×19	­� for the solid elements (as it will be discussed later, it is necessary to avoid having 
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similar mesh sizes on both the solid and fluid domains). Here again, using more refined 
meshes do not provide any additional interest. 

 
The two previous separated entities representing the water and the structure do not share any 
node in common, which means that the fluid nodes are distinct from the solid ones at the 
boundary between the two domains. The LS-DYNA  penalty contact algorithm [66] is then used 
to simulate the interaction between the plate and the surrounding liquid. This allows the fluid 
to slide on the flexible walls without friction, but prevents it from passing through the 
structure.  
 
Nevertheless, in order to provide good contact conditions, it necessary to avoid having fluid 
nodes exactly facing the solid ones, as represented on Figure 7.15b (this condition may be 
easily fulfilled by imposing different mesh sizes on the two domains). Moreover, to prohibit 
any initial penetration, it is also needed to account for the plating thickness SJ by imposing an 
initial gap of SJ/2 + G, where G is a very small distance of 1	�� for example. All these 
geometrical dispositions are summarized on Figure 7.15. If they are not carefully followed, 
then it is to fear that leakage may appear during the simulation. 
 
Let us now give some comments on the boundary conditions. Concerning the fluid domain, 
these ones are as follows: 
 
• In the horizontal plane W = 0, the water is always in contact with the bottom of the 

reservoir. To account for this situation, it is required to prohibit the vertical motions along 
the W axis for all the fluid nodes located in this plane. However, the displacements along 
the + and X axes remain free, which corresponds to the possibility for the liquid to slide 
(without friction) on the bottom. 
 

• In the vertical planes X = 0 and X = L, the contact with the rigid walls may be modeled 
similarly, by preventing any horizontal motion along the X axis. Nevertheless, all the nodes 
positioned there may slide (without friction) on the walls and are therefore free to move 
along the + and W axes. 
 

• In the vertical planes + = 0 and + = Õ, there is no need to impose particular boundary 
conditions as the interaction with the plate is covered by the contact algorithm. 
 

• In the horizontal plane W = ℎ�, it is not necessary to provide any kind of special restriction 
as this plane corresponds to the free surface. Provided that the numerical calculation runs 
correctly, the pressure there should always be close to zero without having to impose any 
constraint. 
 

All the previous conditions are kept constant throughout the entire simulation. This is not the 
case for the ones affecting the structure, because it is first necessary to impose the gravity 
forces before considering the seismic input. This has to be done to consistently model the 
action of the hydrostatic pressure. 
 
Consequently, during this first phase of loading, all the nodes located on the three supported 
edges of the plates (see the thick lines on Figure 7.15) are prevented from translating along 
the +, W and X axes. Nevertheless, once the hydrostatic pressure is established, the seismic 
acceleration may be applied to these nodes, which requires to release the constraint imposed 
on their + translational degree of freedom. 
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(a) Global disposition (b) Boundary 
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Figure 7.15. Geometrical requirements of the finite element model 

After having briefly described the model that will be used to perform the numerical 
validations, particular results will now be presented for the reservoir depicted on Figure 7.5 
and having the properties listed in Table 7.1. 

7.4.3.2. Dynamic analysis 
 
Even though it is not of primary concern, the case of a rigid reservoir has first been 
investigated. For such a situation, some well-known analytical solutions are available, such as 
the Westergaard formula [166]. The goal of such an approach is to consolidate the finite 
element model detailed above by making sure that the numerical solutions are sticking to the 
theoretical predictions for this simple example. The detailed results are reported in section 
D.2.1 of Appendix D.2, from which it transpires that the agreement is quite satisfactory. 
 
The analytical predictions derived from the virtual work principle will now be confronted to 
the numerical ones. In this section, the presentation will be limited to the case of the reservoir 
depicted on Figure 7.5, for a thickness SJ of 20	­� and a water level ℎ� of 3.5	� or 5	�. Of 
course, many other additional simulations were performed, using different geometrical 
configurations than the one of Figure 7.5. The conclusions found in all cases were very 
similar to those presented here, so there is no need to consider them extensively in this 
section. 
 
Regarding the structural damping, it is applied on LS-DYNA  through the classical Rayleigh 
formulation. The mass and stiffness coefficient are calibrated to have a 4	% damping on the 
two first modes of vibration. This value of 4	% has been chosen arbitrarily for this example, 
but this question needs to be carefully discussed when working on a new project. Some 
considerations about this problem are given by Buldgen [17] and summarize the discussions 
related to the seismic design of the new locks in the Panama canal [125]. 
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Figure 7.16. Analytical and numerical evolution of the resulting force applied on the flexible wall (hs = 3.5 m) 
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Figure 7.17. Analytical and numerical evolution of the resulting force applied on the flexible wall (hs = 5 m) 

-200

-150

-100

-50

0

50

100

150

200

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

R
es

u
lt

in
g 

fo
rc

e 
(k

N
)

t (s)

LS-DYNA Analytical

-200

-150

-100

-50

0

50

100

150

200

7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5

R
es

u
lt

in
g 

fo
rc

e 
(k

N
)

t (s)



CHAPTER 7. Seismic analysis of large flexible reservoirs 

189 
 

As a matter of validation, the comparison is made on the total hydrodynamic force Å!S" 
applied on the flexible wall, in excess to the hydrostatic pressure. This one is obtained by 
summing the contributions ÅI!S" and Å�!S" respectively coming from the rigid and flexible 
impulsive pressures given in (7.7) and (7.8): 

Å!S" = ÅI!S" + Å�!S" = L � `I!W, S"
Qó



:W + � �`�!W, X, S"ò



:W:XQó



 (7.90) 

The evolution of Å!S" is represented on Figure 7.16 for ℎ� = 3.5	� and on Figure 7.17 for ℎ� = 5	�. For the first case, it can be seen that the analytical curve sticks quite closely to the 
numerical one. However, the agreement is not as good for the second case. This discrepancy 
may be explained because of the assumptions underlying the theoretical model. The 
developments performed in section 7.4.2 are based on the bending theory of thin plates, which 
is valid if the out-of-plane motions are kept sufficiently small. More precisely, it is 
recommended by Shames and Dym [137] that the maximal displacement should not exceed SJ/10. For the present reservoir, SJ = 10	­�, so the restriction is around 1	­�.  
 

 ℎ� = 3.5	� ℎ� = 5	� 
Hydrostatic pressure only 0.48	­� 1.4	­� 
Total pressure 1.1	­� 2.1	­� 

Table 7.5. Maximal out-of-plane displacements 

The maximal out-of-plane components calculated by LS-DYNA  are reported in Table 7.5 for ℎ� = 3.5	� and ℎ� = 5	�. In the first case, it appears that the previous limitation is more or 
less respected, but for a higher water level, this is not true anymore. Indeed, applying only the 
hydrostatic pressure on the model already leads to a displacement of 1.4	­�, and a value of 2.1	­� is even reached during the seism. Consequently, it is to fear that membrane effects are 
not negligible in such a situation, and this explains the discrepancy observed on Figure 7.17. 
Moreover, numerical simulations performed with SJ = 15	­� and ℎ� = 5	� show a better 
agreement, which tends to confirm that the problem is actually coming from too large out-of-
plane motions. 
 �� = 
.�	� 

Result Analytical solution Numerical solution Relative difference 
Maximal value 75.67	¨À 70.67	¨À 7.1	% 
Minimal value −83.31	¨À −77.18	¨À 7.9	% �� = �	� 

Result Analytical solution Numerical solution Relative difference 
Maximal value 180.09	¨À 157.36	¨À 14.4	% 
Minimal value −179.88	¨À −167.29	¨À 7.5	% 

Table 7.6. Comparison between the extreme values of the analytical and numerical flexible solutions 

To have a better comparison between the numerical and analytical results, let us now analyze 
Table 7.6. This one gives the maximal and minimal values of the resulting force Å!S" acting 
on the wall during the seism. It is clear that the theoretical model tends to be more 
conservative than the solutions provided by the finite element simulations, which is a quite 
safe observation for the pre-design process. Moreover, the maximal overestimation does not 
exceed 15	%, which is still acceptable. Similar conclusions are also valid for the simulations 
performed with other reservoirs. 
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7.4.3.3. Additional investigations 
 
In order to illustrate the real need of accounting for the fluid-structure interaction during the 
dynamic analysis, some comparisons have been made between the theoretical solutions for a 
rigid and a flexible wall. An example is proposed in section D.2.2.1 of Appendix D.2, from 
which it transpires that neglecting the wall flexibility could lead to a drastic underestimation 
of the hydrodynamic pressure (more than 50	% in the present case). Consequently, one should 
always be careful before applying classical solutions such as the one of Westergaard [166] 
because they are only valid for very stiff structures14. 
 
Regarding the influence of the reservoir length Õ, it is shown in section D.2.2.2 of Appendix 
D.2 that the conclusion exposed in 7.3.3.3 during the modal analysis are still valid in the 
present case. Indeed, for Õ ≥ 3ℎ�, one can consider that the rigid and flexible contributions do 
not depend on Õ anymore. Consequently, this means that for a given value of ℎ�, performing 
the seismic analysis of a reservoir with a length Õ greater than 3ℎ� is equivalent to realizing 
the same analysis on a "fictitious" reservoir with a length of 3ℎ� (see Figure 7.18). 
 

h
s

h
s

 
Figure 7.18. Definition of a fictitious reservoir for a seismic analysis 

The direct practical implication of the previous conclusion is to simplify numerical seismic 
analyses of reservoirs. Indeed, to account for the fluid-structure interaction, it is necessary to 
represent both the gate and the fluid with finite element. In this process, the main effort is 
mostly on modeling the fluid part, as lock chambers are often quite long. So if Õ ≥ 3ℎ�, 
performing simulations on a fictitious model with a length of 3ℎ� could drastically reduce the 
time and the capacities needed to realize numerical analyses. This last assertion is discussed 
in section D.2.2.2 of Appendix D.2 where an application example is also proposed. 
 
7.4.4. Added mass method 

7.4.4.1. Theoretical overview 
 
The added mass method is based on the fact that the surrounding water reduces the vibration 
frequencies of the immerged plate. As it is clear that the stiffness of the dry structure is the 
                                                                    
14 It is worth remembering that the Westergaard formula [166] was initially derived for gravity dams, which are 
usually quite rigid structures (see section 6.1). 
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same as for the wet one, this phenomenon may be modeled by increasing fictitiously the mass 
of the flexible walls. In other words, the consequence of the liquid is to make the structure 
heavier. 
 
Instead of working with a plate having a mass density § and immerged in water, the added 
mass approach proposes to work directly on a dry structure having a modified mass density § + §∗. When such a flexible wall is submitted to a longitudinal seismic acceleration, the 
dynamic equilibrium equation (7.61) simply becomes: 

!§ + §∗"SJ�.í + 'í� + �� + � =>�.>W� + 2 >�.>W#>X# + >�.>X�? = 0 
(7.91) ⇔ §SJ�.í + 'í� + �� + �=>�.>W� + 2 >�.>W#>X# + >�.>X�? = −§∗SJ.í − §∗SJ'í  

Comparing (7.61) and (7.91), it transpires that the pressure in this last expression is given by ` = §∗SJ'í + §∗SJ.í . The first term §∗SJ'í  may be identified as the rigid impulsive part `I!W, S", while the second one §∗SJ.í  is clearly the contribution coming from the vibrations of 
the plate. To have a strict equivalence between (7.61) and (7.91), the fictitious mass density §∗ should be calibrated in accordance with (7.7) and (7.8) to have: 

§∗SJ'í = −§� ¤s 4ß�#Õ cosh!ß�W"cosh!ß�ℎ�"
�ñ
�u( − Õ2¥'í  (7.92) 

§∗SJ.í = −s s ­�� cos!Æ�W" cos!à̅�X"� �.í cos!Æ�W" cos!à̅�X":W:Xò



Qó



�ñ
�u


�ñ
�u(  (7.93) 

 
However, it is impossible to find an expression of §∗ satisfying (7.93). Therefore, the 
equivalence is only performed on the rigid contribution, which means that: 

§∗!W" = §�SJ ¤Õ2 −s 4ß�#Õ cosh!ß�W"cosh!ß�ℎ�"
�ñ
�u( ¥		 (7.94) 

Using (7.94) leads to the exact expression for `I!W, S", but this is not the case for `�!W, X, S", 
which implies that the fluid-structure interaction is not correctly assessed. So the added mass 
method is only an approximate approach, that is not based on theoretical or physical 
developments. Increasing fictitiously the mass density by resorting to (7.94) is only valid for 
perfectly rigid structures, but not for flexible ones. In other words, the additional density 
calibrated with (7.94) does not lead to the correct vibration frequencies and mode shapes. 
Nevertheless, this way of doing may be more or less suited for moderately flexible structures 
and for situations where the interaction with the fluid is quite low (i.e. for the intermediate 
values of the FSI quotient introduced in section D.1.2 of Appendix D.1). 

7.4.4.2. Numerical application 
 
The main practical interest of working with added masses is that the finite element model is 
much easier to build. Indeed, there is no need to represent the fluid part, which also means 
that the simulations will be shorter and less demanding in terms of computational resources. 
Moreover, if the structure has an elastic behavior and if the boundary conditions are linear, 
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one may resort to response spectra instead of having to perform multiple time history 
analyses. So it is quite easy to work with added masses, but one has always to bear in mind 
that the solution is only approximate and not strictly valid. 
 

 
Figure 7.19. Derivation of the numerical added masses 

The aim is now to compare the pressure obtained by modeling the fluid domain (as it has been 
done in section 7.4.3.1) with the one given by the added mass method. In this last approach, 
the plate is first modeled by shell elements having a uniform thickness SJ with a mass density §, and the appropriate boundary conditions are applied to the supports in W = 0, X = 0 and X = L. To represent the effect of the fluid, concentrated mass elements are then attached to the 
nodes located in the wet area of the structure. The lumped mass �� affected in !W�, X�" is 
simply given by (Figure 7.19): 

�� = §∗!W�"	SJΔW�ΔX�			; 			ΔW� = W��( − W��(2 			 ; 					ΔX� = X��( − X��(2  (7.95) 

where §∗!W�" is directly obtained from (7.94). As a next step, the supported edges of the plate 
are submitted to the seismic acceleration 'í !S", and it is possible with LS-DYNA  to compute the 
time evolution of the total accelerations .í !W, X, S" + 'í !S" at each nodes of the model. Using 
these values in conjunction with (7.94) leads to the total hydrodynamic pressure in a set of 
discrete locations !W�, X�". According to the added mass theory, the total pressure is given by: 

`I!W, S" + `�!W, X, S" = §∗SJ�.í !W, X, S" + 'í !S"� (7.96) 

As a matter of comparison, it is proposed here to focus on the resulting pressure force acting 
in the middle of the gate, i.e. in X = L/2. Analytically, this one is simply given by: 

%� `!W, X, S":WQó



&
�uò/#

= � `I!W, S":W
Qó



+ %� `�!W, X, S":W
Qó



&
�uò/#

 (7.97) 

Once again, the reservoir depicted on Figure 7.5 is used to have an application example. The 
numerical and theoretical results related to this configuration have already been presented on 
Figure 7.16 and Figure 7.17 for ℎ� = 3.5	� and ℎ� = 5	� respectively. The purpose is now to 
compare them with those obtained by applying the added mass method. The evolution of the 
resulting pressure force in X = L/2 as defined in (7.97) has been calculated by LS-DYNA  for 
the signal depicted on Figure 7.13. The curves are plotted on Figure 7.20 for ℎ� = 3.5	� and 
on Figure 7.21 for ℎ� = 5	�.  
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Figure 7.20. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method (hs = 3.5 m) 
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Figure 7.21. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method (hs = 5 m) 

-40

-30

-20

-10

0

10

20

30

40

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

R
es

u
lt

in
g 

 p
re

ss
u

re
 fo

rc
e 

in
 z

=
 l/

2
 

(k
N

/
m

)

t (s)

With a fluid domain Added mass approach

-30

-20

-10

0

10

20

30

7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5

R
es

u
lt

in
g 

 p
re

ss
u

re
 fo

rc
e 

in
 z

=
 l/

2
 

(k
N

/
m

)

t (s)



CHAPTER 7. Seismic analysis of large flexible reservoirs 

195 
 

In the first case, it appears that modeling entirely the fluid domain or using added masses is 
equivalent, as there is a very good agreement between the results given by the two techniques. 
However, if the water level is raised up to 5	�, the discrepancy becomes much more 
important and working with lumped masses is not relevant. 
 
This application example confirms what was already suggested in the theoretical overview of 
section 7.4.4.1: the added mass method is only applicable to situations where the fluid-
structure interaction is limited, which is the case if the water level is not too high. As detailed 
in section D.1.2 of Appendix D.1, this may be corroborated by checking the values of the FSI 
quotient for this example (as a reminder, it is recalled if FSI ≪ 1, the liquid has practically no 
influence on the plate vibrations). For ℎ� = 3.5	�, FSI = 0.37, which is quite an intermediate 
value with respect to unity. Therefore, using concentrated mass is still adequate in this case. 
Nevertheless, for ℎ� = 5	�, the interaction is much more severe as FSI = 1.31, and this is 
why the added mass method fails to correctly represent the action of the fluid. 
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7.5. Conclusions 
 
The goal of this chapter was to develop an analytical method to evaluate the hydrodynamic 
pressure on flexible reservoirs during a seism. To do so, the dry modal properties were first 
briefly derived in section 7.2 and then extended to account for the presence of water. This was 
achieved by applying the Rayleigh-Ritz method. The corresponding wet eigenfrequencies and 
modes shapes were validated by comparison with numerical solutions. In section 7.4.3.3, 
these latter were completed by further investigations to analyze the effects of some 
geometrical parameters.  
 
Once the wet modal properties were obtained, the dynamic analysis of a flexible reservoir was 
investigated in section 7.4. The analytical solutions were derived by applying the virtual work 
principle and validated by comparisons with finite element simulations. The agreement was 
found to be quite satisfactory for a pre-design stage.   
 
Apart from these developments, additional investigations were made on some other particular 
points. The main conclusions are summarized hereafter: 
 
• Regarding the fluid-structure interaction, it can be shown that the length Õ of the reservoir 

does not have any influence on the modal properties and on the hydrodynamic pressure 
provided that Õ ≥ 3ℎ�. On a practical point of view, this observation means that there is no 
need to consider the whole reservoir when performing numerical simulations. It is 
sufficient to model it only over a length of 3ℎ�, which could lead to an important reduction 
of the computation effort. 
 

• Evaluating the hydrodynamic pressure by considering only the rigid contribution may 
result in an unsafe design. Indeed, as claimed in section 7.4.3.3, such an approach tends to 
drastically underestimate the forces acting on the flexible walls. This is particularly true if 
the fluid-structure interaction is important. 
 

• In the same optic, for the well-known added mass method presented in section 7.4.4, it is 
also found that the hydrodynamic pressure obtained in this way was not correctly assessed. 

  
From the previous points, it can be concluded that performing the seismic analysis of a 
flexible reservoir is not straightforward. Except for very rigid configurations, this has to be 
achieved by considering the fluid-structure interaction, otherwise the hydrodynamic pressure 
could be underestimated. Consequently, the classical Westergaard formula [166] or the added 
mass methods should be carefully used. 



CHAPTER 8. Seismic analysis of plane lock gates 

197 
 

 
 
 
 
 

CHAPTER 8. Seismic analysis of plane lock gates 
 
 
 
 
 
 

This chapter is this time devoted to study the seismic behavior of lock gates. The 
structures considered here are made of a plating bearing an orthogonal 
reinforcing system. Once again, the objective is to establish a simplified procedure 
leading to the evaluation of the resulting hydrodynamic pressures induced by an 
earthquake. The procedure followed to achieve this goal is quite similar to the one 
exposed in Chapter 7 and is divided in two main parts. 
 
The first section is concerned with the determination of the modal properties of a 
stiffened plate. The vibration characteristics are derived by using the Rayleigh-Ritz 
method, in which the mode shapes of beams with various support conditions are 
used as admissible functions. The validity of such an approach is then briefly 
discussed, and the section is closed by presenting some comparisons between the 
analytical results and those obtained numerically with the software NASTRAN and 

LS-DYNA. 

 
The second part of the chapter presents a simplified method for performing the 
dynamic analysis of a lock gate. The virtual work principle is used as a basis and its 
applicability to the present situation is discussed in detail. As a validation step, the 
analytical curves showing the time evolution of the hydrodynamic pressure are 
compared to those given by the finite element software LS-DYNA. After that, some 
more investigations are made about the use of the added mass method. 
 
The developments exposed in this chapter have been partly presented in the 33rd 
PIANC World Congress [19] and to the 7th International Conference on Thin-

Walled Structures [20]. 

 

*** 
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8.1. Introduction 
 
8.1.1. Preliminary considerations 
 
The developments on unstiffened plates performed in the previous chapter give a global 
insight on the process that will now be followed to investigate lock gates.  
 
As suggested by some authors, the vibrations of a stiffened plate may be studied by 
considering an equivalent orthotropic structure characterized by the material parameters listed 
in Table 8.1. The main advantage of such an approach is that it allows to use all the results 
already available in the literature. For example, Aksu [4], Grace [62] and Vijayakumar [156] 
provide very interesting results by deriving approximate solutions for the characteristic 
equation of orthotropic plates. In addition, the work performed by Greenspon [65] also 
constitutes an interesting extension to account for the presence of water. To do so, the 
equilibrium equations proposed in references [4], [62] and [156] are corrected to account for 
the hydrodynamic pressure induced by the plate vibrations. The wet modal properties are then 
derived and a closed-form solution is proposed for the dynamic analysis of a plate submitted 
to an impulsive load. 
 �� , �� Young modulus in the W and X direction ¦�� , ¦�� Poisson ratios È�� Shear modulus 

Table 8.1. Material parameters of an orthotropic plate 

To work this way, the parameters ��, ��, ¦��, ¦�� and È�� should be derived to have the same 
vibration properties for the orthotropic plate and for the lock gate. Huffington [75] and 
Lekhnitskii [96], amongst others, proposed some formulae to evaluate these parameters in 
function of the properties characterizing the reinforcing system. Nevertheless, their 
recommendations are based on the hypothesis that the plate is regularly stiffened, which is not 
the case for a lock gate. Moreover, the approach proposed by these authors is based on a static 
equivalence, which is not really coherent to treat vibrating structures. Another suggestion was 
also made by Iyengar [78], who derived the orthotropic parameters to have the same 
fundamental frequency of vibration for both the plate and the gate. However, the method is 
not really interesting as it first requires to know the eigenfrequencies of the lock gate, which 
is precisely what is sought. 
 
Consequently, even if the method appears to be quite interesting, it seems that an equivalent 
orthotropic plate fails to properly represent the vibration properties of a non-regularly 
stiffened lock gate. Furthermore, the equivalence should be based on the modal properties 
characterizing the stiffened structure, which are usually unknown at the early design stage. 
For these reasons, it is decided to avoid using such an approach to analyze the seismic 
behavior of lock gates. Nevertheless, the developments performed in Chapter 7 are still a 
good basis and will be extensively used in the next sections. 
 
8.1.2. Description of the structure 
 
As a first step, it is probably necessary to proceed to a better description of the structure to 
analyze. In this chapter, the case of a lock gate with a single plating and an orthogonal 
stiffening system is investigated. It is similar to the one consider in Chapter 3, except that 
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water is now present. The notations are very similar to those introduced in section 3.1.1 and 
are recalled on Figure 8.1. Nevertheless, one of the major difference with Chapter 3 is that the 
present methodology is exclusively developed for a uniform plating thickness denoted by SJ. 
Unfortunately, this is not really realistic because the plates are usually thicker at the bottom of 
the lock. In this case, SJ may be taken as a mean value calculated over the entire gate (Figure 
8.2a): SJ =sℎ�ℎ S�� 					 ; 					ℎ =sℎ��  (8.1) 

where S� is the plating thickness over a portion ℎ� of the total height ℎ. Having a unique 
value for SJ is required so far to develope an analytical approach. 
 

 
Figure 8.1. General geometry of the reinforced gate 

It is further assumed that the lock chamber is separated from the upstream and downstream 
reaches by two identical gates (the situation of a non-symmetric disposition will be discussed 
later). It is submitted to an earthquake having a longitudinal acceleration denoted by 'í !S", as 
depicted on Figure 8.2b. In this study, the two other components Ní !S" and Oí!S" oriented along 
the W and X axes respectively are disregarded for the moment (Figure 8.2b). 
 
In order to evaluate the hydrodynamic pressure induced on the structure by 'í !S", it is still 
valid to use (7.7) for the rigid contribution and (7.8) for the flexible one. Indeed, the lock gate 
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is in fact nothing more than a stiffened plate. Therefore, by neglecting the local disturbance 
that may be caused by the reinforcing elements on the pressure field, the developments 
leading to these formulae are still perfectly valid. The only modification is that the term .í !W, X, S" appearing in (7.8) denotes this time the acceleration of the gate. 
 

(a) Equivalence (b) Seismic accelerations components 

  
Figure 8.2. Equivalent plating thickness and seismic accelerations in two directions 

Regarding the boundary conditions, they are the same as for the impact analysis performed in 
Chapter 3 (see section 3.1.1.3). Two different situations are also considered here, as the gate 
may be supported or free at the bottom. This distinction is important because the presence or 
the absence of a sill may have some incidence on the vibration properties of the structure.  
 

  
Figure 8.3. Boundary conditions at the bottom 

Nevertheless, it is worth noting that such a support implies very particular boundary 
conditions. Indeed, if we examine the situation depicted on Figure 8.3, it transpires that if the 
gate is submitted to a positive acceleration along the + axis, it can be seen as being supported 
at the bottom. However, this is not true if the acceleration occurs in the opposite direction. It 
is unfortunately not possible to develop an analytical solution that includes such 
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particularities. Therefore, when a sill is present, it is assumed that a complete support is 
provided at the bottom, which means that both the positive and negative displacements in the + direction are forbidden. Doing so, one has to bear in mind that the boundary conditions 
applied to the structure do not truly represent the real configuration of the gate. 
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8.2. Free vibration analysis of a dry gate 
 
The goal of this section is to derive the natural frequencies and mode shapes of a gate with a 
single plating and reinforced by a simple stiffening system, as described on Figure 8.1. The 
presence of water in the lock chamber is disregarded so far. So the purpose is now only to 
evaluate the dry mode shapes i�!W, X" and natural frequencies õ� of the structure. The two 
situations of the gate is resting against a sill or not will be considered separately in this 
section. 
 
To achieve this goal, one may resort to the Rayleigh-Ritz method and follow the energy 
approach described in section 7.3.2.2. As it was done in 7.3 for an immerged plate, it is first 
required to define a set of � admissible functions a<!W, X" to have:  

i�!W, X" =s;<�a<!W, X"ý
<u(  (8.2) 

The coefficients ;�< are to be found by using the Rayleigh-Ritz method. For the analytical 
expressions of a<!W, X", it is decided to use a combination of beam eigenmodes, as detailed 
hereafter. 
 
8.2.1. Free vibration analysis of beams 
 
In order to find consistent equations for a<!W, X", it is suggested to derive the eigenfunctions �<!W" and ©<!X" characterizing the free vibrations of the vertical and horizontal reinforcing 
elements respectively. With these functions, it is postulated that: 

a<!W, X" = �<!W"©<!X" (8.3) 

As the gate is always supported by the lock walls along the edges X = 0 and X = L, it seems 
reasonable to choose ©<!X" as being the eigenmodes of a doubly supported beam with a span L, as depicted on Figure 8.4a. Similarly, for the case where the gate is resting against a sill, �<!W" may characterize the vibrations of the supported-free beam of Figure 8.4b. On the 
contrary, if there is no particular support condition in W = 0, then �<!W" this time corresponds 
to the mode shapes of a free-free beam, as shown on Figure 8.4c.  
 

(a) Doubly supported beam (b) Supported-free beam (c) Free-free beam 

 

 
Figure 8.4. Support conditions for the horizontal and vertical reinforcing elements 
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8.2.1.1. Solution for a gate supported at the bottom 
 
As many references may be easily found in the literature, the purpose is not to perform a 
complete derivation leading to the vibration properties of beams. Therefore, some very useful 
fundamental results will be recalled here. Let us start by considering the horizontal 
reinforcing elements represented on Figure 8.4a. If they have a cross-section �Q and an inertia &Q, it may be shown that they obey to the following characteristic equation: 

>�©<>X� − §�Qõ<
#

�&Q ©<!X" = 0 (8.4) 

where § and � are respectively the mass density and Young modulus associated to the beam 
material. This expression is completed by imposing that the displacement and the bending 
moment have to be set to zero at the two supports (for X = 0 and X = L), i.e.: 

©<!X" = 0 and 
>#©<>X# = 0 (8.5) 

It is obvious that a solution of (8.4) satisfying the boundary conditions (8.5) is simply a 
sinusoid having as many half-waves as required. In other words: 

©<!X" = sin�à<X� (8.6) 

where à< = P<º/L, with P< ∈ ℕ
 being the number of half-waves along the horizontal X axis. 
Regarding the situation for the vertical beams, denoting this time by �9 and &9 the cross-
sectional properties, one may easily adapt (8.4) to get the characteristic equation: 

>��<>W� − §�9õ<
#

�&9 �<!X" = 0 (8.7) 

In the case of the supported-free beam depicted on Figure 8.4b, the displacement and the 
bending moment are both prohibited at the support, so for W = 0, one should have: 

�<!W" = 0 and 
>#�<>W# = 0 (8.8) 

Additionally, to simulate a free boundary condition in W = ®, the shearing force and the 
bending moment have to be set to zero at this location. So the following boundary conditions 
are holding for W = ℎ: 

>#�<>W# = 0 and 
>*�<>W* = 0 (8.9) 

It may be shown that (8.7), (8.8) and (8.9) are satisfied for the closed-form solutions given in 
(8.10). It is worth noting that the particular rigid mode �<!W" = W is associated to a null 
eigenvalue. When this mode is activated, it means that the beam is simply rotating around its 
support without suffering any deformation. So finally, one gets: 

• If ½< = 0: �<!W" = W/ℎ 
(8.10) 

• If  ½< ≠ 0: �<!W" = �<�sin�½<W� − b< sinh�½<W�� 
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where �< is the modal amplitude, calculated in such a way that the maximal value of �<!W" is 
equal to unity for 0 ≤ W ≤ ℎ. The parameters b< and ½< only depend on the total height ℎ of 
the gate. It may be shown that they have the following definitions, in which it can be seen that 
the eigenvalues ½< may only be determined numerically by solving an implicit equation: 

b< = − sin�½<ℎ�sinh�½<ℎ� cos�½<ℎ� sinh�½<ℎ� − sin�½<ℎ� cosh�½<ℎ� = 0 (8.11) 

So finally, gathering all the results listed before leads to the conclusion that for a gate 
supported at the bottom of the lock chamber and for ½< ≠ 0, the functions a<!W, X" defined in 
(8.3) have the subsequent analytical expressions: 

a<!W, X" = �<�sin�½<W� − b< sinh�½<W�� sin ³àøX´ (8.12) 

where b< and ½< are given in (8.11). 

8.2.1.2. Solution for a gate free at the bottom 
 
All the previous developments are only valid for the situation where a support is present in W = 0. If this is not the case, then the vibrations of the free-free beam depicted on Figure 8.4c 
have to be considered and the solutions obtained in (8.10) are no longer valid. Of course, the 
characteristic equation (8.7) is still the same, but the boundary conditions are now different. 
As the beam is free at the two extremities, the conditions listed in (8.9) have this time to be 
satisfied for W = 0 and W = ℎ. The following solutions may be shown to satisfy all these 
requirements: 

• If ½< = 0: �<!W" = 1 or �<!W" = W/ℎ 
(8.13) 

• If  ½< ≠ 0: �<!W" = �<�sin�½<W� + sinh�½<W� − b< cos�½<W� − b< cosh�½<W�� 
where �< is still the modal amplitude. For ½< = 0, it is possible to find an infinite number of 
rigid modes, but only the ones given in (8.13) are linearly independent. It is worth noting that b< and ½< are defined in a somewhat different way, as these parameters satisfy: 

b< = sinh�½<ℎ� − sin�½<ℎ�cosh�½<ℎ� − cos�½<ℎ� cos�½<ℎ� cosh�½<ℎ� = 1 (8.14) 

Considering all the previous developments, it can be concluded that for a gate free at the 
bottom of the lock chamber and for ½< ≠ 0, the functions a<!W, X" defined in (8.3) are given 
by: a<!W, X" = �<�sin�½<W� + sinh�½<W� − b< cos�½<W� − b< cosh�½<W�� sin ³àøX´ (8.15) 

where b< and ½< correspond this time to the expressions in (8.14).  

8.2.1.3. Discussion on the boundary conditions 
 
With these definitions, the functions a<!W, X" are reputed to be linearly independent, as this 
property is already valid for the eigenmodes of beams. Nevertheless, they are not strictly 
admissible for the Rayleigh-Ritz procedure. This is due to the fact that we have to deal with a 
continuous plate bearing a discrete reinforcement. Therefore, in some locations, the boundary 
conditions are those of a plate, while in other places they have to be derived from the beam 
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theory (see also the work of Laura and Smith [92] for more details). Such a requirement may 
first be explained by considering the cross-section of the gate in a vertical plane !+, W", as 
depicted on Figure 8.5b, where only two horizontal girders and a portion of the plating have 
been represented. Along the vertical simple supports in X = 0 and X = L, the boundary 
conditions that have to be respected by a<!W, X" along the plating are as follows: 

a<!W" = 0			; 			>#a<>X# + ¦ >#a<>W# = 0 X ∈ ' (W� + SR2 		;		W��( − SR2 )
�w�(
�u(  (8.16) 

where PQ is the total number of horizontal stiffeners distributed over the height of the gate. 
Because of (8.5) and (8.6), it is obvious that  (8.16) is always satisfied in X = 0 and X = L. 
Regarding now the boundary conditions that have to be fulfilled by a<!W, X" around the 
discrete locations occupied by the stiffeners, one may write: 

a<!W" = 0			; 			>#a<>X# = 0 X ∈ ' (W� − SR2 		;		W� + SR2 )
�w�(
�u(  (8.17) 

Once again, these two relations are always satisfied because of (8.5). Therefore, along the 
lock walls in X = 0 and X = L, it can concluded that both the boundary conditions coming 
from the beam and from the plate theory are respected. This particularity is only due to the 
presence of simple supports at these locations. By a similar procedure, it can be shown that 
this conclusion is also valid along the sill.  
 
The situation is however different for the free edge. The cross-section in a horizontal plane !+, X" is depicted on Figure 8.5a, where only two vertical frames and a portion of the plating 
have been represented. For the plate segment located between the two frames, the boundary 
conditions that have to be respected there are given by: 

>#a<>W# + ¦ >#a<>X# = 0			; 			>*a<>W* + !2 − ¦" >*a<>W>X# = 0 X ∈ ' (X� + SR2 		; 		X��( − SR2 )
�*�(
�u(  (8.18) 

where, as a reminder, P9 is the total number of vertical reinforcing elements positioned on the 
gate. On the other hand, near the frames, one may write the following boundary conditions 
coming from the theory of beams: 

>#a<>W# = 0		; 		>*a<>W* = 0 X ∈'(X� − SR2 		; 		X� + SR2 )
�*
�u(  (8.19) 

Unfortunately, from (8.18) and (8.19), it seems rather impossible to find a continuous 
analytical expression for a<!W, X" satisfying all these requirements. As a consequence, if a<!W" is derived from the beam theory detailed in sections 8.2.1.1 and 8.2.1.2, then only the 
equations given by (8.19) are fulfilled. In other words, along an horizontal free edge, some 
unbalanced forces are still applied as the plate boundary conditions (8.18) are not satisfied by 
the chosen closed-form solution of a<!W, X". This will be investigated in more details when 
dealing with the dynamic analysis of lock gates. 
 
From all the previous considerations, it transpires that the functions a<!W, X" defined by (8.12) 
or (8.15) are not strictly admissible for the Rayleigh-Ritz method. Nevertheless, if the 
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stiffened plate is mainly behaving as a beam structure (which is almost the case for lock 
gates), then using such analytical expressions for a<!W, X" should lead to a good 
approximation of the modal properties. For this reason, they are sometimes said to be pseudo-
admissible. Additionally, it is worth mentioning that this approach has been widely used in 
the literature, which also corroborates the applicability of the method. Some theoretical 
studies related to the vibrations of stiffened structures are available in references [10], [16], 
[43], [77], [78], [87], [92], [110], [112], [139], [177], and [178]. 
 

(a) Horizontal plane (x,z) (b) Vertical plane (x,y) 

 
Figure 8.5. Boundary conditions along the support in y = 0 

8.2.2. Rayleigh-Ritz solution 
 
The problem that is analyzed now is to derive analytically the dry frequencies õ� and mode 
shapes i�!W, X" characterizing the free vibrations of a stiffened plate. As mentioned here 
above, an approximate solution may be found by resorting to the Rayleigh-Ritz procedure, 
which was already encountered while deriving the modal properties of an immerged plate (see 
7.3). Nevertheless, as discussed in section 8.2.1.3, the set of functions a<!W, X" chosen so far 
is not strictly admissible. As a consequence, the method that will now be followed is not 
purely rigorous, and it is probably more convenient to work with the energy approach (see 
7.3.2.2) instead of using the exact mathematical developments performed in 7.3.2.1.  

8.2.2.1. Modal formulation 
 
As a beginning, let us start by expressing the Rayleigh quotient c as a function of the dry 
mode shapes i�!W, X". According to the theory of section 7.3.2.2, c is simply obtained by 
dividing the maximal kinetic energy 	 by the maximal internal one �: 

c = 	/� (8.20) 

which is similar to (7.55) with 
 = 0, as water has not been considered so far. In this last 
equation, one may get the mathematical forms of 	 and � by considering successively the 
various elements constituting the gate, i.e.: 	 = 	J + 	Q + 	9 					; 					� = �J +�Q +�9 (8.21) 

where 	J, 	Q and 	9 respectively denote the individual kinetic energy coming from the 
plating, the PQ horizontal reinforcing elements and the P9 vertical ones (similar notations are 
used for the internal energy �). In order to analytically derive all the previous terms, it is first 
required to make an important assumption on the deformation pattern exhibited by the gate. In 
Chapter 7, it is postulated that the free vibrations of the unstiffened plate simply occur by 
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bending around its neutral axis. For a stiffened structure as the one depicted on Figure 8.1, 
this is not necessarily the case, but it is supposed here that this hypothesis is still holding. 
Consequently, at the discrete locations W� and X� where some reinforcing elements are 
positioned, the deformation pattern leading to the evaluation of 	 and � should be the one of 
Figure 8.6. 

 
Figure 8.6. Deformation of the plating and the attached reinforcing element 

It is clear that such an assumption is questionable, in particular for structures where the 
reinforcement is predominant. An interesting discussion about this topic was conducted by 
Wah [161], who showed that considering bending around the neutral fiber of the plate could 
lead to an overestimation of the stiffness. Nevertheless, this approach is widely encountered 
in the literature as it allows for some simplifications in the analytical process. Indeed, 
considering first the plating, as it is still supposed to be bent around its neutral fiber, it is 
possible to keep the previous definition of the flexural rigidity � = �SJ*/12!1 − ¦#" and 
directly calculate 	J and �J by performing an analogy with (7.53) and (7.54). This leads to: 

	J = §SJ2 �i�#!W, X":W:X�
 (8.22) 

�J = �2�¤=>#i�>W#?
# + =>#i�>X# ?

# + 2¦ >#i�>W# >#i�>X# + 2!1 − ¦"=>#i�>W>X?
#¥

�
:W:X (8.23) 

Regarding now the situation for the horizontal stiffening elements., under the bending 
hypothesis made here above, they will be submitted to the deformation diagram depicted on 
Figure 8.6, which directly shows that the cross-sectional inertia has to be calculated with 
respect to the neutral fiber P-P. In other words, the inertia &Q of the T-shaped beam 
represented on Figure 8.1 has to be calculated by: 

&Q = SR3 +�ℎR + SJ2 �* − SJ*8 ,+ ℎ�3 +�ℎR + SJ2 + S��* − �ℎR + SJ2 �*, (8.24) 

If it is further assumed that the stiffening elements are mainly submitted to an in-plane 
bending, then the contributions to the internal energy �Q coming from the torsional, axial and 
shear rigidities of the beam can be neglected. So if the structure is made of PQ horizontal 
reinforcing components positioned at the discrete locations W�, it may be shown [106] that: 

	Q = s§�Q,�2 �i�#!W�, X":Xò



�w
�u( 					 ; 					�Q = s�&Q,�2 � +>#i�>X# !W�, X",# :X

ò



�w
�u(  (8.25) 

where �Q,� and &Q,� respectively denote the area and inertia of the cross-section characterizing 
the horizontal stiffening element in W = W�. By following a similar procedure, the kinetic and 



CHAPTER 8. Seismic analysis of plane lock gates 

208 
 

internal energies 	9 and �9 related to the P9 vertical stiffening components positioned at the 
discrete locations X� are given by: 

	9 = s§�9,�2 �i�#!W, X�":WQ



�*
�u( 					 ; 					�9 = s�&9,�2 � +>#i�>W# !W, X�",# :W

Q



�*
�u(  (8.26) 

where �9,� and &9,� have the same meaning as for the horizontal elements. It is worth noting 
that, for simplicity, in equations (8.22), (8.23), (8.25) and (8.26) uniform values are assumed 
for �, ¦ and §, but it is clear that the formulae could be easily adapted to treat gates made of 
different steel grades.   

8.2.2.2. Matrix formulation 
 
All the theoretical results listed before have been developed with respect to the dry mode 
shapes i�!W, X". Nevertheless, according to (8.2), these ones are themselves related to the 
pseudo-admissible functions a<!W, X", and it is therefore required to go one step further to 
apply the Rayleigh-Ritz method. As it was done in section 7.3.2.2, a similar expression (7.56) 
can be found here by writing: 

	 = 12ss;<�èÉ<E;E�ý
Eu(

ý
<u( 										� = 12ss;<��þ<E;E�ý

Eu(
ý
<u(  (8.27) 

where � is the number of pseudo-admissible functions considered in (8.2). The kinetic energy 
term èÉ<E has to be calculated by introducing (8.2) successively in (8.22),  (8.25) and (8.26). 
Summing up all these contributions, it is easy to show that: 

èÉ<E = §SJ�:X��<E!W, X":WQ



ò



+s§�Q,���<E!W�, X":Xò



�w
�u( +s§�9,���<E!W, X�":WQ



�*
�u(  (8.28) 

where �<E!W, X" = a<aE. On the other hand, performing the same operations for the internal 
energy term �þ<E finally leads to: 

�þ<E = ��:X��<E!W, X":WQ



ò



+s�&Q,��©<E!W�, X":Xò



�w
�u( +s�&9,��ℎ<E!W, X�":WQ



�*
�u(  (8.29) 

but this time, as reported by Shames and Dym [137], the parameters �<E, ©<E and ℎ<E are 
found to satisfy the following mathematical expressions: 

�<E!W, X" = >#a<>W# =>#aE>W# + ¦ >#aE>X# ? + >#a<>X# =>#a<>W# + ¦ >#a<>X# ? + 2!1 − ¦" >#a<>W>X >#aE>W>X 
(8.30) ©<E!W, X" = >#a<>X# >#aE>X#   

ℎ<E!W, X" = >#a<>W# >#aE>W#   

In (8.28) and (8.29), the functions a<!W, X" are defined by (8.12) or (8.15) according to the 
support conditions of the gate. The detailed expressions of èÉ<E and �þ<E are not listed here but 
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are given in section E.1.1 of Appendix E.1. Finally, if we denote by 5èÉ7 and 5�þ7 the !� ×�" 
matrices associated respectively to èÉ<E and �þ<E, the Rayleigh quotient (8.20) can be rewritten 
in the more classical way: 

c = �	 = �ss;<�èÉ<E;E�ý
Eu(

ý
<u( �÷ �ss;<��þ<E;E�ý

Eu(
ý
<u( � = ��ªAèÉC����ª5�þ7�� (8.31) 

where �� is a !� × 1" vector containing the coefficients ;<�. As it was already stated in 
section 7.3.2.2, these ones are found by minimizing c, which can be achieved by solving a 
classical generalized eigenvalues problem: 

det�A�þC − õ�#AèÉC� = 0					 ; 					�A�þC − õ�#AèÉC��� = � (8.32) 

It is worth noting that the functions �<E, ©<E and ℎ<E defining èÉ<E and �þ<E are symmetric with 
respect to ø and ̈ . Consequently, this is also the case for the matrices 5èÉ7 and 5�þ7. However, 
these ones are not necessarily diagonal and solving analytically (8.32) remains quite complex 
(but this may be achieved by using a dedicated software like MATLAB  for example).  
 
As a conclusion, it appears that the procedure described here above gives an estimation of the 
vibration frequencies õ�# for the dry stiffened structure. Additionally, (8.32) also provides the 
coefficients ;<�, which, together with (8.12) or (8.15), may be used in (8.2) to estimate the 
mode shapes i�!W, X". The Rayleigh-Ritz method seems therefore to be a quite appropriate 
way to derive the modal properties of the dry structure. Nevertheless, as the gate is in contact 
with water, the next step should be to find the wet vibration frequencies and modes shapes. 
Even if this would be useful to have a better characterization of the gate behavior during a 
seism, this operation is not mathematically required for applying the virtual work principle, 
but this point will be discussed later on. 
 
8.2.3. Numerical validation 
 
In order to corroborate the analytical developments carried out in the previous sections, they 
can compared to the solutions obtained through finite element analyses. As the ratio ℎ/L is 
approximately ranging from 0.5 to 2 for lock gates with a single plating, the validation 
process has been performed by considering various structures characterized by a ℎ/L ratio 
varying within this interval. Nevertheless, the results obtained for all cases will not be 
presented here. To have a quite representative panel, three different structures will be 
analyzed to more or less cover the extreme and intermediate configurations. These ones are 
characterized by a ℎ/L ratio of 1, 0.5 and 2 respectively. They are briefly described hereafter: 
 
• Gate 1: this structure has a square plating, with ℎ = L = 13.1	� and a thickness SJ of 1.2	­�. It is reinforced by six vertical frames and five horizontal girders. The first ones are 

regularly placed over the width L, with a spacing of 2.62	�. The disposition of the girders 
is not regular, as the reinforcement is more important near the bottom of the gate. Some 
smaller horizontal stiffeners are also present, mainly to avoid buckling of the panel (see 
Figure 8.7). 
 

• Gate 2: this structure has a rectangular plating, with ℎ = 8	�, L = 22.5	� and SJ =1.8	­�. Such dimensions are typically encountered for maritime locks, for which the water 
level fluctuations are low, but where the width L has to be quite large to allow the travel of 



CHAPTER 8. Seismic analysis of plane lock gates 

210 
 

important vessels. The width is regularly divided by ten vertical frames, while only five 
girders are disposed over the height. In addition, the structure is also reinforced by 
horizontal flat stiffeners, as depicted on Figure E.1 in section E.1.2 of Appendix E.1. 
 

• Gate 3: this structure has a rectangular shape as well, but the height is this time largely 
preponderant, as ℎ = 21	� and L = 10.5	� only. The plating has a thickness SJ of 1.5	­�. 
Four vertical frames are placed each 3.5	�, while eight horizontal girders and various 
smaller stiffeners are distributed over the height (see Figure E.3 in section E.1.3 of 
Appendix E.1). Such lock configurations may appear on inland waterways, where the 
difference between the upstream and downstream levels is important. 

 
For each of these three gates, two different situations have to be treated, as they may be 
supported at the bottom or not. However, in all cases, the material properties listed in Table 
8.2 will be used, which more or less corresponds to the characteristics of a mild steel.   
 

Young modulus � 265	Èk� 
Poisson coefficient ¦ 0.3 
Mass density § 7850	¨©/�* 

Table 8.2. Material properties for each lock gate 

Of course, apart from the three gates described above, the validation was also performed by 
using other intermediate configurations that are not reported here. Furthermore, to avoid a too 
fastidious presentation, only the first gate will be considered in the remaining parts of this 
section. The results related to the second and third configurations may be consulted in 
sections E.1.2 and E.1.3 of Appendix E.1 respectively. 

8.2.3.1. Case of a gate supported at the bottom 
 
The situation where the gate is supported at the bottom of the lock is first considered. It is 
worth recalling that in such a case, the displacements in the + direction are forbidden at the 
bottom even if they are negative. As already discussed in section 8.1.2, doing so is not strictly 
realistic because a sill does not impose this kind of restraint (this point will be investigated 
later on, in section E.3.1). The other boundary conditions are those listed in section 8.1, but it 
should also be mentioned that the displacements in the X direction are not simultaneously 
forbidden along the edges X = 0 and X = L (see Figure 8.1) because the gate is considered as 
being free to bent without suffering any transverse restrain. 
 

 ℎR 	!�" SR	!�" ℎ�	!�" S�	!�" 
Horizontal girders 0.98	 0.02	 0.4	 0.025	
Vertical frames 0.98	 0.02	 0.5	 0.025	
Horizontal stiffeners 0.21	 0.006	 0	 0	

Table 8.3. Geometrical parameters for gate 1 

To obtain numerically the modal properties of gate 1, the pre-processor PATRAN is first used 
to realize a finite element model of the structure. The plating is modeled by using 
isoparametric quadrilateral CQUAD shell elements with four grid points, while classical linear 
CBAR beam elements are used for the reinforcing system15. The dimensions characterizing the 
cross-sections are listed in Table 8.3, with the notations introduced on Figure 8.1. The 
material is assumed to have a linear elastic behavior defined by the parameters given in Table 
8.2.  
                                                                    
15 See the Nastran reference manual [114] for additional information on these elements. 
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Figure 8.7. Structural configuration and main dimensions (m) of gate 1 

The finite element software NASTRAN is then used to perform a modal analysis of the gate. 
This leads to a numerical estimation of its dry frequencies and mode shapes. In order to check 
the validity of the present analytical developments, the solutions obtained by the Rayleigh-
Ritz method will be compared to those given by NASTRAN. 
 
The modal analysis realized with NASTRAN shows that the gate has only two dominant global 
modes and a great number of local ones, which is a quite typical result for this kind of 
stiffened structures. The natural frequencies derived by the simplified procedure of section 
8.2.2 and the values given by NASTRAN are listed in Table 8.4 for these two first modes of 
vibration. An estimation made by LS-DYNA  is also provided in this table. It can be seen that 
the agreement is quite satisfactory. This is particularly true if the results of LS-DYNA  are 
considered, as the maximal relative error calculated according to (7.58) does not exceed 3	%. 
The discrepancy with NASTRAN is a bit more important, as an error of 12	% may be reached 
this time.  

Mode 
Frequency (Hz) Error (%) 

NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA 
1 19.22	 20.27	 20.84	 8.41	 2.81	

2 37.78	 40.91	 42.26	 11.87	 3.33	

Table 8.4. Comparison of the natural frequencies obtained numerically and analytically 

From Table 8.4, it transpires that the analytical approach tends to overestimate the natural 
frequencies. This observation was already made when dealing with unstiffened plates in 
Chapter 7 and may be justified mathematically. Indeed, as demonstrated by Shames and Dym 
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[137], the Rayleigh-Ritz method always gives an upper estimation of the eigenvalues õ�#, 
which partially justifies the results of Table 8.4. Some other reasons may also explain why the 
analytical values are too high. This will be discussed later, in section 8.2.3.3.  

 
Figure 8.8. Comparison of the first mode shapes obtained numerically and analytically 

In order to compare the numerical and analytical eigenmodes of vibration, it is suggested to 
look at the displacements in the plane X = L/2 (called º( on Figure 7.8). The results are 
plotted on Figure 8.8 and on Figure 8.9 (the meaning of the red point placed on this picture 
will be explained later), from which it can be concluded that the agreement is rather good. In 
the horizontal plane W = ℎ (called º# on Figure 7.8), the shape is very closed to a sinusoid 
with only one half-wave, such as the one reported on Figure 7.9b. 

 
Figure 8.9. Comparison of the second mode shapes obtained numerically and analytically 

8.2.3.2. Case of a gate free at the bottom 
 
Let us now analyze the situation if the structure is not resting against a sill. The boundary 
conditions are the same as in section 8.2.3.1, except that no restraints have to be applied along 
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the line + = 0 (Figure 8.1), where the displacements in the + direction are totally free. Such 
boundary conditions are more realistic than in the previous case, as many gates do not have 
any support near the bottom of the lock. 
 
The main dimensions of the structure are still those depicted on Figure 8.7 and it is assumed 
that the cross-sectional properties of Table 8.3 are still valid. This choice is mainly motivated 
for practical reasons, but in reality, the stiffening system of a gate resting against a sill will 
probably be lighter than the one characterizing a structure with no support at the bottom. 
However, for this validation process, it seems sufficient to keep the same geometrical and 
mechanical characteristics as in the previous case. Consequently, the modal analysis will be 
performed with the same finite element model as before (after having changed the boundary 
conditions). 
 

Mode 
Frequency (Hz) Error (%) 

NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA 
1 19.17 19.99 21.3 11.11 6.54 

2 23.33 25.27 26 11.43 2.89 

Table 8.5. Comparison of the natural frequencies obtained numerically and analytically 

Here again, the modal analysis leads to the conclusion that the gate has only two main global 
modes, which are characterized by the frequencies of Table 8.5. The conclusions drawn in 
section 8.2.3.1 are still holding for the present case: the analytical procedure tends to 
overestimate the stiffness of the structure, but the agreement with the numerical values is kept 
satisfactory. Indeed, the relative errors with respect to the solutions of NASTRAN and LS-DYNA  
do not exceed 11 % and 3 %, which seems to be sufficient for a first estimation. Moreover, 
by comparing the values of Table 8.4 and Table 8.5, it appears that the frequencies are lower 
in the second case, which seems to be coherent as the structure is more flexible if it is not 
supported at the bottom.  

 
Figure 8.10. Comparison of the first mode shapes obtained numerically and analytically 

The first mode shape calculated by NASTRAN is compared to the analytical solutions on Figure 
8.10. The same is done for the second eigenmode on Figure 8.11. It can be seen that the 
agreement on the deformation patterns in the plane º( is quite good. In the horizontal plane 
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º# (see Figure 7.8), the numerical profile is very close to the sinusoid predicted by the 
analytical approach.  

 
Figure 8.11. Comparison of the second mode shapes obtained numerically and analytically 

Even if the analytical calculation of the dry frequencies appears to be sufficiently reasonable, 
it seems however important to provide some more indications to explain why it tends to 
overestimate the numerical values. Doing so may be useful for an eventual future 
improvement of the present simplified method. This is precisely the goal of the next section. 

8.2.3.3. Discussion of the results 
 
From all the results presented here above, it can be concluded that the Rayleigh-Ritz method 
provides a satisfactory evaluation of the modal properties characterizing the stiffened gate. 
Nevertheless, one can first argue that the agreement with the numerical simulations largely 
depends on the choice of the pseudo-admissible functions a<!W, X" in (8.2), which do not 
satisfy all the boundary conditions. In the present case, this is only partially true, because the 
global mode shapes are quite correctly estimated if a<!W, X" is given by (8.12) or (8.15). 
Moreover, derived an analytical solution was also derived by considering for a<!W, X" the 
eigenmodes of an unstiffened plate defined in (7.22), but this led to results that were very 
close to the ones presented before. 
 
So a poor choice of a<!W, X" does not seem to justify the observed discrepancies. Another 
explanation may lie in the evaluation of the inertia affected to the stiffening elements. Indeed, 
according to (8.24), it is assumed that the beams are bent around the neutral fiber P-P of the 
plating, but this is not necessarily true. One can also imagine that bending occurs around the 
gravity center È of the T-shaped cross-section depicted on Figure 8.1. With such a situation, 
the inertia is no longer given by (8.24) but has to be corrected to account for the eccentricity ., as shown on Figure 8.12. The bending rigidities characterizing the beams and the plating 
are this time given by: 

�&Q∗ = �!&Q − .#�Q"					; 				�∗ = � + .# �SJ1 − ¦2 (8.33) 
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where � is the Young modulus, �Q is the cross-sectional area and � = �SJ*/12!1 − ¦#" is the 
flexional rigidity of the plate around its neutral fiber. In comparison with the situation of 
Figure 8.6, it clear from (8.33) that the beam rigidity is reduced while the plating stiffness is 
increased. Nevertheless, as SJ is quite small, there is no compensation, which means that the 
model of Figure 8.6 is stiffer than the one of Figure 8.12. As a consequence, the vibration 
frequencies calculated by assuming that bending takes place around È will be lower in this 
last case. 

 
Figure 8.12. Deformation if bending occurs around the gravity center 

As a conclusion, a more probable reason to justify the higher values found analytically for the 
frequencies is that bending does not exactly take place around the P-P axis. In fact, each 
cross-section appears to rotate around an undetermined point located somewhere between P-P 
and È, which seems to be confirmed if by looking at the mode shapes. Indeed, for the case of 
bending around the P-P line, the dominant mode shape in the plane º( should be the one 
depicted on Figure 8.13a, with a quite regular deformation of the plating. On the contrary, if È 
is the rotation point, then each reinforcing element will deform in its plane, as is the plating 
was simply clamped along the connection lines. In this case, it is more likely to adopt the 
pattern represented on Figure 8.13b. 
 

(a) Bending around P-P (b) Bending around È 

  
Figure 8.13. Bending situations 

The small oscillations visible on Figure 8.8 to Figure 8.11 confirm that the reinforcing 
elements have a local influence on the deformation profile characterizing the plating. This is 
particular true from Figure 8.9, where the strong indentation occurring near the red point 
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shows that the behavior of the horizontal girder positioned there is preponderant. As a 
consequence, the mode shape seems to take an intermediate profile between the ones depicted 
on Figure 8.13a and b. 
 
From all the previous indications, it can be concluded that it is not easy to find a rational 
definition for the bending rigidity affecting the reinforcing elements. In the present simplified 
approach, this latter is calculated it by considering the neutral axis P-P. This has the main 
advantage of simplifying a little bit the analytical calculations, but such an assumption is not 
necessarily realistic as it tends to overestimate the global stiffness of the structure. 
Nevertheless, as the agreement with the numerical results is quite satisfactory, we this 
hypothesis is kept in the next section to perform the dynamic analysis of lock gates. 
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8.3. Dynamic analysis of lock gates 
 
The modal analysis performed previously allows to know the vibration properties of lock 
gates with a single plating reinforced by an orthogonal stiffening system. The next step is now 
to analyze the problem depicted on Figure 8.2b, where a lock chamber is submitted to an 
earthquake having a longitudinal acceleration component denoted by 'í !S". The goal is here to 
estimate the hydrodynamic pressure acting on the structure in such a situation. 
 
Before starting the dynamic analysis, one should first try to derive the vibration properties of 
the immerged gate, as it was done in Chapter 7 for an unstiffened plate. However, as detailed 
in section E.2.1 of Appendix E.2, this is not really useful in the present case. In fact, using the 
wet or the dry modes is equivalent. Consequently, in order to simplify the dynamic analysis of 
a lock gate, one can avoid to calculate its wet modal properties. Nevertheless, this operation 
remains useful to have a more complete insight on the seismic behavior characterizing the 
immerged structure, as it allows for an extensive study of the fluid-structure interaction (see 
section 7.3.3.3 and Appendix D.1). This is the main reason why they were introduced in 
Chapter 7. 
 
8.3.1. Equilibrium equation 
 
For the isolated plating elements that are far away from the reinforcing elements, it is clear 
that the equilibrium equation (7.65) may still be applied without any restriction. However, this 
is not true near the stiffeners, where the plating may be seen as being locally submitted to 
some additional forces. Adopting the same philosophy as the one followed in 7.4.1, one can 
simply express the translational equilibrium of the plating along the horizontal + axis by 
adapting (7.65) to account for the supplementary actions of the beams. 
 
Let us try first to apply this methodology to the vertical stiffeners occupying the discrete 
positions X�. The aim is to evaluate the total resulting force �9,�!W, X, S" that they exert on the 
plating (see Figure 8.14) in the + direction when the gate is submitted to the earthquake. In 
the present simplified procedure, it is sufficient to consider the action of the inertial, shearing 
and damping forces. From the classical theory of beams, it comes immediately that the two 
first contributions are given by: 

§�9,��.í + 'í� + �&9,� >�.>W� (8.34) 

where, as already mentioned before, �9,� et &9,� respectively denote the area and inertia of the 
cross-section characterizing the vertical frame located in X = X�. Furthermore, proceeding in a 
similar manner as in section 7.4.1, the damping forces may be seen as being proportional to 
the mass and to the stiffness of the vertical frames. With such an assumption, it is easy to 
show that they are simply given by: 

Æ§�9,�.- + ß�&9,� >�.->W� (8.35) 

where Æ and ß are the mass and stiffness damping coefficients. For convenience, it is 
assumed here that these two parameters are the same as those previously encountered in 7.4.1, 
but this has not necessarily to be the case. The formulae can be easily adapted to work with 
coefficients that are different for the reinforcing elements than for the plating. 
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Figure 8.14. Substitution of a vertical stiffener by an equivalent force 

It is obvious that (8.34) and (8.35) correspond to line loads, which is not really convenient for 
writing the plate equilibrium. For this reason, one may try to convert them into pressures. To 
do so, these forces are assumed to be uniformly distributed over the web thickness SR, but this 
hypothesis is purely arbitrary. Another choice could be to spread these line loads over a 
certain collaborating length (which, according to Dehousse and Deprez [39], can be chosen as 
the flange length ℎ�), but one may also resort to the use of Dirac functions, as explained by 
Laura [92] for example. Nevertheless, it seems that there is no real satisfactory way for 
integrating rigorously (8.34) and (8.35) into the equilibrium equation of the plate. So pursuing 
the hypothesis of smearing (8.34) and (8.35) over SR, then it is finally found that �9,�!W, X, S" 
has the following expression: 

�9,�!W, X, S" = ℍ�!X" +§�9,��.í + 'í� + �&9,� >�.>W� + Æ§�9,�.- + ß�&9,� >�.->W�,�	u	�0 (8.36) 

in which the displacements, speeds and accelerations have to be evaluated at the particular 
location X = X�. The term ℍ�!X" is nothing else than a truncated form of the Heaviside 
function: 

 ℍ�!X" = 1/SR   if   X ∈ 5X� − S�/2	; X� + S�/27  
(8.37) 

 ℍ�!X" = 0 if X ∉ 5X� − S�/2	; X� + S�/27  

The previous developments can be extended to the horizontal stiffeners without any difficulty. 
For an element located in W = W�, this leads to a total resulting force denoted by �Q,�!W, X, S" 
and acting on the plating in horizontal + direction: 

�Q,�!W, X, S" = ℍ�!W" +§�Q,��.í + 'í� + �&Q,� >�.>X� + Æ§�Q,�.- + ß�&Q,� >�.->X�,�	u	�0 (8.38) 

As a last step, (8.36) and (8.38) may be inserted in equation (7.61) expressing the equilibrium 
of the plating. Gathering the contributions �Q,�!W, X, S" and �9,�!W, X, S" coming from all the PQ 
and P9 horizontal and vertical stiffeners, the following result is obtained: 

§SJ�.í + 'í � + �� + � =>�.>W� + 2 >�.>W#>X# + >�.>X�? +s�Q,��w
�u( +s�9,��*

�u( = −` (8.39) 

in which ��!W, X, S" denotes the damping forces acting on the plating and already detailed in 
7.4.1. This last expression may be seen as the dynamic equilibrium equation of a stiffened 
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plate. From the definition (8.37) of the Heaviside function, it is obvious that it degenerates 
into (7.61) in the regions far enough from the reinforcing stiffeners. 
 
8.3.2. Virtual work principle 
 
The philosophy that will now be followed to study the dynamic behavior of a lock gate is 
formally similar to what has already been done in section 7.4.2. Once again, it is postulated 
that the displacements ;!W, X, S" and v!W, X, S" occurring in the plane of the gate are related to 
the transverse ones by (7.66). Furthermore, due to the analytical results detailed in 8.2, the 
out-of-plane component may be decomposed by using the dry modes shapes i�!W, X" given by 
(8.2): 

.!W, X, S" =s[<!S"i<!W, X"Ó
<u( 					 (8.40) 

where À is the number of dry modes considered in the summation process. By comparing 
(8.40) with (7.67), it can be noticed that these two equations are dissimilar, as the wet modes Δ�!W, X" are not used this time. This choice is justified in the section E.2.1 of Appendix E.2, 
where it is shown that working with the dry or wet properties is equivalent. Moreover, by 
looking at (8.2) and (8.40), it is clear that working with Δ�!W, X" would add a new summation 
term, which turns out to be very fastidious. 
 
According to the virtual work principle, equilibrium is guaranteed by equating the internal 
and external virtual works performed during any kinematically admissible displacement i.!W, X, S". In the present case, this theorem has to be applied carefully because the functions a<!W, X" used in (8.2) are only pseudo-admissible. As discussed in section E.2.2 of Appendix 
E.2, this may have some consequences on the exactness of the solution and keeping this 
particularity in mind is quite important. In such a situation, the classical way to proceed is to 
choose a virtual field i.!W, X, S" that is homothetic to the sought approximate solution .!W, X, S". So according to (8.40), one should have the following definition: 

i.!W, X, S" = si[E!S"iE!W, X"Ó
Eu( 					 (8.41) 

As the dry modes are reputed to be kinematically compatible, this is also the case for i.!W, X, S" and (8.41) may therefore be used in conjunction with (8.40) in the virtual work 
principle. These operations are detailed hereafter.  

8.3.2.1. Internal virtual work 
 
The total virtual amount of internal energy dissipated by the gate has three different 
contributions. The first one is of course coming from the plating, while the second and third 
ones are respectively due to the horizontal and vertical reinforcing elements, i.e.: 

i2��� = i2J + i2Q + i29 (8.42) 

As the plating is bent around its mean surface, it is obvious that (7.71) is still holding, so this 
formula can be directly reused to evaluate i2J. Concerning the stiffeners, it is easy to show 
that the deformation energies associated to these beams are simply given by: 
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i2Q = s�&Q,� %�>#.>X# >#i.>X# :X
ò



&�w
�u( �	u	�0

		 ; 					i29 = s�&9,� %�>#.>W# >#i.>W# :W
Q



&�*
�u( �	u	�0

 (8.43) 

Furthermore, considering À mode shapes in (8.40) and � pseudo-admissible functions in 
(8.2), one may write: 

.!W, X, S" =s[<!S"s;I<aI!W, X"ý
Iu(

Ó
<u( 				 ; 				i.!W, X, S" = si[E!S"s;�Ea�!W, X"ý

�u(
Ó
Eu(  (8.44) 

If (8.44) is introduced in (7.71) and (8.43), then it is possible to express i2��� under a more 
formal decomposition: 

i2��� =si[Es[<�<EÓ
<u(

Ó
Eu( 					 ; 					�<E =ss;I<�þI�;�Eý

�u(
ý
Iu(  (8.45) 

where the matrix 5�þ7 was already encountered in (8.29). It is worth noting that the dominant 
terms in (8.42) are i2Q and i29, which means that the main contribution to the internal 
energy is coming from the reinforcing elements. This can be easily understood with help of 
the comments made in section 8.2.3.3, where it was pointed out that the inertias &Q,� and &9,� 
characterizing the beam cross-sections were slightly overestimated. Due to the relation given 
in (8.43), this may also be the case for i2Q and i29, so it is to fear that the internal energy 
tends to be overestimated while applying the virtual work principle. Concerning the 
contribution i2J provided by the plating, this one is attempted to be relatively modest, 
particularly because of the small values of the thickness SJ.  

8.3.2.2. External virtual work 
 
The external dissipation i2o·� is due to the work performed by several actions during the 
virtual displacement i.!W, X, S" and can be evaluated by proceeding in a very similar manner 
than in section 7.4.2.2, so the all derivation process will not be described here. In fact, 
referring to (8.39), it can be seen that various terms have to be dealt with: 
 
• The external work performed by the inertial forces acting on the plating: these forces 

correspond to the first term in (8.39) and have the following contribution to i2o·�: 
−��§SJ�.í + 'í�ò



i.!W, X, S":W:XQ



 (8.46) 

• The external work associated to the damping forces that are proportional to the mass and to 
the stiffness of the plating. These forces are designated by ��!W, X, S" in (8.39) and it is 
obvious that they have the subsequent contribution to i2o·�: 

−����!W, X, S"ò



i.!W, X, S":W:XQ



 (8.47) 

• The external work of the forces modeling the action of the horizontal reinforcing elements 
on the plating, which only corresponds to a part of �Q,� in (8.39). In fact, going back to the 
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definition (8.38) of �Q,�, it appears that it was already accounted for the stiffness term �&Q,�>�./>X� while dealing with the internal energy i2Q in equation (8.43). 
Consequently, the contribution to i2o·� is simply: 

−s %�=§�Q,��.í + 'í + Æ.- �i. + ß�&Q,� >#.->X# >#i.->X# ?:X
ò



&
�	u	�0

�w
�u(  (8.48) 

• The external work of the forces coming from the vertical stiffeners, which is only a part of �9,� in (8.36). As it was already accounted for the term �&9,�>�./>W� in (8.36) through i29, the contribution is as follows: 

−s %�=§�9,��.í + 'í + Æ.- �i. + ß�&9,� >#.->W# >#i.->W# ?:W
Q



&
�	u	�0

�*
�u(  (8.49) 

The last term to consider in (8.39) is the total hydrodynamic pressure `!W, X, S". As mentioned 
earlier, the analytical formulae giving the flexible and rigid parts of ̀!W, X, S" are exactly the 
same as those encountered for a unstiffened plate. Equations (7.7) and (7.8) are therefore still 
valid when dealing with a lock gate, which implies that the external work associated to the 
pressure may still be derived by applying (7.78). 

 
So finally, the total virtual work performed by all the external forces acting on the structure 
has to be found by summing up equations (8.46) to (8.49) with (7.78). As soon as this 
operation is completed, it is still required to develop explicitly i2o·� as a function of the 
unknown coefficient [<!S" by introducing (8.44) in all of the above-mentioned contributions. 
Doing so is quite fastidious but once all the calculations are done, i2o·� can be written in the 
same condensed form than (7.80) in which è<E, 2<E and �E are evaluated by applying the 
following results: 

è<E =ss;I<èÉI�;�Eý
�u(

ý
Iu( 					 ; 					2<E =ss;I<2þI�;�Eý

�u(
ý
Iu( 					 ; 					�E =s;�E�ÉEý

�u(  (8.50) 

where the matrix 5èÉ7 was introduced previously in the Rayleigh-Ritz method. As for the 
dynamic analysis of an unstiffened plate performed in section 7.4, the term 2<E represents the 
fluid-structure coupling and has an expression that is formally similar to (7.81). The matrix 52þ 7 has not been encountered yet but is defined by (see section E.2.3 of Appendix E.2): 

2þI� = s s ­��I���!I" I���!�"�ñ
�u


�ñ
�u( 					 ; 					 I���!I" = � �aI!W, X" cos!Æ�W" cos!à̅�X":W	:Xò



Qó



 (8.51) 

The last term �E in (8.50) gather some contributions of the external forces. The vector 1þ may 
be derived by adding the following result: 

−s§�Q,��a�!W�, X":Xò



�w
�u( −s§�9,��a�!W, X�"Q



�*
�u( :W (8.52) 

to equation (7.82), in which ΔE!W, X" has of course to be replaced by a�!W, X". Even if the 
derivation is rather fastidious, all the previous results provide an analytical way to evaluate 
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the external virtual work i2o·�. Here again, the main contribution comes from the inertial 
forces acting on the stiffening system. 

8.3.2.3. Global equilibrium equation 
 
With the developments presented in the two previous sections, i2o·� and i2��� can finally 
be equated, which reflects the global equilibrium of the gate during the seismic event. Doing 
so, one gets an equation that is strictly similar to (7.85):  

!5è7 − 527" í !S" + !Æ5è7 + ß5�7" - !S" + 5�7 !S" = 1'í!S" (8.53) 

but where 5�7, 5è7, 527 and 1 have the definitions proposed in (8.45) and (8.50) respectively. 
For a given time evolution of 'í !S", (8.53) may be solved by applying the Newmark 
integration method. This leads to the coefficients  !S", which allows to rebuild the 
displacement .!W, X, S" with help of (8.40) and provides a complete solution to the problem. 
 
It is worth bearing in mind that the solution obtained by the preivous approach is not 
theoretically satisfying, as it does not verify the local equilibrium equation and violates the 
static boundary conditions along the free edges. Moreover, as discussed in section 8.2.3.3, the 
method tends to overestimate the stiffness of the gate. These restrictions are important, as they 
may have some implications on the exactness of the results. 
 
8.3.3. Numerical validation 
 
The goal is now to check if the analytical procedure detailed here above may lead to a 
reasonable approximation of the total hydrodynamic pressure induced on a lock gate during a 
seism. In order to have a practical example, it is proposed here to work again with the first 
gate presented in 8.2.3 and depicted on Figure 8.7, with the sectional properties of Table 8.3 
and the material characteristics of Table 8.2. Of course, many other configurations were also 
tested, but for conciseness, all the results are not reported here. The parameters defining the 
fluid are still those listed in Table 7.1. 
 
The finite element model has the same particularities as the ones detailed in section 7.4.3.1. 
The two gates delimiting the lock chamber are represented together with the fluid enclosed 
between them. Here again, the liquid is modeled as an elastic medium and the fluid-structure 
interaction is provided through the contact algorithm of LS-DYNA . 
 
Concerning the gate, the plating is modeled with Belytschko-Tsay shell elements [66]. To 
reduce a little bit the size of the model, the reinforcing system is not explicitly represented 
with shell elements, but rather with Hughes-Liu beams [66]. The structure is stabilized by the 
boundary conditions described in 8.1.2 and its supports are submitted to the longitudinal 
acceleration of Figure 7.13. Two different numerical simulations have to be performed to 
account for the presence or the absence of a sill.  
 
The lock chamber is assumed to have a total length Õ of 50	� and is filled with water at a 
level ℎ� of 8	�. Of course, a length of 50	� does not seem realistic for a traditional lock 
configuration, but it is worth recalling that the conclusions of sections D.1.2.3 and D.2.2.2 are 
still valid here. Consequently, as Õ ≥ 3ℎ�, all the results presented hereafter are also perfectly 
valid for any lock chamber with a more important longitudinal extension than the one 
considered here. 
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8.3.3.1. Case of a gate supported at the bottom 
 
To corroborate the analytical results derived by using the virtual work principle, they will 
confronted to those obtained numerically. As a matter of validation, the idea is to compare the 
total resulting hydrodynamic force Å!S" applied on the wall during the seism, in excess to the 
hydrostatic pressure. The definition of Å!S" is given in (7.90) and the results are plotted on 
Figure 8.15 for the situation where gate 1 is resting against a sill. These curves are obtained 
with LS-DYNA  by imposing a 4	% damping on the two first modes of vibration.  
 

 
Analytical 

solution Åª 
Numerical 
solution ÅÓ 

Rigid 
solution Å2 

Relative difference |1 − Åª/ÅÓ| Ratio Åª/Å2 

Maximal value 1114.6	¨À	 1382.8	¨À	 375.2	¨À	 19.4	%	 2.9	
Minimal value −1259.9	¨À	 −1417.6	¨À	 −517.1	¨À	 11.1	%	 2.5	

Table 8.6. Comparison between the extreme values for gate 1 supported by a sill 

It is worth recalling that if a sill is present, the boundary conditions imposed at the bottom of 
the lock chamber are such that both the positive and negative displacements along the + axis 
are prohibited at the support. As discussed in section 8.1.2, this is not necessarily coherent as 
only the positive translations should be blocked. 
 
Nevertheless, as the analytical solutions have been developed under the hypothesis of a full 
translational restraint, it is probably interesting to check their validity for such a boundary 
condition. The case of more realistic restrictions will be investigated later on. 
 
As shown by Figure 8.15, there is a quite good agreement between the numerical and 
analytical results. Unfortunately, from this analysis, it transpires that the simplified approach 
tends to underestimate the hydrodynamic pressure. A reason could lie in a wrong evaluation 
of the structural stiffness (as explained in 8.2.3.3), which can lead to a poor approximation of 
the proper accelerations .í !W, X, S". Because of (7.8), this will also be the case for the flexible 
hydrodynamic pressure. 
 
This tendency is confirmed by the extreme values reported in Table 8.6, where it is shown 
that the analytical prediction of the maximal resulting pressure is more or less 20	% lower 
than the numerical one. The agreement is better for the minimal values, with a relative 
difference of 11	%. Such discrepancies seem however to remain quite acceptable for a pre-
design stage. 
 
Another interesting comparison made in Table 8.6 is related to the flexibility of the gate. If 
the structure were considered as being perfectly rigid, then the total maximal resulting 
pressure derived in this case would be more or less 3 times lower than the one obtained by 
accounting for the flexibility. This points out the necessity of considering the real stiffness of 
lock gates to perform the seismic design. 

8.3.3.2. Case of a gate free at the bottom 
 
Let us now investigate the situation where no sill is present. In this case, the gate is free at the 
bottom and no restriction is made on the positive or negative translations along the + axis.  
 
The analytical and numerical curves showing the evolution of the total hydrodynamic force Å!S" are represented on Figure 8.16, from which the agreement appears to be quite 
satisfactory, even if discrepancies are sometimes noticeable.  
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Figure 8.15. Analytical and numerical evolution of the resulting hydrodynamic pressure on gate 1 supported by a sill

-1500

-1000

-500

0

500

1000

1500

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7

R
es

u
lt

in
g 

fo
rc

e 
(k

N
)

t (s)

LS-DYNA Analytical

-1500

-1000

-500

0

500

1000

1500

7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5

R
es

u
lt

in
g 

fo
rc

e 
(k

N
)

t (s)



CHAPTER 8. Seismic analysis of plane lock gates 

225 
 

 

 

Figure 8.16. Analytical and numerical evolution of the resulting hydrodynamic pressure on gate 1 free at the bottom 
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Another observation from Figure 8.16 is that the simplified approach tends this time to be 
conservative, which is confirmed by the values of Table 8.7. Indeed, it can be seen from this 
table that the analytical prediction of the maximal pressure is more or less 8	% higher than the 
one given by LS-DYNA . 
 

 
Analytical 

solution Åª 
Numerical 
solution ÅÓ 

Rigid 
solution Å2 

Relative difference |1 − Åª/ÅÓ| Ratio Åª/Å2 

Maximal value 2085.4	¨À	 1936.1	¨À	 375.2	¨À	 7.7	%	 5.6	
Minimal value −2020.8	¨À	 −1834.2	¨À	 −517.1	¨À	 10.2	%	 3.9	

Table 8.7. Comparison between the extreme values for gate 1 free at the bottom 

Furthermore, comparing the results of Table 8.6 and Table 8.7, it can immediately concluded 
that the pressure is higher when no sill is present. This is probably due to the fact that the 
structure is more flexible in this last situation, which can lead to increased proper 
accelerations .í !W, X, S". Due to (7.8), the flexible hydrodynamic pressure follows the same 
tendency. The direct consequence of this last observation is that considering the gate as being 
perfectly rigid is not realistic at all. This is corroborated by Table 8.7, where it is shown that 
the pressure derived under such an assumption would be at least 5 times lower than the true 
one.  

8.3.3.3. Discussion of the results 
 
The results presented on Figure 8.15 (if a sill is present) and on Figure 8.16 (if the gate is free 
at the bottom) show a quite good agreement with those obtained from finite element 
simulations. Nevertheless, in order to be sure that the analytical approach is entirely 
satisfactory, as claimed in 8.3.2, it is worth remembering that this solution is arguable on a 
theoretical point of view. Therefore, to check the consistency of this approximate method, 
some additional verifications still need to be conducted. These ones are presented in section 
E.2.2 of Appendix E.2 and show that the analytical approach is quite satisfactory. 
 
As a final remark concerning gate 1, it should be mentioned that finite element simulations 
were also realized for a lock chamber with a length Õ of 150	�. The total hydrodynamic 
pressures obtained for this configuration were very closed to those presented here above. The 
only difference lies in an important increase of the time needed by LS-DYNA  to perform the 
calculation. Once again, this tends to corroborate the conclusions of section D.2.2.2 and 
shows that is sufficient to work with a truncated part of the fluid domain. 
 
8.3.4. Added mass method 
 
The added mass method was previously introduced in 7.4.4, where its limitations were 
already stressed. However, in this previous section, only the case of unstiffened plates was 
investigated. Even if these ones were already quite thick, they do not have the same stiffness 
as real lock gates, which are attempted to be less flexible. As the fluid-structure interaction 
was found to be decreasing with the rigidity (see section D.2.2 of Appendix D.2), one may 
believe that the added mass method is still relevant to treat this kind of stiffened plates. Once 
again, thinking this way is only valid under the hypothesis of having a sufficient stiffness. For 
example, in the paper of Forsyth and Porteous [59], the added mass approach was applied to a 
lock gate with a double plating and a quite imposing reinforcing system. The total width of 
the structure (along the + direction on Figure 8.1) was of about 6	�. With a such rigidity, it is 
clear that the methodology could be adequate, but it is not always the case. The purpose here 
is to illustrate this observation with an example.  
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Figure 8.17. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method for gate 1 supported by a sill 

 
Figure 8.18. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method for gate 1 free at the bottom 
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To do so, the first gate introduced in 8.2.3 (Figure 8.7) is considered. As a matter of 
comparison, it is focused here on the total pressure acting in the middle of the gate (i.e. in X = L/2) given by (7.97). The corresponding results are plotted on Figure 8.17 for the case of 
a gate supported by a sill. It can be seen that the two curves are quite dissimilar, but the 
convergence may still be eventually satisfactory for a very early design stage. This is also 
confirmed by the values listed in Table 8.8, where it appears that the maximal relative 
difference is around 40	%. 
 
 Gate 1 supported by a sill Gate 1 free at the bottom 

 With a fluid 
domain 

Added mass 
approach 

Relative 
difference 

With a fluid 
domain 

Added mass 
approach 

Relative 
difference 

Maximal value 106.59	¨À	 67.13	¨À	 37.1	%	 196.86	¨À	 67.03	¨À	 67.1	%	
Minimal value −116.69	¨À	 70.48	¨À	 39.6	%	 −192.36	¨À	 64.07	¨À	 64.1	%	

Table 8.8. Comparison of the extreme values for the added mass approach 

When starting the design of the gate, it is probably sufficient to have a good order of 
magnitude for all the forces acting on the structure. Even if an error of 40	% seems to be 
rather problematic, one may argue that it is still acceptable if the seismic action is not 
predominant regarding all the other forces applied on the structure. In fact, the main 
advantage of working with lumped masses is that the approach allows for a drastic reduction 
of the time needed to perform finite element simulations. In the present case, by comparison 
with the simulations where the fluid domain is extensively modeled, the time required to get 
the results with the added mass method was approximately divided by one hundred. But one 
has also to consider the time needed to build the model, which is much more difficult to do if 
the water has to be represented. This explains why using lumped masses is sometimes quite 
popular. 
 
Let us now consider the situation where the gate is totally free to move at the bottom of the 
lock. In this case, the curves showing the time evolution of the resulting pressure force in X = L/2 are depicted on Figure 8.18. This time, it is clear that the added mass approach fails 
to correctly stand for the fluid-structure interaction. This is also corroborated by the values 
listed in Table 8.8, where it can be seen that the relative error may reach 65	%. Such an 
underestimation of the seismic pressure does not seem to be acceptable (even at the early 
design stage), which is not surprising. Indeed, if the gate is no longer supported by a sill, it is 
therefore more flexible. As stated in 7.3.3.3, this leads to an increased fluid-structure 
interaction that cannot be correctly captured by the lumped masses. 
 
As a conclusion, it is worth recalling that the added mass method was initially developed to 
analyze the seismic behavior of dams, which are much more rigid than lock gates. Even if the 
approach is computationally seducing, one has to bear in mind that its validity is directly 
related to the stiffness of the structure. If the flexibility is too important, working with lumped 
masses may lead to drastically underestimated water pressures. As an alternative, the results 
given by the simplified approach (see Figure 8.15 and Figure 8.16) provides a quite good 
approximation in a very short time and without having to build a finite element model. 
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8.4. Conclusions 
 
In this chapter, a simplified method was proposed to evaluate the hydrodynamic pressures 
acting on a flexible lock gate. To achieve this goal, the dry modal properties were first derived 
by applying the Rayleigh-Ritz method to a structure made of a single plating and reinforced 
by an orthogonal stiffening system. The analytical results were validated for different gate 
configurations by comparing them with those given by the finite element software NASTRAN. 
In all the cases, the agreement on the dry eigenfrequencies and eigenmodes was found to be 
sufficient for a pre-design stage.  
 
As a second step, the total hydrodynamic pressure acting on lock gates during a seism was 
evaluated in section 8.3. To do so, the virtual work principle was applied to perform the 
dynamic analysis and numerical validations were provided for a gate free or supported at the 
bottom. Here again, the discrepancies with the results obtained with the software LS-DYNA  
were found to remain quite satisfactory. 
 
In addition to these analytical and numerical developments, further investigations were 
conducted to provide more practical information about the seismic design of lock gates. The 
conclusions can be summarized as follows: 
 
• As for rectangular flexible reservoirs, the length Õ does not have any influence on the 

fluid-structure interaction, provided that Õ ≥ 3ℎ�. Consequently, for the numerical 
simulations, there is no need to have a complete modeling of the whole lock chamber.  
 

• Even if applying the added mass method is quite straightforward, such an approach should 
be avoided when dealing with the seismic design of lock gates. Indeed, as pointed out in 
section 8.3.4, this method could lead to a drastic underestimation of the hydrodynamic 
pressure. 

  
All the developments performed in sections 8.2 and 8.3 are strictly valid for an ideal situation, 
in which the upstream and downstream gates are perfectly identical. Furthermore, if a sill is 
present, the boundary conditions applied at the bottom of the lock may be arguable. In 
addition, it is worth noting that the simplified method do not account for the surrounding 
water present in the reaches and that the other components of the seismic action have not been 
considered so far. In fact, for conciseness, all these particular points have been discussed in 
Appendix E.3, where some indications are given about the way to include them within an 
analytical approach. 
 
The different considerations detailed here above show that performing the seismic design of a 
lock gate is a quite arduous task, even on a numerical point of view. The results presented in 
this chapter aim to provide some information on the way this operation should be achieved. 
The analytical method suggested here can be used as a pre-design tool, but it is likely that 
numerical simulations are still needed if more refined solutions are desirable. 
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9.1. Scientific developments 
 
The purpose of this second part is to provide an analytical evaluation of the hydrodynamic 
pressures induced on a plane lock gate reinforced by an orthogonal stiffening system. As a 
complementary information to the conclusions detailed in sections 7.5 and 8.4 of chapters 7 
and 8 respectively, we would like to emphasize some particular achievements related to the 
seismic analysis of lock gates. The main developments performed in the framework of this 
thesis may be summarized as follows: 
 
• The analytical procedure starts by the evaluation of the modal properties, which is 

achieved by applying the Rayleigh-Ritz method. The eigenmodes of horizontal and vertical 
beams are chosen as generating functions, but doing so is not entirely satisfactory on a 
theoretical point of view because the boundary conditions are not fully respected (Figure 
8.5). Furthermore, having an accurate evaluation of the vibration properties also depends 
on the inertia affected to the stiffening system (Figure 8.13). 
 

• Besides the previous theoretical difficulties, by comparisons with finite element solutions, 
it is found that the simplified approach leads to slightly overestimated eigenfrequencies, 
but the discrepancies remain acceptable. Similarly, some divergences are also observed on 
the mode shapes (Figure 8.11) because of the local action of the reinforcing system. 
 

• On an analytical point of view, the dynamic analysis is performed by applying the virtual 
work principle in which the external forces are obtained by summing the pressure, 
damping and inertial forces. The equations are then developed to get a matrix formulation 
of the structural equilibrium. This one is solved by the Newmark integration scheme 
(section 8.3.2), which leads to the time evolution of the hydrodynamic pressure.  
 

• On a numerical point of view, finite element models are developed with the software LS-
DYNA . It is suggested to model the water with constant stress solid elements affected by a 
particular elastic material law with no shearing (section 7.4.3.1). Classical beam and shell 
elements may still be used for the gate and the fluid-structure interaction is simulated by 
the penalty contact algorithm of LS-DYNA . The consistency of this approach is checked by 
comparing the numerical results with the well-known theoretical predictions for rigid 
reservoirs (section D.2.1 of Appendix D.2). 
 

• In order to simplify the finite element simulations, it is suggested that the fluid domain 
does not need to be entirely modeled. Indeed, if Õ ≥ 3ℎ� (Õ being the length of the lock 
and ℎ� the water level), it is demonstrated analytically that Õ does not have any influence 
on the hydrodynamic pressure induced on the gate. Consequently, for the numerical 
simulations, the fluid domain can be truncated after a length of 3ℎ� (Figure 7.18), which is 
particularly interesting to reduce the modeling and calculation efforts. 
 

• Comparisons between the simplified method and finite element simulations show that the 
agreement is quite satisfactory (see Figure 8.15 for example). Of course, this tends to 
validate the present analytical developments, but this also corroborates the numerical 
models used with LS-DYNA . 
 

• The classical added mass method based on the Westergaard formula [166] is investigated 
in details. Comparisons with analytical and numerical solutions show that this approach is 
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not conservative and should be avoided for flexible structures. The main reason is that the 
fluid-structure interaction is not correctly assessed by adding lumped mass on the gate. As 
an example, it is observed (Figure 8.18 and Table 8.8) that the maximal resulting 
hydrodynamic force may be underestimated by 65	% if this procedure is followed. 

 
In addition to all the previous points, some indications are also given on the way the vertical 
and transversal seismic accelerations should be treated analytically. Similarly, some 
numerical and analytical considerations are presented to account for the water present in the 
upstream and downstream reaches, but this topic is not treated in details. 
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9.2. Perspectives 
 
The results obtained through the analytical approach described in this second part of the thesis 
are the modal properties of a lock gate and the time evolution of the hydrodynamic pressure. 
The purpose is now to indicate how they can be used for the seismic design of a lock gate. 
 
The principal concern for the seismic numerical study of a lock gate leads in the modeling of 
the surrounding water. Various techniques are available, such as those relying on acoustic 
elements, arbitrary Lagrangian-Eulerian methods... Unfortunately, building these models may 
be sometimes arduous. For example, if corners or sharp angles are located on the fluid-
structure boundary, this may cause problems related to fluid leakage. If this is the case, the 
water can penetrate into the solid domain, which is of course not acceptable. Typically, such 
difficulties may arise at the corners of a reservoir. So building a consistent finite element 
model is not necessarily straightforward. In addition, it is also worth mentioning that due to 
the dimensions of the lock chamber, the numerical model may be quite heavy and therefore 
prohibitive regarding the computation and calculation efforts. 
 
The previous reasons explain why simplified meshless methods may be quite successful, as 
they do not need the fluid domain to be represented and therefore circumvent the difficulties 
mentioned above. One of these techniques is of course the classical added mass approach, but 
it is not conservative for flexible structures. Consequently, the simplified method developed 
in chapters 7 and 8 may appear to be a more reliable alternative. Indeed, going back to 
equation (8.39) expressing the dynamic equilibrium, it appears that the situation is strictly 
similar to the one of a lock gate submitted to the following external force: 

�o·�!W, X, S" = −§�SJ +s�9,��w
�u( ℍ�!X" +s�Q,�ℍ�!W"�*

�u( �'í!S" − `!W, X, S" (9.1) 

which is nothing else than the sum of the hydrodynamic pressure ̀!W, X, S" with the inertia 
terms coming from the ground acceleration 'í !S". In other words, as depicted on Figure 9.1, 
the seismic analysis where both the structure and the water are represented can simply be 
replaced by a dynamic one, in which the lock gate is only submitted to �o·�!W, X, S".  

 
Figure 9.1. Simplified seismic analysis of a lock gate 

This way of doing should drastically reduce the calculation and modeling efforts, allowing for 
a more efficient integration of the seismic action during the pre-design phase. On a more 
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practical point of view, it is reasonable to believe that some applications can be found in 
design offices dealing with hydraulic constructions.  
 
Regarding the extension of the simplified analytical approach, it may be of interest to present 
some possible developments that could be achieved through further research: 
 
• Derivation of the mathematical formulae to account for the hydrodynamic pressures in the 

downstream and upstream reaches. Some indications about this topic are already presented 
in sections E.3.3.1 and E.3.3.2 of Appendix E.3, where the remaining task is to apply the 
virtual work principle to get a matrix formulation of the equilibrium equation. Although 
this operation is still quite fastidious, it should lead to a more complete analytical method 
that could be validated by applying the recommendations suggested in section E.3.3.3 of 
Appendix E.3. 
 

• Extension of the analytical procedure to the other components of the seismic acceleration. 
So far, only the longitudinal one is considered, but for the sake of completeness, the 
transversal and vertical motions should also be treated. Although the gate is quite rigid in 
these two directions, these latter may be however expected to have an influence on the 
resulting flexible pressures. Some indications about this topic are already given in section 
E.3.4 of Appendix E.3. 
 

• Investigations on the influence of the real supports of the gate. Of course, the boundary 
conditions used for the analytical derivation do not exactly reflect the real situation. This 
topic is briefly discussed in section E.3.1 of Appendix E.3 for the particular case of the sill. 
However, it is clear that a similar questioning may be hold for the lock walls. 
Consequently, having a deeper numerical investigation that accounts for the real contact 
conditions could be of interest. 
 

• Extension of the simplified method to other lock gates. So far, only the case of a plane lock 
gate with an orthogonal stiffening system is treated. A challenging goal could be to 
perform similar developments for mitre or sector gates (Figure 5.1a), but this is probably 
too ambitious. Indeed, having a consistent evaluation of the modal properties for such 
structures seems to be quite illusory as the Rayleigh-Ritz method requires realistic 
admissible functions. However, a more reasonable objective could be to adapt the method 
to lock gates with a double plating (Figure 5.1b). 
 

The subjects mentioned here above show that some developments are still required to have a 
complete assessment of the seismic pressure acting on plane lock gates. Furthermore, some 
other possibilities could be examined to extend the procedure to other simple configurations. 
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APPENDIX A. Addendum to Chapter 2 
 
 
 
 
 
 

In this short addendum to Chapter 2, additional information is presented to 
complete the theoretical background related to the analytical derivation of the 
collision resistance. 
 
Appendix A.1 presents the European classification of the inland waterways, which 
provides some practical information about the choice of reasonable values for the 
mass of the striking vessel.  
 
In Appendix A.2, the total and actualized lagrangian formulations are briefly 
discussed in the optic of establishing consistent formulae to evaluate the internal 
energy rate in the upper-bound method. A simplified approach is also presented for 
the plastic regime. 

 
*** 
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A.1. Appendix A.1 
 
Type of inland 

waterways 
Class Motor vessels and barges Pushed convoys 

  
Maximum 
length (m) 

Maximum 
beam (m) 

Draught 
(m) 

Tonnage (t) Arrangement 
Maximum 

length 
(m) 

Maximum 
beam (m) 

Draught 
(m) 

Tonnage (t) 

O
f r

eg
io

n
al

 im
p

or
ta

n
ce

 

T
o 

W
es

t 
of

 
E

lb
e 

I 38.5 5.05 1.8 - 2.2 250 - 400      

II 50 - 55 6.6 2.5 400 - 650      

III 67 - 80 8.2 2.5 650 - 1000      

T
o 

E
as

t 
of

 
E

lb
e 

I 41 4.7 1.4 180      

II 57 7.5 - 9 1.6 500 - 630      

III 67 - 70 8.2 - 9 1.6 - 2 470 - 700      

O
f i

n
te

rn
at

io
n

al
 im

p
or

ta
n

ce
 

IV 80 - 85 9.5 2.5 1000 - 1500  85 9.5 2.5 - 2.8 1250 - 1450 

Va 95 - 110 11.4 2.5 - 2.8 1500 - 3000  95 - 110 11.4 2.5 - 4.5 1600 - 3000 

Vb      172 - 185 11.4 2.5 - 4.5 3200 - 6000 

VIa     
 

95 - 110 22.8 2.5 - 4.5 3200 - 6000 

VIb     
 

185 - 195 22.8 2.5 - 4.5 6400 - 12000 

VIc 

    
 
270 - 280 22.8 2.5 - 4.5 9600 - 18000 

    
 

195 - 200 33 - 34.2 2.5 - 4.5 9600 - 18000 

VII     
 

285 33 - 34.2 2.5 - 4.5 14500 - 27000 

Table A.1. Classification of the European waterways [55] 
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A.2. Appendix A.2 
 
This appendix recalls some expressions that are useful to evaluate the internal energy ���� and 
energy rate �-���. As in section 2.3, it is assumed that a solid is deformed from its initial 
configuration Ω
 to the current one Ω (Figure A.1). The displacement and velocity fields are 
measured from Ω
 and are respectively designated by , and ,- . It is worth noting that no 
hypothesis is made so far on their magnitudes, which means that the developments performed 
here are also valid for finite displacements. 
 
A.2.1.  Definition of the strains 
 
Denoting by !'(, '#, '*" and !+(, +#, +*" the coordinates of each point in Ω
 and Ω 
respectively, the transformation of the solid can be characterized by the following relation: 

+�!'(, '#, '*" = '� + .�!'(, '#, '*" (A.1) 

where .� are the components of the displacement vector ,. With these notations, it is now 
possible to define consistent equations to derive the deformations. Within the frame of large 
displacements, these latter may be evaluated by different manners, but only the Almansi and 
Green-Lagrange strain tensors will be invoked here. 
 

u3

 
Figure A.1. Transformation of a solid from its initial configuration to the current one 

Let us consider a small element having initially a length :Õ (Figure A.1). In the current 
configuration, this one is changed to :L. The transformation can be characterized by the two 
following strain definitions: 
 
• The Green-Lagrange strain tensor 5Ε7 is a way of measuring the deformations with respect 

to the reference configuration. If this latter is chosen as being Ω
, then the components Ε�< 
of 5Ε7 are defined as follows: 

:L# − :Õ# = 2Ε�<:'�:'< ⟺ Ε�< = :+E:+E − :'E:'E:'�:'<  (A.2) 

• The Almansi strain tensor 5a7 is a way of measuring the deformations with respect to the 
current configuration Ω. The components a�< of 5a7 have the following definition: 

:L# − :Õ# = 2a�<:+�:+< ⟺ a�< = :+E:+E − :'E:'E:+�:+<  (A.3) 



APPENDIX A. Addendum to Chapter 2 

239 
 

By introducing (A.1) in (A.2) and (A.3), it is possible to express the strains as a function of 
the displacements .�. Doing so leads to: 

Ε�< = 12=>.�>'< + >.<>'� + >.E>'� >.E>'<?								a�< = 12=>.�>+< + >.<>+� − >.E>+� >.E>+< ? (A.4) 

where it is important to bear in mind that , is defined from the reference configuration 
(chosen here as being Ω
) to the current one Ω. In the optic of establishing a relation between 5Ε7 and 5a7, the jacobian matrix 5Å7 can be introduced: 

5Å7 =
344
444
5>+(>'( >+(>'# >+(>'*>+#>'( >+#>'# >+#>'*>+*>'( >+*>'# >+*>'*67

777
78⟺Å�< = >+�>'< = i�< + >.�>'< (A.5) 

in which i�< is the Kronecker symbol. Similarly, denoting by 5Å7�( the inverse matrix of 5Å7, 
it can be shown that: 

5Å7�( =
344
444
5>'(>+( >'(>+# >'(>+*>'#>+( >'#>+# >'#>+*>'*>+( >'*>+# >'*>+*67

777
78⟺ Å�<�( = >'�>+< = i�< − >.�>+<  (A.6) 

In fact, 5Å7 links the initial coordinates to the actual ones and can therefore be used to relate Ε�< and .�<. It is possible to show that: 

5Ε7 = 5Å7ª5a75Å7 ⇔ Ε�< = ÅE�aEòÅò< (A.7) 

where 5Å7ª is the transpose of the jacobian matrix. This last equation can be easily 
demonstrated by introducing (A.4) and (A.5) into (A.7). 
 
A.2.2. Definition of the stresses 
 
The internal forces acting inside the deformed solid may also be characterized by various 
stress tensors, but only two of them will be introduced here. Let us consider a small 
tetrahedron of Ω
 (Figure A.2) constructed on three vectors !9(, 9#, 9*" that are unitary, 
orthogonal and parallel to the reference basis !'(, '#, '*". These latter are engraved on the 
solid and therefore follow its deformations. When moving from Ω
 to Ω, they are transformed 
into the vectors !:(,:#,:*" that are not necessarily unitary and orthogonal anymore. 
 
The components of the internal forces acting on each face of this small tetrahedron may be 
expressed either by using !9(,9#, 9*" or !:(,:#,:*". Furthermore, to get the corresponding 
stresses, one can choose to divide these components by the initial or deformed area of each 
face of the tetrahedron. This allows for the following definitions [157]: 
 
• The Cauchy stress tensor 567 is a way of defining the stresses along the reference axes !9(, 9#, 9*", but with respect to the actual area of the current configuration Ω. 
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• The second Piola-Kirchhoff stress tensor 5@7 is a way of defining the stresses along the 
actual axes !:(,:#,:*", but with respect to initial area of the reference configuration Ω
. 
 

 
Figure A.2. Stress tensor definition 

As for the strains, it also possible to use the jacobian matrix 5Å7 to get a relation between 
these two tensors. It can be shown [157] that: 

567 = 1Å 5Å75@75Å7ª ⇔ 6�< = 1Å Å�E@EòÅ<ò (A.8) 

where Å = det5Å7.	Now that the relations defining the stresses and the strains are available, 
the next step is to evaluate ���� and �-���. 
 
A.2.3. Derivation of the internal energy 
 
The internal energy ���� associated to the deforming solid of Figure A.1 may be expressed 
either in the reference configuration Ω
 or in the current one. Let us start by first considering Ω
 and try to derive the corresponding equation in Ω. Referring to Ω
, the internal energy is 
defined as follows: 

���� =45@75Ε7:�
D

=4@�<Ε�<:�D
 (A.9) 

where � is the initial volume. In order to develop (A.9) with respect to Ω this time, @�< and E�< 
can be transformed by making use of (A.7) and (A.8). Doing so leads to: 

���� =4Å�Å�E�(6EòÅ<ò�(��Å��a��Å�<�:�D
 

⇔ ���� =46Eòa���Å��Å�E�(��Å�<Å<ò�(�:;9
 

(A.10) 

where ; is the volume of the actual configuration. The last step in (A.10) is due to the 
definition of the determinant of the jacobian matrix, as :; = Å:�. This property allows to 
integrate over the actual volume, so (A.10) is indeed an expression of ���� in the current 
configuration. But this last equation can still be simplify by noticing that: 

Å�� = >+�>'� 			 ; 			Å�E�( = >'�>+E 			⟹			 Å��Å�E�( = >+�>'� >'�>+E = >+�>+E = i�E (A.11) 
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and the same development can be done for Å�<Å<ò�( = i�ò. Consequently, substituting these two 
results in (A.10) leads to: 

���� =46Eòa��i�Ei�ò:;9
=46�<a�<:;9

=45675a7:;
9

 (A.12) 

As a conclusion, it can be said that regarding the evaluation of the internal energy ����, the 
second Piola-Kirchhoff stress tensor 5@7 is conjugated to the Green-Lagrange strain tensor 5Ε7, while the Cauchy stress tensor 567 is conjugated to the Almansi strain tensor 5a7. 
 
A.2.4. Derivation of the internal energy rate 
 
As for ����, it is also possible to define the internal energy rate �-��� in the reference and actual 
configurations. Considering Ω
 first, the evaluation of �-��� can be performed by using the 
Green-Lagrange strain rate tensor 5Ε- 7 that is simply found by taking the time derivative of 
(A.4): 

Ε- �< = 12=>.- �>'< + >.-<>'� + >.-E>'� >.E>'< + >.E>'� >.-E>'<? (A.13) 

It is worth noting that it is correct to permute the time and the spatial derivatives in (A.13) as 
the initial coordinates !'(, '#, '*" do not vary with time. The internal energy rate in the 
reference configuration Ω
 is then found by multiplying the second Piola-Kirchhoff stress 
tensor with the one introduced here above: 

�-��� =45@7AΕ- C:�
D

=4@�<Ε- �<:�D
 (A.14) 

The transformation of (A.14) to get the expression of �-��� with respect to Ω is not 
straightforward. In this optic, (A.8) can first be introduced in (A.14) and �-�< replaced in 
accordance with equation (A.13). Doing so provides the following results: 

�-��� = 124Å�Å�E�(6EòÅ<ò�(� =>.- �>'< + >.-<>'� + >.- I>'� >.I>'< + >.I>'� >.- I>'<?:�D
 

⇔ �-��� = 1246Eò =>.- �>'< + >.-<>'� + >.- I>'� >.I>'< + >.I>'� >.- I>'<?Å<ò�(Å�E�(:;9
 

(A.15) 

In order to simplify this last relation, one can consider the definition of the inverse jacobian 
matrix given by (A.6) to get: 

• Å�E�(Å<ò�( >.- �>'< = Å�E�( >'<>+ò >.- �>'< = Å�E�( >.- �>+ò = �i�E − >.�>+E� >.- �>+ò = >.-E>+ò − >.�>+E >.- �>+ò  

(A.16) 
• Å�E�(Å<ò�( >.-<>'� = Å<ò�( >'�>+E >.-<>'� = Å<ò�( >.-<>+E = =i<ò − >.<>+ò? >.-<>+E = >.- ò>+E − >.<>+ò >.-<>+E 
• Å�E�(Å<ò�( >.- I>'� >.I>'< = Å�E�( >.- I>'� >.I>'< Å<ò�( = >'�>+E >.- I>'� >.I>'< >'<>+ò = >.I>+ò >.- I>+E 
• Å�E�(Å<ò�( >.I>'� >.- I>'< = Å�E�( >.I>'� >.- I>'< Å<ò�( = >'�>+E >.I>'� >.- I>'< >'<>+ò = >.I>+E >.- I>+ò  



APPENDIX A. Addendum to Chapter 2 

242 
 

Substituting all these results in (A.15), many terms of (A.16) cancel each others, which leads 
to the following result: 

�-��� = 1246Eò �>.-E>+ò + >.- ò>+E�:;9
⟺ �-��� =45675å7:;

9
 (A.17) 

where 5å7 is called the Rivlin-Eriksen rate of the Almansi strain tensor [12]. It is worth noting 
that (A.17) is derived without making any assumption on the magnitude of , and ,-  and is 
therefore also valid for finite displacements. 
 
Another point that is important to stress is that, unlike 5E- 7 which was obtained by taking the 
rate of 5Ε7, 5å7 is not the time derivative of 5a7. Indeed, going back to equation (A.4) shows 
that deriving 5a7 is a quite complex operation. This is mainly due to the fact that the current 
coordinates !+(, +#, +*" are varying with time, which implies that the time derivative may not 
be permuted with the spatial ones. In fact, it can be shown that [36]: 

a- �< = 12=>.- �>+< + >.-<>+�? − =aE� >.-E>+< + >.-E>+� aE<? (A.18) 

which is definitely not the same as the deformation rate involved in (A.17). Similarly, it can 
also be concluded that 5å7 is not obtained by taking the time derivative of the Cauchy strain 
tensor 5G7 defined by: 

G�< = 12=>.�>+< + >.<>+�? (A.19) 

because permuting the time and spatial derivatives is not allowed. Of course, under the 
hypothesis of small strains and displacements, the aforementioned equations may be 
linearized to get 5a- 7 = 5å7 = 5G-7. As a conclusion, it can be said that regarding the evaluation 
of the internal energy rate �-���, the second Piola-Kirchhoff stress tensor 5@7 is conjugated to 
the Green-Lagrange strain rate tensor 5Ε- 7, while the Cauchy stress tensor 567 is conjugated to 
Rivlin-Eriksen rate 5å7 of the Almansi strain tensor. 
 
A.2.5. Derivation of the internal energy rate in the plastic regime 
 
Before trying to evaluate the internal energy rate for large deformations, it is probably of 
interest to present a non-exhaustive recall of some basic results of the plasticity theory for 
metals (see [28] or [102] for more details). In the case of a material having a perfectly plastic 
behavior (i.e. exhibiting no strain-hardening), it can be assumed that plastic deformations 
occur under a constant flow stress 6
. On a mathematical point of view, this property is 
translated by the definition of a convex yield surface ℱ such that: 

ℱ�6�<� − 6
 = 0 (A.20) 

where 6
 is a constant as there is no strain-hardening and 567 is the Cauchy stress tensor. 
Furthermore, within the frame of small deformations, it is usually assumed that the Cauchy 
strain rate tensor 5G-7 can be decomposed into the sum of an elastic and a plastic part, which 
can be expressed as follows: G-�< = G-�<o + G-�<J  (A.21) 

and in the case of an associated plasticity, the theory also states that the plastic part has to be 
perpendicular to the yield surface. In other words, one should have: 
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G-�<J = ½- >ℱ>6�< 			⟺			 G-�< = ½- >ℱ>6�< (A.22) 

where ½- is a positive scalar multiplier. In the particular case of metals, it is quite common to 
work with the Von Mises plasticity criteria and it is therefore quite interesting to adapt all the 
previous relations. Under the assumption of a non-hardening material with a flow stress equal 
to 6
, the equation of the Von Mises yield locus is as follows: 

ℱ ≡ 126<�<6<�< − 136
# = 0										6<�< = 6�< − 6EE3 i�< (A.23) 

where 56<7 is the deviatoric stress tensor. With this definition, the application (A.22) allows to 
determine the different components of the plastic strain rate tensor: 

G-�< = ½- >ℱ>6�< = 3½-2 6<�<6
 					 ; 					½- = ²2G-�<G-�</3 (A.24) 

in which the definition of ½- may be easily demonstrated with help of (A.23). The internal 
dissipation rate �-��� is then given by particularizing (A.17) to the special case of small strains, 
for which 5å7 = 5G-7, i.e.: 

�-��� =46�<G-�<:;9
=46
G-J:;9

				 ; 				G-J = ²2G-�<G-�</3 (A.25) 

The previous relation may be easily demonstrated with help of (A.24) and (A.25). This leads 
to the definition of the equivalent plastic strain rate G-J. It is worth bearing in mind that the 
developments exposed here above are only valid for small strains. Unfortunately, the theories 
of elastoplasticity with large deformations are still a topic under discussion and even for 
metals, there are many approaches currently available. Without entering in too many details, 
the plastic rules in the case of finite strains are usually developed by following one of these 
two hypotheses:   

å�< = å�<o + å�<J  or Å�< = Å�Eo ÅE<J  (A.26) 

In the first case, it is simply assumed that the results exposed here above for small strains may 
be directly extended to treat large deformations by assuming that the Rivlin-Eriksen rate of 
the Almansi strain tensor is obtained by the addition of an elastic and a plastic contribution.  
In the second case, it is postulated that every material point undergoes two successive 
transformations associated to the elastic and plastic deformations. These transformations are 
respectively characterized by the tensors 5Åo7 and 5ÅJ7.    
 
Unfortunately, none of these two models is able to satisfactorily represent the behavior of 
metal in large deformations. Another attempt was made by Green and Naghdi [64], who 
assumed a summative decomposition of the Green-Lagrange strain rate tensor in the form of Ε- �< = Ε- �<o + Ε- �<J , in which Ε- �< is calculated with help of (A.13) but not Ε- �<o  and Ε- �<J . With this 
hypothesis, they develop a mathematical consistent plastic theory with respect to the initial 
configuration. Nevertheless, on the physical point of view, this approach is criticized by some 
authors such as Volokh [158], who argues that materials only have a perfect remembrance of 
their initial reference configuration within the range of elastic deformations. Consequently, in 
the case of a plastic flow, the constitutive equations should be developed for the current 
configuration and not for the initial one. 
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From the brief previous discussion, it transpires that selecting an appropriate plastic theory is 
a quite arduous task. Nevertheless, under the assumption that the collision process only 
implies moderate strains and displacements in which the plastic deformations are 
predominant, then according to Volokh [158], it is relevant to work under the first hypothesis 
mentioned in (A.26). Doing so, the internal energy rate may be simply evaluated by adapting 
(A.25) in the following way [158]: 

�-��� =46�<å�<:;9
=46
åJ:;9

				 ; 				åJ = ²2å�<å�</3 (A.27) 

in which the matrix components å�< are still given by (2.6). In this last formula, it is worth 
noticing that the integration has to be performed over the deformed configuration, which is 
not always convenient. According to (A.7), remembering that :; = Å:� and å�< =ÅE��(�-EòÅò<�(, it is possible to transform (A.27) in a more practical form: 

�-��� =46
�-J:�D
		 ; 		�-J = Å²2�ÅE��(�-EòÅò<�(��Å���(�-��Å�<�(�/3 (A.28) 

This last equation provides a way to evaluate the internal energy in the case of finite strains 
and displacements. It is quite close to the theoretical reasoning hold by Voyiadjis and Kiousis 
[159] for a hardening material. 
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APPENDIX B. Additional developments for ship impacts 
on plane lock gates 

 
 
 
 
 
 

In this addendum to Chapter 3, additional developments are presented in order to 
complete the analytical evaluation of the impact resistance for plane lock gates. 
Each appendix always refers to one section of Chapter 3. 
 
In Appendix B.1, additional mathematical developments are presented as a 
complement to the analytical derivations related to the first type of super-
elements. The formulae detailed in section 3.3 are also extended to the case of a 
subsequent contact. 
 
Appendix B.2 and Appendix B.3 give more details on the way the resistance should 

be calculated for the second and third types of super-elements respectively. In 

particular, they focus on the beam mechanism that may also appear during the 
impact. 
 
Finally, complementary information is provided in Appendix B.4 about the 

displacement field postulated during the global deforming mode and an additional 

validation case is presented in Appendix B.5. 
 

*** 
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B.1. Appendix B.1 
 
B.1.1. Internal energy rate for stiffened plates 
 
The theoretical derivation of the internal energy rate performed in section 3.3.2 and 3.3.3 are 
only valid for non-stiffened plates. Nevertheless, it is of current practice to reinforce the 
plating of lock gates by smaller horizontal and vertical elements. Of course, doing so has a 
consequence on the crashworthiness. Numerical investigations show that during an impact, 
these stiffeners are mainly submitted to membrane straining, the bending effects being 
negligible. In other words, they follow the deformation of the plating. Consequently, as 
suggested by Paik and Thayamballi [120], it is sufficient to smear them over the surface of the 
plate, as explained hereafter. 
 
Considering the portion between the two girders located in N��( and N� (Figure B.1), the 
plating thickness SJ can be replaced by an equivalent value S� to account for the additional 
membrane energy that is also dissipated by the horizontal smaller components during the 
collision. Denoting by �� each individual section area and by À the total number of stiffeners 
present between the two girders, one should simply have:   

S� = SJ +s ��O� − O��(
Ó
�u( 					 ; 					S� = SJ +s ��N� − N��(

Ó
�u(  (B.1) 

Similarly, to account for the membrane energy that is also dissipated by the À	vertical 
stiffeners located between the two frames O��( and O�, it is also possible to work with an 
equivalent thickness S� calculated as mentioned in (B.1). As a final result, the plate is 
replaced by a fictitious one, having two different thicknesses along the W and X axis. 
 

 
Figure B.1. Calculation of the equivalent plating thickness 

The evaluation of the internal energy rate is therefore no longer given by (3.18) because P
 = 6
SJ is now different for the horizontal and vertical fibers. Instead of (3.18), the 
following formula should be used:  

Ε- ��� =�6
�S��-�� + S��-����
:W:X					; 					Ε-�� = >.>W >.->W 					Ε- �� = >.>X >.->X (B.2) 

However, it is quite interesting to note that these smaller reinforcing components usually do 
not increase to a large extent the collision resistance of the impacted plate. For this reason, 
they could be neglected, which is a conservative approach. 
 
B.1.2. Resistance after contact with a lateral support 
 
The formulae developed in section 3.3.2 are only valid if one of the boundary of the super-
element has not been impacted by the stem. Nevertheless, when the penetration is equal to i( 
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or i# (Figure B.2), this is no longer the case as a contact develops with the right or the left 
lateral support respectively. This causes the activation of two additional super-elements: a 
vertical SE2 and the adjacent SE1.  

 

 
Figure B.2. Contact between the stem and the lateral supports 

The penetrations i( and i# for which a subsequent contact occurs may be found by 
geometrical considerations. Indeed, they are simply given by the initial distance between the 
corresponding support and the curve Γ materializing the stem at the super-element level. From 
equation (3.11), it is easy to show that: 

i( = 'h + [ =�(#`# − 1?					 ; 					i# = 'h + [ =�##`# − 1? (B.3) 

from which it can be concluded that the subsequent contact may first concern the right or the 
left support, according to the respective values of �( and �#. 
B.1.2.1. Impact on the right support 
 
Let us first consider the case where i( < i#. In this situation, for i( ≤ i < i#, only the right 
lateral support has been impacted.  

 
Figure B.3. Definition of the deformation pattern in the case of a contact with a lateral support 

It seems therefore reasonable to postulate the deformation pattern of Figure B.3. As in section 
3.3.2.1, the displacement field �!X" in the plane of the uppermost deck is still made of two 
parts: 
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• For 0 ≤ X ≤ �( + �
, the displacements are characterized by �(!X" and such that the plate 
is simply sticking to the shape Γ of the striking vessel.  
 

• For �( + �
 ≤ X ≤ �( + �#, the displacements are described by �#!X" and such that the 
compatibility conditions along the vertical support in X = �( + �# are respected. 

 
The junction between �(!X" and �#!X" is made at point b, which is characterized by the two 
parameters �
 and i
. In fact, comparing Figure 3.14 and Figure B.3 clearly shows that the 
situation on the sub-areas �# × �( and �# × �# is strictly similar. Consequently, it is obvious 
that the two parameters �
 and i
 may be directly found by adapting equations (3.13) as 
follows: 

�
 = `#�#[ ![ − 'h + i"					; 					i
 = [̀# �
!�# − �
" (B.4) 

For similar reasons, the formulae (3.21) and (3.22) giving the resistances k*!i" and k�!i" 
provided by the two aforementioned sub-areas are also still relevant in the present case. 
However, this is not true for k(!i" and k#!i", as the displacement field .!W, X" arising on �( × �( and �( × �# is not the same as in section 3.3.2.1. Indeed, applying (3.11) and (3.15) 
leads to the following result: 

.!W, X" = �(!X"�!W" = =[ − 'h + i − !X − �("#c ?�!W" (B.5) 

in which c = `#/[ and �!W" is given by (3.14). With this definition, the derivation of k(!i" 
and k#!i" may be achieved by evaluating the internal energy rate with help of (3.18). Doing 
so, it can be shown that k!i" is obtained by summing up the four following contributions: 

• k(!i" = 6
SJ �(�( =i + [ − 'h − �(
#3c? (B.6) 

• k#!i" = 6
SJ �(�( =i + [ − 'h − �(
#3c? (B.7) 

• k*!i" = 6
SJ =i + [ − 'h − �
#3c + 4�(#9c + !�# − �
"#5c ?			 ; 			�
 = c�2 ![ − '@ + i" (B.8) 

• k�!i" = 6
SJ =i + [ − 'h − �
#3c + 4�##9c + !�# − �
"#5c ?			 ; 			�
 = c�2 ![ − '@ + i" (B.9) 

Of course, these formulae remains valid as long as the maximal strain arising in the plate is 
lower than the critical value G� for which rupture occurs. At this moment, the resistance k!i" 
is set to zero.  

B.1.2.2. Impact on the left support 
 
It is now focused on the case where i# < i(. In this situation, if i# ≤ i < i(, only the left 
lateral support has been impacted and it is obvious that the impact situation is symmetric with 
respect to the one depicted on Figure B.3. In particular, this means that the contributions k(!i" and k#!i" are still given by (3.19) and (3.20), while (3.21) and (3.22) are no longer 
valid to evaluate k*!i" and k�!i". Indeed, these latter have to be corrected, as the sub-areas �# × �( and �# × �# are now entirely submitted to the displacement field .!W, X" =
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�(!X"�!W" imposed by the striking vessel. Accounting for all these considerations leads this 
time to the subsequent results: 

• k(!i" = 6
SJ =i + [ − 'h − �
#3c + 4�(#9c + !�( − �
"#5c ?			; 			�
 = c�1 ![ − '@ + i" (B.10) 

• k#!i" = 6
SJ =i + [ − 'h − �
#3c + 4�##9c + !�( − �
"#5c ?			 ; 			�
 = c�1 ![ − '@ + i" (B.11) 

• k*!i" = 6
SJ �#�( =i + [ − 'h − �#
#3c? (B.12) 

• k�!i" = 6
SJ �#�# =i + [ − 'h − �#
#3c? (B.13) 

which are only valid as long as there is no rupture, otherwise k!i" has to be set to zero. As a 
final remark, it is worth noting that equations (B.6) to (B.13) are derived under the 
assumption that only one of the two vertical boundaries has been impacted. Nevertheless, if i > max!i(, i#", then the two lateral supports are simultaneously in contact with stem. In this 
case, k!i" is simply obtained by summing up (B.6), (B.7) (B.12) and (B.13). 
  
B.1.3. Resistance after contact with the lower support 
 
For a given value i* of the penetration, the stem is assumed to enter in contact with the lower 
support of the plate, which causes the activation of two super-elements: an additional SE1 and 
a horizontal SE2 (Figure B.4a). The formulae developed in section 3.3.2 are of course no 
more valid, as the displacement field .!W, X" is now affecting one of the boundaries (Figure 
B.4b). The restriction of .!W, X" to the horizontal planes W = 0 and W = �( are denoted by �þ!X" and �!X" respectively. 
 

(a) Contact between the stem and 
the lower support 

(b) Definition of the deformation pattern in the case of a contact 
with the lower support 

 
 

Figure B.4. Parameters for the contact between the stem and the lower support 
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The mathematical expression of �!X" is still given by formulae (3.13) to (3.15) and the 
derivation of �þ!X" is straightforward, as it may be found simply by extrapolating the 
developments performed in section 3.3.2. It is still made of two different parts �þ(!X" and �þ#!X", the first being imposed by the shape of the stem in the plane W = 0, while the second is 
defined to respect the compatibility with the supports (Figure B.5). For the sub-area �( × �(, 
going back to (3.9) and extrapolating (3.12) leads to: 

• �þ(!X" = [< =1 − !X − �("#`̂# ? − 'h + i if  �( − �<
 ≤ X ≤ �( (B.14) 

• �þ#!X" = i�
!�( − �<
"# X# if  0 ≤ X ≤ �( − �<
 (B.15) 

where [< = [ − �( cot_ and ̀ ̂ = ` − �( cot a are the radii of the stem at the level of the 
lower support. Similarly, in the two previous equations, the parameters �<
 and i�
 describing 
the current position of the junction point � (Figure B.4b and Figure B.5) are simply obtained 
by extending the results of section 3.3.2. Considering (3.13), one should get: 

�<
 = `̂#�([< ![< − 'h + i"										i�
 = [<̂̀# �<
!�( − �<
" (B.16) 

With all the previous definitions, it is now possible to postulate a reasonable displacement 
field .!W, X" for the sub-area �( × �(. The most convenient way is to perform a linear 
interpolation between �!X" and �þ!X", which leads to: 

.!W, X" = �!X" W�( + �þ!X" �( − W�( = �!X"�!W" + �þ!X"��!W" (B.17) 

It is obvious that all the developments exposed here above may be easily adapted to the sub-
area �# × �(. Moreover, as .!W, X" is strictly identical to the displacement fields defined in 
3.3.2 for the regions �( × �# and �# × �#, there is no need to reevaluate the contributions k#!i" and k�!i" to the local resistance opposed by the plate. 
 
To calculate the internal energy rate �-���, (B.17) may be introduced in (3.18). Then, equating �-��� to the external energy rate gives k(!i" = 6
SJ!I( + I#", where I( and I# have the 
following definitions: 

I( = 
!�
 − �("¿ + !�( − �<
"¿5�(!�( − �<
"# = �<
cÉ!�( − �<
" + 16c? − �
* − �<
*3�(c + i − 'h + [�( !�
 − �<
" 

(B.18)  + 
!�( − �
"* − !�( − �<
"*3!�( − �<
"# =4�(3cÉ �<
�( − �<
 + �<
!�( − �<
"�(cÉ + i − 'h + [�( − �(3c? 

 + 
�<
3c =�( + �(# − �<
#2�( ? − �
!�( − �
"#3c!�( − �<
"# =�( + �(# − �
#2�( ? 

I# = =4�(9 + !�( − �
"#5�( ?=�
c + �<
cÉ ��( − �
�( − �<
�*? + �
c ��( − �
�( − �<
�# =2�(9 − !�( − �<
"#5�( ? 

(B.19) 
 + 

�
c ��( − �
�( − �<
�=2�(9 − !�( − �<
"#5�( ? 
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in which c = `#/[ and c = `̂#/[<. Of course, the previous results are still valid for the sub-
area �# × �(, provided that �( is replaced by �# in (B.18). Doing so leads to k*!i", while k#!i" and k�!i" are still given by (3.20) and (3.22). Summing up all these contributions 
finally leads to the total local resistance k!i" opposed by the plate if its lower edge has been 
impacted by the stem. 
 

 
Figure B.5. Definition of the displacement field in the horizontal plane y = 0 

 
 

  

i�
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B.2. Appendix B.2 
 
B.2.1. Subsequent folding 
 
As depicted on Figure 3.29, as soon as one fold is completely crushed, it is assumed that a 
new one is immediately created. Doing so is possible as long as the web has not been entirely 
crushed. For a fold number ø that is completely closed, its contribution to the super-element 
resistance is only coming from a membrane straining and it can be shown [180] that the 
corresponding energy rate �-< is given by: 

�-< = 2P
®�( + �#�(�# !® + i − 2ø®"i- (B.20) 

Consequently, if ̈  is the current fold number, the total internal dissipation is obtained by 
summing up the bending and membrane energy rates �-V and �-� with the individual 
contributions �-< coming from all the ̈ − 1 folds that have already been totally crushed 
(Figure B.6a), i.e.: 

�-��� = �-V + �-� +s�-<E�(
<u(  (B.21) 

In this last formula, it is worth noting that �-V is the same as in section 3.4.2.1 because it is not 
a function of i. Nevertheless, regarding �-�, equation (3.47) has to be corrected because the 
relative indentation for the current fold is only equal to i − 2!¨ − 1"®. In other words, (3.47) 
is still valid to get �-�, provided that i is replaced by i − 2!¨ − 1"®. Developing (B.21) 
leads to the following relation: 

�-��� = !�( + �#"i- ��
º® + P
®2 !i − 2!¨ − 2"®"�(�# +s2P
® !i − !2ø − 1"®"�(�#
E�(
<u( � (B.22) 

By rearranging the terms in (B.22) and applying the upper-bound theorem, it is easy to derive 
equation (3.50) giving the resistance. 
 

(a) Incomplete folding situation if ¨ < P (b) Complete folding situation if ¨ = P 

  
Figure B.6. Folding situations if k < n and k = n 

Nevertheless, all the calculations performed here above are only valid as long as the web is 
not totally crushed. If P is the maximal number of folds, then (B.22) and (3.50) are only valid 
as long as ̈ ≤ P, with: 
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¨ = ä i2®å					 ; 					P = >ℎR2®? (B.23) 

If ¨ = P, the super-element resistance is calculated as the level reached for i = 2P®, to 
which is added the membrane extension of the uncrushed part of the cross-section. Noticing 
that this latter has an area �� equal to !ℎR − 2P®"SR + ℎ�S�, the corresponding internal 
dissipation is given by: �-��� = ��6
!i − 2P®"�( + �#�(�#  (B.24) 

Adding (B.24) to (B.22) in which i = 2P®, rearranging the terms and applying the virtual 
work principle finally leads to equation (3.51). 
 
B.2.2. Plastic capacities of a crushed beam 
 
The derivation of the plastic moment for a folded cross-section is a quite arduous task. 
Considering first the particular situation in which the web has been crushed over the distance 2¨® (Figure B.7a), the main difficulty consists in evaluating the contribution of the ¨ folds to 
the bending capacity. A conservative hypothesis is to assume that the efficient cross-section is 
made of the flange and the unfolded height ℎE of the web, which leads to the plastic capacity 
denoted by �E. This latter is an irregularly decreasing function of ¨ (Figure B.7c) and with ℎE = ℎR − 2¨®, it may be shown that: 

• If ℎESR ≥ ℎ�S� : �E = 6
 ℎE2 �ℎESR2 + ℎ�S�� + 6
 ℎ�S�2 =1 − ℎ�2SR? 

(B.25) 

• If ℎESR < ℎ�S� : �E = 6
 ℎESR2 =ℎR + S� − ℎRSR2ℎ� ? + 6
 ℎ�S�
#

4  

Of course, when no additional fold can be created over the web height (i.e. for ¨ = P), then �E remains constant: �E = ��. 
 

(a) i = 2¨® (b) 2!¨ − 1"® < i < 2¨® (c) Evolution of �E and Á∗�
 

  
Figure B.7. Plastic bending capacity of a folded cross-section 

Let us now consider the situation where the fold number ̈  is not completely closed (Figure 
B.7b), which means that 2!¨ − 1"® < i < 2¨®. In this case, it is too conservative to 
consider only the efficient portion of Figure B.7a. The derivation of the plastic bending 
moment Á∗�
 for the surface depicted on Figure B.7b can be achieved by working with the 
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opening angle 2�, but doing so leads to very cumbersome equations that may be reasonably 
approximated by interpolating linearly between �E�( and �E. With such an approach, Á∗�
 
is a piecewise linear function of i, as depicted on Figure B.7c and given by: 

• If ¨ < P : Á∗�
 = �E +�E −�E�(2® !i − 2¨®" with 2!¨ − 1"® ≤ i ≤ 2¨® 
(B.26) 

• If ¨ = P : Á∗�
 = �� with i ≥ 2P® 

Regarding now the axial resistance of a crushed beam, it is assumed that the folded part is still 
capable of developing its full tensile resistance. Consequently, there is no difference with the 
initial T-shape cross-section of Figure 3.3, i.e.: 

À
 = 6
!ℎRSR + ℎ�S�" (B.27) 

Finally, the last step to characterize the plastic capacities of the folded cross-section is to 
define an interaction criteria between the bending moment � and the normal force À. The 
derivation for the section depicted on Figure B.7b is not tractable within an analytical 
approach. As a matter of simplification, it is proposed here to used the following parabolic 
formula: �Á∗�
 = 1 − �ÀÀ
�

#
 (B.28) 

in which Á∗�
 is a function of i given by (B.26). Consequently, the interaction criteria (B.28) 
changes with the value of the indentation reached during the folding mechanism and is 
progressively flattened as long as Á∗�
 decreases. 
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B.3. Appendix B.3 
 
B.3.1. Derivation of the resistance for a direct impact 
 
In this appendix, the resistance is first established for the situation where the intersection is 
directly impacted by the stem (Figure 3.35a). The case of a subsequent contact is treated later. 

B.3.1.1. Folding mechanism 
 
In order to derive the local resistance k�!i" for the third type of super-element during the 
folding process, it is first required to postulate a compatible displacement field. To do so, it is 
probably more intuitive to start by considering the deformed configuration and imagine a 
restoring motion that takes it back to its primary position. Of course, by symmetry, it is 
sufficient to work only on one half of the mechanism of Figure 3.37b by considering the two 
triangles ̄ �� and ��b. For convenience, these latter will be respectively denoted by & and && 
in this section (Figure B.8a). The initial locations of points �, b, � and ̄  are denoted by �
, b
, �
 and ̄ 
 respectively. 
 

(a) Deformed configuration (b) Current configuration after the first phase 

H

E
0

= 
E

 

E
0

= 
E

 
Figure B.8. First phase of the restoring motion 

During the first phase of the restoring movement, surface & is submitted to a displacement .g!+, X" that brings ̄  and � back to ̄ 
 and �
 respectively (obviously, point � is not moving 
as � = �
). If � is the opening angle (Figure B.8a), it can be shown that: 

.g!+, X" = !1 − cos �"!+ + ®" (B.29) 

with −® ≤ + ≤ 0 and 0 ≤ X ≤ Æ!+ + ®". According to Amdahl [8], the derivation of the 
membrane energy rate can be conducted under the assumption of small strains. Consequently, 
applying (A.19) and (A.25) leads to: 

G-·· = >.- g>+ ⟹ G-g = �2/3G-·· = �-�2/3 cos � (B.30) 

where G-g is the equivalent plastic strain rate associated to surface &. During this first phase of 
the motion, there should be no plastic dissipation over ��b, which means that this triangle 
moves like a rigid body. This is possible by postulating that ̄ �� and ��b are weakly 
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connected along the line ��, where no shearing may take place. Therefore, when ¯�� is 
brought back to its initial configuration, point � simply slides along �� until it reaches an 
intermediate position �( (Figure B.8b) such that ��±±±±( = ��±±±± ≤ ��±±±±
. Similarly, by symmetry 
and for compatibility reasons, point b is displaced in the horizontal plane �bb
 until b( such 
that �b±±±± = �b±±±±( and �b±±±± = �b±±±±( = ®. So at the end of this first phase, after applying .g!+, X", ¯�� is moved back to ̄
�
�
 and ��b is rigidly transformed into �(�b(. 
 
Nevertheless, it is obvious that the material fibers of surfaces & and && are not independent, 
which means that point � is not allowed to move freely along �� without violating the 
continuity requirement. Therefore, the next step is now to define a restoring motion to project �(�b( onto �
�
b
. To do so, �(�b( may first be rotated around the plastic hinge �
� until 
it reaches the !+, X" plane. By imposing this movement, b( is transformed into b# (Figure 
B.9) but �(�b# is kept isometric to �(�b( and the initial situation is still not yet recovered. 
 
Consequently, in order to reestablish the compatibility, it appears from Figure B.9 that �( has 
to follow a displacement .� along the + axis and v� along the X axis. Of course, a similar 
conclusion is valid for b#.  
 
From simple geometrical considerations, it can be shown that the components of the 
displacements imposed to points � and b are as follows: 

• .� = ®�1 − £Æ# + cos# �Æ# + 1 � v� = Æ®�1 − £Æ# + cos# �Æ# + 1 � 

(B.31) 

• .x = Æ® √4Æ# + sin# 2� − 2Æ2√Æ# + 1√Æ# + cos# � vx = ®=Æ − 2Æ* +√4Æ# + sin# 2�2√Æ# + 1√Æ# + cos# �? 

The velocities of points �( and b# are found by differentiating (B.31) with respect to time. 
Doing so leads to: 

.-� = ® sin2�2√Æ# + 1√Æ# + cos# � �- = ® sin2� .<�!�"�- 

(B.32) 

.-x = Æ® sin2�2√Æ# + 1	 2 cos
# � !2Æ# + cos# �" − Æ*√4Æ# + sin# 2�√4Æ# + sin# 2� !Æ# + cos# �"*/# �- = ® sin 2� .<x!�"�- 

v-� = Æ® sin 2�2√Æ# + 1√Æ# + cos# � �- = ® sin2� v@�!�"�- 
v- x = ® sin 2�2√Æ# + 1	 2 cos

# � !2Æ# + cos# �" + Æ*√4Æ# + sin# 2�√4Æ# + sin# 2� !Æ# + cos# �"*/# �- = ® sin 2�v@x!�"�- 
With these results, it is now possible to define the velocity fields .- gg!+, X" and v- gg!+, X" that 
are applied on surface &&. These ones are obtained by interpolating linearly between !.-�, v-�" 
and !.-x, v- x", i.e.: 

• .- !+, X" = ³1 + +®´.-� + ³ XÆ® − +® − 1´.-x 
with: 

−® ≤ + ≤ 0 
Æ!+ + ®" ≤ X ≤ Æ® 

(B.33) 
• v- !+, X" = ³1 + +®´v-� + ³ XÆ® − +® − 1´v- x 
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Figure B.9. Second phase of the restoring motion 

Once again, under the hypothesis that !.�, v�" and !.x, vx" are reasonably small, then (B.33) 
can be introduced in (A.19) to get the strain rates: 

G-·· = .-� − .-x® 		;		G-�� = v- xÆ®		; 		G·� = .-x2Æ® + v-� −v- x2®  (B.34) 

In accordance with the plastic flow theory, (A.25) allows for the derivation of the equivalent 
plastic strain rate G-gg for surface &&. By substituting (B.34) in (A.25), this latter is found to be: 

G-gg = �2/3²G-··# + G-��# + 2G-·�# = �-�2/3©<!�" sin � (B.35) 

where ©<!�" is a function that may be evaluated with help of the .<�, .<x, v@� and v@x defined in 
(B.32). It can be shown that: 

©<!�" = 2 cos� ²!.<� − .<x"# +v@x#/Æ# 	+ 1/2	!.<x/Æ + v@� −v@x"# (B.36) 

Once the equivalent plastic strain rates have been defined over the surfaces & and &&, the total 
membrane energy dissipation �-� associated to the plastic mechanism of Figure 3.37b can be 
calculated by integrating G-g and G-gg over the triangles ̄
�
�
 and �
�
b
 respectively. 
Doing so leads to: 

�-� = �2/3P
®# sin�2 ÈÉ!�"�- 			; 			ÈÉ!�" = Æ!©<!�" + 1" (B.37) 

The determination of Æ can be achieved in order to minimize (B.37). Deriving this last 
relation with respect to Æ implies that >Èþ!�"/>Æ = 0. Nevertheless, solving this equation leads 
to an expression of Æ that is a function of �, which means that the length of part ① (Figure 
3.37a) is continuously changing with the opening angle. According to Amdahl [8], doing so is 
physically not acceptable, as it is natural to assume that the collapse pattern is defined in the 
early stages of collapse and is kept constant throughout the indentation process. Therefore, >Èþ!�"/>Æ = 0 has to be solved for � = 0 and it can be shown that doing so is equivalent to 
minimizing: 

ÈÉ!0" = Æ + £ 1Æ# + 12=2Æ# + 2Æ + 3Æ# + 1	 ?# (B.38) 
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The optimal value of Æ is numerically found equal to 0.8601, which is a bit higher than the 
solution proposed by Amdahl [8]. 
 
The second step in deriving the resistance of the folding mechanism consists in evaluating the 
bending energy dissipation �-V produced by the plastic hinges ��, �b and �b (Figure B.8a). 
If the rotations angles around ��, �b and �b are respectively denoted by �(, �# and �*, from 
geometric considerations, the following results can be established: 

• �( = arccos � 2Æ cos �√4Æ# + sin# 2�� ⟺ �-( = 4Æ	!Æ# + cos�	 �"!4Æ# + sin# 2�"√Æ# + cos#	 � �- (B.39) 

• �# = arccos = 4Æ* sinÆ√4Æ# + sin# 2��4Æ#!Æ# + 1" + sin# 2�? ⟺ �-# ≃ �- (B.40) 

• �* = arcsin � sin2�√4Æ# + sin# 2�� ⟺ �-* = |4Æ# − sin# 2�||cos 2�|Æ!4Æ# + sin# 2�" �-  (B.41) 

Multiplying the lengths ��±±±±, �b±±±± and �b±±±± of the plastic hinges with the rotation rates given here 
above leads to the following result for the bending dissipation: 

�-V = �
®=4Æ	!Æ# + cos�	 �"4Æ# + sin# 2� + �Æ# + sin# � + |4Æ# − sin# 2�||cos 2�|Æ!4Æ# + sin# 2�" ?�- (B.42) 

According to the upper-bound theorem, equating the external work k(i- to the total energy 
rate 2��-V + �-�� allows to determine the resistance k( coming from part ① during the 
folding mechanism. As i	and � are still related by (3.42), one should have i- = 2®�- sin � 
and: 

k(!i" = 2��-� + �-V�/�-2® sin� = P
®√6 ÈÉ!�" + �-V/�-® sin � (B.43) 

From (B.43), it appears that the limit for � → 0 does not converge because of the bending 
energy rate, which is exactly the same problem than in section 3.4.2.1. In order to overcome 
this difficulty, �-V can be averaged over one fold using (3.46) to get: 

k(!i" = P
®√6 ÈÉ!�" +�
º ��Æ# + 1 + Æ6 + 25� (B.44) 

Finally, the total resistance kR!i" associated to one wing of the intersection is obtained by 
adding the contributions k(!i" and k#!i" respectively associated to parts ① and ② (Figure 
3.37a). Of course, k#!i" may still be found by (3.48), in which �( is replaced by � − Æ® and 
all the terms involving �# are deleted: 

k#!i" = �
!� − Æ®"º® + P
®2!� − Æ®" !i + 2®" (B.45) 

Summing up (B.44) and (B.45) gives the following formula for the resistance kR!i" coming 
from one wing:  

kR!i" = P
®=ÈÉ!�"√6 + i + 2®2!� − Æ®"? +�
º ��Æ# + 1 + Æ6 + 25 + � − Æ®® � (B.46) 

where ÈÉ!�" is given by (B.37) and Æ = 0.8601. The opening angle � is related to the 
indentation i by (3.42), but ® is still unknown so far. As it was done for the second super-
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element type, this latter can be calculated by minimizing the mean crushing resistance k±R of 
the wing, as detailed hereafter. 

B.3.1.2. Folding height 
 
As in section 3.4.2.1, the optimal folding height ® is such that the average value k±R of the 
wing resistance is minimum. Consequently, the following problem has to be solved: 

>k±R>® = 0 ⟺ >>®� 12®� kR!i":i#¸



� = 0 (B.47) 

in which kR!i" is given by (B.46). A first step to get k±R is to calculate the mean value k±# of 
the resistance opposed by part ②. By integrating (B.45), this latter is found to be: 

k±# = 3P
®#2!� − Æ®" +�
!� − Æ®"º® ≃ 3P
®#2� +�
�º®  (B.48) 

where the approximate solution is obtained by assuming that � ≫ ®. Regarding the average 
resistance k±( for part ①, integrating (B.44) may be achieved as follows: 

k±( = 12®� k(!i":i#¸



= � k(!�" sin � :�
A/#



 (B.49) 

because :i = 2® sin � :� according to (3.42). Furthermore, substituting equation (B.44) in 
the previous relation leads to: 

k±( = P
®√6 � ÈÉ!�" sin� :�A/#



+�
º ��Æ# + 1 + Æ6 + 25� (B.50) 

Unfortunately, it is not possible to realize an analytical integration of (B.50) because ÈÉ!�" is a 
complex function of �. Nevertheless, this can be achieved numerically and it is concluded that 
a reasonable approximation for the first term in (B.50) is 2P
®/3. Finally, gathering all the 
developments detailed previously provides the subsequent result: 

k±R = 2P
®3 +�
º ��Æ# + 1 + Æ6 + 25� + 3P
®#2� +�
�º®  (B.51) 

In order to minimize k±R, (B.51) has to be derived with respect to ®. The optimal folding 
height is such that the following equation is satisfied: 

2P
3 + 3P
®� −�
�º®# = 0⟺ 3P
®*� + 2P
®#3 = �
�º (B.52) 

Of course, (B.52) can be solved numerically for given values of 6
, SR and �. However, doing 
so is not really satisfactory. Indeed, under the assumption that ® ≪ �, the first term of (B.52) 
can be neglected, which leads to a more systematic evaluation of the folding height: 

® = �3º/8�SR ≃ 1.085��SR (B.53) 

This solution can be compared with the one obtained while considering the displacement field 
suggested by Amdahl [8]. In this case, following the same procedure than the one exposed 



APPENDIX B. Additional developments for ship impacts on plane lock gates 

260 
 

here above, the mean crushing force for one wing and the optimal folding height are as 
follows: 

k±R = 2.58P
4 ® +�
º4 + 3P
®#2� +�
�º® 			 ; 			® ≃ 1.103��SR (B.54) 

which is very close to the expressions given in (B.51) and (B.53). Nevertheless, in order to 
have a better idea of the error made by solving (B.52) instead of the exact minimization 
equation, it could be of interest to compare (B.53) with the value obtained by considering all 
the terms in k±R, i.e: 

k±R = 2P
®3 +�
º ��Æ# + 1 + Æ6 + 25� + 3P
®#2!� − Æ®" +�
!� − Æ®"º®  (B.55) 

Deriving (B.55) with respect to ®, it is found that the optimal value for the ratio ®/� has to 
satisfy the following equation: 

3!®/�"* 2 − Æ!®/�"2�1 − Æ!®/�"�# + 2!®/�"
#3 − º4 SR� = 0 (B.56) 

which can be solved numerically for different values of SR/�. The corresponding curve is 
plotted on Figure B.10 with the one obtained by considering (B.53). From this picture, it 
appears that the folding height is overestimated when using (B.53). As expected, the 
difference between the results is increasing with the ratio SR/�. 
 

 
Figure B.10. Comparison of the exact and approximate folding height 

Of  course, using a too high value of ® is not necessarily conservative. Nevertheless, even 
though the discrepancy on Figure B.10 may be quite important, it is worth noting that 
working with (B.53) is not really a problem, as the influence of ® on the crushing resistance 
is moderate. 

B.3.1.3. Derivation of the resistance for the bending mechanism 
 
The derivation of the local resistance during the bending mechanism is first performed for a 
cruciform, the case of a T-shaped intersection being treated later. The collapse mode involves 
four plastic hinges at the center and four other ones at the connection points �, b, �, � 
(Figure B.11a). In this configuration, for a given penetration i of the striking vessel, each of 
the four wings is submitted to both a rotation in the hinges and a membrane straining.  
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(a) Three dimensional view of the beam model (b) Plastic mechanism made of two plastic 
hinges for a horizontal wing 

 

 

(c) Plastic collapse of a horizontal wing 
after the initiation of the bending process 

δ
–

δ
*
 

Figure B.11. Backward motion of an intersection during the bending process 

In the purpose of evaluating the resistance, the axial and bending plastic capacities of the 
horizontal girder are respectively denoted by ÀQ and �Q, while the corresponding ones for the 
vertical frame are À9 and �9. These latter may be evaluated with help of equations (B.25) and 
(B.27), in which the fold number ¨ is set to 0. In the present model, it assumed that the full 
values of �Q and �9 cannot be reached for the following reasons: 
 
• In the four plastic hinges located at the supports �, b, �, �, the bending moment could 

only be equal to �Q or �9 if the wings were perfectly clamped at these locations. As 
shown on Figure 3.39, this is not the case because the junction is made with other 
structural elements that are not infinitely rigid. Consequently, the rotational restraint 
should be modeled by a torsion spring characterized by a reduction coefficient (Figure 
3.39). This latter is denoted by ÁQ for the horizontal girder and is assumed to be the same 
for the two connections � and �. Similarly, regarding the vertical frame, the supports b 
and � are also affected with an identical coefficient Á9. The corresponding maximal 
bending moments are therefore only equal to ÁQ�Q or Á9�9.  
 

• In the four central hinges, as the sections have already been submitted to a primary 
indentation i∗ during the folding process, �Q and �9 may also not be reached at these 
locations. As the parameters ®, ¨ and P are uniquely defined for the four wings16, it is 
obvious that the two hinges located on the horizontal girder may be characterized by the 
same coefficient ÁQ∗. This is also the case for the vertical frame, where a unique reduction 

                                                                    
16 Let us recall that ® is obtained by taking the average value of the individual folding heights calculated by 
(B.53) for each wing. ̈ and P are respectively the current and final fold number. They are calculated by (B.23), 
in which ℎR denotes the smallest web height of the four wings. Consequently, because of these definitions, it is 
clear that ®, ̈  and P have a unique value. 

ÁQ∗�Q
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factor Á9∗ may be used. Consequently, only the reduced bending capacities ÁQ∗�Q and Á9∗�9 
have to be considered there. Of course, these coefficients may still be found with the 
formulae detailed in section B.2.2. 

 
As usual, the derivation of the resistance kV!i" for the bending phase is performed by 
applying the upper-bound method. Focusing on a horizontal wing for example, it can be seen 
from Figure B.11b that the beam-like behavior involves two plastic hinges. At the initiation of 
the plastic mechanism, the maximal admissible capacities ÁQ∗!i"�Q and ÁQ�Q are reached at 
these locations. By following a procedure that is very similar to the one described in section 
3.6, it is possible to show that the required collapse force k∗!i" is as follows: 

k∗!i" = �Q =ÁQ + ÁQ∗!i"�( − Æ® + ÁQ + ÁQ∗!i"�# − Æ® ? +�9 =Á9 + Á9∗!i"�( − Æ® + Á9 + Á9∗!i"�# − Æ® ? (B.57) 

in which it is worth recalling that ÁQ∗!i" and Á9∗!i" are piecewise linearly decreasing functions 
of the indentation i. As soon as the force k�!i" applied during the denting phase is equal to k∗!i", then i = i∗ and the crushing of the central cross-section is stopped. At this moment, 
the value of ÁQ∗!i" is stabilized to ÁQ∗.  
 
For i > i∗, the two-hinge mechanism of Figure B.11c is activated and the portion � − Æ® of 
the beam is submitted to an axial straining responsible for the development of a membrane 
force À. Consequently, the bending moments �∗ and À are no longer equal to ÁQ∗�Q and ÁQ�Q but have to be calculated in accordance with an interaction criterion (see section B.2.2): 

�ÁQ�Q + �ÀÀQ�
# = 1					; 				 �∗ÁQ∗�Q + �ÀÀQ�

# = 1 (B.58) 

According to the plastic theory of beams detailed in section 3.6, the normality rule can be 
applied to get the tensile force, which leads to: 

À = ÀQ#!i − i∗"2�Q!ÁQ + ÁQ∗"			 ; 			À ≤ ÀQ (B.59) 

As expected, it can be seen from (B.59) that the membrane force increases linearly with the 
penetration, until the axial capacity of the beam is reached. In the present case, this latter is 
still calculated by applying (B.27), but it is worth bearing in mind that the intensity of the 
axial straining remains questionable. Indeed, (B.59) is derived under the assumption of having 
a perfectly fixed support, but this is not necessarily the case, as represented on Figure 3.39. 
Nevertheless, accounting for the real flexibility of the boundaries is not feasible with the 
super-elements method but can be achieved through other techniques such as the ISUM 
approach (see section 3.2.2).  
 
The derivation of the contribution kR!i" of the wing to the total local resistance kV!i" is 
simply found by expressing the rotational equilibrium of the structure shown on Figure B.11c. 
Accounting for (B.58) at the same time, the following result can be established: 

kR!i" = �Q!ÁQ + ÁQ∗"� − Æ® =1 − À#ÀQ#? + À!i − i
∗"� − Æ®  (B.60) 

where À is given by (B.59). Of course, the developments for the vertical wings are very 
similar, provided that the corresponding geometrical and mechanical properties are used. 
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Finally, the total resistance for the cruciform is obtained by summing up the four individual 
contributions kR!i", which leads to equation (3.65). 
 
In the case of an impact occurring at the top of the door, the resistance of T-shaped cross 
section is also a matter of concern (Figure B.12). Of course, the considerations exposed here 
above are still relevant, but some adaptations need to be done. Regarding the force k∗!i" 
required to activate the bending mechanism, it is obvious that it is simply given by deleting 
one term in (B.57), i.e.: 

k∗!i" = �Q =ÁQ + ÁQ∗!i"�( − Æ® + ÁQ + ÁQ∗!i"�# − Æ® ? +�9 Á9 + Á9∗!i"� − Æ®  (B.61) 

Nevertheless, for i > i∗, additional corrections are required. Indeed, from Figure B.12, it 
appears that the membrane force À# in the vertical wing can only be balanced by the shearing 
of the horizontal girder, which is not realistic. In fact, instead of being only submitted to a 
horizontal displacement i, the intersection also suffers a vertical one. Point � is therefore 
simply sliding along the bow, such that the length ��±±±± = � is kept constant. Consequently, in 
accordance with the normality rule, À# = 0 and there is no axial straining. 
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Figure B.12. Bending mechanism for a T-shaped cross-section 

Considering only bending effects in the third wing, it is easy to show that the resistance is as 
follows: 

kV!i" = ¤�Q!ÁQ + ÁQ∗" =1 − À#ÀQ#? + À!i − i∗"¥ �( + �# − 2Æ®!�( − Æ®"!�# − Æ®" +�9!Á9 + Á9
∗"� − Æ®  (B.62) 

with À given by (B.59). As a closing remark on T-shaped intersections, it is interesting to 
note that having a membrane force in the vertical wing is however possible in the case of 
lifting gates, as the cables could allow for the development of an axial straining. k∗!i" is then 
still obtained by (B.61) and kV!i" can be calculated by deleting the adequate term in (3.65). 
 
B.3.2. Derivation of the resistance for a subsequent contact 
 
This second part of the appendix is devoted to the derivation of the resistance when one of the 
supports of a SE2 is impacted by the striking vessel. Here again, two mechanisms are 
considered. 
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B.3.2.1. Folding mechanism 
 
In section 3.4.2.1, it was postulated that the deformation pattern for a super-element of type 2 
during the folding process was made of two wings, each of them being characterized by a 
length �( and �# (Figure 3.26). Of course, this assumption is only reasonable as long one of 
the supports is not impacted by the vessel. If this is the case, the crushing mechanism is 
modified and the one depicted on Figure 3.26 is no longer valid.  
 
The particular value for which a subsequent contact occurs is denoted by i( and can be easily 
calculated by accounting for the bow geometry. At this moment (Figure B.13), the 
development of the current fold17 is stopped and a new mechanism is initiated immediately 
after it. This latter is characterized by a height 2®( that is not necessarily the same as the 
previous one. It is made of three different parts respectively numbered &, && and &&& on Figure 
B.13.  

 
Figure B.13. Initiation of a new fold for δ = δ1 

For i > i(, it is assumed that the ship is only moving forward because of the crushing of the 
new fold (Figure B.14), the first one keeping a constant opening. From numerical simulations, 
it appears that this is not exactly the case because there is a progressive closure of the first 
fold concomitant to the plastic collapse of the new one. As this transitory phase is not of 
primary importance in the crushing process, it will not be considered here. Therefore, the 
hypothesis is made that only the new mechanism is involved for i > i(. 
 
Of course, the total resistance is obtained by summing up the individual contributions coming 
from the surfaces &, && and &&& (Figure B.13), but it should be also accounted for the effect of 
the first fold. From Figure B.14, it can be stated that the left wing (i.e. connected to the 
impacted support) is simply moving as a rigid body and therefore remains totally unaffected 
for i > i(, but this is not true for the right wing. Indeed, as there is not displacement of the 
non-impacted support, the fibers of part &� (Figure B.14) are submitted to an axial straining 
that is responsible for a membrane energy dissipation. The contributions kg!i" and kggg!i" of 
parts & and &&& have already been derived in section 3.5.2.1. The first one is still given by 
(3.56), while the second one may be obtained by (3.59) in which � − Æ® is replaced by �#. 
Obviously, in these two equations, i − i( has to be substituted to i. On the other hand, it can 
be shown that the resistances kgg!i" and kgD!i" of surfaces && and &� are simply given by the 
following equations: 

kgg!i" = �
º!�( − Æ®("®( 					 ; 					kgD!i" = 2®P
 i − i(�# ä i(2®å (B.63) 

                                                                    
17 On Figure B.13, for convenience, the contact with the left support is assumed to occur during the development 
of the first fold. Of course, many other folds could be already totally crushed before subsequent contact. 
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in which kgg!i" is derived under the assumption that only bending effects in the horizontal 
plastic hinges are induced during the collapse of part &&. The parameters used in (B.63) have 
the same meanings as in the previous section, except for ®( that will be derived hereafter. 
 

 
Figure B.14. Folding process for δ > δ1 

Accounting for all these results, by adding kg!i", kgg!i", kggg!i" and kgD!i", the resistance 
after subsequent contact is found to be as follows: 

kR,(!i" = P
 �®(√6ÈÉ!�" + ®( i − i( + 2®(2�# � + �
º ��Æ# + 1 − 5Æ6 + 25 + �( + �#®( � 
(B.64) 

 + 2P
®i − i(�# ä i(2®å 
where the opening angle � is given by equation (3.42), in which i and ® are respectively 
replaced by i − i( and ®(. The last parameter to determine is precisely the folding height ®(. 
This one can be found by minimizing the average value of kR,(!i". Following a similar 
procedure than the one described in section B.3.1.2, it can be shown that (3.58) is still holding 
to evaluate ®(, provided that � is replaced by �( + �#. 
 
It is worth noting that (B.64) is not the total resistance k�!i" associated to the crushing 
process. Indeed, when there is a contact with one the supports of a SE2, two or three other 
adjacent elements are simultaneously impacted, implying that a SE3 is activated. This can be 
illustrated by considering the cruciform of Figure B.15a that is made of four wings 
respectively numbered from ① to ④. Initially, only the horizontal part ① is concerned by 
the collision and therefore deforms like a SE2 (Figure 3.26). However, when the striking bow 
reaches the support at point ¯ (i.e. when i = i(), the remaining parts ②, ③ and ④ also 
contribute to the total resistance k�!i", which means that the intersection is now behaving 
like a SE3. 
 
The individual contributions kR,#!i", kR,*!i" and kR,�!i" of the adjacent wings ②, ③ and 
④ are supposed to be given by the formulae established in section 3.5.2.1. Consequently, the 
deformation pattern at the initiation of the folding process is the one depicted on Figure 
B.15a. From this picture, it is apparent that the compatibility along the intersection line is not 
respected, as the folds generated on the wings ②, ③ and ④ are not consistent with those 
developing on part ①. Furthermore, it is worth noting that the folding height ® obtained by 
averaging (3.58) is not necessarily equal to ®(. Consequently, the approach proposed here is 
not strictly rigorous regarding the upper-bound method. Nevertheless, as the displacement 
fields are compatible for each wing separately, the derivation of the corresponding individual 
resistances respects the basic theorems. 
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(a) Activation of three adjacent wings (b) Beam-like behavior of the impacted wing 

 
Figure B.15. Crushing and denting mechanism after subsequent contact 

Consequently, completing (B.64) leads to the following result for the total resistance 
associated to the crushing process: 

k�!i" = P
 �®(√6ÈÉ!�" + ®( i − i( + 2®(2�# � + �
º ��Æ# + 1 − 5Æ6 + 25 + �( + �#®( � 
(B.65) 

 + 2P
®i − i(�# ä i(2®å + s kR,�!i"|*;�~
�u#  

where the summation involves two or three terms in case of a T or X-shape intersection 
respectively. Of course, kR,�!i" may still be obtained by applying (3.60), in which � is given 
by substituting i − i( to i in equation (3.42).  
 
Finally, it should be mentioned that (B.65) can be extended to account for subsequent folding. 
As usual, this can be achieved by supposing that the same deformation pattern is immediately 
reproduced as soon as the current fold is completely closed. Doing so leads to formulae that 
are similar to (3.62) and (3.63). 

B.3.2.2. Bending mechanism 
 
Considering the cruciform of Figure B.15a, it is likely that the crushing process is not always 
relevant because the super-element starts moving as whole for large values of i − i(. Each 
wing adopts a beam-like behavior, such as depicted on Figure B.15b for the one where the 
subsequent contact occurs. This transition is assumed to occur abruptly, when the folding 
resistance k�!i" is equal to the force k∗!i" required to activate the bending mechanism. The 
particular value of i for which the behavior changes is denoted by i∗ and has to be carefully 
determined because two different situations are possible: 
 
• If i∗ < i(, then the switch from the denting to the bending phase happens before the 

contact with one of the support. In this case, it is assumed that the super-element keeps 
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moving as a whole for i > i(. In other words, the crushing process does not take place and 
the mechanism of Figure B.16a is immediately activated when i = i(. 
 

• If i∗ ≥ i(, there is only a denting phase before the impact with one of the supports. As no 
transition occurs for i < i(, the crushing process can continue after the subsequent contact 
and the developments of section B.3.2.1 are applicable. In this case, the bending 
mechanism of Figure B.16b is activated when i = i∗. 
 

Consequently, the derivation of i∗ has to be done in accordance with the situation existing 
before a subsequent contact. 
 

(a) Bending mechanism for i∗ < i( (b) Bending mechanism for i∗ ≥ i( 

b
1

b
2

  
Figure B.16. Bending process in case a subsequent contact 

In the first case, when i∗ < i(, the developments performed for a super-element of type 2 are 
still relevant, so formulae (3.50), (3.51) and (3.53) leading to k�!i" and k∗!i" can therefore 
be used to evaluate i∗. Furthermore, as long as i < i(, the resistance during the bending 
phase kV!i" given by (3.54)  is also valid.  
 
Nevertheless, applying (3.54) is only consistent as long as one of the supports has not been 
impacted (i.e. for i∗ < i < i(". If i > i(, a super-element of type three is activated and 
(3.54) is not valid anymore. The bending resistance has then to be derived in accordance with 
the collapse mechanism of Figure B.16a.  
 
Regarding the inidividual resistances of the vertical wings ② and ④, it is clear that the 
situation is totally similar to the one studied previously in section 3.5.2.2, except that their 
central cross-sections at point ¯ (Figure B.16a) have not been impacted. Consequently, the 
contributions of these two wings is still the same as in equation (3.65), provided that Á9∗ has to 
be replaced by Á9. 
 
Focusing now on the horizontal elements, the analysis of the third wing is the same as in 
section B.3.1.3 (Figure B.11), except that the sections have not been crushed. Therefore, the 
membrane tensile force ÀB( and the contribution to the total resistance can be found with help 
of (B.59) and (B.60), where Æ = 0, ÁQ∗ = ÁQ and i∗ = i(. Finally, concerning the first wing, a 
comparison with the developments of section 3.5.2.2 does not show any major difference, 
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except that there is no rotation in the plastic hinges over the segment of length �(. 
Consequently, modifying (3.65) and gathering all the previous remarks leads to the following 
result, where À( is still obtained by (3.65): 

kV!i" = �Q ¤ÁQ + ÁQ∗�# =1 − À(#ÀQ#? + 2ÁQ�* =1 − À
B(#ÀQ#?¥ + À(�# !i − i∗" + ÀB(�* !i − i(" 

(B.66)  + �( + �#�(�# ¤2Á9�9 =1 − ÀB##À9#? + ÀB#!i − i("¥ 

with: ÀB( = minÏÀQ#!i − i("4�QÁQ 	 ; ÀQÐ			; 			ÀB# = minÏÀ9#!i − i("4�9Á9 	 ; À9Ð 
In the second case, when i∗ > i(, the wings ②, ③ and ④ are preliminary damaged before 
the activation of the bending mechanism. Nevertheless, for a given penetration i of the 
striking vessel, the indentation at point ¯ is only equal to i − i(, which means that the plastic 
moments of their central sections have to be evaluated by accounting for the reduction factors ÁQ∗!i − i(" and Á9∗!i − i(". This can be done in accordance with the linearized procedure 
detailed in section B.2.2 of Appendix B.2. Consequently, it is worth noting that these cross-
sections are not so crushed than the one directly located under the first impact point & (Figure 
B.16b) because the indentation reached at point ¯ is only i − i(, while it is equal to i at 
point &. 
 
Accounting for the previous remark, it appears that the force k∗!i" required to activate the 
plastic mechanism of Figure B.16b may simply be found by modifying (3.64). Doing so 
provides the following equation: 

k∗!i" = �Q =ÁQ + ÁQ∗!i"�# + ÁQ + ÁQ∗!i − i("�* − Æ® ? +�9 =Á9 + Á9∗!i − i("�( − Æ® + Á9 + Á9∗!i − i("�# − Æ® ? (B.67) 

The transition from one mode to the other will therefore take place at the particular 
penetration i∗ for which the folding resistance k�!i" calculated by (B.65) is equal to (B.67) . 
After that, when i > i∗, denoting by ÁQ∗, ÁCQ∗ and ÁC9∗ the particular values of ÁQ∗!i∗", ÁQ∗!i∗ −i(" and Á9∗!i∗ − i(" respectively, it is clear that the contributions of the two vertical wings ② 
and ④ are the same as in equation (3.65), except that Á9∗ has to be replaced by ÁC9∗. Regarding 
now the resistance of the horizontal elements ① and ③, the portion �� can also be seen as a 
continuous beam with three hinges. An analytical solution can be obtained by adapting (3.65). 
Doing so provides the following formula for the bending resistance: 

kV!i" = �Q �ÁQ + ÁQ∗�# =1 − À(#ÀQ#? + ÁQ + ÁCQ∗�* − Æ®=1 − ÀB(#ÀQ#?� + !i − i∗" =À(�# + ÀB(�* − Æ®? 

(B.68)  + ¤�9�Á9 + ÁC9∗� =1 − ÀB##À9#? + ÀB#!i − i∗"¥ �( + �# − 2Æ®!�( − Æ®"!�# − Æ®" 
with: ÀB( = minÏ ÀQ#!i − i∗"2�Q�ÁQ + ÁCQ∗�	; ÀQÐ			 ; 			ÀB# = minÏ À9

#!i − i∗"2�9�Á9 + ÁC9∗�	; À9Ð 
 ÁCQ∗ = Á9∗!i∗ − i("			; 			ÁC9∗ = Á9∗!i∗ − i(" 
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where À( is still given by (3.65). It is worth mentioning that (B.66), (B.67) and (B.68) are 
only applicable to cruciforms. These formulae could be easily extended to T-shaped 
intersections, but this should be done by accounting for some particularities, as discussed in 
section B.3.1.3. 

B.3.2.3. Final resistance of the super-element 
 
The final resistance k!i" in case of a subsequent contact can be derived by combining k�!i" 
and kV!i" as detailed in section 3.5.2.3. Furthermore, the post-rupture behavior is treated in 
the same way. 
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B.4. Appendix B.4 
 
B.4.1. Displacement fields before the transition 
 
In equation (3.71) of section 3.6.2.2, the displacement field .!N�, O" in the elastoplastic 
regime (i.e. for i ≤ i�) involves the definition of a kinematically admissible function ©!N, i" 
describing the deformed profile in the vertical impact plane O = Og (Figure 3.50). In this 
appendix, the definition of ©!N, i" is extended to account for other collision configurations. 
As a linear interpolation is systematically used for each of them, the fundamental formulae for ©!N, i" are as follows: 

• For 0 ≤ N ≤ Ng : ©!N, i" = i NNg + ©!0, i" �1 − NNg� 
(B.69) 

• For Ng < N ≤ ℎ : ©!N, i" = i ℎ − Nℎ − Ng + ©!ℎ, i" N − Ngℎ − Ng  
where ©!0, i" and ©!ℎ, i" are respectively the particular displacements of the lowermost and 
uppermost horizontal beams. Only these two parameters needs to be specified in order to have 
a complete determination of ©!N, i". In case of bulbous bow, it is worth noting that (B.69) is 
only valid if the gate is first impacted by the stem and not by the bulb. If this is not the case, 
the equations given hereafter can be modified but for conciseness, the corresponding results 
are not presented here. 

B.4.1.1. Raked bow 
 
The situation of a raked bow impacting a structure that is not supported at the bottom has 
been treated in section 3.6.2.2, so the goal of this appendix is only to extend the definition of ©!N, i" to the situation where the gate is resting against a sill. To do so, the displacement 
pattern of Figure B.17a may be postulated, from which it is clear that ©!0, i" = 0. For the 
same reasons as those exposed in 3.6.2.2, the definition of ©!ℎ, i" given by (3.72) is still 
holding in the present configuration. Therefore: 

©!0, i" = 0			; 			©!ℎ, i" = Ngℎ i (B.70) 

which can be inserted in (B.69) to get the definition of ©!N, i" over the entire height of the 
gate. 

B.4.1.2. Bulbous bow 
 
As a first step, the case of a bulbous bow impacting a gate free at the bottom is investigated. 
From Figure 3.8, it is recalled that the geometrical centre b of the bulb ℬ is located at a level Nx that is simply related to the impact point by Nx = Ng − ℎV + ce. Furthermore, from this 
picture, it also appears that ℬ reaches the initial plane of the gate when the penetration is 
equal to: cV = !ℎV − 2ce" cot_ − cd (B.71) 

Consequently, as long as i < cV, the displacement pattern of Figure 3.50b and the definition 
(3.73) of ©!N, i" are still valid. Nevertheless, for i ≥ cV, there is an additional local 
indentation imposed by the bulb (Figure B.17d) that should be taken into account when 
evaluating ©!N, i". In particular, if there is no sill (Figure B.17b), the definition of ©!0, i" 
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given in (3.72) is not relevant anymore because the displacement of the lowermost horizontal 
beam is greatly influenced by the local penetration of ℬ.  
 
(a) Raked bow - with a 

sill 
(b) Bulbous bow - 

without a sill 
(c) Bulbous bow - with 

a sill 
(d) Local plastic indentation 

for i ≥ cV 

    
Figure B.17. Definition of the displacement profile for various impact configurations 

By a similar reasoning than the one exposed in section 3.6.2.2, a convenient way to correct 
(3.72) is to assume that ©!0, i" is inversely proportional to the vertical distance Nx separating 
the bottom of the gate from the centre of the bulb. Nevertheless, when ℬ is moving forward, 
this distance is progressively reduced from a factor : (Figure B.17d) that may be found by 
working equation (3.10): : = ce�!i − cV"/cd (B.72) 

Consequently, from the previous considerations, the coefficients 1 − Nx/ℎ and :/ce should 
be used to get a new evaluation of ©!0, i". On the other hand, it seems reasonable to think 
that the bulb has a negligible effect on the displacement of the uppermost beam, which 
implies that (3.72) is still valid to get ©!ℎ, i". Finally, one should have: 

©!0, i" = cV# tan_ℎV �1 − Ngℎ� + !i − cV" �1 − Nxℎ �min � :ce 	 ; 	1�			 ; 			©!ℎ, i" = Ngℎ i (B.73) 

In this last equation, it is worth noticing that the first term in ©!0, i" corresponds to the 
penetration reached when i = cV, i.e. when the bulb starts impacting the gate.  
 
Of course, if there is a support at the bottom of the lock (Figure B.17c), then it is clear that the 
bulb does not have any effect on ©!N, i". In this case, ©!0, i" and ©!ℎ, i" may still be 
evaluated by (B.70). 
 
B.4.2. Displacement field after the transition 
 
The derivation of the displacement field after the transition is very similar to what has been 
done previously. The only difference comes from the subsequent contact that may occur 
between the stem or the bulb and the deforming gate, such as depicted on Figure 3.52d. 
Therefore, in order to avoid any redundancy, only the final expressions of ©!N, i" are 
provided here (Table B.1). 
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 Vertical position Before subsequent contact (i < i() After subsequent contact (i ≥ i() 
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For Ng − ℎV ≤ N ≤ Ng : ©!N, i" = !i − i�" NNg  ©!N, i" = !i( − i�" NNg + i − i( 
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For Nx ≤ N ≤ Ng : ©!N, i" = !i − i�" ¤1 + N − NgNg �1 − �1 − Ngℎ� i� tan_ℎV 		�¥ ©!N, i" = !i( − i�" �NNg − N − NgNg �1 − Ngℎ� i� tan_ℎV � + i − i( 

For Ng < N ≤ ℎ : 

 
©!N, i" = !i − i�" �1 − N − Ngℎ � ©!N, i" = !i − i�" �1 − N − Ngℎ � 
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l For 0 ≤ N < Nx  : ©!N, i" = !i − i�" NNg  ©!N, i" = !i( − i�" NNg + !i − i(" NNx  

For Nx ≤ N ≤ Ng : ©!N, i" = !i − i�" NNg  ©!N, i" = !i( − i�" NNg + i − i( 

For Ng < N ≤ ℎ : 

 
©!N, i" = !i − i�" �1 − N − Ngℎ � ©!N, i" = !i − i�" �1 − N − Ngℎ � 

Remarks: 

• In the case of a raked bow, a subsequent contact between the stem and the deforming gate is only possible if i� < ℎV cot _, otherwise the second contact takes 
place during the local mode. 

• In the case of bulbous bow, a subsequent contact between the bulb and the deforming gate is only possible if i� < cV , otherwise the second contact takes place 
during the local mode. 

• The ratio i� tan_ /ℎV should not be greater than unity in the case of bulbous bow impacting a gate that is not supported at the bottom. 
 

Table B.1. Mathematical expressions of the central displacement after the transition from the local to the global deforming mode
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B.5. Appendix B.5 
 
In this appendix, comparisons between the numerical and analytical results are made for 
another gate than the one presented in section 3.7. The structure is depicted on Figure B.18. It 
is made of five horizontal girders and ten identical vertical frames. It has a total length L of 17.1	� and a total height ℎ of 15	�. The geometrical and material properties are respectively 
listed in Table B.2 and in Table 3.2. 
 

 

Horizontal girders N (�) ℎR  (�) SR (�) ℎ� (�) S� (�) 0 1.8 0.012 0.7 0.04 4.5 1.8 0.012 0.7 0.04 7 1.8 0.012 0.7 0.04 9.5 1.8 0.012 0.7 0.04 15 1.8 0.012 0.7 0.04 

Vertical frames O (�) ℎR  (�) SR (�) ℎ� (�) S� (�) 0 1.8 0.012 0 0 1.9 1.4 0.012 0.4 0.03 3.8 1.4 0.012 0.4 0.03 ⋮ ⋮ ⋮ ⋮ ⋮ 15.2 1.4 0.012 0.4 0.03 17.1 1.8 0.012 0 0 

Horizontal stiffeners Plating ℎR  (�) SR (�) SJ (�) 0.03 0.012 0.012 
 

Figure B.18. Three dimensional view of gate 2 Table B.2. Geometrical properties of gate 2 

The simulations are run using only vessel 1 (Figure 3.60a) and vessel 2 (Figure 3.63). The 
cases of a gate supported or free at the bottom are also treated separately for an impact 
initially located in Ng = 13	� and Og = 8.5	�. For conciseness, only the curves showing the 
evolution of the resistance with the penetration are presented here as a matter of validation. 
The conclusions regarding the internal energy are identical to those developed in section 3.7.  
 
All the results are reported on Figure B.19. From these graphs, it can be concluded that the 
analytical prediction provides a satisfactory overall agreement. Most of the time, the 
simplified method leads to a conservative approximation, except for the case of a gate resting 
against a sill and impacted by a bulbous bow (Figure B.19b). In this configuration, it appears 
once again that the membrane forces are overestimated for large values of i. This conclusion 
is also partly valid for Figure B.19d, from which it can be observed that the analytical curve 
keeps on growing with the penetration while the numerical resistance tends to stabilize. In 
fact, the problem is essentially due to the difficulty of correctly assessing the influence of the 
bulb on the lateral displacements. Nevertheless, in the two other situations involving only a 
raked bow, the membrane effects seems to be more reasonably evaluated than in section 3.7. 
This may be explained by the fact that the distance between the lateral supports and the 
impact point is greater in the present case.  
 
As a final observation, it is also worth noticing that there is no important instability during the 
impact on a gate that is not supported by a sill because the resistance curves of Figure B.19c 
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and d only slightly decrease for large values of i. As already explained in section 3.7, this is 
essentially due to the fact that the vertical girders are weaker in the present case and therefore 
only provide a reduced in-plane collaboration of the horizontal beams. 
 

(a) Gate supported at the bottom - Raked bow (b) Gate supported at the bottom - Bulbous bow 

  
(c) Gate free at the bottom - Raked bow (d) Gate free at the bottom - Bulbous bow 

  
Figure B.19. Comparison of the numerical and analytical resistance curves 
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APPENDIX C. Additional developments for ship impacts 
on mitre lock gates 

 
 
 
 
 
 

In this addendum to Chapter 4, some developments are presented to complete the 

derivation of the impact resistance for mitre lock gates. The different appendices 

are numbered coherently with the sections of Chapter 4. 

 

Appendix C.1 has only an illustrative purpose. It presents some additional pictures 

in order to have a better understanding of the various components constituting a 

mitre gate.  

 

In Appendix C.2, some mathematical developments are presented to complete the 

analytical derivations related to the three super-element types required to 

evaluate the local resistance. In particular, some results are detailed for the folding 

and bending mechanisms of SE2 and SE3. 

 

Finally, complementary information is provided in Appendix C.3 about the global 

deforming mode and additional validation cases are provided in Appendix C.4. 

 

*** 
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C.1. Appendix C.1 
 
This appendix is introduced in a purely illustrative purpose, in order to provide a clearer 
overview of the various components constituting a mitre lock gate. To do so, some pictures 
are proposed hereafter. These ones were all captured during the extraction of the lock gate in 
Evergem (Belgium) and are presented on Figure C.1. 
 

(a) Lateral contact blocks (closed position) (b) Central contact block (open position) 

  

(c) Ties placed at the top of the gate (d) Ties placed at the top of the gate (details) 

Ties

  

(e) Connection between the ties and the gate (f) Connection between the ties and the gate 

  

Figure C.1. Structural details of a mitre lock gate 
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C.2. Appendix C.2 
 
C.2.1. Additional results for SE1 
 
This part of the appendix provides more details on the way the displacement field and the 
internal energy rate should be calculated for the first super-element type in the case of a mitre 
gate. 

C.2.1.1. Characterization of the displacement field 
 
The displacements �!X" in the plane of the uppermost deck are completely defined by 
equations (4.3) and (4.6) provided that the locations !+(, X(" and !+#, X#" of points � and b 
are known (Figure C.2). These parameters can be determined by imposing slope and 
displacement continuity conditions between �(!X", �#!X" and �*!X": 
• If X = X( : �(!X(" = �#!X(" >�(>X = >�#>X  

(C.1) 

• If X = X# : �(!X#" = �*!X#" >�(>X = >�*>X  

Unfortunately, trying to solve analytically the previous equations is not easy to do in the axes !+, X". Therefore, one can consider first the reference frame !+�, X�" fixed to the initial 
position of the summit @ of the stem (Figure C.2a). It is worth mentioning that these axes do 
not follow the striking vessel, which means that they are not moving with it (Figure C.2b). 
Working in this system provides more tractable equations. 
 

(a) Initial configuration (b) After indentation 

  
Figure C.2. Parameters defining the displacement field 

As the coordinates !'á , Oá" and !'h, Oh" of points � and @ in the global axes are defined in 
the collision scenario, it is obvious that the position of point � in this new system is given by 
(Figure C.2): +�,á = 'h − 'á 			; 			X�,á = Oh − Oá (C.2) 
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In fact, it can be shown that +�,á and X�,á are not independent. Indeed, a relation can be found 
because of the requirement that the curve Γ describing the stem has to be initially tangent to 
the plate. Expressing this condition mathematically with the equation of Γ leads to: 

X�,á = +�,á tanÆ − [ − `# tan# ß4[  (C.3) 

Once the coordinates of point � are known in the reference frame of the stem, the next step is 
to use (C.1) to determine the location !+�,(, X�,(" and !+�,#, X�,#" of points � and b in the same 
axes. However, working directly with (C.1) is not convenient because it leads to very 
cumbersome equations that are difficult to solve analytically. In order to overcome this 
difficulty, �(!X", �#!X" and �*!X" are first expressed in the !+�, X�" axes. This can be 
achieved with help of the following formulae: 

+ = �+� + +�,á� cosß − �X� + X�,á� sinß 

X = �+� + +�,á� sinß + �X� + X�,á� cosß 
(C.4) 

Introducing (C.4) in (4.3) and (4.6) and solving with respect to +� leads to an analytical 
description of �(!X�", �#!X�" and �*!X�" that can be geometrically interpreted as being the 
longitudinal extrapolation of the displacement fields depicted on Figure 4.8. These latter are 
given by: 

�(!X�" = [ =X�#`# − i? (C.5) 

�#!X�" = =X�,( − +�,( tanß + `# tan#	 ß4[ + [?= +� − +�,á+�,( − +�,á?
# + X� tan ß − `# tan#	 ß4[ − [ (C.6) 

�*!X�" = =X�,# − +�,# tan Æ + `# tan#	 ß4[ + [?= +� − +�,�+�,# − +�,�?
# + X� tan ß − `# tan#	 ß4[ − [ (C.7) 

where +�,� = +�,á + � cos ß. Finally, expressing the displacement and slope compatibility 
conditions (C.1) in the !+�, X�" reference frame provides to the following results: 

+�,( = [ X�,(#`# − i − [ with: X�,( = `# 2�i + [ + +�,á� − X�,á tanß2[+�,á − `# tanß  (C.8) 

+�,# = [ X�,##`# − i − [ with: X�,# = `# 2�i + [ + +�,�� − X�,� tanß2[+�,� − `# tanß  (C.9) 

in which X�,� = X�,á + � sinß. In order to get !+(, X(" and !+#, X#", the last step consists in 
introducing the previous equations in (C.4). By so doing, the displacement field of section 
4.2.1.1 is now completely characterized. 

C.2.1.2. Derivation of the energy rate 
 
The derivation of the internal energy rate can be done by introducing the displacement field .!W, X" of section 4.2.1.1 in equation (3.18) to get the Green-Lagrange strain rates Ε-�� and Ε- ��. These latter have then to be integrated over the plate area to get the internal energy rate. 
In fact, three separated calculations have to be performed, as .!W, X" is different for 0 ≤ X <X(, X( ≤ X ≤ X# and X# < X ≤ �. Doing so leads to: 
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�-��� = i- !�( + �#" cosß3â�# sin# ß I( + i- �( + �#â��(�# sin# ß I# + i- â#!�( + �#" sin
* ß24 !I* − I�" 

(C.10) 
 + i- â##!�( + �#" sin# ß2�(�# !I¿ − IE" + i- !�( + �#" cosß3â�# sin# ß IF + i- �( + �#â��(�# sin# ß IG 

where ß is the mitre angle (ß can be substituted by ß + à( or ß − à# according to the position 
of the super-element along the gate). The parameters I( to IE are given by the following 
formulae: 

I( = = 1 + â�X( cosß�1 + 2â�X( cosß + â�X( cosß2!1 + 2â�X( cosß" − 14 ln!1 + 2â�X( cosß" − 1?>â�>i  (C.11) 

I# = =�1 + 2â�X( cosß !4 + 6â�X( cosß + â�#X(# cos# ß" − 45â� cosß − 2X( − â�X(# cosß?>â�>i  (C.12) 

I* = â# sinß − 4 cotß �â* + i sin# ß + X# sinßâ* + i sin# ß + X# sinß  (C.13) 

I� = â# sinß − 4 cotß �â* + i sin# ß + X( sinßâ* + i sin# ß + X( sinß  (C.14) 

I¿ = X# −�â* + i sin# ß + X# sin ßâ# sinß �â( − 2 cotßsinß !â* + i sin# ß" + X#3 cot ß� (C.15) 

IE = X( −�â* + i sin# ß + X( sin ßâ# sinß �â( − 2 cotßsinß !â* + i sin# ß" + X(3 cotß� (C.16) 

By symmetry, IF and IG have the same expression than I( and I#, except that X( and â� have to 
be replaced by � − X( and â¿ respectively. In the previous equations, the constant parameters â(, â# and â* are given by (4.4), while â� and â¿ have the subsequent definitions: 

â� = �X�,á − X�,(� tanß + +�,( − +�,á�X�,á − X�,(�# sin2ß 
>â�>i = − sin 2ß�X�,á − X�,(�# (C.17) 

â¿ = �X�,� − X�,#� tanß + +�,# − +�,��X�,� − X�,#�# sin2ß 
>â¿>i = − sin 2ß�X�,� − X�,#�# (C.18) 

As a final result, introducing (C.10) in (4.7) allows for the calculation of the resistance 
provided by the plating elements of a mitre gate. 
 
C.2.2. Additional results for SE2 

C.2.2.1. Folding mechanism 
 
A first complementary result that is needed to evaluate the resistance opposed by the super-
element SE2 is the membrane energy rate. As briefly recalled in section 4.2.2, each horizontal 
fiber is only submitted to an axial straining along the X axis during the folding process. Under 
the conservative hypotheses that there is no shearing and only an internal dissipation over the 
triangles ̄ �b and ̄ b� (Figure 4.11), one should have: 
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�-� = �>v->XI�x :+:X + �>v->XIxá :+:X (C.19) 

where Ε- �� = >v- />X is the Green-Lagrange strain rate that can be calculated by using the 
definition of v!+, X" given in (4.10). Deriving (4.10) with respect to time and introducing it in 
(C.19) leads to the following result for the first wing: 

�-� = P
®	 J12>2�>i + >2x>i − �( + i sinß + 2®!�( + i sinß"# �!2 − ln2"2� + 42x ln2�	J i- sin ß (C.20) 

where 2� and 2x are defined by (4.9). Because of the assumption that the folding height ® is 
quite small in comparison with the length �(, the second term of the previous expression can 
be neglected. Doing so, one gets for the two wings: 

�-� = P
®	 =4�(!i + 2®­K�	ß" + i# sin 2ß4!�( + i sinß"# + 4�#!i + 2®­K�	ß" − i# sin2ß4!�# − i sinß"# ?i- cosß (C.21) 

in which P
 is the linear plastic resistance for a plate of thickness SR. Regarding the bending 
energy rate �-V, its definition is nearly the same as for a plane gate, but the definition of the 
angle � (Figure 4.11) has to be corrected to account for the inclination ß: 

� = arccos �1 − i cosß2® � ⟺ �- = i- cos ß2®�1 − !1 − i cosß /2®"# (C.22) 

Ideally, the bending dissipation has to be calculated for all the segments ¯�, ¯b, ¯�, �b and b�. Nevertheless, under the assumption that the folding height ® is quite small with respect 
to the lengths �( and �#, the contributions of the moving hinges �b and b� can be neglected. 
Doing so has the advantage of simplifying the analytical derivation by skipping the theoretical 
questioning that is further discussed in section 4.2.2.2. Consequently, under the assumption 
that the rotation rate �-  is more or less the same for ¯�, ̄ b and ̄ �, it can be shown that: 

�-V = 4�
!�( + �#"�- = 4�
!�( + �#"i- cos ß2®�1 − !1 − i cosß /2®"# (C.23) 

Nevertheless, from (C.23), it appears that �-V → ∞ when i → 0, which is not acceptable as the 
folding process is in fact initiated after the elastoplastic buckling of the plate. Therefore, 
instead of using (C.23), a convenient way to overcome this difficulty is to smear the average 
dissipation rate over the indentation, which leads to:  

�-V = 4�
º!�( + �#"® i- cos ß (C.24) 

where �
 = 6
SR# /4 is the linear plastic moment characterizing the plate with a thickness 
equal to SR. Summing up (C.21) and (C.24) leads to the total internal energy rate and the 
resistance given by (4.12). Nevertheless, in order to completely characterize the indentation 
process, it is still needed to evaluate the folding height ®. As usual, this can be done by 
minimizing the mean resistance k±� calculated for 0 ≤ i ≤ 2®/ cosß. After integration, the 
subsequent result is obtained: 

k±� = 6
SR2 !�( + �#" =ºSR2® + 3®# cosß!�( + 2® tanß"!�# − 2® tanß"? (C.25) 
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To get the optimal value for ®, a quite fastidious task is now to calculate the derivative of 
(C.25) and get the roots of the corresponding equation, i.e.: 

>k±�>® = 0 ⟺ â(®� + â#®* + â*®# + â�® + â¿ = 0 (C.26) 

with: â( = −12!�( − �#" sinß − 16ºSR tan* ß â� = 4ºSR�(�#!�( − �#" tanß 

 â# = 12�(�# cosß − 16ºSR!�( − �#" tan* ß â¿ = −ºSR�(#�## 

 â* = −4ºSR!�(# + �## − 4�(�#" tan#	 ß  

Of course, finding an analytical solution to the previous relation is unfortunately not possible, 
but the Newton-Raphson method can be a convenient way to obtain a numerical solution. 
However, under the hypothesis that the angle ß is small, (C.26) shows that â( ≃ â* ≃ â� ≃ 0 
and â# ≃ 12�(�# cos ß. Therefore, equation (C.26) becomes: 

12®*�(�# cosß − ºSR�(#�## = 0⟺ ® = ² º12�(�#SR/ cosß3
 (C.27) 

As a matter of illustration, the curves comparing the exact and approximate solutions for 
different values of ß are plotted on Figure C.3. The geometrical data corresponding to this 
example are �( = 2	�, �# = 3	� and SR = 0.03	�. 
 

 
Figure C.3. Comparison of the exact and approximate folding heights 

From this picture, it transpires that choosing (C.27) provides a convenient and sufficient 
estimation of the folding height. 

C.2.2.2. Bending mechanism 
 
The derivation of the collision force in this section is based on the hypothesis that the super-
element web is of class 1, which allows for the development of the three-hinge mechanism of 
Figure 4.12b. If this is not the case, then another plastic collapse scheme has to be postulated, 
such as the one presented in section 4.3. 
 
The theoretical calculation of the resistance during an oblique impact on a straight beam is a 
problem that is not easy to solve because it implies the use of travelling hinges. In an attempt 
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to study more precisely the oblique impact occurring on a cantilever beam, Yu [175] 
investigated the transient phase by working with plastic hinges propagating and interfering 
along the structure, but this is not of primary concern for low-velocity impacts such as those 
on lock gates. In order to derive a consistent theoretical solution to this problem, apart from 
the yield condition and the normality rule, the additional requirement of slope continuity has 
also to be fulfilled at each moving plastic hinge. 
 
Nevertheless, as claimed by Stronge and Yu [146]: "For a perfectly plastic structure with a 
yield condition that couples bending moment and axial tension, a model with discrete 
travelling hinges which combine bending and stretching deformations cannot satisfy both the 
flow rule and yield criterion throughout the deforming region". This assertion means that 
developing a theoretical solution to the present problem is not straightforward. Of course, one 
may argue that the concept of moving hinge has been successfully applied by many authors 
when dealing with plated structures, such as Simonsen [140], Amdahl [8] or Deshpande and 
Fleck [41] amongst others. However, it is worth bearing in mind that all these developments 
were based on the hypothesis that the bending moment and the axial force were decoupled 
within the yield criterion, i.e. that (3.17) may be used to evaluate the plastic dissipation. This 
idea has also been applied to beams by Symonds and Mentel [147]. 
 

 
Figure C.4. Internal forces for the equilibrium method 

The present developments are based on the idea that the slope continuity requirement may be 
neglected. Furthermore, as suggested by Tin-Loi [148], the normal and shear forces are 
supposed to act along the axes of the undeformed configuration, which is only valid under the 
assumption of moderately large displacements. Doing so, the yield condition and the 
normality rule can be respected within a kind of quasi-static approach by applying the 
equilibrium method. In this optic, the situation depicted on Figure C.4 is considered, where 
some of the external forces acting in sections �, � and � are represented.  
 
As the bending moment Á∗�
 has to be continuous on both sides of �, the yield condition 
(B.28) implies that the axial force À is the same in the two arms of the beam. Consequently, 
satisfying the plastic criterion in �, � and � leads to: 

�Á∗�
 = 1 − �ÀÀ
�
#
 

�(Á(�( = 1 − �ÀÀ
�
#
 

�#Á#�# = 1 − �ÀÀ
�
#
 (C.28) 

As a second requirement, the normality rule has also to be fulfilled for all the hinges. 
Consequently, the extension rates Δ- , Δ- ( and Δ- # at the sections �, � and � have to be related to 
the corresponding rotations �- , �-( and �-# (Figure C.4) in order to keep the combination of the 
bending moments and axial forces on the yield locus, i.e.: 
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Δ-�- = 2Á
∗�
À
# À 

Δ- (�-( = 2Á(�
À
# À 
Δ- #�-# = 2Á#�
À
# À (C.29) 

where �- = �-( + �-# is the rotation rate at the central cross-section �. From simple geometrical 
considerations, because of the hypothesis of moderately large displacements, it is easy to 
show that: 

• �( = !i − i∗" cosßL(  �-( = �( + i∗ sin ßL(# i- cosß (C.30) 

• �# = !i − i∗" cosßL#  �-# = �# − i sinßL## i- cos ß (C.31) 

where L( and L# are respectively the actual lengths of the segments �� and �� (Figure C.4) 
given by: 

• L( = �( + i sinß + 12 !i − i∗"# cos# ß�( + i sinß  L-( = >L(>i i- (C.32) 

• L# = �# − i sinß + 12 !i − i∗"# cos# ß�# − i sinß  L-# = >L#>i i- (C.33) 

The total axial elongation of the beam can be easily found with help of the two previous 
formulae. Nevertheless, it is worth mentioning that another approach could be to follow the 
hypothesis made by Brown and Sajdak [15] or McDermott et al. [107], who state that the 
membrane stretching is only effective in the arm behind the impact point. Nevertheless, doing 
so is not in agreement with the observations made on numerical results. On the contrary, it 
transpires from finite element simulations that the normal force is more or less constant 
throughout the beam, which implies that the two arms are simultaneously submitted to a 
membrane extension. Therefore, accounting for this remark, it is now obvious for 
compatibility reasons that the total elongation of the beam has to be equal to the sum of the 
axial extensions in each individual plastic hinges, i.e.: 

L( + L# − �( − �# = Δ( + Δ# + Δ (C.34) 

Deriving (C.34) with respect to time and using the relations detailed in equations (C.29) to 
(C.33) finally allows for the determination of the normal force À: 

À = min= À
#2�
 L-( + L-#!Á( + Á∗"�-( + !Á# + Á∗"�-# 	 ; 	À
? (C.35) 

Substituting (C.35) in (C.28) leads to the evaluation of the bending moments �, �( and �# in 
sections �, � and � respectively. Doing so, the shearing forces è( and è# (Figure C.4) may 
now be calculated by simply expressing the rotation equilibrium of the arms �� and ��: 

è( = � +�( +À!i − i∗" cosß�( + i sinß 			 ; 			è# = � +�# +À!i − i∗" cosß�# − i sinß  (C.36) 

Finally, the formulae for k can be found by writing the translation equilibrium of the 
structure, i.e. k = è( + è#. Using all the results established here above provides the relation 
given by (4.15). As a last comment, it is probably worth recalling that all the previous 
developments remain approximate. The problem of a beam impacted obliquely is quite 
difficult to solve on a theoretical point of view. 
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C.2.3. Additional results for SE3 
 
In this appendix, it is assumed that a super-element of type 3 is activated by the subsequent 
contact occurring between the vessel and the left support of a horizontal girder, which 
happens when the penetration is equal to i(. This particular value can be easily found 
analytically by considering the mathematical expression of the bow, but its derivation is not 
detailed here.  

C.2.3.1. Folding mechanism 
 
The situation during the folding process is as follows (Figure C.5). For i < i(, the impacted 
super-element is simply crushed in accordance with the description made in section 4.2.2.1, 
until a new contact is established at point ¯. At this moment, i = i( and another deformation 
pattern is activated. It is made of three different regions numbered from & to &&& and 
characterized by a total height equal to 2®( (Figure C.5a).  
 

(a) 

 

(b) 

Figure C.5. Folding mechanism in the case of a subsequent contact 

The first part has a constant length equal to Æ®( and simply follows the deformation scheme 
of Figure 3.37b. On the contrary, due to the inclination of the gate, the second and third parts 
have variable lengths, which means that a moving plastic hinge line should be placed at the 
junction between these two regions. When i > i(, the mechanism is gradually closed (Figure 
C.5b), so there is a material flow between parts && and &&&, but there should be no slope 
discontinuity along the connection. In order to respect this requirement, it can be shown that 
an additional irregular toroidal surface may be used to make a compatible transition. 
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However, doing so is not really necessary, as the bending effects can be neglected if the 
folding height ®( is sufficiently small with respect to �( and �#. 
 
Due to the fact that the lengths are not constant, the analytical derivation of the resistance is 
quite fastidious. In order to facilitate the procedure, an additional simplification is introduced. 
Indeed, during the collision, the in-plane displacement of point ̄  is not strictly equal to !i − i(" cos ß but should be calculated by taking the intersection between the bow and the 
perpendicular + axis. However, as the dimensions of the vessel may thought to be much larger 
than those of the super-element, this assumption is usually acceptable. 
 
The resistance kg!i" associated to the first sub-area can still be evaluated by using equation 
(B.44), but one should account for some little modifications regarding the opening angle � 
and the indentation to consider. Regarding the contribution of the second region, this latter 
can be easily found by evaluating the energy dissipated by the plastic rotation in the 
horizontal stationary hinges. Similarly, for region &&&, the internal dissipation due to the 
membrane and bending effects is also responsible for an additional resistance that can be 
simply found by accounting only for the right wing of the deforming mechanism in equation 
(C.21). From all the previous remarks, it may be shown that: 

kg!i" = P
®( ÈÉ!�"√6 +�
º ��Æ# + 1 + Æ6 + 25�		; 		� = arccos =1 − !i − i(" cosß2®( ? (C.37) 

kgg!i" = 
�
º®( !�( + i( sin ß + 2®( tanß − Æ®(" (C.38) 

kggg!i" = 
P
®(2!�# − i sinß"# ¤!�# − i( sin ß"!2®( + !i − i(" cosß" − i − i(4 sin2ß¥ 

(C.39) 

 + 
�
º®( !�# − i( sinß − 2®( tanß" 

where ÈÉ!�" is given by (B.37) and Æ = 0.8601. Nevertheless, in order to find the total 
resistance associated to the folding process, it is still required to account for a last 
contribution. This one is coming from the membrane extension of the area previously 
damaged before the subsequent contact. Assuming that the internal dissipation only arises in 
part &� (Figure C.5b), a straightforward generalization of (B.63) leads to the subsequent 
approximate formula: 

kgD!i" = 2®(P
 !i − i(" cosß2 2�# − !i + i(" sinß!�# − i sinß"# äi( cosß2®( å (C.40) 

in which the last multiplying factor is introduced to account for the folds that have already 
been completely crushed before the subsequent contact. Summing up kg!i" to kgD!i" allows 
for the evaluation of the impacted wing resistance, provided that the folding height ®( can be 
calculated. To do so, it is suggested to use the following simple relation obtained through a 
kind of minimization process: 

®( = £ºSR12 !�( + �#"!�( − i( sinß"cosß¼
 (C.41) 
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Finally, the folding resistance k�!i" of the cruciform has to be calculated by accounting also 
for the three remaining wings (or the two remaining wings for T-shaped intersections). These 
latter are numbered from ② to ④ on Figure 4.20 and are characterized by a contribution kR,�!i", with p ∈ |2, 3, 4~. Therefore, we have: 

k�!i" = kg!i" + kgg!i" + kggg!i" + kgD!i" +skR,�!i"�
�u#  (C.42) 

where kR,�!i" can be evaluated by applying the recommendations made in section 4.2.3, 
except that i − i( has to be considered instead of i.  

C.2.3.2. Bending mechanism 
 
This appendix focuses on the situation where a beam-like behavior is activated over the entire 
cruciform. It is first assumed that the activation of the bending mechanism occurs for a 
penetration i∗ such that the central cross-sections in point ¯ (Figure C.6) have already been 
crushed by the bow, which means that i∗ > i(. On a mathematical point of view, the 
indentation at point ̄ should be calculated by considering the intersection of the vessel with a 
vertical plane, such as shown on Figure 4.14. Doing so provides a function ­!i − i∗" for the 
penetration, but as the dimensions of the ship are usually quite large with respect to those of 
the impacted super-element, ­!i − i∗" may be conveniently approximated by !i − i∗" cos ß. 
 
The collapse mechanism is the one depicted on Figure C.6a and is made of eight plastic 
hinges. The maximal bending moments in the horizontal and vertical elements are denoted by �Q and �9 respectively. At the supports, these latter have to be affected by reduction 
coefficients ÁQ and Á9 to account for the partial rotational restraint. For the section 
immediately located under the impact point &, a coefficient ÁQ∗ is also required because of the 
preliminary indentation i∗ preceding the activation of the bending mechanism. Finally, as i( ≤ i∗, the central sections at point ¯ are also crushed over a distance i∗ − i( before the 
bending collapse, so the maximal bending moment is only equal to ÁCQ∗�Q or ÁC9∗�9. 
 

(a) Plastic mechanism (b) Mechanical model for the horizontal elements 

b
1

b
2

  
Figure C.6. Bending mechanism in case of a subsequent contact 

The situation for the vertical wings ¯b and ̄ � is exactly the same as on Figure B.16b, except 
that the central displacement is now equal to !i − i∗" cos ß, so their contribution to the 
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bending resistance can be obtained simply by adapting (B.68). For the horizontal wings ¯� 
and ¯� however, the approach is not straightforward. In order to solve this problem, a 
solution could be to generalize the method followed previously in section B.3.1.3 by 
analyzing the two wings individually. This way of doing is consistent with the hypothesis of 
having uncoupled super-elements, but is not entirely satisfactory as it does not respect the 
static requirements at the central point ¯. Nevertheless, as no major divergence with finite 
element simulations was found during the validation process, the approach has however been 
used for the analytical developments. 
 
From the previous considerations, it results that the equilibrium method may be separately 
applied to both structures of Figure C.6b. The impact force acting on the horizontal elements 
has three different components, respectively denoted from k(, k# and k*. These ones can be 
determined by finding a set of statically admissible internal forces that respect both the yield 
locus and the normality requirement. Doing so, it can be shown that the bending resistance for 
the cruciform element is given by: 

kV!i" = 
�Q!ÁQ + ÁQ∗"�# − i sinß =1 − À(

#ÀQ#? +�Q�ÁQ + Á
CQ∗��* − Æ® =1 −ÀB(#ÀQ#? +�9�Á9 + ÁC9∗� =1 − ÀB##À9#? 

(C.43) 

 + !i − i∗" = À( cosß�# − i sinß + ÀB( cosß�* − Æ® + ÀB# �( + �# − 2Æ®!�( − Æ®"!�# − Æ®"? 

with: À( = minÏ ÀQ#4�Q!ÁQ + ÁQ∗" 2�# − !i − i
∗" sin ß�# − i∗ sinß !i − i∗" cosÆ 	; ÀQÐ 

 ÀB( = minÏ ÀQ#2�Q�ÁQ + ÁCQ∗� !i − i∗" cosß	; ÀQÐ			; 			ÁCQ∗ = Á9∗!i∗ − i(" 
 ÀB# = minÏ À9#2�9�Á9 + ÁC9∗� !i − i∗" cosß	; À9Ð			 ; 			ÁC9∗ = Á9∗!i∗ − i(" 
Of course, equation (C.43) is not valid if the beam-like behavior is activated before a 
subsequent contact occurs (i.e. if i∗ < i(). In this case, the resistance can be obtained by 
applying the same approach to the collapse mechanism of Figure B.16a. 
 

As a final remark, it is worth bearing in mind that all the previous formulae are valid in case 
of a subsequent contact involving the left support. If the right one was first implicated, then 
equations (C.37) to (C.43) would be slightly modified. Furthermore, for a vertical SE2, all the 
formulae developed in section B.3.2 are still relevant, provided that i − i( is replaced by !i − i(" cos ß. 
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C.3. Appendix C.3 
 
C.3.1. Summary of some cross-section properties 
 
Classification Cross-section Bending resistance 

Class 1 
Class 2 

 

�E is the plastic bending resistance of the uncrushed T-shaped cross-section ΩE  when ¨ folds are completely closed 
(¨ ≥ 1). The bending capacity is as follows: 

• If ¨ < P : ÁJ,�!i"�J,� = �E +�E −�E�(2® !i − 2¨®" with 2!¨ − 1"® ≤ i ≤ 2¨® 
(C.44) 

• If ¨ = P: ÁJ,�!i"�J,� = �� with i ≥ 2P® 

 

Class 3 

 

�E is the elastic bending resistance of the uncrushed T-shaped cross-section ΩE  when ¨ folds are completely closed 
(¨ ≥ 1). The bending capacity is as follows:  

• If ¨ < P : Áo,�!i"�o,� = �E +�E −�E�(2® !i − 2¨®" with 2!¨ − 1"® ≤ i ≤ 2¨® 
(C.45) 

• If ¨ = P: Áo,�!i"�o,� = �� with i ≥ 2P® 

 

Class 4 

 

�E is the elastic bending resistance characterizing the efficient portion of the uncrushed T-shaped cross-section 
when ¨ folds are completely closed (¨ ≥ 1). If �E is found to be higher than �E�(, then the resistance is limited to �E�( in order to keep a decreasing function. The bending capacity is as follows: 

• If ¨ < P : Áo̅,�!i"�Ío,� = min ë�E +�E −�E�(2® !i − 2¨®"	;�E�(ì with 2!¨ − 1"® ≤ i ≤ 2¨® 
(C.46) 

• If ¨ = P : Áo̅,�!i"�Ío,� = �� with i ≥ 2P® 
 

Classification Tension Compression Bending Combination criteria Comments 

Class 1 
Class 2 

ÀJ,� ÀJ,� ÁJ,�!i"�J,� ��ÁJ�!i"�J,� + = À�ÀJ,�?
# = 1 

�J,�  and ÀJ,� are calculated for the entire section. It is not 
required to account for buckling. 

Class 3 ÀJ,� ÀJ,� Áo,�!i"�o,� ��Áo,�!i"�o,� + À�ÀJ,� = 1 
�o,�  and ÀJ,� are calculated for the entire section. It is not 
required to account for buckling. 

Class 4 ÀJ,� ÀJ,� Áo̅,�!i"�Ío,� ��Áo̅,�!i"�Ío,� + À�ÀÍJ,� = 1 To account for buckling, �Ío,�  and ÀÍJ,� are calculated for the 
bending and compression effective cross-section respectively. 

Table C.1. Derivation of the bending resistance for a folded cross-section according to its class
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C.3.2. Equilibrium method for a class 1 cross-section 
 
As a reminder, it should be mentioned that the equilibrium method may be seen as an 
extension of the lower-bound theorem to moderate displacements. It leads to a solution that is 
statically admissible in the sense that the yield criterion and the equilibrium equations are 
simultaneously satisfied. However, the kinematic requirements are not necessarily fulfilled, in 
particular at the moving plastic hinge where the slope continuity is violated. For a complex 
situation such as the one depicted on Figure 4.28, it is claimed in section 4.3.2.2 that the 
equilibrium method leads to equations that are not tractable analytically. The aim of this 
appendix is to provide more details about this assertion. 

 
Figure C.7. Definition of the plastic collapse mechanism 

To do so, one can consider the mechanism represented on Figure C.7 that involves one 
moving plastic hinge initially located at point & but travelling with a velocity ©-!N�, i" tanß 
along the O′ axis. During the plastic collapse, it is postulated that the non-impacted leaf 
rotates as a rigid body, which means that the length of b�±±±± is always equal to L. This forces 
point b to follow a circular trajectory having the following components along the '′ and O′ 
axis: .x!à�" = L!sin 2ß − sin!2ß − à�""		; 		vx!à�" = L!cos!2ß − à�" − cos2ß" (C.47) 

where à� is the rotation of b� for a given value of the penetration ©!N�, i". From these results, 
the current lengths L( and L# characterizing the two arms of the impacted beam are as follows: 

L( = �( − ©!N� , i" tanß + ©#!N�, i"2!�1 − ©!N�, i" tanß" 
(C.48) 

L# = �# + ©!N� , i" tanß − vx!à�" + �©!N� , i" − .x!à�"�#2!�# + ©!N� , i" tanß − vx!à�"" 
where �( = OgÞ and �# = L − OgÞ. From the previous results, it is easy to derive the total axial 
shortening Δ� = �( + �# − L( − L# and the relative rotation �� at the plastic hinge: 

Δ� = vx!à�" − ©#!N�, i"2!�( − ©!N� , i" tanß" − �©!N�, i" − .x!à�"�#2!�# + ©!N�, i" tanß − vx!à�"" 
(C.49) 

�� = ©!N� , i"�( − ©!N� , i" tan ß − ©!N� , i" − .x!à�"�# + ©!N� , i" tan ß − vx!à�" 
The normal force that is required to produce the axial change of length Δ� can be obtained by 
applying the normality rule. In this optic, the membrane and rotation rates are first calculated. 
These latter are found to be: 

Δ- � = ¤�>Δ�>.x cos!2ß − à�" + >Δ�>vx sin!2ß − à�"� >à�>© + >Δ�>©¥©-!N� , i" (C.50) 
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�-� = ¤�>��>.x cos!2ß − à�" + >��>vx sin!2ß − à�"� >à�>© + >��>©¥©-!N�, i" (C.51) 

where the derivatives with respect to .x and vx can be directly obtained by considering 
(C.49). Considering the previous results, the normal force À� and the bending moment �� 
associated to Δ� and �� may be calculated to satisfy the plasticity equations (i.e. the normality 
rule and the yield criterion): 

À� = minÏ ÀJ,�#2ÁJ,��J,� Δ- ��-� 	 ; ÀJ,�Ð			 ; 			�� = ÁJ,��J,� =1 − À�#ÀJ,�# ? (C.52) 

Furthermore, because of static requirements, the shearing force è� acting at the central contact 
block b and parallel to the '′ axis (Figure C.8) has to be such that the rotational stability is 
verified, i.e.: 

è� = �� −À��©!N� , i" − .x!à�"� + `�L##/2�# + ©!N� , i" tanß − vx!à�"  (C.53) 

Substituting (C.50) and (C.51) in (C.52) allows to express À�, �� and è� as functions of ©!N�, i", à� and >à�/>©, but a relation between à� and ©!N�, i" is still missing. This one will 
be derived hereafter. 
 

 
Figure C.8. Internal and external forces for the equilibrium method 

In order to have a consistent application of the equilibrium method, a last requirement is to 
fulfill the static equations for the non-impacted leaf. For convenience, instead of working with À� and è�, the equivalent forces P� and �� are introduced (Figure C.8). Using these notations, it 
is obvious that the rotational equilibrium of b� leads to: 

`�L2 + �� cos!ß − à�" − P� sin!ß − à�" = 0 with: 
P� = À� cosß + è� sinß 

�� = è� cosß − À� sinß 
(C.54) 

As a final result, it appears that (C.54) is a differential equation involving ©!N�, i", à� and >à�/>© that allows for the derivation of à� as a function of ©!N�, i". Unfortunately, due to its 
excessive complexity, this equation cannot be solved analytically. Therefore, additional 
simplifications needs to be introduced in the model. As suggested by Paik and Thayamballi 
[121], an approximate solution can be found by disregarding the normality rule. However, 
doing so provides a result that is not entirely statically admissible. Consequently, the 
expression of k�!i" derived in section 4.3.2.2 fails to respect completely the static or 
kinematic requirements. For this reason, it has to be considered carefully, but comparisons 
with numerical solutions have shown that it was sufficient to model the gate behavior during 
the global deforming mode. 
 
As a final comment, it is worth mentioning that the present solutions for k�!i" and those 
derived in section  4.3.2.2 are decreasing functions of the penetration i, which is quite 
coherent as the plastic mechanisms corresponds to unstable configurations in the present case. 
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C.3.3. Plastic mechanism after buckling 

C.3.3.1. Description of the folding process 
 
As claimed in section 4.3.2.2, performing a rigid-plastic analysis is only valid for class 1 
cross-sections because working with plastic hinges requires a sufficient rotation capacity. If 
this is not the case, then an early buckling is to fear when the relevant combination criteria of 
Table C.1 is satisfied. Once this instability occurs, the beam behavior may be studied by 
postulating a given folding mechanism. This approach has been largely applied in the 
literature to investigate thin-walled structures. Some application examples are provided by 
Kotelko [88] or Ungureanu et al. [151] who followed the upper-bound method to get the 
ultimate load for various cases.  

 
Figure C.9. Description of the folding mechanism 

The approach followed here is exactly the same. The deformation pattern after buckling is 
depicted on Figure C.9 and is based on the one observed during finite element simulations. It 
is made of four different triangular surfaces ���, b��, ��� and b�� separated by various 
plastic hinges that allow for relative rotations between them. All these motions involve both 
bending and membrane deformations and it is precisely the aim of this section to evaluate the 
corresponding energy rates �-V and �-�. To do so, two parameters are introduced (Figure 
C.10). The first one is the length ℓ measured along the plating intersection, while the second 
one is the coefficient L such that the web is divided into two portions LℎR and !1 − L"ℎR 
during the folding process.  

δ
E

ℓ

 
Figure C.10. Parameters defining the deformation pattern 

The incremental variable governing the analytical approach is the relative rotation �� between 
the two arms of the beams (Figure C.9). When �� > 0, the mechanism implies a relative 
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rotation of the four triangular surfaces such that the lengths of ��, �b, �� and �� remains 
unaffected. This last requirement involves an in-plane displacement iM of point � given by: 

iM = �ℎRℓ sin �� − !ℓ# − ℎR# "!1 − cos��"/2	 (C.55) 

which is a monotonically increasing function of ��. As in section 4.3.2.2, this latter may still 
be related to the penetration i of the striking vessel. 

C.3.3.2. Derivation of the displacement field 
 
In an attempt to derive a kinematically admissible displacement field, the classical plate strip 
model is used. The folding mechanism is seen as a set of horizontal and vertical fibers that are 
weakly connected, which allows them to slide along each other without shearing. According 
to the hypotheses listed before, there is no deformation along the segments ��, �b, �� and ��, but for compatibility reasons this assumption has to be valid for any vertical fiber. In 
other words, the initial distance between the points 2, 4 and 5 of Figure C.10 is not modified 
when the beam is bent. 
 

(a) Fiber extension for one wing (b) Displacement field 

h
w

 
Figure C.11. Deformation and displacement field for one wing of the folding mechanism 

Of course, if all the vertical fibers are inextensible, this cannot be the case for the horizontal 
ones. Because of the plate strip formulation, these latter may be seen as being only submitted 
to an axial elongation, which means that it is sufficient to impose only a displacement field v!+, X" parallel to the + axis. In order to derive v!+, X", a first step may be to get its 
particular profile 2!+" = v!+, ℓ" along the central line ���. An analytical expression for 2!+" can be found by evaluating the change of length between the points 1, 2 and 3 that are 
placed at a level + (Figure C.10). For a given indentation iM, due to geometrical 
considerations, these ones are found to be located in a inclined plane º that is always parallel 
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to the rotating segment �′�′ (Figure C.11a). This observation leads to the conclusion that 2!X" is the subsequent bilinear function: 

• If −ℎR ≤ + < LℎR : 2!+" = + + ℎR!1 − L"ℎR2� 

(C.56) 

• If −LℎR ≤ + ≤ 0 : �!+" = − +LℎR2� 

where 2� is the maximal in-plane displacement reached at point � (Figure C.11b). Of course, 
as the segments �� and �� are kept undeformed, 2!+" should be equal to zero for + = 0 and + = −ℎR. In addition, the following result can be established: 

2� = !1 − L"�£ℓ# − 2iM# + 2LiM1 − L !ℎR# + iM#"(/#	 − ℓ� (C.57) 

where the indentation at point � is given by (C.55) and L ≤ 0.5. With the previous equations, 
the derivation v!+, X" is now quite straightforward. The only requirements are v!+, X" = 0 
along �� and v!+, ℓ" = 2!X". The easiest way to respect these conditions is to perform the 
subsequent linear interpolation: 

v!+, X" = X + ℓ+/ℎRℓ!1 + +/ℎR"2!+" (C.58) 

which is reputed to be kinematically admissible as v!+, X" satisfies the continuity and 
boundary conditions. 

C.3.3.3. Derivation of the internal energy rate 
 
Using equation (C.58), the membrane strain rate �-� can be easily determined by integrating 
the axial strain rate Ε- �� over the deforming triangles ��� and ��� in accordance with the 
plate strip formulation recalled by formula (3.44). Doing so, we get: 

Ε- �� = 2- !+"ℓ!1 + +/ℎR" 			⟹			 �-� = P
ℎR >2�>iM >iM>�� �-� (C.59) 

where the derivatives of 2� and iM can be obtained from (C.55) and (C.57). Once the 
membrane energy rate is known, the next step is to calculate the bending one. Due to the 
particular geometry of the fold, it is a very cumbersome process to establish the analytical 
formulae leading to �-V. Therefore, only the final results are presented here. In fact, �-V may be 
obtained by summing up two different terms �-V,( and �-V,#.  
 
The first contribution is coming from the folded web itself. From Figure C.10, it appears that 
the rotations are confined in six plastic hinges �′�, b�, �′�′, ��′, �′�′ and �′b, for which 
the internal dissipation is given by: 

�-V,( = 2�
 ��ℎR# + ℓ# >N(>i + ℓoÌ �>N(>i + >N#>i � + ℓ>N#>i �>iM>�� �-� 
(C.60) 

with: ℓoÌ = ²ℓ# + L#ℎR# + 2LiM!ℎR# + iM#"(/# − 2iM#!1 − L" 
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where N( and N# are the relative rotations of the triangles constituting the fold. The second 
contribution is due to the bending effects arising in the flange and in the collaborating portion 
of plating. From Figure C.12, it can be seen that three plastic hinges are involved in the 
plating, while only one is present in the flange. They are responsible for the following 
dissipation: 

�-V,# = =6
S�#4 ℎ� + 6
SJ#ℎoÌ ℎR�1+ cos�� + ℓ�1 − cos��2√2iM ?�-� (C.61) 

where ℎ� is the flange width and ℎoÌ is the collaborating length of the plating. As usual, S� 
and SJ are the corresponding thicknesses of these elements. As a final result, �-V is obtained by 
summing up (C.60) and (C.61). 
 

θi

heq

hw

θi

δE

hw

 
Figure C.12. Bending effects in the plating and in the flange 

As a final result, the total internal energy rate �-��� is obtained by summing up ��, �V,( and �V,# in accordance with equations (C.59), (C.60) and (C.61) respectively. This leads to an 
expression of �-��� as a function of �� and �-�. 
C.3.3.4. Derivation of the resistance 
 
In accordance with the upper-bound method, the contribution k�!i" to the global resistance km!i" has to be found by equating the work rate done by the external forces with the internal 
dissipation �-���, i.e.: 

k� >©>i i- + 2- Q = �-��� (C.62) 

where 2- Q is the external power due to the hydrostatic pressure and �-��� has been derived in 
section C.3.3.3. However, solving (C.62) still requires to find a relation between the opening 
angle �� and the out-of-plane displacement ©!N�, i". To do so, one can consider the plastic 
mechanism depicted on Figure C.13. For a given position &′ of the initial contact point, it can 
be seen that the three segments �&′, b&′ an b� simply collapse by keeping their initial lengths, 
i.e.: �&±±± = �&Þ±±±± = OgÞ = �(			; 			b&±±± = b&Þ±±±± = L − OgÞ = �#			; 			b�±±±± = L (C.63) 

which means that both points b and & follow a circular trajectory. In other words, the main 
difference with class 1 cross-sections lies in the fact that the hinge is not moving, so the 
folding mechanism of Figure C.9 remains located at its initial position where buckling first 
occurs.  
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2

 
Figure C.13. Plastic mechanism for a class 2, 3 or 4 cross-section 

Because of the requirements imposed by (C.63), it transpires that the position of the central 
point b is univocally determined, so a relation between �� and ©!N�, i" can be derived from 
geometrical considerations. This procedure being quite fastidious, it is not reported here. 
 
As an additional result, the internal forces P� and �� at the central block b (Figure 4.30) can be 
found by expressing the rotation equilibrium of the two leafs. The solutions may then be 
introduced in the sliding criterion to know if the contact is still provided (see section 4.3.2.3). 
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C.4. Appendix C.4 
  
This appendix provides additional comparisons to check the validity of the simplified 
approach in various other cases. These results are directly extracted from a publication made 
by Buldgen et al. [24] on the crashworthiness of lock mitre gates. They are all based on the 
structure presented in Figure 4.34, but four different models are investigated. For each of 
them, the main geometrical properties are the same as those listed in Table 4.5, but some 
parameters are varied (Table C.2). 
 

Property  Gate 1 Gate 2 Gate 3 Gate 4 
Vertical position Nh (�" 7.15 7.15 7.15 7.15 
Transversal position Oh (�" 12.6 8.2 8.2 8.2 
Plating thickness SJ (�" 0.022 0.015 0.012 0.022 

Web thickness of the girders ℎR  (�) 0.016 0.012 0.02 0.01 

Web height of the girders SR (�) 1.5 1.5 1.5 1.2 

Flange thickness of the girders S� (�) 0.012 0.012 0.02 0.01 

Table C.2. Parameters defining each gate model 

In the first gate model (Table C.2), the impact point location is changed. Nh is still equal to 
7.15 �, but this time Oh = 12.6 �. In this configuration, the collision occurs near the central 
stud. The results presented on Figure C.14 show that sliding occurs around i = 0.7 �, so it is 
not really a problem if the analytical curve is not conservative for i ≥ 0.7 �. 
 

 
Figure C.14. Numerical and analytical resistance curves for the first gate model 

For the second gate model (Table C.2), the importance of the stiffening system is reduced. To 
do so, in comparison with Table 4.5, the thickness of the plating and of the horizontal girders 
are respectively reduced to SJ = 0.015 � and SR = 0.012 �, which implies that the beam 
cross-section may be of class 1 or 3 according to the collaborative part of the plating. The 
impact is kept at  Nh = 7.15 � and Oh = 8.2 �. The curve obtained in this case is plotted on 
Figure C.15 and shows a rather good accordance with the numerical results of LS-DYNA . 
Nevertheless, the analytical approach appears to be too conservative when the global mode is 
activated, i.e. for i > 0.45 �. On a theoretical point of view, this may be justified by the two 
following reasons: 
 
• When the overall plastic mechanism is activated over the whole lock gate, the 

contributions k�(i) of the beams having a class 3 cross-section are evaluated with help of 
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the unstable folding mechanism described in section C.3.3 of Appendix C.3, which 
explains why the curve is decreasing for i > 0.45	�. Nevertheless, as mentioned in 
Eurocode 3 [53], a class 3 cross-section may still be bent beyond its elastic capacity, but 
this additional resistance is often conservatively neglected. Consequently, the folding 
mechanism only provides a lower estimation of the resistance during the post-buckling 
phase.  
 

• Another reason is due to the fact that some beams are characterized by a class 1 cross-
section for which it is possible to develop a plastic hinge. In reality, as all the horizontal 
girders are connected to each other by the vertical frames, it is likely that the collision 
efforts may be redistributed in order to compensate the lack of resistance exhibited by the 
beams where a folding process is initiated. Unfortunately, such a situation is not accounted 
for in the analytical model because all the elements are supposed to be decoupled. 
 

As a conclusion for this second gate model, it can be said that evaluating the resistance of a 
gate with class 1 and class 3 cross-sections remains problematic but is achieved in a quite 
conservative manner. 
 

 
Figure C.15. Numerical and analytical resistance curves for the second gate model 

For the third gate model (Table C.2), the importance of the stiffening system is this time 
increased by modifying the thicknesses of the horizontal girders to have SR = 0.02	� and S� = 0.02	�. The impact is still located at Nh = 7.15	� and Oh = 8.2	�. This leads to the 
curves depicted on Figure C.16. Conservative results are provided by the analytical procedure 
at the beginning of the penetration, but this is not always the case when i > 0.2	� where the 
crushing resistance tends to be overestimated in comparison with numerical results. This is 
partially due to the hypothesis that the local and global modes are strictly separated after the 
transition. Even when an overall plastic mechanism is activated, it is shown by the numerical 
simulations that the ship sometimes moves forward through an increased local indentation and 
sometimes through an increased overall bending of the gate. This phenomenon is not taken 
into account in the present simplified analytical approach. However, the discrepancy between 
the two curves remains quite acceptable. 
 
For the fourth gate model (Table C.2), the influence of the vertical frames is now investigated. 
In the present approach, it is assumed that their role is only to transmit the displacement field 
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to the horizontal girders. However, this hypothesis may not be valid anymore if the vertical 
frames are too weak to force the collaboration between the beams. Therefore, the properties of 
the vertical frames are reduced to the following values: SR = 0.01	�, S� = 0.01	� and ℎR = 1.2	�. The impact is kept at Nh = 7.15	� and Oh = 8.2	�. The corresponding results 
are plotted on Figure C.17 with a quite good agreement, which tends to corroborate the 
hypothesis made on the vertical components in the simplified approach. 
 

 
Figure C.16. Numerical and analytical resistance curves for the third gate model 

It is shown by the comparisons performed in this appendix that the simplified procedure leads 
to quite acceptable curves in comparison with those obtained numerically with LS-DYNA . Most 
of the time, the approach appears to be conservative, which is an important point at a pre-
design stage of the gate. The hypothesis made on the vertical frames is also confirmed by this 
study: even if they are weakened, they still play their role by transmitting the displacements 
from one girder to the others. 
 

 
Figure C.17. Numerical and analytical resistance curves for gate the fourth gate model 
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APPENDIX D. Additional developments on the seismic 
analysis of large reservoirs 

 
 
 
 
 
 

This addendum to Chapter 7 mainly provides some mathematical developments 
and other formulae that could be useful to implemente the simplified approach 
detailed previously for large reservoirs. 
 
In Appendix D.1, the equations of the Rayleigh quotient are first presented in the 
general form. After that, a non-dimensional analysis is performed to investigate 
the influence of the fluid-structure interaction on the modal analysis. 
 
In Appendix D.2, the effect of the fluid during the seism is also pointed out. Some 
comparisons between rigid and flexible solutions are presented to stress the 
importance of the fluid-structure interaction during the dynamic analysis. 

 
*** 
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D.1. Appendix D.1 
 
This appendix first provides the general form of the terms involved in the Rayleigh quotient. 
After that, they are reduced to non-dimensional expressions in order to perform a more 
detailed investigation of the fluid-structure interaction. 
 

D.1.1. Derivation of the Rayleigh quotient 
 
Let us start by deriving the mathematical expressions for èÉ<E, 2þ<E and �þ<E introduced in (7.38) 
and (7.39). All the parameters that are involved in these expressions have already been 
defined in section 7.2 dealing with dry mode shapes. As stated before, the matrices 5èÉ7 and 5�þ7 are diagonal, which means that èÉ<E = �þ<E = 0 if ø ≠ ¨. If ø = ¨, the subsequent results 
may be established: 

èÉ<< = §SJ2 �<#L��< + �Í< − 2b<�<� (D.1) 

�þ<< = �2 �<#L ��½<# + à<#�#��< − b<�<� + �½̅<# − à<#�#��Í< − b<�<�� (D.2) 

where §, �, SJ and L are respectively the mass density, the flexural rigidity, the thickness and 
the width of the plate. �< is a parameter used to normalize the dry mode shape i<!W, X". The 
expressions of ½<, ½̅< and à< are given by (7.21), while b< is defined in (7.23). For �<, �< and �Í<, one has the additional definitions: 

�< = ½̅< cosh�½̅<®� sin�½<®� − ½< cos�½<®�sinh�½̅<®�½<# + ½̅<#  (D.3) 

�< = ®2 − sin�2½<®�4½<  (D.4) 

�Í< = b<# =sinh�2½̅<®�4½̅< −®2? (D.5) 

The matrix 52þ 7 is not diagonal but is simply symmetric. The corresponding terms 2<E are 

given in (7.38), where &��!<"  is as follows: 

I���!<" = �<à< 1 − !−1"� cos�à<L�à<# − à̅�# ��� + b<�±�� if à< ≠ à̅� 
(D.6) I���!<" = 0 if à< = à̅� 

where à̅� = �º/L as defined in (7.9). Remembering that à< = P<º/L, it is clear from (D.6) 

that I���!<" = 0 for � ≠ P< if �+ P< + 1 is an even number. So a lot of terms in 52þ 7 are in fact 
equal to 0. For �� and �±�, the following relations are valid, in which Æ� is given in (7.9): 

�� = ½< + Æ�!−1"� sin�½<ℎ��½̅<# − Æ�# 										�±� = ½̅< + Æ�!−1"� sinh�½̅<ℎ��½̅<# + Æ�#  (D.7) 

Nevertheless, all these equations are expressed in terms of dimensional parameters, which is 
not convenient for qualitative analyses, so one may seek to have more harmonized relations. 
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D.1.2. Investigation of the fluid-structure interaction 

D.1.2.1. Non-dimensional approach 
 
If the water level is progressively reduced in such a way that ℎ� → 0, it is obvious from 
equations (7.28) and (7.38) that all the terms 2þ<E also decrease and A2þ C → 507. In this case, it 
is clear that solving the generalized eigenvalues problem defined by (7.41) and (7.42) leads to 
solutions such that Ω� → õ�. Moreover, the components of the eigenvector �� associated to Ω� 
satisfy the following properties: 

If  p ≠ ø:     ;<� → 0     

If  p = ø:     ;<� → 1 (D.8) 

Consequently, considering equation (7.35), it can be concluded that Δ�!W, X" → i�!W, X", 
which means that the wet solution nears the dry one. If ℎ� tends to 0	in the Rayleigh quotient c given in (7.55), the previous reasoning shows that the term 
 will be progressively 
reduced. Therefore, c → 	/�, where 	 and � have to be evaluated with  the wet eigenmodes Δ�!W, X" that are very close to the dry ones i�!W, X". To characterize the importance of the 
fluid-structure interaction, the Rayleigh quotient may be rewritten as: 

c = 	� �1 −
	 � = 	� !1 + FSI"					; 					FSI = −
/	 (D.9) 

where FSI is the fluid-structure interaction quotient. From equation (D.9), it is clear that the 
effect of the fluid may be neglected if FSI ≪ 1. Nevertheless, it is important to bear in mind 
that the Rayleigh quotient is currently defined for a particular mode p, as stated in (7.40). In 
fact, if � admissible functions are used in (7.35), � wet eigenmodes Δ�!W, X" can be obtained 
by solving (7.41) and (7.42). The FSI quotient may then be evaluated for each of these � 
modes of vibration, which means that the fluid-structure interaction can be neglected if the 
requirement FSI ≪ 1 is satisfied for all the � possible Δ�!W, X". In practice however, as the 
response of the structure is mainly affected by its first mode of vibration (as discussed in 
section 8.3.3, this is particularly true for a gate with a single plating), it is sufficient to check 
that FSI ≪ 1 for p = 1. 
 

Geometrical properties Fluid properties Non-dimensional parameters SJ Thickness of the plate §� Mass density O ℎ/L Plate aspect ratio L Width of the plate Solid properties ê L/Õ Reservoir narrowness ℎ Height of the plate � Young modulus _ ℎ�/ℎ Filling coefficient Õ Length of the reservoir ¦ Poisson coefficient SJ̅ SJ/ℎ Non-dimensional thickness ℎ� Fluid level § Mass density §̅ §�/§ Non-dimensional density  

Table D.1. Geometrical, material and non-dimensional properties 

In order to have a better characterization of the fluid-structure interaction, it may be 
interesting to express the FSI quotient as a function of non-dimensional parameters. To do so, 
let us start by considering Table D.1, where the initial geometrical and material properties are 
summarized. From the original geometrical data, four non-dimensional parameters may be 
defined: the plate aspect ratio O = ℎ/L, the reservoir narrowness ê = L/Õ, the filling 
coefficient _ = ℎ�/ℎ and the non-dimensional thickness SJ̅ = SJ/ℎ. Additionally, the non-
dimensional mass density §̅ = § /§ is also introduced. All these new notations are listed 
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with their definitions in Table D.1 and may now be used to transform the results obtained 
previously for èÉ<E and 2þ<E. This operation is done in the optic of allowing for easier 
qualitative analyses. To do so, the following notations are adopted: 

­<̅# = ­<#L#					½<∗ = ²­<̅# − P<#º#					½̅<∗ = ²­<̅# + P<#º# (D.10) 

where ­<# and P< have already been introduced in (7.21). It is worth noting that ­<̅# has no 
dimension and is only a function of the aspect ratio O (this is of course only valid for given 
values of the material properties �, ¦ and §). Introducing these new parameters in (7.21) and 
(7.23) leads to:  

½< = ½<∗L 					 ½̅< = ½̅<
∗
L 					b< = P<

#º#!1 − ¦" − ­<̅#P<#º#!1 − ¦" + ­<̅# sin�O½<
∗�sinh�O½̅�∗� (D.11) 

It is now possible to write èÉ<E using some of the above-mentioned notation. This derivation is 
quite straightforward and leads to:  

èÉ<E = §SJ®L ∙ è±<E 					; 					è±<< = �<#2O ��<∗ + �Í<∗ − 2b<�<∗� (D.12) 

where �< is still the modal amplitude. For ø ≠ ¨, it is evident that è±<E = 0. For ø = ¨, the 
following definitions are valid: 

�<∗ = ½̅<∗ cosh�O½̅<∗� sin�O½<∗� − ½<∗ cos�O½<∗� sinh�O½̅<∗�O P�½<∗ + ½̅<∗�# − 2½<∗½̅<∗Q  (D.13) 

�<∗ = 12 − sin�2O½<∗�4O½<∗  (D.14) 

�Í<∗ = b<# =sinh�2O½̅�∗�4O½̅�∗ − 12? (D.15) 

Similarly, the same job can be performed to get an harmonized form of 2þ<E. To do so, I���!<"  
has first to be rewritten with the notations introduced here over: 

I���!<" = ℎ�L ∙ I�̅�!<" 					; 					 I�̅�!<" = �<P<º 1 − !−1"� cos�P<º�P<# −�# ���∗ + b<�±�∗�	 (D.16) 

The previous expression of I�̅�!<"  is only valid for � ≠ P<, otherwise it is obvious that I�̅�!<" = 0. 
For ��∗ and �±�∗, one gets: 

��∗ = O_½<∗ + Æ�∗ !−1"� sin�O_½<∗��O_½<∗ − Æ�∗��O_½<∗ + Æ�∗� 										�±�∗ = O_½̅<∗ + Æ�∗ !−1"� sinh�O_½̅<∗��O_½̅<∗ + Æ�∗�# − 2O_Æ�∗ ½̅<∗  (D.17) 

where Æ�∗ = !2P − 1"º/2. These notations may now be utilized to seek for a more harmonize 
form of 2þ<E. Accounting for (7.9) and (7.48), it is found that: 

2þ<E = −=§�ℎ�#L_# ? ∙ 2Í<E 					; 					2Í<E = s s­��∗�ñ
�u( _# R�I�̅�!<" I�̅�!E"�!2P − 1"# + 4�#O#_#

�ñ
�u
 	 (D.18) 
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where R� = 4/º if � = 0 and R� = 8/º if � > 0. In addition, the following definitions 
should also be mentioned: 

­��∗ = cosh!Á��∗ " − 1sinh!Á��∗ " 					 ; 					Á��∗ = ºê £�2P − 12O_ �# +�#	 (D.19) 

Finally, to obtain a non-dimensional form for the FSI quotient (D.9), all the previous 
calculations simply have to be used in conjunction with (7.56): 

	 = 12ss;<�èÉ<E;E�ý
Eu(

ý
<u( = §SJ®L2 ss;<�è±<E;E�ý

Eu(
ý
<u(  (D.20) 


 = 12ss;<�2þ<E;E�ý
Eu(

ý
<u( = −§�ℎ�#L2_# ss;<�2Í<E;E�ý

Eu(
ý
<u(  (D.21) 

As FSI is defined by the ratio −
/	, dividing (D.21) by (D.20) leads to the subsequent 
result: 

FSI = §̅SJ̅ �ss;<�2Í<E!O, ê, _";E�ý
Eu(

ý
<u( �÷ �ss;<�è±<E!O";E�ý

Eu(
ý
<u( � (D.22) 

where è±<E and 2Í<E are the non-dimensional forms of the corresponding terms èÉ<E and 2þ<E 
defined in (7.38). It is interesting to note that è±<E is only a function of the aspect ratio of the 
plate, but this is not the case for 2Í<E which also depends on the reservoir properties ê and _. 
Concerning the eigenvectors ��, they are influenced by all the parameters of Table D.1. 

D.1.2.2. Parametric study 
 
In order to further investigate the importance of the fluid-structure interaction, it is of interest 
to analyze the evolution of the FSI quotient when the configuration of the reservoir is varied. 
This task is rather difficult to perform, because a lot of properties are involved in the problem. 
Moreover, the effect of all the above-mentioned parameters on the eigenvectors �� is difficult 
to characterize, as the only way to get these vectors is to solve the generalized eigenvalues 
problem defined by (7.41) and (7.42). Therefore, in order to have a more concise 
investigation, only the particular case of a steel reservoir filled with water will be considered 
here. Doing so, the values of �, ¦, § and §� are the ones listed in Table 7.1. Furthermore, as 
the influence of the plate thickness has already been assessed through the examples in section 
7.3.3, it will not be treated here again and it will be assumed that SJ̅ = 0.02. This choice is in 
accordance with equation (7.13), provided that O ≤ 5.  
 
With the hypotheses listed before, only the variations of O, ê and _ need to be considered. In 
order to have a configuration that is more or less similar to a lock chamber, these parameters 
are supposed to be varied within the following intervals: 

0.5 ≤ O ≤ 2					0.05 ≤ ê ≤ 0.5					0 ≤ _ ≤ 1 (D.23) 

where it is obvious that _ may not be greater than unity, as this would correspond to an 
overtopping of the reservoir. The evolution of FSI is depicted on Figure D.1 for different 
values of O, _ and ê. It is important to bear in mind that these curves are only valid under the 



APPENDIX D. Additional developments on the seismic analysis of large reservoirs 

304 
 

assumptions listed before, i.e. considering the values of Table 7.1 and the intervals of 
variation given by (D.23). From these results, the following conclusions may be drawn: 
 
• The FSI quotient is always a monotonically increasing function of _. Indeed, all the curves 

plotted on Figure D.1 for different values of O and ê show that the fluid-structure 
interaction is more important if the liquid level is higher. 
 

• The FSI quotient is an increasing value of O, which means that a plate for which ℎ ≫ L will 
be strongly influenced by the fluid. However, this not the case for all values of ê: as 
depicted on Figure D.1a for ê = 0.5, this statement is not valid if the reservoir is more or 
less totally filled. This is due to the fact that 	 and 
 tend to stabilize when _ → 1. 
Nevertheless, as ê does usually not exceed 0.1 for classical lock chambers, such a situation 
is not really a problem. 

 
• The FSI quotient is a decreasing function of ê. In other words, the interaction is reduced in 

a reservoir for which Õ ≪ L. It is worth mentioning that for a classical lock chamber with ê ≤ 0.1, the effect of this parameter on FSI coefficient is negligible for all values of O and _. 
 
This last statement is corroborated by Figure D.1d, where the maximal relative difference 
between the curves for ê = 0.1 and ê = 0.2 are listed for various values of O. From these 
results, it transpires that evaluating the FSI quotient with ê = 0.1 or ê = 0.2 is practically 
similar. Consequently, it can be said that the FSI quotient is nearly independent on the 
narrowness of the reservoir, provided that ê ≤ 0.2 (which is almost the case for lock 
chambers). 
 
Moreover, it appears from Figure D.1 that the requirement FSI ≪ 1 is only satisfied for very 
small values of the filling coefficient _. So most of the time, it is necessary to consider the 
presence of water while performing the modal analysis of an immerged plate. 

D.1.2.3. Influence of the length of the reservoir 
 
In fact, it is possible to explain mathematically why the reservoir narrowness ê has little 
influence, provided that it is sufficiently small. To do so, one needs to consider the results 
reported in section D.1.2.1. It is shown there that the term 2Í<E involved in equation (D.22) is 
given by: 

2Í<E = s s­��∗ _#R�I�̅�!<" I�̅�!E"�!2P − 1"# + 4�#O#_#
�ñ
�u( 	�ñ

�u
  (D.24) 

where R�, I�̅�!<"  and I�̅�!E"  are only functions of O and _. In addition, the following relation is 
still holding for ­��∗ : 

­��∗ = cosh!Á��∗ " − 1sinh!Á��∗ " 					 ; 					Á��∗ = ºê £�2P − 12O_ �# +�#	 (D.25) 

It is clear from (D.24) and (D.25) that the influence of ê on the FSI quotient is only hidden 
inside the coefficients ­��∗ . It may be easily shown that for ê → 0, Á��∗ → +∞ and ­��∗ → 1. 
With such a property, putting ­��∗ = 1 in (D.24) immediately shows that 2Í<E is now only a 
function of O and _, but it is no longer dependant on ê.  
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(a) ê = 0.5 

 

(b) ê = 0.2 

 
 

(c) ê = 0.1 

 

 
(d) Maximal relative difference on IFS between ê = 0.1 and ê = 0.2 

 

maxS TFSI!ê = 0.2" − FSI!ê = 0.1"FSI!ê = 0.2" T 	!%" 
 O 

Maximal 
difference (%) 0.5	 0.00	1	 0.06	1.5	 0.93	2	 3.77	

 

Figure D.1. Curves showing the evolution of FSI for different values of κ, ϕ and μ 
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As consequence, the FSI quotient is not influenced by the narrowness of the reservoir 
anymore. For practical reasons that will be discussed later, one may seek to know a kind of 
threshold value beyond which this statement is valid or not. So the purpose is now to find 
when the approximation: 

­��∗ = cosh!Á��∗ " − 1sinh!Á��∗ " ≈ 1					∀	!�, P" ∈ 50,+∞7 × 51,+∞7	 (D.26) 

is holding. According to (D.25), it transpires that Á��∗  is an increasing function of � and P, 
and therefore the validity of (D.26) needs only to be checked with � = 0 and P = 1: 

cosh!º/2O_ê	" − 1sinh!º/2O_ê" ≈ 1 ⇔ cosh!ºÕ/2ℎ�" − 1sinh!ºÕ/2ℎ�" ≈ 1 (D.27) 

This last expression shows that ê has no influence on the FSI quotient, provided that the ratio Õ/ℎ� is sufficiently large. The evolution of ­��∗  (for � = 0 and P = 1) is plotted for different 
values of Õ/ℎ� on Figure D.2, where it can be seen that the curve quickly tends to its upper 
limit. This is due to the fact that ­��∗  invokes hyperbolic functions which have the property to 
increase rapidly. From the table on Figure D.2, it seems reasonable to consider that ­��∗ ≈ 1 if Õ/ℎ� ≥ 3.   
 

 

Õ/ℎ� ­��∗  � = 0, P = 1 1	 0.6557942	2	 0.9171523	3	 0.9821934	4	 0.9962721	5	 0.9992239	6	 0.9998386	7	 0.9999664	8	 0.9999930	9	 0.9999986	10	 0.9999997	
 

Figure D.2. Evolution of -cmn (with m = 0 and n = 1) with the ratio L/hs 

As a conclusion, it can be said that the FSI quotient is no longer influenced by the narrowness ê of the reservoir if Õ ≥ 3ℎ�. So for given values of �, ¦, § and §�, the following statement 
should be emphasized: 

Õ ≥ 3ℎ�     →     FSI = FSI�O, _, SJ̅� = FSI!L, ℎ�, ®, SJ" (D.28) 

The direct consequence of (D.28) is that, for any value of �, ¦, §, §�, ℎ, L and SJ, the length Õ 
does not play any role in the modal analysis of a reservoir, provided that Õ ≥ 3ℎ�. In other 
words, for a given value of ℎ�, the vibration properties of a reservoir with Õ = 3ℎ� are also 
valid for all reservoirs with Õ ≥ 3ℎ�. To illustrate this last assertion, let us have a short 
application example and consider a reservoir with _ = 0.6, O = 1.25 and SJ̅ = 0.02. The 
material properties are still those listed in Table 7.1. The ratio Õ/ℎ� is progressively increased, 
which leads to the curves plotted on Figure D.3 and on Figure D.4. 
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Figure D.3. Evolution of the FSI quotient with the ratio L/hs 

From Figure D.3, it is clear that the FSI quotient is no longer influenced by the length of the 
reservoir when the ratio Õ/ℎ� is progressively increased. In other words, it can be stated that 
the influence of the fluid is the same in any reservoir having a length Õ greater than 3ℎ�. This 
is also corroborated by Figure D.4 depicting the evolution of the first wet frequency with the 
ratio Õ/ℎ�. This curve shows that the frequency tends to stabilize for Õ/ℎ� ≥ 3, which 
confirms that the length of the reservoir does not influence the modal properties of the 
flexible walls beyond this limit. 

 
Figure D.4. Evolution of the first wet frequency with the ration L/hs 

The property expressed in (D.28) may have some practical implications that will be 
considered later, in particular when dealing with dynamic analysis of flexible containers 
(section 7.4). 
 
D.1.3. Derivation of the flexible pressure potential 
 
The aim of this appendix is to establish equation (7.47) giving the potential 
 associated to 
the hydrodynamic pressure `�!W, X, S" calculated in (7.25). To do so, the virtual work i2� 
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performed by ̀�!W, X, S" during a virtual displacement i.!W, X, S" needs first to be evaluated. 
The potential may then by found through the following definition: 

i ��
:S��
��

� = − � i2�:S
��
��

 (D.29) 

where the symbol i is used to denote a virtual characteristic. 5S(, S#7 is an arbitrary time 
period over which the integration is carried. From Figure D.5, it is clear that the pressure does 
not act in the same sense as the positive virtual displacement. Consequently, one should write: 

� i2�:S
��
��

= − � ��`�!W, X, S"i.!W, X, S":��
�:S��

��
= s s ­�� � �!S"©-!S":S

��
��

�ñ
�u


�ñ
�u(  (D.30) 

where the two functions �!S" and ©!S" are expressions integrated over the wet surface of the 
plate and are therefore only time-dependent: 

�!S" =�i. cos!Æ�W" cos!à̅�X":��
 ©!S" =�.- cos!Æ�W" cos!à̅�X" :��

 (D.31) 

One may now simplify (D.30) by developing the equation through an integration by parts. 
Doing so leads to: 

� i2�:S
��
��

= s s ­�� ��!S#"©!S#" − �!S("©!S(" − � �-!S"©!S":S
��
��

��ñ
�u


�ñ
�u(  (D.32) 

However, as the virtual displacements i.!W, X, S" is arbitrary, it may be postulated that i.!W, X, S" = 0 for S = S( and S = S#, which implies that �!S(" = �!S#" = 0. Moreover, 
noting that �-!S" = i©!S", (D.32) becomes: 

� i2�:S
��
��

= −s s ­�� � i©!S"©!S":S
��
��

�ñ
�u


�ñ
�u( = −i�� s s ­��2

�ñ
�u


�ñ
�u( ©#!S":S		��

��
� (D.33) 

Comparing this last relation to (D.29), it is obvious that the potential 
 has to fulfill the 
definition (7.47). 

 
Figure D.5. Virtual displacement field 
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D.2. Appendix D.2 
 
D.2.1. Dynamic analysis of a rigid reservoir 
 
In this appendix, it is checked that simulations performed on a rigid reservoir are in quite 
good agreement with well-known theoretical formulae that are widely available in the 
literature. The goal is to have more confidence on the numerical model presented in 7.4.3.1, 
because having a proper representation of the fluid-structure interaction is a quite arduous 
task. To do so, the total resulting force ÅI!S" acting on the rigid wall will be numerically and 
analytically investigated for the reservoir introduced in section 7.4.3. It is worth noting that 
only the portion of the force due to the seismic hydrodynamic pressure is considered, the 
hydrostatic one being disregarded. In other words, one can more precisely define ÅI!S" as: 

ÅI!S" = � �`I!W, S"ò



:W:XQó



= L� `I!W, S"
Qó



:W (D.34) 

where ̀ I!W, S" is the rigid impulsive pressure given in (7.7). Figure D.6 shows the numerical 
and analytical curves of ÅI!S", for the acceleration 'í !S" plotted on Figure 7.13 and for a water 
level ℎ� of 3.5	�. The agreement seems to be quite good, and this conclusion is also 
corroborated by Table D.2 showing the extreme values obtained in both cases. It can be seen 
that the relative difference with respect to the theoretical approach is satisfactory.  
 

 Analytical solution Numerical solution Relative difference 
Maximal value 45.46	¨À 40.01	¨À 12	% 
Minimal value −38.07	¨À −36.19	¨À 5	% 

Table D.2. Comparison between the extreme values of the analytical and numerical rigid solutions 

Another point that is important to stress is that the time evolution of pressure given by the 
finite element simulation follows more or less exactly the seismic acceleration 'í !S", which is 
in accordance with classical formulae as well. 
 
Apart from these purely numerical aspects, the differences noted in Table D.2 may be 
explained because of resonance phenomena. Indeed, the analytical solution (7.7) is developed 
under the assumption of an incompressible fluid, for which the bulk modulus â� (and also the 
speed of sound ­�) tend to infinity. Nevertheless, by using LS-DYNA , these two parameters 
have the finite values shown in Table 7.1, which means that the liquid is in fact compressible. 
In this case, for a rigid reservoir of length Õ, it is possible to show that resonance may appear 
in the fluid if this is one is excited at the following frequencies: 

!2P − 1" ­�2Õ				 ; 					P ∈ ℕ
 (D.35) 

In the present case, as ­� = 1500	�/� and Õ = 15	�, for P = 1, the first value of (D.35) is 
equal to 50	®X. In order to exclude these resonant contributions, the numerical signal ÅI!S" 
has been filtered to eliminate all the harmonics greater than 50	®X. This inevitably causes an 
artificial reduction of the total pressure force, as all the non-resonant harmonics greater than 50	®X are also extracted from the signal. Nevertheless, as the composition of 'í !S" in the large 
frequency range is quite modest (Figure 7.14), this operation should not affect dramatically 
the results presented here. So as a conclusion, it can be said, the quite good agreement found 
for the rigid case comfort the finite element model detailed in section 7.4.3.1.  
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Figure D.6. Analytical and numerical resulting force for a rigid reservoir (hs = 3.5 m)
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D.2.2. Investigation of the fluid-structure interaction 

D.2.2.1. Comparison of the rigid and flexible solutions 
 
The goal of this section is to point out the importance of accounting for the fluid-structure 
interaction when performing the seismic analysis of flexible reservoirs. To do so, the 
theoretical solutions obtained when the walls are rigid or not can be compared for the 
reservoir used in section 7.4.3. For a water level of 3.5	�, Figure D.8 confronts the solutions 
derived in the two cases. From this figure, it clear that the responses are totally different.  
 
This observation is confirmed by the values listed in Table D.3, corresponding to the ratios 
between the extreme values given by the rigid and flexible solutions, i.e.: 

max� �ÅI!S" + Å�!S"�max� |ÅI!S"~ 					 ; 					min� �ÅI!S" + Å�!S"�min� |ÅI!S"~  (D.36) 

where ÅI!S" and Å�!S" are the total resulting forces due to the rigid and flexible impulsive 
pressures respectively. According to the analytical solution for ℎ� = 3.5	�, it can be seen that 
the maximal rigid force applied on the wall has to be multiplied by a factor 1.66 to account 
for the flexibility. The situation is even worse for the lower extreme value, as the coefficient 
is this time equal to 2.19. The amplification is of the same order for the solutions given by LS-
DYNA . It results from this brief comparison that performing the seismic design of this flexible 
reservoir while considering it as rigid may lead to an unsafe situation. 
 

�� = 
.�	� 

Result 
Analytical 
solution 

Numerical 
solution 

Maximal value 1.66 1.77 
Minimal value 2.19 2.13 �� = �	� 

Result 
Analytical 
solution 

Numerical 
solution 

Maximal value 1.71 1.59 
Minimal value 2.35 2.47 

 

 
Table D.3. Ratios of the extreme values 

obtained for the flexible and rigid solutions 

Figure D.7. Evolution of the FSI quotient with the filling 
coefficient ϕ = hs/H 

 
Going back to the developments performed in section D.1.2 of Appendix D.1, the curve of 
Figure D.7 can be plotted to show the evolution of the FSI quotient as a function of the filling 
coefficient _ = ℎ�/ℎ. For ℎ� = 3.5	�, _ = 0.6 and FSI = 0.4, which is not negligible with 
respect to 1. Consequently, without performing any dynamic simulation, it was predictable 
that the fluid-structure interaction should be taken into account in the present case. The 
dynamic analysis and the results of Figure D.8 confirm this conclusion. 

D.2.2.2. Influence of the length of the reservoir 
 
In section D.1.2.3 of Appendix D.1, it was already mentioned that the length Õ has no 
influence on the modal properties of the immerged flexible plate, provided that Õ ≥ 3ℎ�. The 
aim now is to see if this is also valid for the dynamic response of the reservoir.  
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Figure D.8. Comparison of the theoretical rigid and flexible solutions (hs = 3.5 m) 
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To do so, it is worth examining the evolution of the total hydrodynamic pressure when the 
length Õ increases. Integrating the rigid and flexible contributions given by (7.7) and (7.8) 
over the wet area of the plate leads to: 

ÅI!S" = §�ℎ�#2 ¤ Õℎ� −s 8!Õ/ℎ�	"#!2P − 1"*º* tanh=!2P − 1"ºÕ/ℎ�	 ?�ñ
�u( ¥'í!S" = §�ℎ�#2 'í !S"©!Õ/ℎ�" (D.37) 

Å�!S" = 8§�ℎ�2º# �s cosh!Æ�Õ"1 − sinh!Æ�Õ" !−1"
��(!2P − 1"#� �.í !W, X, S" cos!Æ�W":W:Xò



Qó



�ñ
�u( � (D.38) 

where Æ� = !2P − 1"º/2ℎ�. From a careful analysis of the total flexible pressure Å�!S" given 
in (D.38), one may recognize the coefficient ­��∗  for which it was already shown in section 
D.1.2.3 that it tends to unity if Õ ≥ 3ℎ�. Consequently, under the assumption of having a 
reservoir sufficiently long, (D.38) can be rewritten in the following form: 

Å�!S" = 8§�ℎ�2º# �s !−1"��(!2P − 1"#� �.í !W, X, S" cos!Æ�W":W:Xò



Qó



�ñ
�u( � (D.39) 

which does not depend on Õ anymore. So it can be said that the flexible impulsive pressure 
developed during the seismic excitation is not a function of Õ, provided that Õ ≥ 3ℎ�.  
 
The next step is now to see if this is also valid for the rigid impulsive pressure. It is clear that 
equation (D.37) is dominated by the function ©!Õ/ℎ�", but for a given value of ℎ�, it is 
analytically impossible to evaluate the limit of ©!Õ/ℎ�) when Õ is tends to infinity. 
Consequently, even if this is not mathematically satisfactory, the evolution of the function ©!Õ/ℎ�" when the ratio Õ/ℎ� is progressively increased has to be studied numerically. Doing 
so leads to the results depicted on Figure D.9, where a stabilization may be observed18. 
Moreover, for Õ/ℎ� 	≥ 3, it can considered that the curve does not change a lot, with an upper 
limitation of 1.086. Consequently, for Õ ≥ 3ℎ�, the function ©!Õ/ℎ� 	" may be substituted by 1.086 in (D.37) to get: 

ÅI!S" = 1.086§�ℎ�#2 'í !S" (D.40) 

which shows that the total rigid impulsive force developed during the earthquake does not 
depend on Õ anymore, provided that Õ ≥ 3ℎ�.  
 
It transpires from equations (D.39) and (D.40) that the total hydrodynamic pressure applied 
on the flexible walls during the seism is not a function of the length of the reservoir if Õ ≥ 3ℎ�. In such a case, this conclusion means that the parameter Õ does not appear anymore 
in the dynamic equilibrium equation (7.61). Consequently, for a given value of ℎ�, working 
with a reservoir of length Õ is equivalent to working with a fictitious one of length 3ℎ� 
(Figure 7.18). For example, considering the lock chamber in the new Panama canal project, 
the approximate length Õ and water level ℎ� are respectively equal to 430	� and 30	�. 
Therefore, the hydrodynamic pressure obtained by doing a seismic analysis on a fictitious 
reservoir with ℎ� = 30	� and Õ = 90	� would be very close to the one obtained by 
performing the simulation with the real dimensions ℎ� = 30	� and Õ = 430	�. 

                                                                    
18 This stabilization is not always valid: for very large values of the ratio Õ/ℎ�, the function starts increasing 
again. Nevertheless, the curve remains quite flat till Õ/ℎ� 	= 5000, which is sufficient for practical applications. 
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Õ/ℎ� ©!Õ/ℎ�	" 1	 0.72958459	2	 1	3	 1.06713167	4	 1.08166163	5	 1.08470805	6	 1.08534247	7	 1.08547440	8	 1.08550183	9	 1.08550753	10	 1.08550872	
 

Figure D.9. Evolution of the function g(L/hs) 

On a practical point of view, all the previous mathematical developments allow for an 
important reduction of the computation effort required to perform finite element analyses 
because the fluid domain needs only to be modeled over a length 3ℎ� instead of Õ. Going 
back to the Panama canal situation, the size of a numerical model in such a case would be 
reduced more or less by a factor of 430/90 ≈ 4.5. So instead of using (for example) 10E 
finite element for the fluid part, working on a fictitious reservoir should not require more than 2.5 ∙ 10¿ finite elements. 
 
In the optic of consolidating the methodology explained here above, a short application 
example can be considered for a reservoir with a height ℎ of 10	�, a width L = 8	�, a 
thickness SJ = 20	­�, a length Õ = 80	� and filled up to a level ℎ� of 6	�. The total number 
of elements involved in this real configuration (Õ = 80	�) is more or less equal to 424	000, 
as shown in Table D.4. 

 
Number of shell 

elements 
Number of solid 

elements 
Number of 

nodes 
Real model (Õ = 80	�) 4000 419862 451122 
Fictitious model (Õ = 18	�) 4000 94772 105972 

Table D.4. Size of the real and fictitious models 

In order to reduce the numerical effort, a fictitious model is also constructed, with a reservoir 
having this time a length of 3ℎ� = 18	�. Doing so requires less than 100	000 elements, 
which represents a non negligible size reduction. Both the real and fictitious configurations 
are then submitted to a longitudinal acceleration 'í !S" through a dynamic analysis performed 
with the software LS-DYNA . Doing so leads to a numerical evaluation of the hydrodynamic 
pressures acting on the flexible walls during the seism. 
 
To check if it is correct to work with Õ = 18	� instead of the real length Õ = 80	�, the total 
hydrodynamic pressure Å!S" defined by (7.90) and calculated by LS-DYNA  is compared for 
both the real and fictitious models. For convenience, the results are only plotted on Figure 
D.10 for a period of 7 seconds, which is approximately half of the total duration of the signal 
depicted on Figure 7.13. It is clear that the agreement between the numerical results is rather 
perfect. The maximal resulting pressures over this period of time are found to be 326.18	¨À 
for Õ = 80	� and 311.44	¨À for Õ = 18	�, which corresponds to a relative difference of 4	%. On the other hand, the total time required to perform the dynamic analysis has been 
reduced by a factor of 5.4. 
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The good coherence found in this example between the real and fictitious models tends to 
corroborate the simplified methodology detailed in this section. This will be quite useful later, 
when working on lock gates. 
 

 
Figure D.10. Time evolution of the total hydrodynamic pressure for L = 80 m and L = 18 m 
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APPENDIX E. Additional developments for the seismic 
analysis of lock gates 

 
 
 
 
 
 

This addendum to Chapter 8 is divided in two main parts. In Appendix E.1, some 
complementary results to section 8.2 are presented. These ones are mainly 

additional formulae that are useful to derive the modal properties for both a gate 

supported or free at the bottom. Some other numerical comparisons are also 

performed for wide and high lock gates. 

 

The information presented Appendix E.2 is directly related to section 8.3. It 

provides additional theoretical considerations about the dynamic analysis of lock 

gates. 

 

Finally, in Appendix E.3, further developments are made to investigate some 
pending questions. The case of working with real boundary conditions for the sill is 
treated numerically, while additional indications are provided on the way to 
extend the analytical approach. In particular, the method to account for the 

presence of the upstream and downstream reaches is detailed. The case of the 

other components of the seismic action is also considered. 

 

*** 
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E.1. Appendix E.1 
 
E.1.1. Additional formulae for the Rayleigh quotient 
 
This appendix gives the mathematical forms of the terms èÉ<E and �þ<E used in the Rayleigh 
quotient, but it is worth remembering that an additional coefficient of 1/2 is introduced in 
(8.27). The expressions are provided for a structure supported at the bottom or not. 

E.1.1.1. Case of a gate supported at the bottom 
 
For such a situation of a gate supported by a sill at bottom, the pseudo-admissible functions a<!W, X" are calculated according to (8.3), with ©<!X" and �<!W" given by (8.6) and (8.10) 
respectively. With these expressions, the terms èÉ<E and �þ<E can be calculated by applying 
(8.28) and (8.29). In order to simplify the results, it is required to use the following more 
compact notations: 

&( = L/2   if    à< = àE &( = 0   if    à< ≠ àE (E.1) 

Furthermore, as the mathematical expressions are quite complex, let us introduced the next 
additional set of notations that are valid for any value of ½< and ½E: 

&* = ½E cosh!½Eℎ" sin�½<ℎ� − ½< cos�½<ℎ� sinh!½Eℎ"½<# + ½E#  (E.2) 

&� = ½< cosh�½<ℎ� sin!½Eℎ" − ½E cos!½Eℎ" sinh�½<ℎ�½<# + ½E#  (E.3) 

&(( = sin!½Eℎ" + bE sinh!½Eℎ"½E#ℎ − cos!½Eℎ" + bE cosh�½<ℎ�½E  (E.4) 

&(# = sin!½Eℎ" − bE sinh!½Eℎ"½E#ℎ − cos!½Eℎ" − bE cosh�½<ℎ�½E  (E.5) 

&(* = sin�½<ℎ� + b< sinh�½<ℎ�½<#ℎ − cos�½<ℎ� + b< cosh�½<ℎ�½<  (E.6) 

&(� = sin�½<ℎ� − b< sinh�½<ℎ�½<#ℎ − cos�½<ℎ� − b< cosh�½<ℎ�½<  (E.7) 

In addition to equations (E.1) to (E.7), the following definitions are adopted. They are only 
holding if ½< = ½E: 

&# = ℎ2 − sin!2½Eℎ"4½E  &¿ = sinh!2½Eℎ"4½E − ℎ2 (E.8) 

&F = ℎ2 + sin!2½Eℎ"4½E  &(
 = sinh!2½Eℎ"4½E + ℎ2 (E.9) 

Finally, if the particular condition ½< ≠ ½E is fulfilled, it is quite convenient to introduce the 
expressions listed hereafter as they will be used in the next results: 
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&# = ½E sin�½<ℎ� cos!½Eℎ" − ½< cos�½<ℎ� sin!½Eℎ"½<# − ½E#  
(E.10) 

&¿ = ½< cosh�½<ℎ� sinh!½Eℎ" − ½E sinh�½<ℎ� cosh!½Eℎ"½<# − ½E#  
(E.11) 

&F = ½< sin�½<ℎ� cos!½Eℎ" − ½E cos�½<ℎ� sin!½Eℎ"½<# − ½E#  (E.12) 

&G = ½E cos�½<ℎ� sinh!½Eℎ" + ½< sin�½<ℎ� cosh!½Eℎ"½<# + ½E#  
(E.13) 

&W = ½< sinh�½<ℎ� cos!½Eℎ" + ½E cosh�½<ℎ� sin!½Eℎ"½<# + ½E#  
(E.14) 

&(
 = ½< sinh�½<ℎ� cosh!½Eℎ" − ½E cosh�½<ℎ� sinh!½Eℎ"½<# − ½E#  (E.15) 

With all the notations given from (E.1) to (E.15), èÉ<E and �þ<E can be calculated by summing 
up the individual contributions coming from both the plating and the entire reinforcing 
system: èÉ<E = èÉ<E!J" + èÉ<E!Q" + èÉ<E!9"										�þ<E = �þ<E!J" + �þ<E!Q" + �þ<E!9" (E.16) 

where the superscripts !`", !ℎ" and !;" respectively refer to the plating, to the horizontal 
stiffeners and to the vertical ones. These individual participations may be evaluated with help 
of the subsequent formulae, according to the values of ½< and ½E:  
 
• If ½< ≠ 0 and ½E = 0: 

èÉ<E!J" = §SJ�<&(&(* (E.17) 

�þ<E!J" = �<� =à<#àE#&(* + 2!1 − ¦"à<àE sin�½<ℎ� − b< sinh�½<ℎ�ℎ + ¦½<#àE#&(�? &( (E.18) 

èÉ<E!Q" = s§�Q,��<�sin�½<W�� − b< sinh�½<W��� W�ℎ &(
Ów
�u(  (E.19) 

�þ<E!Q" = s�&Q,��<à<#àE#�sin�½<W�� − b< sinh�½<W��� W�ℎ &(
Ów
�u(  (E.20) 

èÉ<E!9" = s§�9,��< sin�à<X�� sin!àEX�"Ó*
�u( &(* (E.21) 

�þ<E!9" = 0 (E.22) 

• If ½< ≠ 0 and ½E ≠ 0: 

èÉ<E!J" = §SJ�<�E�&# − bE&* − b<&� + b<bE&¿�&( (E.23) 



APPENDIX E. Additional developments for the seismic analysis of lock gates 

319 
 

�þ<E!J" = ��<�E�½<#½E# + ¦�à<#½E# + àE#½<#� + à<#àE#�&(&# 
(E.24) 

 + ��<�Eb<�½<#½E# + ¦�àE#½<# − à<#½E#� − à<#àE#�&(&� 
 + ��<�EbE�½<#½E# + ¦�à<#½E# − àE#½<#� − à<#àE#�&(&* 
 + ��<�Eb<bE�½<#½E# + ¦�à<#½E# + àE#½<#� + à<#àE#�&(&¿ 
 + 2�!1 − ¦"�<�Eà<àE½<½E�&F − bE&G − b<&W + b<bE&(
�&( 
èÉ<E!Q" = s§�Q,��<�E�sin�½<W�� − b< sinh�½<W���!sin!½EW�" − bE sinh!½EW�""&(Ów

�u(  (E.25) 

�þ<E!Q" = s�&Q,�à<#àE#�<�E sin�½<W�� !sin!½EW�" − bE sinh!½EW�""&(
Ów
�u(  

(E.26) 

 − s�&Q,�à<#àE#�<�Eb< sinh�½<W�� !sin!½EW�" − bE sinh!½EW�""&(
Ów
�u(  

èÉ<E!9" = s§�9,��<�E sin�à<X�� sin!àEX�"Ó*
�u( �&# −bE&* − b<&� + b<bE&¿� (E.27) 

�þ<E!9" = s�&9,��<�E sin�à<X�� sin!àEX�"Ó*
�u( �&# + bE&* + b<&� + b<bE&¿� (E.28) 

• If ½< = 0 and ½E = 0: 

èÉ<E!J" = §SJ ℎ3 &( �þ<E!J" = � à<àEℎ =à<àE3 	ℎ# + 2!1 − ¦"? &( (E.29) 

èÉ<E!Q" = s§�Q,� W�#ℎ# &(
Ów
�u(  �þ<E!Q" = s�&Q,� W�#ℎ# à<#àE#&(

Ów
�u(  (E.30) 

èÉ<E!9" = s§�9,� ℎ3 sin�à<X�� sin!àEX�"
Ó*
�u(  �þ<E!9" = 0 (E.31) 

• If ½< = 0 and ½E ≠ 0: 

èÉ<E!J" = §SJ�E&(&(( (E.32) 

�þ<E!J" = �E�=à<#àE#&(( + 2!1 − ¦"à<àE sin!½Eℎ" − bE sinh!½Eℎ"ℎ + ¦½<#àE#&(#? &( (E.33) 

èÉ<E!Q" = s§�Q,��E!sin!½EW�" − bE sinh!½EW�"" W�ℎ &(
Ów
�u(  (E.34) 

�þ<E!Q" = s�&Q,��Eà<#àE#!sin!½EW�" − bE sinh!½EW�"" W�ℎ &(
Ów
�u(  (E.35) 
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èÉ<E!9" = s§�9,��E sin�à<X�� sin!àEX�"Ó*
�u( &(( (E.36) 

�þ<E!9" = 0 (E.37) 

All the previous results may be inserted in (E.16) to build the matrices 5èÉ7 and 5�þ7, which are 
in turn useful to evaluate the modal properties by (8.32). 

E.1.1.2. Case of a gate free at the bottom 
 
For the situation of a gate that is not supported by a sill at the bottom, the pseudo-admissible 
functions a<!W, X" are still calculated according to (8.3), with ©<!X" and �<!W" given by (8.6) 
and (8.13) respectively. Here again, èÉ<E and �þ<E are to be found by applying (8.28) and (8.29). 
The results also have to be discussed according to the values of ½< and ½E, but this time two 
different rigid beam modes can be found for ½< = 0, as shown by (II.3). For clarity, the first 
one will be related to ½< = 0, while the second one will be associated to the dummy value ½< = −1, i.e.: 

�<!W" = W/ℎ   if    à< = −1 �<!W" = 1   if    à< = 0 (E.38) 

Using the fictitious value ½< = −1 has no consequence, as it is not a solution of (8.14). In 
addition to (E.1), it is also interesting to adopt the next convention: 

@< = 1   if   sin�½<ℎ� > 0 @< = −1   if    sin�½<ℎ� < 0 (E.39) 

Furthermore, in order to simplify the mathematical expressions of èÉ<E and �þ<E, let us have the 
following definition of &E, which is only consistent if ½< = ½E: 

&E = b< =½<à<#!3 − 2¦" + ℎ �<@< − �<∗ cos�½<ℎ�sin�½<ℎ� ? with X�< = �à<# + à<#�# − 4¦à<#à<#�<∗ = �à<# − à<#�# + 4¦à<#à<#
Y (E.40) 

If ½< ≠ ½E, the previous definition of &E is no longer valid and the subsequent one has to be 
adopted: 

&E = à<#�@<E − @E<�½<# − ½E# 			 ; 			@<E = ½<�¦½<� − !2 − 3¦"½E�� @< + @E − �1 + @<@E� cos!½Eℎ"sin!½Eℎ"  (E.41) 

As a final requirement, a kind of Kronecker delta will be designated by ê<E, for which ê<E = 0 if ½< ≠ ½E and ê<E = 1 if ½< = ½E. With all the notations given from (E.38) to (E.41), èÉ<E and �þ<E can be calculated by summing up the different contributions coming from the 
plating and the stiffening system, as it was done in (E.16). For the case of a gate supported at 
the bottom of the lock chamber, all these individual participations may be evaluated 
separately by applying the formulae listed hereafter, according to the particular values of ½< 
and ½E: 
 
• If ½< = 0 and ½E = 0: 

èÉ<E!J" = §SJℎ&( �þ<E!J" = �ℎà<#àE#&( (E.42) 
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èÉ<E!Q" = s§�Q,�&(Ów
�u(  �þ<E!Q" = s�&Q,�à<#àE#&(

Ów
�u(  (E.43) 

èÉ<E!9" = s§�9,�ℎ sin�à<X�� sin!àEX�"Ó*
�u(  �þ<E!9" = 0 (E.44) 

• If ½< = 0 and ½E = −1: 

èÉ<E!J" = §SJ ℎ2 &( �þ<E!J" = 
�ℎ2 à<#àE#&( (E.45) 

èÉ<E!Q" = s§�Q,� W�ℎ &(
Ów
�u(  �þ<E!Q" = s�&Q,� W�ℎ à<#àE#&(

Ów
�u(  (E.46) 

èÉ<E!9" = s§�9,� ℎ2 sin�à<X�� sin!àEX�"
Ó*
�u(  �þ<E!9" = 0 (E.47) 

• If ½< = −1 and ½E = −1: 

èÉ<E!J" = §SJ ℎ3 &( �þ<E!J" = �ℎ=à<#àE#3 + 2!1 − ¦"ℎ# à<àE? &( (E.48) 

èÉ<E!Q" = s§�Q,� W�#ℎ# &(
Ów
�u(  �þ<E!Q" = s�&Q,� W�#ℎ# à<#àE#&(

Ów
�u(  (E.49) 

èÉ<E!9" = s§�9,� ℎ3 sin�à<X�� sin!àEX�"
Ó*
�u(  �þ<E!9" = 0 (E.50) 

• If ½< = −1 and ½E > 0: 

èÉ<E!J" = 0 �þ<E!J" = 2¦��Eà<#½E!1 − @E"&( (E.51) 

èÉ<E!Q" = s§�Q,��E!sin!½EW�" − bE sinh!½EW�"" W�ℎ &(
Ów
�u(  (E.52) 

�þ<E!Q" = s�&Q,��Eà<#àE#!sin!½EW�" − bE sinh!½EW�"" W�ℎ &(
Ów
�u(  (E.53) 

èÉ<E!9" = 0 �þ<E!9" = 0 (E.54) 

• If ½< = 0 and ½E > 0: 

èÉ<E!J" = 0 �þ<E!J" = 2��Eà<# ¤!2 − ¦" !1 + @E"!1 − cos!¨ℎ""® sin!¨ℎ" − ¦½E@E¥ &( (E.55) 

èÉ<E!Q" = s§�Q,��E!sin!½EW�" − bE sinh!½EW�""&(Ów
�u(  (E.56) 
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�þ<E!Q" = s�&Q,��Eà<#àE#!sin!½EW�" − bE sinh!½EW�""&(
Ów
�u(  (E.57) 

èÉ<E!9" = 0 �þ<E!9" = 0 (E.58) 

• If ½< > 0 and ½E > 0: 

èÉ<E!J" = §SJ&(�<�Eb<#ℎê<E �þ<E!J" = 4��<�E&(¿&( (E.59) 

èÉ<E!Q" = s§�Q,��<�E�sin�½<W�� − b< sinh�½<W���!sin!½EW�" − bE sinh!½EW�""&(Ów
�u(  (E.60) 

�þ<E!Q" = s�&Q,�à<#àE#�<�E sin�½<W�� !sin!½EW�" − bE sinh!½EW�""&(
Ów
�u(  

 

(E.61) 
 − s�&Q,�à<#àE#�<�Eb< sinh�½<W�� !sin!½EW�" − bE sinh!½EW�""&(

Ów
�u(  

èÉ<E!9" = s§�9,��<�E sin�à<X�� sin!àEX�"Ó*
�u( ½<�b<#ℎê<E (E.62) 

�þ<E!9" = s�&9,��<�E sin�à<X�� sin!àEX�"Ó*
�u( ½<�b<#ℎê<E (E.63) 

The previous formulae may be inserted in (E.16) to build the matrices 5èÉ7 and 5�þ7, which 
allows for the derivation of the modal properties through (8.32). It is worth noting that the 
solutions for: 

½< = −1	; ½E = 0 ½< > 0	; ½E = −1 ½< = 0	; ½E > 0 (E.64) 

have not been discussed here above, but they may be easily derived by inverting ø and ̈  in the 
appropriate corresponding results. 
 
E.1.2. Additional comparisons for gate 2 
 
In order to cover a certain category of lock gates, validations were also performed by 
comparing the numerical and analytical results for other configurations. This appendix deals 
with the second gate presented in section 8.2.3. As depicted on Figure E.1, this one has an 
extreme rectangular shape, with an important width L of 22.5	� and a reasonable height ℎ 
equal to 8	�. So the lowest admissible value of ℎ/L is almost reached. 
 
The material properties are still those listed in Table 8.2, while the cross-sections 
characterizing the stiffening elements have the dimensions listed in Table E.2. The modal 
analysis performed with NASTRAN shows that the structure has two dominant global modes. 
This is particularly true for a gate that is free at the bottom.  
 
If a sill is present, the importance of the first mode is found to be predominant, while the 
contribution from all the subsequent ones is negligible. 
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Figure E.1. Structural configuration and main dimensions (m) of gate 2 

Gate supported at the bottom Gate free at the bottom 

Mode Frequency (Hz) Error (%) 
Mode 

Frequency (Hz) Error (%) 

NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA 
1	 7.34	 7.57	 7.49	 2.07	 1.05	 1	 7.19	 7.33	 7.37	 2.51	 0.55	

2	 39.15	 38.47	 44.55	 14.25	 15.81	 2	 8.48	 8.43	 8.63	 1.77	 2.37	

Table E.1. Comparison of the natural frequencies obtained numerically and analytically for gate 2 
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(a) Gate 2 supported at the bottom - First mode shape (c) Gate 2 free at the bottom - First mode shape 

  
 

(b) Gate 2 supported at the bottom - Second mode shape 
 

(d) Gate 2 free at the bottom - Second mode shape 

  
Figure E.2. Comparison of the vertical profiles in the plane z = l/2  obtained numerically and analytically for the two first modes of gate 2 
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The frequencies are listed in Table E.1, where a quite good agreement can be observed 
between the analytical and numerical results. This is particularly true if the structure is not 
supported at the bottom. On the contrary, the correlation on the second mode is not so good if 
it is resting against a sill, with a relative error of about 15	%. This discrepancy is however of 
minor importance, as the contributions coming from the higher modes is not really decisive in 
this case. 

 ℎR 	!�" SR	!�" ℎ� 	!�" S�	!�" 
Horizontal girders 0.98	 0.02	 0.4	 0.025	
Vertical frames 0.98	 0.02	 0.5	 0.025	
Horizontal stiffeners 0.21	 0.006	 0	 0	

Table E.2. Geometrical parameters for gate 2  

The vertical profiles of the two first mode shapes in the plane X = L/2 (called º( on Figure 
7.8) are plotted on Figure E.2 for the two support situations. Here again, the agreement is 
sufficient for a first approximation. 
 
From all the observations made above, it transpires that the simplified analytical procedure 
may also be applied to the limit case of a gate with a ratio ℎ/L close to its lowest practical 
value of 0.5. As smaller values of ℎ/L are not really expected for gates with a single plating, 
such configurations have been disregarded. 
 
E.1.3. Additional comparisons for gate 3 
 
The third gate analyzed as an example is totally the opposite of the previous one. It has a very 
important height ℎ of 21	�, with a much more modest width L of 10.5	�. For such values, the 
ratio ℎ/L is equal to 2, which may be seen as the maximal practical value for structures with a 
single plating. The main dimensions and the positioning of the reinforcing system are 
represented on Figure E.3. From this picture, it is clear that the horizontal and vertical 
stiffening elements are disposed in a quite regular manner, but this is only motivated to 
simplify the construction of the finite element models. Indeed, the simplified analytical 
procedure perfectly allows for a non-uniform disposition of these elements.  
 
The same comment is also valid for the cross sections, which may also be varied over the 
height ℎ. However, for convenience, only three sets of sectional properties have been chosen, 
each of them characterizing the girders, the frames and the stiffeners respectively (see Table 
E.3). 
 
For the material properties of Table 8.2, the modal analysis performed with NASTRAN gives 
the vibration frequencies listed in Table E.4. Comparing them to the analytical predictions 
leads to the conclusion that the discrepancy does not exceed 10	% on the two first dominant 
modes, which seems to be more or less acceptable. The approximate solutions provided by 
LS-DYNA  are also shown in Table E.4 and are found to be in close agreement with the 
analytical ones. 
 
The vertical profiles in the plane X = L/2 (called º( on Figure 7.8) are plotted on Figure E.4 
for the two first modes. As it was already observed for gate 1, there is a global accordance 
between the numerical and analytical shapes, but with some indentations at very localized 
points. This particularity is totally similar to the one discussed in section 8.2.3.3, where it was 
pointed out that the beams were not strictly bent around the neutral fiber of the plating (see 
Figure 8.13). 
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Figure E.3. Structural configuration and main dimensions (m) 

of gate 3 

Horizontal girders ℎR 	!�" SR	!�" ℎ� 	!�" S�	!�" 0.7	 0.018	 0.35	 0.018	
Vertical frames ℎR 	!�" SR	!�" ℎ� 	!�" S�	!�" 0.6	 0.016	 0.3	 0.016	

Horizontal stiffeners ℎR 	!�" SR	!�" ℎ� 	!�" S�	!�" 0.14	 0.08	 0	 0	
Table E.3. Geometrical parameters for 

gate 3 

Gate 3 supported at the bottom 

 NASTRAN Analytical Error 1	 19	®X	 20.79	®X	 9.43	%	2	 21.5	®X	 23.65	®X	 10.01	%	
 LS-DYNA Analytical Error 1	 19.7	®X	 20.79	®X	 5.76	%	2	 22.7	®X	 23.65	®X	 4.15	%	

Gate 3 free at the bottom 

 NASTRAN Analytical Error 

1	 19 Hz	 20.79 Hz	 9.48 %	
2 21.3 Hz 23.41 Hz 23.41 % 

 LS-DYNA Analytical Error 

1 19.7 Hz 20.79 Hz 5.75 % 

2	 22.3 Hz	 23.41 Hz	 4.74 %	
Table E.4. Comparison of the natural 

frequencies for gate 3 

In other words, it can be said that the general flexural profile adopted by the gate is dominated 
by the horizontal girders (see the red dotted line on Figure E.4a for example), while the 
portions of plating located between two girders indeed suffer an additional bending around 
their neutral fiber. Another conclusion that may be drawn from Figure E.4 is that the mode 
shapes are very similar for the two types of support conditions. This seems logical: as the 
height ℎ is quite important, the presence or the absence of a sill at the bottom has little 
influence on the mode shapes at the top of the structure. This last observation is also 
corroborated by comparing the natural frequencies obtained for the two support situations. 
From Table E.4, it appears that they are quite close to each other (they are even nearly 
identical for the first mode), whatever the presence of a sill.  
 
All the comparisons made above show that the analytical approach is also applicable to treat 
the limit case of a gate having a ℎ/L ratio more or less equal to its maximal value of 2. As 
greater values of ℎ/L are not really expected in practice, such configurations have not been 
investigated.  
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(a) Gate 2 supported at the bottom - First mode shape (c) Gate 2 free at the bottom - First mode shape 

  
 

(b) Gate 2 supported at the bottom - Second mode shape 
 

(d) Gate 2 free at the bottom - Second mode shape 

  
Figure E.4. Comparison of the vertical profiles in the plane z = l/2  obtained numerically and analytically for the two first modes of gate 3 
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E.2. Appendix E.2 
 
E.2.1. Considerations about the wet modes 
 
In this appendix, it is shown that deriving the wet modal properties of a lock gate is not really 
of primary importance. This can be justified by going back to Chapter 7, where applying the 
virtual work principle leads to (7.85). In this equation, the matrices 5è7 − 527 and 5�7 are 
diagonal, as the wet modes satisfy the orthogonality requirement (7.86).  
 
Nevertheless, the presence of a mass-proportional damping term Æ5è7 does not allow to 
decouple the set of equations expressed by (7.85) because this matrix is not diagonal. This 
was already explained in section 7.4.2.3. Therefore, working with the wet mode shapes is 
only profitable if the two following restrictions are satisfied: 
 
• Mass-proportional damping forces are not involved in the equilibrium equation of the 

immerged structure. It should be noted however that considering the damping matrix Æ!5è7 − 527" instead of Æ5è7 implies a diagonalization of the system (7.85) but this is not 
totally satisfactory. 
 

• The boundary conditions have to be strictly satisfied by the wet modes, otherwise the 
orthogonality property (7.86) is not verified and consequently the matrices 5è7 − 527 and 5�7 are not diagonal. 
 

From the two previous conditions, it transpires that working with the wet eigenmodes of a 
lock gate does not provide any substantial advantage, even for an undamped structure. Indeed, 
as it was explained in 8.2.1.3, it seems very difficult to find an analytical function that fully 
satisfies the boundary conditions associated to the stiffened plate, which is a serious objection 
for diagonalizing the equations given by the virtual work principle. 
 
Nevertheless, one may argue that the displacements .!W, X, S" affecting the structure should be 
better approximated if they were expressed as a function of the wet mode shapes Δ�!W, X" 
instead of working with the dry ones i<!W, X". In fact, it can be shown that working with one 
of the two following modal decompositions: 

.!W, X, S" =s[�!S"Δ�!W, X"Ó
�u( 										.!W, X, S" =s[<<!S"i<!W, X"ý

<u(  (E.65) 

is strictly equivalent. Indeed, as stated by (7.35), Δ�!W, X" may be related to i<!W, X" with help 
of the coefficients ;�< derived by the Rayleigh-Ritz method (this was already detailed in 
section 7.3.2.1 when dealing with the mathematical approach). Therefore, in the first part of 
equation (E.65), Δ<!W, X" can be replaced by a linear combination of i<!W, X", as expressed by 
(7.35). Doing so leads to: 

.!W, X, S" =s[�!S"Δ�!W, X"Ó
�u( =si<!W, X"ý

<u( s;<�[�!S"Ó
�u(  (E.66) 

A further comparison of (E.66) with (E.65) shows that the coefficients [<<!S" affected to the 
dry modes may be expressed as a linear combination of [�!S": 
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[<<!S" =s;<�[�!S"Ó
�u( 					⇔ 					 @!S" = 5;7ª !S" (E.67) 

where 5;7 is the matrix containing the Ritz factors ;�<. Now that (E.67) is established, one can 
go back to the virtual work principle expressed in (7.85). It is worth bearing in mind that the 
matrices 5è7, 5�7, 527 and 1 calculated with the wet modes Δ�!W, X" are directly related to the 
corresponding matrices 5èÉ7, 5�þ7, 52þ 7 and 1þ calculated with the dry ones i<!W, X". This was 
already stated in (7.88) and is recalled hereafter: 

5è7 = 5;7AèÉC5;7ª							527 = 5;7A2þ C5;7ª							5�7 = 5;7A�þC5;7ª							1 = 5;71þ (E.68) 

As a final step, (E.68) can be introduced in (7.85) and the following simple developments can 
be performed: 

5;7�AèÉC − A2þ C�5;7ª :# :S# + 5;7�ÆAèÉC + ßA�þC�5;7ª :# :S# + 5;7A�þC5;7ª :# :S# = 5;71þ'í !S" 
(E.69) ⟺ �AèÉC − A2þ C�=5;7ª :# :S#? + �ÆAèÉC + ßA�þC� �5;7ª : :S� + A�þC5;7Z = 1þ'í!S" 

⟺ �AèÉC − A2þ C�:# @:S# + �ÆAèÉC + ßA�þC� : @:S + A�þC @!S" = 1þ'í !S" 
where the last equivalence is justified by (E.67). It can be seen that (E.69) is precisely the 
virtual work principle equation expressed in the basis of the dry modes shapes. Consequently, 
solving (E.69) and rebuilding the displacements with the second relation in (E.65) is strictly 
equivalent to solving (7.85) and applying the first decomposition in (E.65). The short 
mathematical developments performed here above show that working with the wet modes is 
strictly equivalent to using the dry ones.  
 
E.2.2. Considerations about the exactness of the solution 
 
The goal of this short appendix is to explain why the exactness of the solution may be 
criticized when applying the virtual work principle to perform the dynamic analysis of a lock 
gate. In section 7.4.2, it is claimed that the displacements .!W, X, S" obtained by applying the 
virtual work principle are simply an approximation of the exact theoretical solution because 
of the limited number À of wet modes considered in the decomposition process (7.67). Of 
course, as only À dry mode shapes are still used in (8.40), such a conclusion is also holding in 
the present case, but this is not the unique reason that may affect the exactness of the 
procedure. 
 
Indeed, an additional approximation is also coming here from the fact that the functions a<!W, X" used in (8.2) are only pseudo-admissible. As discussed in 8.2.1.3, they do not satisfy 
the boundary conditions along the free edges. Because of (8.2) this is also the case for all of 
the À modes i�!W, X" in (8.40). Consequently, the solution found by applying (8.40) could not 
tend to the exact one simply by increasing À.   
 
From the previous considerations, it appears that .!W, X, S" fails to satisfy the virtual work 
principle for all kinematically admissible displacements i.!W, X, S". In this case, it is quite 
common to work with a virtual field i.!W, X, S" that is similar to .!W, X, S", as given by (8.41). 
With this definition, i.!W, X, S" can be used in the virtual work principle. Doing so, the 
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solution obtained for .!W, X, S" only implies a global equilibrium, but the local one is not 
guaranteed. In other words, by considering (8.40) and (8.41), it is to fear that even if .!W, X, S" 
meets the global equilibrium requirement expressed through the virtual work principle, it will 
not necessarily satisfy the local one given by equation (8.39). 
 
The implications of the last conclusion can be detailed in a more explicit way. Going back to 
(8.39), this expression can be rewritten in the following condensed manner: 

ℬ!." = −`!." ⇔ ℬ!." + `!." = 0 (E.70) 

where ℬ!∙" is the linear differential operator corresponding to the left-hand side of (8.39). The 
term ̀ !." corresponds to the total seismic hydrodynamic pressure obtained by summing up 
(7.7) and (7.8) for .!W, X, S" given by (8.40). Nevertheless, as .!W, X, S" does not respect the 
virtual work principle for any kinematically admissible i.!W, X, S", the local balance (E.70) is 
not verified. So instead of (E.70), one should write: 

ℬ!." + `!." = `∗!." (E.71) 

where ̀ ∗!." may be seen as an additional pressure that has to be applied on the gate to 
reestablish the equilibrium (Figure E.5). 
 

 
Figure E.5. Additional pressure for restoring the local equilibrium 

As a conclusion, it is important to bear in mind that the solution derived analytically by 
applying the virtual work principle is only an approximation because the local balance and the 
static boundary conditions on the free edges are not respected. From (E.71), it is clear that this 
approximation is better if ̀∗ ≪ `. Such a requirement may be seen as a kind of criteria to 
assess the exactness of the solution. 
 
In order to illustrate the importance of these unbalanced forces ̀∗!W, X, S" with respect to `!W, X, S", one can consider the examples presented in sections 8.3.3.1 and 8.3.3.2 for a gate 
resting against a sill or free at the bottom. To make sure that the analytical solutions are valid, 
it may be interesting to check if the resulting unbalanced force Å∗!S" satisfies the following 
condition: 

Å∗!S" = �:W�`∗!W, X, S"ò



:XQ



≪ Å!S" (E.72) 

where Å!S" is the total hydrodynamic pressure applied on the gate already introduced in 
expression (7.90). The curve showing the time evolutions of Å∗!S" and the one giving the 
total hydrodynamic pressure applied on the gate are depicted on Figure E.6 (if a sill is 
present) and on Figure E.7 (if no sill is present).  
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Figure E.6. Comparison between the unbalanced forces and the total pressure for gate 1 supported by a sill 

 
Figure E.7. Comparison between the unbalanced forces and the total pressure for gate 1 free at the bottom 
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From these curves, it appears that the requirement (E.72) is respected in a quite satisfactory 
way. Moreover, calculating the maximal value of the ratio |Å∗!S"/Å!S"| shows that this latter 
is more or less equal to 0.11. Consequently, even if the functions a<!W, X" are only pseudo-
admissible and simply satisfy the beams conditions, the analytical approach appears to be 
quite acceptable as the unbalanced pressures remain moderate. This seems to be logical: as a 
lock gate is mainly behaving like a set of beams, working with functions a<!W, X" derived 
from the beam theory should not be totally incoherent. 
 
E.2.3. Additional formulae for the external work 
 
This appendix briefly provides the analytical expressions allowing for the evaluation of the 
matrix 52þ 7 given in (8.51). To evaluate 2þI�, it appears from (8.51) that a closed-form 

expression for I���!I"  is required. For a gate supported at the bottom, one has: 

I���!I" = 0					; 					àI = à̅� I���!I" = àI 1 − !−1"� cos!àIL"à̅�# − àI# !�� + �±�"					; 					àI ≠ à̅� (E.73) 

where à̅� = �º/L and àI is defined in (8.7). The function �� is different for a rigid mode 
than for a flexible one. It has the following expressions: 

• If ½I = 0: �� = 1 + Æ�!−1"�ℎ�Æ�#ℎ  (E.74) 

 �±� = 0 (E.75) 

• If ½I ≠ 0: �� = −�I ½I + Æ�!−1"� sin!½Iℎ�"½I# − Æ�#  (E.76) 

 �±� = −�IbI ½I + Æ�!−1"� sin!½Iℎ�"½I# + Æ�#  (E.77) 

in which �I is the modal amplitude. The two parameters ½I and bI are given by (8.11). 
Considering the situation where the gate is totally free at the bottom, it can be shown that: 

• If ½I = −1: �� = 1 + Æ�!−1"�ℎ�Æ�#ℎ  �±� = 0 (E.78) 

• If ½I = 0: �� = !−1"�Æ�  �±� = 0 (E.79) 

• If ½I ≠ 0: �� = −�I ½I + Æ�!−1"�!sin!½Iℎ�" − bI cos!½Iℎ�""½I# − Æ�#  (E.80) 

 �±� = �I ½I + Æ�!−1"�!sinh!½Iℎ�" − bI cosh!½Iℎ�""½I# + Æ�#  (E.81) 

in which �I is still the modal amplitude, but this time ½I and bI have to be found by the 
equations given in (8.14). 
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E.3. Appendix E.3 
 
The comparisons performed in section 8.3.3 show that the simplified approach tends to 
provide a quite good approximation of the numerical results. Nevertheless, one has to bear in 
mind that the theoretical approach is based on hypotheses that are not always realistic. The 
aim of this appendix is to go a little bit further in the dynamic analysis of lock gates by 
discussing the following particular points: 
 
• For a gate resting against a sill, the true support conditions are not those considered in 

8.3.3.1, so it is interesting to investigate the consequences of working with the true ones. 
 

• The flexible impulsive pressure is derived from equation (7.8), which is based on the 
hypothesis of a symmetric configuration. Nevertheless, this not necessarily the case in a 
real lock. Therefore, it is desirable to see the effects of not having two identical gates. 

 
• All the developments performed in section 8.3 do not consider the presence of the 

upstream and downstream reaches, so it could be valuable to briefly detail the analytical 
and numerical procedures to realize the seismic analysis of an entire lock structure. 
 

• Finally, as announced in section 8.1, only the longitudinal component 'í !S" of the seismic 
acceleration has been considered so far. Nevertheless, the vertical and transversal ones still 
need to be treated analytically. 

 
In this appendix, the only purpose is to have short analytical or numerical investigations of the 
topics listed here above. The aim is to briefly extend the analytical procedure detailed so far, 
but also to show some limitations of the simplified approach and maybe open the door for 
future researches. 
 
E.3.1. Case of a gate with the real boundary conditions 
 
In section 8.1.2, the true boundary conditions at the bottom of the lock chamber were briefly 
discussed. It is clear that the model considered in 8.3.3.1 is not entirely satisfactory, as both 
the positive and negative displacements along the + axis (Figure 8.3) are prohibited there. In 
reality, the gate is free to move backwards. To investigate this particularity, a solution is to 
perform numerical simulations with LS-DYNA  in which the sill is really modeled (Figure E.8) 
and also submitted to the soil acceleration 'í !S".  
 
The contact between the gate and its support is automatically controlled by the software. In 
reality, this latter is provided by some particular pieces made of wood or of elastomers, so the 
material properties affected to the sill are those listed in Table E.5. 
 

Young modulus 12500	�k� 
Mass density 710	�k� 
Poisson Ratio 0.3 

Table E.5. Material properties of wood 

The numerical results obtained by imposing these new boundary conditions to gate 1 are 
presented on Figure E.10 together with those already depicted on Figure 8.15 for a gate totally 
supported at the bottom. On this picture, the curve "True boundary" corresponds to the 
resulting pressure obtained for the model of Figure E.8. 
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Figure E.8. Representation of the true boundary conditions by modeling the sill with shell elements 

The extreme values on Figure E.10 are summarized in Table E.6, from which it appears that 
smaller pressures are reached when the sill is modeled. Consequently, one may consider that 
working with the true boundary at the bottom is not relevant when dealing with the seismic 
analysis of lock gates. Nevertheless, this conclusion has to be further investigated. Indeed, it 
is evident from Figure E.10 that the two curves are quite dissimilar. This sounds logical, as 
the structure does not have the same rigidity and support conditions. In other words, the 
vibration frequencies and mode shapes are not identical in both cases, which implies that the 
interaction between the fluid and the structure will different as well. Consequently, one may 
not conclude a priori that the maximal resulting pressure is automatically lower if the true 
boundary conditions are used. 
 

 
Solution with 

true boundary Åª 
Solution with 

a sill Åh 
Rigid 

solution Å2 
Relative difference |1 − Åª/Åh| Ratio Åª/Å2 

Maximal value 1078.53	¨À	 1382.8	¨À	 375.2	¨À	 22	%	 2.9	
Minimal value −1079.15	¨À	 −1417.6	¨À	 −517.1	¨À	 24	%	 2.1	

Table E.6. Comparison between the extreme values for gate 1 supported by a sill or by cables 

In order to investigate further this last assertion, one can perform similar analyses with gate 2 
(Figure E.1). Indeed, in the previous case of gate 1, the structure was quite rigid and had a 
total width L of only 13.1	� (Figure 8.7). For this reason, the out-of-plane displacements .V 
occurring in the horizontal plane W = 0 (see Figure E.9) were quite moderate, so the effect of 
allowing for free backwards motions may be limited. However, in the case of gate 2, the 
structure is this time much more flexible, with a total width of 22.5	�. For this reason, the 
relative displacements .V between the gate and the sill may be attempted to be larger than for 
gate 1, leading to more severe consequences on the dynamic pressures induced by the seism. 
The results for gate 2 are depicted on Figure E.11. Even though they are quite dissimilar, it 
can be observed that the extreme values are not drastically different and are a bit smaller if the 
sill is properly modeled. 
 

 
Figure E.9. Out-of-plane displacements in the horizontal plane y = 0 

From the two cases presented above, it is hazardous to conclude that imposing a total restrain 
at the bottom of the lock automatically leads to a safe evaluation of the pressure field, even 
though this tends to be corroborated by the curves depicted on Figure E.10 and on Figure 
E.11. This is due to the fact the resulting hydrodynamic force is influenced by the contact 
conditions between the gate and the sill.   
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Figure E.10. Comparison of the numerical results for gate 1 if the boundary conditions are correctly modeled at the bottom 

 
Figure E.11. Comparison of the numerical results for gate 2 if the boundary conditions are correctly modeled at the bottom 
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Indeed, if more stiffer material properties are used instead of those listed in Table E.5, 
numerical simulations performed with LS-DYNA  have shown that higher water pressures were 
reached because of the shocks that take place between the gate and its support. Therefore, it 
can be said as a summary that assuming a perfect restrain at the bottom of the lock does not 
necessarily leads to a conservative evaluation of the seismic hydraulic forces. Doing so is 
only valid as a first approximation if the contact between the structure and the sill is provided 
by some flexible materials, such as wood or elastomers. If this is not the case, this approach 
may turns out to be unsafe19. 
 
As a final remark, it should be noted that modeling the true boundary conditions is also 
questionable at the lock walls. This may be roughly explained from Figure E.12, where the 
lateral supports have been approximately represented. It can be seen that the positive 
displacements of the structure are prohibited, because of the contact provided by the sealing 
device. Nevertheless, the backward motions are not always totally restrained, as there might 
be a gap between the extreme vertical frame and the wall. For this reason, as for the sill, the 
support is also not perfectly restrained along the + direction (Figure E.12). 
 

 
 

Figure E.12. Support conditions at lock wall 

From all the previous developments, it transpires that modeling the real conditions of a lock 
gate is not easy. Indeed, one has to account for the shocks that may occur against the sill and 
the lock walls, but with due consideration for the elasticity of the contact materials. 
Nevertheless, finding an analytical procedure accounting for such non-linear phenomena is 
quite unrealistic and working with finite elements seems to be unavoidable. Such a numerical 
approach is probably not required for a preliminary study of the structure, where the present 
approximate method may still be relevant, but this topic has to be more thoroughly 
investigated during the upcoming design phases. 
 
E.3.2. Case of an asymmetric configuration 
 
All the results presented in Chapter 8 were obtained under the hypothesis of a symmetric 
configuration, which means that the two gates limiting the lock chamber were perfectly 
similar. These ones have of course the same modal properties and vibrates in unison, which 
implies that the proper accelerations .í !W, X, S" are the same for + = 0 and + = Õ. 
Consequently, this is also the case for the hydrodynamic pressure. 

                                                                    
19 However, this last assertion has to be nuanced because of the damping effect due to the water confined 
between the gate and the sill. 
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Figure E.13.  Asymmetric configuration of the reservoir 

Nevertheless, except for standardization purposes, there is no objective reason for having two 
identical structures. Therefore, it is quite relevant to analyze the case of an asymmetric 
situation, where the upstream and downstream gates (respectively located in + = 0 and + = Õ 
on Figure E.13) are dissimilar. With such a situation, the accelerations .í(!W, X, S" and .í#!W, X, S" are not expected to be the same, which is also the case for the pressures `(!W, X, S" 
and ̀ #!W, X, S".  
 
On a mathematical point of view, it is obvious that (7.6) and (7.7) remain valid, but this is not 
the case for equation (7.8). Going back to the result given in (7.2), it can be seen that the 
hydrodynamic pressure has to be determined by finding a velocity potential ℋ!+, W, X, S" that 
satisfies the Laplace equation (7.3) with the appropriate boundary conditions. It is clear that 
the restrictions (a) to (d) associated to (7.3) are still holding, but the conditions (e) and (f) 
have now to be modified to account for the asymmetry of the problem. Indeed, they have to 
be replaced by: 
 

(e) 
>ℋ>+ = '-!S" + >.(>S  for + = 0 

The horizontal + component of the fluid velocity has 
to be equal to the one of the upstream gate. 

(f) 
>ℋ>+ = '-!S" + >.#>S  for + = Õ 

The horizontal + component of the fluid velocity has 
to be equal to the one of the downstream gate. 

 
Finding an analytical solution that satisfies all the previous requirements is not particularly 
difficult. For conciseness, the developments will not be provided here, but it can be shown 
that the flexible hydrodynamic pressure on the upstream gate (i.e. in + = 0 on Figure E.13) is 
given by: 

`�!W, X, S" = s s 2§�ℎ�L�Á�� ���!W, X" %coth!Á��Õ"� :W�.í(!W, X, S"���!W, X":Xò



Qó



Y�ñ
�u( 	�ñ

�u
  

(E.82) 

 − Y 1sinh!Á��Õ"� :W�.í#!W, X, S"���!W, X":Xò



Qó



& 
where ���!W, X" = cos!Æ�W" cos!à̅�X". In all the previous expressions, the notations Æ�, à̅�, Á�� and L� have the same meaning than in section 7.1.2. It is worth noting that if .í(!W, X, S" = .í#!W, X, S" as for a symmetric configuration, then (E.82) degenerates into (7.8) 
as it could be expected. Concerning the pressure acting on the downstream gate (i.e. in + = Õ 
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on Figure E.13), this one may simply be obtained by inverting the accelerations .í(!W, X, S" 
and .í#!W, X, S" in (E.82).  
 
From (E.82), it appears that the total flexible pressure acting on the gate in + = 0 is 
influenced by the accelerations of both the upstream and downstream structures, which means 
that there is a kind of coupling between them. Consequently, all the developments performed 
so far in chapters 7 and 8 are no longer valid. In particular, the vibration frequencies and 
mode shapes have to be recalculated by accounting for (E.82) instead of (7.8). Realizing such 
an adaptation is quite fastidious but may be achieved through the Rayleigh-Ritz method, as it 
was done in sections 7.3 and 8.2. Nevertheless, before starting this quite long calculation, it is 
worth wondering if it is really useful or not. Indeed, from a careful analysis of (E.82), it can 
be stated that: 
 
• the contribution coming from .í(!W, X, S" is multiplied by the factor coth!Á��Õ", which 

tends to unity if Õ/ℎ� → ∞. Moreover, as coth!Á��Õ" is an increasing function of � and P, the limit will be reached more rapidly for large values of these two parameters. 
 

• the contribution due to .í#!W, X, S" is weighted by 1/ sinh!Á��Õ", which comes very close 
to 0 with increasing values of the ratio Õ/ℎ�. Once again, as 1/ sinh!Á��Õ" is a decreasing 
function of � and P, the limit will be reached more rapidly if � ≫ and P ≫. 
 

Consequently, following a similar approach as in section D.1.2.3 of Appendix D.1, it 
transpires from the previous considerations that it is sufficient to deal with the dominant term 
of the series in (E.82), which is found for � = 0 and P = 1. This one will be denoted by [̀�!W, X, S" and may be simply derived by limiting the development to � = 0 and P = 1 in 
(E.82), so it is easy to show that: 

[̀�!W, X, S" = 4§�ºL +�í(!S" coth!ºÕ/2ℎ�" − �í#!S"sinh!ºÕ/2ℎ�", cos � ºW2ℎ�� (E.83) 

where �í(!S" and �í#!S" may be seen as the mean accelerations exhibited by the upstream and 
downstream gates respectively. In fact, the definitions are as follows: 

�í(!S" = � :W�.í(!W, X, S" cos � ºÕ2ℎ��:X
ò



Qó



			 ; 			�í#!S" = � :W�.í#!W, X, S" cos � ºÕ2ℎ��:X
ò



Qó



 (E.84) 

The curves showing the evolution of the two coefficients coth!ºÕ/2ℎ�" and 1/sinh	!ºÕ/2ℎ�" are plotted on Figure E.14, where it can be seen that they have already reached their 
asymptotic behavior for Õ/ℎ� ≥ 3. In fact, for Õ/ℎ� ≥ 3, coth!ºÕ/2ℎ�" ≈ 1 and 1/sinh	!ºÕ/2ℎ�" 	≤ 0.018. Consequently, in (E.83), if we want the contributions coming from the 
downstream and upstream gates to be at least in a ratio of one tenth, the amplitudes �í(!S" and �í#!S" have to satisfy: 

�í#!S"/ sinh!ºÕ/2ℎ�"�í(!S" coth!ºÕ/2ℎ�" ≥ 110 ⇔ �í#!S"�í(!S" ≥ 5.5			; 			Õ/ℎ� 	≥ 3 (E.85) 

The previous relation means that the proper accelerations of the downstream structure should 
be at least 5 times greater than those of the upstream one to have a non-negligible effect on 
the pressures appearing in + = 0. Such a requirement is a bit unrealistic for classical lock 
configurations, where the gates vibration properties are somewhat similar. 
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Figure E.14. Curves showing the evolution of coth(πL/2hs) and 1/sinh(πL/2hs) with the ratio L/hs 

Consequently, under the hypothesis Õ/ℎ� ≥ 3, it may be stated that the upstream and 
downstream gates do not influence each others. In other words, they may be said to be 
decoupled, which implies that the hydrodynamic pressure ̀ (!W, X, S" in + = 0 (Figure E.13) 
only depends on the proper accelerations .í(!W, X, S" of the upstream structure. This means that 
the second term in (E.82) may be omitted to get the following expression for the flexible 
contribution: 

`� = − s s­��∗ cos!Æ�W" cos!à̅�X"� :W�.í(!W, X, S" cos!Æ�W" cos!à̅�X" :Xò



Qó



�ñ
�u( 	�ñ

�u
  (E.86) 

in which ­��∗ = −2§�coth	!Á��Õ"/ℎ�L�Á��. A similar result may be derived for the flexible 
pressure in + = Õ simply by substituting .í(!W, X, S" by .í#!W, X, S" in (E.86). 
 
Furthermore, from a more careful analysis of (E.86), it appears that the expression is very 
closed to the solution (7.8) obtained for a symmetric configuration, except that this time the 
coefficient ­��∗  is used instead of ­��. However, for Õ/ℎ� ≥ 3, it may be shown that ­��∗  is 
practically equal to ­��. Therefore, all the results obtained previously in chapters 7 and 8 for 
a symmetric situation are still applicable to an asymmetric one, provided that Õ/ℎ� ≥ 3. 
 
In order to corroborate the previous conclusions, the three following asymmetric situations 
can be considered (see Figure E.15): 
 
• Configuration 1: as a starting case (Figure E.15a), one can examine a lock having a total 

length of 50	� and limited at the upstream side by the first gate described in 8.2.3. A 
flexible structure with a more important stiffening system is placed at the downstream 
location. The water level is of about 8	�, so as to have Õ/ℎ� = 6.25 ≥ 3. 
 

• Configuration 2: this intermediate situation (Figure E.15b) is the same as the previous one, 
except that the lock chamber has a length of only 16	�. Therefore, Õ/ℎ� = 2 < 3. 
 

• Configuration 3: as an extreme disposition (Figure E.15c), the same lock chamber as in the 
first case is analyzed, but this time the downstream flexible gate is replaced by an infinitely 
rigid structure. 
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(a) Configuration 1 (b) Configuration 2 (c) Configuration 3 

 
Figure E.15. Description of the three asymmetric configurations 

 
Figure E.16. Comparison between the numerical results obtained for a symmetric an asymmetric configuration (L = 16 m) 
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The purpose now is to compare the numerical results obtained for each of these three 
asymmetric situations with those derived for the corresponding symmetric one. Concerning 
the configurations 1 and 3 for which Õ/ℎ� ≥ 3, the curves showing the time evolution of the 
resulting pressure applied on gate 1 were found to be almost perfectly identical with the one 
obtained for the symmetric case and already presented on Figure 8.15. However, in the 
second configuration where Õ/ℎ� < 3, the discrepancy is much more important, as it can be 
observed on Figure E.16. In this case, it transpires that it is relevant to account for the 
coupling that may occur between the gates if the lock chamber is not long enough. 
 
It is worth mentioning that for the three situations described here above, the gates were 
assumed to be perfectly restrained at the bottom. The same configurations were also tested 
with structures totally free at the bottom and the conclusions were very similar to those 
detailed previously. 
 
E.3.3. Seismic analysis of an entire lock structure 
 
So far, in sections 8.1 to 8.3 as well as in Chapter 7, we have been dealing with structures that 
were in contact with a fluid on one side only. Nevertheless, as depicted on Figure E.17, a lock 
chamber is preceded by the upstream reach and followed by the downstream one. Except 
during maintenance operations where cofferdams may be used, these ones are rarely totally 
empty, which implies that the gates are usually surrounded by water on both sides. 
Consequently, during the longitudinal seismic excitation 'í !S", one should account for the 
hydrodynamic pressures in the chamber but also in the reach.  
 

 
Figure E.17. Representation of a complete lock structure 

In section 7.1.2, the total pressure `!W, X, S" appearing inside the lock chamber was derived 
for a symmetric configuration. Here above, the results have been extended to an asymmetric 
situation, so the pressure `!W, X, S" is already quite well characterized. The purpose is now to 
do the same work for the case of an infinite reach. 

E.3.3.1. Hydrodynamic pressures in a reach 
 
Before considering the seismic analysis of an entire lock gate, it is first required to go one step 
further by finding closed-form expressions for the total pressure ̀∗!W, X, S" appearing in a 
reach. As in equation (7.1), this one is given by the sum of three different contributions: 

`∗!W, X, S" = `Q∗!W" + `I∗!W, S" + `�∗!W, X, S" (E.87) 

where ̀ Q∗!W" and ̀ I∗!W, S" + `�∗!W, X, S" are respectively the hydrostatic and hydrodynamic 
pressures acting on the gate. Once again, the hydrodynamic term can be derived from (7.2), 
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where the potential function ℋ!+, W, X, S" may be found by solving the Laplace equation (7.3) 
with the appropriate boundary conditions. Working in the reference frame of Figure E.17, it is 
clear that the restrictions (a) to (d) introduced in 7.1.2 are still holding, but the requirements 
(e) and (f) have to be replaced by: 
 

(e) 
>ℋ>+ = '-!S" + >.(>S  for + = 0 

The horizontal + component of the fluid velocity 
has to be equal to the one of the upstream gate. 

(f) 
>ℋ>S ⟶ 0 for + ⟶ −∞ 

In an infinite reach, the hydrodynamic pressure has 
to decrease when moving away from the gate.  

 
The rigid solution to this problem was originally established by Westergaard [166] and has 
been applied by many other authors to treat the seismic behavior of dams with an infinite 
reservoir. As these equations have already been more formally redeveloped in [17], there is no 
need to reproduce them once again. Regarding the flexible contribution ̀�∗!W, X, S", this one 
may be evaluated in a very classical way by solving the Laplace equation. More information 
may be found in [17], where the derivation is performed in details. So gathering all these 
developments leads to the following results for the gate in + = 0: 

`Q∗!W" = −§�©!ℎH − W" (E.88) 

`I∗!W, S" = s!−1"��( 8§�ℎH!2P − 1"#º#	 cos =!2P − 1"ºW2ℎH ?�ñ
�u( 'í !S" (E.89) 

`�∗!W, X, S" = s s 2§�ℎHL� cos!Æ�W" cos!à̅�X"Á�� � :W�.í(!W, X, S" cos!Æ�W" cos!à̅�X":Xò



Q\



�ñ
�u


�ñ
�u(  (E.90) 

in which ℎH is the water level in the upstream reach and where the other notations have the 
definitions already given in (7.9). It is worth noting that the pressure is positive if it is acting 
in opposition with the + axis (see Figure E.17). So it is interesting to note that the 
hydrodynamic pressures in the chamber and in the reach always act in the same sense. Of 
course, this is not holding for the hydrostatic pressures. 

 
Now that all the pressures acting on a lock gate have been established, it is possible to realize 
the dynamic analysis of the structure depicted on Figure E.17. The approach is however 
slightly different from the one exposed in section 8.3. Indeed, this has to be done by 
accounting for some modifications on both analytical and numerical aspects. These ones are 
briefly described hereafter. 

E.3.3.2. Analytical analysis of an entire lock 
 
Concerning the simplified analytical approach, a similar procedure to the one exposed in 
section 8.3 can be applied. The goal here is not to perform this quite voluminous work, but 
simply to give some more information on the way to follow for achieving such an operation, 
which can be useful for future developments. 
 
Under the assumption that Õ/ℎ� ≥ 3 (which is usually the case for classical lock 
configurations), the upstream and downstream gates can be analyzed separately, without 
having to account for any coupling in the chamber. Consequently, for the upstream gate, 
going back to the equilibrium equation (8.39) leads to: 
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§SJ�.í( + 'í � + �� + �=>�.(>W� + 2 >�.(>W#>X# + >�.(>X� ? +s�Q,��w
�u( +s�9,��*

�u( = −`( (E.91) 

where ̀ (!W, X, S" denotes the total hydrodynamic pressure acting on the gate. It is given by 
summing up the contributions coming from both sides: 

`(!W, X, S" = `I!W, S" + `�!W, X, S" + `I∗!W, X, S" + `�∗!W, X, S" (E.92) 

where ̀ I!W, S", `I∗!W, S" and ̀ �∗!W, X, S" are given by (7.7), (E.89) and (E.90) respectively. The 
last term ̀ �!W, X, S" may be evaluated by (7.8), (E.86) or even (E.82) as these three formulae 
are reputed to give similar results if Õ/ℎ� ≥ 3. 
 
Consequently, to account for an upstream reach, it is evident from (E.91) that the only 
modification is due to the pressure term in the equilibrium equation. Furthermore, keeping 
developing the proper displacements .(!W, X, S" in accordance with (8.40), applying the 
virtual work principle leads to an equation that is similar to (8.53). Nevertheless, in this 
expression, the terms 527 and 1 have to be modified to include the additional contributions `I∗!W, S" and ̀ �∗!W, X, S". Indeed, instead of using (7.78), the virtual work performed by the 
external pressure ̀(!W, X, S" has to be modified in the following way to include the 
contributions coming from both sides of the gate: 

−�:X� i.�`I + `��:W
Qó



ò



−�:X� i.�`I∗ + `�∗�:W
Q\



ò



 (E.93) 

From this previous equation, it is clear that the new additional terms ̀I∗!W, S" and ̀ �∗!W, X, S" 
have to be respectively integrated in the definitions of 1 and 527. Apart from these two 
modifications, all the other mathematical developments performed in section 8.3 remain 
entirely applicable.   

E.3.3.3. Numerical analysis of an entire lock 
 
On a numerical point of view, the situation is more complex because representing an infinite 
upstream reach is not easy. Ideally, such an operation has to be achieved by modeling the 
fluid domain over a certain length ÕH. Doing so, the liquid is in contact with the flexible gate 
on the downstream side, while a non-reflecting boundary is imposed on the upstream one (see 
Figure E.18). With this condition, the pressure waves moving away from the gate are  
absorbed after travelling a distance ÕH and never go back in the direction of the vibrating 
structure, which is in fact what would happen in a true infinite reach. 
 

 
Figure E.18. Numerical model of an infinite reach 
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The problem is that LS-DYNA  only provides that kind of boundary conditions with arbitrary 
Lagrangian-Eulerian (ALE) formulations, so they are not available if the fluid is modeled as 
an elastic medium. Nevertheless, this difficulty can be overcome by resorting to an 
approximate approach. Let us consider a lock chamber with a water level ℎH and having a 
total length ÕH, bounded by a flexible gate on one side and limited by a perfectly rigid 
structure on the other one. For this asymmetric configuration (see Figure E.19), the flexible 
pressure is given by (E.82), in which .í(!W, X, S" and .í#!W, X, S" have been inverted and where .í(!W, X, S" is set to zero, as the upstream structure is assumed to be infinitely rigid. In other 
words, we have: 

`�!W, X, S" = s s2§� coth!Á��ÕH"ℎHL�Á�� ���!W, X"� :W�.í#!W, X, S"���!W, X":Xò



Q\



�ñ
�u( 	�ñ

�u
  (E.94) 

If it is further assumed that the lock chamber becomes infinitely long (ÕH → +∞), then coth!Á��ÕH" → 1 in the previous relation and in such a case, (E.94) is identical to (E.82). In 
other words, the flexible pressure in an infinite reach is the same as the one generated in an 
infinite lock chamber. In fact, there is no need to have ÕH → +∞ as it is obvious that the limit 
is already valid for ÕH ≥ 3ℎH. 
 

 
Figure E.19. Impulsive pressure in an infinite asymmetric lock chamber 

Concerning the rigid pressure `I!W, S" appearing in the lock chamber of Figure E.19, it is still 
given by the initial formula (7.7), i.e.: 

`I!W, S" = −§� ¤s 4ÕH!2P − 1"#º# cosh�!2P − 1"ºW/ÕH�cosh�!2P − 1"ºℎH/ÕH�
�ñ
�u( − ÕH2 ¥'í !S" (E.95) 

Nevertheless, it is not so straightforward to show analytically that (E.95) degenerates into 
(E.89) when ÕH → +∞. This was already discussed in section D.2.2.2 of Appendix D.2, 
where it was stated that the limit is also valid for ÕH ≥ 3ℎH.  
 
As a conclusion, it can be said that the rigid and flexible pressures appearing in the lock 
chamber of Figure E.19 with ÕH = 3ℎH are the same as those generated in an infinite reach. 
Consequently, to study numerically the seismic behavior of an upstream lock gate, it is 
sufficient to consider the model depicted on Figure E.20 and submit it to a longitudinal 
acceleration 'í !S". On this figure, it can be seen that fictitious rigid plates have been 
represented to close the fluid domains. In fact, it is not required to use real lock gates at these 
locations. Only non-flexible structures are simply needed there. Of course, doing so is only 
valid under the hypothesis of Õ ≥ 3ℎ�, otherwise it is required to account for the coupling that 
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may occur between the upstream and downstream gates. This hypothesis also justifies the fact 
that the lock chamber is only modeled over a length of 3ℎ�. 
 

 
Figure E.20. Numerical model for studying the seismic behavior of an upstream lock gate 

With the explanations given here above, it is possible to extend the simplified analytical 
approach to account for the presence of the upstream and downstream reaches. Moreover, 
realizing a numerical validation of these new developments seems to be quite accessible, as 
the model of Figure E.20 should be convenient to perform such an operation. 
 
E.3.4. Other components of the seismic acceleration 
 
So far, only the longitudinal component of the seismic acceleration has been considered. This 
one was denoted by 'í !S" and oriented along the + axis on Figure 8.2). Nevertheless, it is also 
required to work with the vertical and transversal components because a seism is a spatial 
phenomenon. As already mentioned in 8.1.2, these ones are denoted by Ní !S" and Oí!S". They 
are supposed to act respectively along the W and X axes (Figure 8.2). 
 
In the pre-design stage of a lock gate, it is quite common to neglect Ní !S" and Oí!S" because the 
associated pressures are smaller than those appearing under a longitudinal excitation 'í !S". So 
it is not of prior importance to include them in an analytical approach. Nevertheless, in view 
of potential future developments, it is probably interesting to provide here some more 
information on the way to proceed to extend the simplified method. 

E.3.4.1. Vertical ground acceleration 
 
It is clear that under a vertical ground acceleration, the gate may be assumed to be quite rigid, 
so that the fluid-structure interaction should be relatively modest. Consequently, the flexible 
pressures ̀�!W, X, S" and ̀ �∗!W, X, S" appearing in the chamber and in the reach respectively 
may be expected to be negligible. It can be shown [17] that the formulae (E.82) and (E.90) 
remain applicable to evaluate `�!W, X, S" and ̀ �∗!W, X, S", even when dealing with a vertical 
acceleration. Furthermore, it is worth recalling that the pressure is positive when it is oriented 
in opposition with the + axis. Consequently, the flexible contributions induced on both sides 
of the gate always act in the same sense (see Figure E.21) and have additive effects. 
 
Concerning the rigid impulsive contributions `I!W, S" and ̀ I∗!W, S", it is demonstrated by 
Buldgen [17] that they simply vary linearly with the depth. For this reason, in static analyses, 
they are often applied in conjunction with the hydrostatic pressure. These terms have the 
following expressions: 

`I!W, S" = §�!ℎ� − W"Ní !S"					; 					`I∗!W, S" = −§�!ℎH − W"Ní !S" (E.96) 
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where ℎ� and ℎH are the water levels in the chamber and in the reach respectively. This time, 
these two pressures act in opposition and partly compensate each others, which is a non 
negligible advantage for the design.  
 

 
Figure E.21. Hydrodynamic pressures induced by a vertical seismic acceleration 

From the previous developments, it is clear that the vertical acceleration is not attempted to be 
responsible for a large increase of the resulting forces acting on the gate. This is due to the 
fact that the vertical stiffness of the structure is quite important, but also because of the partial 
cancellation of the rigid pressures acting on its two sides. For this reason, it does not seem of 
prior importance to include Ní !S" in a pre-design tool for lock gates. However, this work is 
quite easy to realize, as only the vector 1 in (8.53) has to be corrected to account for the new 
formulae (E.96) giving the rigid impulsive action in the present case. 

E.3.4.2. Transversal ground acceleration 
 
In the case of a ground acceleration Oí!S" acting along the horizontal X axis (Figure 8.2), it can 
also be argued that the structure has a sufficient transversal stiffness to neglect the fluid-
structure interaction. However, for completeness, one can try to examine the flexible 
pressures ̀�!W, X, S" and ̀ �∗!W, X, S" induced on both sides of the gate (see Figure E.22). Inside 
the lock chamber, it may be mathematically demonstrated that (E.82) is still valid, but the 
situation is more complicated in the reach. If this one has an infinite length, then is clear that 
the lock walls in X = 0 and X = L will be submitted to a uniform seismic acceleration Oí!S" 
over a certain finite length ÕH (see Figure E.23), but after this distance, the effects of the 
earthquake will progressively disappear. 
 

 Oí!S" 

 
Figure E.22. Hydrodynamic pressures induced by a transversal seismic acceleration 
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Consequently, Oí!+, S" is a decreasing function of + and solving the Laplace equation (7.3) 
with the correct boundary conditions is mathematically quite difficult. Nevertheless, under the  
assumption that ÕH is sufficiently large, (E.90) may still be used as an approximate solution 
for the flexible pressure in the reach. Doing so, it is worth noting that ̀ �!W, X, S" and `�∗!W, X, S" act in the same sense, so their effects are additive. 
 
Regarding the rigid contributions, the fluid equation (7.3) inside the lock chamber may be 
solved quite easily. The solution is very similar to the one obtained in the case of a 
longitudinal acceleration 'í !S" and the following relation may demonstrated [17]: 

`I!W, X, S" = −§¤X − L2 +s 4ß�#L cosh!ß�W"cosh!ß�ℎ�" cos!ß�X"
�ñ
�u( ¥Oí!S" (E.97) 

where ß� = !2P − 1"º/L. The derivation of a closed-form expression for `I∗!W, X, S" is more 
difficult, as it should be accounted for a non-uniform distribution of the seismic acceleration Oí!+, S" along the lock walls. Once again, assuming that ÕH is quite large, the hydrodynamic 
pressure near the gate should be correctly approximated by replacing ℎ� by ℎH in (E.97).  
 

 Oí!+, S"  
Figure E.23. Distribution of the seismic transversal acceleration along the lock walls 

From the previous considerations, it transpires that some approximations are made to treat the 
case of a transversal acceleration, but it is not of prior importance to have a rigorous 
approach. This may be justified by the following arguments: 
 
• The transversal gate stiffness is usually sufficient to limit the fluid-structure interaction. 

Therefore, the flexible pressures `�!W, X, S" and ̀ �∗!W, X, S" should not be determinant. 
 

• The rigid contributions ̀I!W, X, S" and ̀ I∗!W, X, S" act in opposition (see Figure E.22), so 
there is a partial compensation. 
 

• From a more careful analysis of (E.97), it appears that the pressure distribution along the 
transversal X axis is antisymmetric (see Figure E.22). Consequently, the resultant force 
applied on the entire gate is equal to zero.  

 
For the three previous reasons, the transversal component of the seismic acceleration is not 
expected to produce an important increase of the resulting forces acting on the gate. 
Consequently, accounting for Oí!S" in the pre-design stage is probably not particularly 
relevant20. However, this should not be an overwhelming task, as the only modification to 
realize in the virtual work equation (8.53) is to correct the vector 1 to include (E.97). 

                                                                    
20 This component of the seismic acceleration was even neglected for the seismic pre-design of the new locks in 
the Panama canal. 
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