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Abstract

Abstract

The design of navigation lock gates requires tooact for accidental loads such as ship
impacts or earthquakes, but it is quite difficaltiandle with them. The most satisfactory way
to investigate their effects is to perform numdrisenulations. Such an approach can be
justified at the late design stage, but it is ga@tenmonly accepted that it is not well suited
during the conception process. This may be justiig the calculation and modeling efforts
that are usually prohibitive. Consequently, the amthis thesis is to develop simplified
methods to circumvent these difficulties. The disgeon is divided into two main parts.

The first part is devoted to ship collisions onn@and mitre gates. An analytical procedure is
followed to derive the evolution of the impact ferwith the vessel penetration. Two different
solutions are derived to get the collision resistarm he first one is done under the assumption
that there is only a crushing of some structuraimants in a confined area located near the
contact point. This corresponds to a local defognmode because the damages remain
localized in a small part of the gate. Using sushassumption, the resistance is evaluated by
the super-elements method. The second calculaibased on the hypothesis that there is an
overall bending motion of the structure, which nbayseen as a global deforming mode.

Once the local and global solutions are obtainéd, final gate resistance is found by
combining them. In order to validate this analytieaaluation, comparisons are made with
finite element simulations. The agreement with tin@merical curves is found to be
satisfactory for a pre-design stage, which tendsotooborate the collapse modes considered
in this thesis. Although this is already an impbottachievement, a challenge for the future
developments would be to have a better integrationpture in the global mode.

The second part of the dissertation is devotedh&o deismic analysis of lock gates. The
preliminary study focuses on fluid-structure int#i@n in large reservoirs with two opposite
flexible walls. As a first step, the Rayleigh-Ritmethod is applied by using the dry
eigenmodes of plates as generating functions, wieiatis to the wet modal properties. The
virtual work principle then allows for a dynamicadysis of the structure. As a result, the
hydrodynamic pressure acting on the flexible walscomputed. Comparisons with finite
element solutions show a quite satisfactory agreeémealmost all the cases. In addition to all
these developments, the influence of various gedcaétparameters on the fluid-structure
interaction is investigated.

After dealing with reservoirs, the stress is putpteme lock gates with a single plating. The
procedure followed during the analytical derivatisnnearly the same. The Rayleigh-Ritz
method is used this time to get the dry modal prigseof the stiffened structure. For a given
accelerogram, the time evolution of the hydrodyrapriessure is evaluated by the virtual
work principle and validated by comparisons withmauical results. Apart from these
developments, some particular points are also tigaged, such as the added mass method.
The validaty of this approach is questioned andesewamples are provided as a matter of
justification. Finally, a method is proposed for easier integration of the seismic action in
the design of lock gates.
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CHAPTER 1. General introduction

1.1. Context of the research

From statistical data compiled lEwROSTAT, it is a fact that the freight transport demand is
constantly growing since 1995. According to Figlirga,76 % of the European goods transit
by road and only % by water. Of course such a situation is not vidiBeause the road
capacity is progressively reaching a maximum. Tloglah split has therefore to be changed,
and a serious alternative is to develop the riksrdport. This choice can be motivated by the
following reasons:

* The environmental impact is reduced: in Europe, riveed traffic is responsible for a
guarter of all the C@emissions and also produces a lot of other gamksaatile particles
that reduce the air quality. According to the Ewap Environment Agency [56], although
stricter international emission standards have hmdsished during the last decades, the
pollution emitted by the road sector in terms of,G€ections is still four times higher
than the one attributed to waterborne transpoguie 1.1b).

* Even though it is not easy to have an objectiventifieation, Rohacs and Simongati [136]
estimate that the noise nuisance due to ships tigedevant in comparison with other
transport modalities such as trucks, planes andrahs many people are already leaving in
noisy environments, this is a non negligible soadtantage.

 From a compilation of statistical data [136], itpaprs that the number of accidents,
fatalities or injuries is very small regarding atiieansport modes. Consequently, inland
waterway ensures a high degree of safety, partlgulacase of dangerous goods.

* Unexpected congestion problems are very seldormland waterways, which reduce the
risk of accident and the energy consumption. Moeeowvhis allows for a better
organization of the transportation, as the timeaunegl for conveying goods from one point
to another is not influenced by hazardous delagstdypotential traffic jams.

* In terms of land take, for a given carrying capgaiaterways are more efficient than road
or rail.

In addition to the points listed here above, ibften claimed that the total cost (including
infrastructure) is lower if goods are conveyed Igtev. Nevertheless, this assertion seems to
be arguable for short distances because contraglicttormation is sometimes found when
reading articles. So this argument has to be cllyefonsidered.

For the reasons listed above, it appears that b@tee transport is an interesting alternative
to road. This is particularly true in Europe, whére five biggest sea ports are all connected
to more tharB7 000 kilometers of navigable inland waterways. Furthem it is a fact that
this network is currently under-utilized, so thetgrdial development is not negligible. This
policy is precisely the one of the European Comioiigswho has decided to promote the
waterborne transport through tkelADES | andil action programs. Amongst all the measures
suggested by these plans, one of them consistaiildifg new locks or improving the
existing ones. On a practical point of view, thisncbe illustrated by some important
achievements such as the "Seine-Nord-Europe" grimjdérance, the "Seine-Scheldt-East” in
Wallonia, the Lanaye lock in Belgium...

! European Statistics Institutéttp://epp.eurostat.ec.europa.eu
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(a) Modal split of freight transport in Europe
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(b) CO; emissions [56]

123
309 —
22,8
Road Rail Inland
transport transport  navigation

Figure 1.1. Freight transport properties

The direct consequence of such policies shouldhbeaease of the waterborne traffic in the
upcoming years. This means that the number of i&egsssing though locks will be more

important, which is also the case for potentialideats. Therefore, in order to keep a
sufficient level of safety and to avoid any unexpdanconvenience for the navigation, locks
have to be dimensioned more carefully. To achidiggoal, engineers need to have efficient

tools for designing such structures.

From the previous presentation, it can be saidttieatontext of this research is closely linked
to the design and the calculation of lock structuteut with due consideration for stricter

safety requirements in relation with the futurer@ase of the waterborne traffic.
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CHAPTER 1. General introduction

1.2. Aim of the research

Most of the international standards impose to aersihe effects of accidental actions when
calculating structures. According to Eurocode (,[8fese ones araisually of short duration

but of significant magnitude" and are'unlikely to occur on a given structure during the design
working life". Nevertheless, accounting for them is nowadaysraod more required. This is
mainly due to exceptional events such as floodsns, earthquakes... that take place at
higher frequencies and therefore increase the pililyaof damaging the constructions.

This last observation is also valid for locks asdjuite problematic in the context exposed in
section 1.1. Indeed, as the future developmertieimaterborne transport requires to improve
the safety level of locks, these structures haveetaarefully studied within the frame of

exceptional loads. This point is particularly sémsi because any failure may have important
economic, environmental and social consequenceste Movestigations are therefore

valuable, but considering all the possible exceyatidoads is unfortunately an overwhelming
task, so a choice has to be made.

It is known that lock gates are statistically imigakcby ships several times per year, but these
collisions remain quite negligible. These structuaee also involved in major collisions once
or twice in their lifespan20 to 40 years), but there is no consensus on the waydaouat for
them during the design. This is also the case fothquakes, as their effects remain
complicated to integrate in the conception phapescipally because of the difficulty to
guantify them. Consequently, these two accidemi@dls are definitely key issues and this is
why we have decided to focus the research on tR@mexample, they constitute the main
difficulties for the new lock gates of the Panamaaal, which is one of the most important
project of civil engineering in the world.

Of course, the purpose is not to design lock gsiles that they are capable to withstand ship
impacts or earthquakes without damage. On the aontthe idea is that the potential
consequences of such events have to remain propai®. To respect this requirement, it is
necessary to reach a sufficient security level,tbatoverall cost has to remain as reasonable
as possible. Therefore, one of the crucial phaskepre-design of the structure, where the
general shape and the main geometrical dimensiotine @ate are chosen. It is quite intuitive
that this operation will be more successfully acbé if it is possible to perform detailed
analyses including all the loads acting on thecstme. Doing so usually requires the use of
finite element software to properly investigate #fiects of ship impacts and earthquakes.

However, working with numerical tools is not alwayassible in the pre-design stage because
of time and cost limitations. Indeed, building fenelement models, running simulations and
post-processing the results may be a quite longeghare. This is particularly true when
dealing with ship impacts and earthquakes, for Wwitaite complex dynamic analyses are
usually required. In addition, as a structural myation is often desired, an iterative
procedure has to be followed and it is definitelgt measonable to restart numerical
simulations at each step.

Another problem is also due to the difficulty offideng the most critical scenario when
dealing with accidental loads. In the case of g sfullision for example, once the vessel
properties have been chosen, the main questiomimg ggmains to detect the impact location
causing the most severe damages to the gate. Ysmalhy different situations have to be
tested separately and using finite element is lnedys convenient.

12



CHAPTER 1. General introduction

Regarding all these difficulties, an option to al/them could be to neglect accidental loads
during the pre-design phase. In this way, the sirat configuration is first chosen by
considering the main actions and is later checkatth whe exceptional ones. If these
verifications are not successful, then a reinforeeiis required. Of course, such an approach
could only be efficient in a limited number of casehere the magnitude of the accidental
actions is very small with respect to the othergthermore, the problem of finding the most
severe scenario is not solved.

The previous considerations point out that an ieffic tool is missing for integrating the
seismic action and ship collisions in the pre-desiflock gates. The aim of the research is
precisely to solve this problem by developing sifigd analytical tools allowing for:

* A quick estimation of the force opposed by pland amtre lock gates when they are
impacted by a ship of given shape. The goal isssess the crushing resistance as a
function of the vessel penetration for any impawhp

* A rapid prediction of time evolution of the totaldrodynamic pressure applied on a plane
lock gate during a seism. The purpose is to hawenaiytical evaluation that also accounts
for the proper vibrations of structure.

Of course, it is illusory to believe that these glifred tools will provide the same accurate

results than finite element software. Neverthelsgsh a precision is not really required at the
pre-design stage. In fact, the analytical appresicdomplementary to the numerical one.

13



CHAPTER 1. General introduction

1.3. Organization of the thesis

The dissertation is divided into three main partse first one is concerned with ship impacts
on lock gates, the second one deals with the seidesign, while the last one contains all the
appendices.

The first part of the manuscript contains four dbep numbered frond to 5. Chapter 2 is
entitled Background for the ship collisions on lock gatesand starts by reviewing some of the
methods currently available in the literature todst vessel collisions. It also gives some
general indications for the evaluation of the alikinetic energy and exposes the fundamental
theorems that are required to develop an analytiedhod. These theorems are applied in the
Chapter 3Analytical derivation of the collision resistance of plane lock gates to treat the case
of a gate with a simple plating and an orthogorifleaing system. The resistance is first
calculated in the local deforming mode by dividihg structure in large components called
super-elements. This solution is then coupled thghone evaluated in the global mode to get
the final resistance of the gate. As a matter tflgtion, these analytical results are compared
with those provided by finite element software. Bagne procedure is applied in the Chapter
4 to treat the case of mitre gates. Finally, thactgsions of all these investigations are
reported in Chapter 5.

The second part of the manuscript is also divided four chapters number frog to 9.
Chapter 6Literature review on the seismic design of lock gates presents a general overview
about the fluid-structure interaction in varioutuations. The case of dams, liquid storage
tanks and lock gates are considered. As a prelmittathe seismic analysis of lock gates,
Chapter 7Seismic analysis of large flexible reservoirs proposed an analytical method to
evaluate the total hydrodynamic pressure in a vegemade of two parallel rigid walls and
two flexible ones. The goal of this chapter is twaunt for the effect of the structural
vibrations on the seismic pressure and to investighe influence of some geometric
parameters. Comparisons with finite element resates made to validate the analytical
developments. After that, in the Chapte8asmic analysis of plane lock gates, a similar work

is done for these structures. The Rayleigh-Ritzhatis first applied to evaluate the dry
eigenfrequencies and eigenmode shapes. The amblglérivation of the hydrodynamic
pressure is then performed through the virtual waikciple and is validated by numerical
comparisons. In addition, the well-known added masthod is also investigated. Finally,
this second part is closed by Chapter 9 that suimesathe conclusions.

The third part contains five appendices numbereohfd to E. All of them are related to one

of the chapters mentioned here above. They mairdyigle some additional mathematical
developments that are included to have a kindtahts-alone" manuscript.
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Ship impacts on lock gates
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CHAPTER 2. Background for the ship collisions on lock gates

CHAPTER 2.

gates

Background for the ship collisions on lock

The purpose of this chapter is to give a general insight about ship collisions on lock
gates. As this topic is not really documented in the literature, it seems important to
properly expose the methods and the theoretical bases available to study ship
impacts on such structures.

To do so, a general review of the existing approaches is first proposed in section
2.1. As they are extensively used in this dissertation, the focus is made on the
simplified analytical techniques and on the finite element method. In particular,
the problem of defining realistic failure criteria is briefly discussed.

In section 2.2, some indications are given on the way the initial kinetic energy of
the striking vessel should be chosen. This is achieved by determining the mass and
the striking velocity of the ship. To do so, a detailed compilation of the
recommendations available in the literature is proposed to set these two
parameters.

Finally, section 2.3 presents the theoretical method followed to evaluate the
internal energy dissipated by the gate during the collision. The fundamental
theorems used to establish the simplified analytical approach are also exposed in
this section.

*kk
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CHAPTER 2. Background for the ship collisions on lock gates

2.1. Review of the existing methods

The approaches that can be used to study theianlligsistance of lock gates are the same as
those already listed by Zhang [180] in the field shfip-ship collisions. Amongst them,
experimental methodsre probably the most reliable way to evaluatectiibsion resistance.
Usually, they consist in studying the structuraingmnents (stiffeners, plates...) individually,
because performing a true scale experiment is lanieal and economical challenge. In the
literature, most of the available test results Haeen realized for the shipbuilding, in order to
check the safety of vessel regarding oil spills.ohlgst others, experiments were conducted
by Akita et al. [3], Amdahl [8], Cho et al. [31]eRersen et al. [130] or Qvist et al. [131] . In
an illustrative purpose, Figure 2.1 shows the deédion of a tanker double side collided by a
rigid ball simulating a striking bow.

iure 2.1. Experimental study of a tanker double side [131]

Apart from experimental approaches, there are ®maining other possibilities to evaluate
the collision resistance: the finite element methadd the simplified analytical techniques.
Both of them are used in this thesis, numericaltsmts being used as a validation for the
analytical ones. They are briefly presented heeeaft

2.1.1. Finite element methods

Finite element methods are a powerful tool to stskiip collisions on lock gates. They allow
for a quite refined study of the local strains astiesses that develop inside the structure,
which is always valuable for the design procediest of the time, they lead to accurate and
reliable results that are in good accordance wipegments, but this is not always true.
Ideally, one should always try to corroborate nuoatisolutions with physical ones.

Another advantage of finite element methods isdhidity of investigating complex models,
in which a true representation of the support comaé and of the striking vessel can be
included for example. Nevertheless, this has tonbanced by the computing capacities
required to perform very refined analyses, whicpasticularly true in the field of collisions
due to the great number of elements usually reduire addition, such dynamic problems
have to be solved using step by step integratitwessy which is also time demanding.

As a matter of illustration, the equivalent Von Bsstresses in a collided lock gate are
depicted on Figure 2.2. They have been obtaineasbyg the commercial softwars-DYNA,

but many other codes are also available suchBagus or MSC DYTRAN. In the literature,
these software have been used in various domaims. plirpose here is not to realize a
detailed review of all the available publicationg ko give some typical illustrations of what
can be achieved using these numerical tools. Fample, in the field of shipbuilding,
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CHAPTER 2. Background for the ship collisions on lock gates

numerical simulations were performed by Oh etHl6] to study ship-ship impacts, by Alsos
and Amdahl [7] to investigate ship grounding or Dgnner et al. [44] for ship-submarine
collisions. In the field of structural engineerirghip impacts on lock gates were considered
by Le Sourne et al. [99] or by Buldgen et al. [22d more recently, the damages caused by
an accidental collision between a vessel and thkejaof an offshore wind turbine was
studied by Vredeveldt et al. [160].
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Figure 2.2. Equivalent Von Mises stresses in a collided lock gate (MPa)

Nevertheless, one of the main challenge when wgrkiith finite element is to model rupture
consistently. This is quite important, because niledj realistic failure criteria is closely
related to the need of designing crashworthy atrest Therefore, in order to evaluate the
collision resistance of the struck gate, it is able for engineers to perform realistic finite
element simulations and a crucial point is to usgenial laws that can properly represent the
true behavior of steel.

In the literature, this problem has been studiedaime extent and is not easy to solve. This
can be illustrated by the work performed by Ehkdral. [47], where the impact responses of
three different ship side structures are analyzgddrforming finite element simulations
usingLS-DYNA. The curves showing the crushing force as a fancotif the penetration are
obtained by considering the same non linear ss&ag relation but three different failure
criteria defined in accordance with the mesh size numerical results are then compared to
those collected from large scale experiments. Timelasions of this benchmark study are:

» Considering the same rupture criterion but variowssh sizes leads to different force-
penetration curves. This tends to show that theeatidefinitions of the failure criteria are
not consistent for all element sizes.

» Considering the same mesh size but various ruptuteria leads to different force-
penetration curves, which implies that choosing @nanother law is not equivalent.

» There is a contradiction in the fact that the sti®tsain curves are independent of the mesh
size, while the failure strain is determined in@dance with the elements lengths.

In order to overcome all the previous difficultidshlers and Varsta [48] suggested a new
method to get a realistic stress-strain relatiotil inacture. The material law is obtained by
performing a tensile test on steel dog-bone spewmBuring this experiment, an optical

18



CHAPTER 2. Background for the ship collisions on lock gates

measuring system is used to capture the surfapbadesnents over a recorded area, which
allows to define the strain reference length asnation of the pixel size (Figure 2.3).

Figure 2.3. Definition of the strain reference length as a function of the pixel size [48]

By post-processing these measurements, it is pessilget the true local deformation as a
function of the tensile force applied on the spemmFurthermore, dividing this force by the
actual cross-section area provides an evaluatitimedfrue stress. Combining these results, the
material law and the rupture criteria can be deriae a function of the strain reference length.
These curves may then be implemented within aefiaiement software. This was achieved
by Ehlers and Varsta [48], who reproduced theisiteriests usings-DYNA and calibrated the
element length in accordance with their previouslifigs. Doing so, they obtained numerical
results that were in incredibly good agreement withexperimental ones.

In another paper, the same operation was perforoyeBhlers [46] to study the collision
response of a circular plate. Here again, the teswére perfectly satisfactory. In addition, it
was shown that the numerical rupture pattern wagowd agreement with the experimental
observations, which indicates that the erosive dansisting in deleting ruptured elements is,
in this case, an adequate way to simulate fragitopagation.

J 11
1

Figure 2.4. Experimental and numerical rupture pattern of the plate specimen [45]

From the previous considerations, it transpires thadeling failure properly is not easy. Of
course, the methodology suggested by Ehlers anst&/f8] is a powerful way to overcome
this difficulty. Nevertheless, such an approachunesg to perform sophisticated tensile tests
and to carefully post-process the measurementghwhinot always possible during the pre-
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CHAPTER 2. Background for the ship collisions on lock gates

design of lock gates. For this reason, it remaungegcommon to resort to other easier laws,
such as the one suggested by Lehmann and Pescli@3afor example (see section 3.3.4).

2.1.2. Simplified analytical methods

Simplified analytical methods have been developecbimpensate the drawbacks of too time
demanding numerical simulations. Therefore, theytgpically well suited in the pre-design
stage of a structure, when an approximate evaluatidhe collision resistance is sufficient.
In the literature, the available analytical develgmts are mainly devoted to evaluate the
crashworthiness of individual structural elemergach as plating components, girders,
frames, bulkheads... (see secti@3, 3.3, 3.4 and 3.5 for more detailed reviews) dmme
papers have also been published to treat larg#iresnsuch as ship or lock gates.

According to Zhang [180], some of the earliest difiggd methods were developed by
McDermott et al. [107], Kinkead [86] and RecklintBp] in the field of ship-ship collisions.
More recently, Le Sourne et al. [98] also focusedtus topic by applying the super-elements
approach. Regarding the analytical techniques &duate the impact resistance of lock gates,
the initial work realized by Le Sourne et al. [99s been completed and extended by
Buldgen et al. to plane [22] and mitre [24] lockega Usually, these simplified methods give
a reasonable prediction of the resistance in a \@rgrt time. They are classically
corroborated by comparisons with finite elementwdatons, but using experimental results is
of course more recommended as a matter of validatio

The theoretical basis for developing analytical rapphes is nothing else than an energy
balance. During the collision on a lock gate, iagsumed that the ship keeps on moving as
long as its initial kinetic energl, has not been entirely dissipated by the struciteen the
equilibrium is reached, we have:

Eog = Eint (2.1)

where E;,;; is the internal energy of the gate. At this momehé vessel does not move
anymore. Nevertheless, it is worth noting thatghevious energy balance is only valid when
there is no other dissipative effect involved ie &ollision process, which means that two
other hypotheses are necessary.

As a first assumption, the striking vessel is as=lito be perfectly rigid. This seems to be
reasonable, as the stiffness of the most criticgl s usually attempted to be more important
than the one of the gate. Moreover, doing so iseostive, as the total initial kinetic energy
of the ship has to be entirely dissipated by thpaaoted structure. Nevertheless, it is worth
noting that some analytical methods have alreadsn bestablished to account for the
deformability of the bow. These ones were develdpeaghip-ship collisions, as the rigidities

of the two vessels may be quite similar in thiseca8 general presentation of the

methodology is done by Le Sourne [97] and manyradleéails can be found in references [8],
[94], [98], [103], [104] and [130].

The second hypothesis consists in neglecting albther phenomena that may also dissipate
the initial kinetic energy,. These ones have been carefully investigated mpissen [140]

in the case of ship grounding on rocks. In the gmeanalysis, an additional term that could

be potentially included in the energy equilibriutl() is the friction that may appear between

the vessel and the gate, but also at the supplotte ctructure. This is particularly the case if

sliding is expected on the lock walls. Equatiori)2s then modified:
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Eine + Ef = Eg (2.2)

whereE; is the energy dissipated by friction. Neverthgléss evaluation of; is not easy
because it is influenced by many other paramesei) as the roughness the lock walls, the
seal integrity... Consequently, this additional tedwtion is neglected in the present method.
Doing so is a conservative approach, as it tends¢oestimate the structural deformations.

From the previous considerations, it appears timatctucial points of the analytical methods
is to consistently derivé, andE;,;. The first one can be evaluated by consideringhss
and the velocity of the striking vessel (sectioB)2while the second one may be obtained
with help of some fundamental theorems (sectioh 2.3
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2.2. Evaluation of the initial Kinetic energy

To evaluate the initial kinetic energy, it is reepd to define the total mags, and the initial
velocity V, of the striking ship, but there is no clear recaandation on the way these
parameters have to be chosen. Of course, wherkayéte has to be checked against collision
events M, andV, can be set by the client according to the secleitgl he wants to reach. As
an example, for the new locks that are currentiit Btithe Panama canal, it was contractually
imposed [124] to the designers to consider a thigdlacement 0160000 tons and a velocity

of 0.5m/s for the collisions analysis. Neverthele3$, andV, are not always so clearly
specified. In this case, it is the responsibilifytiee designers to determine reasonable values,
but this is not straightforward. To achieve thislgsome indications are however of interest
and are briefly detailed hereafter.

Regarding the magsH,, it has to be chosen in accordance with the vesbal are currently
navigating on the inland waterway where the consuiéock is located. A detailed analysis of
the traffic could therefore be of precious helpthk required statistical data are not available,
some other tools may used. In Europe for exampke, BCMT has published a resolution
[55] in which the waterways are classified accagdim different parameters (see Table A.1 in
Appendix A.1). According to this table, if a newckohas to be built on a class Va waterway
for example, then the designer knows tMatranges fron1500 to 3000 tons.

Concerning the velocity,, there is no particular recommendation on the wéyas to be
chosen if not contractually specified. Nevertheletss have a better idea df,, some
information has been collected in the literaturdyicontact with designers. It is summarized
hereafter:

* In 2011, Meinhold [108] investigated numericallyetbrashworthiness of a mitre gate for
the German Federal Waterways Engineering and Rdseastitute gaw). All the
simulations were conducted by considering an invgdocity of 1 m/s.

* In 2002, Le Sourne et al. [99] performed numergaiulations to investigate plane lock
gates crashworthiness. Two different ships weresidened for this study. The first one
was a carrier travelling at m/s, while the second one was a passenger vessel with
velocities ofl m/s and2 m/s.

* In a quite old French ministerial circular from DOBRL11], it is claimed that the devices
protecting locks against collisions have to be abMithstand an impact at75 m/s.

» According to the German standard DIN 19703:19994] dealing with the design of
lock gates, the collision protection devices havbd able to withstand an impact by a ship
travelling at the speed 0f9 m/s for motor barges antim/s for pushing units.

* In 2013, the U.S. Army Corp of EngineerssACE) made different full-scale experiments
to study ship impacts on lock walls. The results @escribed in references [11] and [129].
Even if these analyses are not directly relatethéogate, they give however an idea of
what could be the speed inside the lock chambeota of 44 collisions experiments were
performed. The initial velocities for these teser@ranging frond.15 to 1.2 m/s.

2 European Conference of Ministers of Transport
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* For the new lock that is currently constructed wozcRamet on the Meuse River
(Belgium), the design has been done by considermigitial velocity 0f0.75 m/s [145].

« According to theceTMEF [26], the drawing speed of a vessel is ranging ffod5 m /s to
1 m/s, depending on its tonnage. This gives an idea@¥elocity range near a lock.

* As mentioned earlier, for the design of the setooks in the Panama canal [124], the
striking speed was fixed .5 m/s for a vessel with a displacement1d0000 tons. An
additional analysis with a ship @00000 tons and a velocity of m/s was also required.

Finally, it is worth mentioning that another methiod designing lock gates against collision
may be to consider an equivalent static force f@yapn the structure. Such an approach is
followed in the United States for example, where thS. Army Corps of Engineers has
published several manuals (see references [152] [868] for more details) providing
information dealing with ship collision on lock gat A similar method is also exposed in the
European standard EN 1991-1-7 [51] dealing withdsotal actions on structures. The design
values of the force are given according to thesclasthe inland waterways. They were
derived for a striking velocity of abodtm/s and by assuming that the energy dissipated by
the structure was negligible. Of course, this igM@r massive structures such as bridge piers
for example but is not realistic for lock gatescept in case of minor impacts. Consequently,
one has to be extremely careful before applyinge@mivalent static force method. These
approaches are often too conservative or not atarsugh.

As a conclusion, from all the references mentiohe above, it transpires that a reasonable
initial striking velocity has to be chosen withirrange 0f0.15 to 2 m/s. OnceM, andV, are
fixed, it is suggested in [26] to correct theseuesal to account for the two following
phenomena:

» During the motion of the ship inside the lock, soweder is also displaced by the vessel,
which means that the total mass is no more equdd,tout has to be emphasized by a
mass coefficient,, = 1 to getC,,M;. C,, depends on the shape of the striking stem and a
value of1.2 is recommended in [26].

* When the ship is entering the lock, some wateroisfined between the stem and the
structure, which creates a piston effect and aateolu of the striking velocity. Therefore,
Vo, may be reduced by a confinement coeffici€pt< 1 to getC.V,. EvaluatingC, is
difficult, as it depends on the shape of the bod am the lock configuration. In [26], it is
suggested to chooge = 0.9.

Finally, accounting for the previous consideratiotie total initial kinetic energ¥, of the
striking vessel is given by:

C.Vp)? MV
( 620) = C2M V2 ~ 0.97 —2 (2.3)

Ey = (CmMs)
From equation (2.3)E, is only 3 % lower than the uncorrected valdgVZ/2. It seems
therefore more relevant to carefully choose theeslofM, andV, than those of,, andC,.
It is worth recalling that, has to be entirely dissipated by the deformatioth® gate, as the
striking bow is assumed here to be perfectly rigid.

3 CETMER, Centre d'Etudes Techniques Maritimes et Fluvidfear(ce).
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2.3. Evaluation of the internal energy

On a theoretical point of view, the problem of exing the collision resistance of a lock gate
consists in deriving the corresponding collapse.lda do so, one may resort to the theorems
of limit analysis in plasticity that are briefly pased hereafter. It is well known that the exact
solution to a problem of the mechanics of deforraadllids has to satisfy simultaneously the
equilibrium, compatibility and constitutive equatg However, in the frame of limit plastic
analysis, two different types of solutions arendérest:

» The lower-bound solutions are those for which dhby equilibrium and the yield criterion
are verified, so they are said to be statically iadible. Generally, it is possible to find an
infinite number of stress states that satisfy thegeconditions.

» The upper-bound solutions, for which only the cotifgilety and equilibrium equations are
respected, so they are said to be kinematicallyiggibhe. Usually, there are an infinite
number of velocity fields that simultaneously redpbese two requirements.

2.3.1. Exact theory

Let us now consider a solid of arbitrary shape ihatubmitted to a collision. Typically, this
solid can be a lock gate for example. Becauseseoimipact, one can imagine that this element
is progressively transformed from its initial capfration, to the current on€ (Figure
2.5). It is worth noting tha@ is subjectively chosen and does not necessarggriees the
real impacted shape of the solid.

X2, x2
A

uz

» X1, X1

y
X3, X3
Figure 2.5. Definition of the velocity field

During this deformation fror, to Q, a point/, with the coordinate€X;, X,, X3) is moved to
another point/ with coordinates (x;,x,,x3). The displacement and velocity fields
characterizing this movement are respectively aedeyl byu andu. If u; andw; are the
components oft andu along the axegX;, X,, X3), then [157]:

x; = X; +u; (X1, X3, X3) © % = 1;(X1, X3, X3) (2.4)

As Q is not uniquely definedz andit may be arbitrarily selected, provided that themain
kinematically admissible, which implies that thegvk to respect the compatibility and the
boundary conditions.
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Let us further analyze the work performed by theemal forces acting ofl. The first ones
are the reactions applied at the supports, butdioeyot work under the assumption that there
is no displacement at the boundaries. Another féoceonsider is the one exerted by the
impacting vessel on the deforming solid. By equililn, this one is precisely equal to the
resistanceP opposed to the penetration of the ship. ConsetyydinV is the striking velocity,
the external work raté’ is simply as follows:

W=pP-v (2.5)

in which the vectoWV is known as the vessel is assumed to move pempdady to the gate
with an initial velocityV,. On the other hand, the internal energy g associated to the
deformation of the solid can also be evaluateds Bhie is given by:

Eint=fff[a]-[5]dv=fff cdydv Ay =%<%+%> (2.6)

In this last expression; is the volume of}, [o] is the Cauchy stress tensor dadl is the
Rivlin-Eriksen rate of the Almansi strain tensoedsAppendix A.2 for more details). In the
absence of any other dissipative phenomenon (ssidticéion), it is clear that the collision
energy has to be entirely absorbed by the deforrsingcture. Therefordy/ = E;,,;, which
allows for the derivation of the sought collisi@sistanceP.

As a conclusion, equating (2.5) and (2.6) allowslétermine the resistance of any collided
structural element. Nevertheless, it is worth rdegoglthat the derivation is performed for a

velocity field u that is arbitrarily chosen. In other words, thetmed exposed here above

provides an upper-bound solution to the collisiambem, which does not violate the

compatibility requirement and the equilibrium edo@as, but does not respect the yield
condition. Furthermore, there is only an overakrgy balance that is obtained by equating
(2.5) and (2.6). By applying the virtual velocityinxiple, it can be demonstrated [28] that
doing so leads to overestimate the real collisesistance.

In fact, this last assertion is based on the uppend theorem. This latter states that [28h
compatible mechanism of plastic deformation is assumed which satisfies the boundary
conditions, then the loads determined by equating the rate at which the external forces do
work to the rate of internal dissipation will be either higher than or equal to the actual
collapse load". From this theorem, it also transpires that chaogp#& in good agreement with
the true velocity field characterizing the impacstdicture leads to an external foR¢hat is

a closer estimation of the real collision resiseanConsequently, the deformation patterns
should be quite properly postulated while evalyptihe crashworthiness of an impacted
structure.

2.3.2. Approximate theory

The validity of the previous limit theorems of glagy is in fact limited to the field of small

displacements [28]. During a collision, this hypegls is not realistic as the structure may be
subjected to very important damages characterizethige displacements and sometimes
large deformations. Unfortunately, no general thies available to deal with finite

displacements. As detailed hereafter, various asithave developed some procedures to treat
this kind of situations, but these ones remainegapproximate as they do not have any
rigorous theoretical basis. Nevertheless, thesatisns are commonly accepted to some
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extent because they have been corroborated by mahand sometimes experimental results.
In the literature, two different approaches arglgid out for analyzing the crashworthiness of
impacted structures submitted to finite displacemenhey are referred to as the upper-bound
and equilibrium methods.

2.3.2.1. The upper-bound method

The upper-bound method simply assumes that thet ¢éxaory presented in 2.3.1 may be
extended to structures exhibiting moderate straind displacements. The procedure is
formally similar and kinematically admissible, bsbme differences lie in the way of
evaluating the internal dissipatidf,,.. The main modification to equation (2.6) is obéain
by performing the integration with respect to theleformed configuratiof®,. This means
that the initial volumé is considered in (2.6) instead of the actual dimes simplification is

of practical importance, as it avoids having veuynbersome equations that may usually not
be solved analytically. Nevertheless, working widlspect ta, implies that the stress and
strain rate tensors have to be consistently chdgefi:

. . . . 1 /0u; ou; auk auk auk auk
E; =ﬂf[s]- E du:fﬂs--lz--dv E--=—<—l+—]+ + (2.7)
int 2 [ ] ’ ) Y 2 aX] aXl aXl aX] aXl aX]

where[S] is the second Piola-Kirshhoff stress tensor ffjds the Green strain rate tensor. It
is worth noting that the coordinatéX;, X,, X5) involved in (2.7) are the ones defining the
initial configuration(), and not the actual ones as it was the case in. @rortunately,
evaluatingE;,,, by applying (2.7) usually leads to very cumbers@geations that may not be
treated analytically. Therefore, in order to oveneothis difficulty, the upper-bound method
is simplified by making additional hypotheses oa thaterial behavior.

In reality, the stress-strain curve of mild steetension is made of a first linear elastic phase
(Figure 2.6) that ends when the deformatigns reached. The associated stress is denoted by
o, and is the starting point of the plastic phaserimuthis one, the material is submitted to
strain hardening, until necking occurs for a giwdaformatione,. Beyond this point, the
stress starts decreasing from its maximal valyebut this phase is limited by the material
failure ine,.

»
»
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Figure 2.6. Actual (1) and idealized (2) stress-strain curve of mild steel

Of course, it would be too difficult to capture tidese successive phases, so the assumption is
made of a rigid-plastic material, which implies ttiiae initial elastic regime is disregarded.
From the experiments reported by Alsos and AmdahlCho and Lee [30], Simonsen and
Lauridsen [143] or Wang [162], it appears that phestic deformations largely dominate the
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CHAPTER 2. Background for the ship collisions on lock gates

process, so this hypothesis seems to be quiterailso Furthermore, doing so also supposes
a non-hardening material, but some authors sudhiiezen [103], Simonsen [141] or Zhang
[180] consider that neglecting the strain harderiggaking a flow stress equal &g is too
conservative. They suggest to work with the mearueva(o, + 0,)/2, but this
recommendation will not be followed here. The pipat reason is that working with a too
high flow stress leads to an increased value ofctiiision resistance and it is known that
applying the upper-bound method already providegvanestimation.

Under the hypothesis of a rigid-plastic materiag plastic flow theory is applicable and it can
be shown that in this case, the internal disspafP.7) may be evaluated with help of the

equivalent Green-Lagrange strain rﬁ},e(see Appendix A.2, section A.2.5):

fpp = W ook, dV (2.8)

In the literature, the upper-bound method was mjaurded for deriving the resistance of
plated structures. One of its first application wlase by Alexander [71] in 1960 to study the
axial crushing of cylinders, but some recent pagb®y that this upper-bound approach is
still of interest. For example, Hong and Amdahl][&bplied it to derive analytically the

patch-loading resistance of ship plates, while wfyeeind solutions were obtained by
Kotelko et al. [89] for various resistance modes tloh-walled structures submitted to
compression. Many investigations were also perfdrre stiffened plates, such as the
analytical developments currently achieved by Qb lzee [30].

The previous references provides only a shorttiti®n on the way the upper-bound method
can be applied to determine the collapse load. O#pplications dealing with plated

components have also been derived by various authr clarity, they have not been
reported here but are concisely presented in sec8@, 3.4 and 3.5.

2.3.2.2. The equilibrium method

Another way to investigate structures submittedinde displacements is the equilibrium
method, which simply uses the translational andtimtal static equations to get statically
admissible solutions. Most of the time, these careswritten in the deformed configuration
and account for the actual shape of the impactechett, but some simplifications are
required to get closed-form solutions. One of tr@mnsist in postulating that the material is
rigid-plastic.

As expressing the equilibrium of plates in finiisgacements is usually a quite arduous task,
the main applications of this second method arewelto beams. The analysis is made by
assuming that a plastic collapse mechanism is esadbisually, this latter involves a certain
number of plastic hinges where the bending effecteentrate.

One of the first author to consider the problem lafge deflection of beams was
Haythornthwaite [69] in 1957. Since this pioneerkyanany other authors have investigated
this question. In particular, Jones [80] pointedt dbhe potential effect of in-plane
displacements in case of beams with partial latestrains. Similarly, the question of non-
symmetrical impacts was addressed by Tin-Loi [148]p also considered some extensional
and rotational flexibilities at the supports. A rma@omplicated application of the equilibrium
method was done by Jones et al. [82], who trediedcase of an impact occurring at the
centre of a beam grillage.
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CHAPTER 2. Background for the ship collisions on lock gates

An interesting point to note is that applying thguiéibrium or the upper-bound method

usually does not lead to the same analytical smigti This may only be the case if a
consistent set of equations is used to evaluatstthm rates and to express the equilibrium of
the structure. As explained by Jones [79], thesesoran be artificially constructed by

applying the virtual velocity principle.
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CHAPTER 3.  Analytical derivation of the collision
resistance of plane lock gates

This chapter presents an analytical method to derive the resistance opposed by
plane lock gates during a collision involving a vessel of given shape. The striking
bow and the structure properties postulated for this study are clearly established
in section 3.1.

Before performing any developments, the general methodology followed for the
mathematical derivations is first briefly presented in section 3.2.

The resistance is then derived under the assumption of a local deforming mode by
applying the super-elements method. Three types of structural components are
studied separately. For each of them, the analytical developments are briefly
exposed and the corresponding formulae are validated by numerical comparisons
in sections 3.3, 3.4 and 3.5.

In section 3.6, the calculation is made for the global deforming mode by dividing
the gate into a set of horizontal beams. The derivation is done in both the
elastoplastic and rigid-plastic regimes. The resistance obtained in this way is then
combined to the local one in order to get the final resistance of the gate.

The results obtained by using the simplified method are validated in section 3.7 by
comparing them to finite element solutions. The discrepancies are systematically

analyzed and interpreted.

Finally, the main steps and achievements presented in this chapter are summarized
in the conclusion. Some additional comments are also provided in this last section.

The developments presented in this chapter have been partly published by Buldgen
etal. [22] in the International Journal of Applied Mathematics.

*kk
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

3.1. Introduction

The goal of this chapter is to develop a method #llaws for a rapid prediction of the
resistance opposed by a plane lock gate impacted blgip. The basic idea is to derive
simplified analytical formulations using the sofedlupper-bound method. As a first step, let
us start by describing the struck gate and thkistrivessel.

3.1.1. Description of the impacted gate

3.1.1.1. Structural properties

This chapter deals with plane lock gates havinggles plating and an orthogonal stiffening
system. The total height is denotedywhile the width is designated byFigure 3.3). Such

a kind of structure may be used for the followirsges (see references [38], [170] and [171]
for more details):

 Lifting gates (Figure 3.1a and Figure 3.2a), whacé raised and lowered vertically to open
or close the lock chamber. A tower constructed akiergate allows to pull it out of the
water. This motion is achieved by cables, hydragjiinders... Counterweights may also
be used to assist the hoisting machinery.

» Single leaf gates (Figure 3.2b), which are quiteilar to mitre gate (see Chapter 4) but
have only one leaf rotating around a vertical aXisey are mainly used for locks having
an important head and a small width (i.e. fio®> 1) such in the pleasure navigation. The
leaf is typically maneuvered by a jack when thetigasn and downstream levels are equal.

» Horizontally moving gates (Figure 3.1b), for whittany configurations are possible. They
are maneuvered perpendicularly to the navigatioy aval an additional lateral chamber is
required for retracting them. In the first configtion (Figure 3.2c), the gate is simply
rolling on a track fixed at the bottom of the lockn alternative solution to this
configuration is simply to have a gate sliding opaaticular floor placed on the ground (as
Hydrolift gate in the Netherlands). In the secomdec (Figure 3.2d), the structure is still
equipped with wheels at the bottom, but is simdtarsly held at the rightmost upper
corner by a wagon moving on rails. Finally, thet lasnfiguration (Figure 3.2e) is a
laterally moving gate attached by cables to antamfdil superstructure (Figure 3.1b).

(a) Vertical lifting gate of the John Day lock on (b) Horizontally moving gate of the Lanaye lock on the
the Columlbia River (United States) Meuse River (Belgium)

© http:// wwlorﬁ © http:// www.trekearth.com

Figure 3.1. Lock gates examples
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(a) Lifting gate (c) Horizontally moving gate - Configuration 1
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(d) Horizontally moving gate - Configuration 2
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(b) Single leaf gate
(e) Horizontally moving gate - Configuration 3
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Figure 3.2. [llustration of the different types of gates considered in this chapter
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

3.1.1.2. Geometrical properties

In order to develop a simplified tool allowing farquick estimation of the crashworthiness
for such gates, a formal description of their cgafation is required. To do so, an orthogonal
reference framégX, Y, 7) is placed at the rightmost lower corner of thedtire (Figure 3.3).
The vertical reinforcing elements (parallel to thaxis) are called the frames and are placed
at different locationg; on the horizontaZ axis. Usually, they are regularly spaced along the
width [ of the gate, but this is not always the case. ot number of vertical components
will be denoted byr,.

| i
|
[
i Y, | h
4 A }
) A Y
! (3)
/ | ‘
\ » X
ZA/ X
hy
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t
L B i B hw
Zn Z‘
& I "'X

Figure 3.3. General geometry of the reinforced gate

The horizontal reinforcing elements (parallel t@ #th axis) are called the girders and are
placed at discrete locatioffs on the vertical” axis. Most of the time, they are not regularly
distributed over the height of the gate. Indeed,rtinforcement is often more important near
the bottom of the lock, as the hydrostatic presgweeases with the depth. The total number
of horizontal components is callag.

In addition to the basic system described abovejesborizontal and/or vertical smaller
stiffeners may be added to reinforce the portiothefplating located between two frames and
two girders. Their role is mainly to avoid the blicg and large deflections of the panels and
to provide enough stiffness against light shocks.
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

All the reinforcing elements are assumed to havieshaped cross-section, as depicted on
Figure 3.3. The web height and thickness are réispéc denoted byr,, andt,,, while the
flange width and thickness are designatedhpyandt;. T-shaped cross-sections are very
common for frames and girders, but they may alsoeptaced by flat bars. This is achieved
by choosinghs = t; = 0. Once again, all the vertical frames usually haimilar cross-
sections, while it is not always the case for thazontal girders.

The smaller stiffeners are usually flat plates. 8ather cross-sections are however possible,
such as those depicted on Figure 3.4. As it wilkekplained hereafter, defining the precise
shape of the stiffeners is not really essentiag @hly useful properties are their sectional area
A, and their distribution over the height of the gate

As

Figure 3.4. Some examples of cross-sections used for the smaller stiffeners

The plating thickness is denoted &3y For convenience, it is assumed to be uniform tver
gate height. Nevertheless, this is not always stalias the plates are commonly thicker near
the bottom of the lock (where the pressure is higlfeccounting for such a particularity may
be achieved by adapting the present simplified odltogy but this has not been done so far.
Moreover, the plating thickness has to be correttealccount for the stiffeners. Indeed, for
ship-ship collisions, it has been shown in variceferences (see [121], [122], [144] or [180]
for example) that these components mainly resistutih an extensional membrane process,
the bending effects being negligible. Consequeritlys suggested to smear them over the
thickness, as explained in Appendix B.1 (sectioh B.

3.1.1.3. Boundary conditions

The boundary conditions of a lock gate are pariduldifficult to model. Most of the time,
they remain quite approximate because a lot ofreateclements may interfere with their

definition.
X277 !ﬁ

6— M /// | 1 - Girder flange
] //2 ‘ 8 2 - Plating
/ / 2 3 3 - Girder web
7 H H 4 - Track
[ / /2 ﬂ 1 5 - Wheel
//// 6 - Guiding system
/ 5 7 - Lock wall
! 8 - Seal
Ly L
f S /

)

Figure 3.5. Top view of the rolling system attached to a vertical lifting gate

For example, in the case of a vertically movingegdhe support can be provided by fixed
wheels attached to the body of the gate and rotbimg track fixed in the lock walls. This is
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

roughly depicted on Figure 3.5, which is a vievihe (X, Z) plane of the rolling system that
may equip this kind of lifting structures. Of coeysa proper numerical modeling of such
boundary conditions is very difficult to achievepacially when using an analytical approach.
Consequently, it is proposed here to work in tHievang way (Figure 3.6):

* Along the vertical lines loacted iti= 0 andZ = [ (supports 1 and 2 on Figure 3.6), the
structure is modeled as being simply supportedhaylock walls, which prohibits any
displacement in th& direction and allows for free rotations around thexis at these
locations. It is worth noting that such an assumptlso implies that the gate is free to
move along the axis, but it is clear from Figure 3.5 that this\ necessarily realistic, as
the real supports are likely to provide a smakdal restrain. One should also account for
the friction appearing between the structure aeddbk gate. Consequently, allowing for
a free displacement in the direction tends to be conservative for both themecal an
analytical models.

» If the gate rests against a sill along the horiabhme inY = 0 (i.e. at the bottom of the
lock), then translations in th¥ direction are prohibited and free rotations arotinel
horizontalZ axis have also to be imposed at this place (st@on Figure 3.6).

In addition to the two previous points, it is evitiéhat vertical displacements have also to be
forbidden along support 3 (Figure 3.6), as the gaiie contact with the bottom of the lock.

—

Striking

Xi

Figure 3.6. Boundary conditions for the gate
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3.1.2. Description of the collision scenario

The complete definition of the collision requir@stfto specify the properties of the striking
vessel because the shape of the bow is an impgrtaameter that influences the extent of
damages caused to structure. Apart from the deimaf the ship, it is also needed to specify
its relative position with respect to the struckegdn the present simplified approach, this is
achieved as detailed hereafter.

3.1.2.1. Definition of striking vessel

There are various vessels that may be encounteredland waterways, such as passenger
ships, cargos, barges, yachts... (Figure 3.7).nfkast of them, the bow has a more or less
rounded shape, but it can be seen on Figure 3atdHis is not the case for barges. Moreover,
it is quite common for cargos to have a bulbous ,bwparticular if they also have to
navigate in the sea. It could be therefore vertidamis to develop a simplified methodology
for every possible ship.

b) Passenger vessel for inland navigation

(a) Mathematical model of the striking vessel
Vs
A

S

© http://www.nauticexpo.com

(c) Cargo for inland navigation

hyp

© http://commons.wikimedia.org

(d) Barge

© http:// ww;/v.marineinsight.com © http://www.marineinsight.com
Figure 3.7. Striking vessels

Hopefully, doing so is not really necessary. Inddeaim the investigations performed by Le
Sourne et al. [99], it transpires that an impactabyounded bow is more critical than a
collision implying a barge. The main reason is timthe first case, the impact is rather
localized in a reduced area of the gate, whils much more distributed over the structure in
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the second case. Consequently, for a given iniiiattic energy of the striking vessel, the
total penetration and the damages to the gatekatg to be more severe for a sharp bow than
for a flattened one. Nevertheless, it is worth mgptthat this conclusion has to be nuanced
because it is only valid for ships having the sanitgal kinetic energy. Obviously, a barge
with an important mass and a high initial velocitgy be more dangerous and should be used
for determining the critical collision scenario.i$thoice has to be done in accordance with
the kind of navigation expected in the lock or log@unting for the classification of the inland
waterways [55], as detailed in Appendix A.1.

Regarding the arguments exposed here above, tipdifseoh analytical method only considers
ships having a rounded stem and an eventual butbowt accounting for particular vessels
such barges. The striking ship is idealized asalepion Figure 3.7a. It has a total heigjt
and is potentially made of two different parts: gtems$ and the bullB. Let us denote by
the summit ofS and by(x,, ys, z;) the local coordinate system attached to it. If stem is
limited by a horizontal plane at a given lewgl (with —h;, < y, < 0), the mathematical
eqguation ofS is assumed to be a parabola:

z3
S=x,= (q +ySCOt(]')) <W—1> (31)
wherep andq are the radii ofs in the uppermost deck (i.e. fgg = 0), ¢ is the stem angle
and vy is the side angle. Consequently, according to),(3.lis nothing else than a set of
parabolas whose radii are linearly increasing albweg, axis.

Similarly, let us denote b® the center of the bulB and by(x,, y,, z,) the local coordinate
system attached to it. According to Zhang [180is itnore or less realistic to idealiBeas a
paraboloid with an elliptic base. Following the saassumption leads to:

2 ZZ
Bsz=RX<Z—%+R—”§—1> (3.2)
whereRy, Ry andR, are the radii of the bulb respectively measuredglthex,, y, andz,
axes. It is worth noting that these parametersnaterequired for all the ships, as some of
them may not have a bulbous bow. As a conclustanstriking vessel is defined by q, ¢,

Y, h, and eventually bRy, Ry, R if necessary (see also Figure 3.8). All theseeshave to
be chosen to get a more or less realistic reprasentof the hull.

3.1.2.2. Definition of the impact location

There are a lot of possible configurations to defime collision scenario, but most of them are
not necessarily relevant. Some considerations h@en published by theeTMEF [25] in
order to choose an appropriate impact situatioreyTare briefly summarized hereatfter.
Considering first the upstream gate, the followaogclusions may be drawn:

* In the case of a ship movindpwnstream, the collision takes place at the top of the
structure, where it is quite vulnerable. Moreovethe water levels in the lock chamber
and in the reach are not equal, the hydrostatisspre is acting in the same direction than
the impact force, which is unfavorable. Howevectsscenarios are very rare in practice.

* In the case of a ship movingstream, the collision occurs on the lower part of theegat
where it is usually quite resistant. Moreover, liydrostatic pressure is favorable and the
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ship entering into the lock is slowed down by tieqn effect of water. Therefore, even if
these accidents are more frequent than in the qursvicase, they have reduced
consequences because of all these mitigating action

From the previous considerations, it appears thaipstream collision is usually not the worst
scenario to consider. For the downstream gatesel®EF [25] conclusions are as follows:

* In the case of a ship movirtpwnstream, the contact point is located in the upper part of
the structure, where the reinforcement is weakaddition, the hydrostatic pressure is
unfavorable and the piston effect is reduced bexatithe higher water level. This kind of
accident is frequently encountered in practiceabse the ships try to keep their velocity
as long as possible when entering in the lock cleauttbkeep their initial direction.

* In the case of a ship movingstream, the impact takes place in the lower part of thteg
and the hydrostatic pressure is favorable. Oncmathas kind of accident is very rare.

As a conclusion, it can be said that accordingnécETMEF [25], the worst and most frequent
case to consider occurs when the downstream gatepected by a ship entering the lock
chamber (Figure 3.8). With this conclusion, it il :iecessary to locate the impact point
(Figure 3.6). This is achieved by giving its cootesY; andZ,; in the (X,Y, Z) reference
frame. Equivalently, one may also precise the doatdsYs; andZs of pointS to position the
vessel with respect to the structure (Figure 3[8)s is only true if the ship collides the gate
at a right angle, which is almost the case. Onlgsets having a rather small size in
comparison with the lock dimensions are likely tgpact the structure with a certain angle,
but such situations are not really critical. Theref a right angle collision is considered here.
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Figure 3.8. Relative position of the ship with respect to the gate
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3.2. General methodology

3.2.1. Deformation sequence

According to the hypotheses exposed in sectior? 2vihen the gate is collided by a perfectly
rigid vessel, the ship keeps on moving forwardamgylas the total initial kinetic enerds
calculated by (2.3) has not been entirely dissgha@onsequently, simulating the impact
behavior of a lock gate requires to determine thternal energyE;,; absorbed by the
structure for a given value of the penetradofo do so, one may resort to the general energy
theorems presented in section 2.3, but it is nawired to have a more detailed overview of
the analytical derivation df;,,;.

(a) Local and global deforming modes (b) Collision resistance and internal energy
according to Le Sourne et al. [99]
P(9) (1) : P.(6)
A
(2) : Pe(9)
>0
Eo
| > 5
Y %
4 Legend:
Z (1) Local deforming mode
! (2) Global deforming mode
Z 8, : transition from local to global mode
= &8¢ : final penetration reached by the vessel

Figure 3.9. Local and global deformation processes

Finite element simulations performed on lock gatkew that two different processes are
involved during the impact (Figure 3.9). At the lmegng of the collision, for low values of

penetrationd, the damages caused to the gate remain mainlyelbéa a rather small area
confined around the initial contact poiht This region is submitted to important plastic
deformations that may sometimes lead to the ruptofesome structural elements.
Concomitantly, an elastoplastic overall bendingiorobf the entire gate is superimposed to
this localized indentation and is responsible faitey small out-of-plane displacements
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affecting the whole structure. In such a case,ghiee is said to withstand through a local
deforming mode. This is roughly illustrated on Fg8.9a, where a localized out-of-plane
motion of the plating is depicted near paint

On the other hand, numerical simulations also sti@awthe impact may lead to large out-of-
plane displacements affecting the entire structiigure 3.9a). In this situation, a generalized
rigid-plastic mechanism develops on the entire gatd this second process is called the
global deforming mode.

In order to derive analytically the internal enefy;, the structure is first supposed to resist
through a local deforming mode. Nevertheless, witheasing values af, it becomes more
and more difficult for the vessel to keep on movinghis way. Consequently, for a given
penetrationd,;, the collision force reaches a sufficient levelactivate an overall plastic
mechanism and a switch is supposed to occur frenottal to the global mode.

Of course, when a lock gate is impacted by a shgiwo aforementioned phenomena are in
fact concomitant. The ship moves forward by locahd globally deforming the structure,
especially before the activation of an overall ptagnechanism on the entire gate.
Unfortunately, accounting for such a particularity quite arduous when developing an
analytical model. To overcome this difficulty, allgmn could be to adopt the hypothesis
suggested by Le Sourne et al. [99] of having twsiimict processes. Doing so, the coupling
between the local indentation and the global demtzents is neglected and the transition
occurs when the resistances in the local and gldéfairming modes are equal (Figure 3.9b).
However, finite element have shown that this apghno&g not necessarily conservative
because it tends to overestimate the resistance wkeé; and to anticipate the transition.
Consequently, another approach is proposed heoeder to approximately account for the
elastoplastic coupling between local and globabdeétions when$ < §;. These particular
points, together with the determinationdpf are discussed in more details in section 3.6.1.2.

3.2.2. Analytical derivation of the resistance

From the considerations detailed in section 3i2dan be concluded that the main issue is to
get a realistic evaluation of the gate resistah@®). Before detailing the procedures followed
to get the local and global resistances, it isradfrpmportance to define them properly:

» The local resistanck, (§) is defined as the one opposed by the gate undeassumption
that the striking vessel only moves forward throaglocalized crushing. It is only derived
for a rigid-plastic material by applying the subements method described hereafter, but
does not account for any overall motion of the ghtis only a part of the resistance in the
local deforming mode (see section 3.6.1.2).

* The global resistancé;(5) is defined as the one opposed by the gate under th
assumption that the striking vessel only moves &daby imposing an overall bending
motion to the whole structure. An elastoplasticusoh of P;(98) is first derived and is
combined withP, (&) to get the resistance during the local deformirgglen while a rigid-
plastic solution ofP;(d) is used to evaluate the resistance during theagldeforming
mode (see section 3.6.1.2).

The previous definitions a?, (6) andP; () are summarized on Figure 3.10 and the method
followed for their derivations are respectively &iped in sections 3.2.2.1 and 3.2.2.2.
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Localized crushing Overall bending
of the gate motion of the gate
l \ 4
Local resistance Global resistance
P,(8) Ps(8)
|
\ 4 ¢ ¢
Rigid-plastic solution Elastoplastic Rigid-plastic
(super-elements method) solution solution
| |
v ‘
Resistance during the Resistance during the
local deforming mode global deforming mode

Figure 3.10. Definition of the local and global resistances

More details about the way to combifg(d) with P;(8) are given in section 3.6.1.2. The
method used to evaluadg is also presented there.

3.2.2.1. Local resistance

In order to perform an analytical derivation Bf(5), the architecture of the gate is modeled
with a limited number of nodal points and somedaszed structural components. This basic
idea was initially suggested by Ueda and Rashed] [a&d is often referred to as the idealized
structural unit method (ISUM). This one has beepliad by Paik and Thayamballi [120] to
analyze plated structures, and also by Paik an@érBex [118] to predict the resistance for
ship-ship collisions.

One of the major characteristics of the idealizeédictural unit method is that the
deformations taking place on an individual compdnesve an effect on the surrounding
ones, which means that there is a coupling betvedleaf them. Another philosophy is to
make the assumption that the structural unitsrategendent. Doing so leads to the simplified
technique described by Litzen et al. [104] andcedalhe super-elements method.

(a) Type 1 (SE1) (b) Type 2 (SE2) (c) Type 3 (SE3)
Y A

Supported edges

/
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., X

Figure 3.11. Three different types of super-elements used to decompose plane gates
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To apply this approach to the impact analysis gk lgates, three different types of super-
elements are required for analyzing these plangtsires. Each of them is characterized by
some geometrical and mechanical properties, bt laysa closed-form expression giving
their impact resistance as a function of the patietr (see sections 3.3, 3.4 and 3.5). They are
represented on Figure 3.3 and briefly detaileddfeee(see Figure 3.11):

» Type 1: the first type of super-element (SE1) idtroed here is used to model the portions
of the plating that are bounded by two horizontatieys and two vertical frames. The
super-elements of this type are treated as plé&esped on their four edges and submitted
to an out-of-plane impact load.

* Type 2: the second type of super-element (SE2)gdats the portions of the frames
limited by two girders, but also the parts of tlhelgrs bounded by two frames. In the first
case, the super-elements of this type are vertidaile they are horizontal in the second
one. They are treated as plates supported on¢diges and impacted in their plane.

* Type 3:the third type of super-element (SE3) correspormdshe intersections of the
vertical frames with the horizontal girders. Theg tieated as X or T-shaped elements that
are crushed along their axis.

The decomposition of a plane lock gate into supements is quite straightforward. As
explained in section 3.1.1, the structure is assutoébe made oh, vertical frames and,,
horizontal girders. Therefore, X n, nodes can be defined, each of them being locadtdtka
intersection of two components. From this pointaih be shown that the gate may be divided
inton, = (2n, — 1) X (2n;, — 1) — 4 super-elements (see Table 3.1).

Type Number Type Number
Type 1 (SE1) (n, -1 x(n,—-1) T-shaped | 2(n, —2) +2(n, — 2)
Horizontal (n, —1) xn, Type 3 (SE3) | X-shaped (n, —2) x(n, —2)
Type 2 (SE2) | Vertical (n, —1) xXny, Total n, Xn, —4
Total 2n,ny, —n, —n, | Total number n,=02n,—1)xQ2ny,—1)—4

Table 3.1. Number of super-elements used for decomposing a plane lock gate

As mentioned earlier, all these structural compteme assumed to be uncoupled, which
means that they do not influence each others. Asngsequence, a super-element remains
inactive as long as it has not been impacted btitldng bow. As shown by Figure 3.6, this
means for example that the vertical SE2 associatéide frame portiodB is not deforming

as long as the displacement of the bow is not elgu&|, even though the adjacent SE1 has
already been impacted. In fact, for each super-@timwith 1 < i < n,), one may define an
activating distancé,; measured from the bow, wii#,; — oo if no geometrical contact is
possible between the component and the vessel.eGoestly, denoting byP;(6) the
individual impact resistance associated to supamehti, P, (6) is calculated by summing up
all the contributions coming from the activated gaments:

P,(8) = Z Pi(8) with P,(8) =0 if & < o, (3.3)
i=1

By following the general methodology explained hab®ve, it is possible to derivig (9),
which is only a part of the resistance during theal deforming mode (Figure 3.10). In fact,
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

P, (6) has to be corrected to account for the couplirth Wie elastoplastic overall motion of
the gate whe < §,. As mentioned earlier, the idea developed by Lers® et al. [99] of
considering onlyP; (6) during the local deforming mode may lead to unsafieitions, and
this is why another approach is proposed in se@i6éril.2 to correcP, (§). The next step is
now to establish a procedure to evaluate the glodsstance. As explained on Figure 3.10,
this latter should not be mistaken with the resistaduring the global deforming mode.

3.2.2.2. Global resistance

Of course, the super-elements method is not eptiedévant for analyzing impacts on lock
gates. Indeed, it is not realistic to imagine ttieg gate is only made of large structural
components that are decoupled from each otheis.clear that many elements located near
the impact point are likely to deform, even thoughy are not in contact with the striking
bow. This particular phenomenon is due to the dagplbetween the different gate
components and may therefore not be captured Img wsily super-elements. However, the
method may be improved through the concept of dglamstance, which allows for a better
representation of the gate behavior.

y
A

<

Vi

.

Figure 3.12. Beam grillage used to idealize the gate in the global deforming mode

As mentioned earlier, when the structure exhibitsoaerall bending motion as depicted on
Figure 3.9, the displacements take place over thiree gate and consequently, the
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deformations field affects all the gate componeiiise internal energy;,; is therefore
calculated as the sum of three different terms:

Eint = E, + E, + Ey (3.4)

whereE,, E,, andE, denote the deformation energy associated to ttingl (including the
reinforcing small stiffeners if any), the vertideames and the horizontal girders respectively.
In order to deriveP; (6) analytically, the main contribution #,,; is assumed to come from
the horizontal members. This hypothesis seems gedgteonable, as the gate is bent between
its lateral supports during the global mode. Counsatly, E, is neglected as compared to
E, + Ep in equation (3.4) and the work consists now inating £, andEj,.

To do so, one can imagine that the structure defahmough a global mode like a set of
horizontal beams weakly connected by the verticaings. In other words, the structure is
supposed to behave like a kind of grillage with shene boundary conditions than the initial
gate (Figure 3.12).

In this configuration, I-shaped cross-section beanesdefined at the discrete locatidfaof

the girders. Their cross-sections are composetidgitders initial one (Figure 3.3), to which
is attached a portion coming from the plating (FegB.12). This additional part is supposed to
account for the amount of energy dissipated by the overall motion of the gate. Dgrihe
impact, a beam located at the vertical positipalong theY axis (Figure 3.12) is submitted to
a given out-of-plane displacement fieldY;, Z), but lateral movements, (Y;) andw,(Y;) are
also permitted as the gate is likely to slide oe lick walls (Figure 3.13). Regarding the
vertical frames, as their internal enerdy is neglected, they are assumed to remain
unaffected by (Y;, Z2), w; (Y;) andw, (Y;) but have the following structural functions:

* They provide a kind of collaboration between therbs, which allows for a proper
transmission of the displacement field over the letypillage.

 They are acting as fork supports (Figure 3.12),ctvhprevents the lateral torsional
buckling.

» Together with the plating, they exert a small axéstraint on the beams. This means that
they have a limiting effect om; (Figure 3.13), so the gate is not allowed to miogely on
its lateral supports.

The previous points are based on the assumptidriitbdrames are weaker than the girders.
Therefore, each horizontal component may be sedreiag submitted to a simple bending
described byu; andw;. Therefore, by applying the classical beam theirig possible to
evaluate the corresponding internal energy and thisoequivalent static forcB;(§) as a
function of the striking ship penetration (see ®ecr8.6).

In accordance with the previous considerationss mvorth recalling that;(6) has to be
calculated for both the elastoplastic and rigidsptaregimesThe global resistanck; (6) is
then finally obtained by summing up all the indivad contributionsP;(§) coming from the
n,, horizontal beams:

Po(8) = ) Pi(®) (35)
i=1
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It is worth noting that all the structural compotserare supposed to be simultaneously
involved in the overall bending motion, so ther@asneed to define an activating penetration

as it was the case for the local deforming mode.

(b) Beam cross section

(a) Displacement field applied on a beam

§ . Yt
E\ hy kth
= 1 i it
2 >
heq
el

Figure 3.13. Top view and sectional view of a beam

From the brief presentation of the local and glatefbrming modes that is made here above,
it transpires that the crucial point is to deterenthe individual resistancd%(5) that are
involved in equations (3.3) and (3.5) for the datien of P, (&) and P;(6) respectively. In
order to establish closed-form expressionsPf¢d), one may of course resort to the theorems
of limit analysis in plasticity briefly exposed section 2.3.
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3.3. Local resistance for super-elements of type 1

Before giving some details about the derivatiorthef local resistance, it is first required to
develop the analytical formulae describing thekstg vessel in the global reference frame
(X,Y,Z) depicted on Figure 3.8. As shown on Figure 3ffaship is composed of the stém
and the bulbB, whose vertices are respectively the poisitand B. Consequently, at the
beginning of the collision, the gate may be firsipacted by one of these two parts. From
Figure 3.8, it is obvious that the contact firstws between the stem and the plating if:

Ry < (hy — 2Ry) cot ¢ (3.6)

If point S is the vertex of the stes and pointB the vertex of the bulB, it is easy to show
that their locationXs andXy along the horizontal axis are as follows:

X5 = q + max{Ry — (hy, — 2Ry) cot ¢ ; 0}
(3.7)
Xg = max{Ry ; (h, — 2Ry) cot ¢}

Moreover, as explained in section 3.1.2, the diédiniof the collision scenario requires to
specify the coordinategY;, Z;) of the first contact poinf between the gate and the stem
(Figure 3.6). From Figure 3.8, it is clear that:

Yo=Y Zs=1, Yp=Ys—hy+Ry Zp=172 (3.8)

With the previous relations, it is possible to gfmmm equations (3.1) and (3.2) to get the
expressions oB andS in the global reference frame. For a given petiettad, it can be
shown that:

S=EX=X;—6 Y - ¥, &= 25" 1 39

=X=X-6+@+ - S)C°t¢)<(p+(Y—Ys)cot¢)2_ ) >
— 2 - z

BEX=XB—6+Rx<(Y :B) L@ 2ZB) _1> (3.10)
R} Rz

where all the geometrical parameters have to beifgguk while defining the striking vessel
and the collision scenario (section 3.1).

3.3.1. Literature review

As presented in section 3.2.2.1, the first typewugier-element to consider is a vertical plate
that is simply supported on its four edges and stibdhto an out-of-plane impact (Figure
3.11a). The goal is to derive a closed-form expoeseelating the resistance opposed by this
panel to the penetratiahof the striking vessel. This problem has alreaglgrblargely studied

in the literature by various authors, mainly toesssthe strength of plating elements during
collisions involving two ships. Very detailed stadihave been performed by Zhang [180] and
Jones [81], who investigated the plastic collapE@lates submitted to punctual, linear or
surface out-of-plane loads. Similarly, Simonsenl]ldleveloped interesting formulae to
evaluate the plastic resistance in case of a ctrated load and validated its theoretical
approach by experimental data. The influence ofrttoncomitant in-plane forces was
treated by Paik et al. [122], but only in the elasinge.

In practice however, the plating of a lock gateissially reinforced by smaller stiffeners that
have to be considered while deriving the resistariceiper-elements. The crashworthiness of
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stiffened panels was investigated experimentally tweoretically by Cho and Lee [30] or by
Alsos and Amdahl [6], amongst others. From thesdiss, it transpires that the influence of
the stiffeners is mainly to increase the membrasestance of the plates, in particular when
these latter are submitted to quite large out-afiplmotions.

All the papers mentioned here above provide a egtaic evaluation of the resistance, but
some dynamic analyses are also available, suchoae performed by Jones [81] and Shen
[138]. However, regarding the range of velocitiegolved in collision on lock gates (section
2.2), it is clear that the local acceleration of ilmpacted area remains quite small, so the
corresponding inertia forces may be neglected. Bgroproblem that is more important to
assess is to account for the true shape of thengtibody. Indeed, for ship-ship collisions, the
dimensions of the plating elements may be thouglitet sufficiently large to treat collisions
on plates as punctual impacts. Nevertheless, shi®t necessarily true for lock gates, where
the panels are much smaller and may consequentlyntre deeply influenced by the
geometry of the bow. This topic has already beedrem$ed by various authors, such as
Simonsen and Lauridsen [143], Wang [162], Wang @htsubo [164] or Zhang [180], who
developed some formulae to evaluate the crashvmadhi of plates collided by a bulb
described by a given mathematical function. Thigbfgm was also already investigated by
the U.S. Administration [154] in the frame of ae@asch program on ships initiated after an
important oil spill in 1995.

3.3.2. Analytical derivation for an impact by the stem

3.3.2.1. Derivation of the displacement field

In the optic of applying the upper-bound method finst step is to define a kinematically

admissible displacement field that more or lessesgnts the true shape of the deformed
structure.
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Figure 3.14. Deformation pattern and displacement field u(y,z) for an impact by the stem
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To do so, one may start by considering the lodereace frame€x, y, z) of the super-element
(Figure 3.14) that is parallel to the global ai¥Y,Z) depicted on Figure 3.3. Under the
assumption that the out-of-plane displacemer(g,z) are predominant, then each point
(y, z) of the plate is assumed to move only alongxlaeis.

The first contact point with the vessel is dendbgd and has the coordinat€y, Z;) in the
global reference frame (Figure 3.6). It divides fhlate in four distinct sub-areas having
respectively the dimensions X b,, a, X by, a; X b, anda, X b, that can be specified by
the relative position between the ship and the rsalggnent. In order to have a better
description on the way these surfaces are deforntimgworth looking at the situation in the
horizontal planey = b, passing through the uppermost deck of the stemerevhhe
displacement field is denoted b\(z) = u(b,, z). For a given value of the penetrati®nthis
one is assumed to be made of two different garfs) andU, (z):

* On the portioB of Figure 3.15, the deformation pattern is supgdsefollow the shape
of the stem. Consequentl¥;(z) has to be defined in accordance with the parabolic
equation of the uppermost deck (3.1).

* On the portionsAC andBD of Figure 3.15, the displacements have to regjhecsupport
conditionsU, = 0 and dU,/dz = 0 at the boundarie€ and D of the super-element.
Moreover, in pointsA and B, the compatibility condition requires thé = U, and
dU,/0z = dU,/dz. As a consequence, it appears thathas to be a quadratic expression
of z.

Even if the impact is not necessarily symmetrie.@; # a,), it is clear that the displacement
field for 0 <z <a; must be similar to the one over the portiap <z < a; + a,.
Consequently, in order to avoid any redundancig #ufficient to focus only on one half of
the model.

X

C ‘aoI | D

%oy, (2)

Figure 3.15. Plane view of the out-of-plane displacements imposed by the uppermost deck

As detailed in section 3.1.2.1, the stéms idealized as a set of parabolas whose radii are
progressively growing along the vertidalaxis, as detailed by equation (3.1). Consequently,
the curvel’ describings in the plane of the uppermost deck (i.e.ypr= 0) is also a parabola
whose radii arp andq. According to (3.9), it is obvious th&ithas the following equation,
from which the definitior/; can be easily derived:

— 2 _ 2
FEx=X5—5+q<(Zp+l)—1>=~U1(Z)=q<1—(zp+l)>—Xs+6 (3.11)

Regarding the displacement field over the portigh let us denote by, the out-of-plane
displacement of poind and bya, the horizontal distance with respect to pdintFigure
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3.15). In order to respect the compatibility cormfis detailed here abové,; has to be given
by the following quadratic equation:

8o
(a; — ap)? ‘
In order to have a complete definition G{z), it is finally necessary to specify how the

parameter$, anda, are calculated. They have to be such that thamotyt is respected at
the junction poind. Consequently, one should have:

U,(2) = 2 (3.12)

aZ 2
d U1=U2=60 @60=q<_(2)_1>_XS+8 :>a0=p_(q_X5+8)
p 44 (3.13)

o)
.%—% = 0 —qa =>60=;—2a0(a1—a0)

9z 0z a—ay p?°

It is worth noting thata, and§, are varying with the penetration. As expectedh bate
increasing withé. Once the displacement field is completely chammed by equations
(3.11) and (3.12) in the horizontal plane passhmgugh the stem, the goal is to extend its
definition over the entire plate. To do so, the dtypyesis is made that the deformation pattern
may be simply obtained through a linear interpolatof U(z) along the verticay axis. As
the plate is also supported along the horizontgkeeg¢t = 0 andy = b; + b,, the boundary
conditionu(y, z) = 0 has to be respected at these locations. Consdyuttret interpolation
function f(y) may be chosen as follows:

-fl(y)=bl if o<y<b
1

3.14
bi+b,—y . ( )
i fz(}’)=b—2 if by <y<b+b,

With the previous definitions, the displacementdfies now characterized over the entire
surface of the plate. FOr< y < b; + b, and0 < z < a; + a,, itis simply given by:

u(y,z) = Uf () (3.15)

It is worth noting that (3.15) implies tha(y, z) is not kinematically admissible as the slope
du/dy is discontinuous alongy = b;. This is also valid along the supporys= 0 and

y = b; + b,, but such difficulties can be overcome by supppéivat horizontal plastic hinges
develop at these locations.

3.3.2.2. Derivation of the internal energy rate

The second step of the upper-bound method is neevatuate the internal energy raig,;.
This one can be calculated by (2.8), but evaluaEi,p@)r the deforming plate of Figure 3.14
leads to very cumbersome equations that are roiabie analytically.

To overcome this difficulty, another mechanical giification is introduced, which is called
the plate strip formulation by Wierzbicki and Sinsen in [154]. The idea is to replace the
plate by a set of horizontal and vertical fiberattare still submitted ta(y, z) but are free to
move without shearing. Considering first a vertiibér of lengthb, + b, and of widthdz
(Figure 3.14) that is parallel tp axis, according to Jones [81], the internal eneedg (2.8)
may be rewritten as follows:
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dEint = <2m0(é1 + 92) + J noEyydy> dZ (3.16)

0

wheren, = gpt, andm, = aot§/4, t, being the plating thickness. The first term inl@.
corresponds to the bending energy dissipated bedHuke rotation®; andf, occurring in
the plastic hinges located pt= 0, y = b; andy = b; + b, (Figure 3.16a), while the second
one is due to the membrane strainifjg along they axis.

(a) Deformation of a vertical fiber (b) Deformation of a horizontal fiber
X
A a; +az

T el () &

Figure 3.16. Plate strip model
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Similarly, for a fiber of lengtha, + a, and of widthdy that is parallel taz axis (Figure
3.16b), the internal dissipation is obtained by sung the contribution coming from the axial
straining along the axis, but also from the continuous change of durea Consequently,
the corresponding energy writes:

a,+a;

dE,, = dy f (mOKyy + nOEZZ) dz (3.17)
0

Wherel'(yy is the curvature rate. In fact, in (3.16) and 3.1t is supposed that the maximal
unitary bending moment, and tensile forca, may be reached simultaneously, which does
not respect the plasticity theory (see Appendix ,AsBction A.2.5). Theoretically, an
interaction formula should be use. Neverthelesthafthickness is sufficiently small, then,
may be neglected with respectitp. Moreover, within the frame of moderate displacetsg
the membrane effects are largely predominant. Resd two reasons, it is suggested to
neglect the bending contributions in (3.16) and. {B. Consequently, according to the plate
strip model, the internal energy rate over therergiate is given by:

) ) ) ) Judu . Juou
Epe = f f no(Eyy +Ez)dydz 5 Epp = 97y E,, = 33, (3.18)
A

whereA is the area of the initial configuration and theis ratesEyy andE,, are found by
applying (2.7).

3.3.2.3. Derivation of the local resistance

The last step of the upper-bound method consisevaluating the external power. In the
present situation, the only force acting on theepla the one imposed by the striking vessel,
which is in fact equal to the resistaneé&) opposed by the super-element. If this force is
assumed to be applied at poinvith the same direction than the displacemenhefuessel
(Figure 3.14), then according to (2.5), the extemawer is simply given byl = P§.
Consequently, equatinid/ with E;,,, leads to the sought resistance. Doing so fordhe $ub-
areas of Figure 3.14, it can be shown that theswfft individual contributions t8(5) are
given by the following expressions:
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PL(8) = brg_x 20 4 @—a)®y R s 3.19
1(6) = q — 4As 3R " 9R SR ; ao—alq S (3.19)
2 2 2
B ay a§ 4b; (aq —agp) _ _ R
Pz(a)—do <8+q 3R+ 9R + SR ; ao—al (q X5+6) (320)
Py(8) = Srgx 20 4 (@—a) R s 3.21
5 ( = optp q—A4s 3R " 9R SR ) ao—a2 q S (3.21)
2 2 2
. _ aj 4b; (a, —ayp) . _ R
P,(6) = ooty v, <6+q Xs 3R+ 9R + TR ;o Ay = . (q —Xs +6) (3.22)

whereR = p?/q. As a final result, the total resistanBé€s) is obtained by summing up the
four contributions given by (3.19) to (3.22).

It is worth noting that all these developments eakd as long as there is no failure of the
material. Indeed, as depicted on Figure 2.6, thei¢@ in the plate fibers should be released
when the rupture straia. is reached. Nevertheless, predicting and simate failure of
structure is quite complex as it is influenced bhg type of load. Moreover, as explained by
Simonsen [142], the simplified approach exposec fayove is only based on an overall
hypothetic deformation mechanism, which does ntmwalfor estimating the strains at a
detailed level. In other words, this means that tipper-bound method is sufficient for
predicting the overall behavior of a super-elembant,fails to provide an accurate estimation
of local fields such as stresses or strains. Caresgty, as suggested by various authors like
Zhang [180], Lutzen [103] or Wang [162], it is cam¥ent to use the maximum strain failure
criteria when developing such analytical modelsisThtter simply states that rupture will
take place when a critical level is reached. In the case of an impacted platewthiss:

mAaX{Eyy JEzzf =€ (323)

whereE,,, andE,, are the Green-Lagrange deformations in the hor@amd vertical fibers
predicted by the upper-bound method. The main arsltask when using (3.23) consists in
choosing an appropriate value fer because taking,. = ¢, leads to unsafe predictions of
failure. Consequently, some unrealistic valuesadien affected t@&.. According to Amdahl
et al. [9] and Mc Dermott et al. [104, should be chosen within a range5atio 10 %. In the
present case, the selectiorepfis based on finite element simulations (see se@id.4).

(a) Front view of a ruptured plate  (b) Rear view of a ruptured plate (c) Theoretical model of a four

1mpacted by a cone [163] ig?cted by a cone [163] petals mechanism
\ . ]
A C
D

Figure 3.17. Four petals mechanism of a ruptured plate impacted by a cone

As soon as equation (3.23) is satisfied, the ptaéssumed to have no resistance anymore and
P(5) is set to0. This approach is quite conservative, because noahesimulations (see
section 3.3.4) have shown the existence of a raekidesistance. This has also been
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investigated experimentally by Wang et al. [163powointed out that the ruptured plates still
dissipated energy through a four petals mechanksigue 3.17a and b). Based on these
observations, a theoretical model was derived Ispragg that plastic dissipation mainly
takes place during the rotation of the four petatsund the moving plastic hinge lind$®,
BC, CD andAD (Figure 3.17c). Of course, these developmentsdcbeleasily integrated in
the present analytical model, but the main diffigu$ that they are highly dependent on the
shape of the striker. Other types of post-failurechanism could be observed if other
indenters were used. Consequently, it is decided twe neglect the residual strength after
rupture.

Another important point to raise is the fact that most lock gates, the plating is reinforced
by additional smaller horizontal and/or verticaffehers that also dissipate energy during the
impact. These ones may be easily included by smgahem over the plate surface, as
exposed in Appendix B.1 (section B.1.1).

As a final remark, it is also worth mentioning thatmulae (3.19) to (3.22) are only valid as
long as one of the support of the plate has nat Imepacted by the stem. However, if this is
the case, then the resistance is changed and haes derived in another way. Additional
information on this topic may be found in Appen&ix (section®.1.2 and B.1.3).

3.3.3. Analytical derivation for an impact by the bulb

3.3.3.1. Derivation of the displacement field

The displacement field that is postulated for apast by the bullBB is more difficult to
define than for a collision involving the stesh Ideally, u(y,z) should be such that the
deforming plate follows the shape®f(Figure 3.18).

Wb

A

Ry
Xb

Zp

@

Figure 3.18. Deformation pattern and displacement field u(y,z) for an impact by the bulb
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Nevertheless, doing so leads to very cumbersomatiegs that are not easily tractable within
an analytical approach. For this reason, as in@e8t3.2, an approximate formulation will be
used foru(y,z). To do so, it is first required to express the amun of B in the local
reference framéx, y, z) of the super-element. This is easily achieved donysering (3.10),
whereB is described in the globék,Y,Z) axes. Indeed, for a penetratiénit can be shown
that the current description of the striking budlas follows:

—b)? (z—ay)?
6% 21) +( 21) _1>
Ry R

BEx=XB_8+Rx< (3.24‘)

whereRy, Ry, R, are the three radii (Figure 3.18) aXiglis given by (3.7). As for the case of
the stem, this expression could be used to cakula mathematical expression of the
deformation pattern by assuming that this lattex toabe tangent t8. However, as the bulb

is usually narrower than the stem, it is not reabtn to think that the entire plate will be
involved in the collision process.

Indeed, from numerical simulations (see sectior43,.3t transpires that only a portion of the
plate located near the initial contact pairmeally deforms during the impact. Of course, this
region increases when the ship moves forward amd bea defined by considering the
intersection curv& made by the current description of bulb (3.24) trainitial plane of the
plate. As depicted on Figure 3.19, the assumpsanadde that the resistance only comes from
the horizontal and vertical fibers located insitle area2?,,(a; + a;) and2¢, X (b; + b,)
respectively.
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Figure 3.19. Definition of the portions of the plate involved in the collision process

The displacement field(y, z) is supposed to act only on the shaded parts off&ig8.19, the
other regions being unaffected. For a given petietrd, the extensiong, andf, may be
found by considering the mathematical expressiothefellipsel. From (3.24), it is easy to

show that:
€Y=RY‘/8/RX 5 €Z=RZ‘/8/RX (3.25)

In order to obtain a consistent description ofdisplacement field, let us start by considering
first the deformation pattern for a horizontal fili€igure 3.20) located at a certain leyel
along the vertical axis. For a given value of tlemgtrationd, it is assumed that the out-of-
plane displacementis(y, z) are largely predominant. In order to follow theysé of the bulb,
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u(y, z) is split into two different parts,(y,z) andu,(y, z) satisfying the same conditions
thanU,(z) andU,(z) in the case of an impact by the stem (see se8t@2.1). The junction
between them occurs at poiat(Figure 3.20) that is located at a distamagéy) from the
center of the bulb and submitted to an out-of-plaationd, (y).

ui(y,z)

-
)N
X
Z do I
» ;
| B
60 uy(y,2)

Figure 3.20. Definition of the displacement for a horizontal fiber impacted by the bulb

By following a similar procedure than in sectior8.2.1 and considering this time equation
(3.24), it can be shown that fby — £y < y < by, u(y, z) has the following definition:

y=b)? (2= ay)?

. ul(y,z)=RX<1—( )—XB+6 if a;—aqp(y)<z<aq (3.26)

R} R
o uy( z)—a()(—zlﬂ)—2 if 0<z<a, —ao®) (3.27)
2, = 0oy a(z)(y) =>Z=>=0 oy .

. R RZ — by)?
with:  §,(y) = _);ao(Y)(al - ao()’))i ap(y) = z <Rx <1 - (J’RT1)> — X + 5) (3.28)

R Rya, Y

Focusing now on a vertical fiber (Figure 3.20)sibbvious that a similar reasoning holds in
this case. The displacement field is also dividgd iwo parts: the first one, (y, z) is still
given by (3.26) and sticks to the bulb, while tlee®d oneu;(y, z) is such that it respects
the compatibility requirements with the horizondapports of the plate. By analogy with the
previous equations, far; — £, < z < a4, it is found that:

O =b)? (z-ay)?

. ul(y,z)=RX<1— )—XB+6 if by—by(z)<y<b (3.29)

R} R}
_ 2
. %m@=%@gggl if 0<y<b —b()  (330)
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2 2
Wlth. 60(2) = R_ibo(Z)(bl - bo(Z)) ; bo(Z) = RY <RX <1 ot %) ot XB + 6) (3.31)
Ry Rxa,y Rz
From the previous considerations, it is obvioust thgy,z) is nothing else than a
generalization of the developments performed irtiGec3.3.2.1, but restricted to the areas
2¢,(a, + ay) and2£, x (by + by) of Figure 3.19. With the previous definitionsuafy, z), it
IS now possible to evaluate the internal energy. rat

3.3.3.2. Derivation of the internal energy rate

The procedure to gdi,,, in the case of a collision involving the bulb isite similar to the
one exposed in section 3.3.2.2 for the stem. lethergy dissipation associated to the bending
effects is disregarded, then according to the @aip model, the internal energy rate comes
mainly from the membrane extension of the vertarad horizontal fibers. For the sub-area
a; X by, these latter are respectively given by:

a; by—bg
ous 0u ou, du
~(») 30U3 30U3
. FO) = d (—— ——)d
nt J i J dy dy + 9z 9z )%
4tz 0 : ), (@)
= Epme = Ej; +E (3.32)
bl a;—ap

ou, du, Odu,du
. 2@ _ 20U, 20Uy
Eine = ,f nody ,f (ay dy * %z az)dz

It is worth noticing that there is obviously no emerate on the portion of the plate sticking to
the bulb, which explains why, (v, z) does not have to be consider in (3.32). Anothéntpo
that is important to remember is the fact thatZ3i8 valid if the out-of-plane displacements
are predominant with respect to the in-plane owesg;h is usually true in a collision event.

3.3.3.3. Derivation of the local resistance

According to the upper-bound theorem, the supenefd resistanc®(§) can be calculated
by equating the external powif to the internal dissipation. If the resistancadgng at point
I (Figure 3.18) and has the same direction tharshiie velocity, therP(8) = E;,,; /5, where
E;¢ is given by (3.32). If the expressionsigi(y, z) andus(y, z) are substituted in (3.32) for
the four sub-areas; X by, a; X b,, a, X b; anda, X b,, then the total resistand®(é) is
obtained by summing up all the corresponding cbations. These latter are as follows:

8 5 (Ry(1 1R2\ R,;(1 1R:
P,(8) ==0ot, |——(=+=-2)+-Z[=+="2]]s 3.33
1(8) 3G°p/RX<a1<3+5R$>+b1 3752 (3:33)

8 5 (Ry(1 1RZ\ R;(1 1R}
. _° S ({2 2z 22, 2T 3.34
P2(8) = 300t IRX<a1<3+5R§> 5, \375%2))° (3.34)
8 5 (Ry(1 1RZ\ R;(1 1R}
. _° S ({2 2z Tz, 2y 3.35
P3(8) = 90ty /Rx< 2<3+5R§>+ ) 3+5R§ 8 (3.35)
8 5 (Ry(1 1RZ\ R;(1 1R}
. _° S (Z 2z Tz, 2T 3.36
F4(6) = 500t ’RX< 2<3+5R§>+ ,\375%z))° (3-36)
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Obviously, equations (3.33) to (3.36) are validasy as there is no failure in the material,
but if the maximal strain arising in the plate esd@e a critical value,, thenP(§) is set to
zero. Moreover, these formulae are no longer agipléc if one of the supports has been
impacted by the bulb. In this case, some additidea&klopments are required. They are very
similar to those performed for the impact by thenstisee Appendix B.1, sections B.1.2 and
B.1.3) and are therefore not presented here.

3.3.4. Numerical validation

In an attempt to validate the developments perfdrimere above, the analytical results may
be confronted to those obtained with finite elem@iot do so, many collision scenarios were
investigated using thes-DYNA software, involving plates and vessels of varidumsensions.

Young modulus Ey | 210000 MPa i )—ET/
Poisson coefficient | v 0.33 o0
Mass density p 7850 kg /m3 !
Tangent modulus Er 1018 MPa
Flow stress 0y 240 MPa LBy
Rupture strain € Variable &r > e
Table 3.2. Material properties Figure 3.21. Stress-strain curve for the simulations

The material law that is used for the simulatiandefined by the stress-strain curve of Figure
3.21. This one is composed of a first elastic phelsaracterized by a Young modulkis and

a yield stresw,. The second part of the curve corresponds toeatistrain hardening with a
tangent modulu€;. All these parameters have the values listed iblel8.2. Rupture is
assumed to occur when a maximal deformatiors reached. Axial tensile test performed for
various steel grades have shown that the ruptramstsually ranges frormb5 to 25 %.

Nevertheless, simulating correctly the initiatioxdgropagation of failure is still difficult. In
the present case, an erosive law based on sheariarriis used, which means that the
elements where the effective plastic strain exceedare simply deleted from the model.
Selecting a consistent value fgr is therefore of prior importance and this choies ko be
done in accordance with the mesh size. Indeed, wsbere elements are removed from the
model, a stress concentration appears near the Hudé have been created. Obviously, the
stresses will increase in a larger proportion & thesh around the perforated areas is very
refined, which will cause the elements to disappeare quickly. Consequently, it can be said
that for a same value ef, the coarser the mesh, the slower the erosion.

In order to account for this phenomenon, Lehmand Beschmann [93] suggested to
calculatee, by accounting for the element lendghand thickness,:

€ = €5+ €cte/l, (3.37)

wheree, ande, are respectively the uniform and necking stralfe: mild steel, it is of
current practice to choosg = 0.056 ande, = 0.54. This empirical relation was found by
performing direct measurements during experimeasahision tests and is only valid for mild
steel. If another material is used, then the las/tbabe recalibrated. According to Vredeveldt
et al. [160], equation (3.37) has been validatedsteel grades having a yield stress ranging
from 235 to 355 MPa. Therefore, (3.37) should be convenient for loekeg. Nevertheless,
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having a proper simulation of rupture is quite &ajing on a numerical point of view. As
discussed in section 2.1.1, various laws are adailen the literature to define a rupture

criteria accounting for the size of the finite ekmy but they do not necessarily lead to the
same results.

As a first validation example, the analytical fodamideveloped in section 3.3.2 for a collision
by the stem are confronted to numerical result®rgibby Ls-DYNA. The geometrical data
describing the vessel (Figure 3.22) and the imphstaucture are listed in Table 3.3. In an
illustrative purpose, the equivalent plastic stramrthe plate is plotted on Figure 3.22, from
which it can be seen that the deformation pattemmare or less similar to the one postulated
on Figure 3.14.

35m
q 7m
hy, 35m
¢ 70°
Y 79°
a, 35m
a, 1.2m
by 1.5m
b, 25m
ty 0.01m
Table 3.3. Geometrical Figure 3.22. Equivalent plastic strain in the plate ; Striking bow used
properties for the simulations

In order to investigate the importance of accounfor the shape of stem, some simulations
have been performed without considering failuree Torresponding curves showing the
evolution of the force with the penetration aret{@d on Figure 3.23a and it can be concluded
that using the analytical model is quite satisfgcto

(a) Without rupture (b) With rupture

A
VAR Ry,
4 /) o
//
///

Resistance (MN)
w
Resistance (MN)

1 74,//’ 1
. / 5 (m) 5 (m)

0 0,1 0,2 0,3 0,4 0,5 0 0,1 0,2 0,3 0,4 0,5

Analytical - - - - Linear LS-DYNA

Analytical ——LS-DYNA

Figure 3.23. Comparison between the analytical and numerical results for an impact by the stem

56



CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

As a matter of comparison, Figure 3.23a also shawsear prediction such as the one
derived by Zhang [180] for a punctual impact. Iistbase, it is apparent that the collision
resistance is underestimated. This may be expldigabe fact that the vessel dimensions are
usually much more important than those of the plateerefore, the deformations are not
correctly assessed if the impact is modeled bynzeatrated load. However, a linear formula
may be consistent for ship-ship collisions as tlaging elements are often larger.

Other simulations were also performed in whichui&lwas taken into account. For the data
reported in Table 3.3, the analytical and numerfeaistance curves are plotted on Figure
3.23b. Here again, a quite good agreement is fanatdeen both of them. In this particular
case, the rupture strai is set tol6 % as the element size and thickness are equatto
and1.5 cm respectively. Regarding the theoretical model vidlee of the critical straia, is
found to be equal t@ %, which is quite close to the recommendations nigdelttzen [103]

or Zhang [180]. It is worth mentioning that thislue of €. is based on many numerical
simulations and is chosen to have a satisfactagigtion of failure in most of them.

a; | 131m | ¢ 0.015m
a, 1.31m Ry 2m
by 1.5m Ry 0.8m

b, 1.5m R, 0.3m
Table 3.4. Geometrical properties for an impact by the bulb

The case of an impact involving the bulb is now sidered. The material used for these
simulations is still the one described here abbuéthe geometrical data are now those listed
in Table 3.4. In accordance with (3.37), the falgtraine, is set t022 %. The resistance
curves with and without rupture are plotted on Feg8.24, from which it can be seen that the
agreement is rather good. As in the case of asamtfiiby the stem, the analytical prediction of
Figure 3.24b is obtained by considerig= 7 % in equation (3.23).

(a) Without rupture (b) With rupture
5 1,5

4 / 1,2

0,9

0,6 \W l’c‘

1 /
,/ 0,3 H
0 /,/ S (m) 0_/ 8 (m)

0 0,1 0,2 0,3 0,4 0,5 0 005 01 015 02 025 03
LS-DYNA

Resistance (MN)
[\
\
N
Resistance (MN)

Analytical - - - - Linear

Analytical ——LS-DYNA

Figure 3.24. Comparison between the analytical and numerical results for an impact by the bulb

From Figure 3.24a, it appears that the linear appration is much more satisfactory in this
case. This is due to the fact that the bulb chdsethis example (Table 3.4) is quite sharp
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and the hypothesis of a punctual impact is theeefquite acceptable. Nevertheless, other
simulations performed with larger values Bf, Ry and R, shows that the discrepancy is
more important in those cases.

As a final remark, it can be concluded that thelltsdepicted on Figure 3.23 and Figure 3.24
validate the analytical model presented in sectt82 and 3.3.3 for the first type of super-
element.

58



CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

3.4. Local resistance for super-elements of type 2

As briefly exposed in section 3.2.2.1, the secoypk tof super-element to consider is a
horizontal or a vertical plate supported on threges and impacted in its plane (Figure
3.11b). A major difference with the developmentpased in the previous section is that the
shape of the striking bow is assumed to have ktlect on the deformation pattern. In other
words, a punctual impact is assumed when deriieddcal resistanck(d).

3.4.1. Literature review

Experiments (Figure 3.25) and numerical simulatibage shown that the deformation mode
of the component is a folding mechanism. From thebservations, some simplified
analytical formulations have been derived. This jettb was initially investigated by
Alexander [5], who studied the collapse of thinimgérs submitted to an axial compressive
force. Amdahl [8] was also one of the first to ppep a comprehensive model for the crushing
of structural elements in offshore platforms.

(a) Initiation of plate folding [70] (b) Subsequent folding and concertina tearing [180]
b g

Figure 3.25. Folding mechanism of a plate impacted on its free edge

Since this primary work, the problem has been ssfally treated by Simonsen and Ocakli
[144], who derived closed-form solutions by assugnintwo successive folds deformation
mode. Similar developments were also performed @n§Vvand Ohtsubo [164], Hong and
Amdahl [72], Wierzbicki and Abramowicz [168], Simgemn [140], and Zhang [180], but all of
them postulated a plastic collapse mechanism imvglenly one fold. Most of these authors
confronted their theoretical predictions with expental or numerical results. A quite good
agreement was found in almost all the cases.

Nevertheless, as pointed out by Wierzbicki and €ua#on-Driscoll [169] in a very
comprehensive work, considering only one collapselenis usually not sufficient because
other mechanisms are often involved. Indeed, bsside local folding process, they also
investigated global bending and shear failure motsvever, their developments lead to
quite cumbersome equations that required numeno#d to be solved.

In all the previous references, an analytical mada$ derived by assuming that the plate is
submitted to a concentrated force. In a very irstiang paper, Hong and Amdahl [71] derived
the patch-loading resistance of web girders subthitb a uniformly distributed load. The

theoretical model was based on two different calamodes (a "roof-top” and a "double
diamond" mechanism) and a good agreement withefielement simulations was found.

However, the main drawback of this method is tlm& €quations are not easily tractable
within a simplified analytical tool and have to $@ved numerically. In addition to all these
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theoretical models, a simplified formula was praab$®y Choi et al. in references [32] and
[33]. They used empirical factors calibrated thidoug certain number of experiments
performed on thin plates. However, this method reasricted to shallow web girders.

Finally, it is worth mentioning that a comparatiiterature review was recently performed by
Hong and Amdahl [70] on the topic of plate crushifigey also proposed a new theoretical
model involving a deformation pattern deduced frmimerical simulations.

3.4.2. Analytical derivation

This section mainly focus on a horizontal elemdntt the developments could be easily
extended to the case of a vertical one. This compbhas a total length equal 49 + a,
(Figure 3.26). The web height and thickness aretehbyh,, andt,, respectively, whiler,

and t; are the corresponding properties for the flanges worth noting that there is no
collaborative part coming from the plating, as thiger is treated as a SE1 for the evaluation
of the local resistance (section 3.3).

The analytical derivation will be divided into twmarts, each of them corresponding to a
potential collapse mechanism. In the case of déate9(i.e. for whichh,, is comparable to
a, + a,), it is sufficient to consider only one folding d& as it was done by Simonsen and
Ocakli [144] for example. For shallow structurde tnvestigations carried out by Wierzbicki
and Culbertson-Driscoll [169] pointed out the neéedaccount for several collapse modes.
Therefore, a folding mechanism and a bending cedlapode are introduced in this section.

3.4.2.1. Folding mechanism

A general overview of the folding mechanism is deg on Figure 3.26. This one is assumed
to develop under a localized force, which meansttieshape of the striker is disregarded. In
particular, there is no need to distinguish betwgenbulb or the stem, as it was done in
section 3.3. This approach may be justified byrtbed of deriving tractable formulae, which

requires to avoid the very difficult deformationtieans postulated by Hong and Amdahl [71]

in the case of a distributed contact force.

Figure 3.26. Folding mechanism

As depicted on Figure 3.26, one fold may be spiibia right and a left wing. The

developments are similar for both of them, so isusficient to focus on the right one only.
This latter has a length equal &9 and a height o2H (Figure 3.27),H being kept as a

parameter so far. The crushing process involveseittension and the rotation of the two
trianglesOAB andOBC (Figure 3.27).
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HZ

ai

Figure 3.27. Three dimensional view of one wing

In order to apply the upper-bound method, the fatglp is to postulate a kinematically
admissible displacement field. For conveniences thil be done by working with a local
coordinate framé&x, y, z) that is parallel to the global one depicted oruFeg3.3. Here again,
the plate strip model is invoked, which means thatsuper-element is seen as set of fibers
parallel to thez axis weakly connected to a set of fibers paratiel axis.

Let us first start by considering a horizontal fikbaitially located at a given levet €
[0;2H]. There are several admissible displacement fitlds could explain how this fiber
reaches its current configuration, but the gogreisely to choose a quite realistic one. From
experiments conducted by Choi et al. [32], it appehat the plates are predominantly
submitted to axial straining. Consequently, it seersasonable to suppose that each
horizontal fiber is only affected by a displacemey, z) parallel to thez axis.

In order to evaluate/(y, z), it is further assumed that the plastic dissipatsorestricted to the
surface0AC. Consequently, for a horizontal fiber initiallyclated at the levet, this last
hypothesis implies that the portion before the lh@ remains unaffected, while the part
behindOC has to support the total axial extension. In thdigular case ofB, this means
that only the segmerRD is deforming, the parED keeping the same length. For a given
penetrations, it can be shown that the current lengisandBD are as follows:

_ 52 — a, HéS
Y PP LA = a2 e ) 3.38
0 ai + 6% =a; + 2a B ai/4+ HS 2 4 ( )

and are only valid if the fold heigli is negligible with respect ta,, which is usually the
case. Accounting for these results, the displacé&neinpointsA andB along thez axis are
simply given by:

WA=m—a1=52/2a1 ; W3=ﬁ_a1/2=H6/a1 (3.39)

The procedure followed to gé¥, and Wy could be generalized to find the displacement
W (x) for each point along the liéC (Figure 3.28a), but doing so leads to very cuntraes
equations that are not well suited within an anedytapproach. Consequently, as suggested
by Zhang [180] or Simonsen and Ocakli [144], it da® assumed thdV (x) is simply
obtained by a linear interpolation:

X X .
W(x)=WA(1+ﬁ)—WBﬁ if —H<x<0
3.40
x+ 2H ( )

if -2H<x<-H

W(x) =Wy 0
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The displacement field(x, z) for any point of the surfac®AC is then found by postulating
that it is simply increasing linearly frofhalong the line@dC to W (x) alongAB:

z+a;x/2H

W(x, Z) = W(X)m

(3.41)

It is worth mentioning that this last expressiomgi, z) is not kinematically admissible, as it
implies different slope discontinuities. The fistes occurs alon§B andOC because of the
rotations imposed to the triangl&s1B and OBC. For similar reasons, there is also a slope
incompatibility between the two deforming wingsragathe edgedB andBC. Therefore, all
these lines have to be seen as plastic hingekddrdrizontal fibers.

(a) Fiber parallel to z axis (b) Fiber parallel to the xaxis
X A
Z
S > >\\ WA
0 Al
T~ T ]
— \
~ \\\\\\\\\\\\\\ \\\ W
- B .
T W(x)
ai

Figure 3.28. Displacement field for a fiber parallel to the x or z axis

Regarding a vertical fiber parallel to theaxis (Figure 3.28b) and located at any position
z € [0;a4], it is submitted to an indentatidi(z) = §z/a, (Figure 3.28b) and is folded by
rotating around three plastic hinges located alé#y OB and OC. If the initial length
2Hz/a, of the fiber is kept unchanged, then the rotatingleé is given by:

—cosf =—-—-U S 6= 1-—
@ cos @ (2) arccos >H

2Hz 2Hz 6
( ) (3.42)

In the optic of applying the upper-bound theorehg hext step is to evaluate the internal

energy rate;,,.. This one may be obtained by summing up the disisip due the fibers that

are parallel toxr andz axis. According to the plate strip model, thesesoare supposed to

deform without shearing, so according to (3.17jrthontributions td&,,, are as follows:

0 aq
dEl(;ft) =dz f (moKyz + noEyy )dx dEi(ig = dxf (moKox + noE,,)dz (3.43)
-2H 0

whereK,, andK,, are the curvature rates. Nevertheless, as thesisaining along the axis
is predominant, the bending energy raigK,, may be neglected with respect #gE,,,
which means that the rotations of the horizonta¢s along the plastic hingé®, 0C, AB
and BC are disregarded. Furthermore, as there is no matidn of the length along the
axis, it is obvious thafk,, = 0. Consequently, accounting for all these obsermatiand
integrating (3.43) over the deforming surfat4C leads to:

0 ai
Eine = f dx f (moKyy + nokyy) dz = Ep + En (3.44)
—-2H 0
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which may be seen as the sum of a bending and ebraemenergy rate denoted By and

E,, respectively. The first contributia), is only due to the rotatiof along the plastic hinges
0A, OB andOC. Consequently, iH «< a4, then the length of these segments is more or less
equal toa,, so for the two wings of the fold,, is given by:

B 6/2H
- J1—(1-6/2H)2

Eb = 4m0(a1 + az)é ) (3_45)

whereé is found by deriving (3.42) and, = o,t2 /4. From this last equation, it is clear that
E, tends to infinity whers = 0. On a theoretical level, this may be simply askited to the
buckling phenomenon that takes place before theadicin of the plastic folding mechanism.
The usual way to overcome this particularity isafpproximateE, by an average value
calculated over one fold, i.e.:

1 2H

: + .
L[ g syas = M@t @I (3.46)

2H H
0

Regarding the evaluation of the membrane energyHat it first requires to get the strain
rate componerit,,. According to (2.7), it can be shown that:

0w W (x) . _noHai+a

T 0z a,(1+x/2H) Em =5~

(8 + 2H)6 (3.47)
2 aa,

E‘:ZZ

whereW (x) is obtained by deriving (3.40) amg = o,t,,. Finally, applying the upper-bound
theorem with an external power given lty= PfS leads to:

Ep +Ep _my(ay +ax)nt noHa, +a,

P (6) =
7(®) ) H 2 aqa,

(8 + 2H) (3.48)

It is important to bear in mind that the approagpased here above is only consistent under
the hypothesedl < a; andH « a,, butH is still unknown so far. As suggested by many
authors such as Simonsen [140], this parameterbeaderived by minimizing the mean
crushing forceP calculated over one fold, i.e.:

2H

B=— [ ps)as = apf—o@H—ﬁ” ( (3.49)
TS oH ~ 12 Mtw '

0

but this theoretical value is sometimes correctethdve a better modeling of the physical
process. Indeed, instead of considering that theucé of one fold occurs whéh= 2H, an
effective crushing distance aflH (with A < 1) may be considered. This correction should be
done to account for the radius and the thicknegheffolded parts which do not allow the
actual plate to be entirely compressed. In a gietailed literature review, it is mentioned by
Hong and Amdahl [71] that the values suggested fiange from2/3 to 1. Nevertheless, by
considering different, it was found that this parameter has little iaflae on the resistance
P(9), so itis decided here to kegp= 1.

It is worth noting that formula (3.48) is valid las\g as0 < § < 2H. Foré > 2H, a new fold

is created (Figure 3.29), with the same pattern tha one depicted on Figure 3.26. In this
case, (3.48) may be generalized by following thecedure described in Appendix B.2. As
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long as the web is not completely crushed i the current fold number, it can be shown
that the resistance is given by:

Py = Molai I L Gt 6(2k 3)+2kH(3 k) 3.50
7(0) = H ot T 4, 2 2 (3:50)

However, ifn is the maximal number of folds that can be createer the web height, for
6 > 2nH, equation (3.50) is no longer valid and has tadreected in the following way:

my(a, + a,)m 4 a, +a,

Pr(8) = (2non?H? + 0y A, (8 — 2nH)) (3.51)

H a,a,
where4, = (h,, — 2nH)t,, + hst; is the area of the cross-section that has not beeshed.

Of course, the two previous formulae are only valgl long as there is no rupture. Two
different failure modes are possible when the sepement is impacted in its plane. The first
one is the plate tearing (Figure 3.29b) phenomemdnch usually occurs from the very
beginning of the impact. In this case, the foldprgcess described here above does not take
place. This rupture mechanism has been theorgticatid experimentally studied by
Simonsen [140], Zhang [179] or Ohtsubo and Wang/[ldmongst others. These authors
developed an upper-bound solution to the problenplafe tearing and validated their
developments by comparison with numerical and expatal results. These studies point out
that this phenomenon mainly occurs with sharp itelsnso it is not really relevant in case of
an impact by a ship bow.

(a) Subsequent folding (b) Plate tearing [179]

e — /
f, — B
.

Closed fold
Current fold

.

Figure 3.29. Subsequent folding and plate tearing in case of a large penetration

Apart from this failure mode, another one that isrenlikely to appear is the concertina
tearing (Figure 3.25b). This latter has been themmiy studied by Wierzbicki [167], who
found the following constant resistance:

P = 4.330,t> 3 (a; + )3 + ngtW (3.52)
whereR,, is the tearing resistance of steel, usually ram@iom 300 to 1000 N/mm. Once
again, the initiation of rupture will be detected the strain failure criteria, i.e. when the
maximal value off,, calculated by (3.47) reaches a critical limytthat will be fixed later
(section 3.4.3). Consequently, the local resistdiocethis super-element will be given by
(3.50) or (3.51) as long as there is no concetaang, and by (3.52) if this mechanism has
been activated.

3.4.2.2. Bending mechanism

In the case of a deep plate, it is sufficient temstder only the folding mechanism briefly
detailed here above, but doing so is not relevanskiallower structures like web girders. In
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fact, these latter have an impact response thattaalyvided into two different phases. At the

beginning of the collision, the folding procesadivated and the resistance formulae derived
in section 3.4.2.1 are still valid. Neverthelesbew the penetration is getting larger, it is more
difficult for the ship to progress by crushing thlate. A beam-like behavior is then activated,

such as depicted on Figure 3.30.

XA

»

ai az

_,,,,:;,,,,,,,::::::::::::::f:::j:::::::::::::::::::::::::::::::::::::::;,,i

Figure 3.30. Three dimensional view of the bending mechanism

During this phase, the super-element is submittea plastic bending and may no longer be
assimilated to a plate. Three hinges are requibednitiating this new collapse mechanism
(Figure 3.31), but it is worth noting that the fplastic bending momem, of the initial T-
shape cross-section (Figure 3.3) is not necessardighed at these locations.

ai az

&My
§™Mo

&My

Figure 3.31. Three-hinge mechanism for a plastic beam

Indeed, at the left support, as the beam is ndegity clamped, only a reduced valégV,
(with &; < 1) has to be considered. The paraméteiis quite difficult to evaluate and is
influenced by the stiffness of the other structwlaiments connected to the impacted one. It
has to be chosen to reflect the actual rotatioestraint. A conservative approach is to take
&, =0 (simple supports) because this leads to the minanargy dissipation. The same
considerations are also valid for the right suppetere a reduced bending capaéiy/, is
used (withé, < 1).

For the cross-section immediately located underirthi@al contact point, the folding process
has of course an incidence on its ability to depetee full plastic momen¥,. Indeed, if the
beam has been crushed over a distahauring the primary denting mechanism, only a
reduced bending capaci§y(§)M, can be reached. Derivigg(8) is not straightforward but
may done by a simplified procedure detailed inisadB.2.2 of Appendix B.2.

If an indentations is reached during the initial folding phase, byldwing a similar
procedure than for the global deforming mode (setian 3.6), it can be shown that the force
P;(8) required to activate the beam collapse mechanidfigare 3.31 is given by:

a1(§2 + f*((s)) + a2(§1 + f*(5))
0

P*(6) =M, 0a,

(3.53)

which is a piecewise linear function &f(Figure 3.32a) because of the approximation made
on *(8) described in Appendix B.2. Consequently, the fiotding process will be activated
as long as the resistangg(d) calculated by (3.50) or (3.51) is not equalPtq§). When

6 = §* (Figure 3.32a), the force developed during thset fiolding phase is sufficient to
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initiate the collapse mode of Figure 3.31, whichangethat there is a theoretical change in the
structural behavior.

(a) Final resistance curve (b) Beam mechanism for § > §*

> T

T T

v=

Figure 3.32. Three-hinge mechanism and resistance curves for a SE2

For 6 > §*, the super-element is resisting through the thiege mechanism of Figure
3.32b, where the central cross-section is chaiaetkéby a reduction coefficiedt evaluated
for § = 6" as there is no more folding in this second phBseing the plastic collapse, the
beam is of course submitted to bending, but alsotemsile membrane forée (Figure 3.32a)
that can be largely influenced by the actual regsaf the supports (see Jones [80] for more
details). As detailed Appendix B.2 (section B.2i2)s assumed that the folding process has
no effect on the structure ability to develop meamler forces, which means that could
theoretically reach a maximal valdig calculated for the initial T-shape cross-sectieigiire
3.3).

With the model presented here above and considérengevelopments of Appendix B.2, the
resistanceP, (§) associated to the bending mechanism may be eedluat following a
similar procedure than for the global deforming m@skee section 3.6). It can be shown that:

a2(§1+§*)+a1(§2+§*)< NZ) Na1+a2

1-— )+
a,a, Ng a,a,

P, (8) = M,

(6—46%)
(3.54)

2 oo
with: N = min( No (@1 +6,)(6 ~ 57) N0>

2Myaz(§y + &%) +a(§ + &%) ’

Of course, for§ = 6%, it is obvious that?, = P* in these equations. The evolution of the
resistance’, (6) for the bending mechanism is depicted on Figu32a.

3.4.2.3. Final resistance of the super-element

Finally, the super-element resistarie@) is found by combining (&) andP,(§). As long
asé < ¢*, thenP(6) < P*(§), which means that the force applied by the vedsghg the
folding process is not yet sufficient to activatebeam mechanism. Consequently, the
resistance is governed [ (6) during this first phase. Nevertheless, when theepration
increases, creating new folds becomes more and diifiilt for the ship. At this moment,
the super-element is forced to deform like a beanoh @ three hinge mechanism if formed.
The theoretical transition between the two modesuscwhend = §* and obviously, the
resistance wheéi > §* is ruled byP, (6). In other words, the resistance is given by:
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P(5) = P;(6) if 5 <6 or P(8) = P,(8) if §> 6" (3.55)

which is depicted on Figure 3.32a. As a final rémadris should be recalled that if the failure
criteria is satisfied, the®(6) has to be calculated by (3.52). Furthermore, hadl gprevious
developments are only valid as long as there isambact between the striking vessel and one
of the supports of the super-element. In this ctsesesistance is no longer given by (3.55)
but is set to zero because a super-element of 3ype now involved in the analytical
derivation. The corresponding formulae are theeefoesented in section 3.5.

3.4.3. Numerical validation

In order to corroborate the analytical formulaeidet here above, some finite element
simulations were performed using-DYNA. As an example, the case of the horizontal girder
with the properties reported in Table 3.5 is coasad in this section. The impact scenario is

non-symmetric, ag, # a,. The material properties used for the numericalugtions are
those previously listed in Table 3.2.

h,, 09m
tw 0.02m
hs 0.4m
tr 0.02m
a; 1.5m
a, 25m
Table 3.5. Geometrical properties Figure 3.33. Equivalent plastic strain in the folded
of the impacted element element

In an attempt to give a general insight on the wheéal configuration obtained witls-DYNA,

the equivalent plastic strains have been repomeBligure 3.33. The purpose of this picture is
only to show the agreement with the theoreticakloing process. Obviously, the folding
pattern is not really similar to the one postulatedFigure 3.26, but it is worth bearing in
mind that a ship with quite large dimensions isdufse the numerical simulations, which is

not exactly similar to a point load. Thereforejsitnot surprising to have some differences
with the analytical model.

(a) Without rupture (b) With rupture
5 3
4 / 2.5 /,-/Vv d
s, / =
/
5 s 5 _—
=} /.NJ = 1;5
g, ﬂ N J g M~
o M o
1 0,5
8 (m 8 (m)
0 (m) 0
0 0,2 0,4 0,6 0,8 1 1,2 0 0,2 0,4 0,6 0,8 1
Analytical ——LS-DYNA Analytical ——LS-DYNA

Figure 3.34. Comparison between the analytical and numerical results
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The resistance curves are compared on Figure 3B4arder to illustrate the need of
accounting for the two mechanisms detailed in easti3.4.2.1 and 3.4.2.2, a first simulation
is run in which rupture is disregarded. Ti®eDYNA curve reported on Figure 3.34a clearly
shows that there is a modification of the girdehdaor whené is more or less equal to
0.7 m. In fact, the slope modification can be explaitgdhe important membrane straining
that takes place if failure is not considered.ha &nalytical model, this precisely corresponds
to the transition from the folding to the bendingahanism, which is theoretically predicted
to occur for6* = 0.63 m. This value is quite close to the m found byLS-DYNA.

The influence of rupture is investigated in a secaimulation. The failure straia, is
calculated in accordance with (3.37). As the eldndemgth and thickness are respectively
[, =0.05m andt, = 0.02 m, a value 0f27 % is used fore,. The critical straine. to be
considered in the theoretical model is found tortmee or less equal tt2 %. Of course, this
value is not only based on the results presentdéigure 3.34b. It is derived by adjusting the
analytical and numerical curves for many other $atons with different mesh sizes.
€. = 12 % corresponds to a mean value that allows for aoredse failure prediction in
almost all the cases.

Furthermore, when rupture is taken into accountappears from Figure 3.34b that the
membrane straining depicted on Figure 3.34a doespear. This is not surprising, as the
concertina tearing prohibits the development o&bfarces in the bending mechanism, which
is also reflected by the theoretical curve.

As a final remark, it can be concluded that thedyagreement between the results of Figure

3.34 corroborates the analytical model presentesgation 3.4.2 for the second type of super-
element.
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3.5. Local resistance for super-elements of type 3

The third type of super-element to consider is afiyerelated to collisions occurring on
intersections between a horizontal girder and &icatrframe (Figure 3.11c). This situation
may appear in the case of a direct impact (Figu8&& or because of a subsequent contact
with one of the supports of a SE2 (Figure 3.35bjcdkding to their location on the gate,
these intersections may have three or four wingsaar respectively designated by T or X-
shaped elements. In the local deforming mode, tletesr are known to be crushed axially
through a folding process (see section 3.5.2).

(a) Direct impact on an intersection (b) Subsequent contact on a intersection

Figure 3.35. Impact on the intersection between a frame and a girder
3.5.1. Literature review

In the literature, many authors investigated thalatushing resistance of plated structure by
applying the upper-bound method. Since the prindayelopments of Alexandd6], this
problem has been revisited by Wierzbicki and Abramoa [168], Amdahl [8] or Yang and
Caldwell [174] amongst others. They developed siiegl formulae to estimate the resistance
of L, T or X-shaped elements by postulating varioushing mechanisms.

Abramowicz [1] also derived theoretical formulaer fo-shaped sections by assuming
symmetric and asymmetric deformation patterns. @ase these researches, Paik and
Wierzbicki [123] proposed generalized equations dgmbining various kinematically
admissible collapse modes. Additional developmemtghis topic were also performed by
Wang and Ohtsubo [165], who slightly modified theishing mechanisms of Yang and
Caldwell [174] for L, T and X elements.

In the purpose of evaluating the resistance ofhoffs platforms to vessel impacts, Amdahl
[8] suggested to use a straight edge crushing mesrthacombined to a folding process. This
pioneer work was later used by Paik and Perderke9] fto estimate the ultimate strength of
plated structures. Zhang [180] also extended thesdts to evaluate the crushing resistance
of intersections during ship-ship collisions.

To conclude this brief literature review, it is wWomMmentioning that an extensive summary of
many existing methods was performed by Yamada asdkem@en [173] in the optic of
analyzing the axial crushing of bulbous bows.

3.5.2. Analytical derivation

The first part of the analytical derivation of tlweal resistance for this third type of super-
element concerns an impact occurring directly on iatersection (Figure 3.35a). For
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conciseness, the case of a subsequent contact sapport of a SE2 (Figure 3.35b) is treated
in Appendix B.3, but the developments are quite simdahose presented here.

3.5.2.1. Folding mechanism

As illustrated on Figure 3.36, experimental invgations of impacts on intersections have
shown that these latter were crushed axially dutfiregcollision process [8]. The deformation

pattern depicted on Figure 3.37a is therefore patstth in the optic of applying the upper-

bound theorem. It is worth mentioning that for cenence, only two wings are represented
on Figure 3.37a, but three or four wings may belved in the crushing process for T or X-

shaped intersections respectively.

Figure 3.36. Complete axial crushing of a X-shaped intersection 8]

The purpose of this section is to derive the lgealstance for such a plastic mechanism. As
the analytical developments are strictly similar &l the wings involved in the deformation
pattern, only a horizontal one will be consideredas (Figure 3.37a). This latter has a length
denoted by and is decomposed into two different parts numbéreand(2) respectively.

(a) Deformation pattern of an intersection (two wings are (b) Crushing process of the central
only represented) element
X
A
o)
0 v vy ‘/ A»z
/
/
/,A,,,
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/
/
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_ /
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Figure 3.37. Folding mechanism in the case of an impact occurring directly on an intersection

The resistance®,, () opposed by the wing during the crushing processb&aobtained by
summing up the individual contributio®(8) andP,(8) associated to paft) and(2). As
P,(6) may be obtained by using the developments of@e&i4.2.1, only’, (6) still needs to
be evaluated. To do so, the deformation patterncteghbon Figure 3.37b can be considered
for part (). It is made of two triangledBE and BCE that are submitted to a membrane
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extension and rotate around the plastic hing& BC, EB, AE and EC. During this
movement, the distancel3 andBC are constant and equal to their initial value deddy

H, while the two remaining surfacé®AE and EFC simply follow an axial compressive
motion. The horizontal length of pait) is assumed to be proportional to the folding hieigh
2H and is designated lf, wherea is a coefficient determined hereatfter.

The resistance opposed by this plastic mechanissn ben evaluated by Amdahl [8].
Nevertheless, combining these results with thosaidd in 3.4.2.1 for the remaining part of
the wing is not straightforward on a theoreticainp@f view. Indeed, in order to evaluate
P,(6), the displacement field of Figure 3.28 is postdatfrom which it is evident that the
main part of the membrane dissipation is producethé area near the edgéB andBC.
However, in the derivation performed by Amdahl [Blese latter are precisely supposed to
move rigidly during the plastic rotations around tiinges, which is in apparent contradiction
with the developments of section 3.4.2.1. Conseityian order to be consistent with Figure
3.28, it is required to consider another displagarfield than the one used in [8]. Doing so is
not conflicting with the upper-bound method, praddthat the compatibility requirements
and the kinematic conditions are respected. Ofsuhis leads a formula f& (&) that is
different from the one given in [8].

As the derivation of the contributia? (§) opposed by pafil) during the plastic collapse is
similar to the procedure followed in 3.4.2.1, inist detailed here but is reported in Appendix
B.3 (section B.3.1). It is found that:

P8 = e Tri+ 542 3.56

whereG (6) is a function defined by (B.37) = 0.8601 and® is the opening angle (Figure
3.37b) related to the indentatighby (3.42). This result can be compared to thetswmiu
proposed by Amdahl [8]:

H o 42 +1
P, (8) = 0% (1 + ¢ > + 0% e+ 1) (3.57)

NE] a |4a?+sin?26 2

in which a is this time equal t6.573. In the two previous formulae, the optimal valdi¢iois
determined by minimizing the mean valueRyi(5). This achieved in Appendix B.3 (section
B.3.1.2), where it is found that:

H = ./3m/8at,, (3.58)

In this last equationt,, is the web thickness of the horizontal wing. Ihdae shown that
(3.58) is very close to the expression proposedAbydahl [8]. Therefore, it could be
interesting to have an idea of the differencePp(¥) when using (3.56) or (3.57). As an
example, it is proposed to consider the followiradues for the parameters involved in these
formulae: o, = 240 MPa, t, = 0.01 m anda = 2m. The corresponding curves are plotted
on Figure 3.38, from which it can be seen thatdifference of the present approach with the
one followed by Amdahl [8] is very small.

Regarding the resistancg,(8) opposed by part2) during the plastic collapse, the

developments performed in section 3.4.2.1 are wdlid but some adaptations need to be
done. As explained in section B.3.1.2 of Appendi&,B,(d) can be evaluated by:
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my(a — aH)m N noH
H 2(a — aH)

P,(6) = (6 + 2H) (3.59)

The resistanceP, (6) of one wing is then obtained by summing Bp(d) and P,(6).
Therefore, gathering (3.56) and (3.59) leads to:

P (6) = ( 2+1+a+2+a—aH) 5(9)_'_ 6 +2H
() =mym (a ng 7 T 2a=am

6 5 H
wherea = 0.8601, G(8) is a function defined by (B.37) aril is calculated in accordance
with (3.58).

(3.60)

500
400 \
~ 300 Rt Amdahl
=4 \
2 500 — —— Analytical
solution
100
0 6/2H
0 0,2 0,4 0,6 0,8 1

Figure 3.38. Crushing resistance of an intersection according to Amdahl and the present solution

It is important to mention that formula (3.60) ialid as long a® < § < 2H. As in section
3.4.2.1, for§ > 2H, (3.60) can be generalized by assuming that afalelws created with the
same pattern than the one represented on Figui®.34% soon as paf) is completely
crushed, it is clear that it does not provide amytabution to the resistance. Thereforek is
the current fold numbeR; (8) is still given by (3.56), but (3.42) is no mordigdo evaluate
6 asd should be replaced y— 2(k — 1)H in this relation, i.e.:

1)
6 = arccos (k - ﬁ) (3.61)
The situation is not the same for p&@} because it should be accounted for the additional
contributions coming from th& — 1 folds already completely closed. This can be acue
simply by adapting the developments performed ipekulix B.2. Doing so leads to:

Ru(®) = mon (Va1 1+ S 24 ) (ng)+5<4k‘§2a+_221;§3—2k>

6 5 H
Of course, the previous formula is valid as longheswing is not completely crushed. In this
case, the maximal fold numbers reached and far > 2nH and equation (3.62) becomes:

) (3.62)

a 2 a—aH G(0) 2nyn?H?+ 0yA,(8 — 2nH)
Py@) =mom (VaZ + 1+ % +5 )
w(@) =mym(Jat+1+—=+=-+ ol —= 20a — aH)

6 5 H
whereA, has the same meaning than in section B.2.1. kin&ié total resistanck(4) for
the crushing of T or X-shaped intersections is $ymjpund by adding the individual

(3.63)
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contributions (3.62) or (3.63) coming from the #e four wings. It is worth noticing that if
these latter do not have the same leragnd web thickness,, the value of{ calculated by
(3.58) will not be the same for each of them. Hosvewn order to respect the compatibility
along the super-element axis, a unique valueilgtrequired.

On a theoretical point of view, this one has todegived by minimizing the mean total
resistance’;, but doing so is not very practical. Consequerglynost convenient way is to
take H as the average of all the folding heights caledandividually for each wing. By so
doing, the parametér involved in (3.61) and (3.62) is still obtained {B.23), in whichH is
actually this mean value. Similarly, (B.23) is alslid to evaluate the maximal number of
folds n, but the meaning o, is different. Indeed, if the web heights are i@ same for
each wind, thenh,, has to be taken as the minimum value betweerf ilem.

3.5.2.2. Bending mechanism

Apart from the folding mechanism described herevabd is not reasonable to suppose that
there is no other way for the super-element to eppm local resistance. Indeed, this could
only be the case for very deep intersections, sachthose between the decks and the
transverse bulkhead of a ship. In the presentt®tyaas the web heights are quite short, a
beam-like behavior is recovered after an indemagiofor which the whole intersection starts
moving backward (Figure 3.39).

» B

Figure 3.39. Bending mechanism in the case of an impact occurring directly on an intersection

As an example, the cruciform intersection betweéwrzontal girder and a vertical frame is
considered in this section. As depicted on Figu9 3eight plastic hinges are required to
activate the mechanism. Four of them are locatédeatenter of the super-element, while the
remaining ones simply lie at the boundaries. Dewpby M, andM,, the respective plastic
bending capacities of the girder and the frame sforilar reasons than the ones detailed in
section 3.4.2.2, only the reduced valggaf,, andé,M,, can be reached at the suppotis,

C, D (Figure 3.39). Similarly, regarding the four cahtplastic hinges, the maximal bending

* This situation may appear at the junction betwe@orizontal girder and a vertical frame for exaenpl
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moments at these locations are only equd}, {6)M,, and¢,;(6)M,, because the sections have
already been indented over a distaditaluring the folding phase. More details on thisicop
can be found in Appendix B.3 (section B.3.1.3).

By applying the plastic theory of beams, it is plolesto evaluate the forc8*(§) that is
required to activate the bending phase. Its dedmais partly reported in Appendix B.3,
where it is shown that:

$n+$n(8) | §n+&§n(5) $y +65(6) | &y +&65(6)
a, —aH + a, —aH >+Mv<b1—aH + bz—ocH>

P(5) = Mh< (3.64)

Here again, the transition from the folding to trending process takes place at a particular
values™ of the penetration for which(8) is equal taP*(6), as depicted on Figure 3.32a.

Figure 3.40. Beam-like behavior of one wing

For § > 6™, each of the four wings represented on Figure 33Submitted to a plastic
rotation in the central and support hinges, but &ts an axial straining (Figure 3.40). As
detailed in Appendix B.3, the resistarigg6) for the bending mechanism is given by:

a, +a, —2aH
(a; —aH)(a, — aH)

NZ
Pp(8) = (Mh<fh+f;;) (1—N—12>+N1<6—6*)>
h

. N2 . b, + b, — 2aH
+ (M,,(g,, + &) <1 - N—3> +N,(6—6 )) =l Gy —aD) (3.65)

- [ NE6E-8D o\ [ NEE—8)
v =gy ) ¢ = (G )

whereN; andN, are the normal forces in the horizontal and vattwings respectively. In
the previous formulae, it is worth noticing thae tharameterg, and¢;, are evaluated for
6 =46%, i.e. when the transition from the folding to thending mechanism occurs.
Furthermore, as discussed in Appendix B.3, it sthawted that (3.65) is only applicable to
cruciforms and is not strictly valid for T-shapedersections.

3.5.2.3. Final resistance of the super-element

The final resistanc®(8) for this third type of super-element can be oladiby combining
Pr(6) and P,(6) in accordance with (3.55). Doing so is only vadisl long as there is no
failure in the material. From numerical simulatipitstranspires that rupture (Figure 3.41)
mainly occurs because of an important tensile ngawhich appears along the supports. As
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postulated for the analytical derivation of sect®b.2.2, this is simply due to the membrane
straining developing in the wings for large pentsbres.

As it was done for the two previous types of suglements, failure is included in this
simplified approach by defining a critical straén. In the present case, for most of the
numerical simulations, a value aR % is found to be quite convenient but it should be
mentioned that a convergence on the failure caiteras rather difficult to obtain. This is
mainly due to the fact that the elements locatedr riee intersection axis are strongly
deformed during the impact. Therefore, the ruptadgleling is highly sensitive to the mesh
size and quite small elements are required to raanbre or less satisfactory convergence. Of
course, for all the simulations, the rupture stiaichosen by applying (3.37), which leads to
quite important values.

Figure 3.41. Failure mode during the denting or bending process

The post-failure resistance may be evaluated dswsl If the critical straire, is reached
during the crushing phase, then the contributiothefwing is restricted to the bending part of
(3.62) or (3.63) because it is postulated thatetlaee no membrane effects anymore, i.e.:

(3.66)

(&) = > a 2 a—aH
w( )—m0n< a +1+€+§+ q )
On the other hand, if rupture develops during teeding mechanism, then the contributions
of the wings where failure takes place have todmored in (3.65). Nevertheless, adapting
this equation is not straightforward, as it shoblel accounted for some particularities
regarding the normal forces. As an example, leagsmume that a tensile tearing appears at
point A on Figure 3.39N; has then to be set to zero as there are no mardragee effects in
the horizontal wings. There is only a bending gigson at pointC and rupture may now
occurs at this support because of an excessiveamtao we have:

by + b, —2aH

Pr(8) = (br — ) (b, — aHl)

My (&n + $p)
" (3.67)

- aH + (Mv(fv + fv) <1 _N_§> + N2(8 -6 ))
3.5.3. Numerical validation

3.5.3.1. Impact on a X-shaped intersection

In the optic of checking if the results obtainednfrthe analytical developments detailed here
above are more or less realistic, numerical sinanatwere performed withs-DYNA. As an
example, the impact on a cruciform is considere@.h€&€he geometrical dimensions of the
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horizontal and vertical wings are listed in Tabl&,3rom which it can be seen that the
intersection is doubly symmetric, a3 = a, andb; = b,. The frame and the girder have
nearly the same cross-section, the only differemceming from the flange width.

(MPa) Horizontal wings
240 Length a, =2.6m a,=2.6m
ﬂg] Web height h, =1m h, =1m
168- Web thickness | t, =0.015m | t, =0.015m
144+ Flange width hy; =0.5m hy; =0.5m
132_ Flange thickness t; =0.015m | ¢t =0.015m
72 : Vertical wings
48 Length b =3m b, =3m
23] Web height h, =1m hy, =1m
) Web thickness| t, =0.015m | t, =0.015m
Flange width hs =03m hs=03m

Flange thickness t; =0.015m | t; =0.015m

Figure 3.42. Von Mises stresses in the = Table 3.6. Geometrical properties characterizing the
impacted cruciform (for § = 0.9 m) horizontal and vertical wings of the cruciform

The material properties used for the present fiei@anent analysis are those listed in Table
3.2. However, failure having already been discussieove, e, is not considered for this
simulation. Doing so, the major advantage is toartye point out the developments of
membrane effects for large penetrations. Thisnsadly visible on Figure 3.42 showing the
equivalent Von Mises stresses in the impacted streclt transpires from this picture that the
stress field is nearly uniform and equaldp= 240 MPa, which simply means that due to
membrane straining, the axial tensile capaciigsand N,, are reached in the vertical and
horizontal wings. Furthermore, it also appears fi@igure 3.42 that the folding and bending
collapse mechanisms respectively presented inosectB.5.2.1 and 3.5.2.2 are indeed
activated during the collision process.
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5000 /
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Figure 3.43. Comparison between the analytical and numerical results for a X-shaped intersection

The numerical and analytical resistances are cosdpam Figure 3.43. Considering the results
obtained withLs-DYNA, it can be observed that the curve is made ottliferent parts. For

76



CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

6 < 0.3m, the resistance is more or less constant becdusehase is associated to the
plastic folding of the four wings. Fdi.3 < § < 0.8 m, the beam-like deforming mode is
activated and the cruciform starts moving as a ahbDluring this phase, the small increase
can be imputed to predominant bending effects.dFsr0.8 m, the curve grows more rapidly
because strong the membrane forces are now dewglapithe structure. Obviously, if
rupture had been considered in the model, thisdvoat be the case.

The analytical resistance also reflects this timegse behavior. In this simplified approach,
the switch from the folding to the bending mechamis found to take place fé = 0.37 m,
which explains why a slope discontinuity occurs tois particular value of the penetration.
This is more or less in agreement with what is ol from the finite element simulation.

3.5.3.2. Impact on a T-shaped intersection

As detailed in Appendix B.3 (section B.3.1.3), hetcase of a T-shaped intersection, the
development of large membrane forces in the vértwag is prohibited because the

horizontal girders usually do not have sufficiehear stiffness. In the purpose of validating
the analytical resistance predicted by (B.62) fuese particular intersections, it could be
interesting to perform comparisons with numericdliBons given by S-DYNA.
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Figure 3.44. Comparison between the analytical and numerical results for a T-shaped intersection

To do so, the upper wing of the cruciform considehere above (Figure 3.42) has been
removed in order to transform it into a T-shape@rsection. The material and geometrical
properties respectively listed in Table 3.2 and able 3.6 are kept unchanged. Here again,
the simulation is run without considering rupture.

The results are reported on Figure 3.44, from whictan be seen that the agreement is
satisfactory. In comparison with Figure 3.43, indae stated that the three-phase behavior
discussed previously is also valid in the presasegbut it can be noted that the development
of the membrane forces is not as important thanafaruciform. Of course, this can be
explained by the fact that one wing is missing, dlab because the axial straining is reduced
in the vertical part.
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

3.6. Resistance in the global deforming mode

When the gate exhibits an overall bending motiagyife 3.9), the main difference with the
developments performed so far for the local defagmnode is coming from the elastic phase
that is not necessarily negligible. Indeed, wheveltgping super-elements, it is reasonable to
postulate a rigid-plastic material because therdeditions are localized and increase therefore
rapidly. Nevertheless, in the present case, thsraption is not valid anymore, so the
derivation of the global resistance has to be dorwo steps, by distinguishing between the
elastoplastic and rigid-plastic regimes.

3.6.1. General procedure

Before starting the analytical evaluation of thebgll resistance, it is necessary to give more
precisions about the procedure that will be folldwehis is particularly true for the definition
of the equivalent mechanical model of the gate,itastalso required to provide some details
on the way to combine the local and global comptstnget the total resistanBés).

3.6.1.1. Mechanical model

The mechanical model for the global deforming mbde already been discussed in section
3.2.2.2. As this topic is not really reported ie titerature, it is mainly based on observations
coming from numerical simulations. The only papesvidling some information is the one
written by Le Sourne et al. [99], where the globeisipation is treated by dividing the gate
into a set of horizontal beams and postulating werall plastic mechanism. The same
procedure is followed in the present section aedetiore, in accordance with Figure 3.12, the
structure is divided into a set of horizontal beawbsained by combining the gross cross-
section of the girders with a collaborating portiohthe plating. According to Paik and
Thayamballi [121], this latter has to be deriveddogounting for the following phenomena:

* The shear-lag effect occurring at the junction leetw the plating and the web of the
horizontal girders. This is mainly due to the actiof lateral loads and out-of-plane
bending that are responsible for a non-uniformsstdistribution in wide flanged beams.

* The buckling of plate elements under predominaaitial compressive forces that also
results in a non-uniform stress distribution. Agideed on Figure 3.45, two different
situations may be of interest: (a) an overall bungkbf the stiffened panel located between
two girders or (b) a local instability of the plagi between two stiffeners.

Paik [121] suggested some practical formulae tduen@ the effective widthBege; andbeg,
(Figure 3.45) on both sides of each horizontal egsd According to Eurocode 3 [52], the
procedure is much more difficult because therenaaay others instabilities to consider. For
example, one should also account for a column bymkling of the plating together with the
stiffeners, which leads to a very cumbersome met@ada practical point of view, it is not of
prior importance to have a precise calculation hed effective width because the present
approach dealing with the global deforming modéhefgate is already quite approximate.

Another simplification is also introduced here,ths derivation ofbe¢;, andbeg, does not
lead to the same values if the stiffening configjores are not the same on both sides of the
girders. This causes the resulting cross-sectidretasymmetric, which is not convenient for
the beam plastic theory. Consequently, to work vatltonventional symmetric I-shaped
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

cross-section (Figure 3.45), the collaborating ipartof the plating is characterized by an
equivalent height given by:
heq =2 min(beff’l 5 beff,Z) (368)

which is conservative. On the contrary, it showdnrentioned that the hypothesis made by Le
Sourne et al. [99] of a fully effective cross-sentimay be too optimistic, in particular if there
is a large distance between two successive girders.

be ; be he
e T @ (b) D E—
e S— S eq ¢
: VTSI P ;::::>::::;:;;; t
J I U e |
Horizontal Stiffener Plating

Figure 3.45. Calculation of the effective width

As a final result, accounting for the hypothesesspnted in section 3.2.2.2, the beam located
at a levelY; with the above-mentioned properties can be modetedepicted on Figure 3.46.

It is assumed to be simply supported at its twoesmities, which means that the rotational
restraint provided by the torsional stiffness & tlertical frames is neglected. Furthermore, if
these latter are weaker than the girders, it cgmostulated that they simply follow the overall
out-of-plane displacementqY;, Z) imposed by the beams. The only roles of the fraames
then to prevent the lateral torsional buckling &ndt the in-plane displacements, (¥;) and

wy (Yy).

§ wa(Y) lu(v,,2) wi(Y) E
e KK

Figure 3.46. Equivalent mechanical model of a beam

The model depicted on Figure 3.46 will be usedvaluate the individual resistanég(d)
characterizing each of the beam constituting the gethe global deforming mode.

3.6.1.2. Combination of the local and global resistances

A first idea to calculate the penetratiép for which there is a switch from the local to the
global deforming mode occurs whén(§) reaches a sufficient valug(§) that is required to
activate an overall collapse mechanism over the @agure 3.9). For consistency,Bg9) is
derived in the plastic regime, this should alsatme case folP,(§). Therefore, similarly to
what has been done for the transition betweendlienfy and bending mechanisms in SE2 or
SE3, one could simply derive the total resistaP@®) in the following manner:

e If6<6;: P(6) = P,(6) — Local deforming mode
(3.69)
e If 5§>6,: P(6) = P;(6) — Global deforming mode

which may be illustrated by the curves depicted~mure 3.47a. Nevertheless, this approach
is not really appropriate because it transpiresifrmimerical simulations that before reaching
a full plastic state and activating the global defmg mode (i.e. foré < §;), the local
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crushing process develops concomitantly with atéohielastoplastic overall bending motion
of the gate. In other words, accounting only B(§) whené < §; could lead to an unsafe
evaluation of the resistance. For this reason,9j3néust be adapted by performing a rigid-
plastic derivation ofP;(8) whend > §;, but also an elastoplastic evaluationPgfs) when

6 < 6;. Doing so, instead of using (3.69) to obtain tagegesistance, the subsequent formula
is suggested:

e If §<6,: P(8) = min(P,(6); P;(6)) — Local deforming mode
(3.70)
e If 5§>6,: P(8) = P;(6) — Global deforming mode

which corresponds to the situation of Figure 3.4+dw. clarity, the procedure to combine the
local resistanc®, (§) with the global oné;(9) is also summarized on Figure 3.48.

(a) Gate resistance P(8) according to (3.69) (b) Gate resistance P (&) according to (3.70)

P P.(6) P P(9)
AP |- A P
~L_ T P5(6) 1 / Ps(6)
P(9) P((S') o
> 5 >0
Ot Ot

Figure 3.47. Calculation of the gate resistance

The only parameters that are still unknown to affly0) are the global resistanBg(d)
and the forceP,(6) required to activate an overall plastic mechanmrer the gate. As
mentioned earlier, the derivation Bf(6) has to be done in both the elastoplastié ( 6;)
and rigid-plastic (i6 > ;) domains.

Finding an elastoplastic solution B¢ (6) is however not straightforward, the main diffiqult
being to account for the influence of the crushpngcess during this phase. To solve this
problem, it is proposed to evalualg(s) by applying equation (3.5), where the individual
resistance®; (§) are calculated by following the subsequent steps:

1) For a given kinematically admissible displacemeieldf (Figure 3.49b), the elastic
bending theory of beams is first used to eval®at&), as detailed in section 3.6.2.

2) This solution is only valid as long as there isphastic collapse of bear which occurs
whenP;(5) reaches a certain levl;(6).

3) An elastoplastic solution for beaimis then simply found by taking the minimum value
betweenP;(§) andP; ; (5).

4) Of course, if there is a simultaneous indentatibro@ami due to the local crushing
processpP;(8) andP,;(6) have to be derived by considering that the crestien is not
fully efficient.

Applying the following procedure leads to a coupkddstoplastic evaluation df;(6) for

6 < 6;. Regarding the rigid-plastic solution, there is real difficulty because a lot of
theoretical results are already available on thpéct(see section 3.6.3).
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Figure 3.48. Procedure to combine the local and global resistances
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From the procedure exposed here above, it is thediran overall plastic mechanism will be
activated as soon @(9) is equal toP,;(6) for all the beams. ConsequentB(§) may be
simply found by summing up all the threshold valBggd). The derivations of;(5), P (5),

P, ;(6) andP,(8) are discussed in more details in the followingises.

3.6.2. Elastoplastic solution

As explained here above, f6r< §;, the beam depicted on Figure 3.46 may be firgtistlin
the elastic range. This phase is assumed to end thikeapplied force is equal to a limit value
P, ;(6) for which a plastic mechanism is initiated. Atstimoment, the bending resistance of
the beam is reached, so the first step in the aisaily now to provide some formulae allowing
for its derivation.

3.6.2.1. Derivation of the resistant bending moment

The resistant bending moment depends on the ceas®s classification and is not
necessarily the same in all the cases. Indeedrdingoto Eurocode 3 [52], the distinction
should be made between the following situations:

 Class 1 cross-sections that are characterizedfly lastic bending resistandé, ;. They
are able to develop a plastic hinge and have theined rotation capacities for a plastic
analysis.

+ Class 2 cross-sections, for whigf),; can also be reached but the rotation capacites ar
limited due to local buckling.

» Class 3 cross-sections, where the elastic bendisgtanceM, ; should be considered
because the local buckling prevents important yngld
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» Class 4 cross-sections, in which buckling takeseplaefore the occurrence of any plastic
deformation. Only an effective elastic bending moté, ; can be reached. This latter is
obtained by assuming that the cross-section iemttely efficient.

From this brief recall, it appears that developagollapse mechanism involving plastic
hinges is not relevant for all the girders becaoka too early local buckling. This is an
important restriction that has not been considedar, in particular when establishing the
resistance of SE2 and SE3 during the beam-like wietia Another conclusion that can be
drawn from the previous considerations is thatftitee P; ;(§) causing a plastic mechanism
is such that the maximal bending moment over tleerbes equal to the resistankg ;, M, ;

or M,; according to the cross-section class.

As explained in section 3.6.1.2, one of the crugaint is now to evaluate the reduced
bending capacities, ;(§)M, ;, & (§)M,; or é.:(8)M,; by accounting for the coupling with
the local mode. The reduction coefficients haveefaresent the effect of the crushing and a
very simple way to achieve this goal is to geneealivhat has already been proposed in
Appendix B.2.

To do so, let us consider the particular situafmmwhich the initial I-shaped cross-section
has been indented over a distardce 2kH. In this casek folds are already completely
closed (Figure 3.49a) and the uncrushed web h&gégual toh,. In order to evaluate the
bending resistance for such a configuration, irigposed to focus only on the intact afha
(Figure 3.49a). Associating the collaborative drthe plating td, is questionable, because
this region also suffers important plastic disosdeoming from the simultaneous folding
process, so this will be conservatively omittedehdihe derivation of the bending resistance
M, of Q, then leads to a plastic, elastic or effective tedasolution according to the initial
cross-section classification. It is worth noticitingt this latter is based on the uncrushed web
height h, and is not recalculated for each valuehgf which implies that the coefficients
$p,i(8), $e,i(6) andé, ;(8) are monotonically decreasing functions of the patien.

(a) Bending resistance of a crushed beam (b) Compatible displacement field of an horizontal beam
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Figure 3.49. Geometrical data for the elastic solution

Finally, to get the bending resistangg (6)M,,;, &¢i(6)M,; or f_e,i(5)1\7le,i for any value of
the local indentatio, the linear interpolation (B.26) suggested in Apgig B.2 can be used.

® See sections 3.4.2.2, 3.5.2.2, B.2.2, B.3.1.3BB®.2. For conciseness, it was voluntarily oritte precise
that these developments were only valid for clagdflcourse, if the T-shaped cross-section of a &E2 SE3
does not satisfy this requirement, the procedupesxd here is applicable.
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

Of course, for a given value of the local penetrath, as long as the beam has not been
impacted by the vessel, the derivation has to e dor the initial undamaged cross-section
obtained by combining the girder and the collabogapart of the plating, which leads to
Mp,i! Me,i OrMe’i.

The method proposed here above is arguable bedabas no real theoretical basis. It is
simply an approximate, practical and conservatp@ach that is only corroborated by finite
element analyses of entire lock gates (see se8tiOn This way of doing allows for a better
agreement between the analytical and numericalesyiin particular at the beginning of the
collision, when the local deforming mode sometiresrestimates the resistance.

3.6.2.2. Derivation of the global resistance

The derivation of the global resistance in thetelaggime (i.e. fors < §;) can be achieved
by postulating kinematically admissible expressidémsu; and w; (Figure 3.46). In fact,
before the transition, there is no need to accéamthe in-plane componemt; because this
one is very small. Consequently, for a beam located levelY; along the vertical axis, the
following cubic functions may be used to defineaaneptable deformation profile:

1727, — 7} — 72

PRor0szszi wMd) =57

g(¥;, 8)

(3.71)
11—-272z-27% 277

21-2;, Z,(1-2)

e« Forz;<z<l: uw{,2)= 9(Y;,8)

whereZ; is the horizontal coordinate of the impact pdifEigure 3.6) and is the total width

of the gate (Figure 3.3). The functigr{Y;, §) gives the maximal displacement of the beam
(Figure 3.49Db). It is supposed to occur in theigaltplaneZ = Z; passing through the first
contact pointl. In order to have a quite realistic global defatiorapattern, the definition of
the functiong(Y,§) has to be done by accounting for the shape ofsthiking vessel. In
particular, the presence of a bulb may have a gnflaence on the overall bending motion
exhibited by the gate. Furthermore, in order tcbmpatible,g(Y,§) has also to respect the
boundary conditions of the structure. For concisenenly the case of a gate free at the
bottom and impacted by a raked bow is considereel Adne other situations are presented in
Appendix B.4 (section B.4.1).

As explained previously, fof < §;, the plastic mechanism is not yet activated. Tag g
suffers a local plastic indentation (Figure 3.5€a)ipled with a global elastoplastic movement
(Figure 3.50a). In the vertical plarie= Z;, this latter is described by a bilinear function
g(Y,8) such thatg(Y;,6) = §. The only difficulty lies in having reasonable iesdtions for
the displacementg(h,§) and g(0,8) of the uppermost and lowermost beams. To achieve
this goal, one can consider the situation wherarttpact point/ is progressively nearing the
top of the gate. In this case, it may be thought g(h,d) - § andg(0,6) — 0. It seems
therefore interesting to use the coefficierjth and1 — Y;/h in their definitions, but this is
not sufficient. Indeed, because of the concomitanal indentation, the vertical distance
between the lowermost beam and the vessel is Ewigety reduced by tan¢ (Figure
3.50c), which means thgt(0, ) becomes more and more sensitive to the penetrafitime
ship. When the ship is completely in contact witle tgate,6 tan¢ = h;, and it seems
consistent to use the ratébtan ¢ /h;, as a second coefficient fgr(0, §). Gathering all the
previous considerations leads to the following lssu
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6 tan ¢ Y;
;1) . g(h ) =15 (3.72)
h h

g(0,6) = 6(1 —%)min(

Using these definitions, it is now possible to ext¢he definition ofg(Y, §) by interpolating
linearly betweery (0, §), g(Y;,6) andg(h, §), which leads to:

Y Y Y\ . /dtan¢
e FOro<sy <y : g(Y,6)=6—+6(1——)(1——)m1n( ;1)
Y Y h hy
(3.73)

Y-V
. < ) = —

Fory, <Y <h g, 8) 6(1 W )
Of course, in (3.73), only the discrete locatiéns Y; of the horizontal girders are of interest
to evaluateu(Y;, Z) by (3.71). This latter being completely defindug resistance®;(§) can
be found by applying the elastic beam theory.

(a) Three dimensional view (b) Global elastic movement  (c) Local plastic indentation
\‘\‘\ \\
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Figure 3.50. Global and local displacements before the activation of the plastic mechanism

As long as the overall motion of the gate remamslk it can be shown that the bending
momentsM;(Z, §) in the beam and the equilibrium equation are symaglfollows:

0%u (1-2)z,

M,(Z,8) = —E], M;(8) = P,(8) (3.74)

tozz
whereM;(6) = M;(Z,, ) is the maximal bending moment located in the e¢rioss-section
and [; is the relevant inertia. It is worth noting thdist latter has to be calculated by
accounting for the crushing process if the bearalgs indented by the vessel. This can be
achieved by applying the same technique than tlee ppasented in Appendix B.2 for the
bending capacities of a beam. Substituting (3.713i74) leads to:

31EL I fp,i(a)Mp,i
P,(8) = min{————=g(;, 6); Pi(8) ; Pri(8) = ——<1§ei(6)Me, 3.75
(6) = min {le(l —7,)? g(Y;, 6); Py ( )} ,i(6) A ge’i(g)]ﬁe’i ( )

where it is worth noting thaP;(§) is a piecewise non-linear function éf due to the
definitions ofl; andg(Y;, §). In this last equation, it may be worth recallthgt according to
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section 3.6.2.1P; ;(6) is the force required to activate a plastic metdmron the beam. This
happens when the maximal bending moméntd) reaches the plastic, elastic or effective
elastic resistance of the cross-section. The aeffis¢, ;(6), & ;(56) and &.:(8) are only

useful if the beam is simultaneously indented dyithre crushing process, otherwise they are
equal to unity.

The evolution of the individual resistanfg6) given by (3.75) during the local deforming
mode is depicted on Figure 3.51a for an impacteabé-rom this picture, it can be seen that
P;(8) is not increasing continuously with because discontinuities are noticeable at the
initiation of each new fold, which is simply duettee change of inertia.

(a) Individual resistance P;(§) of  (b) Individual resistance P;(§) of (c) Derivation of the total
an impacted beam non-impacted beam resistance P(6)
P() P(&) P() b
4 A ) A L g
Py (6) P(8) [[
P.i(6)
| 1 P
P (5)
pie) Pi()
Pi(6)
2H 4H 6H & ° 5 ° 50

Figure 3.51. Individual and total resistances during the local deforming mode

As soon as the forcg, ;(§) required to activate a global mechanism on thenbsareached,
then P;(6) simply follows P;;(6), which is a discontinuously decreasing function sof
because of the coefficients ;(5), &.:(8) or f_e,l-((S). On the contrary, if the beam is not
impacted, its individual contributioR;(8) is monotonically growing with the penetration,
until P, ;(8) is reached (Figure 3.51b). This latter is constasithere is no need to reduce the
resistant bending moment,;, M, ; or M,; of the beam. As a final result, the elastoplastic
global resistanc®,; (6) in the local deforming mode is obtained with hefgequation (3.5),
i.e. by summing-up the contributioRg§) coming from all the horizontal beams.

3.6.3. Perfectly plastic solution

The threshold valug; (&) that is required to activate a global plastic naeitm on the entire
gate is simply obtained by adding the forégs(6) that are necessary to initiate a plastic
behavior for each individual beam. As soon as @sestance’ (§) calculated by (3.70) in the
elastoplastic local deforming mode reaclig6s), then§ = §, and the transition occurs.
Consequently, in accordance with section 3.6.h&etwill be a switch from the local to the
global deforming mode when the two following exsiess are equal:

Np
P(8) = min(P,(8); Ps(®) 5 P(®) = ) Pry(6) (3.76)
i=1

such as depicted on Figure 3.51c. In accordande ®i70), for§ > &;, the gate resistance
P(9) is derived by considering this time only a glopkstic solutionP;(6). As usual, this
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latter is obtained by applying (3.5), where theiviglal contributionsP;(§) coming from
each beam are now calculated under the hypotheaiperfectly plastic material.

3.6.3.1. Derivation of the displacement field

Before deriving the resistance, it is first necegsa define the displacement field for> &;.

As in the previous section, the case of a raked lmpacting a gate free at the bottom is
investigated (other situations are reported inisecB.4.2 of Appendix B.4). In this
configuration, all the beams are assumed to calapdividually through a plastic mechanism
(Figure 3.52a) where the out-of-plane displacemargsgiven byg (Y, §) while the in-plane
ones are characterized by the functiang§Y) andw, (Y) at the two ends.

(b) (c (d)
\\\ \
Or \ )
) ——
//
/
/
/
/ /
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Figure 3.52. Displacement field after the activation of the plastic mechanism

In order to have a reasonable evaluatiog @f, §), one can consider the local penetration of
the striking vessel when the transition occurs. &ef §;, it can be seen from Figure 3.52b
that the vertical distance between the lowermoatrband the impact poirtis reduced to
Y, — 6;tan¢p. Consequently, by using similar arguments tharsé¢hexposed in section
3.6.2.2, it seems reasonable to postulate thatdb#icients1 — Y, /h andé; tan ¢ /h;, should

be involved in the definition 0§ (0, ). Here again, assuming that0,5) and g(h,§) are
proportional to the displacemehit- §; of the contact point leads to:

9(0,8) = (5 — 6 (1 - %) min (5t fbn ?. 1) . g(h,6) = %(5 —6) (3.77)
A linear interpolation can then be used to getviagical profile of Figure 3.52c. However, if
é: tan ¢ < hy, then (3.77) is not always valid. Indeed, if thens angle is close ®0°, then a
subsequent contact may appear between the stethexéforming gate (Figure 3.52d). This
occurs for a given penetration; that can be calculated from simple geometrical
considerations. From this point onwarggp, §) grows more rapidly as the distance between
the bottom of the ship and the lowermost beam 8 aoly equal toY; — h;,. Consequently,
the coefficientl — Y;/h should be replaced by— (Y; — h,)/h in (3.77) to get:

9(0,8) = (8, — 8,) (1 —%) min (5t tha:d’ ; 1) +(6-8) (1 _ ;hb) (3.78)
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in which the first term is simply the displacemeaached by the gate when the subsequent
contact happens. Of course, the definitionggh, §) remains unaffected fof > ;. To
achieve the derivation of the displacement fietdsistill required to precise the functions
w; (V) andw,(Y) for the in-plane movements. Ideally, these lasteould be calculated by
accounting for the true flexibility of the strucéuin the plastic regime.

(a) Axial membrane extensions (b) Top view of a beam locally indented before the transition
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Figure 3.53. Definition of the in-plane displacement field

However, in this simplified procedure, as the wattiframes are consider to have little
influence in the global deforming mode, it seemasomable to follow the hypothesis
formulated by Jones [80] and postulate that thelame displacements; (Y) andw,(Y) are
proportional to the axial extensions andA, of each part of the beam in the case of fixed
supports (Figure 3.53a). These latter are given by:

/ g*(Y;,6) g*(Y;,6)
= 2 2 . —_ [ — ] — —_— 2 2 f ~ .
A= |77 + g2(Y,8) — Z, 2z A, =/ —Z)? + g2(Y;, 6) 20=2) (3.79)

in which the approximations are valid within tharfre of moderately large displacements, i.e.
for g(Y;,6) K min(Z; ; [ — Z;). In addition to (3.79), another hypothesis is madaccount
for the actual distance separating the bow from l#teral supports. To do so, one can
consider the situation depicted on Figure 3.53lwatg the indentation of a beam during the
local deforming mode. When the transition occurappears that the left and right horizontal
distances are reduced tb—Z, —d and Z, —d respectively,d being calculated by
considering the intersection of the stem with teetigal planeX = 0. As the maximal value
for d isp (Figure 3.7a), it is suggested here to use th#iceat d/p when definingw, (Y)
andw, (Y). Finally, interpolating linearly leads to:

1g%(Y;, 6 Z Y-Y d
« Forosy<y: wl(Y)=§%(1—7’)(1+ - 1>min(5;1)
I

(3.80)

19%(Y;, 6 Z Y -, d
Forn<r=h: W1<Y>=z¥(l‘7')(1‘71)mi“(g;1)
1

in whichd = p,/8;/q. Of course, the definition of,(Y) is similar, except thaf; has to be
replaced by — Z; in (3.80).

3.6.3.2. Derivation of the resistance
Once a kinematically admissible displacement fislghostulated fo$ > 6;, the individual
resistanceP;(§) provided by each horizontal beam can be calculdtedapplying the

equilibrium method (see section 2.3.2.2). As byiefiscussed here above, the calculation of
P;(8) has to be done by accounting carefully for thesifecation. Indeed, from Eurocode 3
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[52], only class 1 cross-sections have the requiogation capacities for a plastic analysis. In
this single case, the mechanism depicted on Figlt¢ can be postulated, where a central
plastic hinge is formed. This kind of situation le®ady been quickly analyzed when dealing
with the beam behavior of folded super-elementseictions 3.4.2.2 and 3.5.2.2. Therefore, it
could be of interest to perform a quite more deththeoretical investigation in the present
situation.

-7 | Z

wa(Y)
wi(Y7)

Figure 3.54. Plastic collapse in case of a class 1 cross-section

In fact, when the transition occuré € §;), the cross-section located = Z; is only
submitted to a bending momen;(5) equal toé,;M,;, where¢,; corresponds to the
particular value of¢,;(8§) when § = §;, which is only relevant if the beam has been
previously impacted during the local mode. Nevdeb® because of the moderately large
out-of-plane displacements, some additional mengedfects develop because the structure
is also submitted to an axial straining. Consedugeat normal forceN;(§) and a bending
momentM;(§) simultaneously act on the central cross-sectitvesé two internal forces are
not independent from each other because they kEtedeby a yield criterion. In the present
case, the interaction formula should be the oneacterizing an I-shape cross-section. Ueda
and Rashed [150] have elaborated a very refinedcantbersome description of this yield
locus, but as suggested by Paik and Thayamballl][1&2nother easier and conservative
approach is to adopt the following parabolic forenul

2
N (5)> (3.81)

M; N\
L + < - ) =1l Ml((S) = fp,iMp,i <1 — NZ
p,i

gp,iMp,i Np,i
which was already encountered in Appendix B.2.\ahdreM,, ; andN,, ; are respectively the
bending and axial capacities of the I-shaped csestion depicted on Figure 3.45. Because of
the combination of both membrane and bending eff@bte central hinge is simultaneously
submitted to a rotatiof); and an extension; (Figure 3.54). These latter are related by the
normality rule:
oM; A; NZi A

_ i 3.82

which, as explained by Jones [81], simply stated there is no acceptable combination of
M;(8) andN;(6) outside the yield locus with non-hardening matsridthis relation is quite
important, as it allows for the evaluation of théernal normal force iA; and8; are known.
These two parameters can be easily obtained frendigplacement field defined in 3.6.3.1.
Indeed, under the assumption tlgdt;, 5) is small in comparison witd; andL — Z;, from
Figure 3.54, it can be shown that:

g8

0; g, 6) 5 A= 2 7,(—Z) —w; () —wa (V) (3.83)

A

Deriving (3.83) with respect to time and substitgtthe ratioA;/6; in (3.82) leads tdV;(5).
As N;(8) < N,; to have a statically admissible solution, thedwiing result is found:
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2

el
Ni(8) = minj————{ g(¥;, 8) —

l a6 a6

Zi(l—-Z)) (6W1 N c’)wz) _
28y My i '

Np,i} (3.84)

which can be introduced in (3.81) to get the begamomentM;(§). OnceM;(§) andN;(5)
are known, the equilibrium of the gate can be esged in a similar manner than Tin-Loi
[149], which finally leads to:

l
P;(8) = Z0=2) (M;(8) + Ni(8)g(Y;, 8)) (3.85)

Z,(
Of course, when the transition occurséin= §;, this equation is exactly the same as (3.75)
and leads t&, ;(6). However, the analytical developments performes fadove are based
on a plastic analysis, which is only possible i& tbentral cross-section of is class 1. As
explained in section 3.6.2.1, if this is not thesegathe web will be submitted to an early
buckling, so the model of Figure 3.54 is irrelevimtthese situations.

In order to evaluat®;(§) for class 2, 3 or 4 cross-sections, the beam ednelated as a thin-
walled structure. In this approach, the web is seertassical plate that is likely to buckle
because of the compressive stresses induced lipetittng moment. As detailed by Kotelko
[88], during this phenomena, the structural behawiay be divided into the four phases
depicted on Figure 3.55a. In the present analyiseselastic and elastoplastic post-buckling
stages (denoted {g) and(3) on Figure 3.55a) are disregarded and the evolutichebeam
resistance curve is only divided into three sudeegszarts. As presented on Figure 3.55b, the
elastic solution derived in section 3.6.2.2 istfasnsidered, until the maximal valiég;(5) is
reached. The second portion is then assimilatexhtelastoplastic phase that ends when the
transition occurs, i.e. fa¥ = §;. From this point onwards, the beam collapses bgviing a
mechanism that still needs to be investigated.

The plastic collapse of a thin-walled structure barstudied by the upper-bound method. To
do so, a given deformation pattern has first tpdstulated. Of course, this choice is arbitrary
and has to be done in accordance with some nurherighysical observations. In the present
case, the buckling model that is commonly obsewleen performing.s-DYNA finite element
simulations is the one depicted on Figure 3.5& thade of a unique asymmetric fold created
over the total web heightind allows for a relative rotation of the two araighe beam as it

is progressively closed. The horizontal extengiérof the folded area may be expressed as a
fraction of the web height and will be derived tate

(a) Thin-walled structure model (b) Beam model
P Pi
i (1) Pre-buckling elastic phase i
rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr @ Pt,l
(2) Post-buckling elastic phase
———————————— ® @ @ ©)
(3) Post-buckling elastoplastic phase ©)

(4) Plastic collapse phase
) Ot

»
L

Figure 3.55. Evolution of the resistance with the penetration

VO’)

® If necessary, instead of working with the inittatal web heighth,,, the uncrushed portioh, should be
considered. This is particularly the case whenptlastic mechanism of Figure 3.56 has to be usedhfdeling
the beam behavior of SE2 and SE3, as explainegciioss 3.4.2.2 and 3.5.2.2.
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Of course, besides the mechanism represented oneR3g56, many others can be postulated
such as all those collected in the database of tdagu et al. [151]. Choosing the most
appropriate one depends on the web slendernessstitbgs state and the imperfections.
Selecting a proper folding geometry is thereforegasy and has to be done carefully to get a
true characterization of the post-buckling behavigevertheless, from all the numerical
simulations realized on entire lock gates (seei@®@.7), it results that the one considered
here is quite convenient as the total collisiorcéols more or less correctly approximated, so
only this particular collapse model will be used.

In an attempt to derive the plastic resistaRgé), it is required to evaluate the energy rB,te
associated to the folding process. Unfortunatdig, huckling pattern suggested here is not
listed in the database of Ungureanu et al. [151] aery little information are given by
Kotelko [88] about the analytical derivatioi")c. Consequently, as for super-elements, the
derivation has to be achieved by applying the woend method, but this will be done in
Chapter 4, when dealing with mitre gates.

1-Z-¢ glvié) p p Z-¢

“Yy

| w2(Yi)
wi(Y))

Figure 3.56. Collapse mechanism in case of a class 2, 3 or 4 cross-section

In addition toEf, there is also an energy dissipation that is cgrfiem the membrane effects
in the two arms of the beam. These latter havelréngths equal t&; — ¢ andl — Z;, — ¢
and are submitted to a total axial straining alsermy by (3.83), except thdt, has to be
replaced byZ, — ¢. Consequently, the total internal enerBy,, dissipated by the plastic
collapse of the beam is equal to:

. 1-28)g(Y;, 6 ow, 0w,\dg . O0Erfdg .
Eine = Np,i (_ )g_( L _) - - Z _g + _f—g (386)
Z,-0(1-2,—¢) dg g )as ' dg as
On the other hand, the work raié coming from the external forces has to be caledlaty
accounting for the contribution & (8), but also for the one coming from the reactiorcésr
because of the displacememgY;) andw,(Y;) at the supports, i.e.:
ow, 6W2> ag .

. ag .
W=PL(6)%8_NP,L(_+ 65

55 " 02 (3.87)

According to the upper-bound method, (3.86) anf7Bcan be equated to g&i(J). Doing
so leads to:
1 -20)g(%,8) 9

RO =iz —oa-2z-0 T o9

(3.88)

As a conclusion, the global plastic resistancer dfte transition can be obtained by applying
(3.5), whereP;(6) is given by (3.85) in the case of a class 1 ceesgtion, or by (3.88) in the
other cases. Furthermore, the curves of Figurea3asitl b can now be completed to get the
final evolution of P;(§) with the penetration. Doing so leads to the diagrgresented on
Figure 3.57a and b for an impacted or non-impaltsin respectively.
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(a) Resistance P;(§) for an impacted beam (b) Resistance P;(§) for non-impacted beam
P(5) P(6)

Lo, @ . 0O O .0 B

P.i(6) Class 1 Clas/

- P+i(6)
3 ‘ Pi(9) Class 2,3 or 4
Pi(6) Class 2,3 or 4

s 5
2H 4H 6H & i St i

Figure 3.57. Individual resistances during the local deforming mode

On these two pictures, it is worth noticing thaemewvhough there is an unstable plastic
collapse during the global deforming mode (i.e. dar §;), the resistance keeps growing

because of the membrane effects. If these effeete wot present after the transition, then
P;(8) would be a constant or decreasing functiosd etcording to the cross-section class. As
a final remark, it should be noted that the threecessive elastic, elastoplastic and plastic
phases discussed here above are also represenktéduoa 3.57. They are affected with the

numbers1), (2) and(3) respectively.
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3.7. Numerical validations

The aim of this section is to check if the anabitidevelopments performed for the local and
the global deforming modes provide a realisticneation of the collision resistance. To do so,
numerical simulations were run using the finitengd@t softwara s-DYNA that is capable of
solving dynamic non linear problems [66].

3.7.1. Preliminary considerations

Before exposing the results, it is of interest teegsome information about the numerical
models and about the collision scenarios usechiosimulations.

3.7.1.1. Finite element model

For all the simulations of the validation procdssth the striking vessel and the impacted gate
are entirely modeled using Belytschko-Tsay shedim@nts, based on a combined co-
rotational and velocity strain formulation. This ams that a coordinate system is embedded in
the element while the Rivlin-Eriksen rate of them@nsi strain tensofd] is used in
conjunction with Cauchy stresée§or the structure, five integration points araced over
the thickness, but only two are required for thig sis it is assumed to be perfectly rigid.

Concerning the mesh size, many attempts were madereb reaching an acceptable
configuration. Starting from an initial size, thermment dimensions are progressively reduced
until the numerical results stabilize. From thisneergence process, the following conclusions
may be drawn:

* In the area near the first impact point, the méah Isas to be quite refined in order to have
a proper modeling of the deformation mechanismslirad during the collision. This is
particularly true for the folding of horizontal anebrtical members but is not of prior
importance to represent tensile effects in theingat~urthermore, it is worth bearing in
mind that the contact zone between the structudetla® ship is progressively extending
when the penetration increases, which implies thatmesh size has to be sufficiently
small in a large area around the impact point. €guently, the case of a vessel with a
more or less rectangular hull form is quite unfaxde regarding the meshing effort.

« Similarly, in the regions near the boundariessiadvisable to avoid a too coarse mesh
because the deformations involved during the glabatle may also be non-negligible
along these places. This observation was alreadie rog many authors who worked with
finite element during ship-ship collisions, suchLégzen [103], Simonsen [141] or Zhang
[180].

* In the remaining parts of the gate, there is nbmead to have a very refined mesh as the
bending deformations due to the global mode areemate enough. This allows for a
reduction of the total time needed to simulateitigact.

In the present situation, it was finally found thia¢ element dimensions should be of about
10 cm in order to preserve an acceptable precision emtimerical results without requiring
an excessive calculation time.

" See thes-DYNA theory manual [66], section 2.3.1 and Appendix far2more details.
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The boundary conditions applied on the gate arsetmentioned in section 3.1.1.3. They are
briefly recalled on Figure 3.58 and in Table 3.%r edges(2) and (4), there is only a
translational constraint along the horizonXalaxis, which conservatively supposes that the
structure remains free to move in its plane withédtion. At the bottom of the lock
chamber, th&l-displacements are also prohibited if a sill isspré. Finally, for the uppermost
girder (3), if some cables are supporting the gate (Figu2® Eis can be taken into account
by imposing a vertical restraint along tkieaxis. Nevertheless, finite element simulations
have shown that imposing this additional constra@s very little influence on the impact
resistance, so the suspension cables can be deelgduring the collision process.

Edge | DOF Boundary condition
X | Constrained with a sill and free otherwise
® Y | Constrained
Z | Constrained along the impact line
@ X | Constrained because of the lock walls
@ Y | Free
Y Z | Free
/ X Free
3 Y | Constrained with cables and free otherwise
@ 7 Z Free
/ X | Constrained because of the lock walls
d D @ Y | Free
Z Free
Remark: on Figure 3.58, the horizontal X axis is defined
perpendicularly to the initial plane of the gate.
Figure 3.58. Definition of the edges Table 3.7. Summary of the boundary conditions

The contact between the vessel and the structuredeled by using the general surface-to-
surface penalty contact algorithm i-DYNA. In the optic of providing ideal conditions, the

elements dimensions of striking vessel are closeti0tcm in the regions near the impact

point. A coarser mesh is used outside these afeaa. conservative hypothesis, the ship is
assumed to be perfectly rigid, while the gate bl the properties listed in Table 3.2.

3.7.1.2. Collision scenarios

In order to define the collision scenarios usefof the validation process, it may be
interesting to stress the following points:

* Regarding the impact velocity, the finite elememnidations have shown that the
resistance curves were nearly identical for anaihgpeedV, equal t00.5, 1 or 2 m/s.
This means that the inertia effects do not havégaificant influence on the collision
process, so it is sufficient to only consider thaeximal value o2 m/s. Furthermore, it is
also worth noting that the previous conclusion terid corroborate the quasi-static
approach used in the previous sections for devedpiie analytical model.

» Finally, regarding the mag¥; of the striking vessel, as barges are not corsitbere, it
appears from Table A.1 that choosing a valu¢0®f0 ¢t should be consistent enough.

In conclusion, from the previous considerationdranspires that performing finite element
simulations with a vessel d¢000 t and travelling at an initial speed 2#n/s should lead to a
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reasonably unfavorable situation. Only the impacttion needs to be varied to get different
collision scenarios. As explained in section 3.2hE, simulation is stopped when the initial
kinetic energy has been entirely absorbed by tke ga

3.7.2. Impact on a gate supported by a sill

Different gates were considered for the validatidor. conciseness, this section only focuses
on the one represented on Figure 3.59, but otlselltseare available in Appendix B.5. The

geometrical properties of the structure are listedable 3.8, from which it can be seen that
the total length and height are both equal td3.1 m for this first gate. The cases of a raked
or bulbous striking bow are considered separately.

Horizontal girders
1
T
| Y(m) | hy(m) | t,(m) | he(m) | t;(m)
,—'—'—‘_'_'_'_‘_'_’- o]
e — ([ 0 1 0.02 0.6 0.025
I ;“’:': [ 2.3 1 0.02 0.5 0.025
= 4.8 1 0.02 0.5 0.025
_:_=.:-='="="
: i — 1 7.8 1 0.02 0.6 0.035
= 13.1 1 0.025 0.4 0.025
) fﬂ______;—-_ Vertical frames
et Zm) | hy(m) | t, (m) | hy(m) | tr(m)
L 0 1 0.02 0.3 0.025
[ L 2.62 1 0.02 0.3 0.025
: ]
e 5.24 1 0.02 0.3 0.025
I 7.86 1 0.02 0.3 0.025
[ o 10.48 1
o

" 0.021 0.009 0.01

Figure 3.59. Three dimensional view of gate 1 Table 3.8. Geometrical properties of gate 1

I 0.02 0.3 0.025
fﬂ%ﬁ % % 13.1 1 0.02 03 0.025
] Horizontal stiffeners Plating
i | L
- g " == h,, (m) t,, (m) t, (m)
——

In order to corroborate the analytical model présgrhere above, the comparison is made
between the numerical and analytical curves showiagevolution of the total collision force
with the penetration. The same is done for the@leesnergy dissipated by the structure.

3.7.2.1. Impact by a raked bow

The case on an impact by a raked bow was treateasiomg two different vessels (Figure
3.60). The first one has a stem angle¢hat is close t®0°, while the second one is much
sharper. For each of them, the initial contact p@nsuch thatt; =8m andZ;, = 6.5m
(Figure 3.6). Considering two different ships pipatly aims to check that the transition from
the local to the global deforming mode is moreessicorrectly assessed. Indeed, for vessel 1,
as¢ is quite important, the contact area between tve &dnd the gate grows rapidly, which
means that the transition should occur earlier tbamessel 2.

The numerical and analytical curves showing thelutiamn of the resistance with the
penetration are represented on Figure 3.61. Frasethesults, it can be concluded that the
simplified approach leads to a reasonably consees/aistimation of the impact force and of
the total penetration.
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(a) Vessel 1 (b) Vessel 2 (c) Geometrical dimensions
/ Vessel 1 Vessel 2
) D 6m 55m
‘.‘" q 8m 6.2m
hy, 5m 45m
¢ 84° 45°
Y 84° 71°

Figure 3.60. Three dimensional views of the raked bows

The only unsafe approximation appears for largeesbfs, where the curves given hg-
DYNA tend to stabilize while the analytical ones keepagng. This is particularly visible on
Figure 3.61b and can be explained by the factttitmtmembrane effects in the beams during
the global mode are too generously calculated byptlesent approach. In fact, the postulated
in-plane displacements, (Y) and w,(Y) given by (3.80) are only based on geometrical
considerations, but do not account for any meclammperties of the gate. As claimed in
section 3.6, doing so is only consistent underassumption that the frames are weaker than
the girders, which is not exactly the case in tightl of the values listed in Table 3.8.
Consequently, (3.80) is only acceptable as lonthasvralues oty are not too large, but the
influence of the frames is increasing with the pext®n and they finally forcev,;(Y) and
w,(Y) to become more or less linear over the gate heigtis is not totally reproduced by
the analytical model, which leads to an underestonaof w,(Y) andw,(Y) and to increased
membrane forces.

(a) Resistance for vessel 1 (b) Resistance for vessel 2

12 12

10 / 10
z 8 z 8 /
S / / & erirmtrn
cg 6 S / ug 6 -
© / ] /
] i

2 2

6 (m
0 6 (m) 0 (m)
0 0,3 0,6 0,9 1,2 1,5 0 0,3 0,6 0,9 1,2 1,5
—.S-DYNA Analytical e=—]S-DYNA —— Analytical

Figure 3.61. Comparison of the analytical and numerical resistance curves

Nevertheless, an overestimation of the resistancenfiportant values ob is not really
problematic because in this case, the geometrisatdkrs on the gate are such that they are
definitely not acceptable. In other words, in thisation, the crashworthiness is much more
influenced by a serviceability limit state thanudymate strength.

The curves showing the internal energy dissipatedhle structure are depicted on Figure
3.62. As there is no other dissipative effect,\thkie reached at the end of the penetration is
equal to the initial kinetic energy & MJ. Furthermore, as these curves are obtained by
integrating the resistance, it seems logical thatytalso reflect the conclusions detailed
above.
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(a) Energy for vessel 1 (b) Energy for vessel 2
: '/ : /
7 /// 7
6 / 6 /
g 5 / g 5
B 4 B 4
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5 // 5
5| 7 i
2 W/ 2
1 1 _
. 5 (m) . // 5 (m)
0 0,3 0,6 0,9 1,2 1,5 0 0,3 0,6 0,9 1,2 1,5
= [.S-DYNA Analytical e]S-DYNA —— Analytical

Figure 3.62. Comparison of the analytical and numerical energy curves

As a final comment, it can be seen from Figure 3ltdt the analytical model gives an
acceptable prediction of the transition in the t@ses. The switch from the local to the global
mode occurs more or less arouhe: 0.25 m for both vessel 1 and 2.

3.7.2.2. Impact by a bulbous bow

The bulbous bow that is used here for the simulatics depicted on Figure 3.63. The

geometrical dimensions are such that the contesit diccurs between the bulb and the gate,
with Y, = 5m andZ; = 6.5 m. The numerical and analytical curves showing tr@gion of

the resistance and of the internal energy withpibieetration are reported on Figure 3.64. It
can be seen that the overall agreement is quitsfeabry. As expected, the observations
made in section 3.7.2.1 regarding the membranectsffstill hold as the resistance is

overestimated for large valuesd&f

(a) Vessel 3 (b) Geometrical dimensions
Vessel 3
P 6m
q 8m
4 hy 5m
¢ 84°
Y 84°
Ry 21m
Ry 1.05m
R, 0.7m

Figure 3.63. Three dimensional view of the bulbous bow

However, from Figure 3.64a, another divergence @ay be pointed out during the local
deforming mode and can be explained in the follgwimay. At the beginning of the
simulation, only the bulb is involved in the caltis process but when the penetration is more
or less equal t®.15m, a subsequent contact develops between the gatehanstem.
Numerically, this is assimilated to a slight shaeeid explains why the resistance computed by
LS-DYNA is suddenly increasing. However, in the analytiapproach, as the subsequent
contact only implies local deformations of platisgper-elements, there is no theoretical
reason for having an abrupt increment.
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(a) Resistance for vessel 3 (b) Energy for vessel 3
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Figure 3.64. Comparison of the analytical and numerical resistance and energy curves

In conclusion, there is no physical shortcominghie simplified approach that may justify the
divergence in the local mode. Furthermore, negigdtie shock caused by the stem leads to a
conservative estimation of the resistance. Thigaigicularly visible on Figure 3.64b, from
which it can be observed that the energy dissipati@lways safely predicted.

3.7.3. Impact on a gate free at the bottom

In order to investigate a gate that is free athibtom, the same impact situations than those
considered in section 3.7.2 can be relevant. Fociseness however, only two vessels will be
used and the energy curves will not be presented.

The evolution of the collision force with the peragibn is depicted on Figure 3.65 for an
impact by a raked or a bulbous bow. By comparimgétresults with those of Figure 3.62 and
Figure 3.64, it is clear that the resistance isrgjly reduced if the gate is not supported by a
sill. After reaching a maximal value that is moreless equal t®000 kN in both cases, the
curves start decreasing slowly with the penetratishich is quite typical of an unstable
behavior. This phenomenon is also reported by tiadytical approach and can be explained
in the following manner. During the global mode,enththe plastic mechanism is activated,
some membrane effects tends to develop in the dmiak beams (see section 3.6.3) and each
of them is submitted to an extension rAtethat is given by (3.83). At the beginning of the
penetration, the lateral displacememtgY) andw,(Y) are still sufficiently small, sd; is
positive and the resistance is growing. Nevertlseltss is not the case anymore with larger
values of§ and for some of the beams, the axial strainingeiment in negative, which
implies that their contributioR; (§) calculated by (3.85) or (3.88) decreases.

On a physical point of view, havinly < 0 can be justified as follows. In fact, the in-plane
displacements are more important for the beamdddcaear the impact point than for the
other ones because they are strongly influencestriging bow. Ideally, each beam tends to
keep a constant axial length; (= 0) in order to minimize its internal dissipation. \Wever,
this is practically impossible because they arenected to each other by the frames and
submitted to the out-of-plane displacement figl(l’,§) imposed by the vessel (Figure
3.52a). As a consequence, the beams located reeanpiact point are put into tension by the
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others because these latters have a smaller &dattion. This explains why the resistance
still increases at the beginning of the collisiahen the penetration gets larger, the
mechanism simply works the other way round: therisebcated near the impact point force
the others to follow them, which finally leads to @nstable configuration.

(a) Resistance for vessel 1 (b) Resistance for vessel 3
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N
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Figure 3.65. Numerical and analytical resistance curves

The phenomenon explained here above is of coufkemnted by the stiffness of the frames
because they transfer the displacement field tathedl beams. If these latter are slightly
connected to each other, then it is probable thatkind of instability will only happens for
very large indentations. Another factor that aldayp an important role is the distance
between the contact point and the supports. Ifrtipact is located near the lock walls, then it
is also to fear that the in-plane displacement$ bw@lquite important. These observations are
confirmed by the results reported in Appendix B.5.

As a final remark, it can be noted from Figure B.@5at the analytical resistance leads to a
drastic underestimation wheh> 1.5 m. In fact, this is exactly the same problem tham th

one already noticed in section 3.7.2 regarding tiembrane forces that are also too
generously estimated, but in the negative rangstitiie.
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3.8. Conclusions

The purpose of this chapter was to develop an aocalymodel to predict the collision
resistance of a plane lock gate with a single pdatiThe mathematical procedure followed is
briefly summarized hereatfter.

As a first step, the gate behavior was studiedhénldocal deforming mode, by supposing that
the deformations were essentially located in aioedfarea near the impact point. The super-
elements method was used to evaluate the collrgisistance under this hypothesis and three
different types of structural entities were conetde For each of them, the upper-bound
method was applied to get an analytical estimatiaheir individual contribution to the local
resistance (sections 3.3, 3.4 and 3.5).

As a second step, to account for the coupling tieaurs between all the super-elements,
another analytical solution was derived by assuntivaj the structure was submitted to an
overall bending motion. During this global deforigimode, the gate was modeled as a set of
horizontal beams weakly connected to each othéhdyrames. The resistance was evaluated
by applying the equilibrium method in both the &a$astic and rigid-plastic regimes (section
3.6).

Finally, a method was proposed to combine the lacal the global calculations in order to
approximate the resulting gate resistance. As mattealidation, the results of this simplified
method were directly compared to those obtainesifylating numerically ship collisions on
lock gates (section 3.7).

In addition to the mathematical and numerical a$ftisted here above, it is also important to
stress the following points:

* Applying the upper-bound method to get the locaistance for each type of super-
element leads to analytical solutions that reasgnatatch the numerical results. This
assertion is confirmed by the numerical validatipnssented in sections 3.3.4, 3.4.3 and
3.5.3. Nevertheless, one of the major differenceh wimilar developments performed to
study ship-ship collisions is the need to includke beam-like behavior when working with
SE2 or SE3.

» Similarly, applying the equilibrium method to gétetglobal resistance also provides a
quite acceptable approximation of the resistancermthe gate is submitted to an overall
bending motion. However, the agreement with fimtement results is conditioned to a
realistic evaluation of the lateral displacementzuoring at the lock walls. If this
requirement is not fulfilled, the simplified appotacould lead to an overestimation of the
resistance. The same observation is also validdaggathe stiffness of the vertical frames,
as the analytical solution is found to be mores$attory if these latter are quite weak.

* As expected, when studying numerically and anadifiiccollisions on lock gates, it was
found that the impact resistance was higher if streicture is supported by a sill.
Moreover, it was also pointed out that an unstdddbavior is possible for quite large
penetrations. This is roughly illustrated on Fig@r66 for the gate studied in section 3.7.
The equivalent Von Mises stresses during the ovieeslding mechanism are plotted when
the bulbous bow penetration is equallté m (the red portions indicate where the flow
stress is reached). From these pictures, if the igahot supported at the bottom (Figure
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3.66a), it appears that the structure simply slmleshe lateral supports and rotates at the
same time around a generalized plastic hinge, whiglains the instability. On Figure
3.66b, this phenomenon is much less pronouncedubecaf the additional support

provided by the sill.

(a) Gate 1 not supported at the bottom

Figure 3.66. Comparison of the plastic mechanisms for gate 1 (6 = 1.6 m)

&

(b) Gate 1 supported at the bottom

As a conclusion, it can be said that an analytioal has been developed to evaluate the
impact resistance of plane lock gates with a sipig¢ing. Both the situations of a structure
supported or free at the bottom have been treatédruhe assumption that the frames are
weaker than the girders. The results given bydimplified tool are essentially the evolutions
of the total collision force and internal energyttwihe penetration and the internal energy
curve. Nevertheless, one of the main limitatiodus to the method used. Indeed, as the main
theoretical basis is the virtual work principle,yorthe overall equilibrium is satisfied.
Consequently, trying to evaluate local fields sashstresses, strains or reaction forces is
illusory with the present energy approach.

(a) Load case
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(b) Analytical and numerical resistance curves

Figure 3.67. Influence of the hydrostatic pressure
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CHAPTER 3. Analytical derivation of the collision resistance of plane lock gates

Finally, it is worth recalling that the impact orack gate has to be studied in parallel with
other load cases, which can be done by applyingdh#ination methods of Eurocode 0 [50].
Accounting for this remark is of prior importancedvaluate the final resistance. As a matter
of illustration, if the lock gate studied in secti®.7.2.1 is simultaneously submitted to an
impact by a raked bow and1® m hydrostatic pressure (Figure 3.67a), the resistancves
depicted on Figure 3.67b are obtained. This pictsinews that the collision force is
approximately reduced B5 % if the action of water is retained. By the sanmeeti the final
penetration reached by the vessel is increased%ywhich is not really significant.
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CHAPTER 4.  Analytical derivation of the collision
resistance of mitre gates

This chapter presents an analytical method to derive the collision opposed by mitre
lock gates during a collision involving a vessel of given shape. The structure
properties postulated for this study are presented in section 4.1.

The resistance is first derived under the assumption of a local deforming mode by
applying the super-elements method. Three types of structural components are
studied separately. The analytical developments are performed by accounting for
the inclination due to the mitre angle. The upper-bound method is applied to
derive kinematically admissible formulae that are each time validated by
numerical comparisons in section 4.2.

In section 4.3, the calculation is made for the global deforming mode by dividing
each leaf into a set of horizontal beams supported at their extremities by the
lateral and central studs. The derivation is done for both an elastoplastic and a
perfectly plastic material.

The analytical results of the simplified method are validated in section 4.4 by
comparing them to those obtained numerically.

Finally, the main steps and achievements presented in this chapter are summarized
in the conclusion.

The developments presented in this chapter have been partly published by Buldgen
et al. [24] and presented in the 32" International Conference on Ocean, Offshore
and Arctic Engineering [23].

*kk
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4.1. Introduction

This chapter is devoted to the analytical studglop collisions with mitre gates (Figure 4.1).
They are one of the oldest gate type encounterddck structures but are still commonly
used today, especially for modest locks but alsdafiger ones (up to a width @b to 35 m).

In an attempt to develop a simplified tool to ewdutheir impact resistance, the first step is
probably to have a proper description of the stm&ctonsidered here.

4.1.1. Description of the impacted gate

4.1.1.1. Structural properties

The structure of a mitre gate is represented onrEig.2 (in order to have a better insight,
some additional pictures are also reported in Adpeg.1). As shown by the top view of
Figure 4.2a, such gates are made of two leafsatfeatisually symmetric and maneuvered by
hydraulic jacks. At the middle of the gate, theg ammply resting against each other through
the action of central blocks, while the contactmthie lock walls is provided by some lateral
blocks that may be seen on Figure 4.1b. The linlwéen the leaf and its supports is made by
rigid vertical studs.

(a) Miter gate (upstream side) (b) Miter gate during extraction
: = 2 el At GLTS

Figure 4.1. Mitre gate of the Evergem lock (Belgium)

The plane view of one leaf is depicted on Figub4lt is only a simplification of the real
structure because it does not account for the wamdher reinforcing components that may be
placed on the downstream face (Figure 4.1b). Tlater are disregarded in the present study
to keep only the regular structure made of thamgatnd reinforced by horizontal girders and
vertical frames, which constitute the principaffening system of the gate. These elements
are of prior importance when dealing with collisspas they provide the major contribution to
the crashworthiness of the struck structure. Afane lock gates, they also have a T-shaped
cross-section (Figure 3.3). In some cases, trassvand/or vertical stiffeners are added to

prevent the plating from buckling, but they do platy an important role in the capacity of the
gate to withstand collisions.
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At the bottom of the lock chamber, the gate is @iaon a pivot that allows for its rotation
during the opening. This motion is also possiblealnse one or several ties are placed at the
top of the lock walls and prevent the leaf fromlifig into water. Sometimes, one or two
additional diagonal diaphragms link the upper it lower right corners (Figure 4.2b) in
order to reduce the in-plane deformations and lbenai the leaf under its dead weight during
the opening movement. However, as these latter oo play a crucial role for the
crashworthiness of the structure, they will notbasidered here.

(a) Top view of a mitre gate

4

Left leaf Right leaf

(b) Plane view of a mitre gate Legend:

9
mh - Lock wall

- Lateral contact block
- Lateral stud

- Central stud

- Vertical frame
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: \\ ; - Horizontal girder
N - Plating
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- Tie (upper hinge)
B AN [ S— 10 - Pivot (lower hinge)
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3 4 12 - Sill
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Figure 4.2. Top and plane views of the structure of a miter lock gate

Finally, it should be mentioned that the gate igally supported by a sill whose primary
functions are to ensure watertightness and proaicdeipplementary support to structure in
some cases. As additional contacts are likely teeld@ in this region during the collision, the
sill may constitute an indirect restraint to thetimo of the gate.

4.1.1.2. Geometrical properties

In order to derive analytically the collision redsisce, all the previous structural data need to
be formalized mathematically. To do so, two différglobal reference frames are introduced
(Figure 4.3). The first ongX, Y, Z) is the same as for plane gates and is such thatxbsX
and Z are respectively parallel to the longitudinal amansversal directions of the lock
chamber. The second o(¥’,Y’, Z") is placed in the plane of the gate and is simphaioed

by rotating(X, Y, Z) around the vertical axis.
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As for plane gates, the horizontal girders andvrtical frames are placed in some discrete
positions that are defined to properly charactetfigestructure. This time, instead of working
in the (X,Y,Z) coordinate system, it is probably more convenienise directly the rotated
frame (X',Y’, Z"). Doing so, the reinforcing elements are locatem@ltheY’ andZ’ axes by
introducing their respective positioli$ andZ;.

Figure 4.3. Geometrical data characterizing one leaf

Regarding the orientation of each leaf, two différangles are required to have a proper
positioning. The first one is called the mitre andkenoted by and measured between the
and Z' axes (Figure 4.3). Usually, for classical gatéds imore or less equal @20°. The
second one is the support angle designatefl’ land introduced to precise the inclination of
the leaf with respect to the lock wall. Most of ttime, it is of current practice to choose

B =B

In order to define more specifically the shapehs tpstream side, many other geometrical
parameters are still required, such as the lengitis, [; and the angleg, andy,. They are
mainly useful to locate the initial contact poirgtlveen the stem and the gate, but also to
detect the super-elements that are activated fgivan penetration. As they will be
extensively used in this chapter, lengthof the central contact block and the maximal web
heighth, of the girders (Figure 4.3) are also introduced.

4.1.1.3. Boundary conditions

The boundary conditions of a mitre gate are essletdi ensure its overall stability. As
mentioned previously, the contact between the laatsthe lock walls is provided by lateral
contact blocks that are placed at the same disteeédsY; than the girders. Ideally, these
latter may be assimilated to hinges, as they allowrotational movements. Their role is
mainly to transmit compressive forces, even thosge shearing components may develop
because of friction. Of course, it is obvious thattensile forces are likely to appear at these
locations.

Similarly, at the center of the gate, the two le&st against each other through the central
blocks. Consequently, neither bending moment naosilie forces are expected at these
locations. In the case of an off-centered impaawéwer, the friction forces are of prior
importance to define a non-sliding condition bus thill be discussed later.

Finally, at the bottom of the lock chamber, the dstkeam displacements along tXieaxis
are prohibited by the sill. Of course, in practisbort displacements are required before
having a contact due to the rubber seal.
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4.1.2. Description of the collision scenario

The striking vessel that is considered here issdrae as the one described in section 3.1.2.1
for plane lock gates. On a mathematical point @&wyiit is still made of a ster§ and
eventually of a bullB whose summits are respectively denoted andB (Figure 3.7a). In

the local reference frame&s,, y;, z,) and(x,,y,, z,) attached t& and B, the mathematical
equations describing the stem and the bulb amlgtilentical to (3.1) and (3.2). They can be
used to derive the positiafX;, Z;) of the first impact point simply by imposing a ¢gmcy
condition between the bow and gate. Finding thigairposition of the striking vessel is thus a
bit more complicated than with a plane situation.

Another difference with Chapter 3 is that two disti situations have to be considered
regarding the collision scenario:

* If the ship dimensions are sufficiently small imgamarison with those of the lock chamber,
then an off-centered collision is possible (Figdrda). In this case, only one leaf is
impacted, the other one remaining undamaged.

* On the other hand, it is also possible to have rdigaration such that the two leafs are
both simultaneously impacted. This situation islechla "centered collision" and is
represented on Figure 4.4b.

Of course, because of their particular design,enidck gates are not able to withstand severe
collisions if the ship moves upstream. In such aecahe impact force can be only
compensated by the action of the hydraulic jackd by the hydrostatic pressure if the
downstream and upstream water levels are not thee.s&€onsequently, only the two
collisions configurations of Figure 4.4 will be @ted in this chapter.

(a) Off-centered impact on a mitre gate (b) Centered impact on a mitre gate

Xs
A
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Xi I
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Figure 4.4. Collision scenario

Predicting the worst scenario for mitre gates isasfuous task. Obviously, it can be argued
that off-centered impacts are only possible witliteggmall vessels that may only induce
minor collisions. However, if the initial kineticnergy of the striking ship is such that the
contact between the two leafs is lost, then thegiitty and the watertightness of the lock gate
is no longer be preserved. Such a situation maye heewere consequences, such as a
progressive individual collapse of the leafs beeanisthe water pressure or an emptying of
the upstream reach. Moreover, it is also to feat tmportant potential damages will be
caused to the striking bow. On the contrary, a erewt impact is more likely to lead to a
stable deformed configuration. Consequently, itncansystematically be claimed that the
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most severe damages to the structure appear wieimpacted by a large vessel. Of course,
the recommendations given in 2.2 regarding thecghof the mass and of the initial velocity
are still valid for mitre gates.

4.1.3. General methodology

Under the conservative hypothesis that the shgergectly rigid, all its initial kinetic energy
E, calculated by (2.3) has to be entirely absorbedhieydeforming impacted structure. To
achieve this goal, the deformation sequence fortwizecollision scenarios of Figure 4.4 is
exactly the same as for plane gates. The local n®fiest activated, in combination with an
overall elastoplastic bending motion of the gatiere€ different calculations are done during
this phase:

» The first one is performed by decomposing the sfinecanto large uncoupled entities made
of a rigid-plastic material (Figure 4.6a). In aatance with (3.3), it is possible to derive
the local resistancg, (§) by summing up the individual contributioRg§) coming from
the activated super-elements. Three different tgpesalso required here. They are strictly
identical to those presented in section 3.2.2.1,unlike plane gates, it is important to
stress that a careful distinction has to be maded®n an impact involving a girder or a
frame (SEZ2). The definitions are briefly recalledliable 4.1.

* The second one is based on the assumption thatleaicimay be idealized as a set of
horizontal elastoplastic beams that are simply between the central and the lateral studs
(Figure 4.6b). Doing so provides the global resistd’; (6) given by (3.5), wher®;(8) is
the elastoplastic contribution of each individuaan.

» The third one is also carried out by considering tfiechanical model of Figure 4.6b, in
which the beams are this time assumed to be maderigid-plastic material. Using this
model, it is possible to evaluate the foRg€d) that is required to activate an overall
plastic mechanism over the gate.

The resistance during the local mode is then fobwydcombining the results of the
aforementioned calculations. Here again, it is psggl to use the same formula than for plane
gates and to take the minimum value betwBgi@) andP;(d) as an approximation of the
resistance. This is roughly depicted on Figurefdt® < 6;.

SE1 Plating elements limited by two horizontal P(
girders and two vertical frames. 1 P(&) P(5)
Portion of a horizontal girder limited by two L g
vertical frames. =
SE2 PL(&) Pg(6)

Portion of a vertical frame limited by two
horizontal girders.

Ps(6)— 1
Intersection between a vertical frame and a 6(9)
SE3 . . Ot
horizontal girder. : )
Table 4.1. Definition of the super-element types for Figure 4.5. Combination of the local and
mitre gates global resistances

As soon as the collision force applied during theal mode reachd (), it is sufficient to
activate an overall plastic mechanism, so theeeswitch to the global deforming mode. This
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transition occurs for a given particular valég of the penetration that may be found by
resolving the following equation:

min(P(8) ; Ps(8)) = P¢(6) (4.1)

whereP;(9) is the global elastoplastic solution mentionecehavove. Consequently, all the
beams depicted on Figure 4.6b are in a perfecigtigl state i5 > §;. In this situation, it is
possible to perform a new rigid-plastic calculataithe resistancg;(§) and to consider this
solution for the global deforming mode. To do syuation (3.5) is still valid, bu; () is this
time the rigid-plastic contribution of each indiual beam.

(a) Local resistance (b) Global resistance

%)
i
NN
Central stud
Lateral stud

/1]

Central stud

—

Figure 4.6. Mechanical models to derive the local and global resistances

From the procedure detailed here above, it appiatsthe methodology to evaluate the
collision resistance of a mitre gate is strictlgntical to what has been done in Chapter 3 for
plane configurations. Nevertheless, the mathemagéigpressions ofP,(§) and P;(6) are
somewhat different because there is now a relatignation between the vessel and the
structure, due to the mitre ange
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4.2. Resistance in the local deforming mode

The analytical derivation d#, (&) in the case of a mitre gate is similar to what e@sn done

in Chapter 3. The main difficulty is to account ttee relative inclination between the gate
and the impacted leaf. In fact, the developmenthisfsection can be seen as a generalization
of those already performed for plane gates, setlseprobably no need to have an extensive
presentation of all the mathematical calculaticreding to the local resistance. The various
super-elements of Table 4.1 will be considereceitions 4.2.1, 4.2.2 and 4.2.3 respectively.

4.2.1. Super-elements of type 1

4.2.1.1. Analytical derivation of the resistance

For conciseness, only an impact implying the sfewill be treated in this section, the case of
a collision by the bullB being strictly similar. The mathematical equatairs in the global
reference fram€X,Y,Z) is still given by (3.9), in which the coordinatés and Z; of the
summitS are two parameters specifying the collision sdenarhe positionXs along the
horizontal X axis is calculated by imposing a tangency conditietween the gate and the

vessel.

u@,2)

i | |

b1

V..

A
X r
V\ z z
Figure 4.7. Deformation pattern and displacement field u(y,z)

109



CHAPTER 4. Analytical derivation of the collision resistance of mitre gates

In order to derive mathematically the resistancpospd by plating elements, let us start by
introducing a local reference franie, y, z) such that they andz axes are in the plane of the
super-element, while the axis is perpendicular to thg,z) plane (Figure 4.7). This new
frame is not parallel to the global one, but make=ertain angle with it. On Figure 4.8, for
convenience, this latter is denoted ®ybut from Figure 4.3, it is clear that it could@lbe
equal top + y, or B — y, according to the position of the impacted gatenelet along the’
axis.

Under the hypothesis that the out-of-plane motiares predominant, the evaluation of the
internal energy rate can be done by considering arklinematically admissible displacement
field u(y,z) that is parallel to the locat axis. This remark is of prior importance: even
though the ship is travelling along the gloXahxis, the displacements imposed to the plate
remains perpendicular to its initial plane, whicleans that a free sliding condition is
supposed between the bow and the plating. Of cothisewould not be the case if friction
was implied during the contact.

Figure 4.8. Plane view of the out-of-plane displacements imposed by the uppermost deck

The particular profile ofi(y, z) in the plane of the uppermost deck is denoted &). The
displacement pattern is depicted on Figure 4.8 ianghade of two parts. The first one is
restricted on the portion bounded by poiAtandB, placed inz, andz, along the locat axis
respectively. It is worth noting that; decreases with the penetration, whdg is an
increasing function of, which means that there is an extensioAB®fwhen the vessel moves
forward. The derivation of; and z, is not straightforward as it has to be achieved by
imposing continuity conditions at poings and B. The analytical derivation is detailled in
Appendix C.2.

From Figure 4.8, it can be seen that there is diruoous contact between the bow and the
plate along the portiodB, which means thal/;(z) has to follow the shape of the stem.
Consequently, the displacements have to be defimeatcordance with the curvé that
models the elliptic profile of the uppermost dedk. do so, it is first required to express
equation (3.9) in the local reference frame, whadn be achieved by considering the
following formulae:

X=Xc+xcosB+zsinf ; Z=2Z;—xsinf +zcosf (4.2)
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whereX. andZ; are the coordinates of poi6tin the global axes. These two coordinates are
not unknown because they have to be specified wiefming the gate geometry. Introducing
(4.2) in (3.9) and solving with respectitdeads to the following result faéf, (z):

Uy(z) = Ky + zcot B — Ky\/K3 + zsin  + & sin2 B (4.3)

whereK,, K, andK; are constant parameters that may be expressedaeljtof the position
(Xs, Zs) of the summifS in the global reference frame. It can be showtt tha

2 2
pecotp  Xg—X¢ p p
= — — — ; =———; Kz =—(1—tan?B) — (X5 — X.) tan .
1 2gsinf sinf8 2 \/Esinzﬁ 3 q( B) = (s ) g (4.4)

OnceU;(z) is completely defined, the next step is to perfahm same work for the two
remaining portionsAC andBD. For compatibility reasond/,(z) andU;(z) are defined as
parabolic functions of that are adjusted to fulfill the following requinents:

aUu ou
® If =0: = ; —2 = L If = . = [ 3 —
z U,=0 ; Fp 0 z=a U; =0 ; Fp 0
(4.5)
° IfZ:Zl . U2:U1(Z1):x1 . IfZ:ZZ : U3=U1(ZZ):x2

wherex; andx, can be easily found with help of equation (4.3)eJe considerations leads
to:

z\?2 z—a\?

0@ == () 5 Us@ = —xa (=) (4.6)
where (x1,z;) and(x,,z,) are calculated in Appendix C.2. Finally, the desgiment field
over the entire element is found by interpolatimgarly over the heights; andb, (Figure
4.7), with the particular conditions tha(y,z) =0 if y =0 andy = b, + b,. With this
assumption, equation (3.15) remains valid, in whfgly) may still be found by applying
(3.14). Unlike plane gates, it is worth noting thas linearity is only effective in a plane that
is perpendicular to plate, but not in the directimiiowed by the striking vessel. This
deformation pattern correctly reflects numericaldations (see section 4.2.1.2 hereafter).

Once the displacement fieldy, z) is properly defined, the resistance provided kg tate
may be calculated. This can be achieve by consigéhie same theoretical basis as the one
postulated in sections 2.3.2 and 3.3.2.2 for a+pdastic material (Figure 2.6). According to
the plate strip model of Wierzbicki and Simonseiflis4], the internal energy rate associated
to a fiber of lengttb; + b, and widthdz (Figure 4.7) can be evaluated by (3.16), whil&7B.

is also still relevant for a horizontal strip. Fhetmore, assuming that the out-of-plane
displacements parallel to the axis are predominant and that the bending effeces
negligible, formula (3.18) allows for a consiste@rivation of the internal energy rakg,,.

The analytical calculation of;,, is a quite fastidious task that has been perforimgd
Buldgen et al. [21] for an inclined plate. Evenughb the present problem is quite similar, the
formulae presented in [21] may not be directly agtl to mitre gates. For conciseness, the
detailed formulae to determir#,, are reported in Appendix C.2.

In accordance with the upper-bound method, thereakgowerl// is equated td;,,, to find
the resistance. Under the assumption that theme fsiction between the striking vessel and
the plate,P(8) may be assumed to remain always perpendiculaheanitial plane of the
plate (Figure 4.8). Consequently, if the velocifyte striking vessel is equal & the impact
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point is only moving with a speed éfcos 8 along thex axis. The external powé¥ is then
calculated in the following manner:

W =P(8)8cosp = P(5)= e (4.7)
dcosf
However, equation (4.7) is only valid as long asr¢his no rupture of the super-element. As
in Chapter 3, this is assumed to occur when therdeftions exceed a critical valag that
may be set td % to have a satisfactory agreement with finite eleinsemulations. As a final
remark, it is also worth mentioning that all thenimilae exposed here above degenerate into
the ones developed for a plane gate whéands ta0.

4.2.1.2. Numerical validation

As a matter of validation, the results given by #malytical developments performed here
above were compared with numerical ones obtaingayus-DYNA. In most of the cases, the
agreement was found to be quite satisfactory. Gémsbe illustrated by the example presented
hereafter. The impacted plate is characterized leypgtha of 5.89 m, a total heighb; + b,

of 4 m and a mitre angl@ equal to17°. Its material properties are those of Table 312 T
rigid striking vessel involved in the collisiontise one depicted on Figure 3.60b. It is placed
such that the first contact poihts located iny; = 2.9 m andz; = 3.3 m (Figure 4.7).

(a) Top view (c) Comparison of the numerical and analytical resistances
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(b) Plane view
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Figure 4.9. Comparison of the numerical and analytical results

In an illustrative purpose, the equivalent Von Misgtresses calculated hg-DYNA are
represented on Figure 4.9a. This top view of tHisgan process shows that the plate more or
less truly follows the shape of the stem in thetrerpart, which tends to corroborate the
deformation pattern postulated on Figure 4.8. Sirtyi] from Figure 4.9b, it can be seen that
the displacement profile in a plane perpendicutaplate is roughly made of two straight
lines, which also justifies the linear interpolatisuggested in section 4.2.1.1.

The comparison of the analytical and numericalstasices is presented on Figure 4.9c, from
which the agreement is shown to be satisfactorprdier to point out the need of accounting
for the true shape of the stem, the curve obtalnedsing the formulae suggested by Zhang
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[180] is also plotted on this graph. This latterolstained by assuming a punctual impact,
which leads to the following equation:

z(a —z) + 6%sin? B 1 ) 48)

no
P@) = ?a(bl T b2)é cos B <(Z, —§sinf)?(a — z; — 6 sin B)? * b,b,
wherez; is the position of the initial contact point alotige z axis anda is the length of the
plate (Figure 4.7). It is obvious from Figure 4.8@t (4.8) tends to underestimate the
resistance, in particular at the end of the imp&cich a conclusion was already noticed in
section 3.3.4, where it was pointed out that pasing a linear displacement field leads to
smaller values for the resistance and the inteznatgy. Once again, these results show that
regarding plating elements, it is quite importamtatcount for the shape of the bow if this
latter has more or less the same dimensions tleapldte.

4.2.2. Super-elements of type 2

The second type of super-element is introducedreat tthe impact on the portion of
longitudinal girders limited by two vertical frame@-igure 4.10a). Here again, two
deformation modes need to be investigated: a fgldimd a bending mechanism.

4.2.2.1. Folding mechanism

Regarding the folding mechanism, the situationaarly the same as the one investigated in
section 3.4, except that the collision occurs al#ly because of the mitre angfe(Figure
4.10b).

(a) Three dimensional view of the collision (b) Deformation pattern

Figure 4.10. Impact on a horizontal girder

The deformation pattern is also a fold made of wirngs of heightH, but in comparison with
the situation depicted on Figure 3.26, two maififedinces can be pointed out:

» Instead of considering an indentation equaf tthe folding process has now to be derived
for a local penetration af cos 3.

* The lengths of each wing are no longer constargy thre equal tax; + § sin 8 and
a, — 6 sin B, which means that one wing increases, while theradecreases.
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From the previous observations, it transpires thatconnection between the two wings is
nothing else than a moving plastic hinge line tisatravelling with a velocityy = & sin 8
along the locak axis (Figure 4.10b). On a theoretical point ofwji¢his particularity should
have some implications on the deformation patterrthe central region. However, as the
folding heightH is supposed to be quite small, the bending effattthe junction can be
neglected, so the questioning issue of having aimgokinge will be discussed later (see
section4.2.2.2).

In order to develop the formulae leading to thdisioh resistance, one can consider the
generalized crushing process of Figure 4.11 forctwithe height and length of the current
wing are respectively equal &1 anda; + 4 sin 8. From this picture, it appears that (3.38)
and (3.39) are no more valid and have to be cadectthe subsequent manner:

04 = \/(a; + 6 sinB)Z + 62 cos? W, =05 F
L4 = - -
(a; + 6sinf)? + 5% cos? B A= 3a, + 5 sinf)
(4.9)
- (ay + & sin B)? _ Hé cosf
BD=\/++H6cosﬁ — Wp —a1+851nﬁ

whereW, andWj are the displacements of poiltsandB along thez axis. Using these new
definitions, the same linear interpolation thard(3.is applied to get the functio (x)
characterizing the horizontal motion of any pomtdted along the junctiadBC of the two
wings (Figure 4.11). Doing so, the following dispanent field can be postulated:

z+ (a; + &sinB)x/2H
(aq + 6sinB)(1 + x/2H)

w(x,z) = W(x) (4.10)
which is coherent with the assumption already madection 3.4.2.1 that only the portion of
the horizontal fibers located beyond the straigme DC is submitted to an axial straining.
This latter is responsible for a membrane dissppatihat can be quantified by calculating the
energy rate,,,, which can be achieved by applying (3.47). Theedure is similar to the one
followed in section 3.4.2.1 but leads to quite cemsbme equations because of the more
complex definition o (x, z).

(a1 +d6sinp)/2

a:+dsinf

Figure 4.11. Deformation pattern for one wing

Apart from the axial straining, there is also aergy dissipation due to the plastic rotations
along the segment84, OB, 0C, AB and BC. Under the hypothesis that is small with
respect to the lengths, anda,, the contributions of the central hinges can bglewed,
which leads to a simplified evaluation of the bewgdenergy raté,. The detailed analytical
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developments leading ), andE, are not reported here but some additional infailonatan
be found in Appendix C.2 (section C.2.2.1). It t@nshown that:

P a,(6 +2H) + 6%sin2pB /4 a,(6 + 2H) — §%sin2p /4 P
m = To < (a; + &8 sin B)?2 B (a, — 8sinB)? ) cosp
(4.11)

. mmy(a; +a,) .
Eb=¥6cos,8

where, as a reminden, = ogot,, and m, = g,t2,/4 are respectively the linear axial and
bending capacities of a plate with a thickngssFinally, in the optic of applying the upper-
bound theorem, the last step consists in calcgjdtie external work. Here again, if the
collision force is supposed to act perpendiculémlythe element orientatioh/ can still be
obtained using (4.7). Equatifitj to the internal energy rafg,,, leads to:

Pr(8) = — (4.12)

whereE, andE,, are given by (4.11). In order to derive the croghiesistance, the folding
height H needs to be determined. This can be done by nammithe mean crushing force
over one fold, but doing so leads to very cumbeesa@quations (see section C.2.2.1 of
Appendix C.2). As the mitre angle is usually guateall (3 ~ 20°), a good approximation is
to keep using (3.49), which is also justified be tact that all the formulae presented here
above degenerate into those developed for plares gatens tends to0. Another possibility

is to work with the following approximate relati¢gsee section C.2.2.1 of Appendix C.2 for
more details):

H= i/%alaztw/ cosf (4.13)
Of course, the analytical derivation Bf(5) is only valid as long as the fold is not complgtel
closed, which occurs wheh= 2H/ cos f. When indentation is reached, a new fold is simply
supposed to be created immediately after. In th$e cthe resistance can be easily generalized
by applying a similar procedure than the one disedsn section B.2.1 of Appendix B.2 to
get formulae that are very close to (3.50) and1(3.5

Apart from the resistancg (4), it is also required to calculate the one assedi& a beam-
like behavior of the super-element, which is thgidmf the next section.

4.2.2.2. Bending mechanism

For a given indentatiot*, the collision force reached during the foldinggess is sufficient
to activate the bending of the super-element. A thoment, if the web is of class 1, the
three-hinge mechanism of Figure 4.12a is activadtechn be shown (see section C.2.2.2 of
Appendix C.2) that the resulting for@é(§) required to initiate this transition is equal to:

§1+87(6) 4 $2+87(8)
a; +dsinff  a, —4sinf

P*(8) = M, < (4.14)

whereé; and¢, have the same meaning than in section 3.4.2.2.d€hgation of¢*(d) is
also based on the method detailed in section BxRAppendix B.2, except thdt has to be
replaced by cos g in all the expressions.
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(a) f1M0§ a; + & sin B . d2- 5"sin B E&Mo rrrrrrrrrr
§ &Mo E 6" cos B
& Mo
C i a;+ 6 sin B az-6"sin E)
(b) 01 o 02
4 7 \2
P

Figure 4.12. Initiation and development of the bending mechanism

When § > §*, the resistance has to be derived according tgokagtic collapse of Figure
4.12b. As shown in section C.2.2.2 of Appendix GLZ* is the particular value of*(9)
whené = 6%, the impact forcé is given by:

_N_Z( $1+¢7 + $2+ <7 >+N (a; +a;)(6 — &) cosf
NZJ\a; +8sinp  a, —§sinp (a; + 6sinf)(a, — §sinp)

P,(8) = M, <1 (4.15)
where the normal forc& can be calculated by using the formulae listed\ppendix C.2.
Before closing this section, a final remark regagdihe theoretical model still needs to be
done. In the present simplified approach, the mgpyilastic hinge is not treated in a rigorous
way. According to Hopkins[73], only stationary plastic hinges allow for a slope
discontinuity. If moving hinges are used in the mpdhere must be a continuous change of
slope between the collapsing arms. This can beeaetiiby considering two distinct hingés
and B, moving at the same velocity = § sin # and connected together by a smooth line of
constant curvaturdB (Figure 4.13a). The total rotation is stll= 6, + 6, but is imposed
this time without any discontinuity.

(a) Compatible model (b) Simplified model

/ i
01 A o "B

w w

\2

Figure 4.13. Discontinuity at moving plastic hinges

However, in the present simplified approach, thetreé connectiomB is neglected and it is

assumed that there is only one plastic hinge, ngpatrthe velocityy and imposing an abrupt

rotation@ (Figure 4.13b). This is not theoretically exact may be justified by the fact that

AB is usually quite small with respecttpandl,. Furthermore, if this simplification was not
introduced, deriving a consistent collision resis& is rather impossible to do analytically
(see section C.2.2.2 of Appendix C.2 for more d&tai

4.2.2.3. Extension to vertical super-elements
All the previous developments are in fact only ddbr impacts occurring on girders and the

goal is now to extend them to frames. Unlike plgages, it is of importance to distinguish
between horizontal girders and vertical frames bseaof the inclination due to the mitre
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anglef. Indeed, in sections 4.2.2.1 and 4.2.2.2, the ainpauld be assimilated to an oblique
collision (Figure 4.10b), but this is not true hetpresent situation.

(a) Three dimensional view (b) Plane view

Ys Xs

A

Zs

v

Figure 4.14. Impact on a vertical frame

This last assertion can be understood by consigléhia three dimensional view of Figure
4.14a. Initially, the first contact point betwedre tdeck of the striking vessel and the super-
element occurs at poirlf where a tangent condition is imposed in case direct impact.
When the ship moves forward, it simply follows tfieection of the longitudinal axis,, but

the frame is folded or bent in its plane, i.e. glothe local x axis (Figure 4.14b).
Consequently, for a given penetrati®nthe indentation to consider for the super-elenent
given by a functiorc(§) that may be found by calculating the current seetion/’ of the
uppermost deck with the super-element.

In order to derivec(6), let us denote by the lower node of the super-element (Figure 4.14a)
that is characterized by its coordina{e;, Y., Z.) in the global axes. In the local reference
frame (xq, ys, z5) placed at the initial location of poi§tbut not moving with (Figure 4.14b),
the position ofC is given by:

Xsc=Xc—Xs 5 Ysc=Yc—Ys 5 Zgc=Zc—Zs (4.16)

where(X, Ys, Z) is known because the ship has to be tangent tgatgeat point for a given
collision scenario (Figure 4.4). Using these nevapeeters, it may be shown that:

2
p*cotp  zgc p*8 p?cotf  zgc
= . — . 417
c(4) \/<2q sin 8 * sin ,8) * q sin? 8 <2q sin * sin 8 ( )

in which, as a remindep andq are the two radii describing the shdpef the uppermost
deck. Apart from this modification, the situatios strictly similar to the one studied in
sections 4.2.2.1 and 4.2.2.2 wggh= 0, except thad has to be replaced lxy(6). Doing so,
the following formula is found for the folding meantism:

my(a; + a,)m ngHay + a,
T 2 a, (c(6) + 2H) (4.18)

Pr(6) =
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whereH is still given by (3.49). Of course, equation @).is only valid as long as the current
fold is not complete closed, which occurs whe®) = 2H. For larger values of the
penetration, an identical deformation pattern suased to be immediately repeated. In this
case, applying the same procedure than the ormviedl in Appendix B.2 leads to generalized
formulae similar to (3.50) and (3.51).

Regarding the forcé@*(§) required to activate the bending mechanism, foinalentation
c(8), adapting (4.14) provides the subsequent result:

§&1+&°(0) + &+ f*(0)>

a; a;

P*(8) = M, ( (4.19)

in which (B.26) can be used to géi{c), provided that is replaced by (6§). As usual, when
the folding resistance is equal B6(6), then the penetratiof* is reached and the transition
takes place. Denoting by andc* the particular values @f*(6) andc(6) at this moment,
one may write:

a, +a,

)+N(c—c*)

2 % %
N )(f +f1+f + ¢ (4.20)

Ng a, a,

P(6) = M, (1 —
a;a;
In this last relationN is the normal force due to the membrane effedsutzdied by using
(C.35), provided thag is set to zero§ is replaced by (§) andc™ is substituted té*. As a
closing remark, it should be recalled that all themulae derived in sections 4.2.2 and 4.2.3
are only valid if there is no subsequent contativben the stem and one of the boundaries of
the super-element. If this is the case, the remstas set to zero because a super-element of
type 3 is activated, as detailed hereafter (seeti@rB).

4.2.2.4. Numerical validation

In an attempt to check the formulae established hbove, many numerical simulations were
performed using thes-DYNA software. For all of them, a mesh size smallen tham was
used to correctly represent the folding processu#sal, Belytschko-Tsay shells [66] were
used for the finite element models of both thedrgfriking vessel and the deformable oblique
girder.

The local failure of the super-element was als@stigated in this validation process. To do
so, the threshold strain value was calculated lbygon (3.37) and it was found that choosing
€. of 11 % leads to a safe approximation of the ruptureatidan. Furthermore, it was also
pointed out that formula (3.52) proposed by Wietkb[167] for the concertina tearing also
provides an adequate evaluation of the resistam@ne. is exceeded. The results presented
here aim to focus on the two possible behaviorstimeed in sections 4.2.2.1 and 4.2.2.2.
Two different impact configurations are therefoomsidered.

The first one is a collision occurring on a quiteed girder with a moderate span. The
geometrical data are those listed in Table 4.2|eathie material properties are the same as in
section 3.3.4. In an illustrative purpose, the eglg@int Von Mises stress in the deforming

girder is plotted on Figure 4.15, from which itdear that only a folding process is initiated

in the case of a deep girder. The disorders aralynlaicated in the web, the flange remaining

nearly unaffected. Moreover, it can be observed tta folding process develops along the

inclined direction followed by the vessel, whicmds to confirm the presence of moving

central plastic lines.
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Table 4.2. Geometrical date for the first S /[
simulation > 2 cadh
8]
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6 (m
0 (m)
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Analytical ——LS-DYNA
Figure 4.15. Folding process in the case Figure 4.16. Comparison of the numerical and analytical
of a deep girder resistances for the first simulation

The comparison of the analytical and numericalstasices for this first case is plotted on
Figure 4.16. At the beginning, the simplified apurb tends to overestimate the solution
found byLs-DYNA. This is essentially due to the fact that the tegcal model is based on a

rigid-plastic material, while an elastoplastic beba s first observed at the initiation of the

finite element simulation. On the contrary, where thenetration is getting larger, the

analytical solution turns out to be conservativeduse an overall plastic state develops
almost everywhere on the impacted structure. Tlag be observed on Figure 4.15, where it
can be seen that the flow stress is nearly reaghexdthe entire web height.

h, | 0063m | a; | 245m 7
t, | 0.06m | a, | 3.55m

he | 03m | g | 20° 6 /

tr | 0.06m | e | 11% 5 //
Table 4.3. Geometrical date for the first /,___f
simulation —

Resistance (MN)
w o~

6 (m
0 (m)
0 01 02 03 04 05 06 07
Analytical ——LS-DYNA
Figure 4.17. Folding process in the case Figure 4.18. Comparison of the numerical and analytical
of a slender girder resistances for the second simulation

The second configuration presented here aims &stigate a collision occurring on a slender
girder having a smaller web height and a largendpan in previous case (see Table 4.3).
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From the equivalent Von Mises stresses plottedigar€ 4.17, it transpires that only a beam-
like behavior is activated this time. Furthermdtegan also be seen that the flow stress is
reached near the supports and in the central sedssn immediately located under the
impact point, which tends to corroborate the thrage mechanism of Figure 4.13b.

The resistance curves of Figure 4.18 show thaatreement is quite satisfactory and is an
additional validation for the theoretical modelalissed in section C.2.2.2 of Appendix C.2.

Nevertheless, one can argue that this good concoeda only due to the fact that the mitre
angle is quite small /(= 20°), so that the collision situation is not too faorh a
perpendicular impact. Therefore, in order to chdgk assumption, other simulations were
run with a more important inclinatior (= 60°). Even though these configurations are not
realistic for mitre gates, the purpose here is aalyerify if the theoretical model could also
provide satisfactory results whens increased.

6
5
w L)

A
=)
[}
S 3 Analytical
(98]
k7 ——LS-DYNA
8
29

8 (m)

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7

Figure 4.19. Numerical and analytical resistances for a mitre angle of 60°

The numerical and analytical results for an anglé0s are reported on Figure 4.19. On this
picture, it can be observed that the resistanceecabtained by the simplified approach is
first slightly decreasing. This can be explainedhwsyfact that the additional energy dissipated
by the membrane straining is not sufficient to baéathe reduction of the bending effects
coming from the diminution of the moments in acemce with the interaction criteria. This
phenomenon is also reflected by the finite elensenulation, which tends to corroborate the
theoretical solution proposed for the beam-likegwadr.

4.2.3. Super-elements of type 3

Super-elements of type 3 are introduced to dedl wallisions occurring on the intersection
between horizontal girders and vertical frames f@g4.6). As in Chapter 3, they may be
activated in case of a direct impact or if thera isubsequent contact between the stem and
the support of a SE2 or a SE3 (Figure 3.35).

4.2.3.1. Analytical derivation

When the vessel immediately collides the gate om @iits intersections, the deformation
pattern associated to the folding process isthllone depicted on Figure 3.37, but instead of
considering an indentation equal & one should account for the current intersection
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between the uppermost deck and the super-elemen{fagure 4.20). In this case, the true
penetration of the striking steagd) is given by a formula very similar to (4.17).

Vs

Figure 4.20. Three dimensional view of an impact on an intersection

From this observation, it transpires that all tberfulae developed in section 3.5.2.1 are also
valid for the present situation, provided tldats replaced by (8). In particular, equations
(3.62) and (3.63) are still relevant to get thetdbntion of each wing, but the following
modifications must be noted for the opening alg(€igure 3.37b) and the fold number

6 = arccos (k - @) ; [C((S) (4.21)

Similarly, regarding the bending process, the elghge mechanism of Figure 3.39 can be
easily extended to an oblique impact by considettiag the out-of-plane displacement of the
central node is not equal tbbut toc(8d). Doing so, if the transition from the folding toet
bending process takes place whe&r= 6*, the resistance can be calculated by applying
equation (3.65) with the subsequent corrections:

§—c(8); 8" ; cF=c(6"); &=8(c); & =¢&n(cY) (4.22)

Furthermore, in the case of an impact arising tteatop of the gate, it is likely that T-shaped

intersections may be involved during the collispmocess. Of course, if this is the case, the
bending resistance can still be obtained with ledlgquation (3.67), but the modifications

introduced in (4.22) have to be taken into account.

On the other hand, when a super-element of type &clivated because of a subsequent
contact, the corresponding resistance formulae Havée derived by generalizing the
developments performed in section B.3.2 of Apperli@. The approach is very similar to
what has been done so far, the major difficultyngehe fact the lengths, anda, are now
continuously varying with the penetration. Hereiagthe analytical derivation has to be done
for both a bending and a folding mechanism. The heraatical procedures are not
particularly arduous but require cumbersome devetys. For the sake of conciseness, these
ones have been partly reported in sections C.2:1311C.2.3.2 of Appendix C.2. Even though
these calculations are not always rigorous on arétieal point of view, they are at least
consistent with those performed for plane gatetakisig the limit forf — 0 leads to the
formulae established in Chapter 3.
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4.2.3.2. Numerical validation

In order to illustrate the numerical validation pess, the cruciform having the geometrical
properties of Table 4.4 is used here (the notatammsesponds to those of Figure 3.39). It is
made of more or les6000 Belytschko-Tsay shells [66] elements having a llagsize of

5 cm. The material properties are the same as in $e@&i8.4 for the impacted elements,
while the striking vessel is still assumed to be&equly rigid. In order to account for rupture
in the numerical model, the failure strain is cééed in accordance with equation (3.37) and
it is found that a critical straia, of 10 % in the analytical approach is quite adequate to
reproduce the numerical observations.

Length Web height Web thickness  Flange height ddahicknesg
wings a, =3m h,=1m | t,=002m | h;=05m ty =0.02m

Vertical by =25m h,=1m t, = 0.015m hs =03m tr =0.015m
wings | p,=26m | h,=1m |t,=0015m | h;=03m | t;=0015m

Table 4.4. Geometrical properties of the impacted cruciform

The validation has been performed for eleven diffecruciforms having various geometrical
properties. The mesh size was selected after aecgance study and was progressively
reduced from a value df.2 m to 0.05 m for which there is a stabilization of the collisio
resistance.
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Figure 4.21. Comparison between the analytical and numerical results

The results that are presented in this sectiorespands to a direct impact with a mitre angle
p of 20°. The curves showing the analytical and numeriesistances are plotted on Figure

4.21. From this picture, the agreement is founde@uite satisfactory, even though there is a
slight overestimation at the beginning of the indéon. Once again, this may be explained
by the fact that the theoretical model is based dgid-plastic material, while the simulations

are run for an elastoplastic behavior. Thereforeemwthe collision starts, the force opposed
by the cruciform is lower than the one predictedlwically as the plastic deformations are

predominant.
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Another point that is also interesting to invesiiges the transition from the folding to the
bending mechanism. From Figure 4.21, it can be 8ea#rthis one takes place @ ~ 0.4 m
because there is a discontinuity in the curve ef d@halytical resistance. To check if this
prediction is more or less realistic, one can itigase the out-of-plane displacement of the
central rear node (Figure 4.22a).

(a) Folding process for a cruciform (b) Rear and front node displacements
0,6
0,5 //
£ 0.4 / Analytical
g e
py — LS-DYNA
g 03 A (rear node)
= A @®
202 A R R LS-DYNA
A i / (front node)
01 // 2
®
0,0 + 6 (m)
A: front node; B : rear node o o1 02 03 04 05 06 0,7

Figure 4.22. Comparison of the displacements due to the beam-like behavior

According to the present simplified approach, thetiom due to the beam-like behavior of the
cruciform is given byc(8) — c¢*, so there is no activation of the bending phaséorag as

§ < §*. Of course, this approach is only an idealizatamit transpires from numerical
simulations that there is a coupling between thestung and bending mechanisms. This is
particularly true at the beginning of the penetmati where both of them develop
concomitantly.

A simple way to verify the previous assertion itmsider the numerical cur¢®) of Figure
4.22b showing that the central rear node is subthitd an out-of-plane displacement since
the beginning of the collision. As far as< 0.4 m, this latter remains quite negligible with
respect to the one of the central front node, witéctds to confirm the predominance of the
crushing process during this first phase. Neveef®lwherd > 0.4 m, the data provided by
LS-DYNA leads to the conclusion that the beam-like behasiactivated, as curvés) and(2)

are now nearly parallel.

Regarding the analytical prediction, it appears tha transition penetratia¥’ is more or less

realistic. As expected, the displacements assatciatethe beam-like behavior are slightly
overestimated, but this does not lead to a notleadibergence of the resistance.

123



CHAPTER 4. Analytical derivation of the collision resistance of mitre gates

4.3. Resistance in the global deforming mode

The previous analytical developments are only vahder the hypothesis that the structural
elements located near the impact point are localighed. Nevertheless, this situation is not
relevant for larger values of the penetration whamn overall motion is activated. In
comparison with plane gates (Chapter 3), the glatbrming mode is not so strongly
marked for mitre gates because the connection leetwee two leafs does not usually allow
for an efficient bending. This particular point guite important to correctly assess the
resistance of such structures and is deeply irgegstl in this section.

Figure 4.23. Local (1) and global (2) deforming mode for a mitre gate

In an illustrative purpose, the deformed configwrabf an impacted mitre gate is depicted on
Figure 4.23, from which a clear distinction can fbpade between the local and global
deforming modes. As in Chapter 3, both an elassbigland a rigid-plastic calculation of the
global resistance’;(8) have to be performed. Nevertheless, the situasoa bit more
complicated than for plane gates as the distin&lwuld also be made between a centered or
an off-centered impact (Figure 4.4).

4.3.1. Preliminary considerations

4.3.1.1. Mechanical model

As mentioned in section 4.1.3, during the globatlmaeeach leaf of the gate is seen as a set of
horizontal beams weakly connected by the framegu(Ei 4.6b). Along the vertical axis,
they are placed at the same discrete locatipas the horizontal girders but they do not have
an exactly identical shape. Indeed, as shown our&ig.3, the girders have a variable web
height that is smaller at their extremities. Consgyly, an equivalent model (Figure 4.24a) is
considered in order to avoid working with a nonfarm bearfi. In fact, the web height is
simply supposed to be the same as the one charaujethe cross-section placed at the level
of the first contact point (Figure 4.24a). By using the notations of Figurg, 4f Z; is the
position of pointl along the horizontad’ axis, one can write:

hw=h0+(Z'—ll)tan]/1 |f OSZIISII
hw=h0—(Z'—l1—l3)tan}/2 |f l1+l3 SZI,Sll+l2+l3

From the previous equations, it is clear that theb weight is unchanged if the impact is
initially located on the central part of the le#f. practice however, having an off-centered
collision such thaf; is outside the arefd, ; [; + 5] is rather unlikely because the lengths

8 Apart from an important reduction of the mathecetcomplexity, working with a uniform cross-sectialso
allows the use of Eurocode 3 [52].
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CHAPTER 4. Analytical derivation of the collision resistance of mitre gates

and[, are usually quite small with respect to the dinmams of the striking vessel. This is
particularly visible on the two pictures of Figut€4b showind, andl,.

(a) Equivalent beam model (b) Actual dimensions of I; and I»

iﬂ! 3 T

Equivalent T _—
beam '
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Figure 4.24. Calculation of the equivalent web height

From (4.23), it can be argued that the approachestgd here is not necessarily conservative
as it tends to overestimate the resistance of #gambin the inclined portions. In practice
however, this argument is not always valid. Inddestause of the important local forces due
to the contacts at the central or lateral blockguife 4.2), the gate is often reinforced there.
Its resistance may therefore be thought to be highthese locations than at the center of the
leaf, so increasing the web height is in fact a teagccount for this particularity.

Apart from the equivalent web, the remaining paftshe cross-section are the girder flange
and the collaborating portion coming from the pigtiAs for plane gates, this latter is found
by applying the recommendations of Eurocode 3 [B2fonservative symmetric shape is
obtained by working with the minimum effective léingn accordance with equation (3.68).

4.3.1.2. Effect of the hydrostatic pressure

Regarding the hydrostatic pressure, this one Hi#s ilnfluence on the resistance opposed by
the various super-elements analyzed in sectionbdiZthe action of water should be carefully
accounted for when developing the mathematical ditawn for the global deforming mode.
This is a major difference with the approach fokwirin Chapter 3. The justification lies in
the very particular functioning conditions of mitgates. Indeed, apart from additional
bending moments in the structure, another effedhefhydrostatic pressure is to generate
compressive normal forces that are crucial to mdhe overall stability of each leaf (see
Dehousse [38] for a more detailed study). Of cqutss is likely to have a relative influence
on the global resistance and it is of prior impoc&to account for this phenomenon. To do
so, one can consider the simplified model of Figdt85b showing the situation of a
horizontal beam before the impact. This one is rasslito be submitted to a uniformly
distributed load; that is the resulting force associated to theezalal hydrostatic pressure
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of Figure 4.25a. In order to provide the overalliglgrium, it can be shown that the following
reactions forces are required (Figure 4.25c):

_oml o, _ Db
M= osing fi=0 Rl_Zsinﬁ

(4.24)

wheren; andf; are the horizontal and vertical components atctr@ral block respectively,
while R; is the reaction at the lock wall. Ideally, thigtéa is only acting with an inclinatiof.

(a) Resulting hydrostatic pressure (b) Simplified model for a beam

' Y

E— -

(c) Reaction forces due to the hydrostatic pressure
il
pl ‘% i

I -

: X

Figure 4.25. Hydrostatic pressure and reaction forces acting on an equivalent beam
By using (4.24), it is easy to derive the normampoessive forceV; and the bending
momentsM;(Z") acting on each beam. It is found that:

1 A
N=Pcotp ; M2y =P -2) (4.25)

whereZ' is the horizontal coordinate measured in the ptHrtbe gate. From (4.25), it can be
concluded that the gate is initially bent and coesped before the collision, which has an
influence on the global resistance.

4.3.2. Off-centered impact

As in Chapter 3, the derivation of the global resiseP;(5) has to be done for both an
elastoplastic or rigid-plastic material. The metlaggblied in this section is nearly similar than
the one followed for plane gates, except that tieéiniation due to the mitre angfeand the
effects of the hydrostatic pressure have now todmesidered.

4.3.2.1. Elastoplastic solution
In order to derive an elastic solution, the cubgplhcement fieldi(Y;, Z") of Figure 4.26 is

assumed, where the maximal out-of-plane displaceg@f, &) is reached at the first contact
pointI. If Z; denotes the position dfalong theZ' axis, it can be shown that the analytical
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expression ofi(Y;, Z") is the same as (3.71), provided tAandZ; are replaced bg' andZ;
respectively. On Figure 4.26, it is worth noticithgit only the impacted gate leaf is submitted
to a displacement field, the other one remainingffected. In reality, when the portiatB is
bent, there is a short motion of poiBtsuch that the length oAB remains more or less
unchanged, which implies thBC rotates as a rigid body. Nevertheless, these phena are
negligible during the elastic phase.

pil

g(Y.,6)

Figure 4.26. Displacement field for an off-centered impact

The bending moment¥;(Z’, &) due tou(Y;,Z") can be found by applying the fundamental
equation for elastic beams recalled by (3.74). Whtk result, the reaction forcas, f; andR;
(Figure 4.25c) may be easily derived by writing trenslational and rotational equilibrium
for each leaf individually. Accounting also for theffects of the hydrostatic pressure
calculated in (4.24), it can be shown that the makibending momen¥; (&) and the normal
force N;(8) acting in the beam are given by:

_pil 3EI; cot2f ' _piZ ~  3ELig(V;,6)
Ni(8) = 5ot + Zr—rz 906 8) . M8 == (1= 2D + (4.26)
whereE is the Young modulus ang the inertia of the cross-section. A rapid compmarisf
equations (4.24) and (4.26) wheg(Y;,6) = 0 shows that there is a continuity in the

definition of the normal force and the bending maime

Regarding the reaction forces, it is worth notih@ttinitially, when only the hydrostatic
pressure is acting on the structure, the situasoideally symmetric (Figure 4.27a), so the
reaction forces on the left and right lateral cohtdocks are perfectly the same. However, for
an off-centered impact, the symmetry is lost aredrdaction force®; andQ; (Figure 4.27a)

on the lateral blocks do not necessarily have émeesmagnitude and orientatiay (s usually
greater tharQ;). In particular, the inclination aR; is no longer equal t¢ (Figure 4.27b),
which means that there are additional compon@ntes Af andR; sin AB that have to be
balanced at the lock wall. Therefore, one shoulhgsé take care that the compensation is not
made by unexpected contacts between the gate amelaher weaker parts, such as the pivot
for example.

Once the bending momen(Z’, §) and the normal forc&;(6) are known, let us calculate
the contributionP; (§) to the global resistance. Applying the equilibriomethod leads to:

Ell
9(;,6) (4.27)

P(8) =—5———
H©) 7/ (1 - z})?

in which the last unknown is the maximal displacetmg(Y;, §) of the first contact poink
(Figure 4.26). In fact, this function can be obgéainby holding the same reasoning as in

127



CHAPTER 4. Analytical derivation of the collision resistance of mitre gates

Appendix B.4 for a gate supported by a sill (Figldd7a and c). Therefore, (B.69) and
(B.70) are still valid in the present case.

(a) Reaction forces at the lateral contact blocks before and (b) Reaction force at the lateral contact
during the impact block during the impact

pil % pil

Figure 4.27. Reaction forces at the lock walls

Of course, (4.27) is only valid as long as the beesistance?, ;(§) is not reached. In order to
calculateP, ;(8), the following definitions are recalled (in orderclarify all these notations,
a summary is provided at the end of Table C.1 ipexalix C.3):

* As detailed in section 3.6.2.1, the maximal alloleabending moment is equal 14, ;,
M,; or M,; according to the classification. Furthermore, ilev to account for the
coupling with the local deforming mode, these valhave to be reduced if the horizontal
girder is simultaneously crushed. To do so, thédfioients &, ; (6), &.,:(8) andf_e,l-(rS) may
be introduced. They are calculated by applying lihear interpolation suggested in
Appendix B.2.

* Regarding the normal force, whatever the clasgiioa the tensile resistance is always
equal to the plastic limi¥,,; even though there is a simultaneous crushing altieet local
mode. However, this is not true in compression. ¢tasses 1, 2 and 3, the compression
resistance is also equal Ay ;, but this is not valid if buckling is likely to oar. In this

case, one may only consider the contribufign of the efficient portion.

The evaluation of the beam resistafeg(§) can now be achieved with help of the previous
definitions. To do so, the philosophy is the saméasection 3.6.2.2, but the situation is a bit
more complicated here because the structure is ltsin@ously bent and compressed.
Therefore, a combination formula has to be usedccordance with the classification. By
adapting the recommendations of Eurocode 3 [5&],résistance for class 1 and 2, 3 or 4
cross-sections is reached when the following catare respectively met:

1 (4.28)

M;(5) (M@)Z Ly M@® NG MO NO)

fp,i((s)Mp,i Np,i B ’ fe,i(5)Me,i Np,i B ' f_e,i(5)Me,i Np.i B
whereN;(§) andM;(5) are the maximal normal force and bending momergrgby (4.26).
Consequently, introducing (4.26) in (4.28) allowsdetermine the value @f(Y;, §) for which

the resistance is reached. This result may themtbeduced in (4.27) to get the resistance
P ;(6). Finally, the contribution of beam during the elastoplastic phase is found by
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admitting that onceP,;(§) is reached, the resistance remains equaP.t¢s) until the
transition to the global plastic mechanism is atgd ¢ = ;). In other words, fob < §&;,

the contribution of beamto the global resistance may be obtained by adgg4.27) in the
following manner:

ELl

P,(§) =min{———
0 {Z,’Z(L —Z})?

9(¥;,6); Pt,i(6)} (4.29)
which is strictly similar to the procedure appliedsection 3.6.2.2. The curves depicted on
Figure 3.51 are therefore also applicable to thesqmt case. With (4.29), the global
elastoplastic resistané® (§) can be calculated by (3.5).

4.3.2.2. Perfectly plastic solution

As for plane gates (Chapter 3), when the resistdodeg the local deforming mode reaches a
sufficient valueP; (&), an overall plastic mechanism is activated overdhtire structure. This
second phase starts when the transition penetrdtireached, i.e. when the two terms of
equation (3.76) are equal. In order to evaluategtbbal resistanc@;(6) whenés > &;, it is
assumed that all the beams of the equivalent meiamodel are made of a rigid-plastic
material and collapse according to a predefineérseh

Figure 4.28. Plastic mechanism for a class 1 cross-section in the case of an off-centered impact

For a class 1 cross-section, the mechanism coesidegre is depicted on Figure 4.28 and
only involves one moving plastic hinge. This on@isially placed at poinf, but travels with

a velocity g(Y;, 8) tan g along theZ' axis. During the collapse procedure, the non-irtgzhc
leaf is assumed to rotate as a rigid body, whicpligs that theBC = [. On the other hand, it
is further postulated that the total lengthAdf remains unchanged, with the consequence that
[, + 1, = L. This last assumption is also used by Paik and/dinhaalli [121] when deriving
the post-ultimate behavior of a column under punammression. Nevertheless, such a way of
doing is arguable because it does not respect dhmality rule. Indeed, when a structural
element is submitted to a normal compressive fokc@-igure 4.29), according to (3.82), the
axial reduction ratéd should not be equal to zero, but this requiremgmot verified if
L+ =L

As a consequence, applying the equilibrium metlodind the resistanc®;(§) leads to a

solution that is not entirely statically admissiblkecause it violates the normality criterion. Of
course, this approach is not really satisfactoryfimging a totally consistent solution leads to
equations that are impossible to solve analyticAlgre details about the exact application of
the equilibrium method to the present problem cafolind in section C.3.2 of Appendix C.3.

Under the hypothesis that there is no axial shorteaf AB, it is possible to find the current
lengthsl; andl, characterizing the two parts of the impacted |#ahay be shown that:
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g*(%;, 8) .
2(Z — g, 6)tanp) ’
where Z; is the coordinate along th& axis of the initial contact point (Figure 4.28).

Furthermore, iBC only suffers a rigid rotation, the current cooati#s(Xy, Z5) of pointB in
the (X, Z) axis can be obtained by solving simultaneouslystifessequent set of equations:

L, =2 —g(¥;,8)tan B +

lz = l - ll (4’.30)

I g(YJ6)
<XB—Z,sm,8— cols,B

which allows to calculate the components and wy along theX’ and Z' axes of the
displacement imposed to poiBt From these results, it can be shown that theiootangles
6., andé, at the plastic hinge (Figure 4.28) are given by:

g(YLI 5) . — g(YLJ 6) — Up
Zj—g(,8)tanp ~ "* T 1—Zj —wg+g(¥;, ) tanp

2
) +(Zg—ZjcosB)?> =15 ; X5+ (Zg—2lcosB)?> =12 (4.31)

91=

(4.32)

In the attempt of applying the equilibrium methodge can consider the internal fordésand

T; acting at the central contact block (Figure 4.2 moderately large displacements, they
may be supposed to act along ffleandZ’ axes and equation (3.81) can still be used as an
interaction criteria with the bending momew}. Furthermore, ifH; andV; are respectively
the horizontal and vertical components of the ieacat the lateral block, expressing the
overall equilibrium of the gate allows to determthem as a function of the resistari€&y).
Similarly, if only the impacted leaf is considerélae stability requirements impose that:

N; = H;cos§ — p;l; sin6; + p;l,sin 6, + V;sinf < N,
T; = H;sin 8 + p;l, cos 0, + p;l, cosB, —V; cosf + P; (4.33)
M; = Ni(g(Y;, &) —ug) + T;(l = Z; —wp + g(¥;, §) tan B) — p;l5 /2

where 6; and 6, are given by (4.32). As suggested by Paik and dimdalli [121], the
contributionP;(6) of the beam to the global resistarig€d) may then be obtained by using
the yield criterion (3.81), in whicN; andM; are replaced by their expressions given in (4.33).
Doing so, it is worth noting that the approachaldor a continuous transition between the
solutions obtained during the elastoplastic phasktlae present ones.

T;
LS
\ — Nj

[\

pili

Vi

Figure 4.29. Definition of the internal and reaction forces for an off-centered impact

As a final comment, it should be mentioned that theplacement functiory(Y;, §) is
unknown so far. In fact, this latter may still beakiated with help of the formulae listed in
Table B.1 of Appendix B.4 for a gate with a sill.

Of course, all the previous developments are omlydvfor class 1 cross-sections. If this
condition is not fulfilled, then the plastic meclsan of Figure 4.28 cannot be used because
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the beam is submitted to an early buckling. In #@se, another plastic solution involving a
folding process has to be derived (Figure 3.56). damciseness, the details are reported in
section C.3.3 of Appendix C.3.

Finally, the individual resistanc® (§) provided by the beam is obtained by combining the
elastoplastic and perfectly plastic solutions aswssed in section 3.6.3.2 (Figure 3.57).

4.3.2.3. Sliding condition

The elastoplastic and perfectly plastic solutidret twere derived here above are in fact only
valid as long as there is a sufficient collabomatietween the two parts of the gate. Indeed,
the shearing forc¢; should be transmitted from one leaf to the otheorder to insure the
overall stability of the structure.

pil

Loss of contact at the
central blocks

Figure 4.30. Internal forces at the central contact block

If the contact blocks are not physically connecfedtion is the only phenomenon that may
put the non-impacted leaf into motion. Consequerfitilya beam located at the lewglalong

the vertical axis, only a shearing forfecan develop at the central junction as long as no
sliding occurs (Figure 4.30). If the two contacbdis are pushed against each other by a
normal forcen;, according to the Coulomb criterion, sliding tak@ace as soon as the
following condition is fulfilled:

|fil > pun; (4.34)

in which u is a friction coefficient (usually ranging fror.3 to 0.6) and where the
components; andf; can be simply obtained from equivalence considerat

n; = N;jcosf + T;sinf8 ; f; =T;cosf3 — N;sinf (4.35)

whereN; andT; are given by (4.33) for a class 1 cross-sectidrcddrse, the duration of the
sliding phase is limited because the contact betwlee two parts of the structure is lost when
the central displacement is equal to the lerigtbf the blocks (Figure 4.3). At this moment,
the contributionP; (§) is set to zero, which means that the beam doesamitibute anymore
to the global resistance of the gate.

4.3.3. Centered impact
In the case of a centered impact, the collisiomage is symmetric (Figure 4.4b) and this

should be also the case for the global deformagiattern. In order to derive; (), the
mechanical model introduced in section 4.3.1.196 ased, so the gate is represented as a set
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of horizontal beams having a uniform web height thaalculated in accordance with Figure
4.24a and equation (4.23).

4.3.3.1. Elastoplastic solution

In the elastic regime, the beam located at a lBvalong the vertical axis is submitted to an
out-of-plane displacemet(Y;, §) at the central contact blocks (Figure 4.31). Qnemretical
point of view, this can be assimilated to a supmattlement and it is assumed that this
motion is only responsible for an axial reductionf the two segment$B andBC given by:

Ay =1— /12 + g2(Y;, 8) — 21g(Y;, §) sin 8 (4.36)

wherel is the initial length of each leaf. In order tongeate this shorteninglB and BC
should be submitted to a total compressive fai¢@é) parallel toZ’ and having the following
magnitude:
A pil

N;(6) = EALT + TCOtﬁ (4‘37)
whereE is the Young modulus andl; is the cross-section area. In (4.37), it is warntiing
that the first term only is due to the axial redutt the second one coming from the
hydrostatic pressure. Another effect of the surdiog water is to produce bending moments
that are also given by (4.25) with a maximal valj€§) = p;1?/8 obtained whei’ = /2.

p,‘l g( Yi, 5) p,‘l

Figure 4.31. Displacement field for a centered impact

Under the assumption that the elastic regime onlolves small displacements, the
equilibrium can be expressed in the initial confagion and it can be shown that the
individual contributionP; (8) to the global resistance writes:

EA;

Pi(8) = 2Ny(8) sinf = 2= (1 = 12 + g2(¥;, 8) — 21g(¥;, 8) sin B ) sin B (4.38)

In fact, (4.38) is only valid as long as the beasistance’, ;(6) has not been reached. This
arises when the appropriate interaction criterimergby (4.28) is satisfied. At this moment, it
is assumed that the contribution to the total taste is simply given by, ;(d) until the
transition penetratiod; is reached. So instead (4.38), one should write:

P,(8) = min{Z%(l — 2+ g2(¥, 8) - 21g(¥, 8) sin ) sin § ; Pt,i(a)} (4.39)

whereg(Y;, §) can still be calculated with help of the formufaevided in section B.4.1 of
Appendix B.4 for a gate with a sill.

4.3.3.2. Perfectly plastic solution

For 6 > §;, the global resistand®; (§) is calculated by assuming that an overall mechanis
is activated over the whole gate. The contribufigid) of a beam located at the levglalong
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the vertical axis is obtained by assuming a pdsfaaiiastic material and a given collapse
scheme. For a centered impact, this latter is symenas depicted on Figure 4.32. Each leaf
is made of two rigid armd/ and/B separated by a stationary plastic hinge at posuch
that their initial lengths remain unchanged, .= IB = [/2. As mentioned in section
4.3.2.2, doing so is not theoretically acceptal@eanse the normality rule is not satisfied,
which implies that the present solution is notistdly admissible. However, unlike the off-
centered configuration, all the compatibility regments are respected here as no moving
hinge is involved in the plastic mechanism, so Hwution is at least kinematically
admissible.

Figure 4.32. Plastic mechanism for a class 1 cross-section in the case of a centered impact

In the optic of using the equilibrium method, Istdenote byX;,Z;) the current coordinates
of point! in the(X, Z) axes (Figure 4.32). From geometrical considerafidncan be shown
that these parameters are obtained by solving samebusly the two subsequent equations:

XE+Z2=1%/4 ; (Isinp—g;,86) —X)?>+ (lcosp—2Z)*=1?/4 (4.40)

where the displacement functigrY;, §) is still given by the formulae listed in Table Bt
Appendix B.4 for a gate with a sill. With theseulkes, the rotation angle®, andé, at the
plastic hinge (Figure 4.32) are found to be afed:

lSinB _g(yl'6) — X
lcosfB —Z;

X
0, = arctan (Z_I) -B ; 6,=0— arctan(
I

(4.41)

Once all the required geometrical properties ateut@ed, the next step consists in writing
the overall equilibrium of the structure. This &aloto express the reaction fordésandV; at
the lateral contact blocks (Figure 4.33) as fumdiof the resistanc®;(§). From these
relations, one can calculate the internal forEBeandN; respectively acting along th€ and

Z' axes at poinB as well as the bending momaet at point/. These latter are found to be:

_ pil pil .
N; = H;cosf +751n61 —751n62 +V;sinf < Ny

il il
T; = H;sinf + %cos 0, + %cos 0, —VicosB +P; (4.42)
Nl pil? Tl
Mi=7lsm92+ L2 —TLCOSQZ

in which the angle#; andé, are given by (4.41). Once again, the contribufgid) of the
beam to the global resistanég(§) can be calculated by introducing (4.42) in theldyie
criterion (3.81). Of course, doing so is only valat a class 1 cross-section. For the other
cases, the mechanism of Figure 4.32 can still bd,Usut instead of having a plastic hinge at
point I, the folding pattern of Figure C.12 can be usedinD so, the resistand@(d) is
evaluated by following a procedure very similarthee one exposed in section C.3.3 of
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Appendix C.3, except thd; is this time obtained by summing up the rotatiépsand 6,
given in (4.41).

pil/2

Vi

Figure 4.33. Definition of the internal and reaction forces for a centered impact

Finally, the individual resistanc®;(6) is calculated by combining the elastoplastic and
perfectly plastic solutions derived here above.
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4.4. Numerical validations

The goal of this section is to present comparisoesveen the resistance curves obtained
numerically and analytically. To do so, the finkéement softwares-DYNA is used to
simulate collisions on mitre lock gates.

4.4.1. Description of the finite element model

Building a realistic finite element model for a mitock gate is not straightforward because
the boundary conditions are quite particular. Inatempt to properly represent the supports
of the structure, the lock walls and the sill alanodeled (Figure 4.34) but considered as
rigid. The contact between the leafs and the silpiovided by the lowermost horizontal
girder, while the support at the lock walls is madeugh lateral blocks. At the middle of the
gate, the central blocks are also modeled to ing@eontact between the two leafs. All these
components are meshed with Belytschko-Tsai shethehts [66] and the general surface to
surface penalty contact algorithm f-DYNA is used to avoid any relative penetration. In
order to model friction, the static and dynamicflioents are set t0.3.

When the gate is pushed against the lock wallsfdiees are transmitted through the lateral
blocks. On the contrary, when the structure tewdseparate from the walls, this motion is
prohibited by the tension in the ties and the shgaof the pivots. Therefore, these two
components are modeled with cable elements thamfméely stiff in tension but do not have
any stiffness in compression. Such a representa@snthe advantage of being quite easy to
implement, but it also avoids introducing rotatibrestraints on the lateral studs.

2

1 - Left tie ; 2 - Left pivot; 3 - Right tie ; 4 - Right pivot; 5 - Left lock wall ; 6 - Right lock wall
7 - Sill ; 8 - Plating ; 9 - Horizontal girder ; 10 - Vertical frame ; 11 - Central studs ; 12 - Lateral stud

Figure 4.34. Finite element model of a mitre gate

Regarding the material properties, except for tlok Walls and the sill that are perfectly stiff,

all the remaining parts are affected with the nstdel properties listed in Table 3.2, the
stress-strain relation being still the one depiaadrigure 3.21. The strain-rate effect is not
taken into account because the striking velocdresquite low. Concerning the mesh size, the
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same remarks than those mentioned in section B.Afe applicable. In particular, the
refinement should be sufficient near the centrdl lateral blocks because these areas are very
sensitive due to large contact forces. Typicalyg €lements dimensions vary betwé&eand

10 c¢m to keep a sufficient precision on the results jgted byLS-DYNA.

As a final remark, it should be mentioned that tilgdrostatic water was applied on the lock
gate by loading the immerged shell elements with@propriate distributed pressure.

4.4.2. Off-centered impact

It is focused here on an off-centered impact (Feguta) occurring on the gate of Figure 4.34.
The corresponding geometrical data are listed ierd.5, using the notations introduced on
Figure 4.3. For this scenario, the first strikingssel shown on Figure 3.60 is used for the
simulation and its geometrical dimensions aredistethe associated table. It has a total mass
of 4000 t and an initial velocity o2 m/s. The simulation is stopped when the total initial
kinetic energy oB M] is completely dissipated or when the contact betwtbe two leafs is
lost. In the(X, Y, Z) axes of Figure 4.4, the position of the sums$hdf the stem is such that
Ys =8.2mandZs = 7.15m.

General data Plating

L (m) l; (m) l5 (m) B B 41 V2 hy (m) lc (m) tp (M)
3.35 3.15 7 19° 19° 6° 10° 1.5 0.1 0.022

Horizontal girders Vertical frames

Ym) [ hm [ twm) [ he(m) | t,m) | Zm) | hy(m) | 6, (m) [ he(m) [ t(m)
0 1.5 0.016 0.4 0.012 1 1.5 0.012 0.3 0.012
2.53 1.5 0.016 0.4 0.012 3.35 1.5 0.012 0.3 0.012
5.23 1.5 0.016 0.4 0.012 6.85 1.5 0.012 0.3 0.012
9.06 1.5 0.016 0.4 0.012 10.35 1.5 0.012 0.3 0.012
10.3 1.5 0.016 0.4 0.012 12.7 1.5 0.012 0.3 0.012

Table 4.5. Geometrical properties of the gate

The numerical and analytical curves showing thdwtam of the resistance are depicted on
Figure 4.35. From this comparison, it can be olesthat the simplified approach provides a
reasonable approximation of the collision forcéhiea present case.

According to the analytical solution, the gate s&mice is first provided through the local
deforming mode until the transition penetration 006 m is reached. This is particularly
visible on Figure 4.35, where the abrupt disconties for § < 0.6 m correspond to the
successive activations of various super-elememisé B> 0.6 m, the global mode is initiated
and the resistance becomes more or less constanit.eSsituation is not really surprising and
is due to the plastic mechanism detailed in secti@?2.2. After that, whed > 0.9 m, the
theoretical sliding condition (4.34) is satisfiedhich allows for a progressive relative motion
of the leafs. Each time the contact between twdrakilocks is lost, there is a sudden
decrease in the resistance, as depicted on Figsse 4

From the numerical simulation, it appears thatirsfjds initiated whens is close t00.8 m,
which means that the theoretical prediction istaibsafe. This is due to the difficulty to get a
refined analytical prediction of internal forceg and f; involved in equation (4.34).
Nevertheless, it can be concluded from Figure 4% the agreement on the resistance is
quite satisfactory for a pre-design stage. Evemghahey have not been reported here, this
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conclusion is also valid for the curves showing ¢welution of the internal energy with the
penetration.
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Figure 4.35. Comparison of the analytical and numerical resistance curves for an off-centered impact

As a closing remark about off-centered collisioitsjs worth mentioning that all the
simulations performed withs-DYNA systematically lead to a loss of contact betwé&entwo
leafs for an initial kinetic energy &M/ (i.e. for a vessel 0#000 t with an initial velocity of
2m/s). In practice, this situation is of course notemable because it produces a loss of
watertightness and the potential emptying of thstngam reach to the downstream one. In
addition, apart from the important damages causetheé gate, the vessel itself could be
severely damaged. One should therefore carefullguatt for such a dangerous situation.

4.4.3. Centered impact

The case of a centered impact (Figure 4.4b) is mwestigated. The initial position of the
striking vessel in th€X,Y,Z) axes of Figure 4.4 is such thgt= 7.7 m andZs = 12.8 m.
The gate used for the simulation is the same asrikegresented in the previous section. The
corresponding analytical and numerical resistancess are shown on Figure 4.36.

From this picture, it can be seen that initialhgre is a sudden increase of the resistance that
is simply due to the local deforming mode. Afteatthwhend is close t00.18 m, there is
another discontinuity in the curve because othgeselements are impacted. At this
moment, the local resistance is sufficient to atévthe overall plastic mechanism of Figure
4.32 and consequently, for the subsequent valuesg, ahe analytical impact force is
calculated in accordance with the formulae detaieskection 4.3.3.2. As this collapse process
is unstable, it is not surprising to have a dedngpasurve.

Once again, the agreement of the simplified approaith the finite element solution is
satisfactory. Nevertheless, fér> 0.7 m, the curve given bys-DYNA starts growing again
and stabilizes around.82 m. This is simply due to the fact that for large ued of the
penetration, as the stem angldas close td90°, there is a second contact between the stem
and the gate, which is assimilated as a shock apldias the divergence. On a mathematical
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point of view, this situation is also consideredrgdifying the definition of the displacement
functiong(Y;, §) such as discussed in section B.4.2 of Appendix Batvever, doing so only

produces a small slope modification of the ana#ytaurve but finally leads to a conservative
estimation.
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Figure 4.36. Comparison of the analytical and numerical resistance curves for an off-centered impact
For§ = 0.82 m, the simulation is stopped because the initiabkenergy o8B MJ has been

entirely converted into internal one. Consequertthe may argue that a centered collision is
a less critical impact configuration than an offisged one.

The influence of various parameters such as thedampoint, the stiffening system... on the

collision resistance are briefly investigated in p&pdix B.4. Some other comparisons
between the analytical and numerical results @@ aailable in this section.
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4.5. Conclusions

The purpose of this chapter was to develop an ticalynodel to predict the resistance of a
mitre lock gate. To achieve this goal, the struadturehavior was first studied in a local
deforming mode, which required to develop the tlseper-elements introduced in section
4.2. These ones are mainly similar to those alreattgduced in Chapter 3 for plane lock
gates, except that the mathematical derivationthd@ performed by accounting for the mitre
anglef. The developments realized here may be seen asadlization of the former ones.
Furthermore, forg — 0, the results of sections 3.3, 3.4 and 3.5 candmevered. This
explains why the presentation was a bit more sgtainthis chapter.

As a second step, the gate was studied in the lgidfarming mode by assuming that each
leaf may be decomposed into a set of horizontaimigeaeakly connected by the vertical
frames. The equilibrium method was applied to deewnalytical solutions for an elastoplastic
and a perfectly plastic material. These ones wetailéd in section 4.3.

In order to validate these mathematical developsjentimerical simulations were performed
with the finite element softwanes-DYNA. The agreement was found to be satisfactory amd th
simplified approach tends to be conservative. Ftbis validation procedure, the following
important remarks may be stressed:

* The analysis of the numerical and analytical ressliows that a major difference as
compared to plane gates (Chapter 3) appears dtirenglobal deforming mode. Indeed,
from the figures presented in section 4.4 and ipekglix C.4, it transpires that the impact
force tends to decrease (or at least to stabiliden an overall mechanism is activated.
Such an observation can be theoretically explaibgdthe fact that the solutions
characterizing the plastic collapse are unstaliés Was not necessarily the case for plane
structures, where tensile membrane effects mayecamsncrease of the global resistance.
For mitre gates however, as compressive forcesmamisuch a situation is not possible.

* For a striking vessel with an initial kinetic engrgf 8 MJ (i.e. a mass o#000 ¢t and a
velocity of 2 m/s), all the simulations have shown that in caserobfi-centered impact,
the contact between the two leafs was systematit@dt before having an entire internal
dissipation. Of course, if the two parts of theegaeparate, the watertightness is not
preserved and severe damages may be caused tdheotate and the striking vessel,
which is not acceptable.

* The direct implication of the previous observatiosighat unlike plane gates, the most
dangerous impact configurations are not necesdhlse with huge vessels. Indeed, if the
ships are quite large, a centered collision is ntigedy to occur than an off-centered one.
In such a case, the contact between the two ledifs\@ver be lost as they are forced to
move in unison. Consequently, in this situatiorg #triking ship may be stopped by the
structure if this latter is capable of absorbing ithtial kinetic energy.

* Another reason for arguing that a centered impa&tss dangerous is due to the fact that
the two legs are deformed under the impact, whildwa for a better internal absorption
and a higher resistance. On the contrary, for #tesftered collision, only the impacted
leaf is mobilized to stop the penetration of thékstg vessel, which is much less efficient.
This reasoning can be corroborated by comparinge$elts presented in section 4.4.2 and
4.4.3, from which it appears that the maximal tesise reached for a centered impact
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(Figure 4.36) is approximately two times highentliiae one observed (Figure 4.35) for an
off-centered configuration.

From the last three previous points, it can be kwled that an off-centered impact involving
a vessel with a reasonable initial kinetic energgynbe the most dangerous scenario to
consider when designing lock gates.

As a final remark, it should be mentioned thatth# previous mathematical and numerical
efforts were performed by accounting explicitly fime hydrostatic pressure. Unlike plane
gates, the effect of the surrounding water is guitgortant in the present case, in particular
for off-centered impacts. Indeed, the pressuretegdesn the non-impacted leaf contributes to
its rotational stability and prevents a too eadparation of the two parts of the gatie order

to illustrate this last comment, a finite elememhwdation was run without modeling the
action of water. By so doing, the separation ar&dbe very beginning of the impact and the
non-impacted leaf starts rotating as a rigid bdéigyre 4.37), which causes the immediate
collapse of the other one.

Figure 4.37. Opening of the non-impacted leaf if the hydrostatic pressure is not modeled

Apart from insuring the rotational stability, thgdnostatic pressure is also quite important for
the collaboration between the two leafs becausnds to push them against each other. As a
direct implication, the criterion (4.34) requirinthat f; > un; is more difficult to satisfy,
which delays the initiation of sliding. Consequgntbne should always account for the
hydrostatic pressure when analyzing the crashweeis of mitre lock gates.

° This assertion may be easily understood by corisgi¢he resulting hydrostatic forgel acting on the non-
impacted leaf of Figure C.8.
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CHAPTER 5. Conclusions about ship impacts on lock
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5.1. Scientific developments

The purpose of this first part was to develop aalyital method to evaluate the collision
resistance of plane and mitre lock gates. In aoldlito the particular conclusions already
presented in sections 3.8 and 4.5, we would likenstst on the main innovative scientific
developments that have been required to achiesgydail.

The fundamental assumption is that there are tvasiple ways for a lock gate to withstand
ship impacts. The first one is known as the loocalodning mode and only involves a
localized crushing of structural components, whike second one is called the global
deforming mode and implies an overall bending efgtructure (Figure 3.9a).

The resistance during tHecal deforming mode is evaluated by using the super-elements
method. In this approach, the gate is divided ilatge structural entities. Each of them is
characterized by some geometrical and mechaniogkeptiies and is assumed to be decoupled
from the others. Three different types of supemelst are introduced. Their individual
resistance is derived by applying the energy thaereln addition to the results already
available in the literature, the following originalevelopments are performed in the
framework of this thesis:

» The resistance of impacted plating elements (Figuitda) is derived to account for the
true elliptic shape of the stem (Figure 3.14) ahdhe bulb (Figure 3.18). Doing so is
highly required, as the classical developmentsesponding to a punctual impact are
found to lead to prohibitively conservative resultising these new formulae, the local
resistance is evaluated in a more realistic way.

» The theoretical approach to derive the collisiagigtance of horizontal girders and vertical
frames (Figure 3.11b) is unified to be consistenthwhe plate strip formulation.
Furthermore, it is shown that considering only &lifay process (Figure 3.26) is not
sufficient for slender elements because they &emdylito bend during the impact (Figure
3.30). Considering an abrupt transition betweentth®e mechanisms is found to be quite
realistic.

* Another original contribution concerning girdersdgrames is that the resistance provided
during the above-mentioned bending mechanism isulzkd by accounting for the
preliminary crushing of the cross-section occurrithging the first folding phase (Figure
3.32b). To do so, it is proposed to evaluate tlastf bending moment by neglecting the
portion of the web that is completely crushed and itterpolating linearly for the
intermediate configurations.

» For a direct impact occurring on the intersectietween horizontal and vertical stiffening
elements (Figure 3.35a), the resistance is theaibBti developed with a consistent
assumption on the displacement field. In additibrs also shown that considering only a
folding process (Figure 3.37) is not conservatigeaa overall bending of the super-
element is also likely to occur (Figure 3.39). Gamgently, new formulae are developed to
include this particularity. They also account foe influence of the crushing process.

* The same work is done in the case of an impactrdoguon an intersection because of a
subsequent contact (Figure 3.35b). Such a situa@smever been treated in the literature,
which means that the suggested folding and bendimthanisms are totally original.

142



CHAPTER 5. Conclusions about ship impacts on lock gates

In the case of mitre lock gates (Figure 4.1), h# previous developments have been
extended to account for the inclination anglef the leafs (Figure 4.3). On a mathematical
point of view, this is equivalent to an oblique &aep, so the corresponding formulae are in
fact a generalization of the previous ones, thaterlbeing recovered whgntends td).

Apart from the mathematical efforts mentioned poesly, the case of a collision on a
mitre lock gate also requires to treat the parficidase of a beam impacted obliquely
(Figure 4.12). Such a situation has never beertelem the literature and finding a
theoretical solution that is entirely satisfact@yot yet achieved. The resistance proposed
in this thesis is not strictly admissible but isifial to be sufficient for the present purpose.

However, the previous derivation of the local resise cannot account for the coupling
between the super-elements, so considering onlgcalited impact leads to a drastic
overestimation of the collision force. To solvestproblem, a second calculation is performed
in the global deforming mode by assuming that the gate is forced into an olvemation. In

this case, the resistance is calculated by assutinaighe gate is seen as a set of independent

beams (Figure 3.12). Each of them correspondshtorizontal girder, to which is attached a
collaborating part of the plating. The innovativehi@vements of this thesis related to the
global mode may be summarized as follows:

An elastoplastic evaluation of the bending resistais performed for each beam. Even
though this is not theoretically exact, this is giynachieved by combining an elastic and a
rigid-plastic calculation. The elastic derivatios carried out without difficulty but
regarding the plastic solution, the Eurocode ceesdion classification is considered.

In the case of class 1 cross-sections, the resistencalculated by assuming a collapse
mechanism involving a sufficient number of hingeésr each of them, the plastic capacity
is calculated by accounting for the potential weldihg that may take place during the

local mode. A simplified formula is proposed instipurpose.

For other cross-sections that do not have a sefficiotation capacity, the post-buckling
resistance is evaluated by supposing that a lexhlialding mechanism occurs over the
uncrushed web height (Figure 3.56).

In the particular case of mitre lock gates, thewdations are done with due consideration
for the inclination anglgs of the two leafs (Figure 4.3). In addition, a slgl criterion is
proposed to detect the penetration for which ther@ separation of the two parts of the
gate (Figure 4.30).

Finally, in order to have a more realistic evaloatof the final lock gate resistance, a method

is suggested toombine the local and global calculations. This approximate procedure allows
for a better assessment of the coupling betweetwiheleforming modes.
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5.2. Perspectives

The results provided by the simplified analyticabgedure described in chapters 3 and 4 are
the curves showing the resistance and the inteem&rgy as functions of the vessel
penetration. If a new lock has to be designed,ethresults can be used in the following
purposes:

* One of the main concerns regarding collision is dtedinition of the worst collision
scenario, but this problem can be circumvented Wwélp of the present tool. Indeed, the
position of the impact point and the striking végseperties can be varied within a certain
range of values. In each case, the final resistarare be quickly evaluated and the
configurations leading to the lowest values maythe retained as the most critical ones.

» During the pre-design phase of lock gate, the pr@tiof the simplified method may be
thought to be sufficient and the collision resis@can be assessed in this way. Therefore,
this approach is quite convenient if an optimizatic performed. Indeed, if the
geometrical and mechanical properties of the gatevaried in order to reduce the
construction cost for example, the consequencetherability of the new structure to
withstand an impact can be quickly reevaluated.

» If a more refined design is required at the firiabe, believing that the simplified approach
is sufficient would be too presumptuous. It is evitthat local fields (such as stresses and
strains for example) cannot be correctly evaluatétout resorting to other software. In
fact, numerical and analytical tools are compleramgnin the framework of ship collisions.
Indeed, the simplified method can be seen as a gagdo isolate the most critical impact
scenarios, these latter being investigated latermore details by using finite element.

From the previous points, it can be concluded soate applications may be found in design
offices where engineers are dealing with the commepof new lock gates. However, the
approach may also be interesting to realize a rsjpehgth assessment of existing structures,
which can be useful for the administrations manggire inland waterways. Such a tool may
help them to decide whether a gate should be meiafbor if protection devices (such as
cables) are needed for example.

Regarding the future potential developments, jirabably valuable to draw a non exhaustive
list of the subjects that may be investigated inreli research:

» Derivation of simplified criteria to account forpture during the global deforming mode.
So far, only the failure localized on super-elersehis been considered during the
derivation, which means that rupture is only inggd in the local resistance.
Nevertheless, it is desirable to extend these dpwatnts to the global one. Doing so is a
quite sensitive problem, particularly because efdtificulty to perform realistic numerical
simulations as a validation.

* Investigation of the real support conditions of thete. The hypotheses made for the
analytical derivation of the global resistance @t necessarily reflect the real boundary
conditions. Therefore, it could be valuable to perf numerical simulations in which the
contact between the gate and its supports woukkpkcitly modeled. Of course, doing so
is a quite fastidious and arduous procedure thaiires a lot of skill with finite element
software.
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» Extension of the simplified method to other lockega So far, only plane and mitre gates
have been treated, but many other configurationgddoe considered, such as radial sector
gates (Figure 5.1a) or double side gates (Figukk)3hat are quite currently encountered
in maritime conditions. Adapting the analytical dBmpments to this last case should not
be too challenging, but facing with curves elemeésntaaybe a more arduous task.

From the three subjects mentioned here aboveclea that there is still a lot of work to be
done in the field of collisions on lock gates, leadto various industrial applications.

(a) Sector gate (b) Double side gate

© http:/ /www.quallterll.co.-l_lk
Figure 5.1. Other lock gates configurations

http:/ /www.seanews.om
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- PART II -

Seismic analysis of lock gates
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CHAPTER 6. Literature review on the seismic design of
lock gates

The purpose of this chapter is to provide a general overview of what has already
been done for the seismic design of lock gates. In order to perform this literature
review, it is first proposed to focus on dams and on liquid storage tanks. Even
though they are not really similar to lock gates, gathering information about the
seismic design of these two structures is appreciable because they are typical
examples on the way fluid-structure interaction can be treated. Therefore, some
valuable indications about the methodology may be extracted from the references
published on these topics.

Consequently, the present chapter will be divided into three main parts. Section 6.1.
proposes a non-exhaustive summary of what is currently available in the literature
regarding the dam-reservoir interaction.

In section 6.2, the fluid-structure interaction in liquid storage tanks is briefly
reviewed. The case of perfectly rigid structures is first considered, but after that, it
is proposed to focus on cylindrical and rectangular configurations. For each
situation, some indications are given on some analytical and numerical methods
available.

Finally, section 6.3 focuses on the seismic design of lock gates. Two different
examples are presented to give an insight of what is done in practice.

kksk
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6.1. Dam-reservoir interaction

The analytical evaluation of hydrodynamic pressndeiced during a seism is a quite difficult
topic that has been investigated first by Westedyf66] who treated the case of a rigid dam
with a vertical upstream face and an infinite resgr Denoting byg the acceleration due to
gravity, the structure was supposed to be submitieal sinusoidal acceleration along the
axis (Figure 6.1) with an amplitude equakig@. Under the hypothesis of small water motions,
the Laplace equation was solved with the approptatundary conditions, which led to the
following formula for the pressure acting on thenda

7
p() = gagpsvhs(hs =) (6.1)

where p; is the fluid mass densityy; is the water level angr is the vertical coordinate
measured from the bottom of the lock (Figure 6.1).

:

y hs
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Figure 6.1. Geometry of the flexible reservoir

The results of Westergaard were later extended Hppfa [34] to the case of a similar dam
submitted to a horizontal or a vertical arbitrargund acceleration. An impulse response was
first derived in both situations. The convolutiomegral was then used to get the final
hydrodynamic pressure. One of the main achieveinehis paper is to propose an analytical
solution for the case of a vertical acceleratioat thlso integrates the sloshing at the free
surface. Indeed, due to analytical complexitiespynauthors such as Haroun [67] or Kim et
al. [85] considered only a horizontal free surfémethe derivation. In fact, it can be shown
[17] that this hypothesis is only valid if the walevel h, is sufficient, which is almost always
the case for dams. Nevertheless, the work perforimedChopra has the advantage of
completeness. It was applied in another paper {85ssess the safety of concrete dams
during earthquake where some practical applicaticgre detailed.

One of the main hypothesis in the work performedCinppra [34] or Westergaard [166] is
that the dam is assumed to be perfectly rigid. VBilbh an approach, the pressures are the
same as if a body of water was forced to move isamwith the dam, which means that the
fluid-structure interaction is neglected. In order investigate the influence of the dam
vibrations, an analytical approach was suggesteRdshed and Iwan [134] for short-length
gravity dams. In this study, the structure was netlas a thick plate. The eigenfrequencies
and mode shapes of the coupled system were firstedeby applying the Rayleigh-Ritz
method, in which four eigenmodes of a dry plateemased as admissible functions. After
that, a forced vibration analysis was performedsblyving the local equilibrium equations.
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Some application examples were then proposed, ibwt performing any comparison with
other approaches.

Apart from the previous analytical approaches, somm@erical studies are also available in
the literature. Amongst them, Pani and Bhattacheaf§27] investigated the case of a flexible
plate attached to a rigid dam and subjected toradmal sinusoidal ground acceleration. A
finite element technique was developed, in whicle tbressure in the fluid and the

displacements of the plate are treated as indepemdelal variables, but the interaction was
provided through an iterative procedure such thatequilibrium and compatibility equations

were respected at the interface. A far boundaryitiom was developed in order to use a
truncated domain to simulate an infinite one. Nmsking was considered in the solution and
the plate was supposed to have only one dominadem/ith all these hypotheses, a finite
element formulation was developed and implementelelat some examples. It was shown
that the plate flexibility increases the pressumd ¢hat the fluid compressibility may have

some important effects, particularly for high frequaies of the ground excitation. A bit later,

Pani and Bhattacharyya [128] extended their pressaevelopments to include sloshing.

Instead of developing finite element techniquestlaer way to perform seismic analyses is to
resort to commercial software. As an example, was done by Muto et al. [115] who used
ABAQUS to study the dam-reservoir interactions. They ntextiéhe fluid domain with acoustic
elements that only track the pressure but not ifi@datements. Such an approach is of course
only valid under the assumption that the fluid s remain sufficiently small. A non-
reflecting boundary was used to model an infingservoir. Two different simulations were
run with a sinusoidal excitation. In the first otbe dam was modeled with rigid shell
elements. The pressures obtained in this situatiere then compared to the theoretical
solutions of Housner [74] in order to validate tfieite element model. In the second
simulation, deformable solid elements were usedther structure, which led to a pressure
15 % higher than the one predicted by Housner [74]sTdonclusion tends to refute the
commonly accepted hypotesis that dams may be cenesids rigid structures.
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6.2. Fluid-structure interaction in containers

The hydrodynamic pressures induce in containersngluan earthquake is an important
practical case because it allows for the desigstofage tanks, which are quite commonly
encountered in civil engineering. For this reasie, subject has been treated by various
authors in the literature. As a lot of referencealdvith rigid reservoirs, a short review of the
existing solutions is first proposed. After thatsammary of the main achievements for
flexible cylindrical and rectangular containerpeformed.

6.2.1. Hydrodynamic pressure in rigid containers

Under the hypothesis of a perfectly rigid reservdire fluid-structure interaction can be
disregarded and it is possible to solve the Laplegeation with simplified appropriate
boundary conditions. The corresponding theorebeaks of such an approach are extensively
described in the book of Currie [37] or Ibrahim [,7@mongst others.

Cylindrical and rectangular storage tanks submitted horizontal ground acceleration were
both treated by Epstein [49]. The pressure wasveérunder the assumption of a rigid
structure. The sloshing of the free surface wasidened by writing the boundary condition
in the deformed configuration, which led to simiglif expressions that can be used to check if
an overtopping was likely or not. The same work wagormed by Housner [74] in a more
physical approach, while a very refined analytin®thod was proposed by Graham and
Rodriguez [63].

The previous developments were later extended hyuta[67] to a rectangular concrete
container submitted to simultaneous horizontal \eertical seismic accelerations. Here again,
the classical potential flow theory was used toneste the pressure, but the sloshing was
neglected. As a matter of application, some formuwl@re presented to calculate the internal
bending moments in the tank due to the earthquake.

In addition to the previous references, it is wamlkentioning that some formulae are also
available in international standards. This is theecfor example in Eurocode 8 [54], where
both cylindrical and rectangular containers aresaared.

6.2.2. Hydrodynamic pressure in flexible cylindrical containers

In practice however, liquid storage tanks may remtessarily be assimilated to perfectly rigid
structures. For this reason, some investigationg werformed to account for their flexibility
when deriving the hydrodynamic pressure. On anyénal point of view, due to their
axisymmetric configuration, flexible cylindricalgervoirs have been more extensively treated
in the literature than rectangular ones. Even thahgy are not particularly similar to lock
gates, it may be useful however to quickly revieame examples to have a better
understanding of the methodology.

An extensive analytical derivation was performedHmischer [57], who treated the case of a
flexible cylinder with due consideration for theedr surface displacements. The boundary
condition at the fluid-structure interface was egsed by postulating three different given
shapes for the radial displacements of the tank. Weith this hypothesis, the Helmholtz
equation was solved by applying the Galerkin methduch led to an approximate solution
for the hydrodynamic pressure. In an attempt toipieo a more practical procedure for the
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seismic analysis, the author suggested to replecadtual coupled system by a dry cylinder
with a modified mass density. This latter was ti@edy calculated such that the total shearing
force and overturning moment at the base of thecstre were preserved. Such an approach
is also suggested in Eurocode 8 [54].

The same procedure was followed by Fujita and 8hi&0], except that they considered

separately the vibration of the couple-system dred dloshing. In order to validate these
developments, a reduced-scale model of a cylindidgck was placed on a shaking table and
submitted to a seismic acceleration. The experimaties were found to be in good

agreement with the analytical prediction. They wads® used by Fischer [57] to corroborate
its own calculations.

The idea of working with a fictitious equivalent ssa density was later used by
Rammerstorfer et al. [133] within an engineeringrapch that also includes the vertical
ground acceleration. As a first step, it was fsaggested to perform a numerical modal
analysis of the cylinder with the modified mass gign to get the fundamental
eigenfrequencies of the coupled system. Theseweassthen used in response spectra to get
the relevant horizontal and vertical acceleratidfinally, the pressure obtained in this way
were combined with the SRSS formula to derive agtegalue. Another application example
of this method was also proposed by Fischer andnRastorfer [58] to check the stability of
shell under dynamic load.

In addition to the previous references, it is asde interesting to mention the developments
performed by Yang [172], in which the dynamic resg® of the cylinder was derived
analytically by postulating three different eigerdas for the coupled system. The Laplace
equation was analytically solved to get the pressimd the virtual work principle was used to
derive the cylinder displacements. This approachase or less the same as the one followed
here (see Chapter 7) for rectangular reservoirs.

In order to close this short review on flexible inglers, a final remark can be made on
numerical approaches. Some references dealingtinghopic are available in the literature,

the oldest being probably the one published by tiaesnd Housner [68]. However, this paper
is still quite interesting because it provideseaclsummary of the method. In addition to that,
some applications are presented that clearly sthesseal need to account for the structural
flexibility when evaluating the seismic pressure.

6.2.3. Hydrodynamic pressure in flexible rectangular containers

In comparison with cylindrical reservoirs, the caderectangular ones is more difficult to
treat because the situation is not axisymmetrieraorg. This may explain why there are very
few references available in the literature. Oneth&m is due to Kim et al. [85] for both
horizontal and vertical ground motions. The solsiowere obtained by applying the
Rayleigh-Ritz method, where the vibration modessiafply supported or cantilever beams
were used as admissible functions. The developmeate validated by comparison with
numerical results and it was clearly pointed ouwit tftne hydrodynamic pressure tends to be
amplified and that its distribution largely diffefsom the one obtained for a rigid
configuration.

Regarding numerical solutions, Chen and Kianou$h f{@cused on the total hydrodynamic
pressure in a flexible rectangular tank submitted horizontal earthquake excitation. To do
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so, the sequential technique was applied. Thisaggbr may be summarized as described on
Figure 6.2, where the hydrodynamic pressufe) is seen as an external force. Instead of
solving simultaneously the equations for the sahd fluid domains, each of them is treated
separately. Let us imagine that the flexible tagdponses(t) is known at time for a given
seismic acceleratiok(t). With u(t), it is possible to evaluate analytically the hytineamic
pressurep(t) acting on the reservoir. At the next time step At, this latter may be used for

a numerical evaluation af(t + At), which means that the pressure and the displademen
considered for the analysis are not concomitant.

<= (1) <= (1) <= it + At) =
+ p(t-AY P — p(® p() i—
iy X pr= —/ X =

Figure 6.2. Sequential technique

This method was implemented in the finite elemesdecsAp Iv developed at the Berkeley

University and two reservoirs were investigatedhviite north-south component of the El-
Centro accelerogram. From the time-history analyss$ormed, it was concluded that the
effects of the tank wall flexibility should be codered in the calculation of hydrodynamic

pressures. This procedure was later extended byokigh and Chen [83] to the case of a
vertical ground acceleration.

In all the previous references, the sloshing of fitee surface was neglected. In order to
account for this phenomenon, Kianoush et al. [8dppsed a new approach to account for the
motion of the free surface in the 2D analysis atargular flexible tanks. A more detailed
study on this topic was proposed by Ghaemmaghami Kianoush [61], who gave an
extensive presentation of the finite element foatiah used to model the fluid domain.
These developments were first validated by compaitie results with theoretical solutions
known for rigid walls conditions. From these invgations, it was concluded that the
structural vibrations have practically no influerme the convective response. Only a slight
increase in the pressure was observed, which temd=rroborate that the free surface
motions can be evaluated under a rigid assump8onilar conclusions were also addressed
by Mitra and Sinhamahapatra [113].

Finally, regarding the numerical investigationstioé fluid-structure interaction, it is worth
mentioning that this topic can be also investigdtedising various commercial software such
asLS-DYNA, ABAQUS, MSC NASTRAN ADINA, ANSYS... Most of them proposes various refined
techniques, such as the arbitrary Lagrangian-Earieapproach. In the literature however,
most of the scientific papers are based on finieenent codes directly developed by the
authors, which renders real industrial exampldseratard to find.
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6.3. Seismic analysis of locks

There are very few papers in the literature dealitg the seismic design of lock gates. Some
recommendations are however provided by the WoHddoaiation for Waterborne Transport
Infrastructure [170] that suggests to use the edent static method. The idea is to apply a
static force on the structure to model the actidntre fluid for a particular ground
acceleration. This latter can be read on a respgpsetrum at the frequency corresponding to
the fundamental mode of the coupled system. Thexetbhe method is only applicable if the
dynamic response is driven by one unique mode.

This last assumption is an important limitatiortted method because an immerged lock gate
is not necessarily characterized by a dominant mé&dethermore, the derivation of the
pseudo-static force is not a priori easy to achewe very few recommendations are available
in the literature. In [170], it is proposed to ube Westergaard formula (6.1) to evaluate the
hydrodynamic pressure. The parameteshould be chosen as follows:

a=a/g If a>02g a=%3a/g if a<0.2g (6.2)

wherea is the peak ground acceleration of an earthquateaweturn period 05000 years.

Of course, such an approach is arguable becausebdsed on the Westergaard formula,
which is only valid for perfectly rigid structurgsee section 6.1) and therefore does not
account for any interaction with the surroundingidl Furthermore, the choice of the non-
dimensional acceleratiam is done without considering the frequency of tbapted system,
which is also questionable. For these reasons,esioned in [170], it is suggested to use
equations (6.1) and (6.2nly in the very early pre-design stage.

Another approach that is sometimes cited in tieeditre is known as the added mass method
and was used by Forsyth and Porteous [59] for ¢rsrsc design of the entrance lock at the
Rosyth Royal Dockyard in the United Kingdom (Fig@s). For this application, a finite
element model of the gate was build and the aatibthe surrounding water during the
earthquake was modeled by attaching some lumpedasds the immerged nodes. These
latter were calculated with help of the Zangar folan[176], which is a generalization of the
Westergaard equation (6.1) to a dam with a noneanipstream face. The seismic analysis
was then carried out with acceleration responsetspe

© http://www.naval-technology.com

————

Figure 6.3. Rosyth Royal Dockyar{59]

Nevertheless, regarding the methodology, the pusvigay of doing is questionable because
the lumped masses are calculated as if the gatepesdsctly rigid, which means that the

153



CHAPTER 6. Literature review on the seismic design of lock gates

fluid-structure interaction is not taken into acobwhen deriving them. Furthermore, the use
of response spectra is also arguable becausadi isstablished that the eigenfrequencies of
the gate with the added mass are the same asdhtdse real coupled system. On a practical
point of view however, as the structure is quité @he total width is equal té m, as shown

on Figure 6.3), this procedure may be more or ¢essistent in the present case. As a final
observation anyway, the damping coefficient usedaalbrate the response spectra is not
clearly identified in the paper of Forsyth and Bots [59]. As discussed in [17], this has to
be done carefully because the added mass of wataldsnot interfere in this process.

As another example of good practice, it is alsergdgting to focus on the new set of locks at
the Panama canal [125]. The seismic design wasnpeefl as described hereatfter.

As a first step, a finite element model of the galttne was considered, the superstructure
being disregarded so far. The action of the hydnadyic pressure was taken into account by
the added mass method, for which the Westergaantufa (6.1) was used. This approach is
therefore strictly similar to the one followed bwrByth and Porteous [59], with the same
restrictions. A response spectrum analysis waopagd withansys for both the horizontal
and vertical excitations, which allows for a sturel optimization.

These calculations were performed by using a dagnpoefficient of5 % to calibrate the
spectra, but this value has been extensively distligluring the design process. Indeed, it
was first argued that the added mass of waterhegthto the structure does not provide any
additional damping and should therefore be disaEghmwhen evaluating the coefficient. To
account for this observation, it was suggestechtise a much lower value but this idea has
not finally been retained for the final design. Matetails about this topic can be found in
[17].

Once a quite optimized model was obtained, a mefiread seismic analysis was performed
to account for the interaction between the locle gatd the surrounding superstructure. To do
so, the initial finite element model was enhancedniclude also the lock head and the
foundation. Seven time-history analyses were thefopmed, which allows to account for the
soil-structure interaction and to model the reattaots between the gate and its supports.
However, the fluid domain was not explicitly repreted and the fluid-structure was still
considered through the added mass method. As ¢ndinite element model was quite huge,
the purpose of these analyses was not to impravelélsign of the gate but only to check if
the response spectrum analysis performed previoustyconservative or not.

From the literature review briefly exposed herevahat appears that modeling the fluid-
structure interaction during the seismic desigiook gates is still questioning so far. Indeed,
using lumped mass with flexible structures is natirely satisfactory and representing the
fluid with finite element leads to very huge mod#isit are too prohibitive for a standard
design process. Consequently, deriving an apprdeisianplified technique could be highly
valuable.
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CHAPTER 7. Seismic analysis of large flexible
reservoirs

In this chapter, the seismic behavior of large reservoirs is considered. These
structures are made of two parallel flexible plates connected by two rigid walls.
They are submitted to a longitudinal earthquake acceleration and it is the aim of
this chapter to find a simplified analytical evaluation of the hydrodynamic
pressures appearing in such a situation.

To solve this fluid-structure interaction problem, it is proposed to work in three
different steps. The first part of the chapter is devoted to the modal analysis of a
dry plate. This section indicates how to derive the vibration frequencies and mode
shapes of an unstiffened dry plate that is simply supported on three edges.

In the second part of the chapter, the presence of water is investigated. The flexible
plate is this time assumed to be in contact with a liquid on one side. The goal is
then to evaluate the wet modal properties in this case. To do so, the Rayleigh-Ritz
method is applied, in which the dry mode shapes obtained in the previous section
are taken as admissible functions. This leads to an analytical evaluation of the
vibration characteristics of the immerged structure. In order to have a kind of
validation, comparisons are made with some numerical results obtained by using
the finite element software NASTRAN. Finally, some closure remarks on the fluid-
structure interaction in flexible reservoirs are presented.

As a last step, the third part of the chapter is devoted to the dynamic analysis of
containers. This time, the effect a longitudinal seismic acceleration is investigated.
An analytical method is developed to get the hydrodynamic pressures acting on the
flexible plate during such an event. To achieve this goal, the virtual work principle
is used in conjunction with the Newmark integration scheme, which quickly
provides the time evolution of the pressure. Once again, as a validation process, the
simplified analytical results are compared with those obtained by simulating
numerically the earthquake with LS-DYNA. As a conclusion, the end of the section
contains some considerations about the fluid-structure interaction and the added
mass method.

The developments presented in this chapter have been partly exposed in the 9t
International Conference on Structure Dynamics [18].

kksk
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7.1. Introduction

In this chapter, the case of a lock gate is not eaiately considered. It is first proposed to

work on a simple flexible reservoir. The goal hisréo draw some general conclusions on the
fluid-structure interaction characterizing such ciaf structures, which can be useful for

investigating further the dynamic behavior of stiféd gates.

7.1.1. Description of the structure

The rectangular reservoir depicted on Figure 7doissider. It has a total lengih(along the
longitudinal x direction), a total widthi (along the transversal direction) and is filled with
water at a leveh,. The reservoir is made of two longitudinal rigials located irz = 0 and
z = [, while two identical transverse flexible walls goesitioned inx = 0 andx = L. In the
planey = 0, the floor is also supposed to be rigid.

. R

Figure 7.1. Geometry of the flexible reservoir

The flexible walls are assumed to be simply coragk¢d the rigid ones, which means that
rotations around the axis are free along the vertical edgez s 0 andz = [. In addition,
free rotations around the axis are also permitted along the horizontal edges= 0 and

x = L. In other words, the flexible plates are considdraving three simply supported edges,
while the upper one is free. In this situationthié plate were submitted to an out-of-plane
loading, it would typically exhibit the displacentsmpattern depicted on Figure 7.2.

The total height of the flexible walls is denotgdiand the thickness is designatedthyin

an attempt to analyze flexible reservoirs to drame conclusions on the seismic behavior of
lock gates, it is required to choose more or lesdistic values foih andl. As an order of
magnitude, these parameters will be closel@an. However, as it is quite common for
simply-reinforced lock gates to exhibit a bendimdpavior, the thickness, of the plate has to
be chosen so that it will work in a similar way.rSequently, ifr andl are not far away from
10m, then it is required to select quite large valwdst, in order to avoid dominant
membrane effects. Currently, one should higve 10 cm.
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Figure 7.2. Typical deformation of the plate due to an out-of-plane loading

This reservoir is then submitted to an earthquakd the component of the seismic
acceleration along the horizontalaxis is denoted by (t). As the water is forced to move,

some additional hydrodynamic pressupéy, z, t) are induced on the structure (Figure 7.2).
The goal is now to provide some analytical formutaevaluate these actions.

7.1.2. Evaluation of the hydrodynamic pressure

It is well known that the total pressuéy, z, t) acting on the structure during the earthquake
is due to both static and dynamic forces and mayriiten as:

p.z,t) =pn(¥) + o, 1) + pr(y, 2, t) (7.1)

In this expressiony, (v) represents the hydrostatic action, whil€y,t) + ps(y,z,t) is the
impulsive pressure induced by the seism. This en@btained by summing up the rigid and
flexible contributions, respectively denoted py(y,t) andp((y,z t). An additional term
may eventually be added in (7.1) to account for ¢bavective pressure. This last one is
coming from the sloshing corresponding to the motbthe free surface. Nevertheless, in the
present case, this contribution will be disregar@sdit is known to be insignificant for
reservoirs where both andl are quite large [17]. Moreover, according to Eoae 8 [54],
this convective term is reputed to have very ligfeect on the vibrations characterizing the
structure, which is an additional reason for negtgadts contribution.

The analytical derivation of the hydrodynamic preesmay be conducted by assuming that
the fluid is irrotational, incompressible and hasuiscosity. With these hypotheses, it can be
demonstrated (see [17] or [37] for example) thatttital hydrodynamic pressure is given by

the following relation:
dH
P=—Pr oy (7.2)

wherep, denotes the fluid mass density a@idx, y, z, t) is the potential function. This last
one may be shown to satisfy the Laplace equatidh [1

2H 02H 0K
+——>=0

AH =0&
0x? + dy? = 0z

(7.3)

over the fluid domain. In order to have a uniqukitson, the following boundary conditions
are assorted with (7.3):
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@) 0H _ 0 for v =0 The vertical component of the fluid velocity haske
dy y= set to zero at the bottom of the reservoir.
oH The hydrodynamic pressure has to be set to zetioeat
(b) =—=0 fory = hg L .
ot free surface, as it is equal to the atmospherissure.
©) 0H 0 for z = 0 The horizontak component of the fluid velocity has to
9z - be set to zero at left wall as this one is perjeatid.
() 0H 0 for z = I The horizontak component of the fluid velocity has to
9z B be set to zero at right wall as this one is pelfaaid.
© 0K P ou for x = 0 The horizontalk component of the fluid velocity has to
Ox )+ ot - be equal to the one of the upstream wall.
oH . ou _ The horizontalk component of the fluid velocity has to
® Ox X(©+ ot forx =L be equal to the one of the downstream wall.

whereu(y, z,t) denotes the proper displacements of the flexilkddiswas it was already
depicted on Figure 7.2. The problem defined by)(8y be solved by dividing the boundary
conditions (e) and (f) in two different parts. Adirst step, it can be assumed that each wall
of the reservoir is perfectly rigid, which meanattfe) and (f) have to be replaced by:

O _ %) forx=o0andx=1 (7.4)

dx
If (7.3) is solved together with (7.4) and condigo(a) to (d), the so-called rigid impulsive
contribution p,.(y, t) introduced in (7.1) is obtained. As the analytidarivation of this
pressure is quite extensively documented in tleealitire, it is not our purpose here to report
all the corresponding mathematical developmentseNtdormation about this topic has been
reported by Abramson [2], Buldgen [17], Curie [3Epstein [49], Graham and Rodriguez
[63], Haroun [67], Housner [74], Ibrahim [76] ordfioush et al. [84] amongst others (see also
section 6.2.1). Practical formulae are also avilabEurocode 8 [54].

As a second step, it is now assumed that the @séswno longer submitted to the earthquake
event, but that the proper displacemartsg, z, t) exhibited by the flexible walls are this time
not equal to zero. Consequently, the following ébad has to be substituted to (e) and (f):

—=— forx=0andx =1L (7.5)

dx 0t
Solving (7.3) together with (7.5) and condition3 {a (d) leads to the flexible impulsive
contribution ps(y, z,t) in (7.1). It is not difficult to find a closed-for solution to this
problem, but once again, all the detailed develogmevill not be provided here. Further
information is provided by Chen et al. [27], Cherd &Kianoush [29], Ghaemmaghami and
Kianoush [61], Kim et al. [85], Malhotra [105], Mesuris et al. [109] or Veletsos [155]
amongst others (see also section 6.2.3).

Following the two steps described here above, piossible to find analytical expressions for
both the rigid and flexible pressures. As a firegult, one can establish that the three terms
introduced in (7.1) are given by the subsequeatiogis:

pn(y) = prg(hs —y) (7.6)
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_ — 4 cosh(B,y) L\..
P00 = =0 (nzlﬁ%L cosh(Bahs) E) X (7.7)
+00 +00 hs 1
pr(y,z,t) = — Cmn c0s(any) cos(Vinz) i(y, z,t) cos(any) cos(Vmz) dydz (7.8)
22, /]

in which g, = (2n — 1)/L. The other parameters involved in the previousagqaos are
defined as follows:

B 1 — cosh (&pnl) _omm _@n-Dm 2 L 2
Cnn = 2 e GGl M1 T gm, =t (79)

wherel,, = lif m = 0 andl,,, = /2 if m > 0. With the formulae given in (7.6) to (7.8), it is
possible to evaluate the total pressure actindgheriléxible walls. It is worth noting that these
results are not just valid for a flexible platet fawe still holding for the case of a stiffened
structure like a plane lock gate.

It is also important to mention that equation (8% been derived under the assumption that
the proper displacemenigy, z, t) in x = 0 are the same as thosexin= L. In other words,
the reservoir is supposed to be perfectly symmewvith two flexible walls that are strictly
identical. Asymmetric configurations will not bernidered for the moment.
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7.2. Free vibration analysis of a dry plate

The vibrations of a plate are quite different ifstsurrounded by a fluid or not. The goal of
this section is to derive the natural frequencied mode shapes of a plate that is not in
contact with water. Before considering the wet casene information will first be given on
free vibrations of dry plates.

7.2.1. Characteristic equation

In this section, the free vibrations of the isotcopand homogenous plate depicted on Figure
7.2 are considered. It is simply supported alorggatigesy = 0, z = 0 andz = [, while the
last edge iy = h is free. The plate is made of a material with asndensityp, exhibiting a
linear elastic behavior characterized by a YounglmgsE and a Poisson ratia The out-of-
plane displacements along thexis are denoted hy(y, z, t), while the in-plane components
along they andz axes are designated bbyy, z,t) andw(y, z, t) respectively. The structure
might be submitted to a transverse presurg z,t), but this is not the case for a dry
situation.

The plate is expected to follow the classical begdheory developed by Kirchhoff. Under
the assumption that there is no extension of thd-suiface of the plate, the in-plane
displacements(y, z, t) andw(y, z, t) are simply given by:
oo 0 L 7.10

U(}"Z' )_ XE , W()"Z; )_ x& ( . )
Furthermore, if the out-of-plane displacementsratetoo large, then small deformations may
be assumed. As stated by Shames and Dym [137F tommonly accepted that this
hypothesis is holding, provided that the maximdled¢ion is less tham,/10. In such a case,
one may resort to the Cauchy tensor and derivéotlmaving relations:

0%u 0%u 0%u
yy=—xa—yz €2z = "X 5,2 Eyz:_xayaz

(7.11)

wheree,,, €,, ande,, are the strain components. Additionally, admittihgt the material is

elastic and linear, the stresses may be relatetigcstrains by using Hooke's law by the
following equations:

E E [0%u 2%u
Oyy =1 _2 (Eyy +VGZZ) BRI dy? +Vazz

E E (0°u 0%u
Ozz = m(fzz +veyy) = —x 1_2 <622 + v6y2> (7.12)

_E B E 0%u
Tyz =142 = x1+v6yaz

whereo,,,, 0,, ando,, are the stress components. Equations (7.10) 1@)are the basis of
the Kirchhoff bending theory that is mainly appbéa to the case of thin plates in small
deformations. Nevertheless, as mentioned previotisey value of the thicknesg may be
expected to be quite large. Therefore, it is fmstessary to carefully examine the validity of
applying such an approach in the present casenibis¢ sensitive point to discuss is the effect
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of the shearing forces. Indeed, if the plate igegthick, these latter may be expected to play
an important role in the deformation of the pla@plying the Kirchhoff theory to such a
situation may then be irrelevant. However, one tieasear in mind that the value of has
always to be compared to the extensibrad!l. According to Shames and Dym [137], if the
following condition on the ratios/t,, andl/t,, is fulfilled:

min{h/¢t, ; l/t,} > 10 (7.13)

then the transverse sheats andt,, are negligible in comparison with the midplaneashe
7,,. This is also the case for the transverse normnesso,, which may be disregarded in
comparison with the midplane normal stressgsanda,,. As condition (7.13) is respected in
the present study, the dynamic equilibrium of tketgpdepicted on Figure 7.2 is simply given
by the classical equation (i¥/m?):

oy p (T, P ) t 7.14
P 5¢2 oyt T2 ay29,2 T ) T PO (7.14)

whereD = Et;/12(1 —v?) is the flexural rigidity of the plate ana(y, z, t) is the external
pressure acting on the structure. It is worth mptihat (7.14) supposes that there is no
stretching of the middle surface along thendz axes. In other words, there is no action of
in-plane membrane forces. This last assumption sesrasonable, as the out-of-plane
displacementsa(y, z, t) may be thought to be kept sufficiently small imgmarison witht,,.

To the equilibrium equation (7.14) are associatadous boundary conditions. According to
Bazant and Cedolin [13], the corresponding mathisalagxpressions are as follows:

« As the plate is simply supported along the vertiedgesz =0 and z = [, the first
requirement is to prohibit any displacement aldmgpt axis. The second restriction is that
the bending moments around thexis have to be set to zero. Mathematically, cxge h

0%u  0%u
=0 and 4y = _
u(y) 72tV ay2 0 (7.15)

- Similarly, as simple supports are also assumedgatbe horizontal edger = 0, the

following conditions have to be respected:
0’u  0%u
’U.(Z) =0 and a—yz + Vﬁ =0 (716)

« Finally, as the last horizontal edgeyir= h is free, the bending moments and the effective
shear forces have both to be set to zero, i.e.:

0’u  9%u o3u 3u

—_— = and —V)— =
+ 0 2-v) 37927

— — 7.17
dy? Va2 dy3 + 0 ( )

In order to obtain the free vibrations charactessof a dry plate, we further postulate that the
out-of-plane displacement field has the followiognh:

u(y,z,t) = §;(y, z)sin (w;t) (7.18)

where §;(y,z) is the mode shape associated to the pulsatignThis result and the
equilibrium equation (7.14) may now be used tow@ethe characteristic equation. In (7.14),
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as the plate is not in contact with water, it isdent thatp(y, z,t) = 0 and consequently,
inserting relation (7.18) into (7.14) leads to:

pt,w? — D 95, +2 G + 95, =0 (7.19)
Pt oy* 0y20z2 0z* '

which, together with the boundary conditions (7.1®)7.17), constitutes the characteristic
equation for a dry plate.

7.2.2. Vibration properties

The vibrations of a dry plate are entirely chardaezes by determining the eigenvalug$ and
the eigenfunctions;. The admissible values af; are those leading to a singular solution for
the set of equations (7.15), (7.16), (7.17) and9)/.As shown by Leissa [95}); has to be
found by solving a transcendental equation:

v —v) — ¢}
Y2(1—v) + ¢?

i

2
> A_i tan(AiH) - Ai tanh(A_iH) =0 (720)

wherec? is the unknown related ®; by (7.21). The other different parameters alssgne
in (7.20) are defined by the following expressions:

~ n; 12p(1 —v?)
A= /cf—yf A= /Ci2+yi2 vi=— c=o fT (7.21)
D

with n; € N,. For a given value ab;, it may be shown [95] that the corresponding dodm
shaped;(y, z) is given by:

6;(y,2) = A; <sin (ALTY) — B; sinh <LTy>> sin (nizrz) (7.22)

where4; is the modal amplitude used to normalize the wibnamodes;(y, z). In (7.22), the
coefficientB; is related to the other parameters by:

_ i1 =v) = ¢} sin(4;h)
"7 y2(1 —v) + cZ sinh(1;h)

(7.23)

The physical meaning of; appears now more clearly. In fact, this parameteresponds to
the number of half-waves along the horizontalxis. Equation (7.20) clearly shows that it is
possible to find an infinite number of soluticsag for each value of; € {1, 2, ... }. Of course,
w; is rapidly increasing wit;, which means that the activation of corresponaggle of
vibration becomes more and more unlikely. As anmgda, Figure 7.3 gives a broad
approximation of the first mode shapes associateg £ 1 andn; = 2.

It also is worth noting that equations (7.20) t@®28j are only valid for eigenvalues greater
thany; = n;m/l. If this is not the case, other analytical solnti@re available [95]. However,
for the reservoirs considered here, the relatjod y; is always satisfied and there is no need
to resort to additional analytical developments.

As a final remark, it should also be mentioned ttha dry modes are orthogonal to each
others. This result is quite important and will bged later to simplify the mathematical
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calculations. Considering two different modes (ift€.+ j), this property allows to write the
following result:

h 1
[ [ 8:0:95,0,2avaz =0 (7.24)
00

(b) First mode shape for n; = 2

(a) First mode shape forn; =1
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Figure 7.3. First vibration mode shapes for two different values of n;
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7.3. Free vibration analysis of an immerged plate
7.3.1. Characteristic equation

The vibration properties of a plate immerged in ewaare quite different from those
previously derived for the dry situation. The swrding liquid has an effect on both the
natural frequencies and modes of vibration. Indemte may intuitively predict that the
frequencies will be lowered in the case of a watglbut also that the mode shapes will be
influenced by the pressure acting on the vibrasitngcture. Therefore, it is quite important to
account for these phenomena while performing thense analysis of flexible reservoirs.
Evaluating the natural frequencies and mode shajpaswvetted plate is precisely the goal of
this section.

u(y,zt)

_ pzY
T

\ [

Y

Figure 7.4. Hydrodynamic pressure on a plate vibrating in a fluid

It is more difficult to derive the characteristiguation for a wet plate than for a dry one. The
main reason is that the accelerations of the flexivalls of the reservoir produce an

additional hydrodynamic pressure. This phenomenas already mentioned previously, and
it was found that this pressure could be evalubiedsing equation (7.8). This last expression
is recalled hereatfter:

+00 +00 hs 1
Pr0n2 ) == Y G cos(@n) c0sn) [ [ i10,2,0) cos(@ny) cos(mz) dydz (7.:25)
n=1m=0 0 0

where the coefficients,,,, ,» anda, are defined in (7.9). When the plate exhibits free

vibrations (Figure 7.4), the acceleration teiify, z,t) appearing in (7.25) may be derived
from the classical expression:

u(y, z,t) = A;(y, 2) sin(Q;t) (7.26)

where); andA;(y, z) are respectively the pulsations and mode shap@adterizing the free
vibrations of the immerged plate. With this relatione may write:

+00 400
pr(7,0) = 0Fsin(0) ) > 10 o cOS(tnY) 0S(Tin?) (7.27)
n=1m=0
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In this last expressmn(l) is a coefficient that is only related to the mathape);(y, z) of
the wet plate. It is simply given by:

hs 1

L = ] f A7, 2) cos(ayy) cos(nz) dydz (7.28)

As the plate is now subjected g (y,z,t), referring to the equilibrium equation of the

structure, (7.14) has to be completed to accourthis external force. Introducing (7.26) and
(7.27) in (7.14) leads to:

- w— o' 9'a 0%,
ptpl; — Z ZOI nCmn c0s(a,y) cos(¥mz) 2y ayzazz + Pl 0 (7.29)
n=1lm=

which, together with the boundary conditions expeesin (7.15) to (7.17), constitutes the
characteristic equation for a wet plate. Howewvieildihg an exact solution to a such problem
is not easy. For this reason, the Rayleigh-RitZwivill be used.

7.3.2. Rayleigh-Ritz solution

7.3.2.1. Mathematical approach

The characteristic equation of a wet plate (7.28y ilme rewritten in a more compact form. To
do so, let us denote 4, and£, the two linear differential operators associateit \(i7.29).
These ones are such that this equation simply besom

QLZLI (A) —L(A) =0 (7-30)

which is the classical form of a generalized eigdne problem. In this last expression, it is
obvious thatf; andZ£, are defined by:

+00 +o00 hs 1
5O =00 =D o c05(@y) c05(7n2) j j () cos(@yy) cos(Fz) dydz (7.31)
n=1m=0
_ (0 'O 90
L,()=D < 3y + Zayzaz2 + pp ) (7.32)

Let nowA,(y,z) andA,(y,z) be two arbitrary functions satisfying the boundaoyditions
(7.15) to (7.17) associated to (7.29). For eaclhthem, it may be shown [137] that the
operatorsC,; and., are self-adjoint [40] over the surfadef the plate, i.e.:

(L1(A1)|A2) = <A1|£1(A2))
(LZ(AI)IAZ) = <A1|£2 (Az»

where (- | -) denotes the inner prodditiof two functions. This property is fundamental to
apply the Rayleigh-Ritz method. Indeed, £f; and L, are self-adjoint, it may be

(7.33)

° The inner product (or scalar product) of two fumes f (x, y, z) andg(x, y, z) over a domailv of the space is
written as:

(flg) = ff [ renagGy.dxdyds
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mathematically stated [137] that the admissibleemigluesQ? in (7.30) are the stationary
values of the so-called Rayleigh quotient:

_(A1L,@))
(BIL, )

which means that the only admissible eigenfunctidbpgn (7.30) are those who minimize
(7.34). However, it is not easy to find particutpressions oA for which the Rayleigh
guotient is stationary. A brief literature revieWwosvs that a classical approach to overcome
this problem is to expregs(y, z) as a linear combination of admissible predefingttfions.
For example, this procedure was followed by Raggdam et al. [132] to get the vibration
modes of a dry rectangular plate with clamped edgésother application was made by
Liew and Wang [101], who studied the vibrations pdates with curved boundaries or
reentrant corners. Lam and Liew [90] used the G&ummidt recurrence algorithm to derive
orthogonal functions, which were then employedhe Rayleigh-Ritz method to study free
vibrations of elliptical plates. Finally, a partlady interesting application was made by Lamb
[91] and Liang et al. [100], who also applied thisthod to get the frequencies and modes of
submerged plates.

(7.34)

Following the ideas suggested in the literaturis, groposed here to express the wet maddes
as a linear combination & dry ones:

M
MG.2) = ) v (3,2) (7.35)
j=1
where the analytical expression of the dry modegvien by (7.22). The functior$(y, z) are
reputed to be admissible, as they satisfy the bayncbnditions (7.15) to (7.17) and linearly

independent (as they are orthogonal to each oth€m)sequently, this is also the case for
A;(y,z). The next step is then to evaluate the RayleighientR with help of (7.35):

(Al (8) = Z Z v j [ 60,298,602 dydz = Z Z (T WJve (7:36)

j=1k= j=1k=
M M M M

1L @0 = ) Y v [[ 601 2)L; (G13,79) dydz = Z > v v (7.37)
j=1k=1 A j=1k=1

where A is the surface of the platé‘,- ]k and Uk are to be found by considering the
expressions (7.31) and (7.32) of the operafgrand.,:

l H +00 400
. -~ k
Ti = pty f f 6;(v, )8k (v, 2)dydz e = Cmnlmiyn (7.38)
00 n=1m=0
o 0*6, 0*6, 0*6,
ko k k
= 7.39
Dde(y,z)( 6y2622+ e 4)dydz ( )
00

1t is mentioned by Blevins [14] and Leissa [95ttit is possible to find exact solutions to thamtteristic
dry equation (7.19) only for plates having at le¢a&t simply supported edges. This is rather impmedor other
boundary conditions.
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whereI(’) andI(k) are given equation (7.28), in whldg(y, z) is replaced by;(y,z) and
6, (v, z) respectively. The detailed expressmnﬂgf ik andU U, are not reported here but

may be consulted in section D.1.1 Appendix D.1. The Rayleigh guotient may now be
rewritten as:

M M X ~ M M ~ vLT([T"] B [W])vi
Z z 171'1'(Tﬂc - Vij)Uki Z z VUi vk | = 07, (7.40)

j=1k=1 j=1k=1 :

where [T], [W] and [U] are the(M x M) matrices associated ﬂC)k, ]k andU Uk v; is a
(M x 1) vector containing the coefficients; andv! is the corresponding transpose. In order
to get the stationary values Bf the particular vectorg; minimizing (7.40) have to be found.
As L; and L, are self-adjoint, these stationary valuesRadre reputed to be the eigenvalues
QZ. It may be demonstrated [137] that these onefoarel by solving the classical equation:

det ([0] - ([7] - (W])) =0 (7.41)

As A;(y,z) is expressed as linear combinationVbidry modes, it is possible to find only
particular values); verifying (7.41). The associatédl eigenvectow; are then derived by:

([0] - a2([T] - (W1)) v = 0 (7.42)

Finally, it appears that solving (7.41) providesestimation of the vibration frequencies of an
immerged plate. As stated by Shames and Dym [1B&ke approximations always tend to
overestimate the real frequencies of the structowe,it is possible to get better values by
increasing the numbeM of admissible functions considered in (7.35). Aiddially, the
solutions of (7.42) lead to the coefficients that may be introduced in (7.35) to get the wet
mode shapes.

It is worth noting that the dry modés(y, z) are orthogonal. As a consequence, matriogs

and[T] are diagonal, but this is unfortunately not theector the matrix] which is simply
symmetric.

7.3.2.2. Energy approach

In section 7.3.2.1, the Rayleigh-Ritz method wasontuced in a purely mathematical way,
but it is also possible to consider this approach energy manner. Doing so is more common
and will be useful for further developments onfstied plates. Let us start by recalling some

basic results for elastic plates in plane-streagesBy definition, the potential energy (or
the strain energy) of a such structure is given by:

1
- Eff (nyeyy t 072622 t ZUyZEyz)dde (7.43)
A

Considering equations (7.11) and (7.12) relatifjgande;; to the out-of-plane displacements
u(y, z, t), developing (7.43) leads to the following clask&gression:

w)’ 0%ud?u 924 \ 2
=_ff << > <622> + 2v ayza +2(1 _V)<ayaz> )dydz (7.44)
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which is widely used in the literature (see refeemn[90], [100], [101] and [132], amongst
others). For the particular case of modal displaa@s) sincej;(y, z) is an eigenfunction
minimizing the Rayleigh quotient andy, z,t) = A;(y, z) sin(Q;t), introducing this relation
in (7.44) gives:

924, 924;\’ 924, 92A, 924, \’
__51n2(Q t)ff (( > <622> + 2v 3yZ 022 +2(1 —v)(a P > >dydz (7.45)

As a second step, a similar procedure can now Ilmeved to get the total kinetic ener@yof
the plate. Doing so, it can be established That given by:

1 t
= Ejf ptyu?(y,z,t) dydz = pz—pﬂlz cos2(Q;t) ff A2 (y, z)dydz (7.46)
4 A

Finally, as the plate is in contact with a fluidlaat step is to evaluate the potentilof the
hydrodynamic pressure (7.25) acting on the vibgasitmucture. As no rational development of
this potential has been found in the literatureyandetails about its derivation are given in
section D.1.3 of Appendix D.1. It is found that:

2

400 +00 hs
W = Z Z Cmn ( f f u(y, z,t) cos(any) cos(Vmz) dydz) (7.47)

n=1m=

which is very similar to the definition of a kinetenergy. For this reasc}} may be seen as a
kind of energy associated to the water put in nmokig the own vibrations of the plate [137].
Once again, for modal displacements, one gets:

+00 +o00
QZ cosZ(Q t)
D LISy (7.48)
n=1m=0

Considering now the amplitudes of total kinetic atihin energies, equations (7.45), (7.46)
and (7.48) show that:

+00 +00 02
max(7 — W) = 7<pt || #onmayaz - Z Emn l%l%) =Sain@) (749

n=1m=

{u}_Dﬁ 924, 2+ 924, 2+2 azAiaZAi”(l ) 924,
maxtty =7 dy? 0z2 v dy? 0z? v d0yoz
A

>2> dydz (7.50)

If A;(y,z) satisfies the boundary conditions of the plateig¢vhs the case in the present
situation), it may be shown that expression (7¢&0) be simplified to get:

(Al £z ()

: (7.51)

mtax{u} =
Unfortunately, a complete mathematical proof ob{¥.has not been in the literature. Since

the entire demonstration of this statement is gfastidious, it will not be provided as an
appendix and the result will be simply admitted.tAsre is no dissipation in the system, the
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maximum kinetic energy may be equated to the mamxirstrain energy, which leads to the
following relations:

_ af (A1 £5(8) _{A]£5(8)
mgjlx{’u} = m::iX{fT -Wl e 7(A1|L1(Ai)) =— 0?2 = BB

(7.52)
As a conclusion, the energy approach detailed ld@/e shows that if;(y,z) is an
eigenfunction which minimizes the Rayleigh quotjethtis latter is nothing else than the
eigenvalue)? associated ta; (y, z).

The mathematical procedure detailed in section27.3to get the eigenvalues and
eigenfunctions may now be revisited in terms ofrgpeparameters. Indeed, for a given
function A;(y, z) satisfying the boundary conditions, one may fegaluate the associated
maximal kinetic and strain energies. These onesbeibdenoted by", W andU, even if their
expressions bellow are not formally similar to #hastroduced previously. From (7.49) and
(7.50), let us now rewrite:

+00 400

P pﬁAz(y’Z)dde_z Z mn 10 O (7.53)

n=1m=

~ ﬁ aZA GZAL- 2+2 924, 92A, ) 924,
0z% Vﬁyz 0z? v 0yoz

>2> dydz (7.54)

With these new definitions of, W andU, the Rayleigh quotient may now be expressed as
the ratio between the maximal kinetic and potertredrgies:

TF-w

R =
u

(7.55)

and the next step is then to find the particulgressions\;(y, z) for which R is minimized.
This can be achieved by following a procedure simib the one given by equations (7.35),
(7.41) and (7.42). Doing so, it is worth notingttha

M M 1 M
D il Wdve U=5) >

j=1k=1 j=1

T-W=

Ms

Nl»—\

]kvkl (756)

&
1l
=

whereTj,., Wy, andUj, are still given by (7.38) and (7.39). Alternatiyebne may also resort
to the following expression:

2 a9y Tazz 9z Va2 TV oy a2 T 20 _V)a 32 3yd

0%5: 0268 026: 9265 025 026 026, 02 5 25- 026
f( j 9Ok | 979 0 Ok k k k)dA (7.57)

to evaluateﬁjk. This latter is directly obtained by developingiation (7.54). It is shown to
be strictly similar to (7.39) because of the egyatated in (7.51), but this is only true as long
as the functions; (y, z) satisfy the boundary conditions. The approach oeetl here above
is commonly encountered in the literature and Wwél extensively used later when dealing
with lock gates. Nevertheless, before going anthrrin the analysis of immerged plates, it
is probably useful to perform a numerical validatiof all the previous analytical
developments.
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7.3.3. Numerical validation

In order to check the validity of the present prhae, the analytical solutions can be
compared to those obtained numerically. To do sas iproposed here to consider the
reservoir depicted on Figure 7.5. The flexible walte slightly rectangular, with a widthof

7m and a height of 6 m. The thickness,, may take three different values, as depicted on
Figure 7.5. The reservoir has a total lengthf 15 m and is filled up to a level &.5 or 5 m.
Other reservoirs with different geometrical promertwere also used for the validation
process, but the obtained results are not presemeeel to avoid any redundancy. The
conclusions found for these other cases are simoildre ones summarized here.

As it was already discussed before, the thickneslsesen for the flexible walls may appear
to be quite large. Nevertheless, one should aMeags in mind that the ratidgt, andh/t,
have to be kept sufficiently high to limit the effeof shearing forces. Moreover, if the plates
were too thin, it is to fear that the out-of-pladisplacements would be such that the structure
would exhibit a membrane behavior. The classicatiioff bending theory used in the
analytical approach would be irrelevant for thisigiion.

Additionally, some comments need to be done abbetdimensions considered for this
reservoir, which are definitely not similar to tkeosf a real lock chamber. Nevertheless, the
geometrical properties have been restricted dwernaputational limitations when performing
finite element simulations. Indeed, modeling thadiwith solid elements quickly leads to
large models, for which a modal analysis requirg@eniunately a lot of numerical capacities.

Figure 7.5. Main characteristics of the reservoir used for validation

The pre-process@ATRAN is first used to realize a finite element modethad reservoir. The
flexible walls are modeled by using isoparametu@adyilateralcQUAD shell elements with
four grid points, while hexahedraHeExA solid elements with eight grid points are used for
the fluid*2. The material parameters are given in Table ®del$roperties are taken for the
structure, which is assumed to have a linear el&sthavior defined by a Young modulkis
and a Poisson coefficiemt The fluid has the characteristics of water. ltasexdensity is
denoted by, while the bulk modulus and speed of sound argecs/ely identified byK

andcy.

12 See the Nastran reference manual [114] for additimformation on these elements.
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The finite element softwar@lASTRAN is then used to perform a modal analysis of the
reservoir. Doing so provides a numerical estimatibthe wet frequencies and mode shapes
characterizing the flexible walls. In order to ckebe validity of the present analytical
developments, it is the aim of this section to carepthe solutions obtained by the Rayleigh-
Ritz method to those given IDASTRAN.

Material properties of the walls Material properties of the fluid
Young modulus E 210 GPa Bulk modulus K 2.25GPa
Poisson coefficient | v 0.3 Speed of sound | ¢ 1500 m/s
Mass density p | 7850 kg/m® | Mass density pr | 1000 kg/m3

Table 7.1. Material properties for the flexible walls and for the fluid

7.3.3.1. Comparison of the frequencies

As a first validation step, comparisons are fistfprmed for the wet frequencies obtained for
the reservoir. The results for the first seven nsoae reported in Table 7.2 and Table 7.3,
considering a water level 8f5 m or 5 m respectively. For the different thickness valugs (
10 or 20 cm), the dry frequencies are first given, then theotktical wet frequencies are
compared to the ones obtained N®WSTRAN. For each mode, the relative error is computed
from the formula:

fr = fwl %) (7.58)
fn

wheref; andfy are respectively the theoretical amsTRAN wet frequencies. The agreement
between the numerical and theoretical results imdoto be satisfactory, as the maximal
discrepancy does not exceéds. For the first mode, the agreement is even betigh a
maximal error ofl %.

- Dry frequencies —— Wet frequencies (3.5 m) —e— Wet frequencies (5 m)
25
4'
20 —

=
=
=

\

Frequency (Hz)
U=y
(@)

=
; =

0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0,4
Thickness t, (m)

Figure 7.6. Evolution of the theoretical dry and wet frequencies (first mode) with the thickness for
reservoir 1

Figure 7.6 shows the evolution of the fundamentglasthd wet eigenfrequencies for different
values of the thicknegs. For the dry solutions, it may be analytically simathat the curve is
linear, but this is not true for the wet solutioksr large values of,, the wet curves tends to
increase linearly with the thickness, but thisas the case if,, is becoming smaller.
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Water level: h, = 3.5m

Made Thickness: t, =5 cm Thickness: t, = 10 cm Thickness: t, = 20 cm
number P p p
Dry Wet NASTRAN Error Dry Wet NASTRAN Error Dry Wet NASTRAN Error
(Hz) (Hz) (Hz) (%) (Hz) (Hz) (Hz) (%) (Hz) (Hz) (Hz) (%)
1 3.13 2.40 241 0.23 6.25 5.44 5.43 0.22 12.51 11.66 11.55 0.94
2 8.56 5.55 5.52 0.61 17.11 12.50 12.36 1.12 34.22 27.96 27.30 2.43
3 10.65 7.76 7.80 0.60 21.30 18.27 18.27 0.01 42.59 39.78 39.42 0.92
4 16.70 12.44 12.35 0.76 33.41 26.52 26.12 1.53 66.82 57.25 55.37 3.40
5 20.34 14.63 14.65 0.14 40.68 32.79 32.37 1.28 81.36 70.92 68.08 417
6 23.13 16.63 16.80 1.03 46.25 39.44 39.44 0.01 92.51 86.62 85.15 1.73
7 28.80 21.68 21.52 0.74 57.61 48.37 47.20 2.49 115.22 103.81 100.85 2.94
1.03 2.49 417

Table 7.2. Comparison between the dry frequencies and the wet frequencies calculated theoretically or by nastran for reservoir 1, with a water height of 3.5 m

Water level: h, = 5m

Made Thickness: t, =5 cm Thickness: t, = 10 cm Thickness: t, = 20 cm
number P p p
Dry Wet NASTRAN Error Dry Wet NASTRAN Error Dry Wet NASTRAN Error
(Hz) (Hz) (Hz) (%) (Hz) (Hz) (Hz) (%) (Hz) (Hz) (Hz) (%)
1 3.13 1.69 1.68 0.18 6.25 4.23 4.21 0.41 12.51 9.96 9.86 1.05
2 8.56 5.13 5.13 0.06 17.11 11.78 11.65 1.09 34.22 26.41 25.65 2.95
3 10.65 6.18 6.22 0.70 21.30 15.33 15.36 0.19 42.59 35.59 35.28 0.90
4 16.70 11.24 11.27 0.24 33.41 25.57 25.30 1.06 66.82 56.05 54.23 3.37
5 20.34 12.71 12.65 0.49 40.68 29.60 29.12 1.65 81.36 66.74 63.60 4.93
6 23.13 14.39 14.58 1.31 46.25 35.02 35.12 0.31 92.51 79.83 79.71 0.15
7 28.80 19.39 19.16 1.19 57.61 44.19 43.00 2.76 115.22 98.04 92.56 5.92
1.31 2.76 5.92

Table 7.3. Comparison between the dry frequencies and the wet frequencies calculated theoretically or by nastran for reservoir 1, with a water height of 5 m
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7.3.3.2. Comparison of the mode shapes

As a second validation step, comparisons are novrmpeed for the wet mode shapes. It is
commonly accepted that the approximated solutienwed by the Rayleigh-Ritz method are
better for the eigenfrequencies than for the eigelen. As a consequence, the present
agreement between the theoretical and numericatiso$ is not expected to be as good as
for the frequencies.

The two first mode shapes are plotted on Figureal® Figure 7.10 for a water levig) of

3.5 or 5m respectively. These figures correspond to a tlaskrof10 cm. For each mode,
two different illustrations are proposed. The fioste is a plot of the profile in the vertical
planez = [/2 (planem; on Figure 7.8), while the second one correspondise profile in the
horizontal planey = h (planem, on Figure 7.8). For the horizontal profile, itaear that a
sine half-wave seems to be a good approximationc@uwing the vertical one, the agreement
appears to be satisfactory, even if some discrgpanray be observed near the top of the gate
where water is not present.

1

T 09
= 7
S 08 7
Z 07 Z /
2 o6 g 4
g 0'5 g i Wet (5 cm)
- ) s
g 0,4 // —— Wet (10 cm)
=0 =
g 02 Wet (40 cm)
5 01 —
Z )

0 .

o o1 02 03 04 05 06 07 08 09 1

Figure 7.7. Evolution of the vertical profile in z = 1/2 (first mode shape) with the thickness of reservoir 1
for hs = 3.5 m; the wet curves are coming closer to the dry one as the thickness is increasing

Figure 7.8. Horizontal and vertical profile

location

S

hy=3.5m

e Thickness Maximal gap Location

5cm 0.164 y/h =04

10 cm 0.094 y/h =04

20 cm 0.049 y/h =04

Ay 30cm 0.034 y/h =04

hy;=5m
h /\ o s. '

=z X ickness Maximal gap Location
SETS 5cm 0.169 y/h = 0.44
10 cm 0.127 y/h = 0.44
A/I/; 20 cm 0.084 y/h = 0.44
30cm 0.063 y/h = 0.44

Table 7.4. Maximal amplification and corresponding

location for the first mode shape of reservoir 1

Figure 7.7 shows the evolution of the vertical peobf the first mode shape for different
values of the thickness. For increasing values,pthe wet curves are coming closer to the
dry one, which shows that the fluid-structure iat#ion is progressively reduced.

173



(a) First mode shape - Vertical profile in z = /2

(b) First mode shape - Horizontal profileiny = H
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Figure 7.9. Comparison between the dry and wet mode shapes (calculated theoretically or by NASTRAN) for reservoir 1, with a water height of 3.5 m
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(a) First mode shape - Vertical profile in z = /2

(b) First mode shape - Horizontal profileiny = H

——Drymode ——Wetmode —e—Nastran ——Drymode ——Wetmode —e—Nastran
1 o 1 .
00 = | 5 o9 A e
/ ) N ]
~ 08 £ | 5 o8 s N
07 g 207
/ =3 7] / \
g g 0,6 _E" < 0,6
//'// 05 S § 0,5 / \
> g ) L g U
,/// 03 T 03
" 02 & | £ o2
> ] TU Tﬂ ]
% o1 £ | E o1 /
0 = Z 0
0 6t o0z 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09
Normalized modal displacement Normalized horizontal position z/I
(c) Second mode shape - Vertical profilein z = /2 (d) Second mode shape - Horizontal profileiny = H
——Drymode ——Wetmode —e—Nastran ——Drymode ——Wetmode —e—Nastran
1 1
+ v \
— 08 3 5 08
Y T o a
e T~ 06 = < 0,6
™~ o / \
N 05 & -‘.; 0,5 / \
—
\ ) 04 ¢ £ 04
R4 03 % | §o3
02 3 s 0,2
//// 01 £ =E- 0,1 /
= L5 o Y
o = | F o
-1 -08 -06 -04 -02 0 02 04 06 08 01 02 63 04 05 06 07 08 09

Normalized modal displacement

Normalized horizontal position z/I

Figure 7.10. Comparison between the dry and wet mode shapes (calculated theoretically or by NASTRAN) for reservoir 1, with a water height of 5 m
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Table 7.4 also provides additional information be first wet mode shape. This table shows
the maximal absolute gap between the dry and wétakeprofiles, denoted b§(y,[/2) and
A(y, 1/2) respectively. This gap is defined as follows:

max{S(y,1/2) —A(y,l/2)} ; O0<y<h (7.59)

It is evident from Table 7.4 that the deviatioraiso progressively reduced as the thickness
increases. On the contrary, it can be seen thatdtieal locationy where this maximal gap
may be measured does not change wjthFor hy = 3.5m, it is equal t00.4h, while it is
equal t00.44h for hy = 5m. As expected, this shows that the point of theicar profile
where the fluid-structure interaction is maximunpisgressively elevating as the water level
is also getting higher.

7.3.3.3. Additional investigations

The comparisons performed here above for this veseshow that the agreement between
the analytical and numerical results is satisfactdris tends to validate the theoretical
derivation of the vibration properties for an imged plate by using the Rayleigh-Ritz
method. The present analytical approach is alsmborated by other comparisons made with
different reservoirs. From this validation processne additional results can be emphasized.
They are briefly summarized hereafter but a motaildel parametric study is available in
section D.1.2 of Appendix D.1. Regarding the pldsiekness, the two following particular
points may be highlighted:

 If the structure is not in contact with water, t@mresponding natural dry frequencies of
vibration are directly proportional to the thickeeg of the plate. However, this statement
Is not exact while considering an immerged structdiis is particularly true for small
values of the thickness, for which a strong noednity may appear. On the contrary, the
relation becomes nearly lineartjf is growing.

« The relative difference between the dry and weemiggquencies tends to reduce if the
thickness of the plate increases. This simply mehatthe fluid-structure interaction is
more important for thin plate, as it could be expdc
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Figure 7.11. Evolution of the relative difference between the dry and wet frequencies with the thickness
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This last assertion may be illustrated by considgthe relative difference between the dry
and wet fundamental frequencies for the two wateels considered here above. This one is
simply defined by the classical relation:

fo—fi (%) (7.60)

fo

where f, and f; denote the fundamental frequencies of vibratiantie dry and immerged
configurations respectively. The results are ptbtb@ Figure 7.11, from which it is evident
that the reduction becomes more and more impodsuthe thickness is getting smaller. On
the contrary, this picture also shows that thecefté the surrounding water tends to disappear
if the plate is thicker. This is particularly tréer the lowest value of the water levél, (=
3.5m).

Apart from the influence of the plate thicknessisitalso interesting to know how the other
geometrical parameters act on the fluid-structateraction. For a given plate thickness, the
main conclusions of the detailed investigation enésd in section D.1.2 of Appendix D.1 can
be summarized as follows:

* As expected, the fluid-structure interaction is @ more important if the water levig
is close to the reservoir height On the contrary, neglecting the surrounding watea
modal analysis is therefore only valichif is very small.

» If the ratiol/L does not excee@l1 (which is usually the case for classical lock chams),
then it can be stated that the fluid-structureradBon is more important if thie/[ ratio is
large (i.e. for high reservoirs).

» If the ratiol/L does not exceedl1, this latter is found to have very little influenon the
modal properties of an immerged plate.

* Finally, if the lengthL of the reservoir is at least equal 34, it is observed that the
eigenvalues and the mode shapes do not dependsqratameter anymore.

All the previous conclusions are quite interestiogyet a quantitative overview of the results
expected during a modal analysis. Furthermore, thegy also have some practical
consequences, particularly for numerical simulatjdout this last point will be discussed in
more details in section 7.4.
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7.4. Dynamic analysis of flexible reservoirs

The modal analysis of flexible walls immerged intevaperformed in the previous chapter
provides a global insight on the way such strugtuespond to a seismic excitation. The next
step is now to consider the situation describesention 7.1, where a reservoir is submitted to
an earthquake having a longitudinal acceleratiompmment denoted by (t). The two
remaining vertical and transversal componéift§ andZ(t) acting along the axgsandz of
Figure 7.1 respectively will not be considered an Of course, all the hypotheses listed in
7.2 regarding the plate properties are still hadere.

7.4.1. Equilibrium equation

The direct form of the equilibrium equation givam (7.14) and the boundary conditions
(7.15), (7.16) and (7.17) may also be used to sthdyforced vibrations of an immerged
plate, but two modifications are now required. Tingt one concerns the inertial forces: in
addition to the proper displacements of the stmeat(y, z, t), one should also account for the
motion X (t) of the support, which results in supplementarytiabforcesptp)'('(t). The
second one is introduced to avoid reasoning phenaji®y considering that damping forces
fa(y,z,t) are also present in the model. With these twoettions, (7.14) becomes:

. . o*u o*u  0*u
pt,(ii(y,z,t) + X)) + fa(y, 2z, t) + D 2y +2 372922 +t-3)= —p(y,z,t) (7.61)

In order to characterize a bit further the tefgp(y,z,t), these additional forces will be
assumed to be directly related to the velocity, z, t). They may be seen as having two
different contributions: a first one coming frometimass of the structure and a second one
coming from its stiffness. The mass-proportionahgang force is simply written as:

apt,i(y, z,t) (7.62)

wherept, is the surface mass of the plate ants a constant. On the other hand, stiffness
proportional damping is known to produce additiom&¢rnal stresses that are related to the
velocityu(y, z, t) by the classical formulae:

BE ' BEx (0%u 8%
B =T Tvea) =TT G TV g
BE ' BEx (0%u 8%
O'Zdz :m(622+1/€yy) = —m ﬁ+va_}12 (763)
. BE . BEx 0%
AR IV 1—v20yoz

whereg,,,, €,, andé,,, are the strain rateg, is the Young modulus an@l is a constant. By
applying a development similar to the one leadioghe classical Kirchhoff equilibrium
equation (7.14), the stresses given in (7.63) caredsily transformed into the following
stiffness-proportional internal damping force:

otu ot 9'u
B0 (3554 25,752 32 (7.64)
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whereD is still the plate flexional rigidity. Finally, d¢laering (7.62) and (7.64) in (7.61) leads
to the dynamic equation characterizing the forabdations of an immerged plate:

(i + X) + apt it + D a4u+ 20%1 +a4u D 64u+ 20%u +64u 3 7 65
plpltt aptyt +f dy* 0y20z2 0z* dy*  0y20z2  dz*) p (7.65)

where it is worth remembering that the total hygraaimic pressur@(y, z, t) is the sum of
the rigid and flexible impulsive contributions resfively given by (7.7) and (7.8). So far, the
two parameterst and f are still undetermined, but they will be fixeddaton. They are
known as the Rayleigh damping coefficients.

7.4.2. Virtual work principle

An analytical way to study the forced vibrationsaof immerged plate is to apply the virtual
work principle, which simply states that a necegsard sufficient condition for equilibrium
Is to equate the external and internal virtual woffier any kinematically compatible
displacement field. Consequently, to express théibgum of the plate, it is first required to
consider a compatible virtual fielu(y, z,t), dv(y, z, t) andéw(y, z, t) acting on the plate.
Under the hypothesis of preponderant out-of-plasplacements, one can write:

aou aéu
Sv(y,z,t) = —xW ;0 ow(y,zt) = X (7.66)
which is consistent with (7.10). Furthermore, beeawf the developments performed in
section 7.2, it seems reasonable to express tlatmbtionsu(y,z,t) exhibited by the
immerged structure during the seismic excitatianl@sed on the wet mode shapes. In other
words, it is postulated that:

N N
W50 =) GO 5 @D = Y 6qOhG,2) (7.67)
j=1 k=1

whereN is the number of wet modés(y, z) that are used for developingy, z, t). At this
stage, the modal amplitudgs(t) anddq,(t) are still unknown but will be determined by
applying the virtual work principle. To do so, les start by developing the mathematical
expressions of the virtual work performed by eathhe different forces involved in the
present problem. Rearranging (7.65) leads to:

D a4u+ 20"u +a4u = t,(it + X) + apt,i + a4u+ 20" +a4u + 7.68
dy*  0y20z2  dz%) Pyt aptplt +§ oy*  0y2%0z2 0z* p| (7.68)

which may be identified as the equilibrium equatimina plate submitted to an external
resulting horizontal actiofi.,.: (v, z, t) given by the right hand side:

o*tu  20*u  9*u
+p (7.69)

fext,2,t) = pty (it + X) + aptyii + f <ay4 + 9y2022 t o

This expression is the sum of the pressure, damgidgnertial forces. It is important to bear
in mind that, by essence, these forces are alwpgesed to the displacement§y, z,t), as
recalled on Figure 7.12. Therefore, it is not sigipg that the work performed by these
actions will always be affected by a minus sign.
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<+ pii(y,2,8) + ptpX(t) ]
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«~— p(,zt)

Figure 7.12. Orientation of the resulting external force acting on the plate

The left hand side of equation (7.68) correspormd¢hée internal forceg;,:(v,z,t). They
always produce a positive work, that is sometineésrred to as an internal energy.

7.4.2.1. Internal virtual work

In a more conventional approach of the virtual wprikciple, the contribution of the internal
forces are seen as a virtual energy. For a givenalidisplacement field, it is possible to
derive the associated virtual strain ten$ey; and the subsequent internal energy:

h 1

Wine = f J(ayy&gyy +0,,0¢,, + ZUyZ(Seyz)dydz (7.70)
00

whereg;; is the stress tensor. If we account for (7.11) @hii2), it is shown by Shames and
Dym [137] that developing (7.70) leads to the wydeted expression f@W;,,;:

(7.71)

J‘ 62u626u+62u626u+ 62u626u+ 0%5ud®u 2u 0%6u
3y? 9yZ 922 922 " Vay2 922 ' ayz a2 T a 9z 0ydz

Nevertheless, another way will be adopted hereveduate the contribution of the internal
forces. Indeed, it can be stated that the virtuatkwperformed byf;,,: (v, z,t) during any
virtual displacemenu(y, z, t) is simply:

h 1

Wint =Jffint(y,z, t)ou(y, z, t)dydz (7.72)
00

The left hand side of (7.68) shows that this lagiadion can be developed in the following
more explicit (but quite unusual) form:

h 1
(34u
§Wipe = D f f ayz 4 ) oun 2, t)dydz (7.73)
00

In fact, it may be demonstrated that (7.71) and2Q)/are strictly identical, provided that the
functionsu(y, z,t) anddsu(y, z, t) both satisfies the plate boundary conditions esgeé in
(7.15) to (7.17), which should be the case as tligsglacement fields are kinematically
admissible. As a last step, introducing the mo@abdhposition (7.67) in (7.73) leads to:

N voob a4A 204, %A, al al
Wine = Z 6qy qu J f D< ayzazz + It )Akdydz = ;6qk21qujk (7.74)
00 = 7=

j=1
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where Uy, is directly constructed by using the wet mode sbajs it will be detailed later,
Ujx, may also be expressed as a function of the dryesofivibration.

7.4.2.2. External virtual work

Developing the second part of the virtual work tleeo, the work associated to the external
forces during an horizontal virtual displaceménty, z, t) has now to be evaluated. This one
is simply written as:

h 1
Wit = — j f fort 012, )8U(y, 2, t)dydz (7.75)
00

and subsequently, the contributions coming fronttadl terms involved in the expression of
fext (¥, 2,t) given in (7.69) have to be examined. This tagkuise fastidious, so we will only
provide here a short summary of the final reswltéained after incorporating the modal form
(7.67) in (7.75). It can be proved that:

» For the inertial forces corresponding to the fiestm of (7.69), the associated virtual work

is as follows:
N N h 1 h 1
k=1 0 0 00

j=1

» For the damping forces given by the second and teims in equation (7.69), the virtual
work is written as:

N h 1
a4A 204, 0%
lqu Zlq] j j aptydy + B0 (G + e+ 52 ) Jawdvdz | (777)
= J= 00

Concerning the total hydrodynamic pressure fordeclvis the last term in (7.69), both the
rigid and flexible contributions denoted wy(y,t) andp,(y, z t) respectively have to be

considered. Their mathematical expressions arengivesection 7.2 by equations (7.7) and
(7.8). During any kinematically admissible displaentdu(y, z,t), these forces are always

opposed to the motion of the plate and will themefproduce a negative virtual work.

Moreover, it is worth noting that the pressure a$ acting on the whole surface of the plate,
so the integration has only to be conducted onwtbiearea of the structure. Accounting for
these remarks, the virtual work associateg (@, t) andps(y, z, t) is given by:

hs 1

—f f(pr(y, t) +pr(v,2,t))u(y, z, t)dydz (7.78)
00

Introducing the modal decomposition in the mathérahtexpressions ob,.(y,t) and
pr(¥,2,t) givenin (7.7) and (7.8), one can develop (7.i#&he following form:

l 400 oo 4o
Yoy coshBny) L ) ()
bf <n:1ﬂ121L Cosh(ﬁnhs) 2 Akd)’dZ + 2 CI] 2 Z Cmnlmnlmn (7.79)

S

S

k=1 0

n=1m=0
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where the coefficienf,, ¢, @, andy,, have the definitions listed in section 7.2. The

functlonsl(’) andl( ) were already encountered in (7.28). Finally, gatige(7.76), (7.77)

and (7. 79) the external virtual work associaed,t;(y, z,t) can be expressed in a more
compact form:

N N N
Wee == ) 8a (Z (T = Wie) + ) d;(aly + BU) - VkX') (7.80)
k=1 j=1 =1

whereUj, has the same definition than in section 7.4.B,1.W;,andV, are directly extracted
from (7.76), (7.77) and (7.79):

‘o +00 +00
e pt”J f 80, Dy, 2)dydz W= > cnaliiili (7.81)
00 n=1m=0
hs 1 +OO4 h(ﬁ ) L Wl
) Lo - 7.82
_OJ J(n B2ZL cosh(B,hs) 2) A dydz tpojbfAk(y,Z)dydz (7.82)

7.4.2.3. Global equilibrium equation

After having briefly developed the analytical exgg®ns of the internal and external virtual
works §W;,,; andéW,,;, in accordance with the theorem, (7.74) and (7c8@) be equated to
get the global equilibrium equation:

N N N N
> sai| Y (T = W) + Y a(aTi+ BU) + Y aUp—Viek | =0 (7.83)
k=1 =1 = =

As the displacement fieldu(y, z,t) is arbitrary, this equation has to be satisfied doy
particular values of th& coefficients§q,. Consequently, the only way to satisfy (7.83)ais t
verify the following equation fok = 1, ..., N:

N N N
D (T = W) + D (@l + BU) + ) 4V = Viek (7.84)
j=1 j=1 j=1

Denoting by[T], [W], [U] andV the matrices and vector associatedjjg Wjy, Uj, andV;
respectively, (7.84) can be rewritten as:

(IT1 = WD@(®) + (a[T] + BIUDG(t) + [Ulq(t) = V() (7.85)

wherea[T] + B[U] can be recognized as the classical Rayleigh daypatrix. Let us now
give some particular comments on the matrices wrawlin (7.85). By carefully examining
equations (7.76) to (7.79), it is possible to idgrihe differential operator§; and.L, already
mentioned in (7.31) and (7.32). In fact:

Tie = Wi = (8]£180)) 5 Ui = (85]£2(80) (7.86)
Even if this is quite fastidious, it can be shovmattthe wet modes are orthogonal to the
operatorsL; and £,. In other words, the internal products betweersé¢hmodes and the
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corresponding differential operatof; or L, have to satisfy the following traditional
perpendicularity property:

(8j]£:80) = (4j|£.(0)) =0 if j#k (7.87)

which means that the wet mode shapes are orthogwittad matrice$T'] — [W] and[U], as it
could be expected. Consequently, these matricesliagonal. Nevertheless, this is not the
case for the damping matrix, because the mass giopal damping terna[T] is not reputed

to have the same property. This due to the fatttbeawet mode shapes are not perpendicular
to each othef§ and are not orthogonal to the matfiX as they verify this property with
[T] — [W]. Therefore, theV equations given in (7.85) may not be decoupledfrana to be
solved as a whole, by applying the Newmark metloydekample. After having determined
the modal amplitudeg, it is possible to rebuild the displacement by6{}.and also the
hydrodynamic pressure with (7.7) and (7.8).

As a final remark, it is worth mentioning that thmatrices[T], [W] and[U] can be directly
calculated with help ofT], [W] and[U] introduced during the modal analysis:

These last formulae may be directly justified byngsequation (7.35) relating the dry and wet
modes.

7.4.3. Numerical validation

To corroborate the procedure exposed previouslg, dhalytical solutions obtained by
applying the virtual work principle can be compatedthose provided by finite element
simulations. It is proposed here to focus agaithensame reservoir than the one considered
in section 7.3.3 (Figure 7.5). The material anddflproperties are still those listed in Table
7.1. This reservoir is submitted to a seism havhng longitudinal acceleration component
X (¢t) depicted on Figure 7.13 (synthetic accelerogram).
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Figure 7.13. Longitudinal component of the seismic acceleration

13t is recalled that, as mentioned by Delhez [46§ eigenmodes found by solving a generalized e@janas
problem are linearly independent, but not necdgsarihogonal to each others. They are only ortmadgdo the
matrices defining the eigenvalues problem.
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Figure 7.14. Fourier transform of the longitudinal seismic acceleration

The Fourier transform of this signal is represerdedrigure 7.14. It shows that the main part
of the seismic excitation is located in the frequerange going approximately froinHz to
15 Hz.

7.4.3.1. Numerical model

The numerical analysis is performed with the finglement softwara.s-DYNA. Before
presenting the results, some indications are dirstn on the model itself. To account for the
fluid-structure interaction, it is required to repent these two entities separately, as detailed
hereafter:

* The flexible walls are modeled with Belytschko-Tsslyell elements [66] of uniform
thicknesst,,. They have a linear elastic behavior, charactérizg a mass density, a
Young modulus’ and a Poisson rate The stress and strain tensors are related aogprdi
to the classical Hooke's law.

The mesh of the solid domain is quite coarse, &ittmore or less regular size 20 x
20 cm for the shell elements. This choice is due tortbeessity of limiting the size of the
model. Nevertheless, simulations on more refinedetsoowith a meshing & x 5 cm or
10 x 10 cm were also performed, and the results do not shguoitant discrepancies with
the present ones.

* The fluid is modeled with constant stress solidreats [66] affected by a particular
material law MAT_ELASTIC_FLUID). The liquid is seen as an elastic medium withassn
densityp; and a bulk moduluky, for which the stress and strain rates are relayed

D = Oxx = Oyy = 0zz = Kp(€xx + €y + €5,)
(7.89)

Oxy = Oxz = 0y, =0

wherep is the pressure inside the solid elements. As shoy(7.89), there is no shearing
with this material. This is coherent with the belbawf water.

The mesh of the fluid domain is also regular, wath approximate size df9 x 19 x
19 cm for the solid elements (as it will be discussdeérlait is necessary to avoid having
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similar mesh sizes on both the solid and fluid dios)a Here again, using more refined
meshes do not provide any additional interest.

The two previous separated entities representiagviditer and the structure do not share any
node in common, which means that the fluid nodesdistinct from the solid ones at the
boundary between the two domains. TRe®YNA penalty contact algorithm [66] is then used
to simulate the interaction between the plate &edstirrounding liquid. This allows the fluid
to slide on the flexible walls without friction, byrevents it from passing through the
structure.

Nevertheless, in order to provide good contact itmmd, it necessary to avoid having fluid
nodes exactly facing the solid ones, as represameHBigure 7.15b (this condition may be
easily fulfilled by imposing different mesh sizes the two domains). Moreover, to prohibit
any initial penetration, it is also needed to actdar the plating thickness, by imposing an
initial gap oft,/2 + €, wheree is a very small distance dfmm for example. All these
geometrical dispositions are summarized on Figui&.7f they are not carefully followed,
then it is to fear that leakage may appear duhegstmulation.

Let us now give some comments on the boundary tiondi Concerning the fluid domain,
these ones are as follows:

* In the horizontal planegs = 0, the water is always in contact with the bottom tlodé
reservoir. To account for this situation, it isweqd to prohibit the vertical motions along
the y axis for all the fluid nodes located in this plak®wever, the displacements along
the x andz axes remain free, which corresponds to the pdgibor the liquid to slide
(without friction) on the bottom.

* In the vertical planeg = 0 andz = [, the contact with the rigid walls may be modeled
similarly, by preventing any horizontal motion adptinez axis. Nevertheless, all the nodes
positioned there may slide (without friction) orettvalls and are therefore free to move
along thex andy axes.

* In the vertical planex = 0 andx = L, there is no need to impose particular boundary
conditions as the interaction with the plate isexed by the contact algorithm.

* In the horizontal plang = hq, it is not necessary to provide any kind of spematriction
as this plane corresponds to the free surface.id&@ovhat the numerical calculation runs
correctly, the pressure there should always beedloszero without having to impose any
constraint.

All the previous conditions are kept constant tigtoaut the entire simulation. This is not the
case for the ones affecting the structure, bec#usefirst necessary to impose the gravity
forces before considering the seismic input. Tlas to be done to consistently model the
action of the hydrostatic pressure.

Consequently, during this first phase of loadirlyttee nodes located on the three supported
edges of the plates (see the thick lines on Figut8) are prevented from translating along
the x, y andz axes. Nevertheless, once the hydrostatic pressugstablished, the seismic
acceleration may be applied to these nodes, wieighires to release the constraint imposed
on theirx translational degree of freedom.
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(a) Global disposition (b) Boundary

A

®t,/2+¢

Figure 7.15. Geometrical requirements of the finite element model

After having briefly described the model that wide used to perform the numerical
validations, particular results will now be presshfor the reservoir depicted on Figure 7.5
and having the properties listed in Table 7.1.

7.4.3.2. Dynamic analysis

Even though it is not of primary concern, the cafea rigid reservoir has first been
investigated. For such a situation, some well-knawalytical solutions are available, such as
the Westergaard formula [166]. The goal of suchapproach is to consolidate the finite
element model detailed above by making sure trehthmerical solutions are sticking to the
theoretical predictions for this simple exampleeTdetailed results are reported in section
D.2.1 of Appendix D.2, from which it transpires tliae agreement is quite satisfactory.

The analytical predictions derived from the virtwadrk principle will now be confronted to
the numerical ones. In this section, the preseamtatiill be limited to the case of the reservoir
depicted on Figure 7.5, for a thicknggsof 20 cm and a water levet, of 3.5 m or 5 m. Of
course, many other additional simulations were quaréd, using different geometrical
configurations than the one of Figure 7.5. The amions found in all cases were very
similar to those presented here, so there is nad neeconsider them extensively in this
section.

Regarding the structural damping, it is appliedLefbYNA through the classical Rayleigh
formulation. The mass and stiffness coefficient aakbrated to have 4 % damping on the
two first modes of vibration. This value 4% has been chosen arbitrarily for this example,
but this question needs to be carefully discussedmworking on a new project. Some
considerations about this problem are given by geid[17] and summarize the discussions
related to the seismic design of the new lockfiénRanama canal [125].
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Figure 7.16. Analytical and numerical evolution of the resulting force applied on the flexible wall (hs = 3.5 m)

h r'w E‘ ,'.'i:'ﬂg‘”-.';“;“‘v‘w ﬁ,\y_W‘ANI‘
t(s)
PN AN . Y R T
NLwir ,\@ﬂwﬂ'; A JLALEATLL AR S
R TR ST TITE T WAT AT RATAT AL
LENRERETELIARIS T RLAG S
il
t(s)

187



Resulting force (kN)

Resulting force (kN)

CHAPTER 7. Seismic analysis of large flexible reservoirs

122 A ,m | AAA A
o [ ! ‘\a\ﬂ TA\ AL
| O A\{/ WRUARANEEAY

:—‘
—
[~——
——
<é

(RIN(RNRIAY | ARl
0o | | IR HER! R /\1

50 Y v’ v i |

| .

N Y T T [ 2w fA
oL AR PR MR S AT A A
BSRVAVIY /I.\\ﬂ\}”\?\*/\{\\;\&jh WAL RTRYEY V/\{\ﬂ‘ /V J\
-100 UV\\(’ \;VV \\l Vl \y \ V lv/ I

Figure 7.17. Analytical and numerical evolution of the resulting force applied on the flexible wall (h; = 5 m)
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As a matter of validation, the comparison is madetlte total hydrodynamic forcg(t)
applied on the flexible wall, in excess to the loglatic pressure. This one is obtained by
summing the contributionB.(t) and F(t) respectively coming from the rigid and flexible
impulsive pressures given in (7.7) and (7.8):

hs

F() = F(6) + Fo(t) = lf P (3,0) dy+f fpf(y,z, ) dydz
0 0 0

hs 1

(7.90)

The evolution ofF (t) is represented on Figure 7.16 far= 3.5 m and on Figure 7.17 for
h, = 5 m. For the first case, it can be seen that the &inalycurve sticks quite closely to the
numerical one. However, the agreement is not ad ffmothe second case. This discrepancy
may be explained because of the assumptions umngrihe theoretical model. The
developments performed in section 7.4.2 are baseateobending theory of thin plates, which
is valid if the out-of-plane motions are kept stifntly small. More precisely, it is
recommended by Shames and Dym [137] that the m&xdmplacement should not exceed
t,/10. For the present reservoip, = 10 cm, so the restriction is arouridcm.

hy =3.5m hi=5m
Hydrostatic pressure only 0.48 cm 1.4 cm
Total pressure 1.1cm 21cm

Table 7.5. Maximal out-of-plane displacements

The maximal out-of-plane components calculated $pYNA are reported in Table 7.5 for
hy = 3.5m andhg = 5 m. In the first case, it appears that the previougtation is more or
less respected, but for a higher water level,ithigot true anymore. Indeed, applying only the
hydrostatic pressure on the model already leadsdisplacement of.4 cm, and a value of
2.1 cm is even reached during the seism. Consequentdyfatfear that membrane effects are
not negligible in such a situation, and this expatihe discrepancy observed on Figure 7.17.
Moreover, numerical simulations performed with= 15 cm andh; = 5m show a better
agreement, which tends to confirm that the prohkectually coming from too large out-of-
plane motions.

hy=3.5m
Result Analytical solution | Numerical solution | Relative difference
Maximal value 75.67 kN 70.67 kN 7.1%
Minimal value —83.31 kN —=77.18 kN 7.9 %
hy=5m

Result Analytical solution | Numerical solution | Relative difference
Maximal value 180.09 kN 157.36 kN 14.4 %
Minimal value —179.88 kN —167.29 kN 7.5 %

Table 7.6. Comparison between the extreme values of the analytical and numerical flexible solutions

To have a better comparison between the numennchhaalytical results, let us now analyze
Table 7.6. This one gives the maximal and mininsles of the resulting fordg(t) acting

on the wall during the seism. It is clear that theoretical model tends to be more
conservative than the solutions provided by théefielement simulations, which is a quite
safe observation for the pre-design process. Mamdiie maximal overestimation does not
exceedl5 %, which is still acceptable. Similar conclusions aiso valid for the simulations
performed with other reservoirs.
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CHAPTER 7. Seismic analysis of large flexible reservoirs

7.4.3.3. Additional investigations

In order to illustrate the real need of accounfimgthe fluid-structure interaction during the
dynamic analysis, some comparisons have been netdedn the theoretical solutions for a
rigid and a flexible wall. An example is proposedsection D.2.2.1 of Appendix D.2, from
which it transpires that neglecting the wall flaktip could lead to a drastic underestimation
of the hydrodynamic pressure (more tiB5&1% in the present case). Consequently, one should
always be careful before applying classical sohgisuch as the one of Westergaard [166]
because they are only valid for very stiff struesit.

Regarding the influence of the reservoir lengtht is shown in section D.2.2.2 of Appendix
D.2 that the conclusion exposed in 7.3.3.3 durimg modal analysis are still valid in the
present case. Indeed, o> 3h,, one can consider that the rigid and flexible abations do
not depend o anymore. Consequently, this means that for a giadne ofh,, performing
the seismic analysis of a reservoir with a lengthreater thar8h, is equivalent to realizing
the same analysis on a "fictitious" reservoir vatlength of3h (see Figure 7.18).

Figure 7.18. Definition of a fictitious reservoir for a seismic analysis

The direct practical implication of the previousnctusion is to simplify numerical seismic
analyses of reservoirs. Indeed, to account foiflthé-structure interaction, it is necessary to
represent both the gate and the fluid with finikemeent. In this process, the main effort is
mostly on modeling the fluid part, as lock chambars often quite long. So & > 3k,
performing simulations on a fictitious model withemgth of3h, could drastically reduce the
time and the capacities needed to realize numeaitalyses. This last assertion is discussed
in section D.2.2.2 of Appendix D.2 where an appiaraexample is also proposed.

7.4.4. Added mass method
7.4.4.1. Theoretical overview

The added mass method is based on the fact thauth@unding water reduces the vibration
frequencies of the immerged plate. As it is clémt the stiffness of the dry structure is the

%It is worth remembering that the Westergaard fdanji66] was initially derived for gravity dams, igh are
usually quite rigid structures (see section 6.1).
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CHAPTER 7. Seismic analysis of large flexible reservoirs

same as for the wet one, this phenomenon may belstty increasing fictitiously the mass
of the flexible walls. In other words, the conseaeee of the liquid is to make the structure
heavier.

Instead of working with a plate having a mass dgnsiand immerged in water, the added
mass approach proposes to work directly on a duogctstre having a modified mass density
p + p*. When such a flexible wall is submitted to a Idndinal seismic acceleration, the
dynamic equilibrium equation (7.61) simply becomes:

(p+p)t,(i+X)+f4+D a4u+2 o' +64u =0
PP K Ja dy* T 0y20z2  9z%)

(7.91)
L 0*u o*u  0*u e
@ptp(u+X)+fd+D 6y4+26y2622+624 = —ptyi — pTt,X

Comparing (7.61) and (7.91), it transpires thatghessure in this last expression is given by
p =p*th+p*tpii. The first termp*th may be identified as the rigid impulsive part
pr(y,t), while the second one't,,ii is clearly the contribution coming from the vibosits of
the plate. To have a strict equivalence betweesilf7and (7.91), the fictitious mass density
p* should be calibrated in accordance with (7.7) @#8) to have:

+00
e 4 cosh(B,y) L\.. (7.92)
pripX = _’Df< ] 2] cosh(Bphs) 2 X
n=

+00 400 hs 1
prtyil = — Z Z Cmn cOs(a,y) cos(fmz)f Ju cos(a,y) cos(¥mz) dydz (7.93)
n=1m=0 0 0

However, it is impossible to find an expression gif satisfying (7.93). Therefore, the
equivalence is only performed on the rigid conttidw, which means that:

pf<L N Cosh(ﬁny)> 794

=T\ LB coshBuny)
Using (7.94) leads to the exact expressionpfdly, t), but this is not the case fp¢(y, z, t),
which implies that the fluid-structure interactimnot correctly assessed. So the added mass
method is only an approximate approach, that is lmeded on theoretical or physical
developments. Increasing fictitiously the mass drg/ resorting to (7.94) is only valid for
perfectly rigid structures, but not for flexible e In other words, the additional density
calibrated with (7.94) does not lead to the corsgbtation frequencies and mode shapes.
Nevertheless, this way of doing may be more or $ested for moderately flexible structures
and for situations where the interaction with thedfis quite low (i.e. for the intermediate
values of the'SI quotient introduced in section D.1.2 of Appendix P

7.4.4.2. Numerical application

The main practical interest of working with addedsses is that the finite element model is
much easier to build. Indeed, there is no neecpoesent the fluid part, which also means
that the simulations will be shorter and less detiranin terms of computational resources.
Moreover, if the structure has an elastic behasiodt if the boundary conditions are linear,
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CHAPTER 7. Seismic analysis of large flexible reservoirs

one may resort to response spectra instead of dgiaanperform multiple time history
analyses. So it is quite easy to work with addedses, but one has always to bear in mind
that the solution is only approximate and not 8tricalid.

Ay
YVi+1
m;
Vi //AYI' """""""" yi
Yi1 A?"
Ay
E Zi+1 Zi Zi1 Zi z

Figure 7.19. Derivation of the numerical added masses

The aim is now to compare the pressure obtaineddmneling the fluid domain (as it has been
done in section 7.4.3.1) with the one given byddded mass method. In this last approach,
the plate is first modeled by shell elements hawngiform thickness, with a mass density

p, and the appropriate boundary conditions are aggb the supports in = 0, z = 0 and

z = 1. To represent the effect of the fluid, concentiateass elements are then attached to the
nodes located in the wet area of the structure. [ihped massn; affected in(y;, z;) is
simply given by (Figure 7.19):

_Ji+1 7 Vi-1 |

. Ziv1 — Zj_q
m; = p*(yi) tpAyAz; 5 Ay, = > ; =

wherep*(y;) is directly obtained from (7.94). As a next sty supported edges of the plate
are submitted to the seismic accelerafi@n), and it is possible withs-DYNA to compute the
time evolution of the total acceleratioii§y, z,t) + X(t) at each nodes of the model. Using
these values in conjunction with (7.94) leads t® tibtal hydrodynamic pressure in a set of
discrete locationgy;, z;). According to the added mass theory, the totaqunee is given by:

pr (3, 0) + s (v, 2,t) = p*t, (ii(y, z,t) + X (1)) (7.96)

As a matter of comparison, it is proposed heretm$ on the resulting pressure force acting
in the middle of the gate, i.e. m= [/2. Analytically, this one is simply given by:

hs

hs
lj p(y,z,t)dy] =Jpr(y,t)dy+
0

z=1/2 0

hs
J (.2, t)dy] (7.97)
z=1/2

0

Once again, the reservoir depicted on Figure 7Usé&xl to have an application example. The
numerical and theoretical results related to tbisfiguration have already been presented on
Figure 7.16 and Figure 7.17 fby = 3.5 m andh; = 5 m respectively. The purpose is how to

compare them with those obtained by applying thdeddnass method. The evolution of the
resulting pressure force = [/2 as defined in (7.97) has been calculated $pYNA for

the signal depicted on Figure 7.13. The curvegbrted on Figure 7.20 fdt, = 3.5 m and

on Figure 7.21 fohg = 5m.
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Figure 7.20. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method (hs = 3.5 m)
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CHAPTER 7. Seismic analysis of large flexible reservoirs

In the first case, it appears that modeling entitbe fluid domain or using added masses is
equivalent, as there is a very good agreement leettvee results given by the two techniques.
However, if the water level is raised up 5on, the discrepancy becomes much more
important and working with lumped masses is navaht.

This application example confirms what was alresggested in the theoretical overview of
section 7.4.4.1: the added mass method is onlyicaige to situations where the fluid-
structure interaction is limited, which is the c#sine water level is not too high. As detailed
in section D.1.2 of Appendix D.1, this may be cbomted by checking the values of #d
quotient for this example (as a reminder, it isatied if FSI « 1, the liquid has practically no
influence on the plate vibrations). Hay = 3.5 m, FSI = 0.37, which is quite an intermediate
value with respect to unity. Therefore, using coiaed mass is still adequate in this case.
Nevertheless, foh, = 5 m, the interaction is much more severeFa8§ = 1.31, and this is
why the added mass method fails to correctly remtethe action of the fluid.
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7.5. Conclusions

The goal of this chapter was to develop an analticethod to evaluate the hydrodynamic
pressure on flexible reservoirs during a seismddo, the dry modal properties were first
briefly derived in section 7.2 and then extendeddoount for the presence of water. This was
achieved by applying the Rayleigh-Ritz method. Theesponding wet eigenfrequencies and
modes shapes were validated by comparison with noahesolutions. In section 7.4.3.3,
these latter were completed by further investigetido analyze the effects of some
geometrical parameters.

Once the wet modal properties were obtained, tinamhyc analysis of a flexible reservoir was
investigated in section 7.4. The analytical sohsiavere derived by applying the virtual work
principle and validated by comparisons with fintlement simulations. The agreement was
found to be quite satisfactory for a pre-desiggesta

Apart from these developments, additional invesitiges were made on some other particular
points. The main conclusions are summarized hereaft

e Regarding the fluid-structure interaction, it cadhown that the length of the reservoir
does not have any influence on the modal propeameson the hydrodynamic pressure
provided that. > 3hs. On a practical point of view, this observationame that there is no
need to consider the whole reservoir when perfogmimumerical simulations. It is
sufficient to model it only over a length 8k, which could lead to an important reduction
of the computation effort.

« Evaluating the hydrodynamic pressure by consideanty the rigid contribution may
result in an unsafe design. Indeed, as claimeédtian 7.4.3.3, such an approach tends to
drastically underestimate the forces acting onfldsable walls. This is particularly true if
the fluid-structure interaction is important.

* In the same optic, for the well-known added masthotepresented in section 7.4.4, it is
also found that the hydrodynamic pressure obtaimélis way was not correctly assessed.

From the previous points, it can be concluded faforming the seismic analysis of a
flexible reservoir is not straightforward. Except fvery rigid configurations, this has to be
achieved by considering the fluid-structure intémag otherwise the hydrodynamic pressure
could be underestimated. Consequently, the clddaleatergaard formula [166] or the added
mass methods should be carefully used.
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CHAPTER 8. Seismic analysis of plane lock gates

This chapter is this time devoted to study the seismic behavior of lock gates. The
structures considered here are made of a plating bearing an orthogonal
reinforcing system. Once again, the objective is to establish a simplified procedure
leading to the evaluation of the resulting hydrodynamic pressures induced by an
earthquake. The procedure followed to achieve this goal is quite similar to the one
exposed in Chapter 7 and is divided in two main parts.

The first section is concerned with the determination of the modal properties of a
stiffened plate. The vibration characteristics are derived by using the Rayleigh-Ritz
method, in which the mode shapes of beams with various support conditions are
used as admissible functions. The validity of such an approach is then briefly
discussed, and the section is closed by presenting some comparisons between the
analytical results and those obtained numerically with the software NASTRAN and
LS-DYNA.

The second part of the chapter presents a simplified method for performing the
dynamic analysis of a lock gate. The virtual work principle is used as a basis and its
applicability to the present situation is discussed in detail. As a validation step, the
analytical curves showing the time evolution of the hydrodynamic pressure are
compared to those given by the finite element software LS-DYNA. After that, some
more investigations are made about the use of the added mass method.

The developments exposed in this chapter have been partly presented in the 33rd

PIANC World Congress [19] and to the 7th International Conference on Thin-
Walled Structures [20].

kksk

197



CHAPTER 8. Seismic analysis of plane lock gates

8.1. Introduction

8.1.1. Preliminary considerations

The developments on unstiffened plates performethén previous chapter give a global
insight on the process that will now be followedrteestigate lock gates.

As suggested by some authors, the vibrations ofiflereed plate may be studied by
considering an equivalent orthotropic structurerabi@rized by the material parameters listed
in Table 8.1. The main advantage of such an appr@athat it allows to use all the results
already available in the literature. For examplks#\[4], Grace [62] and Vijayakumar [156]
provide very interesting results by deriving appnote solutions for the characteristic
equation of orthotropic plates. In addition, therkvgerformed by Greenspon [65] also
constitutes an interesting extension to accounttier presence of water. To do so, the
equilibrium equations proposed in references [@2] [and [156] are corrected to account for
the hydrodynamic pressure induced by the plateatidons. The wet modal properties are then
derived and a closed-form solution is proposedHerdynamic analysis of a plate submitted
to an impulsive load.

E, E, Young modulus in the y and z direction

Vyz Vzy | Poisson ratios

Gy Shear modulus

Table 8.1. Material parameters of an orthotropic plate

To work this way, the parametefis, E,, v,,,, v,, andG,,, should be derived to have the same
vibration properties for the orthotropic plate afwd the lock gate. Huffington [75] and
Lekhnitskii [96], amongst others, proposed somenidae to evaluate these parameters in
function of the properties characterizing the rmioing system. Nevertheless, their
recommendations are based on the hypothesis thaldte is regularly stiffened, which is not
the case for a lock gate. Moreover, the approachqsed by these authors is based on a static
equivalence, which is not really coherent to trabtating structures. Another suggestion was
also made by lyengar [78], who derived the orthmtroparameters to have the same
fundamental frequency of vibration for both thetpland the gate. However, the method is
not really interesting as it first requires to kntve eigenfrequencies of the lock gate, which
is precisely what is sought.

Consequently, even if the method appears to be aquitresting, it seems that an equivalent
orthotropic plate fails to properly represent thibration properties of a non-regularly

stiffened lock gate. Furthermore, the equivalertteukl be based on the modal properties
characterizing the stiffened structure, which aseally unknown at the early design stage.
For these reasons, it is decided to avoid usindy sut approach to analyze the seismic
behavior of lock gates. Nevertheless, the developsnperformed in Chapter 7 are still a
good basis and will be extensively used in the sektions.

8.1.2. Description of the structure

As a first step, it is probably necessary to prdctea better description of the structure to
analyze. In this chapter, the case of a lock gath & single plating and an orthogonal
stiffening system is investigated. It is similarttee one consider in Chapter 3, except that
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CHAPTER 8. Seismic analysis of plane lock gates

water is now present. The notations are very smbidahose introduced in section 3.1.1 and
are recalled on Figure 8.1. Nevertheless, oneefitajor difference with Chapter 3 is that the
present methodology is exclusively developed fandorm plating thickness denoted by.
Unfortunately, this is not really realistic becatise plates are usually thicker at the bottom of
the lock. In this case, may be taken as a mean value calculated ovenmtire gate (Figure

8.2a):
=Y e, =Y h, (8.1)

wheret, is the plating thickness over a portiap of the total heighti. Having a unique
value fort,, is required so far to develope an analytical apggino

< N,

! l X

Figure 8.1. General geometry of the reinforced gate

It is further assumed that the lock chamber is isg¢pd from the upstream and downstream
reaches by two identical gates (the situation mba-symmetric disposition will be discussed

later). It is submitted to an earthquake havingrayitudinal acceleration denoted kyt), as
depicted on Figure 8.2b. In this study, the twaeottomponent¥ (t) andZ(t) oriented along
they andz axes respectively are disregarded for the monteégti(e 8.2b).

In order to evaluate the hydrodynamic pressuredaedwn the structure b¥(t), it is still
valid to use (7.7) for the rigid contribution an®ti) for the flexible one. Indeed, the lock gate
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CHAPTER 8. Seismic analysis of plane lock gates

is in fact nothing more than a stiffened plate. rEfi@e, by neglecting the local disturbance
that may be caused by the reinforcing elementshenprressure field, the developments
leading to these formulae are still perfectly valithe only modification is that the term
ii(y, z,t) appearing in (7.8) denotes this time the acceteratf the gate.

(a) Equivalence (b) Seismic accelerations components
l A 'y }7 }7
o o
h|— ]
hs
'S4 X(t)
| — — |
h
h 4 }7 }7
n tn
>
o o
u hl+— —
hs
—1, o
Y(t
y oo 3G |

Figure 8.2. Equivalent plating thickness and seismic accelerations in two directions

Regarding the boundary conditions, they are theesasrfor the impact analysis performed in
Chapter 3 (see section 3.1.1.3). Two differentasituns are also considered here, as the gate
may be supported or free at the bottom. This distn is important because the presence or
the absence of a sill may have some incidence@nibination properties of the structure.

X —» <«
I | 1

»
»

X > X H

1 Sill =
A A ex L X

Figure 8.3. Boundary conditions at the bottom

Nevertheless, it is worth noting that such a suppowplies very particular boundary
conditions. Indeed, if we examine the situationicke on Figure 8.3, it transpires that if the
gate is submitted to a positive acceleration akbweg axis, it can be seen as being supported
at the bottom. However, this is not true if theedecation occurs in the opposite direction. It
is unfortunately not possible to develop an anedyti solution that includes such
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particularities. Therefore, when a sill is presdahtis assumed that a complete support is
provided at the bottom, which means that both tetiye and negative displacements in the
x direction are forbidden. Doing so, one has to beamnind that the boundary conditions
applied to the structure do not truly representréa configuration of the gate.
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8.2. Free vibration analysis of a dry gate

The goal of this section is to derive the naturafjfiencies and mode shapes of a gate with a
single plating and reinforced by a simple stiffepsystem, as described on Figure 8.1. The
presence of water in the lock chamber is disreghstefar. So the purpose is now only to
evaluate the dry mode shap&sy,z) and natural frequencies; of the structure. The two
situations of the gate is resting against a sillnot will be considered separately in this
section.

To achieve this goal, one may resort to the Ralgl®gz method and follow the energy
approach described in section 7.3.2.2. As it wasedo 7.3 for an immerged plate, it is first
required to define a set &f admissible functiong;(y, z) to have:

M

5:(9,2) = ) vt (0,2) (82)

Jj=1

The coefficientsy;; are to be found by using the Rayleigh-Ritz metHeak the analytical
expressions of);(y, z), it is decided to use a combination of beam eigetes, as detailed
hereafter.

8.2.1. Free vibration analysis of beams

In order to find consistent equations fy(y, z), it is suggested to derive the eigenfunctions
fj(y) andg;(z) characterizing the free vibrations of the vertiaad horizontal reinforcing
elements respectively. With these functions, fiastulated that:

Yi(v,z) = fj(y)g;(2) (8.3)

As the gate is always supported by the lock wdbbe@the edges = 0 andz = [, it seems
reasonable to choogg(z) as being the eigenmodes of a doubly supported bétma span

[, as depicted on Figure 8.4a. Similarly, for theecahere the gate is resting against a sill,
fj(y) may characterize the vibrations of the supported-foeam of Figure 8.4b. On the
contrary, if there is no particular support corafitiny = 0, thenf;(y) this time corresponds
to the mode shapes of a free-free beam, as showigare 8.4c.

(a) Doubly supported beam (b) Supported-free beam  (c) Free-free beam
o) /
o)
| !
< > |
<~ | <
Y %
l e o Ay Ay
X 9) |
X X
«— «)

Figure 8.4. Support conditions for the horizontal and vertical reinforcing elements
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8.2.1.1. Solution for a gate supported at the bottom

As many references may be easily found in thedlitee, the purpose is not to perform a
complete derivation leading to the vibration prdigsrof beams. Therefore, some very useful
fundamental results will be recalled here. Let wartsby considering the horizontal
reinforcing elements represented on Figure 8.4thely have a cross-sectidp and an inertia
I, it may be shown that they obey to the followimgu@acteristic equation:

0%y, _ pApw?
824 Elh

9;(z)=0 (8.4)

wherep andE are respectively the mass density and Young madagsociated to the beam
material. This expression is completed by impodimaf the displacement and the bending
moment have to be set to zero at the two supplortg & 0 andz = 1), i.e.:

2.
79 _, (8.5)

gj(z) =0 and
J dz2

It is obvious that a solution of (8.4) satisfyingetboundary conditions (8.5) is simply a
sinusoid having as many half-waves as requiredther words:

9;(@) = sin(y;z) (8.6)

wherey; = n;r/l, with n; € N, being the number of half-waves along the horiZontaxis.
Regarding the situation for the vertical beams,otieg this time byA4, andI, the cross-
sectional properties, one may easily adapt (8.4tdhe characteristic equation:

0*f; _ pA,w;
dy* El,

fi(z)=0 (8.7)

In the case of the supported-free beam depictedigure 8.4b, the displacement and the
bending moment are both prohibited at the supporfory = 0, one should have:

0%f; _

i) =0 and 3y

0 (8.8)

Additionally, to simulate a free boundary conditiony = H, the shearing force and the
bending moment have to be set to zero at thisitmta®o the following boundary conditions
are holding fory = h:

0% _
dy?

63fj_

and =
0 3y

0 (8.9)

It may be shown that (8.7), (8.8) and (8.9) aresfat for the closed-form solutions given in
(8.10). It is worth noting that the particular dgimodef;(y) = y is associated to a null
eigenvalue. When this mode is activated, it mehasthe beam is simply rotating around its
support without suffering any deformation. So fipabne gets:

« Ifa=0 fi=y/h

e If2;#0:.  fi(y)= Aj(sin()ljy) - B; sinh(ljy))

(8.10)
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where4; is the modal amplitude, calculated in such a vy the maximal value ¢f(y) is
equal to unity forl0 <y < h. The parameterB; andA; only depend on the total heightof
the gate. It may be shown that they have the fafigwlefinitions, in which it can be seen that
the eigenvalued; may only be determined numerically by solving rplicit equation:

sin(ljh)

;= _W cos(;h) sinh(A;h) — sin(4;h) cosh(A;h) = 0 (8.11)

So finally, gathering all the results listed befdeads to the conclusion that for a gate
supported at the bottom of the lock chamber and fer 0, the functionsp;(y, z) defined in
(8.3) have the subsequent analytical expressions:

Yi(y,z) = 4 (sin(ljy) —B; sinh(Ajy)) sin (}/jz) (8.12)
whereB; and4; are given in (8.11).
8.2.1.2. Solution for a gate free at the bottom

All the previous developments are only valid foe situation where a support is present in
y = 0. If this is not the case, then the vibrationshaf free-free beam depicted on Figure 8.4c
have to be considered and the solutions obtaing8.1®) are no longer valid. Of course, the
characteristic equation (8.7) is still the samd, the boundary conditions are now different.
As the beam is free at the two extremities, theditams listed in (8.9) have this time to be
satisfied fory = 0 andy = h. The following solutions may be shown to satisflythese
requirements:
e If=0. fi=1 or f)=y/h

(8.13)
e If2,#0.  fi(y) =4 (sin(ljy) + sinh(ljy) - B; cos(ljy) —B; cosh(ljy))

where4; is still the modal amplitude. Fd; = 0, it is possible to find an infinite number of
rigid modes, but only the ones given in (8.13)larearly independent. It is worth noting that
B; andJ; are defined in a somewhat different way, as tipasameters satisfy:

B sinh(Ajh) — sin(ljh)
) cosh(Ajh) — cos(ljh)

cos(4;h) cosh(2;h) = 1 (8.14)

Considering all the previous developments, it cancbncluded that for a gate free at the
bottom of the lock chamber and fay # 0, the functiongp;(y, z) defined in (8.3) are given
by:

Y;(y,2) = A; (sin(ljy) + sinh(Ajy) — B, cos(Ajy) — B; cosh(ljy)) sin ()/].Z) (8.15)

whereB; and4; correspond this time to the expressions in (8.14).

8.2.1.3. Discussion on the boundary conditions

With these definitions, the functions;(y,z) are reputed to be linearly independent, as this
property is already valid for the eigenmodes ofnieaNevertheless, they are not strictly

admissible for the Rayleigh-Ritz procedure. Thidug to the fact that we have to deal with a
continuous plate bearing a discrete reinforcemBmerefore, in some locations, the boundary
conditions are those of a plate, while in othercetathey have to be derived from the beam
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theory (see also the work of Laura and Smith [@2]nhore details). Such a requirement may
first be explained by considering the cross-sectibthe gate in a vertical plane,y), as
depicted on Figure 8.5b, where only two horizogiallers and a portion of the plating have
been represented. Along the vertical simple supportz =0 and z = [, the boundary
conditions that have to be respected/bgy, z) along the plating are as follows:

np—1

P~

tw tw
0 ze | Jn+a i ma-2 616

n

621/)]- +v 621/)]- =
0z dy?

Yi(y) =0 ;

Il
-

wheren,, is the total number of horizontal stiffeners disited over the height of the gate.
Because of (8.5) and (8.6), it is obvious that163.is always satisfied in =0 andz = [.
Regarding now the boundary conditions that havéeofulfilled by 1;(y,z) around the
discrete locations occupied by the stiffeners, mag write:

0%y, _
0z2

np—1
tw tw
Y;(y)=0; 0 Z€ U [yn > i +7] (8.17)
n=1
Once again, these two relations are always satisgfecause of (8.5). Therefore, along the
lock walls inz =0 andz = [, it can concluded that both the boundary condstioaming
from the beam and from the plate theory are resdedthis particularity is only due to the

presence of simple supports at these locationsa Bynilar procedure, it can be shown that
this conclusion is also valid along the sill.

The situation is however different for the free @d@he cross-section in a horizontal plane
(x,z) is depicted on Figure 8.5a, where only two velticames and a portion of the plating
have been represented. For the plate segment dobateieen the two frames, the boundary
conditions that have to be respected there aradiye

ny—1

3y, t t
+@-Vg k=0 z€ U [zn+7w ; znﬂ—?W] (8.18)

0%y 0%Y;
l/)]+v ¢]=0;

dy? 0z

9%,
dy3

n=1

where, as a remindet,, is the total number of vertical reinforcing elertgeepositioned on the
gate. On the other hand, near the frames, one miég the following boundary conditions
coming from the theory of beams:

2 3 o
0% _ 0 U[ _bw, t_W]

ayz_o' 6y3_0 zZE Zn = ,Zn+2 (8.19)

n=1

Unfortunately, from (8.18) and (8.19), it seemsheatimpossible to find a continuous
analytical expression foy;(y,z) satisfying all these requirements. As a consecpieiic
Y;(y) is derived from the beam theory detailed in s@sti8.2.1.1 and 8.2.1.2, then only the
equations given by (8.19) are fulfilled. In otheords, along an horizontal free edge, some
unbalanced forces are still applied as the platentary conditions (8.18) are not satisfied by
the chosen closed-form solution ¥f(y,z). This will be investigated in more details when
dealing with the dynamic analysis of lock gates.

From all the previous considerations, it transpihed the functiong; (y, z) defined by (8.12)
or (8.15) are not strictly admissible for the RagteRitz method. Nevertheless, if the

205



CHAPTER 8. Seismic analysis of plane lock gates

stiffened plate is mainly behaving as a beam airec{which is almost the case for lock
gates), then using such analytical expressions yofy,z) should lead to a good
approximation of the modal properties. For thissoeg they are sometimes said to be pseudo-
admissible. Additionally, it is worth mentioningaththis approach has been widely used in
the literature, which also corroborates the appllitg of the method. Some theoretical
studies related to the vibrations of stiffened cites are available in references [10], [16],
[43], [77], [78], [87], [92], [110], [112], [139][177], and [178].

(a) Horizontal plane (x,z) (b) Vertical plane (x,y)
X y
T Z‘n Zn‘+1 | ‘
z L }
> Yn+1 Ta;’/g
"
7 7
tw* — tw* le—
"
7 7
Yn 1z i 777
VA S . iz S 7 X tw

Figure 8.5. Boundary conditions along the supportiny =0

8.2.2. Rayleigh-Ritz solution

The problem that is analyzed now is to derive aially the dry frequencies; and mode
shapess;(y,z) characterizing the free vibrations of a stiffen@ddte. As mentioned here
above, an approximate solution may be found byrtiegpto the Rayleigh-Ritz procedure,
which was already encountered while deriving thelah@roperties of an immerged plate (see
7.3). Nevertheless, as discussed in section 8,2He3set of functiong;(y, z) chosen so far
Is not strictly admissible. As a consequence, tlehod that will now be followed is not
purely rigorous, and it is probably more convenientwork with the energy approach (see
7.3.2.2) instead of using the exact mathematicatldpments performed in 7.3.2.1.

8.2.2.1. Modal formulation

As a beginning, let us start by expressing the &gll quotientkR as a function of the dry
mode shapes;(y, z). According to the theory of section 7.3.2R,is simply obtained by
dividing the maximal kinetic enerdgy by the maximal internal orié:

R=7T/U (8.20)

which is similar to (7.55) witA” = 0, as water has not been considered so far. Inlakis
equation, one may get the mathematical form§ @ndU by considering successively the
various elements constituting the gate, i.e.:

T=T,+T+T ; U=U,+U, +U, (8.21)

where 7,,, 7, and 7, respectively denote the individual kinetic enemgyming from the
plating, then,;, horizontal reinforcing elements and thg vertical ones (similar notations are
used for the internal ener@y). In order to analytically derive all the previoigsms, it is first
required to make an important assumption on therdeftion pattern exhibited by the gate. In
Chapter 7, it is postulated that the free vibradiaf the unstiffened plate simply occur by
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bending around its neutral axis. For a stiffenedcttire as the one depicted on Figure 8.1,
this is not necessarily the case, but it is supphdsere that this hypothesis is still holding.
Consequently, at the discrete locatiops and z, where some reinforcing elements are
positioned, the deformation pattern leading todtaluation ofl andU should be the one of
Figure 8.6.

hw -

noy
Figure 8.6. Deformation of the plating and the attached reinforcing element

It is clear that such an assumption is questionahlgarticular for structures where the
reinforcement is predominant. An interesting distms about this topic was conducted by
Wah [161], who showed that considering bending adotlne neutral fiber of the plate could
lead to an overestimation of the stiffness. Neaess, this approach is widely encountered
in the literature as it allows for some simplificais in the analytical process. Indeed,
considering first the plating, as it is still sugpd to be bent around its neutral fiber, it is
possible to keep the previous definition of thexdiel rigidity D = Et;/12(1 —v*) and
directly calculate,, andlU,, by performing an analogy with (7.53) and (7.54)isTleads to:

t
7, =22 f f 52(y, 2)dydz (8.22)
A

~ ﬁ 626 azai 2+2 925,826, ) 925,
0z% Vayz 0z2 v 0ydz

>2> dydz (8.23)

Regarding now the situation for the horizontal fetiing elements., under the bending
hypothesis made here above, they will be submitieitie deformation diagram depicted on
Figure 8.6, which directly shows that the crosdisaal inertia has to be calculated with
respect to the neutral fibet-n. In other words, the inertid, of the T-shaped beam
represented on Figure 8.1 has to be calculated by:

=_[ ts] hgf(h +2+tf)

If it is further assumed that the stiffening elemseare mainly submitted to an in-plane
bending, then the contributions to the internakrgyél;, coming from the torsional, axial and
shear rigidities of the beam can be neglected.f $loei structure is made of;, horizontal
reinforcing components positioned at the discretationsy,,, it may be shown [106] that:

whereA, ,, andl, ,, respectively denote the area and inertia of thesssection characterizing
the horizontal stiffening element jn= y,,. By following a similar procedure, the kinetic and

3

- (1 +%”)3] (8.24)

2 Elhn 2
j oz uh—z f o o] (8.25)
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internal energieq;, andU, related to the, vertical stiffening components positioned at the
discrete locations,, are given by:

ny h
A El
7= 2 [ty 5, —Z . (y.zn)] dy (8:26)
n=1 0

where4,, ,, andl, , have the same meaning as for the horizontal elesnkns worth noting
that, for simplicity, in equations (8.22), (8.283,25) and (8.26) uniform values are assumed
for E, v andp, but it is clear that the formulae could be eaaidwapted to treat gates made of
different steel grades.

8.2.2.2. Matrix formulation

All the theoretical results listed before have beeweloped with respect to the dry mode
shapess; (v, z). Nevertheless, according to (8.2), these onedremmselves related to the
pseudo-admissible functiong;(y,z), and it is therefore required to go one step &urtio

apply the Rayleigh-Ritz method. As it was doneent®n 7.3.2.2, a similar expression (7.56)

can be found here by writing:

M M M

= 2 2 Ty (8.27)
whereM is the number of pseudo-admissible functions cmrsd in (8.2). The kinetic energy

j=1
term T‘jk has to be calculated by introducing (8.2) suceesgiin (8.22), (8.25) and (8.26).
Summing up all these contributions, it is easyhove that:

ME
Nn-a

NIH

17 ]kvkl

&
Il

1

Np

l h
= ptpdeIf]k(y.Z)dy + z pAhnff,k(yn,Z)dz + ZpAvnff]k(y:Zn)dy (8.28)
0 0

'ﬂ)

wherefix (v, z) = Y. On the other hand, performing the same operafianthe internal
energy temﬁjk finally leads to:
l h np l

ny h
O =D [ @z [ 2y + ) Blun [ gieOnddz+ Y Elop [ hurzddy  (8:29)
0 n=1 0 n=1 0

0

but this time, as reported by Shames and Dym [1Bid,parameterg;,, g, and h; are
found to satisfy the following mathematical express:

52 2 2 2 2 2 2.1 A2
_ 1/11 0“Yy 0%\ | 0°Y; (0%; 0%y 0%Y; 0"y
fix®2) = y? v 0z2 + 0z2 \ dy? v 0z2 +20-v) dy0z 0yoz
0%; 9%
9(,2) =~ azzk (8.30)

0% 0%y
hjx (v, 2) = 3y? 9y?

In (8.28) and (8.29), the functions;(y,z) are defined by (8.12) or (8.15) according to the
support conditions of the gate. The detailed e)gioes ofT‘]-k and l7]-k are not listed here but
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are given in section E.1.1 of Appendix E.1. Finaityve denote byT] and[U] the (M x M)
matrices associated respectivelyl}p andU;,, the Rayleigh quotient (8.20) can be rewritten
in the more classical way:

(iiv kakz> (iiv ]kvkl>— Z{gzl (8.31)

j=1k=1 j=1k=1

wherev; is a (M x 1) vector containing the coefficients;. As it was already stated in

section 7.3.2.2, these ones are found by minimi&ngvhich can be achieved by solving a
classical generalized eigenvalues problem:

det([0] - w2[M) =0 (0]~ w?[F])vi =0 (8:32)

It is worth noting that the function, g, andh definingTjk andﬁjk are symmetric with
respect tg andk. Consequently, this is also the case for the sesff’] and[U]. However,
these ones are not necessarily diagonal and sadwiatytically (8.32) remains quite complex
(but this may be achieved by using a dedicatedvsoét likeMATLAB for example).

As a conclusion, it appears that the procedureribesthere above gives an estimation of the
vibration frequencies? for the dry stiffened structure. Additionally, 82) also provides the
coefficientsv;;, which, together with (8.12) or (8.15), may bedise (8.2) to estimate the
mode shapes;(y,z). The Rayleigh-Ritz method seems therefore to logiite appropriate
way to derive the modal properties of the dry dtritee Nevertheless, as the gate is in contact
with water, the next step should be to find the wbtation frequencies and modes shapes.
Even if this would be useful to have a better cti@rgzation of the gate behavior during a
seism, this operation is not mathematically requiie applying the virtual work principle,
but this point will be discussed later on.

8.2.3. Numerical validation

In order to corroborate the analytical developmeaisied out in the previous sections, they
can compared to the solutions obtained throughefiaeilement analyses. As the rakigl is
approximately ranging fron®.5 to 2 for lock gates with a single plating, the validati
process has been performed by considering varitvustgres characterized byrg! ratio
varying within this interval. Nevertheless, the uiés obtained for all cases will not be
presented here. To have a quite representativel,ptmee different structures will be
analyzed to more or less cover the extreme andmeidiate configurations. These ones are
characterized by h/! ratio of1, 0.5 and2 respectively. They are briefly described hereafter

» Gate 1: this structure has a square plating, Wwithl = 13.1m and a thickness,, of
1.2 cm. It is reinforced by six vertical frames and fiverizontal girders. The first ones are
regularly placed over the width with a spacing o2.62 m. The disposition of the girders
is not regular, as the reinforcement is more imgurnear the bottom of the gate. Some
smaller horizontal stiffeners are also presentnigaio avoid buckling of the panel (see
Figure 8.7).

+ Gate 2: this structure has a rectangular platingh w=8m, | =225m andt, =

1.8 cm. Such dimensions are typically encountered foritmae locks, for which the water
level fluctuations are low, but where the widthas to be quite large to allow the travel of
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important vessels. The width is regularly dividedtbn vertical frames, while only five
girders are disposed over the height. In addititve, structure is also reinforced by
horizontal flat stiffeners, as depicted on Figurg i& section E.1.2 of Appendix E.1.

» Gate 3: this structure has a rectangular shapeelis wt the height is this time largely
preponderant, a = 21 m andl = 10.5 m only. The plating has a thicknegsof 1.5 cm.
Four vertical frames are placed eath m, while eight horizontal girders and various
smaller stiffeners are distributed over the hei(ddge Figure E.3 in section E.1.3 of
Appendix E.1). Such lock configurations may appearinland waterways, where the
difference between the upstream and downstreansle/emportant.

For each of these three gates, two different stnathave to be treated, as they may be
supported at the bottom or not. However, in allesashe material properties listed in Table
8.2 will be used, which more or less correspondbeacharacteristics of a mild steel.

Young modulus E 265 GPa
Poisson coefficient | v 0.3
Mass density p | 7850 kg/m3

Table 8.2. Material properties for each lock gate

Of course, apart from the three gates describedlegalibe validation was also performed by
using other intermediate configurations that areraported here. Furthermore, to avoid a too
fastidious presentation, only the first gate widl bonsidered in the remaining parts of this
section. The results related to the second andl thanfigurations may be consulted in

sections E.1.2 and E.1.3 of Appendix E.1 respelgtive

8.2.3.1. Case of a gate supported at the bottom

The situation where the gate is supported at thtmoof the lock is first considered. It is
worth recalling that in such a case, the displacgmi thex direction are forbidden at the
bottom even if they are negative. As already disedsn section 8.1.2, doing so is not strictly
realistic because a sill does not impose this kihdestraint (this point will be investigated
later on, in section E.3.1). The other boundarydaoons are those listed in section 8.1, but it
should also be mentioned that the displacementbdrx direction are not simultaneously
forbidden along the edges= 0 andz = [ (see Figure 8.1) because the gate is considered as
being free to bent without suffering any transveesgrain.

hy, (M) | t, (m) | hy (m) | ty (M)
Horizontal girders 0.98 0.02 0.4 0.025
Vertical frames 0.98 0.02 0.5 0.025
Horizontal stiffeners 0.21 0.006 0 0

Table 8.3. Geometrical parameters for gate 1

To obtain numerically the modal properties of ghtehe pre-process@ATRAN is first used

to realize a finite element model of the structuide plating is modeled by using
isoparametric quadrilateraQuUAD shell elements with four grid points, while clasdilinear
CBAR beam elements are used for the reinforcing systéfhe dimensions characterizing the
cross-sections are listed in Table 8.3, with théatans introduced on Figure 8.1. The
material is assumed to have a linear elastic behafined by the parameters given in Table
8.2.

! See the Nastran reference manual [114] for additimformation on these elements.
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Figure 8.7. Structural configuration and main dimensions (m) of gate 1

The finite element softwam@ASTRAN is then used to perform a modal analysis of the.ga
This leads to a numerical estimation of its dryjfrencies and mode shapes. In order to check
the validity of the present analytical developmetite solutions obtained by the Rayleigh-
Ritz method will be compared to those givernagTRAN.

The modal analysis realized witasTRAN shows that the gate has only two dominant global
modes and a great number of local ones, which dgiige typical result for this kind of
stiffened structures. The natural frequencies aerilby the simplified procedure of section
8.2.2 and the values given B®STRAN are listed in Table 8.4 for these two first modés
vibration. An estimation made hy-DYNA is also provided in this table. It can be seen tha
the agreement is quite satisfactory. This is paldity true if the results ofs-DYNA are
considered, as the maximal relative error calcdlaieording to (7.58) does not excéeth.
The discrepancy witRASTRAN is a bit more important, as an errorl@ % may be reached
this time.

Frequency (Hz Error (%)
Mode -
NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA
1 19.22 20.27 20.84 8.41 2.81
2 37.78 40.91 42.26 11.87 3.33

Table 8.4. Comparison of the natural frequencies obtained numerically and analytically

From Table 8.4, it transpires that the analytiggpraach tends to overestimate the natural
frequencies. This observation was already made wiesling with unstiffened plates in
Chapter 7 and may be justified mathematically. éijeas demonstrated by Shames and Dym
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[137], the Rayleigh-Ritz method always gives an arpgstimation of the eigenvalues,
which partially justifies the results of Table 83bme other reasons may also explain why the
analytical values are too high. This will be disser later, in section 8.2.3.3.

0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2
0,1

Normalized vertical position y/H

—— Simplified method Nastran
5~
5

///
//
_—
g
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

Normalized modal displacement

Figure 8.8. Comparison of the first mode shapes obtained numerically and analytically

In order to compare the numerical and analyticgé®modes of vibration, it is suggested to
look at the displacements in the plane= [/2 (called m; on Figure 7.8). The results are
plotted on Figure 8.8 and on Figure 8.9 (the megwinthe red point placed on this picture
will be explained later), from which it can be cared that the agreement is rather good. In
the horizontal plang = h (calledm, on Figure 7.8), the shape is very closed to assiiu
with only one half-wave, such as the one reporte&igure 7.9b.
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Figure 8.9. Comparison of the second mode shapes obtained numerically and analytically

8.2.3.2. Case of a gate free at the bottom

Let us now analyze the situation if the structigenot resting against a sill. The boundary
conditions are the same as in section 8.2.3.1 péxbat no restraints have to be applied along
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the linex = 0 (Figure 8.1), where the displacements in thdirection are totally free. Such
boundary conditions are more realistic than inghevious case, as many gates do not have
any support near the bottom of the lock.

The main dimensions of the structure are still ¢hdspicted on Figure 8.7 and it is assumed
that the cross-sectional properties of Table 83séH valid. This choice is mainly motivated
for practical reasons, but in reality, the stiffegisystem of a gate resting against a sill will
probably be lighter than the one characterizingractire with no support at the bottom.
However, for this validation process, it seemsisigifit to keep the same geometrical and
mechanical characteristics as in the previous dasasequently, the modal analysis will be
performed with the same finite element model asigefafter having changed the boundary
conditions).

Frequency (Hz Error (%)
Mode -
NASTRAN LS-DYNA Analytical NASTRAN LS-DYNA
1 19.17 19.99 21.3 11.11 6.54
2 23.33 25.27 26 11.43 2.89

Table 8.5. Comparison of the natural frequencies obtained numerically and analytically

Here again, the modal analysis leads to the coiciubat the gate has only two main global
modes, which are characterized by the frequendiésable 8.5. The conclusions drawn in
section 8.2.3.1 are still holding for the preseasec the analytical procedure tends to
overestimate the stiffness of the structure, betatreement with the numerical values is kept
satisfactory. Indeed, the relative errors with extpgo the solutions 0§ASTRAN andLS-DYNA

do not exceed 1 % and3 %, which seems to be sufficient for a first estimatiMoreover,

by comparing the values of Table 8.4 and Tablei8&ppears that the frequencies are lower
in the second case, which seems to be coherehieastructure is more flexible if it is not
supported at the bottom.

— Simplified method Nastran
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Normalized vertical position y/H

Figure 8.10. Comparison of the first mode shapes obtained numerically and analytically

The first mode shape calculatedNmsTRAN is compared to the analytical solutions on Figure
8.10. The same is done for the second eigenmodeigure 8.11. It can be seen that the
agreement on the deformation patterns in the ptgnis quite good. In the horizontal plane
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m, (see Figure 7.8), the numerical profile is vergsel to the sinusoid predicted by the
analytical approach.
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Figure 8.11. Comparison of the second mode shapes obtained numerically and analytically

Even if the analytical calculation of the dry fremeies appears to be sufficiently reasonable,
it seems however important to provide some morécatns to explain why it tends to
overestimate the numerical values. Doing so may ubeful for an eventual future
improvement of the present simplified method. Tikigrecisely the goal of the next section.

8.2.3.3. Discussion of the results

From all the results presented here above, it eaconcluded that the Rayleigh-Ritz method
provides a satisfactory evaluation of the modalpprties characterizing the stiffened gate.
Nevertheless, one can first argue that the agreemiém the numerical simulations largely
depends on the choice of the pseudo-admissibletifunscy;(y,z) in (8.2), which do not
satisfy all the boundary conditions. In the pressde, this is only partially true, because the
global mode shapes are quite correctly estimatepl; (,z) is given by (8.12) or (8.15).
Moreover, derived an analytical solution was algoivetd by considering fo);(y,z) the
eigenmodes of an unstiffened plate defined in (7.BAt this led to results that were very
close to the ones presented before.

So a poor choice of;(y,z) does not seem to justify the observed discrepanéiaother
explanation may lie in the evaluation of the ireedffected to the stiffening elements. Indeed,
according to (8.24), it is assumed that the beambeant around the neutral fibern of the
plating, but this is not necessarily true. One akmo imagine that bending occurs around the
gravity centerG of the T-shaped cross-section depicted on Figure\8ith such a situation,
the inertia is no longer given by (8.24) but ha®eocorrected to account for the eccentricity
e, as shown on Figure 8.12. The bending rigiditiesracterizing the beams and the plating
are this time given by:

EI; =E(l, — e?4,) ; D*=D +e>

L (8.33)
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whereE is the Young modulusj,, is the cross-sectional area ang= Et;/12(1 — v?) is the
flexional rigidity of the plate around its neutrfber. In comparison with the situation of
Figure 8.6, it clear from (8.33) that the beamdityi is reduced while the plating stiffness is
increased. Nevertheless, @sis quite small, there is no compensation, whictamsethat the
model of Figure 8.6 is stiffer than the one of Fg8.12. As a consequence, the vibration

frequencies calculated by assuming that bendingst@kace around will be lower in this
last case.

Figure 8.12. Deformation if bending occurs around the gravity center

As a conclusion, a more probable reason to jutigyhigher values found analytically for the
frequencies is that bending does not exactly tdkeeparound thei-n axis. In fact, each
cross-section appears to rotate around an undetednpoint located somewhere betwaen
andG, which seems to be confirmed if by looking at thede shapes. Indeed, for the case of
bending around the-n line, the dominant mode shape in the plageshould be the one
depicted on Figure 8.13a, with a quite regular deégion of the plating. On the contraryif

is the rotation point, then each reinforcing elemeitl deform in its plane, as is the plating
was simply clamped along the connection lines.his tase, it is more likely to adopt the
pattern represented on Figure 8.13b.

(a) Bending around n-n (b) Bending around G

|

| X | Lo

Figure 8.13. Bending situations

The small oscillations visible on Figure 8.8 to Uiig 8.11 confirm that the reinforcing
elements have a local influence on the deformatiafile characterizing the plating. This is
particular true from Figure 8.9, where the strondentation occurring near the red point
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shows that the behavior of the horizontal girdesifpmned there is preponderant. As a
consequence, the mode shape seems to take andadiatenprofile between the ones depicted
on Figure 8.13a and b.

From all the previous indications, it can be codeldl that it is not easy to find a rational
definition for the bending rigidity affecting theinforcing elements. In the present simplified
approach, this latter is calculated it by consulgrine neutral axis-n. This has the main
advantage of simplifying a little bit the analyficalculations, but such an assumption is not
necessarily realistic as it tends to overestimdite global stiffness of the structure.
Nevertheless, as the agreement with the numergsllts is quite satisfactory, we this
hypothesis is kept in the next section to perfdiendynamic analysis of lock gates.
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8.3. Dynamic analysis of lock gates

The modal analysis performed previously allows tmwk the vibration properties of lock
gates with a single plating reinforced by an orthrag stiffening system. The next step is now
to analyze the problem depicted on Figure 8.2b,revlaelock chamber is submitted to an
earthquake having a longitudinal acceleration campbdenoted by (t). The goal is here to
estimate the hydrodynamic pressure acting on thetste in such a situation.

Before starting the dynamic analysis, one should fry to derive the vibration properties of

the immerged gate, as it was done in Chapter @rfarnstiffened plate. However, as detailed
in section E.2.1 of Appendix E.2, this is not realseful in the present case. In fact, using the
wet or the dry modes is equivalent. Consequentlpyder to simplify the dynamic analysis of

a lock gate, one can avoid to calculate its wetahpdoperties. Nevertheless, this operation
remains useful to have a more complete insighthenseismic behavior characterizing the
immerged structure, as it allows for an extensiuel\s of the fluid-structure interaction (see

section 7.3.3.3 and Appendix D.1). This is the maason why they were introduced in

Chapter 7.

8.3.1. Equilibrium equation

For the isolated plating elements that are far aftay the reinforcing elements, it is clear
that the equilibrium equation (7.65) may still ipked without any restriction. However, this
is not true near the stiffeners, where the platmay be seen as being locally submitted to
some additional forces. Adopting the same philogagh the one followed in 7.4.1, one can
simply express the translational equilibrium of hlating along the horizontat axis by
adapting (7.65) to account for the supplementatipia€ of the beams.

Let us try first to apply this methodology to thertical stiffeners occupying the discrete
positionsz,. The aim is to evaluate the total resulting fofgeg(y, z, t) that they exert on the
plating (see Figure 8.14) in thedirection when the gate is submitted to the earikqg. In
the present simplified procedure, it is sufficiemiconsider the action of the inertial, shearing
and damping forces. From the classical theory aihi® it comes immediately that the two
first contributions are given by:

4

L 0*u
pApn (it +X) + ElL,, 37

(8.34)
where, as already mentioned befotg,, etl,, respectively denote the area and inertia of the
cross-section characterizing the vertical framated inz = z,,. Furthermore, proceeding in a
similar manner as in section 7.4.1, the dampinge®may be seen as being proportional to
the mass and to the stiffness of the vertical fanWgith such an assumption, it is easy to
show that they are simply given by:

4

- (8.35)

apA,u+ BEI,

where ¢ and f are the mass and stiffness damping coefficients. donvenience, it is
assumed here that these two parameters are theasaimese previously encountered in 7.4.1,
but this has not necessarily to be the case. Timulae can be easily adapted to work with
coefficients that are different for the reinforcielgments than for the plating.
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Figure 8.14. Substitution of a vertical stiffener by an equivalent force

It is obvious that (8.34) and (8.35) correspondre loads, which is not really convenient for
writing the plate equilibrium. For this reason, anay try to convert them into pressures. To
do so, these forces are assumed to be uniformtiyldised over the web thickness, but this
hypothesis is purely arbitrary. Another choice dobk to spread these line loads over a
certain collaborating length (which, according tehbusse and Deprez [39], can be chosen as
the flange lengthh,), but one may also resort to the use of Dirac tions, as explained by
Laura [92] for example. Nevertheless, it seems thate is no real satisfactory way for
integrating rigorously (8.34) and (8.35) into tlguiibrium equation of the plate. So pursuing
the hypothesis of smearing (8.34) and (8.35) ayetthen it is finally found thaf, ,, (v, z,t)
has the following expression:

o o*u _ o™
fv,n(y: Z, t) = Hn(z) pAv,n(u + X) + E[v,na_yll + apAv,nu + ﬂE[v,na_yA;

zZ=2y,

(8.36)

in which the displacements, speeds and accelesatiame to be evaluated at the particular
location z = z,,. The termH,, (z) is nothing else than a truncated form of the Hadei
function:

H,(z)=1/t, If z€lz,—t,/2;z,+t,/2]
(8.37)
H,(z) =0 it z¢&z,—tn,/2;2, + t,/2]

The previous developments can be extended to thsohneal stiffeners without any difficulty.
For an element located yn= y,, this leads to a total resulting force denotedf;py(y, z,t)
and acting on the plating in horizonkadirection:

Ly 0*u , d*u
pAh,n(u+X) +E1h,nﬁ+ apAh,nu-}_BElh,nﬁ (838)

=Yn

fh,n(y'z' t) = Hn()’)

As a last step, (8.36) and (8.38) may be insentezfjuation (7.61) expressing the equilibrium
of the plating. Gathering the contributiofys, (v, z, t) andf,, ,(y, z,t) coming from all the,
andn,, horizontal and vertical stiffeners, the followirgsult is obtained:

. 0*u 0*u
ptp(u+X)+fd+D<ay4+ 357922 az4> thn+2f,,n=— (8.39)

in which f; (v, z,t) denotes the damping forces acting on the platimfyadready detailed in
7.4.1. This last expression may be seen as themdgnequilibrium equation of a stiffened

218



CHAPTER 8. Seismic analysis of plane lock gates

plate. From the definition (8.37) of the Heavisidaction, it is obvious that it degenerates
into (7.61) in the regions far enough from the f@icing stiffeners.

8.3.2. Virtual work principle

The philosophy that will now be followed to studyetdynamic behavior of a lock gate is
formally similar to what has already been doneeaatisn 7.4.2. Once again, it is postulated
that the displacementgy, z, t) andw(y, z, t) occurring in the plane of the gate are related to
the transverse ones by (7.66). Furthermore, dubeanalytical results detailed in 8.2, the
out-of-plane component may be decomposed by ubmdry modes shapég(y, z) given by
(8.2):

N
w020 = ) 40502 (8:40)
j=1

J

where N is the number of dry modes considered in the summarocess. By comparing
(8.40) with (7.67), it can be noticed that these ®qguations are dissimilar, as the wet modes
A;(y,z) are not used this time. This choice is justifiedhe section E.2.1 of Appendix E.2,
where it is shown that working with the dry or webperties is equivalent. Moreover, by
looking at (8.2) and (8.40), it is clear that wardiwith A;(y, z) would add a new summation
term, which turns out to be very fastidious.

According to the virtual work principle, equilibriu is guaranteed by equating the internal
and external virtual works performed during anyekmatically admissible displacement
du(y, z,t). In the present case, this theorem has to beeappérefully because the functions
Y;(y,z) used in (8.2) are only pseudo-admissible. As dised in section E.2.2 of Appendix
E.2, this may have some consequences on the egactfighe solution and keeping this
particularity in mind is quite important. In suctsiguation, the classical way to proceed is to
choose a virtual fielddu(y,z,t) that is homothetic to the sought approximate smiut
u(y, z,t). So according to (8.40), one should have theoilg definition:

N
6u2,0) = ) 6q(D8.2) (8.41)
k=1

As the dry modes are reputed to be kinematicalljnmatible, this is also the case for
du(y,zt) and (8.41) may therefore be used in conjunctioti \(8.40) in the virtual work
principle. These operations are detailed hereafter.

8.3.2.1. Internal virtual work

The total virtual amount of internal energy dissgoh by the gate has three different
contributions. The first one is of course comingnirthe plating, while the second and third
ones are respectively due to the horizontal anticagéreinforcing elements, i.e.:

SWine = SW, + Wy, + 6, (8.42)

As the plating is bent around its mean surfacis, abvious that (7.71) is still holding, so this
formula can be directly reused to evaluéi€,. Concerning the stiffeners, it is easy to show
that the deformation energies associated to theseb are simply given by:
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l

Ny h
0%ud?*su 0%ud?su
Jﬁ?dz ;o oW, = Z Elyn Ja_yza_yzdy (8.43)
Y=yn n=t z=z

Nh
6Wh = 2 Elh,n
n=1 0 0

Furthermore, consideriny mode shapes in (8.40) ad pseudo-admissible functions in
(8.2), one may write:

- “n

1

N M N M
0,20 = ) qO ) v 0.2 5 A= ) 8q® ) vah(D)  (844)
j= r=1 k=1 s=1

If (8.44) is introduced in (7.71) and (8.43), thers possible to expressaV,,,; under a more
formal decomposition:

N N M M
Wine = Z 8qy 2 qujk ’ Ujk = 2 Z 177'jl7rsvsk (845)
k=1 j=1 r=1s=1

where the matriU] was already encountered in (8.29). It is worthingpthat the dominant
terms in (8.42) aréW, and W, which means that the main contribution to thesrimal
energy is coming from the reinforcing elements.sTéan be easily understood with help of
the comments made in section 8.2.3.3, where itpoasted out that the inertidg,, andl, ,
characterizing the beam cross-sections were shgivitrestimated. Due to the relation given
in (8.43), this may also be the case éd¥,, andéW,, so it is to fear that the internal energy
tends to be overestimated while applying the virtuerk principle. Concerning the
contribution §W,, provided by the plating, this one is attemptedbeo relatively modest,
particularly because of the small values of thekihesst,,.

8.3.2.2. External virtual work

The external dissipatiodW,,; is due to the work performed by several actionsnduthe
virtual displacemendu(y, z,t) and can be evaluated by proceeding in a very aimilanner
than in section 7.4.2.2, so the all derivation pescwill not be described here. In fact,
referring to (8.39), it can be seen that variousigehave to be dealt with:

« The external work performed by the inertial for@ding on the plating: these forces
correspond to the first term in (8.39) and haveftlewing contribution toadW,,.;:

hol
—ffptp(il+)'(') du(y, z,t)dydz (8.46)
00

« The external work associated to the damping fotfcaisare proportional to the mass and to
the stiffness of the plating. These forces aregeded byf,;(y,z,t) in (8.39) and it is
obvious that they have the subsequent contributidi,,,.,:

h 1
- f J fa(,z,t) 6u(y, z, t)dydz (8.47)
00

» The external work of the forces modeling the actidthe horizontal reinforcing elements
on the plating, which only corresponds to a panf,gf in (8.39). In fact, going back to the
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definition (8.38) off}, ,, it appears that it was already accounted fordtiftness term
El,,0*u/0z* while dealing with the internal energgW, in equation (8.43).
Consequently, the contribution &, is simply:

-2,

n=1

921 0%5u
f pAhn(u +X+cru)6u+,8Elhna 2 3,7 dz (8.48)
y=y

0

-Jn

» The external work of the forces coming from theticat stiffeners, which is only a part of
fon in (8.36). As it was already accounted for thentéil,, ,0*u/dy* in (8.36) through
6W,,, the contribution is as follows:

h
e . %1 0%5u
J PAy (u +X+ au)&u + ,[)’EI,,_na—yza—y2 dy (8.49)
y

ny

n=11|o

=Yn

The last term to consider in (8.39) is the totadidmglynamic pressung(y, z, t). As mentioned
earlier, the analytical formulae giving the flexabdnd rigid parts op(y, z, t) are exactly the
same as those encountered for a unstiffened fqgteations (7.7) and (7.8) are therefore still
valid when dealing with a lock gate, which impliggst the external work associated to the
pressure may still be derived by applying (7.78).

So finally, the total virtual work performed by d&fe external forces acting on the structure
has to be found by summing up equations (8.46)8td9) with (7.78). As soon as this
operation is completed, it is still required to d®p explicitly §W,,; as a function of the
unknown coefficienty;(t) by introducing (8.44) in all of the above-mentidneontributions.
Doing so is quite fastidious but once all the clttans are donejW,,; can be written in the
same condensed form than (7.80) in whigh W;, andV, are evaluated by applying the
following results:

M

M M
]k = z Z Urj rsvsk ; Vij = Z Z rsvsk ;o k= z 17skf/\'k (8.50)
T: =

r=1s= s=1

where the matri{T] was introduced previously in the Rayleigh-Ritz hogt As for the
dynamic analysis of an unstiffened plate performmesection 7.4, the teri;, represents the
fluid-structure coupling and has an expression thdormally similar to (7.81). The matrix
[W] has not been encountered yet but is defined eygsetion E.2.3 of Appendix E.2):

+00 +o00 hs 1
= D el 1= [ [ cost@y costmdy dz (851)
n=1m=0 0 0

The last tern¥, in (8.50) gather some contributions of the extefoi@es. The vectoV may
be derived by adding the following result:

Np L ny h
- z .DAh,n J- l/}s(yn: Z)dZ - Z .DAv,n f 1/Js(y: Zn) dy (852)
n=1 0 n=1 0

to equation (7.82), in whichA,(y,z) has of course to be replaced $y(y, z). Even if the
derivation is rather fastidious, all the previoesuits provide an analytical way to evaluate
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the external virtual worl6W,,.. Here again, the main contribution comes from ittestial
forces acting on the stiffening system.

8.3.2.3. Global equilibrium equation

With the developments presented in the two prevemdgionsdW,,, andéW;,: can finally
be equated, which reflects the global equilibriuihthe gate during the seismic event. Doing
S0, one gets an equation that is strictly sima(7t85):

(IT1 = WD@®) + (a[T] + BIUDG(t) + [Ulq(t) = V() (8.53)

but where[U], [T], [W] andV have the definitions proposed in (8.45) and (8r&6pectively.
For a given time evolution o (t), (8.53) may be solved by applying the Newmark
integration method. This leads to the coefficiegt§), which allows to rebuild the
displacement.(y, z, t) with help of (8.40) and provides a complete solutio the problem.

It is worth bearing in mind that the solution obtdl by the preivous approach is not
theoretically satisfying, as it does not verify tloeal equilibrium equation and violates the
static boundary conditions along the free edgeselher, as discussed in section 8.2.3.3, the
method tends to overestimate the stiffness of #te. g hese restrictions are important, as they
may have some implications on the exactness akethdts.

8.3.3. Numerical validation

The goal is now to check if the analytical procedaletailed here above may lead to a
reasonable approximation of the total hydrodynapnéssure induced on a lock gate during a
seism. In order to have a practical example, graposed here to work again with the first

gate presented in 8.2.3 and depicted on Figurewdtid,the sectional properties of Table 8.3

and the material characteristics of Table 8.2. @frse, many other configurations were also
tested, but for conciseness, all the results ateepmrted here. The parameters defining the
fluid are still those listed in Table 7.1.

The finite element model has the same particudarifis the ones detailed in section 7.4.3.1.
The two gates delimiting the lock chamber are regméed together with the fluid enclosed
between them. Here again, the liquid is modeledraslastic medium and the fluid-structure
interaction is provided through the contact aldontofLS-DYNA.

Concerning the gate, the plating is modeled witlyt8ehko-Tsay shell elements [66]. To
reduce a little bit the size of the model, the fi@icing system is not explicitly represented
with shell elements, but rather with Hughes-Liurhed66]. The structure is stabilized by the
boundary conditions described in 8.1.2 and its edppare submitted to the longitudinal
acceleration of Figure 7.13. Two different numdrisenulations have to be performed to
account for the presence or the absence of a sill.

The lock chamber is assumed to have a total lehgith50 m and is filled with water at a
level hy of 8 m. Of course, a length &0 m does not seem realistic for a traditional lock
configuration, but it is worth recalling that thenclusions of sections D.1.2.3 and D.2.2.2 are
still valid here. Consequently, &> 3h,, all the results presented hereafter are als@qibyf
valid for any lock chamber with a more importanhddudinal extension than the one
considered here.
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8.3.3.1. Case of a gate supported at the bottom

To corroborate the analytical results derived byngighe virtual work principle, they will
confronted to those obtained numerically. As a emnait validation, the idea is to compare the
total resulting hydrodynamic fordé(t) applied on the wall during the seism, in excesthé¢o
hydrostatic pressure. The definition Bft) is given in (7.90) and the results are plotted on
Figure 8.15 for the situation where gate 1 is ngstigainst a sill. These curves are obtained
with Ls-DYNA by imposing & % damping on the two first modes of vibration.

Analytical Numerical Rigid Relative difference Ratio

solution F; | solution Fy | solution Fg |1 — Fp/Fyl Fr/Fg
Maximal value | 1114.6 kN 1382.8 kN 375.2 kN 19.4 % 2.9
Minimal value | —1259.9 kN | —1417.6 kN | —517.1 kN 11.1% 2.5

Table 8.6. Comparison between the extreme values for gate 1 supported by a sill

It is worth recalling that if a sill is presentgtbhoundary conditions imposed at the bottom of
the lock chamber are such that both the positiveregative displacements along thaxis

are prohibited at the support. As discussed in@e&. 1.2, this is not necessarily coherent as
only the positive translations should be blocked.

Nevertheless, as the analytical solutions have ldeseloped under the hypothesis of a full
translational restraint, it is probably interestitagcheck their validity for such a boundary
condition. The case of more realistic restrictiorls be investigated later on.

As shown by Figure 8.15, there is a quite good exgent between the numerical and
analytical results. Unfortunately, from this anadyst transpires that the simplified approach
tends to underestimate the hydrodynamic pressureason could lie in a wrong evaluation
of the structural stiffness (as explained in 832).,3which can lead to a poor approximation of
the proper accelerationgy, z, t). Because of (7.8), this will also be the casether flexible
hydrodynamic pressure.

This tendency is confirmed by the extreme valug®nted in Table 8.6, where it is shown
that the analytical prediction of the maximal réisigl pressure is more or 1e29 % lower
than the numerical one. The agreement is bettetHerminimal values, with a relative
difference of11 %. Such discrepancies seem however to remain qodepéable for a pre-
design stage.

Another interesting comparison made in Table 8.felated to the flexibility of the gate. If
the structure were considered as being perfectid,rithen the total maximal resulting
pressure derived in this case would be more or3esmes lower than the one obtained by
accounting for the flexibility. This points out timecessity of considering the real stiffness of
lock gates to perform the seismic design.

8.3.3.2. Case of a gate free at the bottom

Let us now investigate the situation where noisifiresent. In this case, the gate is free at the
bottom and no restriction is made on the positiveagative translations along thexis.

The analytical and numerical curves showing theuwtam of the total hydrodynamic force
F(t) are represented on Figure 8.16, from which theeeagent appears to be quite
satisfactory, even if discrepancies are sometinéseable.

223



Resulting force (kN)

Resulting force (kN)

CHAPTER 8. Seismic analysis of plane lock gates

---- LS-DYNA —— Analytical

RN )
|

AR NI s VAR YRR
w11 i “”WW"AUAVAV“"AWVV\MVU ikt

-500

1500

1000

-1000

-1500

1500

1000 | ﬁ

A 1]

500 4

{47 1 Do q"a' 10
j uﬁﬂﬁﬁwy‘\ ““'}\“Y% ﬁ‘f\fﬂ \JAVA"" \”A"ﬁv"n\

-500 M i v y j
u 9 ; 1l

]
vty
’ i
V t(s)
7 7,5 8 8,5 9 9,5 10 10,5 11 11,5 12 12,5 13 13,5

_ " L
P
R
=]
=]
]

-1000

-1500

Figure 8.15. Analytical and numerical evolution of the resulting hydrodynamic pressure on gate 1 supported by a sill
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Figure 8.16. Analytical and numerical evolution of the resulting hydrodynamic pressure on gate 1 free at the bottom
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Another observation from Figure 8.16 is that themified approach tends this time to be
conservative, which is confirmed by the values abl€ 8.7. Indeed, it can be seen from this
table that the analytical prediction of the maximassure is more or le8%6 higher than the
one given by S-DYNA.

Analytical Numerical Rigid Relative difference Ratio

solution F; | solution Fy | solution Fg |1 — Fr/Fyl Fr/Fg
Maximal value | 2085.4 kN 1936.1 kN 375.2 kN 7.7 % 5.6
Minimal value | —2020.8 kN | —1834.2 kN | —517.1 kN 10.2 % 3.9

Table 8.7. Comparison between the extreme values for gate 1 free at the bottom

Furthermore, comparing the results of Table 8.6 Balale 8.7, it can immediately concluded
that the pressure is higher when no sill is preséhis is probably due to the fact that the
structure is more flexible in this last situatiomhich can lead to increased proper
accelerationgi(y, z,t). Due to (7.8), the flexible hydrodynamic presstokows the same
tendency. The direct consequence of this last gagen is that considering the gate as being
perfectly rigid is not realistic at all. This isrcoborated by Table 8.7, where it is shown that
the pressure derived under such an assumption vieultt leasb times lower than the true
one.

8.3.3.3. Discussion of the results

The results presented on Figure 8.15 (if a sifiresssent) and on Figure 8.16 (if the gate is free
at the bottom) show a quite good agreement witlsdhobtained from finite element
simulations. Nevertheless, in order to be sure that analytical approach is entirely
satisfactory, as claimed in 8.3.2, it is worth rembering that this solution is arguable on a
theoretical point of view. Therefore, to check tansistency of this approximate method,
some additional verifications still need to be aactdd. These ones are presented in section
E.2.2 of Appendix E.2 and show that the analytiggiroach is quite satisfactory.

As a final remark concerning gate 1, it should bentioned that finite element simulations
were also realized for a lock chamber with a lengtaf 150 m. The total hydrodynamic
pressures obtained for this configuration were \wboged to those presented here above. The
only difference lies in an important increase & tme needed bys-DYNA to perform the
calculation. Once again, this tends to corrobothte conclusions of section D.2.2.2 and
shows that is sufficient to work with a truncatedtf the fluid domain.

8.3.4. Added mass method

The added mass method was previously introduced.4™, where its limitations were
already stressed. However, in this previous sectoty the case of unstiffened plates was
investigated. Even if these ones were already dhitd, they do not have the same stiffness
as real lock gates, which are attempted to beflesible. As the fluid-structure interaction
was found to be decreasing with the rigidity (seetisn D.2.2 of Appendix D.2), one may
believe that the added mass method is still reletcatreat this kind of stiffened plates. Once
again, thinking this way is only valid under thepbyhesis of having a sufficient stiffness. For
example, in the paper of Forsyth and Porteous [B8]added mass approach was applied to a
lock gate with a double plating and a quite impgsieinforcing system. The total width of
the structure (along thedirection on Figure 8.1) was of abdiin. With a such rigidity, it is
clear that the methodology could be adequate,thsitniot always the case. The purpose here
is to illustrate this observation with an example.
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Figure 8.17. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method for gate 1 supported by a sill
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Figure 8.18. Comparison between the numerical results obtained by modeling the fluid or by using the added mass method for gate 1 free at the bottom
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To do so, the first gate introduced in 8.2.3 (F&y@®.7) is considered. As a matter of
comparison, it is focused here on the total pressating in the middle of the gate (i.e. in
z =1/2) given by (7.97). The corresponding results actt@tl on Figure 8.17 for the case of
a gate supported by a sill. It can be seen thattleecurves are quite dissimilar, but the
convergence may still be eventually satisfactonydovery early design stage. This is also
confirmed by the values listed in Table 8.8, whéarappears that the maximal relative
difference is around0 %.

Gate 1 supported by a sill Gate 1 free at the bottom
With a fluid | Added mass Relative With a fluid | Added mass Relative
domain approach difference domain approach difference
Maximal value 106.59 kN 67.13 kN 371 % 196.86 kN 67.03 kN 67.1%
Minimal value | —116.69 kN 70.48 kN 39.6 % —192.36 kN 64.07 kN 64.1 %

Table 8.8. Comparison of the extreme values for the added mass approach

When starting the design of the gate, it is propahlfficient to have a good order of
magnitude for all the forces acting on the struetiven if an error o0 % seems to be
rather problematic, one may argue that it is stdteptable if the seismic action is not
predominant regarding all the other forces appleed the structure. In fact, the main
advantage of working with lumped masses is thaafipgroach allows for a drastic reduction
of the time needed to perform finite element sirtiates. In the present case, by comparison
with the simulations where the fluid domain is esi®ely modeled, the time required to get
the results with the added mass method was appabeiyndivided by one hundred. But one
has also to consider the time needed to build théet which is much more difficult to do if
the water has to be represented. This explainswging lumped masses is sometimes quite
popular.

Let us now consider the situation where the gatetaly free to move at the bottom of the
lock. In this case, the curves showing the timeldian of the resulting pressure force in
z = 1/2 are depicted on Figure 8.18. This time, it is ckbat the added mass approach fails
to correctly stand for the fluid-structure intefant This is also corroborated by the values
listed in Table 8.8, where it can be seen thatréiative error may reach5 %. Such an
underestimation of the seismic pressure does r@hde be acceptable (even at the early
design stage), which is not surprising. Indeethef gate is no longer supported by a sill, it is
therefore more flexible. As stated in 7.3.3.3, theads to an increased fluid-structure
interaction that cannot be correctly captured lgylttmped masses.

As a conclusion, it is worth recalling that the addnass method was initially developed to
analyze the seismic behavior of dams, which arehnmuare rigid than lock gates. Even if the
approach is computationally seducing, one has & be mind that its validity is directly
related to the stiffness of the structure. If tleibility is too important, working with lumped
masses may lead to drastically underestimated wpadssures. As an alternative, the results
given by the simplified approach (see Figure 8.8 &igure 8.16) provides a quite good
approximation in a very short time and without mgvio build a finite element model.
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8.4. Conclusions

In this chapter, a simplified method was proposeavaluate the hydrodynamic pressures
acting on a flexible lock gate. To achieve thislgtiee dry modal properties were first derived
by applying the Rayleigh-Ritz method to a structon@de of a single plating and reinforced
by an orthogonal stiffening system. The analytieaults were validated for different gate
configurations by comparing them with those givertlie finite element softwanmeasTRAN.

In all the cases, the agreement on the dry eiggudérecies and eigenmodes was found to be
sufficient for a pre-design stage.

As a second step, the total hydrodynamic pressttiegaon lock gates during a seism was
evaluated in section 8.3. To do so, the virtual kvprinciple was applied to perform the
dynamic analysis and numerical validations werevipied for a gate free or supported at the
bottom. Here again, the discrepancies with theltesibtained with the softwanes-DYNA
were found to remain quite satisfactory.

In addition to these analytical and numerical depelents, further investigations were
conducted to provide more practical information wthihe seismic design of lock gates. The
conclusions can be summarized as follows:

e As for rectangular flexible reservoirs, the lendthldoes not have any influence on the
fluid-structure interaction, provided that > 3h,. Consequently, for the numerical
simulations, there is no need to have a completdefing of the whole lock chamber.

* Even if applying the added mass method is quieggtitforward, such an approach should
be avoided when dealing with the seismic desigloci gates. Indeed, as pointed out in
section 8.3.4, this method could lead to a drastiderestimation of the hydrodynamic
pressure.

All the developments performed in sections 8.2 &3dare strictly valid for an ideal situation,
in which the upstream and downstream gates areqgibriidentical. Furthermore, if a sill is
present, the boundary conditions applied at théobotof the lock may be arguable. In
addition, it is worth noting that the simplified thed do not account for the surrounding
water present in the reaches and that the othep@oemts of the seismic action have not been
considered so far. In fact, for conciseness, as¢hparticular points have been discussed in
Appendix E.3, where some indications are given alto& way to include them within an
analytical approach.

The different considerations detailed here abowsvsihat performing the seismic design of a
lock gate is a quite arduous task, even on a ngalguoint of view. The results presented in
this chapter aim to provide some information onwag this operation should be achieved.
The analytical method suggested here can be usadpas-design tool, but it is likely that
numerical simulations are still needed if morenedi solutions are desirable.
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9.1. Scientific developments

The purpose of this second part is to provide ayéinal evaluation of the hydrodynamic

pressures induced on a plane lock gate reinforgednborthogonal stiffening system. As a
complementary information to the conclusions dethih sections 7.5 and 8.4 of chapters 7
and 8 respectively, we would like to emphasize sparticular achievements related to the
seismic analysis of lock gates. The main developsparformed in the framework of this

thesis may be summarized as follows:

» The analytical procedure starts by the evaluatibrthe modal properties, which is
achieved by applying the Rayleigh-Ritz method. €lgezenmodes of horizontal and vertical
beams are chosen as generating functions, but daming not entirely satisfactory on a
theoretical point of view because the boundary tmw$ are not fully respected (Figure
8.5). Furthermore, having an accurate evaluatiothefvibration properties also depends
on the inertia affected to the stiffening systengyFe 8.13).

» Besides the previous theoretical difficulties, lmynparisons with finite element solutions,
it is found that the simplified approach leads lighély overestimated eigenfrequencies,
but the discrepancies remain acceptable. Similadgye divergences are also observed on
the mode shapes (Figure 8.11) because of thedotiah of the reinforcing system.

* On an analytical point of view, the dynamic anayisi performed by applying the virtual
work principle in which the external forces are abéd by summing the pressure,
damping and inertial forces. The equations are tteareloped to get a matrix formulation
of the structural equilibrium. This one is solved the Newmark integration scheme
(section 8.3.2), which leads to the time evolutibthe hydrodynamic pressure.

* On a numerical point of view, finite element modate developed with the softwars-
DYNA. It is suggested to model the water with conssamss solid elements affected by a
particular elastic material law with no shearingctgon 7.4.3.1). Classical beam and shell
elements may still be used for the gate and thd-ftructure interaction is simulated by
the penalty contact algorithm o$-DYNA. The consistency of this approach is checked by
comparing the numerical results with the well-knotineoretical predictions for rigid
reservoirs (section D.2.1 of Appendix D.2).

* In order to simplify the finite element simulations is suggested that the fluid domain
does not need to be entirely modeled. Indeed,%f 3k, (L being the length of the lock
andh, the water level), it is demonstrated analyticaltisgt L does not have any influence
on the hydrodynamic pressure induced on the gatmséuently, for the numerical
simulations, the fluid domain can be truncatedradteength of3h (Figure 7.18), which is
particularly interesting to reduce the modeling aaltulation efforts.

e Comparisons between the simplified method andefielement simulations show that the
agreement is quite satisfactory (see Figure 8.15ekmmple). Of course, this tends to
validate the present analytical developments, big &lso corroborates the numerical
models used withs-DYNA.

» The classical added mass method based on the \¢&stdrformula [166] is investigated
in details. Comparisons with analytical and nunargolutions show that this approach is
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not conservative and should be avoided for flexgttectures. The main reason is that the
fluid-structure interaction is not correctly assbdy adding lumped mass on the gate. As
an example, it is observed (Figure 8.18 and Tab® &at the maximal resulting
hydrodynamic force may be underestimated by if this procedure is followed.

In addition to all the previous points, some intimas are also given on the way the vertical
and transversal seismic accelerations should batette analytically. Similarly, some
numerical and analytical considerations are presktd account for the water present in the
upstream and downstream reaches, but this topiatigeated in details.
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9.2. Perspectives

The results obtained through the analytical apgratescribed in this second part of the thesis
are the modal properties of a lock gate and the grolution of the hydrodynamic pressure.
The purpose is now to indicate how they can be tmetthe seismic design of a lock gate.

The principal concern for the seismic numericatgtaf a lock gate leads in the modeling of
the surrounding water. Various techniques are abig| such as those relying on acoustic
elements, arbitrary Lagrangian-Eulerian methodisfortunately, building these models may
be sometimes arduous. For example, if corners arpshngles are located on the fluid-
structure boundary, this may cause problems relatdtliid leakage. If this is the case, the
water can penetrate into the solid domain, whicbfisourse not acceptable. Typically, such
difficulties may arise at the corners of a resatvBo building a consistent finite element
model is not necessarily straightforward. In aadfiit is also worth mentioning that due to
the dimensions of the lock chamber, the numerigadieh may be quite heavy and therefore
prohibitive regarding the computation and calcolaifforts.

The previous reasons explain why simplified meshlegthods may be quite successful, as
they do not need the fluid domain to be represeatetitherefore circumvent the difficulties
mentioned above. One of these techniques is osedhe classical added mass approach, but
it is not conservative for flexible structures. Gequently, the simplified method developed
in chapters 7 and 8 may appear to be a more relialtérnative. Indeed, going back to
equation (8.39) expressing the dynamic equilibriithgppears that the situation is strictly
similar to the one of a lock gate submitted tofthwing external force:

np ny
fext(y'z' t) =—p tp + 2 Av,n Hn(z) + 2 Ah,an(Y) X(t) - p(y' Z, t) (91)
n=1 n=1

which is nothing else than the sum of the hydrodyimapressurep(y, z, t) with the inertia
terms coming from the ground acceleratidft). In other words, as depicted on Figure 9.1,
the seismic analysis where both the structure aedwiater are represented can simply be
replaced by a dynamic one, in which the lock gatenly submitted t¢,,.. (v, z, t).

Yy Yy
A A
— -
pE—
| [\
— > —
| fext
e — |
D—
. ﬁ
7/
D —
Samm—
} > X s ¢

Figure 9.1. Simplified seismic analysis of a lock gate

This way of doing should drastically reduce thecgkdtion and modeling efforts, allowing for
a more efficient integration of the seismic actwuring the pre-design phase. On a more
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practical point of view, it is reasonable to beéethat some applications can be found in
design offices dealing with hydraulic constructions

Regarding the extension of the simplified analytaggproach, it may be of interest to present
some possible developments that could be achiéwedgh further research:

» Derivation of the mathematical formulae to accdiantthe hydrodynamic pressures in the
downstream and upstream reaches. Some indicatmng this topic are already presented
in sections E.3.3.1 and E.3.3.2 of Appendix E.3emhthe remaining task is to apply the
virtual work principle to get a matrix formulatiasf the equilibrium equation. Although
this operation is still quite fastidious, it shoudhd to a more complete analytical method
that could be validated by applying the recommendatsuggested in section E.3.3.3 of
Appendix E.3.

» Extension of the analytical procedure to the otteanponents of the seismic acceleration.
So far, only the longitudinal one is consideredt far the sake of completeness, the
transversal and vertical motions should also batere Although the gate is quite rigid in
these two directions, these latter may be howexpeaed to have an influence on the
resulting flexible pressures. Some indications albloig topic are already given in section
E.3.4 of Appendix E.3.

« Investigations on the influence of the real suppoftthe gate. Of course, the boundary
conditions used for the analytical derivation dd ewactly reflect the real situation. This
topic is briefly discussed in section E.3.1 of Apgix E.3 for the particular case of the sill.
However, it is clear that a similar questioning mbhg hold for the lock walls.
Consequently, having a deeper numerical investigatiat accounts for the real contact
conditions could be of interest.

« Extension of the simplified method to other lockega So far, only the case of a plane lock
gate with an orthogonal stiffening system is trdat& challenging goal could be to
perform similar developments for mitre or sectorega(Figure 5.1a), but this is probably
too ambitious. Indeed, having a consistent evalnatf the modal properties for such
structures seems to be quite illusory as the RglylRitz method requires realistic
admissible functions. However, a more reasonabjectise could be to adapt the method
to lock gates with a double plating (Figure 5.1b).

The subjects mentioned here above show that someopenents are still required to have a

complete assessment of the seismic pressure amtidane lock gates. Furthermore, some
other possibilities could be examined to extendoiteeedure to other simple configurations.
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APPENDIX A. Addendum to Chapter 2

In this short addendum to Chapter 2, additional information is presented to
complete the theoretical background related to the analytical derivation of the
collision resistance.

Appendix A.1 presents the European classification of the inland waterways, which
provides some practical information about the choice of reasonable values for the
mass of the striking vessel.

In Appendix A.2, the total and actualized lagrangian formulations are briefly
discussed in the optic of establishing consistent formulae to evaluate the internal
energy rate in the upper-bound method. A simplified approach is also presented for
the plastic regime.

kksk
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APPENDIX A. Addendum to Chapter 2

Type of inland Class Motor vessels and barges Pushed convoys
waterways
Maximum
Maximum Maximum Draught Maximum | Draught
length (m) beam (m) (m) Tonnage (t) Arrangement le(r;g)th beam (m) (m) Tonnage (t)
ol 5 I 38.5 5.05 1.8-2.2 250 - 400
= 7 o
8 <2 11 50- 55 6.6 2.5 400 - 650
S 2 ™
g & 1 67 - 80 8.2 2.5 650 - 1000
R I 41 4.7 1.4 180
S| 2,
|l 2= Il 57 7.5-9 1.6 500 - 630
S o s
© = 11 67-70 82-9 1.6 -2 470 - 700
v 80 - 85 9.5 2.5 1000 - 1500 L 85 9.5 2.5-2.8 1250 - 1450
Va 95-110 11.4 2.5-2.8 1500 - 3000 L 95-110 11.4 2.5-4.5 1600 - 3000
3]
g Vb -] 172-185 114 25-45 | 3200-6000
2
E Via - 95-110 22.8 25-45 | 3200-6000
=
=
= Vib m | | 185-195 | 228 25-45 | 6400 -12000
£
E -
= | | 270 - 280 22.8 2.5-45 | 9600 -18000
© Vic |
-‘ 195-200 | 33-342 | 25-45 | 9600 -18000
VII 285 33-34.2 | 25-45 | 14500-27000

Table A.1. Classification of the European waterways [55]
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A.2. Appendix A.2

This appendix recalls some expressions that afeluseevaluate the internal energy,, and
energy rateE;,,,. As in section 2.3, it is assumed that a solidiéformed from its initial
configuration(), to the current on@ (Figure A.1). The displacement and velocity fiekds
measured fronf), and are respectively designated dyand . It is worth noting that no
hypothesis is made so far on their magnitudes, ineans that the developments performed
here are also valid for finite displacements.

A.2.1. Definition of the strains

Denoting by (X;,X,,X3) and (x;,x,,x3) the coordinates of each point @, and Q
respectively, the transformation of the solid carcharacterized by the following relation:

x; (X1, X5, X3) = X; + u;(Xq, X5, X3) (A1)

whereu; are the components of the displacement vertoWith these notations, it is now
possible to define consistent equations to detreedeformations. Within the frame of large
displacements, these latter may be evaluated greiit manners, but only the Almansi and
Green-Lagrange strain tensors will be invoked here.

X2, X2
A

u:

» X1, x1

3?
X3, X3
Figure A.1. Transformation of a solid from its initial configuration to the current one

Let us consider a small element having initiallyeagth dL (Figure A.1). In the current
configuration, this one is changeddb The transformation can be characterized by tle tw
following strain definitions:

* The Green-Lagrange strain ten$Bf is a way of measuring the deformations with respec
to the reference configuration. If this latter osen as being,, then the componenk;
of [E] are defined as follows:

dxkdxk - kaka
dX,dX,

* The Almansi strain tensdn] is a way of measuring the deformations with respec¢he
current configuratioi). The components;; of [a] have the following definition:
_ dxkdxk - kaka

dlz _ dLZ = Zaijdxidxj = aij = dxl-dxj (A?))

238



APPENDIX A. Addendum to Chapter 2

By introducing (A.1) in (A.2) and (A.3), it is pabte to express the strains as a function of
the displacements;. Doing so leads to:

o L(0w 0w 0w Oux _1(0w 0w 0w 0w
Yoo2\0x;  ox;  0X; 0X;

an axi axi ax] (A4)

aij = 2
where it is important to bear in mind thatis defined from the reference configuration
(chosen here as beilfil) to the current on@. In the optic of establishing a relation between
[E] and[a], the jacobian matrikF] can be introduced:

rdx,; O0x; 0xq]
0X, 0X, 0X;
dx, 0Jx, O0Ox, d0x; Ju;
F] = Fii=—=6;; +=—
FI=13x, ax, ax,| < Fu ax, % T ox;
dx; 0Ox3 O0Ox;

0X, 08X, 0Xs

(A5)

in which §;; is the Kronecker symbol. Similarly, denoting ]~ the inverse matrix ofF],
it can be shown that:

10X, 0X; 0X;
dx; Ox, O0Jx;
OXZ 6X2 6X2 _ (')Xl aui

F_1= F1=—=8—_ .
[F] 0x; 0x, 0x3 =1y ox; 7 0x; (A.6)
0X; 0X; 0X;

[ 0x; O0x, 0Ox3l

In fact, [F] links the initial coordinates to the actual oned aan therefore be used to relate
E;; ande;;. It is possible to show that:

[E] = [F]"[a][F] © E;; = FyijaxFj; (A.7)

where [F]T is the transpose of the jacobian matrix. This laguation can be easily
demonstrated by introducing (A.4) and (A.5) inta{A

A.2.2. Definition of the stresses

The internal forces acting inside the deformeddsatiay also be characterized by various
stress tensors, but only two of them will be introed here. Let us consider a small
tetrahedron ofQ, (Figure A.2) constructed on three vectdes, e,, e;) that are unitary,
orthogonal and parallel to the reference b&Xis X,, X3). These latter are engraved on the
solid and therefore follow its deformations. Wheaving fromQ, to (, they are transformed
into the vectorgg,, g., g;) that are not necessarily unitary and orthogonwirenme.

The components of the internal forces acting orhdace of this small tetrahedron may be
expressed either by usir{g,, e,, e3) or (g1, 9., g3). Furthermore, to get the corresponding
stresses, one can choose to divide these compadomenite initial or deformed area of each
face of the tetrahedron. This allows for the folllogvdefinitions [157]:

* The Cauchy stress tenspr] is a way of defining the stresses along the rafsreaxes
(eq, e,, €3), but with respect to the actual area of the caircenfiguration().
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» The second Piola-Kirchhoff stress ten$8f is a way of defining the stresses along the
actual axe$g1, 9., g3), but with respect to initial area of the referenoafiguration(,.

X2, x2
g2 Y
0 T T ‘\
62 / A/4 ///
5’/ g3 < ///
‘ -
N
es o
/ » X1, X1
X3, X3

Figure A.2. Stress tensor definition

As for the strains, it also possible to use theljgan matrix[F] to get a relation between
these two tensors. It can be shown [157] that:

1
fo] = £ FIISIFT" & 0y = % FucSuaFy (48)

whereF = det[F]. Now that the relations defining the stresses aedsthains are available,
the next step is to evalualig,, andE;,;.

A.2.3. Derivation of the internal energy

The internal energ¥;,; associated to the deforming solid of Figure A.lyrba expressed
either in the reference configurati€y or in the current one. Let us start by first cdesing
Q, and try to derive the corresponding equatioflirReferring tof),, the internal energy is

defined as follows:
Eine = fvf f [S[EldV = fvﬂ SyEydV (A.9)

whereV is the initial volume. In order to develop (A.9jthvrespect td) this time,S;; andE;;
can be transformed by making use of (A.7) and (AD®)ing so leads to:

Epne = j j j F(F0aF ) (Fnimm Py )dV
v (A.10)

4 Eint = -U] O'klamn(FmiFiTcl)(Fnijzl)dv

v

where v is the volume of the actual configuration. Thet lstep in (A.10) is due to the
definition of the determinant of the jacobian matisdv = FdV. This property allows to
integrate over the actual volume, so (A.10) is edl@n expression di;,; in the current

configuration. But this last equation can stilldaaplify by noticing that:

_ Oxpy

0X;
Fmi - % l

' _ _0xp 0X;  Oxpy
ax; = % T ax,

T 0X; Oxx  Oxy

le‘FJcl = 6mk (All)
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and the same development can be donerfgf;' = 6,;. Consequently, substituting these two
results in(A.10) leads to:

Eipe = fﬂ Ok13mn Omi Oy dvV = fﬂ ojja;jdv = Jﬂ[a][a]dv (A.12)

v v

As a conclusion, it can be said that regardingaveduation of the internal enerdy,,;, the
second Piola-Kirchhoff stress tendsi] is conjugated to the Green-Lagrange strain tensor
[E], while the Cauchy stress tengot is conjugated to the Almansi strain tengdr

A.2.4. Derivation of the internal energy rate

As for E;,,;, it is also possible to define the internal enaajgE;,,, in the reference and actual
configurations. Considering, first, the evaluation of;,, can be performed by using the
Green-Lagrange strain rate tengBi that is simply found by taking the time derivatiog
(A.4):

1/0u; O0u; Ou,du, Jugdu
<—‘ LKk X ") (A.13)

Ej=< +
Yoo2\0X;  0x; 0X;0X; 0X; 0X;
It is worth noting that it is correct to permute ttime and the spatial derivatives in (A.13) as
the initial coordinategX,, X,,X3) do not vary with time. The internal energy ratethe

reference configuratiofl, is then found by multiplying the second Piola-Kinoff stress
tensor with the one introduced here above:

Eine = M[S][E]dv - W syEydv (A14)

The transformation of (A.14) to get the expressimmnE;,, with respect toQ is not
straightforward. In this optic, (A.8) can first letroduced in (A.14) anf'i]- replaced in
accordance with equation (A.13). Doing so provittesfollowing results:

. 1 on; (')u Ju, ou, OJu,du
) —_ -1 -1 L _] T T T T
Bt ZW F(Fic ol )< T ox; ox, T ox, ax,-)dv

au; (')u] ou, du, Ou,.0u,\ _, _
@Emt fff Ukl( +6X é)X +a—)(la—)(] FjllFikldv

(A.15)

In order to simplify this last relation, one camsmler the definition of the inverse jacobian
matrix given by (A.6) to get:

11 0% 0Xj0u; 00U Ju;\ 0u; 0wy Oy aul
° szFj ik 3o 3y, lik 3= \%k —53 )53 = 5.
aX axl aX] axl axk axl axl axkaxl
Rt Ot L (5, 0000
e T ax, i dx, 0X; Tt oxy I 9x; ) 0x),  Oxx  0x, 0%y (A16)
. FiﬁlF-_l%%= F-_l%%F- 1 0X;0u, 0u, 0X;  Ou, 0u,

ax;ax; ™ ax;0X; Tt T 0x, 0X; 0X; 0x, 0%, Ox;,

. F-‘IF-‘l%%=F-‘1%% -1 _ 0X; 0u, 00, 0X;  Ou, 01,
Tt 9x;0X; % ax,0X; ' T 9x, 0X; 0X; 0x, 0x; 0%,
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Substituting all these results in (A.15), many termof (A.16) cancel each others, which leads
to the following result:

. 1 Hu au
Epe = Efff Ok1 ax’; +a—x’i dv & Epyp = fff [a]dv (A.17)
v

where[3d] is called the Rivlin-Eriksen rate of the Almansiaa tensor [12]. It is worth noting
that (A.17) is derived without making any assumptan the magnitude at andu and is
therefore also valid for finite displacements.

Another point that is important to stress is thumijke [E] which was obtained by taking the
rate of [E], [d] is not the time derivative dh]. Indeed, going back to equation (A.4) shows
that deriving[a] is a quite complex operation. This is mainly doefte fact that the current
coordinateqx;, x5, x3) are varying with time, which implies that the tirderivative may not
be permuted with the spatial ones. In fact, itlsarshown that [36]:

.10y N 01 Ay, N Al A18

aij - 2 (')x] axi Ak (')x] axi akj ( ) )
which is definitely not the same as the deformatae involved in (A.17). Similarly, it can
also be concluded th§d] is not obtained by taking the time derivative loé Cauchy strain

tensor|e] defined by:
. 1 aui n (')u] A 19
eij B 2 ax] axi ( ) )

because permuting the time and spatial derivatigsesot allowed. Of course, under the
hypothesis of small strains and displacements, afementioned equations may be
linearized to gefa] = [a] = [€]. As a conclusion, it can be said that regardirgetaluation
of the internal energy rat&,,., the second Piola-Kirchhoff stress tenf®f is conjugated to
the Green-Lagrange strain rate tengdtj; while the Cauchy stress tengof is conjugated to
Rivlin-Eriksen ratga] of the Almansi strain tensor.

A.2.5. Derivation of the internal energy rate in the plastic regime

Before trying to evaluate the internal energy fatelarge deformations, it is probably of
interest to present a non-exhaustive recall of sbasc results of the plasticity theory for
metals (see [28] or [102] for more details). In tase of a material having a perfectly plastic
behavior (i.e. exhibiting no strain-hardening),cén be assumed that plastic deformations
occur under a constant flow stresg On a mathematical point of view, this property is
translated by the definition of a convex yield sggF such that:

T(aij) —09=0 (A.20)

where g, is a constant as there is no strain-hardening[ahds the Cauchy stress tensor.
Furthermore, within the frame of small deformatioitgs usually assumed that the Cauchy
strain rate tensd] can be decomposed into the sum of an elastic gidstic part, which
can be expressed as follows:

and in the case of an associated plasticity, therthalso states that the plastic part has to be
perpendicular to the yield surface. In other wonodse should have:
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.. oF

.p :
€. =1
Y aO’l‘j

where/ is a positive scalar multiplier. In the particutarse of metals, it is quite common to
work with the Von Mises plasticity criteria andsttherefore quite interesting to adapt all the
previous relations. Under the assumption of a nangiéning material with a flow stress equal
to gy, the equation of the Von Mises yield locus is@kivs:

A A o Okk
F O-ijo-ij - O'g =0 Gij = O-ij __611 (A23)

3

1l
N =
w|

where([4] is the deviatoric stress tensor. With this defam the application (A.22) allows to
determine the different components of the plagdtairs rate tensor:

, . 0F 36y N R
Eij = AE = 70_—0 5 A= ZEijEij/3 (A24‘)

in which the definition ofl may be easily demonstrated with help of (A.23)e Titernal
dissipation raté;,,, is then given by particularizing (A.17) to the sjpé case of small strains,
for which[3] = [€], i.e.:

Eint = ffj aijéijdv = Jjj Uoépdv ; ép = ’ZEUEU/B (AZS)

v 4

The previous relation may be easily demonstrated elp of (A.24) and (A.25). This leads
to the definition of the equivalent plastic straate€,,. It is worth bearing in mind that the
developments exposed here above are only validmall strains. Unfortunately, the theories
of elastoplasticity with large deformations ardl i topic under discussion and even for
metals, there are many approaches currently alailsithout entering in too many details,
the plastic rules in the case of finite strains @saally developed by following one of these
two hypotheses:

4 = &) + &} or Fyj = F.FY; (A.26)
In the first case, it is simply assumed that tseiits exposed here above for small strains may
be directly extended to treat large deformationsagyuming that the Rivlin-Eriksen rate of
the Almansi strain tensor is obtained by the additof an elastic and a plastic contribution.
In the second case, it is postulated that everyemahtpoint undergoes two successive
transformations associated to the elastic andipldsformations. These transformations are
respectively characterized by the tendét4§ and[FP].

Unfortunately, none of these two models is ablesdtisfactorily represent the behavior of
metal in large deformations. Another attempt wagienhy Green and Naghdi [64], who
assumed a summative decomposition of the Greerahggrstrain rate tensor in the form of
E;; = Ef; + EJ}, in whichE;; is calculated with help of (A.13) but nBf; andE};. With this
hypothesis, they develop a mathematical consigilastic theory with respect to the initial
configuration. Nevertheless, on the physical pointiew, this approach is criticized by some
authors such as Volokh [158], who argues that naseonly have a perfect remembrance of
their initial reference configuration within thenge of elastic deformations. Consequently, in
the case of a plastic flow, the constitutive equagi should be developed for the current
configuration and not for the initial one.
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From the brief previous discussion, it transpifest selecting an appropriate plastic theory is
a quite arduous task. Nevertheless, under the gdgumthat the collision process only
implies moderate strains and displacements in whilth plastic deformations are
predominant, then according to Volokh [158], ite¢evant to work under the first hypothesis
mentioned in (A.26). Doing so, the internal energig may be simply evaluated by adapting
(A.25) in the following way [158]:

Eint = fff O'ijéijdv = fff O'Oglpdv ; 51) = ’2511511/3 (A27)
4 v

in which the matrix components; are still given by (2.6). In this last formula,ist worth
noticing that the integration has to be performedrahe deformed configuration, which is
not always convenient. According to (A.7), remenmgrthat dv = FdV and §&;; =

Fei'ExFj; " it is possible to transform (A.27) in a more ieai form:

Fpp = f ﬂ oolydV ; By = F \/2(F,;ilElel;l)(F,;}E'mnF,;l})/S (A.28)
vV

This last equation provides a way to evaluate tibermal energy in the case of finite strains
and displacements. It is quite close to the thexaeteasoning hold by Voyiadjis and Kiousis
[159] for a hardening material.
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APPENDIX B. Additional developments for ship impacts
on plane lock gates

In this addendum to Chapter 3, additional developments are presented in order to
complete the analytical evaluation of the impact resistance for plane lock gates.
Each appendix always refers to one section of Chapter 3.

In Appendix B.1, additional mathematical developments are presented as a
complement to the analytical derivations related to the first type of super-
elements. The formulae detailed in section 3.3 are also extended to the case of a
subsequent contact.

Appendix B.2 and Appendix B.3 give more details on the way the resistance should
be calculated for the second and third types of super-elements respectively. In
particular, they focus on the beam mechanism that may also appear during the
Impact.

Finally, complementary information is provided in Appendix B.4 about the

displacement field postulated during the global deforming mode and an additional
validation case is presented in Appendix B.5.

kksk
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B.1. Appendix B.1

B.1.1. Internal energy rate for stiffened plates

The theoretical derivation of the internal energterperformed in section 3.3.2 and 3.3.3 are
only valid for non-stiffened plates. Neverthelesis of current practice to reinforce the
plating of lock gates by smaller horizontal andticat elements. Of course, doing so has a
consequence on the crashworthiness. Numerical tigaggisns show that during an impact,
these stiffeners are mainly submitted to membran@ngng, the bending effects being
negligible. In other words, they follow the defortioa of the plating. Consequently, as
suggested by Paik and Thayamballi [120], it isisight to smear them over the surface of the
plate, as explained hereatfter.

Considering the portion between the two girdersated inY,_; andY, (Figure B.1), the
plating thickness,, can be replaced by an equivalent vaiyi¢o account for the additional
membrane energy that is also dissipated by thez¢wial smaller components during the
collision. Denoting by4; each individual section area and ythe total number of stiffeners
present between the two girders, one should siitmghe:

N4 Y4
t,=t +Z—‘ ;ot,=t +Z—‘ (B.1)
Y P = Zn - Zn—l z b = Yn - Yn—l

Similarly, to account for the membrane energy tisatlso dissipated by th& vertical
stiffeners located between the two frandgs, andZ,, it is also possible to work with an
equivalent thickness, calculated as mentioned in (B.1). As a final rgstie plate is
replaced by a fictitious one, having two differémtknesses along theandz axis.

Ai tp |:> tZ
N 1 O ¢ L
Yn-l ? Yn Yn‘-l ? Y‘n

Figure B.1. Calculation of the equivalent plating thickness

The evaluation of the internal energy rate is tfweeno longer given by (3.18) because
ny = oot is now different for the horizontal and verticabefrs. Instead of (3.18), the
following formula should be used:

. . . . Juou . ou ou
Eine = J f oo(tyEyy + t,E,,)dydz ; E,y = 37y E,, = 53, (B.2)
A

However, it is quite interesting to note that theswller reinforcing components usually do
not increase to a large extent the collision raest of the impacted plate. For this reason,
they could be neglected, which is a conservatiyeageh.

B.1.2. Resistance after contact with a lateral support

The formulae developed in section 3.3.2 are onlidv&one of the boundary of the super-
element has not been impacted by the stem. Nelesthavhen the penetration is equabdo
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or §, (Figure B.2), this is no longer the case as aamrdevelops with the right or the left
lateral support respectively. This causes the aitim of two additional super-elements: a
vertical SE2 and the adjacent SE1.

o/ >

o1 /\62
- y Right | Left |

SE1l |« > » SE1
ai ‘ az

— >z

-
-4

' SE2

Figure B.2. Contact between the stem and the lateral supports

The penetrationsy; and §, for which a subsequent contact occurs may be foloyd
geometrical considerations. Indeed, they are sigpgn by the initial distance between the

corresponding support and the cufvmaterializing the stem at the super-element lduam
equation (3.11), it is easy to show that:

af aj

from which it can be concluded that the subsequentact may first concern the right or the
left support, according to the respective values,ainda,.

B.1.2.1. Impact on the right support

Let us first consider the case whére< §,. In this situation, fob; < § < §,, only the right
lateral support has been impacted.

Figure B.3. Definition of the deformation pattern in the case of a contact with a lateral support

It seems therefore reasonable to postulate therdafmn pattern of Figure B.3. As in section

3.3.2.1, the displacement fielé(z) in the plane of the uppermost deck is still matierm
parts:
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* For0 <z < a; + ay, the displacements are characterized/bfz) and such that the plate
is simply sticking to the shapeof the striking vessel.

 Fora; +ay <z<a;+ a,, the displacements are describedllyz) and such that the
compatibility conditions along the vertical supportz = a; + a, are respected.

The junction betweeli, (z) andU,(z) is made at poinB, which is characterized by the two
parameters, andd,. In fact, comparing Figure 3.14 and Figure B.3adle shows that the
situation on the sub-areas X b; anda, X b, is strictly similar. Consequently, it is obvious
that the two parametekg, and §, may be directly found by adapting equations (3.48)
follows:

pZ

q
Qo =E(q—xs+5) ;0 0 =p—2a0(a2—a0) (B.4)

For similar reasons, the formulae (3.21) and (3d2)ng the resistanceB;(§) and P, ()
provided by the two aforementioned sub-areas ase dlill relevant in the present case.
However, this is not true faP;(§) andP,(6), as the displacement field(y, z) arising on
a, X by anda; X b, is not the same as in section 3.3.2.1. Indeedyiagp(3.11) and (3.15)
leads to the following result:

(z— a1)2

u(y,z) =U1(2)f (y) = <q —Xs+6 - T)f(y) (B.5)
in whichR = p?/q andf(y) is given by (3.14). With this definition, the deation of P, (§)
andP,(6) may be achieved by evaluating the internal eneagy with help of (3.18). Doing
S0, it can be shown th&(6) is obtained by summing up the four following cdmitions:

a a?
1 1
. P1(8)=00tpb—1<5+q—X5—§> (B.6)
a a%
° P2(5)=Uotpb_1 6+q_XS_§ (B.7)
a? 4b? (a, —ay)? R
. P3(5)=Uotp<5+q—Xs—#+9—Rl+%> ; ao=a—2(q—X5+5) (B.8)
a: 4b? (a, —ay)? R
. P4(5)=00tp<5+q—X5—#+9—R2+%> ; ao=a—2(q—X5+5) (B.9)

Of course, these formulae remains valid as lonth@snaximal strain arising in the plate is
lower than the critical value, for which rupture occurs. At this moment, the stmnceP (6)
IS set to zero.

B.1.2.2. Impact on the left support

It is now focused on the case wheéke< §;. In this situation, if§, < § < §;, only the left
lateral support has been impacted and it is obwioaisthe impact situation is symmetric with
respect to the one depicted on Figure B.3. In @aer, this means that the contributions
P;(6) andP,(8) are still given by (3.19) and (3.20), while (3.2Znd (3.22) are no longer
valid to evaluateP’;(6) andP,(6). Indeed, these latter have to be corrected, asubhereas
a, X b; and a, X b, are now entirely submitted to the displacementdfia(y,z) =
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U,(z)f (y) imposed by the striking vessel. Accounting forthtse considerations leads this
time to the subsequent results:

e PO =0ty (54 q—x— B4 @@y R v (B.10)
! 0°p 5 3R 9R 5R 0 Ty
2 2 2
_ ay  4b;  (ag—ap)”\ _ R
P2(5)—aotp<6+q X 3R+9R+ R ’ao_a1(q Xs+06) (B.11)
a, a3
° P3(6)=0-0tpb_ 6+q_XS_§ (B.].Z)
1
a a3
° P4(6)=0-0tpb_ 6+q_XS_§ (B.13)
2

which are only valid as long as there is no ruptotkerwiseP (§) has to be set to zero. As a
final remark, it is worth noting that equations §B.to (B.13) are derived under the
assumption that only one of the two vertical bouie$ahas been impacted. Nevertheless, if
& > max(d,, 8,), then the two lateral supports are simultaneoustpntact with stem. In this
case P (§) is simply obtained by summing up (B.6), (B.7) (®.Aand (B.13).

B.1.3. Resistance after contact with the lower support

For a given valué; of the penetration, the stem is assumed to emteontact with the lower
support of the plate, which causes the activatiomo super-elements: an additional SE1 and
a horizontal SE2 (Figure B.4a). The formulae degwetbin section 3.3.2 are of course no
more valid, as the displacement fieldy, z) is now affecting one of the boundaries (Figure
B.4b). The restriction ofi(y,z) to the horizontal planeg = 0 andy = b, are denoted by
U(z) andU(z) respectively.

(a) Contact between the stem and (b) Definition of the deformation pattern in the case of a contact
the lower support with the lower support
\
| \
& ‘ az
se2 |} N
~ )
S
I v D
' A
y <
A ~
<
X 0 SE2 y
47 ¥
63 —
[Sa)
(175)
| Z

G

Figure B.4. Parameters for the contact between the stem and the lower support
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The mathematical expression 8{z) is still given by formulae (3.13) to (3.15) andeth
derivation of U(z) is straightforward, as it may be found simply bytrapolating the
developments performed in section 3.3.2. It id stihde of two different partd,(z) and
U,(z), the first being imposed by the shape of the stetne planey = 0, while the second is
defined to respect the compatibility with the suppd@Figure B.5). For the sub-area X b,
going back to (3.9) and extrapolating (3.12) letads

_ ~ (z—ay)? . .
L4 Ul(Z)zq 1—25—2 —X5+5 |f al—aOSZSal (B14)
. UZ(Z)=L 2 if 0<z<a —a, (B.15)

—— 7z
(ag — @p)?

where§ = q — b, cot¢p andp = p — b, cotyp are the radii of the stem at the level of the
lower support. Similarly, in the two previous edaas, the parametery, andd, describing
the current position of the junction poifit(Figure B.4b and Figure B.5) are simply obtained
by extending the results of section 3.3.2. Consgide(3.13), one should get:

p* o

o =—=(G—Xs+6) 8o = =3 ao(as — ao) (B.16)

a.q
With all the previous definitions, it is now podsilio postulate a reasonable displacement
field u(y,z) for the sub-arear; X b,. The most convenient way is to perform a linear
interpolation betweeli (z) andU(z), which leads to:

b, — A
L2~ v o) + T@F ) (B.17)

w(,2) = U(2) L+ 0(z)
bl 1

It is obvious that all the developments exposee ladove may be easily adapted to the sub-

areaa, X b,. Moreover, asu(y, z) is strictly identical to the displacement fieldsfided in

3.3.2 for the regions; X b, anda, X b,, there is no need to reevaluate the contributions

P,(6) andP,(6) to the local resistance opposed by the plate.

To calculate the internal energy rdtg,, (B.17) may be introduced in (3.18). Then, equatin
Eie to the external energy rate gives(s) = opt,(I; +1,), wherel; and I, have the
following definitions:

(ap — a1)® + (a3 — @p)° do n 1 aj—a; §—-Xs+q
Sbl(al - a’O)z R(al - ao) 6R 3b1R bl

15 (ap — do)

4 —ao)? — (@ —a)? (4b, @ ag(a,—8y) S—Xs+q b
y @02 (@260 (4 Gy Bo(@—d) S-Xstaq b (B.18)
3(a; — @) 3R a; — Qg bR by 3R
a a? — a3\ ao(ay —ag)? ai — a§
+ — (b + 22— olay AO) by +———
3R 2b, 3R(a; — d,)? 2by
4by (a1—a0)2 a, Qo (a; —ap\3 ag (a; — ag\? (2by (al_aO)2
- () ) sy (0w
9 5b, R R\ay—a R \a;—ay/ \ 9 5b,
(B.19)

n Qo (a1 - ao) 2b; (a; — ao)z
R \a; — a4, 9 5b,
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in whichR = p?/q andR = $?/g. Of course, the previous results are still vatid the sub-
areaa, X by, provided thata, is replaced by, in (B.18). Doing so leads tB;(5), while
P,(6) and P,(6) are still given by (3.20) and (3.22). Summing Uptlaese contributions
finally leads to the total local resistan€y) opposed by the plate if its lower edge has been
impacted by the stem.

X
A ai az

A

do
0 T | G > Z

Ui(2)
Figure B.5. Definition of the displacement field in the horizontal plane y = 0
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B.2. Appendix B.2

B.2.1. Subsequent folding

As depicted on Figure 3.29, as soon as one fotmbmspletely crushed, it is assumed that a
new one is immediately created. Doing so is possalllong as the web has not been entirely
crushed. For a fold numbégrthat is completely closed, its contribution to theer-element
resistance is only coming from a membrane strairging it can be shown [180] that the

corresponding energy rak is given by:

a; +a,

E; = 2noH (H+6 - 2jH)b (B.20)

a,a;
Consequently, ifc is the current fold number, the total internalsghation is obtained by
summing up the bending and membrane energy rBjesind E,, with the individual
contributionsEj coming from all thek — 1 folds that have already been totally crushed
(Figure B.6a), i.e.:

k-1
Eine = Ep + Epy + 2 E; (B.21)

Jj=1

In this last formula, it is worth noting thA}, is the same as in section 3.4.2.1 because ittis no
a function ofs. Nevertheless, regardirfy,,, equation (3.47) has to be corrected because the
relative indentation for the current fold is onlyual tod — 2(k — 1)H. In other words, (3.47)

is still valid to getE,,, provided thats is replaced by — 2(k — 1)H. Developing (B.21)
leads to the following relation:

k-1 ,
Eine = (a1 + a3)8 (mort + noll (0 = 20k~ 2)H) + z 2noH -@- DH)) (B.22)
j=1

H 2 a,a; a,a,

By rearranging the terms in (B.22) and applyingupper-bound theorem, it is easy to derive
equation (3.50) giving the resistance.

(a) Incomplete folding situation if k <n  (b) Complete folding situationif k = n

— » Current fold k J—» n folds
An N

Figure B.6. Folding situations if k<nand k=n

Nevertheless, all the calculations performed héva are only valid as long as the web is
not totally crushed. th is the maximal number of folds, then (B.22) and(@3 are only valid
as long a% < n, with:
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o] - el

If kK =n, the super-element resistance is calculated agetlet reached fo¥ = 2nH, to
which is added the membrane extension of the uhedupart of the cross-section. Noticing
that this latter has an arel, equal to(h, — 2nH)t,, + hsts, the corresponding internal
dissipation is given by:
a; +a,

a,a, (B.24)

Eine = Ap00(8 — 2nH)

Adding (B.24) to (B.22) in whicld = 2nH, rearranging the terms and applying the virtual
work principle finally leads to equation (3.51).

B.2.2. Plastic capacities of a crushed beam

The derivation of the plastic moment for a foldatss-section is a quite arduous task.
Considering first the particular situation in whittte web has been crushed over the distance
2kH (Figure B.7a), the main difficulty consists in &uwating the contribution of thk folds to

the bending capacity. A conservative hypothesis sssume that the efficient cross-section is
made of the flange and the unfolded heighof the web, which leads to the plastic capacity
denoted byM,. This latter is an irregularly decreasing functmink (Figure B.7c) and with

h, = h,, — 2kH, it may be shown that:

hy (it het h
w

(B.25)

_ hyt Ryt hetf
o If hktw<hftf . M, =O-OTW<hW+tf_ ;vhfw>+0'0 4f

Of course, when no additional fold can be createsr the web height (i.e. fot = n), then
M, remains constandf,, = M,,.

(a) § = 2kH (b) 2(k —1)H < 6 < 2kH (c) Evolution of M;, and é*M,
: ; A M R
Mo
m *
ﬁ M; f Mo
M;
M3
Al My
Mk\
DN I >
hr Z2H 4H 6H 8H 0

Figure B.7. Plastic bending capacity of a folded cross-section

Let us now consider the situation where the folthber k is not completely closed (Figure
B.7b), which means tha2(k — 1)H < 6 < 2kH. In this case, it is too conservative to
consider only the efficient portion of Figure B.7Bhe derivation of the plastic bending
momenté*M, for the surface depicted on Figure B.7b can beeaeld by working with the
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opening angled, but doing so leads to very cumbersome equatioaisnhay be reasonably
approximated by interpolating linearly betweldp_; andM,. With such an approach; M,
Is a piecewise linear function 6f as depicted on Figure B.7c and given by:

M, — M, _ .
e lfk<n: &My=M, +——"1(—2kH) With2(k—1)H <68 < 2kH
Z2H (B.26)

e Ifk=n: &My=M, with § > 2nH

Regarding now the axial resistance of a crushethb#as assumed that the folded part is still
capable of developing its full tensile resistart@ensequently, there is no difference with the
initial T-shape cross-section of Figure 3.3, i.e.:

Finally, the last step to characterize the plastipacities of the folded cross-section is to
define an interaction criteria between the bendmgnentM and the normal forc&. The
derivation for the section depicted on Figure Bigbnot tractable within an analytical
approach. As a matter of simplification, it is pospd here to used the following parabolic

formula:
M N\?
_1_ (M B.28

&M, 1 (No) (B-28)

in which&*M, is a function of given by (B.26). Consequently, the interactionecia (B.28)
changes with the value of the indentation reachadngd the folding mechanism and is
progressively flattened as long &M, decreases.
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B.3. Appendix B.3

B.3.1. Derivation of the resistance for a direct impact

In this appendix, the resistance is first establisfor the situation where the intersection is
directly impacted by the stem (Figure 3.35a). Tagecof a subsequent contact is treated later.

B.3.1.1. Folding mechanism

In order to derive the local resistanBg(§) for the third type of super-element during the
folding process, it is first required to postulateompatible displacement field. To do so, it is
probably more intuitive to start by considering theformed configuration and imagine a
restoring motion that takes it back to its primggsition. Of course, by symmetry, it is

sufficient to work only on one half of the mechamnisf Figure 3.37b by considering the two
trianglesOAE andAEB. For convenience, these latter will be respegtideinoted by andil

in this section (Figure B.8a). The initial locatsoaf points4, B, E and0O are denoted by,

By, E, andO, respectively.

(a) Deformed configuration (b) Current configuration after the first phase
X X
A A
VA VA
Oo > Ao Oo > y A1~ Ao
o i ui(x,z) /F
0 — A 0 A
- : /
I P
/// Ji’
_ 4 % ’/'J 0 /
~ ]I J’/
Ny I
aH
= f——Bp " = Bo

Figure B.8. First phase of the restoring motion

During the first phase of the restoring movemeantfagel is submitted to a displacement
u;(x, z) that brings0 andA back to0, andA4, respectively (obviously, poirf is not moving
asE = E,). If 6 is the opening angle (Figure B.8a), it can be shthat:

u;(x,z) = (1 —cosO)(x+H) (B.29)

with —H < x <0 and0 < z < a(x + H). According to Amdahl [8], the derivation of the
membrane energy rate can be conducted under thmpssn of small strains. Consequently,
applying (A.19) and (A.25) leads to:
au .
€, = % — ¢, = J2/3€,, = 6/2/3 cos 0 (B.30)

whereg€; is the equivalent plastic strain rate associabeslitfacel. During this first phase of
the motion, there should be no plastic dissipatwar AEB, which means that this triangle
moves like a rigid body. This is possible by pastinlg thatOAE and AEB are weakly
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connected along the lingéE, where no shearing may take place. Therefore, whéh is
brought back to its initial configuration, poidt simply slides alon@E until it reaches an
intermediate positiom; (Figure B.8b) such thaA, = EA < EA,. Similarly, by symmetry
and for compatibility reasons, poiBtis displaced in the horizontal plaB® B, until B; such
that EB = EB, andAB = AB, = H. So at the end of this first phase, after applyipg, z),
OAE is moved back t0,A,E, andAEB is rigidly transformed intel, EB;.

Nevertheless, it is obvious that the material bef surfaced and/l are not independent,
which means that poind is not allowed to move freely alongE without violating the
continuity requirement. Therefore, the next stepa to define a restoring motion to project
A{EB; ontoAyEyB,. To do soA;EB; may first be rotated around the plastic hidgé& until

it reaches th€x,z) plane. By imposing this movemerR, is transformed intd, (Figure
B.9) butA; EB, is kept isometric tal; EB; and the initial situation is still not yet recoedr

Consequently, in order to reestablish the compayibit appears from Figure B.9 thdt has
to follow a displacement, along thex axis andw, along thez axis. Of course, a similar
conclusion is valid foB,.

From simple geometrical considerations, it can bhews that the components of the
displacements imposed to poidt@ndB are as follows:

_ul 1 a? + cos? 6 _atl1 a? + cos? 6
ta = a?+1 Wa=a a?+1

V4a? + sin? 20 — 2« 2a3 + V4a? + sin? 29)
2vVa? + 1Va? + cos?2 6 2vVa? + 1Wa? + cos2 6

(B.31)

[ ) uB=

WB=H<0(

The velocities of pointgl; and B, are found by differentiating (B.31) with respeattime.
Doing so leads to:
H sin 26

= 6 = Hsin261,(0)6
2Va? + 1Va? + cos2 0

Uy

aH sin26 2 cos? 8 (2a? + cos? 0) — a3V4a? + sin2 20 6 = Hsin 260 8, (6)0
_ = Hsin261
P oVaz 1 V4a? + sin? 20 (a? + cos? §)3/2 g
aH sin 260

u

(B.32)

Wy = 6 = Hsin20 w,(6)6

47 2vaZ+ 1a? + cos? 6 4(6)

) Hsin26 2cos?8 (2a? + cos? ) + a3vV4a? + sin? 26 . ) R A
w 0 = Hsin260 wg(0)6

P oVaz 1 V4a? + sin? 20 (a? + cos2 9)3/2

With these results, it is now possible to define Welocity fieldsi;;(x, z) andw;;(x, z) that
are applied on surfadé. These ones are obtained by interpolating linelagtyveen(ii,, w,)
and(ug, wg), i.e.:

. X\ . z  x '
vt = (L)t (G = 1) Hsx=0
with: (B.33)
. W(x,Z)=(1+%)WA+(£—%—1)WB a(x+H)<z<aH
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Figure B.9. Second phase of the restoring motion

Once again, under the hypothesis that w,) and(ug, wg) are reasonably small, then (B.33)
can be introduced in (A.19) to get the strain rates

: Uy—ug ., _ Wp _Up  Wap—Wp

€Exx = T y €27 = E ; Exz = 2aH + 2H (B34‘)

In accordance with the plastic flow theory, (A.28pws for the derivation of the equivalent
plastic strain raté;; for surfacel. By substituting (B.34) in (A.25), this latterfisund to be:

€y = ,/2/3\/é,%x + €2, +2¢2, = 6,/2/3§(6) sin O (B.35)

whereg(0) is a function that may be evaluated with helphefil,, @iz, w, andwg defined in
(B.32). It can be shown that:

g(@) = ZCOSB\/(ﬁA —ﬁB)Z + Wg/az + 1/2 (ﬁB/a +WA _WB)Z (B.36)

Once the equivalent plastic strain rates have kdeéned over the surfacésandil, the total
membrane energy dissipatid@l, associated to the plastic mechanism of Figurel3cah be
calculated by integrating; and ¢;; over the triangle®,Ay,E, and E,A,B, respectively.
Doing so leads to:

noH? sin @

Em = \/2/375(9)9 ; G(O) =a(g® +1) (B.37)

The determination ofx can be achieved in order to minimize (B.37). Degvthis last
relation with respect ta implies thatdG(6)/da = 0. Nevertheless, solving this equation leads
to an expression af that is a function o8, which means that the length of péx} (Figure
3.37a) is continuously changing with the openingl@anAccording to Amdabhl [8], doing so is
physically not acceptable, as it is natural to assthat the collapse pattern is defined in the
early stages of collapse and is kept constant ¢fmout the indentation process. Therefore,
0G(9)/da = 0 has to be solved fa# = 0 and it can be shown that doing so is equivalent to

minimizing:
] 1 1(/2a%+2a+3)\
6(0) =« +J + —<u> (B.38)

a2 2\ a?+1
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The optimal value ok is numerically found equal ©.8601, which is a bit higher than the
solution proposed by Amdahl [8].

The second step in deriving the resistance ofdlirfg mechanism consists in evaluating the
bending energy dissipatidt), produced by the plastic hingd€, AB andEB (Figure B.8a).

If the rotations angles aroud®', AB andEB are respectively denoted By, 8, andd;, from
geometric considerations, the following results barestablished:

2acosb ) 4a (a? + cos* 9) )
e 0, = arccos( ) o0, = ] (B.39)
V4a? + sin? 26 (4a? + sin? 20)Va? + cos? 6
0 < 4adsina ) i g (B.40)
. = arccos = .
’ V4a? + sin? 26 \/4a?(a? + 1) + sin? 260 ’
sin 20 . |4a? — sin?26||cos 20| .
. 0. = arcsi ( ) o §. = B.41
3= A V4a? + sin? 20 3 a(4a? + sin?20) ( )

Multiplying the lengthsAE, AB andEB of the plastic hinges with the rotation rates gihere
above leads to the following result for the bendirmggipation:

b o e JT e 2‘9+|40(2—sin2219||c05249| P B.42
b= To 4a? + sin? 26 @ sm a(4a? + sin? 26) (B-42)

According to the upper-bound theorem, equatingekternal workP,é to the total energy

rate 2(E}, + E,) allows to determine the resistanBe coming from part(D) during the

folding mechanism. A$ and @ are still related by (3.42), one should have 2HE sin 6

and:

2(Em +Ep)/6  moH
2Hsind /g

E,/6
Hsin6

P(0) = GO + (B.43)
From (B.43), it appears that the limit f6r— 0 does not converge because of the bending
energy rate, which is exactly the same problem thasection 3.4.2.1. In order to overcome

this difficulty, E,, can be averaged over one fold using (3.46) to get:

_MoH > a 2
ﬂ@)—ngW)+mﬂ(6¥+1+g+§> (B.44)
Finally, the total resistanc®, (§) associated to one wing of the intersection is iobth by
adding the contributionB, (§) andP,(8) respectively associated to pafts and(2) (Figure
3.37a). Of course?,(8) may still be found by (3.48), in whiak, is replaced byt — aH and
all the terms involving, are deleted:

my(a — aH)m noH

P2(8) = H T e —am

(6 + 2H) (B.45)
Summing up (B.44) and (B.45) gives the followingnfimla for the resistanck, () coming
from one wing:

GO) S5+2H
7 2(a=am)

where G(8) is given by (B.37) andr = 0.8601. The opening angl® is related to the
indentations by (3.42), butH is still unknown so far. As it was done for themed super-

2 a-— aH> (B.46)

a
>+m0n( al+1+—+=-+
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element type, this latter can be calculated by mizing the mean crushing resistarRe of
the wing, as detailed hereatter.

B.3.1.2. Folding height

As in section 3.4.2.1, the optimal folding heidhtis such that the average valBg of the
wing resistance is minimum. Consequently, the feihg problem has to be solved:

_ 2H
aPW—o@ 9 1fP(6)d6 =0 B.47
oH OH\2H) % - (B.47)

0

in which P,,(8) is given by (B.46). A first step to gé}, is to calculate the mean valRg of
the resistance opposed by By integrating (B.45), this latter is found to: be

_ 3ngH? my(a — aH)m 3nyH? | Moar

b= s —am H 2a H (B-48)

where the approximate solution is obtained by assgithata > H. Regarding the average
resistance?; for part(1), integrating (B.44) may be achieved as follows:

2H /2
0 0

becauseald = 2H sin 8 d6 according to (3.42). Furthermore, substitutingagmun (B.44) in
the previous relation leads to:

/2

5 _ Ml [ o ( 2 @ E) B.50
Pl_\/g G(0)sinfdo + mym |V« +1+6+5 (B.50)
0

Unfortunately, it is not possible to realize anlgitieal integration of (B.50) becaugi9) is a
complex function of). Nevertheless, this can be achieved numericalliyitais concluded that
a reasonable approximation for the first term inl6® is 2nyH /3. Finally, gathering all the
developments detailed previously provides the sylesat result:

(B.51)

_ 2ngH > a 2\ 3ngH? myar
P, = 3 +m0n(a+1+g+§)+ >a + q

In order to minimizeP,, (B.51) has to be derived with respectHo The optimal folding
height is such that the following equation is $egcs

2ny, 3ngH myan 3ngH3® 2nyH?
0 0 04T _ oy o ST | 21

3 a H2 a 3

= myan (BSZ)

Of course, (B.52) can be solved numerically foregivalues ob,, t,, anda. However, doing
so is not really satisfactory. Indeed, under tteuagption that! < a, the first term of (B.52)
can be neglected, which leads to a more systemagication of the folding height:

H = ,/3m/8at,, = 1.085,/at,, (B.53)

This solution can be compared with the one obtawleite considering the displacement field
suggested by Amdahl [8]. In this case, following tame procedure than the one exposed

259



APPENDIX B. Additional developments for ship impacts on plane lock gates

here above, the mean crushing force for one wirdy the optimal folding height are as
follows:

_ 2.58n mom  3ngH? myan
_ 0y 4 Mo | 3N 0

. H~1.103./at B.54
w 4 4 2a H Aw (B-54)

which is very close to the expressions given irb{B.and (B.53). Nevertheless, in order to
have a better idea of the error made by solvingZBinstead of the exact minimization
equation, it could be of interest to compare (B\Ww&h the value obtained by considering all
the terms irP,,, i.e:

p_ZnOH >
w =3 +mgrm(vas+1

a 2 3nyH? my(a — aH)T
+_+_) 0 o )

6 5/ 2(a—aH) H (B-55)

Deriving (B.55) with respect té, it is found that the optimal value for the ratiga has to
satisfy the following equation:

2—a(H/a) 2(H/a)?> mt,
3(H/a)? + _Iw_
(H/a) 21 a(H/a))z 3 1 (B.56)

which can be solved numerically for different valuef t,,/a. The corresponding curve is
plotted on Figure B.10 with the one obtained bysidering (B.53). From this picture, it
appears that the folding height is overestimatecerwlusing (B.53). As expected, the
difference between the results is increasing Wiéhratiot,, /a.

0,25

0,2

0,15 Exact solution

\
\
\

0,1 = Approximate
) /
// solution

0,05

t,/a

0
0,005 0,01 0,015 0,02 0,025 0,03 0,035

Figure B.10. Comparison of the exact and approximate folding height

Of course, using a too high value i#fis not necessarily conservative. Neverthelessn eve
though the discrepancy on Figure B.10 may be gueortant, it is worth noting that
working with (B.53) is not really a problem, as thuence ofH on the crushing resistance
IS moderate.

B.3.1.3. Derivation of the resistance for the bending mechanism

The derivation of the local resistance during teeding mechanism is first performed for a
cruciform, the case of a T-shaped intersectiongiated later. The collapse mode involves
four plastic hinges at the center and four othezsoat the connection poins B, C, D
(Figure B.11a). In this configuration, for a givpanetrations of the striking vessel, each of
the four wings is submitted to both a rotationha hinges and a membrane straining.
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(a) Three dimensional view of the beam model (b) Plastic mechanism made of two plastic
N; hinges for a horizontal wing
A

9 # aH .

$nMy,
%} s h R EnMp
a-aH

(c) Plastic collapse of a horizontal wing
after the initiation of the bending process

My <o

Y

6-6"
<

M*
D

'—r—w,,,,,» MZ N
v < ( ¢
N

Figure B.11. Backward motion of an intersection during the bending process

In the purpose of evaluating the resistance, thal @nd bending plastic capacities of the
horizontal girder are respectively denoted\yyandM,,, while the corresponding ones for the
vertical frame aréV,, andM,,. These latter may be evaluated with help of equat(B.25) and
(B.27), in which the fold humbeékr is set t00. In the present model, it assumed that the full
values ofM;, andM,, cannot be reached for the following reasons:

In the four plastic hinges located at the suppdrt®, C, D, the bending moment could
only be equal tav, or M, if the wings were perfectly clamped at these lioceat As
shown on Figure 3.39, this is not the case bec#lusejunction is made with other
structural elements that are not infinitely rigi@onsequently, the rotational restraint
should be modeled by a torsion spring characterizeé reduction coefficient (Figure
3.39). This latter is denoted Ky for the horizontal girder and is assumed to besdrae
for the two connectiond andC. Similarly, regarding the vertical frame, the sagp B
and D are also affected with an identical coefficigpt The corresponding maximal
bending moments are therefore only equdl,td,, oré&,M,,.

In the four central hinges, as the sections haveadl been submitted to a primary
indentationd* during the folding process/, and M,, may also not be reached at these
locations. As the parametets k andn are uniquely defined for the four wirlgsit is
obvious that the two hinges located on the horilogirder may be characterized by the
same coefficieng;. This is also the case for the vertical frame, nglree unique reduction

16 Let us recall thatl is obtained by taking the average value of theviddal folding heights calculated by
(B.53) for each wingk andn are respectively the current and final fold num@drey are calculated by (B.23),
in which h,, denotes the smallest web height of the four wimsequently, because of these definitions, it is
clear thatH, k andn have a unique value.
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factor &, may be used. Consequently, only the reduced begrwdipacities; M, and&;M,,
have to be considered there. Of course, theseicieets may still be found with the
formulae detailed in section B.2.2.

As usual, the derivation of the resistanggd) for the bending phase is performed by
applying the upper-bound method. Focusing on azbotal wing for example, it can be seen
from Figure B.11b that the beam-like behavior iwesl two plastic hinges. At the initiation of
the plastic mechanism, the maximal admissible aapaé, (6)M, andé, M, are reached at
these locations. By following a procedure thatesyvsimilar to the one described in section
3.6, it is possible to show that the required g@d&aforceP*(6) is as follows:

$n+&p(8) | &n +85(6) $y +85(8) | &, +§5(6)
a, —aH + a, —aH >+Mv<b1—aH + bz—aH>

P(5) = Mh( (B.57)

in which it is worth recalling thaf;, (6) and&;(6) are piecewise linearly decreasing functions
of the indentatior§. As soon as the ford@ (&) applied during the denting phase is equal to
P*(6), thend = §* and the crushing of the central cross-sectionapped. At this moment,
the value of,(6) is stabilized t&;,.

Ford > 67, the two-hinge mechanism of Figure B.11c is attitaand the portion — aH of
the beam is submitted to an axial straining resipdor the development of a membrane
force N. Consequently, the bending momeis and N are no longer equal t§,M, and
&,M;, but have to be calculated in accordance with araction criterion (see section B.2.2):

2 2

Shﬂfwf(w%) =1 g?,&,ﬁ(l\%) =1 (B.58)

According to the plastic theory of beams detailedséction 3.6, the normality rule can be
applied to get the tensile force, which leads to:

BRUACECR
AGEE

As expected, it can be seen from (B.59) that thenbmane force increases linearly with the
penetration, until the axial capacity of the beameached. In the present case, this latter is
still calculated by applying (B.27), but it is wrbearing in mind that the intensity of the
axial straining remains questionable. Indeed, (Bi$89erived under the assumption of having
a perfectly fixed support, but this is not neceifgdine case, as represented on Figure 3.39.
Nevertheless, accounting for the real flexibility the boundaries is not feasible with the
super-elements method but can be achieved throtiger techniques such as the ISUM
approach (see section 3.2.2).

N < N, (B.59)

The derivation of the contributioR, (§) of the wing to the total local resistanBg(d) is
simply found by expressing the rotational equililbni of the structure shown on Figure B.11c.
Accounting for (B.58) at the same time, the follogiresult can be established:

My ($n +$n) <1 NZ) NGB -67)

a—aH N2 a—aH

Pw(d) = N}%

(B.60)

where N is given by (B.59). Of course, the developmentsthe vertical wings are very
similar, provided that the corresponding geomeltranad mechanical properties are used.
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Finally, the total resistance for the cruciformoistained by summing up the four individual
contributionsP,, (&), which leads to equation (3.65).

In the case of an impact occurring at the top ef dioor, the resistance of T-shaped cross
section is also a matter of concern (Figure B.@#)course, the considerations exposed here
above are still relevant, but some adaptations nedse done. Regarding the foré(s)
required to activate the bending mechanism, itigiaus that it is simply given by deleting
one term in (B.57), i.e.:

(B.61)

P (eh H6(O) Gt f;;(&) fy, BT E®)

a, —aH a, —aH b—aH

Nevertheless, fob > §*, additional corrections are required. Indeed, frleigure B.12, it
appears that the membrane foiéein the vertical wing can only be balanced by theasing

of the horizontal girder, which is not realistia fact, instead of being only submitted to a
horizontal displacemeni, the intersection also suffers a vertical onenP8si is therefore
simply sliding along the bow, such that the length= b is kept constant. Consequently, in
accordance with the normality rulé; = 0 and there is no axial straining.

C '» 1\42

v

N>

Figure B.12. Bending mechanism for a T-shaped cross-section

Considering only bending effects in the third wirtigs easy to show that the resistance is as
follows:

2 _ *
N >+ NS — 5*)> a; +a; —2aH + My, (§y +$5) (B.62)

P,(6) = (Mh(fh'*'fﬁ) <1_N_,f (a; —aH)(a; — aH) b—aH

with N given by (B.59). As a closing remark on T-shapa@rsections, it is interesting to
note that having a membrane force in the verticalgws however possible in the case of
lifting gates, as the cables could allow for theedepment of an axial straining.” (&) is then
still obtained by (B.61) an#, (&) can be calculated by deleting the adequate ter(®.&5).

B.3.2. Derivation of the resistance for a subsequent contact

This second part of the appendix is devoted tal#revation of the resistance when one of the
supports of a SE2 is impacted by the striking Meddere again, two mechanisms are
considered.
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B.3.2.1. Folding mechanism

In section 3.4.2.1, it was postulated that the he&tion pattern for a super-element of type 2
during the folding process was made of two wingsheof them being characterized by a
lengtha, anda, (Figure 3.26). Of course, this assumption is aesonable as long one of

the supports is not impacted by the vessel. If thithe case, the crushing mechanism is
modified and the one depicted on Figure 3.26 ifonger valid.

The particular value for which a subsequent cordgactrs is denoted by, and can be easily
calculated by accounting for the bow geometry. Aistmoment (Figure B.13), the
development of the current fdfdis stopped and a new mechanism is initiated imatebji
after it. This latter is characterized by a height, that is not necessarily the same as the
previous one. It is made of three different pagspectively numberef] I1 andIll on Figure
B.13.

Current
fold

New fold

aH; a; - aHi az

Figure B.13. Initiation of a new fold for § = 6;

For & > 6;, it is assumed that the ship is only moving fovbecause of the crushing of the
new fold (Figure B.14), the first one keeping astant opening. From numerical simulations,
it appears that this is not exactly the case becthere is a progressive closure of the first
fold concomitant to the plastic collapse of the neme. As this transitory phase is not of
primary importance in the crushing process, it wilt be considered here. Therefore, the
hypothesis is made that only the new mechanismvislved fors > §;.

Of course, the total resistance is obtained by sunguup the individual contributions coming
from the surfaces, I andlII (Figure B.13), but it should be also accountedtffier effect of
the first fold. From Figure B.14, it can be statbdt the left wing (i.e. connected to the
impacted support) is simply moving as a rigid beayl therefore remains totally unaffected
for § > §;, but this is not true for the right wing. Indeed, there is not displacement of the
non-impacted support, the fibers of part (Figure B.14) are submitted to an axial straining
that is responsible for a membrane energy dissipaiihe contribution®,(6) andP;;(8) of
parts! andIIl have already been derived in section 3.5.2.1. fireeone is still given by
(3.56), while the second one may be obtained ®9)3n whicha — aH is replaced by,.
Obviously, in these two equatiors— §; has to be substituted §o On the other hand, it can
be shown that the resistandgg§) andP,, (&) of surfaced! andIV are simply given by the
following equations:

mon(a; —aH 6—06,76
o7 (ay 1) Py (8) = 2Hn, 1[%

Py (8) = i ; o (B.63)

7 On Figure B.13, for convenience, the contact with left support is assumed to occur during thesli@ment
of the first fold. Of course, many other folds abble already totally crushed before subsequenacant
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in which P;(8) is derived under the assumption that only bendifigcts in the horizontal
plastic hinges are induced during the collapseaof j§. The parameters used in (B.63) have
the same meanings as in the previous section, efarefd; that will be derived hereafter.

ai az

y 0-01

aH; a: - aH; az

Figure B.14. Folding process for 6 > 6;

Accounting for all these results, by addiBd6), P;;(6), P;;;(6) and Py, (6), the resistance
after subsequent contact is found to be as follows:

Hy . 6—0,+2H —— 5a 2 a +a

6 —0; [51
a, |2H

(B.64)
+ 2ngH

where the opening angk is given by equation (3.42), in whichandH are respectively
replaced by — §, andH;. The last parameter to determine is preciselydlténg heightH;.
This one can be found by minimizing the averageuevadf P, ;(5). Following a similar
procedure than the one described in section B, 3tlcan be shown that (3.58) is still holding
to evaluatdd;, provided that: is replaced by, + a,.

It is worth noting that (B.64) is not the total istance P;(§) associated to the crushing
process. Indeed, when there is a contact with baestipports of a SE2, two or three other
adjacent elements are simultaneously impacted,yimpkthat a SE3 is activated. This can be
illustrated by considering the cruciform of FiguR:15a that is made of four wings
respectively numbered frofl) to (4). Initially, only the horizontal parfl) is concerned by
the collision and therefore deforms like a SE2 (F&g3.26). However, when the striking bow
reaches the support at poidt(i.e. whens = §,), the remaining part&), 3) and @) also
contribute to the total resistan@(5), which means that the intersection is now behaving
like a SE3.

The individual contribution®,, ,(8), P, 3(8) andP,, 4(8) of the adjacent wing®), (3) and

(4) are supposed to be given by the formulae estaflishsection 3.5.2.1. Consequently, the
deformation pattern at the initiation of the folgiprocess is the one depicted on Figure
B.15a. From this picture, it is apparent that thmpatibility along the intersection line is not
respected, as the folds generated on the wing<3) and (@) are not consistent with those
developing on parfl). Furthermore, it is worth noting that the foldihgightH obtained by
averaging (3.58) is not necessarily equali{o Consequently, the approach proposed here is
not strictly rigorous regarding the upper-bound hodt Nevertheless, as the displacement
fields are compatible for each wing separately,déevation of the corresponding individual
resistances respects the basic theorems.
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(a) Activation of three adjacent wings (b) Beam-like behavior of the impacted wing

 bz-aH

Figure B.15. Crushing and denting mechanism after subsequent contact

Consequently, completing (B.64) leads to the foitmyvresult for the total resistance
associated to the crushing process:

H . 6—06,+2H 5¢ 2 a;+a
Pr(8) = no<—16(9)+H1#)+mon<«/a2_+1——+§+ = 2)
1

\J6 2a, 6
(3:4} (B.65)
+ 2 H6_61[61I+ZP 5

where the summation involves two or three termgase of a T or X-shape intersection
respectively. Of coursé,, ;(6) may still be obtained by applying (3.60), in whighs given
by substituting — §; to § in equation (3.42).

Finally, it should be mentioned that (B.65) caneligended to account for subsequent folding.
As usual, this can be achieved by supposing tleasdime deformation pattern is immediately
reproduced as soon as the current fold is comgleteked. Doing so leads to formulae that
are similar to (3.62) and (3.63).

B.3.2.2. Bending mechanism

Considering the cruciform of Figure B.15a, it iselly that the crushing process is not always
relevant because the super-element starts movinghake for large values af — §;. Each
wing adopts a beam-like behavior, such as depiote&igure B.15b for the one where the
subsequent contact occurs. This transition is asdutm occur abruptly, when the folding
resistance’; (8) is equal to the forc€*(6) required to activate the bending mechanism. The
particular value ob for which the behavior changes is denotedbynd has to be carefully
determined because two different situations arsiples

e If §* < é4, then the switch from the denting to the bendilgge happens before the
contact with one of the support. In this casesiassumed that the super-element keeps
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moving as a whole fa¥ > §;. In other words, the crushing process does net péskce and
the mechanism of Figure B.16a is immediately atéidavhens = 4, .

« If §* = §;, there is only a denting phase before the impdtt @ne of the supports. As no
transition occurs fod < §,, the crushing process can continue after the sulesd contact
and the developments of section B.3.2.1 are appécaln this case, the bending
mechanism of Figure B.16b is activated widen &*.

Consequently, the derivation 6f has to be done in accordance with the situatiostieg
before a subsequent contact.

(a) Bending mechanism for §* < §; (b) Bending mechanism for §* > 6,
» B » B

D » D

Figure B.16. Bending process in case a subsequent contact

In the first case, wheéi* < §;, the developments performed for a super-elemetypaf 2 are
still relevant, so formulae (3.50), (3.51) and @.feading toPs(6) andP*(5) can therefore
be used to evaluai®*. Furthermore, as long as< §,, the resistance during the bending
phaseP, (§) given by (3.54) is also valid.

Nevertheless, applying (3.54) is only consistentoag as one of the supports has not been
impacted (i.e. for6* < 6 < ;). If § > §;, a super-element of type three is activated and
(3.54) is not valid anymore. The bending resistdm®then to be derived in accordance with
the collapse mechanism of Figure B.16a.

Regarding the inidividual resistances of the valtiwings (2) and (4), it is clear that the
situation is totally similar to the one studied\poaisly in section 3.5.2.2, except that their
central cross-sections at poifit(Figure B.16a) have not been impacted. Consequeht
contributions of these two wings is still the saasan equation (3.65), provided tiggthas to
be replaced by,,.

Focusing now on the horizontal elements, the arsmlykthe third wing is the same as in
section B.3.1.3 (Figure B.11), except that theisasthave not been crushed. Therefore, the
membrane tensile fordg, and the contribution to the total resistance aarfidoind with help

of (B.59) and (B.60), where = 0, ¢, = &, andd™ = 6. Finally, concerning the first wing, a
comparison with the developments of section 3.5db@s not show any major difference,

267



APPENDIX B. Additional developments for ship impacts on plane lock gates

except that there is no rotation in the plasticghs over the segment of length.
Consequently, modifying (3.65) and gathering ad finevious remarks leads to the following
result, whereV, is still obtained by (3.65):

fh"‘fh( N1> 25}1( N1> Ny A
P,(§) =M 1-—2 )+ 22 (1) )+ 26—+ -6
(0) h< ) () e e e
b, +b N?
+ 1t 2 B.66
boD, (2%1\/1,,(1 N,,2>+N2(6 51)> (B.66)
. - N (S —6,) _ NZ(6 —6;)
with: N, = min u;N} . N =min{v—1;N}
1 { aM,E, h 2 aMyé, 7

In the second case, whéh > §;, the wings(2), (3) and(4) are preliminary damaged before
the activation of the bending mechanism. Neverdsldor a given penetratiof of the
striking vessel, the indentation at poihis only equal t&5 — §,, which means that the plastic
moments of their central sections have to be etediay accounting for the reduction factors
&, (6 —8,) and&;(8 — &;). This can be done in accordance with the linedrizeocedure
detailed in section B.2.2 of Appendix B.2. Consetlye it is worth noting that these cross-
sections are not so crushed than the one diremtbtéd under the first impact poin{Figure
B.16b) because the indentation reached at pirg only § — §;, while it is equal tad at
point].

Accounting for the previous remark, it appears that forceP*(§) required to activate the
plastic mechanism of Figure B.16b may simply bentbiy modifying (3.64). Doing so
provides the following equation:

$n +$n(6) fh+fh(5 61) $p+&(6—81) & +8,(6—6)
a, 3 —aH >+M”< b, — aH + b, — aH > (B-67)

The transition from one mode to the other will #fere take place at the particular
penetrations™ for which the folding resistand® (§) calculated by (B.65) is equal to (B.67) .
After that, whens > §*, denoting by}, & andé&; the particular values @ (8*), &(8* —
61) andé,; (6" — &,) respectively, it is clear that the contributiorishe two vertical wing
and(4) are the same as in equation (3.65), exceptéthhas to be replaced Y. Regarding
now the resistance of the horizontal eleméntsaind(3), the portionAC can also be seen as a
continuous beam with three hinges. An analytichltsin can be obtained by adapting (3.65).
Doing so provides the following formula for the blerg resistance:

n® = oSS (1R B o) oo ()

;. AN "\ bi+b,—2aH
+ (Mv(fv +&7) <1 - N—3> +N(6-6 )) b — al) (b, — ail) (B.68)

with: N . { NZ (8 =69 N } i : { N; (6 —87) N }
: = min = ; =EMmMNy——— =~ Wy
1 oMy (6, + &) " 2 2M, (¢, + &)

$h=38(8"=8) ; &=60"—6)

P*(8) = My, <
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where N, is still given by (3.65). It is worth mentioningat (B.66), (B.67) and (B.68) are

only applicable to cruciforms. These formulae colld easily extended to T-shaped
intersections, but this should be done by accogrftin some particularities, as discussed in
section B.3.1.3.

B.3.2.3. Final resistance of the super-element

The final resistanc@(6) in case of a subsequent contact can be derivetipiningPr (5)
and P, (&) as detailed in section 3.5.2.3. Furthermore, t&-pupture behavior is treated in
the same way.
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B.4. Appendix B.4

B.4.1. Displacement fields before the transition

In equation (3.71) of section 3.6.2.2, the disptaeet field u(Y;,Z) in the elastoplastic
regime (i.e. fors < §;) involves the definition of a kinematically admigs functiong(Y, §)
describing the deformed profile in the vertical sop planeZ = Z; (Figure 3.50). In this
appendix, the definition o§ (Y, ) is extended to account for other collision confajions.
As a linear interpolation is systematically useddach of them, the fundamental formulae for
g(Y,8) are as follows:

y y
. Forosy<y: g(Y,5)=5—+g(0,6)<1——)
Y Y
(B.69)
R Y et
h—y, Iy,

e FOry,<vY<h: gly,8) =6

whereg(0,8) andg(h, §) are respectively the particular displacementheflowermost and
uppermost horizontal beams. Only these two parasateds to be specified in order to have
a complete determination gf(Y, §). In case of bulbous bow, it is worth noting that60) is
only valid if the gate is first impacted by themstand not by the bulb. If this is not the case,
the equations given hereafter can be modified butédnciseness, the corresponding results
are not presented here.

B.4.1.1. Raked bow

The situation of a raked bow impacting a structilna is not supported at the bottom has
been treated in section 3.6.2.2, so the goal sfappendix is only to extend the definition of
g(Y,8) to the situation where the gate is resting agaansill. To do so, the displacement
pattern of Figure B.17a may be postulated, fromctvhi is clear thay(0,5) = 0. For the
same reasons as those exposed in 3.6.2.2, thatidefiaf g(h, §) given by (3.72) is still
holding in the present configuration. Therefore:

90.5)=0; g(hs) =1 (B.70)

which can be inserted in (B.69) to get the defomtof g(Y, §) over the entire height of the
gate.

B.4.1.2. Bulbous bow

As a first step, the case of a bulbous bow impgctirgate free at the bottom is investigated.
From Figure 3.8, it is recalled that the geometriestreB of the bulbB is located at a level
Yz that is simply related to the impact point By= Y, — h, + Ry. Furthermore, from this
picture, it also appears th&t reaches the initial plane of the gate when thespration is
equal to:

R, = (hy —2Ry) cot¢p — Ry (B.71)

Consequently, as long és< R,, the displacement pattern of Figure 3.50b andi#fmition
(3.73) of g(Y,6) are still valid. Nevertheless, faf > R,, there is an additional local
indentation imposed by the bulb (Figure B.17d) telbuld be taken into account when
evaluatingg (Y, 8). In particular, if there is no sill (Figure B.17lihe definition ofg(0, §)
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given in (3.72) is not relevant anymore becausealibglacement of the lowermost horizontal
beam is greatly influenced by the local penetratibB.

(a) Raked bow - with a (b) Bulbous bow - (c) Bulbous bow - with  (d) Local plastic indentation

sill without a sill asill for§ = R,

| 9(v,8) |
5\ 5\

— 5 'S 6 ag
=
S
[ 2 N /. ©

1 — e —
/HH - g B[R

v [ ¥,

Figure B.17. Definition of the displacement profile for various impact configurations

By a similar reasoning than the one exposed in@e&.6.2.2, a convenient way to correct
(3.72) is to assume thgt0, &) is inversely proportional to the vertical distaigeseparating
the bottom of the gate from the centre of the bMévertheless, wheB is moving forward,
this distance is progressively reduced from a fadt¢Figure B.17d) that may be found by

working equation (3.10):
d= Ryﬂ (6 - Rb)/RX (B.72)

Consequently, from the previous considerations ctiefficients1 — Yz /h andd/Ry should

be used to get a new evaluationggD, §). On the other hand, it seems reasonable to think
that the bulb has a negligible effect on the disptaent of the uppermost beam, which
implies that (3.72) is still valid to get(h, §). Finally, one should have:

RZtan¢ Y, Yg d Y,
— —_ — _— i [R— . = — B.73
9(0,6) == (1-7)+G-rp (1 h)mm(Ry 1) 5 g =-ls (B.73)
In this last equation, it is worth noticing thatetfirst term ing(0,5) corresponds to the
penetration reached whén= R, i.e. when the bulb starts impacting the gate.

Of course, if there is a support at the bottomheflock (Figure B.17c), then it is clear that the
bulb does not have any effect grfY, ). In this caseg(0,8) and g(h,d) may still be
evaluated by (B.70).

B.4.2. Displacement field after the transition

The derivation of the displacement field after trensition is very similar to what has been
done previously. The only difference comes from slsequent contact that may occur
between the stem or the bulb and the deforming, gateh as depicted on Figure 3.52d.
Therefore, in order to avoid any redundancy, ofig final expressions of(Y,d) are
provided here (Table B.1).
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Vertical position

Before subsequent contact (6 < §;)

After subsequent contact (6 = 6,)

ForO0<Y <Y, —hy:

ForY,—h, <Y <Y;:

Raked bow
Gate with a sill

ForY, <Y <h:

Y
g(,8) =( - 5071

Y
g(¥,8) = (6 —50?1

9r,8) = 5~ 6 (1- )

Y
g9(¥,8) = (5 _5t)71+ (5_51)1/1 “h,

Y
g(Y,6) = (6, _5t)?+6_51
1

9r,8) = (5~ 6 (1- )

For0 <Y <YVp:

ForYp <Y <YV}

Bulbous bow
Gate without a sill

ForY, <Y <h:

Y
g(¥,86) = (6 -6,
Y

YI(I 1
7

-

7

7
h

Y —

(14
g(v,8) = (8 —st)<1 +
(1-

g(¥,8) = (6 —6,)

)

Y-y
h

Y Y—n(

9(1,8) = 6, = 8) (-

Y,) S tan ¢
Y Y,

h) " h,

N———

)+w—50@+

Y Y—n(

9(r,8) = 5~ 8) (7~

Y—Y,)
h

Y,) S tan ¢

W )+5—@

90r,8) = (6 -80(1-

For0 <Y <Yy:

ForYp <Y <YV}

Bulbous bow
Gate with a sill

ForY, <Y <h:

Y
g(¥,8) = (6 —50?1

Y
g(¥,8) = (6 —50?1

9r,8) = (5~ 6 (1- )

Y Y
g(¥,8) = (8, _8t)?+ (5_61)1/_
I B

Y
g(Y,6) = (6, _8t)?+6_51
1

Y—Y,)

97,8 =6 -8 (1-—

Remarks:

¢ In the case of a raked bow, a subsequent contact between the stem and the deforming gate is only possible if §; < h;, cot ¢, otherwise the second contact takes

place during the local mode.

¢ In the case of bulbous bow, a subsequent contact between the bulb and the deforming gate is only possible if §; < R}, otherwise the second contact takes place

during the local mode.

¢ The ratio §; tan ¢ /h;, should not be greater than unity in the case of bulbous bow impacting a gate that is not supported at the bottom.

Table B.1. Mathematical expressions of the central displacement after the transition from the local to the global deforming mode
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B.5. Appendix B.5

In this appendix, comparisons between the numeracal analytical results are made for
another gate than the one presented in sectioMBer/structure is depicted on Figure B.18. It
is made of five horizontal girders and ten identicertical frames. It has a total lengtlof
17.1 m and a total height of 15 m. The geometrical and material properties are sy
listed in Table B.2 and in Table 3.2.

Horizontal girders
Y(m) | hy(m) | t, (m) | by (m) | t; (m)
?H " 0 1.8 0.012 0.7 0.04
- 4.5 1.8 0.012 0.7 0.04
7 1.8 0.012 0.7 0.04
9.5 1.8 0.012 0.7 0.04
— 15 1.8 0.012 0.7 0.04
g Vertical frames

- Z(m) | hy(m) | t,(m) | by (M) | tr (M)

M 0 1.8 0.012 0 0
[ | 1.9 1.4 0.012 0.4 0.03
5 - 3.8 1.4 0.012 0.4 0.03
:E_H : : : : :
- 15.2 1.4 0.012 0.4 0.03
C i 17.1 1.8 0.012 0 0
L Horizontal stiffeners Plating
N hy (m) t, (m) t, (m)
- 0.03 0.012 0.012

Figure B.18. Three dimensional view of gate 2 Table B.2. Geometrical properties of gate 2

The simulations are run using only vessel 1 (Figiiiba) and vessel 2 (Figure 3.63). The
cases of a gate supported or free at the bottoralace treated separately for an impact
initially located inY; = 13 m andZ; = 8.5 m. For conciseness, only the curves showing the
evolution of the resistance with the penetratiom presented here as a matter of validation.
The conclusions regarding the internal energy@eatical to those developed in section 3.7.

All the results are reported on Figure B.19. Frévase graphs, it can be concluded that the
analytical prediction provides a satisfactory ollemgreement. Most of the time, the
simplified method leads to a conservative approtionaexcept for the case of a gate resting
against a sill and impacted by a bulbous bow (Fadau19b). In this configuration, it appears
once again that the membrane forces are overestinfiat large values af. This conclusion

is also partly valid for Figure B.19d, from whidhcian be observed that the analytical curve
keeps on growing with the penetration while the atioal resistance tends to stabilize. In
fact, the problem is essentially due to the dittigwf correctly assessing the influence of the
bulb on the lateral displacements. Neverthelesghentwo other situations involving only a
raked bow, the membrane effects seems to be masenably evaluated than in section 3.7.
This may be explained by the fact that the distape®veen the lateral supports and the
impact point is greater in the present case.

As a final observation, it is also worth noticitgt there is no important instability during the
impact on a gate that is not supported by a sdhbse the resistance curves of Figure B.19c
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and d only slightly decrease for large value$ oAs already explained in section 3.7, this is
essentially due to the fact that the vertical gisdEre weaker in the present case and therefore
only provide a reduced in-plane collaboration @& tiorizontal beams.

(a) Gate supported at the bottom - Raked bow (b) Gate supported at the bottom - Bulbous bow
14 18
16
12 / P /
14
= A =
< 8 g 10 /
8 /" 3 /
= A = //
S 6 8 8
8] A
3 VV 3 6 //
=) ~ /
4 /,
2 2 /
6 (m
0 5 (m) . (m)
0 02 04 06 08 1 1,2 0 02 04 06 08 1 1,2
e=—]S-DYNA —— Analytical e=—[S-DYNA —— Analytical
(c) Gate free at the bottom - Raked bow (d) Gate free at the bottom - Bulbous bow
14 14
12 /-A‘q-‘ 12 \P‘\,
2 10 S~ 210 /
3 ol 3 //
5 5
g 6 z 6
4 4
/
2 2
6 (m 6 (m
0 (m) 0 (m)
0 02 04 06 08 1 1,2 0 02 04 06 08 1 1,2
= [.S-DYNA Analytical = [.S-DYNA Analytical

Figure B.19. Comparison of the numerical and analytical resistance curves
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APPENDIX C. Additional developments for ship impacts
on mitre lock gates

In this addendum to Chapter 4, some developments are presented to complete the
derivation of the impact resistance for mitre lock gates. The different appendices
are numbered coherently with the sections of Chapter 4.

Appendix C.1 has only an illustrative purpose. It presents some additional pictures
in order to have a better understanding of the various components constituting a
mitre gate.

In Appendix C.2, some mathematical developments are presented to complete the
analytical derivations related to the three super-element types required to
evaluate the local resistance. In particular, some results are detailed for the folding
and bending mechanisms of SEZ and SE3.

Finally, complementary information is provided in Appendix C.3 about the global
deforming mode and additional validation cases are provided in Appendix C.4.

kksk
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C.1. Appendix C.1

This appendix is introduced in a purely illustratipurpose, in order to provide a clearer
overview of the various components constituting ikeriock gate. To do so, some pictures
are proposed hereafter. These ones were all cdptueng the extraction of the lock gate in
Evergem (Belgium) and are presented on Figure C.1.

(a) Lateral contact blocks (closed position) (b) Central contact block (open position)

R

(c) Ties placed at the top of the gate (d) Ties placed at the top of the gate (details)

Figure C.1. Structural details of a mitre lock gate
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C.2. Appendix C.2

C.2.1. Additional results for SE1

This part of the appendix provides more detailstl@ way the displacement field and the
internal energy rate should be calculated for tts $uper-element type in the case of a mitre
gate.

C.2.1.1. Characterization of the displacement field

The displacement#/(z) in the plane of the uppermost deck are completigfmed by
equations (4.3) and (4.6) provided that the looatice;, z,) and(x,,z,) of pointsA andB
are known (Figure C.2). These parameters can bermdigied by imposing slope and
displacement continuity conditions betwdén(z), U, (z) andU;(2):

aUu U
A |fZ=Zl U1(21)=U2(Zl) —1=—2

0z 0z

ou, U (c1)
hd IfZ:ZZ . U1(22)=U3(Zz) _12_3

0z 0z

Unfortunately, trying to solve analytically the pieus equations is not easy to do in the axes
(x,z). Therefore, one can consider first the referenmeené (x,, z;) fixed to the initial
position of the summif of the stem (Figure C.2a). It is worth mentionthgt these axes do
not follow the striking vessel, which means thaytlare not moving with it (Figure C.2b).
Working in this system provides more tractable ¢éiqua.

(a) Initial configuration (b) After indentation
Xs XS
A A
ZsC p S Zs ZsC S
p Y
r
q D T
1
X X
Z
p B
XS,C XS,C
C (Xc,Zc) C (Xc,Zc)

Figure C.2. Parameters defining the displacement field

As the coordinate$X., Z.) and(Xs, Zs) of pointsC andS in the global axes are defined in
the collision scenario, it is obvious that the posi of pointC in this new system is given by
(Figure C.2):

Xsc=Xs—Xc 5 Zsc=Zs—Zc (C.2)
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In fact, it can be shown that . andz . are not independent. Indeed, a relation can bedfou
because of the requirement that the cdhaescribing the stem has to be initially tangent to
the plate. Expressing this condition mathematiocaily the equation of leads to:

p?tan? g

10 (C.3)

Zsc = Xsctana — q —
Once the coordinates of poifitare known in the reference frame of the stemnthe step is
to use (C.1) to determine the locatiow 1, zs ;) and(x,,, z5 ») of pointsA andB in the same
axes. However, working directly with (C.1) is nobnwenient because it leads to very
cumbersome equations that are difficult to solvalwitally. In order to overcome this

difficulty, U,(z), U,(2) and U3(z) are first expressed in thgx,z;) axes. This can be
achieved with help of the following formulae:

x = (xs + xS,C) cosf — (ZS + Zs,C) sinf8
(C.4)

z= (xs + xS,C) sinf + (zs + ZS’C) cosf

Introducing (C.4) in (4.3) and (4.6) and solvingttwrespect tax, leads to an analytical
description ofU, (z,), U,(zs) andU;(z,) that can be geometrically interpreted as being the
longitudinal extrapolation of the displacementdieldepicted on Figure 4.8. These latter are
given by:

2
ZS
Ul(ZS) = q <p2 - 6) (CS)
2 2 2 2 2
p“tan‘ Xg — Xs p°tan‘
U = — x5, tan B + + =) +z;tanf———-— — C.6
Z(Zs) (Zs,l Xs,1 anf 4q Q> (xs,l — xs,C) Zs tan 4q q ( )
2 2 2 2 2
p°tan‘ B Xg — Xsp p“tan”
U = — x5, tana + + = | +zstanfp————— C.7
3(Zs) (Zs,z Xsptan 4q Q> <xs,2 _ xs,D) Zstan 4q q ( )

where x5, = x5 + acos B. Finally, expressing the displacement and slop@peatibility
conditions (C.1) in théx,, z,) reference frame provides to the following results:

2
z: . 2(6+q+xsc)—zsctan,8
=q—=—-6— with: = p? : : C.8
Y1 =q- 7 —8-q Zg1 =D qxee —pPtan (C.8)
g 5 with: _ ,2(6+q+x5p)—zgptanp (C.9)
xS,Z =q pz q . ZS,Z =D qus,D _ pz tan,B .

in which z;, = z; - + asinB. In order to ge(xy,z;) and(x,,z,), the last step consists in
introducing the previous equations in (C.4). Bydsng, the displacement field of section
4.2.1.1 is now completely characterized.

C.2.1.2. Derivation of the energy rate

The derivation of the internal energy rate can beedby introducing the displacement field
u(y, z) of section 4.2.1.1 in equation (3.18) to get thhedh-Lagrange strain raté§y and
E,,. These latter have then to be integrated ovepléie area to get the internal energy rate.
In fact, three separated calculations have to bmmeed, asu(y, z) is different for0 < z <
71,71 < z < 7, andz, < z < a. Doing so leads to:
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. o(by+Dby)cosp . by +b, .K,(by + by)sin3 B
Eine =0 3K?Z sin? B b+ 6K4b1b2 sin? B 2 +6 24 (I3 =14)
.KZ(by + by) sin? B Us— 1)+ (b1 + bz) cos 8 + 4 by + b, I (C.10)
2b,b, 6 KZsin?f " Kybibysin?B ©

wheref is the mitre anglel can be substituted B/+ y, or § — y, according to the position
of the super-element along the gate). The paraméteto I are given by the following
formulae:

1+ K4z, cos B K.z, cos B 1 ) 0K,
—In(1+ 2K,z cosfB) — 1 C.11
L <\/1 + 2K,z cos 8 2(1+ 2Kz, COS.B) 4 M p 96 ( )
J1+ 2K,z cos B (4 + 6K,z cos B + Kizf cos? B) — 4 5 0K,
— — - — C.12
I, < 5K, cos B 2z, — K,zf cos B PY: ( )
_Kzsin,B—4cot[>’\/K3+6sin2,8+zzsin,8 (C.13)
3T K5 + & sin? B + z, sin '
_Kzsinﬂ—4cotﬁ\/1(3+8sin2ﬁ+zlsinﬁ (C.14)
*T K5 + &sin? B + z; sin B '
VK3 + 8sin? B + z, sin 2cotp
-, _ = C.15
Is =z, K, sin g ( 1T S g — (K3 + 6sin? B) + cot,B) (C.15)
VK3 + 8sin% B + z; sin 2 cotp
-, _ =2 C.16
le =2 K, sinf <K1 np (K5 + 6sin? B) + cotﬁ) ( )

By symmetry], andlg have the same expression thhaandl,, except that; andK, have to
be replaced by — z; andKs respectively. In the previous equations, the @tgbarameters
K;, K, andK; are given by (4.4), whil&, andK- have the subsequent definitions:

K, = (zs¢c — 251 ) tan B + x51 — X ¢ sin2 (361;4 __ sin 23 i (€17)
(ZS,C - Zs,l) (ZS,C - Zs,l)
(Zs,D - Zs,z) (ZS,D - ZS,Z)

As a final result, introducing (C.10) in (4.7) alls for the calculation of the resistance
provided by the plating elements of a mitre gate.

C.2.2. Additional results for SE2

C.2.2.1. Folding mechanism

A first complementary result that is needed to eatd the resistance opposed by the super-
element SE2 is the membrane energy rate. As briefiglled in section 4.2.2, each horizontal
fiber is only submitted to an axial straining alahgz axis during the folding process. Under
the conservative hypotheses that there is no stgeand only an internal dissipation over the
trianglesOAB andOBC (Figure 4.11), one should have:

279



APPENDIX C. Additional developments for ship impacts on mitre lock gates

i ow aw
- [ & i C.19
E, ff e dxdz + ff e dxdz ( )
OAB OBC
whereE,, = dw/dz is the Green-Lagrange strain rate that can beuleaésl by using the
definition ofw(x, z) given in (4.10). Deriving (4.10) with respect tmé and introducing it in
(C.19) leads to the following result for the fivging:
10w, oW a;+dsinf+2H
noH - + - N
2 06 a6 (a, + &sinB)?

B, = (2 = I 2)W, + 4W, In 2) | §sinB (C.20)
wherelW, andWjy are defined by (4.9). Because of the assumptiantkie folding heighH is
quite small in comparison with the length, the second term of the previous expression can
be neglected. Doing so, one gets for the two wings:

T = 4a,(8 + 2Hcos B) + 82 sin2  4a,(8 + 2Hcos B) — 6% sin 2
En =ng < 4(a; + & sin B)? 4(a, — 6 sin B)? dcosf (C.21)

in whichn, is the linear plastic resistance for a plate afkihesst,,. Regarding the bending
energy ratef,, its definition is nearly the same as for a plaaée, but the definition of the
angled (Figure 4.11) has to be corrected to accountiferclinationgs:

SCOS,B)(:) . S cos B

6 = arccos (1 — =
2H 2H\/1— (1 —6&cosf /2H)?

(C.22)

Ideally, the bending dissipation has to be caleddor all the segment®4, OB, 0C, AB and
BC. Nevertheless, under the assumption that thernfglteightH is quite small with respect
to the lengths; anda,, the contributions of the moving hingés8 andBC can be neglected.
Doing so has the advantage of simplifying the ailderivation by skipping the theoretical
questioning that is further discussed in secddh2.2. Consequently, under the assumption

that the rotation raté is more or less the same @4, OB andOC, it can be shown that:

4my(a; + ay)8 cos B
2H\J1— (1 —&cosf /2H)?

Eb = 4m0(a1 + az)é = (C.23)

Nevertheless, from (C.23), it appears thiat> oo whend — 0, which is not acceptable as the
folding process is in fact initiated after the ébgdastic buckling of the plate. Therefore,
instead of using (C.23), a convenient way to ouwaxedhis difficulty is to smear the average
dissipation rate over the indentation, which lei@ds

dmom(a, + a,) .
p = —ot 2 H1 2 §cosp (C.24)

wherem, = o,t2 /4 is the linear plastic moment characterizing thateplwith a thickness
equal tot,,. Summing up (C.21) and (C.24) leads to the tottdrhal energy rate and the
resistance given by (4.12). Nevertheless, in otdarompletely characterize the indentation
process, it is still needed to evaluate the foldegght H. As usual, this can be done by
minimizing the mean resistané® calculated for0 < § < 2H/ cos B. After integration, the
subsequent result is obtained:

5 _ Oty N ntw_l_ 3H? cos C25
r= 2 (@ +a,) 2H  (ay +2HtanpB)(a, —2H tanfB) (C25)
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To get the optimal value fai, a quite fastidious task is now to calculate tkewvative of
(C.25) and get the roots of the corresponding eguate.:

oP
5%=0c¢&ﬂ4+&H3+&HL+MH+K5=0 (C.26)
with: K, = —12(a; — a,) sin§ — 16mt,, tan® g K, = 4nt,a,a,(a; — a,) tan B

K, = 12a,a, cosp — 16mt,(a; — ay)tan® B K. = —nt,a?a?

K; = —4mt, (a? + a3 — 4a,a;,) tan? B

Of course, finding an analytical solution to theypous relation is unfortunately not possible,
but the Newton-Raphson method can be a conveniagttas obtain a numerical solution.
However, under the hypothesis that the agie small, (C.26) shows that ~ K; ~ K, ~ 0
andK, =~ 12a,a, cos . Therefore, equation (C.26) becomes:

s
12H3aqa, cos B — wt,a2a3 =0 < H = ilﬁalaztw/ cos B (C.27)
As a matter of illustration, the curves comparihg €xact and approximate solutions for
different values ofg are plotted on Figure C.3. The geometrical dataesponding to this
example are,; = 2 m, a, = 3m andt,, = 0.03 m.

Exact solution —— Approximate solution ——Plane gate

0,380

H (m)

0,376

0,372 yd
y
//////’

/
//
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B (deg)

0 15 20 25

0,360

0,364 ,/
/
1

0 5

Figure C.3. Comparison of the exact and approximate folding heights

From this picture, it transpires that choosing {.Rrovides a convenient and sufficient
estimation of the folding height.

C.2.2.2. Bending mechanism

The derivation of the collision force in this sectiis based on the hypothesis that the super-
element web is of class 1, which allows for theadlepment of the three-hinge mechanism of
Figure 4.12b. If this is not the case, then anofitestic collapse scheme has to be postulated,
such as the one presented in section 4.3.

The theoretical calculation of the resistance duan oblique impact on a straight beam is a
problem that is not easy to solve because it imphe use of travelling hinges. In an attempt
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to study more precisely the oblique impact occgrrion a cantilever beam, Yu [175]

investigated the transient phase by working withsppt hinges propagating and interfering
along the structure, but this is not of primary @am for low-velocity impacts such as those
on lock gates. In order to derive a consistentrétezal solution to this problem, apart from

the yield condition and the normality rule, the iéiddal requirement of slope continuity has
also to be fulfilled at each moving plastic hinge.

Nevertheless, as claimed by Stronge and Yu [14&)jr a perfectly plastic structure with a
yield condition that couples bending moment and axial tension, a model with discrete
travelling hinges which combine bending and stretching deformations cannot satisfy both the
flow rule and yield criterion throughout the deforming region”. This assertion means that
developing a theoretical solution to the preseabl@m is not straightforward. Of course, one
may argue that the concept of moving hinge has keaenessfully applied by many authors
when dealing with plated structures, such as Sieif$40], Amdahl [8] or Deshpande and
Fleck [41] amongst others. However, it is worthrioeggain mind that all these developments
were based on the hypothesis that the bending ntoamehthe axial force were decoupled
within the yield criterion, i.e. that (3.17) may bsed to evaluate the plastic dissipation. This
idea has also been applied to beams by Symondsiant| [147].

M; M;
a; +6sinf az-6sin B
01 0
c M M D

Figure C.4. Internal forces for the equilibrium method

The present developments are based on the idethéhalope continuity requirement may be
neglected. Furthermore, as suggested by Tin-LoB][1the normal and shear forces are
supposed to act along the axes of the undeformeficoation, which is only valid under the

assumption of moderately large displacements. Dang the yield condition and the

normality rule can be respected within a kind ofagjtstatic approach by applying the
equilibrium method. In this optic, the situationpa#ed on Figure C.4 is considered, where
some of the external forces acting in sectidné andD are represented.

As the bending momenrdt'M, has to be continuous on both sidesApfthe yield condition
(B.28) implies that the axial fordg is the same in the two arms of the beam. Conséiguen
satisfying the plastic criterion i, C andD leads to:

2 2 2

M__ 1_(ﬁ> My _ 1_(ﬁ> My _ 1_(3) (C.28)
5 MO NO flMl NO €2M2 NO

As a second requirement, the normality rule has #&ts be fulfilled for all the hinges.

Consequently, the extension rafed\; andA, at the sectiond, ¢ andD have to be related to

the corresponding rotatioms 8, andé, (Figure C.4) in order to keep the combinationhaf t
bending moments and axial forces on the yield Ipces
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N (C.29)

é_ Zf*MoN ﬁ _ 2€1M0N & _ 28:Mo
6 N2 6, N 6, N2
wheref = 0, + 6, is the rotation rate at the central cross-seclioRrom simple geometrical

considerations, because of the hypothesis of mtalgréarge displacements, it is easy to
show that:

o6—06" . a; +8"sinf .
. glzﬂ 91=1—2ﬁ(5cos,8 (C.30)
Ly I
o6—06" . a, —6sinf .
. BZZHﬂ 92=Zl—2ﬁ6cosﬁ (€.31)
2 2

wherel; andl, are respectively the actual lengths of the segenéfitand AD (Figure C.4)
given by:

1(6 —8%)%cos? .0l

N = i Z =— C.32
L a1+6sm,8+2 o T osing L 666 (C.32)

_ 1(6 —6%)%cos?p .0l .
l, =a,—4&sinf +§ & —osinp lz—%d (C.33)

The total axial elongation of the beam can be edsiind with help of the two previous
formulae. Nevertheless, it is worth mentioning taabther approach could be to follow the
hypothesis made by Brown and Sajdak [15] or McDétreb al. [107], who state that the
membrane stretching is only effective in the arribe the impact point. Nevertheless, doing
S0 is not in agreement with the observations madawnerical results. On the contrary, it
transpires from finite element simulations that ti@mal force is more or less constant
throughout the beam, which implies that the two samne simultaneously submitted to a
membrane extension. Therefore, accounting for tlEsark, it is now obvious for
compatibility reasons that the total elongatiortref beam has to be equal to the sum of the
axial extensions in each individual plastic hinges;

l1+l2_a1_a2=A1+A2+A (C.34‘)

Deriving (C.34) with respect to time and using tetations detailed in equations (C.29) to
(C.33) finally allows for the determination of thermal forceN:

Ng L +1, N )
2Mo (& +E)6, + (& + €6, " °
Substituting (C.35) in (C.28) leads to the evalabf the bending momenis, M; andM, in

sections4, C andD respectively. Doing so, the shearing for@gsandT, (Figure C.4) may
now be calculated by simply expressing the rotagiguilibrium of the armdC andCD:

N = min( (C.35)

_M+M;+N(@B—-6")cosp T _ M+ M;+N(@—6%)cosp
B a, +6sinf S

(C.36)

! a,—6sinf
Finally, the formulae forP can be found by writing the translation equililniuof the
structure, i.eP = T; + T,. Using all the results established here aboveigesvthe relation
given by (4.15). As a last comment, it is probablgrth recalling that all the previous
developments remain approximate. The problem ofeanbimpacted obliquely is quite
difficult to solve on a theoretical point of view.
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C.2.3. Additional results for SE3

In this appendix, it is assumed that a super-elémktype 3 is activated by the subsequent
contact occurring between the vessel and the lgfp@t of a horizontal girder, which
happens when the penetration is equaldfo This particular value can be easily found
analytically by considering the mathematical expi@s of the bow, but its derivation is not
detailed here.

C.2.3.1. Folding mechanism

The situation during the folding process is asofe$ (Figure C.5). Fof < §;, the impacted
super-element is simply crushed in accordance thighdescription made in section 4.2.2.1,
until a new contact is established at pa@intAt this momenty = §; and another deformation
pattern is activated. It is made of three differeagions numbered fromi to I/ and
characterized by a total height equaltd, (Figure C.5a).

X

A a: +6;sin 8 az-6;sinf
0 - 7 A\/E/f az
61
N
(a) I I‘I 1‘11
| ‘ g
A
N
aH; a; + 6; sin f - aH; az-06;sinf
X : .
A a;+6sinf az-46sinfB
0 . Z B
Pl
S )
] y
aHi a: + 61 sin § - aH; az-0:sinf

Figure C.5. Folding mechanism in the case of a subsequent contact

The first part has a constant length equatdy and simply follows the deformation scheme
of Figure 3.37b. On the contrary, due to the iration of the gate, the second and third parts
have variable lengths, which means that a moviagt@ hinge line should be placed at the
junction between these two regions. Widen §,, the mechanism is gradually closed (Figure
C.5b), so there is a material flow between paftandIil, but there should be no slope

discontinuity along the connection. In order topexs this requirement, it can be shown that
an additional irregular toroidal surface may beduse make a compatible transition.
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However, doing so is not really necessary, as #mding effects can be neglected if the
folding heightH, is sufficiently small with respect o, anda,.

Due to the fact that the lengths are not constaertanalytical derivation of the resistance is
quite fastidious. In order to facilitate the proaezl an additional simplification is introduced.
Indeed, during the collision, the in-plane disptaeat of pointO is not strictly equal to
(6 — &8,) cos B but should be calculated by taking the intersectbetween the bow and the
perpendiculax axis. However, as the dimensions of the vesselthmayght to be much larger
than those of the super-element, this assumptiosually acceptable.

The resistanc®; (§) associated to the first sub-area can still beuastatl by using equation
(B.44), but one should account for some little nfiodtions regarding the opening angle
and the indentation to consider. Regarding therimrtion of the second region, this latter
can be easily found by evaluating the energy di¢sip by the plastic rotation in the
horizontal stationary hinges. Similarly, for regidh, the internal dissipation due to the
membrane and bending effects is also responsiblarioadditional resistance that can be
simply found by accounting only for the right winfjthe deforming mechanism in equation
(C.21). From all the previous remarks, it may bevahthat:

_ G(0) 5 a 2y (6 —81)cosp
P56 = noHlf‘*‘ morr( a’+1 +g+§) ; 8 = arccos <1 o, (C.37)
moT .
Py(6) = (ay + 8, sin B + 2H; tan f — aH,) (C.38)

Hy

n0H1 6 - 61

Pin(6) = 2(a, — & sin B)?

((az —8;sinB)(2H, + (6 — 8;) cos ) — sin 2,8)
(C.39)

mym
H,

+ (ay — 6y sinf — 2H, tan )

where G(8) is given by (B.37) andr = 0.8601. Nevertheless, in order to find the total
resistance associated to the folding process, istié required to account for a last
contribution. This one is coming from the membramdension of the area previously
damaged before the subsequent contact. Assumihghthanternal dissipation only arises in
part IV (Figure C.5b), a straightforward generalization(Bf63) leads to the subsequent
approximate formula:

(6 —81)cosB2a, — (8 +6;)sinpB [51 cosf

Py (8) = 2Hymo 2 (a, — 8sin B)? 2H,

(C.40)

in which the last multiplying factor is introduceéd account for the folds that have already
been completely crushed before the subsequentatoSiamming upP;(6) to Py (6) allows
for the evaluation of the impacted wing resistamreyided that the folding heiglt; can be
calculated. To do so, it is suggested to use thewimg simple relation obtained through a
kind of minimization process:

_ 3|mty, (ag + az)(ay — 8 sin B) (C.41)
= 112 cosf .
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Finally, the folding resistancg (6) of the cruciform has to be calculated by accougnétso
for the three remaining wings (or the two remainiviggs for T-shaped intersections). These
latter are numbered frof2) to (4) on Figure 4.20 and are characterized by a cortipibu
P,,i(8), withi € {2, 3,4}. Therefore, we have:

4
Pe(6) = Pi(8) + Py (8) + Py (6) + Py (8) + Z Py, :(6) (C.42)
i=2
where P, ;(8) can be evaluated by applying the recommendatioademn section 4.2.3,
except that — §; has to be considered insteadof

C.2.3.2. Bending mechanism

This appendix focuses on the situation where a Heéabehavior is activated over the entire
cruciform. It is first assumed that the activatiohthe bending mechanism occurs for a
penetrations™ such that the central cross-sections in pOirfFigure C.6) have already been
crushed by the bow, which means tl#t> §,. On a mathematical point of view, the
indentation at poin® should be calculated by considering the intersaadif the vessel with a
vertical plane, such as shown on Figure 4.14. Demg@rovides a function(é — &%) for the
penetration, but as the dimensions of the shipuawally quite large with respect to those of
the impacted super-elementd — §*) may be conveniently approximated @y— §*) cos 5.

The collapse mechanism is the one depicted on &i@u6éa and is made of eight plastic
hinges. The maximal bending moments in the horedaand vertical elements are denoted by
M, and M, respectively. At the supports, these latter havebe affected by reduction
coefficients &, and &, to account for the partial rotational restraintor Rhe section
immediately located under the impact paina coefficient,, is also required because of the
preliminary indentationd™ preceding the activation of the bending mechaniBmally, as

6, < 6", the central sections at poi@tare also crushed over a distadce- 5, before the
bending collapse, so the maximal bending momemlig equal tof; M,, or &4 M,,.

(a) Plastic mechanism (b) Mechanical model for the horizontal elements
» B P as -
C 03 P3 i}
(6-6) cosp
4
0
a1 +6sinff . a:-6sinf
I
0
6-6" - \1
10
I;
v
» D P P;

Figure C.6. Bending mechanism in case of a subsequent contact

The situation for the vertical wingdB andOD is exactly the same as on Figure B.16b, except
that the central displacement is now equaldo- §*) cos 8, so their contribution to the
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bending resistance can be obtained simply by aupB.68). For the horizontal wingA

and OC however, the approach is not straightforward. tdeo to solve this problem, a
solution could be to generalize the method followm@viously in section B.3.1.3 by
analyzing the two wings individually. This way odidg is consistent with the hypothesis of
having uncoupled super-elements, but is not emtsatisfactory as it does not respect the
static requirements at the central paihtNevertheless, as no major divergence with finite
element simulations was found during the validapoocess, the approach has however been
used for the analytical developments.

From the previous considerations, it results that equilibrium method may be separately
applied to both structures of Figure C.6b. The iotffarce acting on the horizontal elements
has three different components, respectively dehfsten P;, P, andP;. These ones can be
determined by finding a set of statically admissiisiternal forces that respect both the yield
locus and the normality requirement. Doing soait be shown that the bending resistance for
the cruciform element is given by:

M ; NE\ M 3 N? . Nz
Py(5) =%(1—N—%>+%<1—N—%>+Mv(§v+§$)<1—,v—§>

Nycosp  Njcosp .  by+b,—2aH >

+ (5_6*)<a2—5sinﬁ az — aH * (by — al) (b, — aH)

. N? 2a, — (6 — 6*) sin
with: N1=min{ h 2~ ( ) sinf

4Mh(fh + 5;;) a, — o* Sinﬁ (6 - 6*) cosa ;Nh} (C4‘3)

N? .
Ny = min{m (6 —6")cosp ;Nh} s $p=85(6" —61)

2
2M, (&, +€5)
Of course, equation (C.43) is not valid if the bddm behavior is activated before a

subsequent contact occurs (i.edif< §,). In this case, the resistance can be obtained by
applying the same approach to the collapse meahasfiigure B.16a.

N, =min{ (6 —6")cosp ;Nv} ;& =608 =6

As a final remark, it is worth bearing in mind ttat the previous formulae are valid in case
of a subsequent contact involving the left supplrthe right one was first implicated, then
equations (C.37) to (C.43) would be slightly maoelifi Furthermore, for a vertical SE2, all the
formulae developed in section B.3.2 are still raldy provided that — §; is replaced by
(6 —8;)cosp.
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C.3.1. Summary of some cross-section properties

Classification Cross-section Bending resistance
M, is the plastic bending resistance of the uncrushed T-shaped cross-section ), when k folds are completely closed
(k = 1). The bending capacity is as follows:
M, — M, _ .
Class 1 s Mfk<n: &,()My; = M + ———""2(5 — 2kH) with 2(k — 1)H < § < 2kH
Class 2 _Q b P 2H
— (C.44)
o Ifk=mn: &pi(OM,; = My, with § > 2nH
M, is the elastic bending resistance of the uncrushed T-shaped cross-section Q; when k folds are completely closed
(k = 1). The bending capacity is as follows:
« Ifk<n: = Mic ~ M- ith 2(k — 1)H < § < 2kH
Class 3 Q <n: fe,i(g)Me,i = Mk + T((S - ZkH) wi >0
ek (C.45)
o Ifk=mn: $ei(O)M,; = M, with § > 2nH
M, is the elastic bending resistance characterizing the efficient portion of the uncrushed T-shaped cross-section
when k folds are completely closed (k = 1). If M, is found to be higher than M, _,, then the resistance is limited to
M, _; in order to keep a decreasing function. The bending capacity is as follows:
Class 4 1 - _ M, — M, _ .
e Ifk<n: &,(8)M,; =min {Mk + %(5 — 2kH) ;Mk—l} with 2(k — 1)H < § < 2kH
H/ Kot (C.46)
o |Ifk=n: f_e,i(5)ﬂ7[e,i = Mn with § > 2nH
Classification Tension Compression Bending Combination criteria Comments
2 . . .
Eiass% N, N, £,:(5)M,; M; + (ﬂ) —1 M, .and Ny; are calculated.for the entire section. It is not
ass gpl. ) M, Ny required to account for buckling.
M; N; M,; and N, ; are calculated for the entire section. It is not
N, ; N, : (M., : 4t 1 e,i i
Class 3 pi pi $ei(O)Me, $ei()M,; Ny required to account for buckling.
= — M; N; To account for buckling, M,; and N, ; are calculated for the
N, ; N, ; (&M, ; —t+=—=1 » He i
Class 4 bt bt $ei(OMe, $ei(B)M,; Ny bending and compression effective cross-section respectively.

Table C.1. Derivation of the bending resistance for a folded cross-section according to its class
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C.3.2. Equilibrium method for a class 1 cross-section

As a reminder, it should be mentioned that the ldgjwim method may be seen as an
extension of the lower-bound theorem to moderatpladcements. It leads to a solution that is
statically admissible in the sense that the yiglteigon and the equilibrium equations are
simultaneously satisfied. However, the kinematgureements are not necessarily fulfilled, in
particular at the moving plastic hinge where thapsl continuity is violated. For a complex

situation such as the one depicted on Figure 4t28, claimed in section 4.3.2.2 that the
equilibrium method leads to equations that are trenttable analytically. The aim of this

appendix is to provide more details about this rtiese

Figure C.7. Definition of the plastic collapse mechanism

To do so, one can consider the mechanism represemeFigure C.7 that involves one
moving plastic hinge initially located at poihtbut travelling with a velocity(Y;, §) tan 8
along theZ' axis. During the plastic collapse, it is postulatbat the non-impacted leaf
rotates as a rigid body, which means that the len§iBC is always equal td. This forces
point B to follow a circular trajectory having the follomg components along th&€ andZ’
axis:

up(y) = I(sin 28 — sin(2f = v,)) ; wp(¥;) = 1(cos(2B —y;) — cos 2p) (C.47)

wherey; is the rotation oBC for a given value of the penetratigiiY;, §). From these results,
the current lengthg andl, characterizing the two arms of the impacted besaras follows:
g*(Y;, 8)
2(a; — g(¥;,6) tan B)
2
2(a; + g(v;,6) tan B — wp(¥y))

wherea, = Z; anda, = | — Z;. From the previous results, it is easy to derhe tbtal axial
shorteningd; = a4 + a, — l; — 1, and the relative rotatiof} at the plastic hinge:

L=a—g,6)tanp +

(C.48)

l, =a,+g(Y;,0)tanf —wg(y;) +

b w WD (g0 —us ()’
EEWBYY T 90, — g, ) tanB) | 2(az + g(¥;, 6) tan f — wy (1)) €49)
o 9000) 9(%,8) — up(y)

a; —g(¥,8)tan B a, + g(¥;, 6) tan B — wy(y;)

The normal force that is required to produce thalachange of lengtiA; can be obtained by
applying the normality rule. In this optic, the mienane and rotation rates are first calculated.
These latter are found to be:

A; = (%cos(Zﬁ -y + ﬁsin(Zﬁ - y-))% + 94; g(v;,6) (C.50)
‘ dug YT dwg “Jag  dg v .
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6, = <aei 2 + 2% Ginc2 )ayi+69" (%, 8 .51

where the derivatives with respect @9 and wy can be directly obtained by considering
(C.49). Considering the previous results, the noroce N; and the bending mome;
associated ta; and@; may be calculated to satisfy the plasticity ecquregti(i.e. the normality
rule and the yield criterion):

Ny A 3

N
N; = min LN s Mo=&, M, [1-—— C.52

Furthermore, because of static requirements, tearsty forcel; acting at the central contact
block B and parallel to th&’ axis (Figure C.8) has to be such that the rotatistability is
verified, i.e.:
T = M; — Ni(g(¥;,8) —up(y)) + pi13/2
T gt g ang - w(r)
Substituting (C.50) and (C.51) in (C.52) allowsexpressN;, M; and T; as functions of

g(Y;,6), v; anddy;/dg, but a relation betweeny andg(Y;, §) is still missing. This one will
be derived hereafter.

(C.53)

pili

Figure C.8. Internal and external forces for the equilibrium method

In order to have a consistent application of theildium method, a last requirement is to
fulfill the static equations for the non-impacteaf. For convenience, instead of working with
N; andT;, the equivalent forces; andf; are introduced (Figure C.8). Using these notatidns
is obvious that the rotational equilibrium BE leads to:

p;l ) n; = N;cos 8 + T;sinf8
71 + ficos(B—vy:) —nisin(B —y;) =0 with: _ (C.54)
fi=T;cosf — N;sinf

As a final result, it appears that (C.54) is aatiéhtial equation involving (Y;, §), y; and
dy;/dg that allows for the derivation ¢f as a function of(Y;, §). Unfortunately, due to its
excessive complexity, this equation cannot be sblaealytically. Therefore, additional
simplifications needs to be introduced in the model suggested by Paik and Thayamballi
[121], an approximate solution can be found byetjarding the normality rule. However,
doing so provides a result that is not entirelytichily admissible. Consequently, the
expression ofP;(§) derived in section 4.3.2.2 fails to respect corngbye the static or
kinematic requirements. For this reason, it habdaconsidered carefully, but comparisons
with numerical solutions have shown that it wadisignt to model the gate behavior during
the global deforming mode.

As a final comment, it is worth mentioning that theesent solutions foP;(6) and those
derived in section 4.3.2.2 are decreasing funstioh the penetratiod, which is quite
coherent as the plastic mechanisms correspondsstahle configurations in the present case.
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C.3.3. Plastic mechanism after buckling

C.3.3.1. Description of the folding process

As claimed in section 4.3.2.2, performing a rigldgpic analysis is only valid for class 1

cross-sections because working with plastic hirrgesiires a sufficient rotation capacity. If

this is not the case, then an early buckling ety when the relevant combination criteria of
Table C.1 is satisfied. Once this instability os;uthe beam behavior may be studied by
postulating a given folding mechanism. This apphodas been largely applied in the

literature to investigate thin-walled structuresnt® application examples are provided by
Kotelko [88] or Ungureanu et al. [151] who followdle upper-bound method to get the
ultimate load for various cases.

A E B 4 & p
‘ 5
~
D Ry
\ 61'
C C

Figure C.9. Description of the folding mechanism

The approach followed here is exactly the same. défermation pattern after buckling is
depicted on Figure C.9 and is based on the onenadabeuring finite element simulations. It
is made of four different triangular surfacé6D, BCD, ADE andBDE separated by various
plastic hinges that allow for relative rotationsviaeen them. All these motions involve both
bending and membrane deformations and it is prigdise aim of this section to evaluate the
corresponding energy ratés, and E,,. To do so, two parameters are introduced (Figure
C.10). The first one is the lengthmeasured along the plating intersection, whilestdeond
one is the coefficieny such that the web is divided into two portioyts, and (1 —n)h,,
during the folding process.
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Figure C.10. Parameters defining the deformation pattern

The incremental variable governing the analytiggdraach is the relative rotatidh between
the two arms of the beams (Figure C.9). Witen> 0, the mechanism implies a relative
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rotation of the four triangular surfaces such tihat lengths odE, EB, ED andCD remains
unaffected. This last requirement involves an anApl displacemed; of pointE given by:

85 = hywtsin@; — (£2 — h2)(1 — cos ;) /2 (C.55)

which is a monotonically increasing function@f As in section 4.3.2.2, this latter may still
be related to the penetratiérof the striking vessel.

C.3.3.2. Derivation of the displacement field

In an attempt to derive a kinematically admissitikplacement field, the classical plate strip
model is used. The folding mechanism is seen a$ af iorizontal and vertical fibers that are
weakly connected, which allows them to slide aleagh other without shearing. According
to the hypotheses listed before, there is no dedtiom along the segments, EB, ED and
CD, but for compatibility reasons this assumption ta$e valid for any vertical fiber. In
other words, the initial distance between the aine and5 of Figure C.10 is not modified

when the beam is bent.

(a) Fiber extension for one wing (b) Displacement field

AI

o
\¥
ty

[T

W(z)

|

(11

hw
%)}
<
>

q .uulIJJHH“J“”I“IHHHH‘HHH

c

Figure C.11. Deformation and displacement field for one wing of the folding mechanism

Of course, if all the vertical fibers are inextdaisj this cannot be the case for the horizontal
ones. Because of the plate strip formulation, tha$er may be seen as being only submitted
to an axial elongation, which means that it is isiéght to impose only a displacement field
w(x,z) parallel to thex axis. In order to derivev(x,z), a first step may be to get its
particular profileW (x) = w(x, £) along the central lin€DC. An analytical expression for
W (x) can be found by evaluating the change of lengtivdén the pointg, 2 and3 that are
placed at a levelx (Figure C.10). For a given indentatiody,, due to geometrical
considerations, these ones are found to be lodatadnclined planer that is always parallel
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to the rotating segmemt’E’ (Figure C.11a). This observation leads to the lemmen that
W (2) is the subsequent bilinear function:

x+h,

4 |f—hWSX<T]hW: W(X)=W

Wp
(C.56)

X
e If —ph,, <x<0: U(x)z_%WD
wherel,, is the maximal in-plane displacement reached it @b (Figure C.11b). Of course,
as the segmen&E andAC are kept undeformed/ (x) should be equal to zero fer= 0 and
x = —h,,. In addition, the following result can be estaindid:

216
Wy =(1-1n) (]ez — 262 + 1’7 ’;(hvzv +62)1/2 — e) (C.57)

where the indentation at poiftis given by (C.55) ang < 0.5. With the previous equations,
the derivationw(x, z) is now quite straightforward. The only requirenseatew(x, z) = 0
alongAC andw(x,¥) = W(z). The easiest way to respect these conditions etimrm the
subsequent linear interpolation:

z+¥¢x/h,,

(A x/hy) P (€58)

w(x, z) =
which is reputed to be kinematically admissible va&x, z) satisfies the continuity and
boundary conditions.

C.3.3.3. Derivation of the internal energy rate

Using equation (C.58), the membrane strain Egtecan be easily determined by integrating
the axial strain rat&,, over the deforming triangle4ED andADC in accordance with the
plate strip formulation recalled by formula (3.4Bping so, we get:

W (x) . oW, 35 .

EZZ = m Em = nohWEa—ei i (C59)
where the derivatives o/, and 6; can be obtained from (C.55) and (C.57). Once the
membrane energy rate is known, the next step makoculate the bending one. Due to the
particular geometry of the fold, it is a very cumdmne process to establish the analytical
formulae leading td,. Therefore, only the final results are presentee hin factf, may be

obtained by summing up two different terf)s, andE,, ,.

The first contribution is coming from the folded bviésself. From Figure C.10, it appears that
the rotations are confined in six plastic hingé§, BC, E'D’, CD’', A'E' andE’'B, for which
the internal dissipation is given by:

. 0{; ¢y 6(2> 652)6515 .

— 2 2 4 2 22\ Tk g

Ep, ZmO(\/hW+{’ 66+€€q(66+68 +{’a6 09i9‘
(C.60)

with: ¢, = \/ez +02hZ, + 2065 (h2, + 62)1/2 — 262(1 —n)
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where; and{, are the relative rotations of the triangles caustig the fold. The second

contribution is due to the bending effects arismghe flange and in the collaborating portion
of plating. From Figure C.12, it can be seen tlmaéd plastic hinges are involved in the
plating, while only one is present in the flangédey are responsible for the following
dissipation:

. o t? h,+/1+cos@; +£,/1—cosb;\ .
Ep, = <—‘;f h + Gt2he wy - \‘m U > 6, (C.61)
E

wherehs is the flange width and,, is the collaborating length of the plating. As aisty

andt, are the corresponding thicknesses of these elem&sia final resultt, is obtained by
summing up (C.60) and (C.61).

Figure C.12. Bending effects in the plating and in the flange

As a final result, the total internal energy ratg, is obtained by summing ug,,, E,; and
E,, in accordance with equations (C.59), (C.60) andIrespectively. This leads to an
expression of;,; as a function of; ando;.

C.3.3.4. Derivation of the resistance

In accordance with the upper-bound method, theritwtion P;(6) to the global resistance
P;(6) has to be found by equating the work rate donthbyexternal forces with the internal
dissipationk;,,;, i.e.:
dg . . i
Pl%é‘ + Wh = Eint (C62)

wherelW, is the external power due to the hydrostatic presandE;,, has been derived in
section C.3.3.3. However, solving (C.62) still reqs to find a relation between the opening
angled; and the out-of-plane displacementy;, §). To do so, one can consider the plastic
mechanism depicted on Figure C.13. For a givertipadi’ of the initial contact point, it can
be seen that the three segmehits BI' anBC simply collapse by keeping their initial lengths,
le.:

Al=AI'=Z=a, ; Bl=Bl'=1—-Z/=a, ; BC=1 (C.63)

which means that both poinis and! follow a circular trajectory. In other words, th&in
difference with class 1 cross-sections lies in fdet that the hinge is not moving, so the
folding mechanism of Figure C.9 remains locatedsatnitial position where buckling first
oCcCurs.
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a0

Figure C.13. Plastic mechanism for a class 2, 3 or 4 cross-section

Because of the requirements imposed by (C.63)aitspires that the position of the central
point B is univocally determined, so a relation betwé&emnd g(Y;, §) can be derived from
geometrical considerations. This procedure beingedastidious, it is not reported here.

As an additional result, the internal foregsandf; at the central blocB (Figure 4.30) can be

found by expressing the rotation equilibrium of e leafs. The solutions may then be
introduced in the sliding criterion to know if thentact is still provided (see sectiér3.2.3).
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C.4. Appendix C.4

This appendix provides additional comparisons teckhthe validity of the simplified
approach in various other cases. These resultdi@etly extracted from a publication made
by Buldgen et al. [24] on the crashworthiness aklmitre gates. They are all based on the
structure presented in Figure 4.34, but four défifermodels are investigated. For each of
them, the main geometrical properties are the sasnthose listed in Table 4.5, but some
parameters are varied (Table C.2).

Property Gate 1 Gate 2 Gate 3 Gate 4
Vertical position Ys (m) 7.15 7.15 7.15 7.15
Transversal position Zs (m) 12.6 8.2 8.2 8.2
Plating thickness t, (m) 0.022 0.015 0.012 0.022
Web thickness of the girders h,, (m) 0.016 0.012 0.02 0.01
Web height of the girders ty, (M) 1.5 1.5 1.5 1.2
Flange thickness of the girders | tr (m) 0.012 0.012 0.02 0.01

Table C.2. Parameters defining each gate model

In the first gate model (Table C.2), the impactnpdocation is changeds is still equal to
7.15 m, but this timeZs = 12.6 m. In this configuration, the collision occurs nélae central
stud. The results presented on Figure C.14 showslidéng occurs around = 0.7 m, so it is
not really a problem if the analytical curve is sohservative fo > 0.7 m.

12000
10000
Z 8000 AWALY
=
g:g £000 / \\ Analytical
3 \\" /A'\ solution
2
év} 4000 N \ Numerical
solution
2000 Al
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Figure C.14. Numerical and analytical resistance curves for the first gate model

For the second gate model (Table C.2), the impoetaf the stiffening system is reduced. To
do so, in comparison with Table 4.5, the thicknafsthe plating and of the horizontal girders
are respectively reduced tg = 0.015m andt,, = 0.012 m, which implies that the beam
cross-section may be of class 1 or 3 accordingh¢ocbllaborative part of the plating. The
impact is kept atYs = 7.15m andZs = 8.2 m. The curve obtained in this case is plotted on
Figure C.15 and shows a rather good accordance tivehnumerical results afs-DYNA.
Nevertheless, the analytical approach appears todeonservative when the global mode is
activated, i.e. fo > 0.45 m. On a theoretical point of view, this may be jiistl by the two
following reasons:

« When the overall plastic mechanism is activatedrotlee whole lock gate, the
contributionsP; (8) of the beams having a class 3 cross-section aieated with help of
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the unstable folding mechanism described in sec@®.3 of Appendix C.3, which
explains why the curve is decreasing ®rt> 0.45 m. Nevertheless, as mentioned in
Eurocode 3 [53], a class 3 cross-section maytstilbent beyond its elastic capacity, but
this additional resistance is often conservativegglected. Consequently, the folding
mechanism only provides a lower estimation of tbgistance during the post-buckling
phase.

« Another reason is due to the fact that some beamsharacterized by a class 1 cross-
section for which it is possible to develop a ptasinge. In reality, as all the horizontal
girders are connected to each other by the verliaates, it is likely that the collision
efforts may be redistributed in order to compensag¢elack of resistance exhibited by the
beams where a folding process is initiated. Unfaataly, such a situation is not accounted
for in the analytical model because all the eleman¢ supposed to be decoupled.

As a conclusion for this second gate model, it lsarsaid that evaluating the resistance of a
gate with class 1 and class 3 cross-sections renpawblematic but is achieved in a quite
conservative manner.

6000

1-’/\/"\
5000 7 \
4000

=
[} M
é 3000 / Analytical
2 ﬁ:f’/ solution
[}
~ 2000 Numerical
/ solution
1000
6 (m)
0
0 0,2 0,4 0,6 0,8 1 1,2 1,4

Figure C.15. Numerical and analytical resistance curves for the second gate model

For the third gate model (Table C.2), the important the stiffening system is this time
increased by modifying the thicknesses of the looitizl girders to have, = 0.02 m and

tr = 0.02m. The impact is still located & = 7.15m andZs = 8.2 m. This leads to the
curves depicted on Figure C.16. Conservative resutt provided by the analytical procedure
at the beginning of the penetration, but this isalwvays the case wheh> 0.2 m where the
crushing resistance tends to be overestimated nmpaason with numerical results. This is
partially due to the hypothesis that the local glubal modes are strictly separated after the
transition. Even when an overall plastic mechansiactivated, it is shown by the numerical
simulations that the ship sometimes moves forwairauigh an increased local indentation and
sometimes through an increased overall bendingnefgate. This phenomenon is not taken
into account in the present simplified analyticapebach. However, the discrepancy between
the two curves remains quite acceptable.

For the fourth gate model (Table C.2), the inflileen€the vertical frames is now investigated.
In the present approach, it is assumed that tbgris only to transmit the displacement field
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to the horizontal girders. However, this hypothessy not be valid anymore if the vertical
frames are too weak to force the collaboration betwthe beams. Therefore, the properties of
the vertical frames are reduced to the followinduesa: t,, = 0.01m, ¢t = 0.01m and

h, = 1.2m. The impact is kept & = 7.15m andZs = 8.2 m. The corresponding results

are plotted on Figure C.17 with a quite good agesgmwhich tends to corroborate the
hypothesis made on the vertical components inithpldied approach.
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Figure C.16. Numerical and analytical resistance curves for the third gate model

It is shown by the comparisons performed in thigesqalix that the simplified procedure leads
to quite acceptable curves in comparison with tladigained numerically withs-DYNA. Most

of the time, the approach appears to be conseevatifiich is an important point at a pre-
design stage of the gate. The hypothesis madeeowetttical frames is also confirmed by this

study: even if they are weakened, they still plagirt role by transmitting the displacements
from one girder to the others.
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Figure C.17. Numerical and analytical resistance curves for gate the fourth gate model
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APPENDIX D. Additional developments on the seismic
analysis of large reservoirs

This addendum to Chapter 7 mainly provides some mathematical developments
and other formulae that could be useful to implemente the simplified approach
detailed previously for large reservoirs.

In Appendix D.1, the equations of the Rayleigh quotient are first presented in the
general form. After that, a non-dimensional analysis is performed to investigate
the influence of the fluid-structure interaction on the modal analysis.

In Appendix D.2, the effect of the fluid during the seism is also pointed out. Some
comparisons between rigid and flexible solutions are presented to stress the
importance of the fluid-structure interaction during the dynamic analysis.

kksk
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D.1. Appendix D.1

This appendix first provides the general form @& tarms involved in the Rayleigh quotient.
After that, they are reduced to non-dimensionalresgions in order to perform a more
detailed investigation of the fluid-structure irgtetion.

D.1.1. Derivation of the Rayleigh quotient

Let us start by deriving the mathematical expressforTj;, Wj, andU;, introduced in (7.38)
and (7.39). All the parameters that are involvedthase expressions have already been
defined in section 7.2 dealing with dry mode shapesstated before, the matricgf] and

[0] are diagonal, which means tHat = U;, = 0 if j # k. If j = k, the subsequent results
may be established:

A~

pty, _
T =7Afl(Dj +D; — 2B;C;) (D.1)

— D 2 - 2,
0y =5 4107 + 7Y’ (0, = BG) + (0} =)' (B - B,6) (0:2)
wherep, D, t,, andl are respectively the mass density, the flexugadlity, the thickness and
the width of the plated; is a parameter used to normalize the dry modeesbjdp, z). The
expressions of;, /T] andy; are given by (7.21), whilg; is defined in (7.23). Fof;, D; and
D;, one has the additional definitions:

C = }Ij cosh(}_LJ-H) sin(AjH) — Aj cos(AjH) sinh(in)

) - (D.3)
/1]? + A]?
H sin(24;H)
bi=o " (D.4)
N sinh(24,;H) _H
D; = B; <—4/T,- 5 (D.5)

The matrix[I/] is not diagonal but is simply symmetric. The cepending termsV;, are
given in (7.38), wheré) is as follows:

(i 1-(C=1D™ cos(y-l) _ . _

Lo, = Ay; - E,, + B;E MY+ ¥Ym

mn jrj yjz _ )/7721 ( n j n) (D6)
Tr(r]131 =0 if Yi = Ym

wherey,, = mmr/l as defined in (7.9). Remembering that= n;m/l, it is clear from (D.6)
thatf,(,’lgl = 0 form # n; if m 4+ n; + 1 is an even number. So a lot of termgl#] are in fact
equal to0. ForE,, andE,,, the following relations are valid, in whieb, is given in (7.9):

£ - A+ an(_—l)" sin(ljhs) 5o /1_]' + a, (=" sinh(A_th)

n 2 2 n 72 2

(D.7)

Nevertheless, all these equations are expresstints of dimensional parameters, which is
not convenient for qualitative analyses, so one s&ek to have more harmonized relations.
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D.1.2. Investigation of the fluid-structure interaction

D.1.2.1.Non-dimensional approach

If the water level is progressively reduced in sachvay thathy — 0, it is obvious from
equations (7.28) and (7.38) that all the teﬁr},@ also decrease albe/] - [0]. In this case, it

is clear that solving the generalized eigenvalueblpm defined by (7.41) and (7.42) leads to
solutions such tha?; — w;. Moreover, the components of the eigenvedtasissociated tQ;
satisfy the following properties:

Ifl;t] U]-L-—>O
(D.8)
Ifl=] ‘Uji—>1

Consequently, considering equation (7.35), it ca&ncbncluded thai\;(y,z) — §;(y, 2),
which means that the wet solution nears the dry brtg tends ta) in the Rayleigh quotient

R given in (7.55), the previous reasoning shows that termW will be progressively
reduced. Therefor&k — 7 /U, whereT" andU have to be evaluated with the wet eigenmodes
A;(y,z) that are very close to the dry on&$y,z). To characterize the importance of the
fluid-structure interaction, the Rayleigh quotiemay be rewritten as:

wy T
R=—(1—?)=ﬂ(1+FSI) ; FSl=-W/T (D.9)

whereFSI is the fluid-structure interaction quotient. Framguation (D.9), it is clear that the
effect of the fluid may be neglectedH$I « 1. Nevertheless, it is important to bear in mind
that the Rayleigh quotient is currently defined éoparticular mode, as stated in (7.40). In
fact, if M admissible functions are used in (7.38)wet eigenmodes;(y, z) can be obtained
by solving (7.41) and (7.42). TH&SI quotient may then be evaluated for each of thiése
modes of vibration, which means that the fluid-stinwe interaction can be neglected if the
requirementFSI « 1 is satisfied for all theM possibleA;(y, z). In practice however, as the
response of the structure is mainly affected byfirtd mode of vibration (as discussed in
section 8.3.3, this is particularly true for a gaféh a single plating), it is sufficient to check
thatFSI «< 1 fori = 1.

Geometrical properties Fluid properties Non-dimensional parameters

t, | Thickness of the plate ps | Mass density K h/l | Plate aspect ratio

I | Width of the plate Solid properties u [/L | Reservoir narrowness

h | Height of the plate E | Young modulus ¢ | hg/h | Filling coefficient

L | Length of the reservoir v | Poisson coefficient | t, | t,/h | Non-dimensional thickness
hg | Fluid level p Mass density p | ps/p | Non-dimensional density

Table D.1. Geometrical, material and non-dimensional properties

In order to have a better characterization of thed{structure interaction, it may be
interesting to express tHSI quotient as a function of non-dimensional paransefo do so,
let us start by considering Table D.1, where thigaingeometrical and material properties are
summarized. From the original geometrical datay feon-dimensional parameters may be
defined: the plate aspect ratio= h/l, the reservoir narrownesg = [/L, the filling
coefficient¢ = h;/h and the non-dimensional thicknegs= t,,/h. Additionally, the non-
dimensional mass densify=p /p is also introduced. All these new notations as¢et
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with their definitions in Table D.1 and may now beged to transform the results obtained
previously for Tjk and VT/jk. This operation is done in the optic of allowingr feasier
qualitative analyses. To do so, the following notat are adopted:

G =cfl? X = ’C'JZ - njznz A= ’C_'JZ + njzrcz (D.10)

WheI’EC]-Z andn; have already been introduced in (7.21). It is tarbting thatc‘j2 has no
dimension and is only a function of the aspecbrat(this is of course only valid for given
values of the material properti€s v andp). Introducing these new parameters in (7.21) and
(7.23) leads to:

N A i A 5 _n]-zrtz(l—v)—c_j2 sin(kA;)
= =7 B

T ] nfm?(1 —v) + ¢ sinh(x ;)

(D.11)

It is now possible to writ@jk using some of the above-mentioned notation. Tarss/dtion is
quite straightforward and leads to:
2

A*
&~ T . _ 77 *  * *
Tje = ptpHl-Tye 5 Ty =5 (Df + Dj = 2B;(f) (D-12)

where 4; is still the modal amplitude. Fgr k, it is evident thafj, = 0. Forj = k, the
following definitions are valid:

o = )_L}‘-‘ cosh(Ki}‘f) sin(KA}‘f) — A}‘-‘ cos(icl}‘) sinh(Ki}‘-‘)

3 2 o (D.13)
.1 sin(2kk)

I sinh(2k1;) 1

D} = B <—m_? . (D.15)

Similarly, the same job can be performed to gehammonized form oij. To do so,T,(,{,)1
has first to be rewritten with the notations intiodd here over:

An;1—- (1™ cos(n-n) i _.
— - ' (E;, + BiE;) (D.16)

o= ht 12 0 =
The previous expression f#,)l is only valid form # n;, otherwise it is obvious thﬁ,{% = 0.
For E; andE};, one gets:

. kpA; + ap (=)™ sin(;cd)l}‘) _— Kd)i}‘-‘ + ap (=" sinh(;cd)ij"-‘)
" (ke — an) (kpA; + @) " (kT + )’ - 2cpa

(D.17)

wherea;, = (2n — 1)m/2. These notations may now be utilized to seek fimose harmonize
form of VT/jk. Accounting for (7.9) and (7.48), it is found that

Yo i 70D 1K)

. pfh§l> _ _ z Z 2 XmUmnImn
Wy =—(L=\)-w, ; W= o & D.18
jk < ¢2 Jjk jk L L mn \/(Zn — 1)2 n 4m2K2(f)2 ( )
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where y,, = 4/m if m =0 andy,, = 8/m if m > 0. In addition, the following definitions
should also be mentioned:

_coshG -1 . _m [ty
= () fmn—;J( ) (>-19)

Finally, to obtain a non-dimensional form for tlI quotient (D.9), all the previous
calculations simply have to be used in conjunctath (7.56):

M M M M
1 ptyHI
52 Z Vji ]kvkl = Z Z Vji ]kvkl (D.20)
j=1k=1 j=1k=1
B M M R ) o2l MM
W= ViWikvia = =505 Vi Wik Uk (D.21)
j=1k=1 j=1k=1

As FSI is defined by the ratie-W/7, dividing (D.21) by (D.20) leads to the subsequent

result:
M M M M
( Z v Wi (ic, 14, ¢)Ukl> (Z z UjiTjk(K)Uki> (D.22)
j=1k=1

j=1k=1

FSI =

é*qbl

where T, andWj,, are the non-dimensional forms of the correspondémms7, and W,
defined in (7.38). It is interesting to note tijt is only a function of the aspect ratio of the
plate, but this is not the case 18}, which also depends on the reservoir propeptiesid¢.
Concerning the eigenvectaws, they are influenced by all the parameters of @dhll.

D.1.2.2. Parametric study

In order to further investigate the importancehd fluid-structure interaction, it is of interest
to analyze the evolution of tHSI quotient when the configuration of the reservsivaried.
This task is rather difficult to perform, becaudetaof properties are involved in the problem.
Moreover, the effect of all the above-mentionedapaters on the eigenvectarsis difficult

to characterize, as the only way to get these veésoto solve the generalized eigenvalues
problem defined by (7.41) and (7.42). Therefore, arder to have a more concise
investigation, only the particular case of a steskrvoir filled with water will be considered
here. Doing so, the values Bf v, p andp, are the ones listed in Table 7.1. Furthermore, as
the influence of the plate thickness has already l@ssessed through the examples in section
7.3.3, it will not be treated here again and it \wé assumed thaj, = 0.02. This choice is in
accordance with equation (7.13), provided that 5.

With the hypotheses listed before, only the vasisiofx, u and¢ need to be considered. In
order to have a configuration that is more or Egslar to a lock chamber, these parameters
are supposed to be varied within the following inads:

05<Kk<2 005<u<05 0<¢p<1 (D.23)

where it is obvious thap may not be greater than unity, as this would apoed to an
overtopping of the reservoir. The evolution Kl is depicted on Figure D.1 for different
values ofx, ¢ andu. It is important to bear in mind that these curaes only valid under the
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assumptions listed before, i.e. considering theueslof Table 7.1 and the intervals of
variation given by (D.23). From these results,ftilowing conclusions may be drawn:

* TheFSI quotient is always a monotonically increasing tiorcof ¢. Indeed, all the curves
plotted on Figure D.1 for different values &f and u show that the fluid-structure
interaction is more important if the liquid levslhigher.

» TheFSI quotient is an increasing valuerfwhich means that a plate for whikh> [ will
be strongly influenced by the fluid. However, tmet the case for all values @f as
depicted on Figure D.1la for= 0.5, this statement is not valid if the reservoir ierenor
less totally filled. This is due to the fact thAtand W tend to stabilize whegp — 1.
Nevertheless, gs does usually not exce@dl for classical lock chambers, such a situation
is not really a problem.

» TheFSI quotient is a decreasing functiongofin other words, the interaction is reduced in
a reservoir for which, « [. It is worth mentioning that for a classical loclkamber with
u < 0.1, the effect of this parameter &8I coefficient is negligible for all values afand

¢.

This last statement is corroborated by Figure Dwviklere the maximal relative difference
between the curves far = 0.1 andu = 0.2 are listed for various values &f From these
results, it transpires that evaluating & quotient withu = 0.1 or u = 0.2 is practically
similar. Consequently, it can be said that #8# quotient is nearly independent on the
narrowness of the reservoir, provided tha& 0.2 (which is almost the case for lock
chambers).

Moreover, it appears from Figure D.1 that the rezgaentFSI « 1 is only satisfied for very
small values of the filling coefficienp. So most of the time, it is necessary to consider
presence of water while performing the modal anslgsan immerged plate.

D.1.2.3.Influence of the length of the reservoir

In fact, it is possible to explain mathematicalljhywthe reservoir narrownegs has little
influence, provided that it is sufficiently smallo do so, one needs to consider the results
reported in sectiod.1.2.1. It is shown there that the teV_W]’-lk involved in equation (D.22) is
given by:

oot 2, 7))

W= 2 > P mlmnlmn (D.24)

T (@2n - 1)? + 4m2i2p?

m=0

where y,,, I9) andT)

still holding forc;,,:

are only functions ok and¢. In addition, the following relation is

. _eosh(E) -1 . _m 21y
= () fmn‘;]( ) (0:25)

It is clear from (D.24) and (D.25) that the infleenof u on theFSI quotient is only hidden
inside the coefficients,,,. It may be easily shown that far— 0, &;,,,, = +c andc,, = 1.
With such a property, putting,,,, = 1 in (D.24) immediately shows thaTt'jk is now only a
function ofx andg¢, but it is no longer dependant gn
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Filling coefficient ¢ = h,/ h
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Figure D.1. Curves showing the evolution of FSI for different values of k, ¢ and u
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As consequence, thBSI quotient is not influenced by the narrowness o tleservoir
anymore. For practical reasons that will be diseddater, one may seek to know a kind of
threshold value beyond which this statement isdvali not. So the purpose is now to find
when the approximation:

o = cosh(é,) — 1
m sinh($mn)

is holding. According to (D.25), it transpires tldf, is an increasing function of andn,
and therefore the validity ¢D.26) needs only to be checked with= 0 andn = 1:

~1 V(m,n)e€|[0,+o0] X [1,+x] (D.26)

cosh(/2kpu) — 1 o cosh(nL/2hg) — 1

sinh(/2Kpu) sinh(L/2hs) (D-27)

This last expression shows thahas no influence on tH&SI quotient, provided that the ratio
L/h, is sufficiently large. The evolution af,,, (for m = 0 andn = 1) is plotted for different
values ofL/hg on Figure D.2, where it can be seen that the cqovekly tends to its upper
limit. This is due to the fact thaf,,, invokes hyperbolic functions which have the propéo
increase rapidly. From the table on Figure D.2e#ms reasonable to consider tigf ~ 1 if
L/hg = 3.

1,1
1 —
0,9 ‘/ Cmn
0,8 / L/hs m = 0, n=1
0,7 / 1 0.6557942
= 06 / 2 0.9171523
< v / 3 0.9821934
g 05 4 0.9962721
‘g 04 / 5 0.9992239
5 / 6 0.9998386
0,3 / 7 0.9999664
0,2 8 0.9999930
/ 9 0.9999986
0,1 Lh 10 0.9999997
0 S

0 1 2 3 4 5 6 7 8 9 10

Figure D.2. Evolution of -cy, (with m = 0 and n = 1) with the ratio L/h;

As a conclusion, it can be said that #$% quotient is no longer influenced by the narrowness
u of the reservoir if. > 3h,. So for given values df, v, p andpy, the following statement
should be emphasized:

L>=3h; - FSI=FSI(k,¢,t,) =FSI(l, hg, H, t,) (D.28)

The direct consequence @f.28) is that, for any value of, v, p, pf, h, | andt,, the length.
does not play any role in the modal analysis oéservoir, provided that > 3h,. In other
words, for a given value di,, the vibration properties of a reservoir with= 3h, are also
valid for all reservoirs withl, > 3h,. To illustrate this last assertion, let us havshart
application example and consider a reservoir Witk 0.6, k = 1.25 and t, = 0.02. The
material properties are still those listed in Tahle. The ratid./h; is progressively increased,
which leads to the curves plotted on Figure D.3@méigure D.4.
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0,5
0,45

0,4
0,35 /
0,3 /
0,25 I
0,2 l
0,15

0,1
0,05

FSI Quotient

L/h

S

0 3 6 9 12 15 18 21 24 27 30
Figure D.3. Evolution of the FSI quotient with the ratio L/h;

From Figure D.3, it is clear that tH&I quotient is no longer influenced by the lengththa
reservoir when the ratib/hg is progressively increased. In other words, it barstated that
the influence of the fluid is the same in any resgrhaving a lengtil, greater thar3h,. This

is also corroborated by Figure D.4 depicting thelatvon of the first wet frequency with the
ratio L/hs. This curve shows that the frequency tends toilstabfor L/h; > 3, which
confirms that the length of the reservoir does imfiuence the modal properties of the
flexible walls beyond this limit.

—e— Wet frequency Dry frequency

8,8

8,6

8,4

8,2

8

76 1\
7,6 \

7,4 e

Fundamental frequency (Hz)

[ ]
[ ]

L/h
7,2 /hs

0 3 6 9 12 15 18 21 24 27 30

Figure D.4. Evolution of the first wet frequency with the ration L/h;

The property expressed in (D.28) may have sometipahcimplications that will be
considered later, in particular when dealing wiynamic analysis of flexible containers
(section 7.4).

D.1.3. Derivation of the flexible pressure potential

The aim of this appendix is to establish equatibd ) giving the potentia’ associated to
the hydrodynamic pressugg (y, z, t) calculated in (7.25). To do so, the virtual wdil/;
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performed byp((y, z,t) during a virtual displacemeidt.(y, z, t) needs first to be evaluated.
The potential may then by found through the follegvdefinition:

) (Jtz Wdt> = — jz OWrdt (D.29)

ty ty

where the symbob is used to denote a virtual characterisfig, t,] is an arbitrary time
period over which the integration is carried. Frbigure D.5, it is clear that the pressure does
not act in the same sense as the positive virigplatement. Consequently, one should write:

t +o0 400
t{ SWydt = — f (ﬂ pr (3, 2,)8u(y, z, t)dA) dt = nzlmzo Crm f F(OG(0)dt (D.30)

where the two functiong(t) andg(t) are expressions integrated over the wet surfatieeof
plate and are therefore only time-dependent:

fl) = ﬂ du cos(ayy) cos(¥yz) dA gt) = 'U 1 cos(ayy) cos(¥inz) dA (D.31)
A A

One may now simplifyD.30) by developing the equation through an integrabgnparts.
Doing so leads to:

+00 400

f oWydt = "> (f(tz)g(tz) Ft9(t) - f f(t)g(t)dt) (D32)

n=1m=0

However, as the virtual displacemerdsa(y,z,t) is arbitrary, it may be postulated that
du(y,z,t) =0 for t =t; and t =t,, which implies thatf(t,) = f(t,) = 0. Moreover,
noting thatf (t) = 8g(t), (D.32) becomes:

+00 +00 t2 oo +oo
J SWidt = Z Z € f 89(0)g(t)dt = —5<J z z g2 ()t ) (D.33)

n=1m=0 t; n=1m=0

Comparing this last relation tD.29), it is obvious that the potentid has to fulfill the
definition (7.47).

ou(y,zt)

]

<zt

Figure D.5. Virtual displacement field
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D.2. Appendix D.2

D.2.1. Dynamic analysis of a rigid reservoir

In this appendix, it is checked that simulationsfgrened on a rigid reservoir are in quite
good agreement with well-known theoretical formuldat are widely available in the
literature. The goal is to have more confidenceglmnumerical model presented in 7.4.3.1,
because having a proper representation of the-flmictture interaction is a quite arduous
task. To do so, the total resulting forg&t) acting on the rigid wall will be numerically and
analytically investigated for the reservoir intraéd in section 7.4.3. It is worth noting that
only the portion of the force due to the seismidrogynamic pressure is considered, the
hydrostatic one being disregarded. In other wasds,can more precisely defifgt) as:

hs 1 hs

RO = [ [ponodviz =1 [ p.oay (D34)
0 0

0

wherep,.(y,t) is the rigid impulsive pressure given in (7.7)gute D.6 shows the numerical
and analytical curves @ (t), for the acceleratioX (t) plotted on Figure 7.13 and for a water
level h, of 3.5m. The agreement seems to be quite good, and tmslusion is also
corroborated by Table D.2 showing the extreme \wbldained in both cases. It can be seen
that the relative difference with respect to theottetical approach is satisfactory.

Analytical solution | Numerical solution | Relative difference
Maximal value 45.46 kKN 40.01 kN 12 %
Minimal value —38.07 kN —36.19 kN 5%
Table D.2. Comparison between the extreme values of the analytical and numerical rigid solutions

Another point that is important to stress is the time evolution of pressure given by the
finite element simulation follows more or less eathe seismic acceleratidf(t), which is
in accordance with classical formulae as well.

Apart from these purely numerical aspects, theetkfices noted in Table D.2 may be
explained because of resonance phenomena. Indheednalytical solution (7.7) is developed
under the assumption of an incompressible fluidwhich the bulk modulu&; (and also the
speed of sound¢) tend to infinity. Nevertheless, by using-DYNA, these two parameters
have the finite values shown in Table 7.1, whiclansethat the liquid is in fact compressible.
In this case, for a rigid reservoir of lendthit is possible to show that resonance may appear
in the fluid if this is one is excited at the folllng frequencies:

c
(2n — 1)# ;. neN, (D.35)

In the present case, as= 1500 m/s andL = 15m, forn = 1, the first value of (D.35) is
equal to50 Hz. In order to exclude these resonant contributitims,numerical signa, (t)

has been filtered to eliminate all the harmoniesatgr tharb0 Hz. This inevitably causes an
artificial reduction of the total pressure forcs,al the non-resonant harmonics greater than
50 Hz are also extracted from the signal. Neverthelesshe composition df(t) in the large
frequency range is quite modest (Figure 7.14), dipisration should not affect dramatically
the results presented here. So as a conclusioanibe said, the quite good agreement found
for the rigid case comfort the finite element modetailed in section 7.4.3.1.
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'\ _ | - | I ——LS-DYNA
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Figure D.6. Analytical and numerical resulting force for a rigid reservoir (hs = 3.5 m)

310



APPENDIX D. Additional developments on the seismic analysis of large reservoirs

D.2.2. Investigation of the fluid-structure interaction

D.2.2.1. Comparison of the rigid and flexible solutions

The goal of this section is to point out the impade of accounting for the fluid-structure
interaction when performing the seismic analysisflekible reservoirs. To do so, the
theoretical solutions obtained when the walls aggdror not can be compared for the
reservoir used in section 7.4.3. For a water le¥&.5 m, Figure D.8 confronts the solutions
derived in the two cases. From this figure, it ckbat the responses are totally different.

This observation is confirmed by the values lisiedable D.3, corresponding to the ratios
between the extreme values given by the rigid &difle solutions, i.e.:

m?X{Fr(t) + Fr (1)} . mtin{Fr(t) + Fr (D)}

0 BT A0 (D-36)

whereF,.(t) and F¢(t) are the total resulting forces due to the rigid #lexible impulsive
pressures respectively. According to the analysochlition forhy = 3.5 m, it can be seen that
the maximal rigid force applied on the wall hast multiplied by a factot.66 to account
for the flexibility. The situation is even worser fihe lower extreme value, as the coefficient
Is this time equal t@.19. The amplification is of the same order for thiiBons given by s-
DYNA. It results from this brief comparison that pemiang the seismic design of this flexible
reservoir while considering it as rigid may leadatounsafe situation.

2,5
hy=3.5m
Analytical | N ical 2 /
Result nalytica umerica - /
solution solution = L5 /
Maximal value 1.66 1.77 E= /
Minimal value 2.19 2.13 = /
wn 1
h,=5m = //
p : 0,5
Result Analy‘Flcal Nume.rlcal //
solution solution
— ¢
Maximal value 1.71 1.59 0
Minimal value 2.35 2.47 0 01 02 03 04 05 0,6 07 08 09 1
Table D.3. Ratios of the extreme values Figure D.7. Evolution of the FSI quotient with the filling
obtained for the flexible and rigid solutions coefficient ¢ = hs/H

Going back to the developments performed in sediidn2 of Appendix D.1, the curve of
Figure D.7 can be plotted to show the evolutiothefFSI quotient as a function of the filling
coefficient¢p = hg/h. For hy = 3.5m, ¢ = 0.6 andFSI = 0.4, which is not negligible with
respect tol. Consequently, without performing any dynamic datian, it was predictable
that the fluid-structure interaction should be taketo account in the present case. The
dynamic analysis and the results of Figure D.8iconthis conclusion.

D.2.2.2.Influence of the length of the reservoir

In section D.1.2.3 of Appendix D.1, it was alreashentioned that the length has no
influence on the modal properties of the immerdexiitble plate, provided thdt > 3h,. The
aim now is to see if this is also valid for the dgmic response of the reservoir.
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Figure D.8. Comparison of the theoretical rigid and flexible solutions (hs = 3.5 m)

312



APPENDIX D. Additional developments on the seismic analysis of large reservoirs

To do so, it is worth examining the evolution oé ttotal hydrodynamic pressure when the
length L increases. Integrating the rigid and flexible cimittions given by (7.7) and (7.8)
over the wet area of the plate leads to:

E.(t) =

pfh§<L T _BU/hs)? h<(2n—1>n

2 \h, L/hg

) hZ .
h (2n— 133 " )) X(t) = prX ()g(L/hs) (D.37)
s n=1

Fe(t) =

+o0 hs 1
8psh cosh(a,L) (—1)"*! .
27};25 (Z 1-— sinh(noc L) (2n —1)2 f .f iUy, t) cos(any) dydz (D-38)
n
00

wherea,, = (2n — 1)m/2hs. From a careful analysis of the total flexiblegmerery (t) given

in (D.38), one may recognize the coefficief), for which it was already shown in section
D.1.2.3 that it tends to unity i > 3h;. Consequently, under the assumption of having a
reservoir sufficiently long, (D.38) can be rewnitten the following form:

n=1

Fe(t) = Bprhs ( cy™

hs 1
72 1(2n— 1)2f fu(y,z, t) cos(a,y) dydz) (D.39)
n= 00

which does not depend dnanymore. So it can be said that the flexible imjwal pressure
developed during the seismic excitation is notrecwn ofL, provided that. > 3h;.

The next step is now to see if this is also vatidthe rigid impulsive pressure. It is clear that
equation (D.37) is dominated by the functigQL/h), but for a given value ok, it is
analytically impossible to evaluate the Ilimit @f(L/h;) when L is tends to infinity.
Consequently, even if this is not mathematicalligsgactory, the evolution of the function
g(L/hg) when the ratid./hg is progressively increased has to be studied nigallgt Doing

so leads to the results depicted on Figure D.9,revize stabilization may be observid
Moreover, forL /hs = 3, it can considered that the curve does not charlge with an upper
limitation of 1.086. Consequently, fot. > 3h,, the functiong(L/h; ) may be substituted by
1.086 in (D.37) to get:

h2
E.(t) = 1.086prSX(t) (D.40)

which shows that the total rigid impulsive forcevel®ped during the earthquake does not
depend orl, anymore, provided thdt> 3h;,.

It transpires from equations (D.39) and (D.40) tiet total hydrodynamic pressure applied
on the flexible walls during the seism is not adimn of the length of the reservoir if
L = 3h,. In such a case, this conclusion means that treerL. does not appear anymore
in the dynamic equilibrium equation (7.61). Consagly, for a given value of,, working
with a reservoir of length. is equivalent to working with a fictitious one t@ngth 3h,
(Figure 7.18). For example, considering the loc&noher in the new Panama canal project,
the approximate lengtlh and water leveh, are respectively equal #30m and 30 m.
Therefore, the hydrodynamic pressure obtained bggda seismic analysis on a fictitious
reservoir with hy =30m and L =90 m would be very close to the one obtained by
performing the simulation with the real dimensidgs= 30 m andL = 430 m.

'8 This stabilization is not always valid: for vergrgie values of the ratib/hg, the function starts increasing
again. Nevertheless, the curve remains quiteiflat th;, = 5000, which is sufficient for practical applications.
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1,2
1 L/hs | g(L/hs)
1 0.72958459
08 / 2 1
E‘” 06 / 3 1.06713167
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0,4 6 1.08534247
/ 7 1.08547440
0.2 8 1.08550183
9 1.08550753
0 L/h, 10 1.08550872

0 1 2 3 4 5 6 7 8 9 10
Figure D.9. Evolution of the function g(L/h;)

On a practical point of view, all the previous nettatical developments allow for an
important reduction of the computation effort reqdi to perform finite element analyses
because the fluid domain needs only to be modeled a length3h, instead ofL. Going
back to the Panama canal situation, the size afmaerical model in such a case would be
reduced more or less by a factor4%0/90 ~ 4.5. So instead of using (for exampl&)®
finite element for the fluid part, working on atftous reservoir should not require more than
2.5 - 105 finite elements.

In the optic of consolidating the methodology ekmal here above, a short application
example can be considered for a reservoir with ightér of 10 m, a widthl =8m, a
thicknesst,, = 20 cm, a lengthl. = 80 m and filled up to a levet, of 6 m. The total number
of elements involved in this real configuratidn=€ 80 m) is more or less equal %24 000,

as shown in Table D.4.

Number of shell Number of solid Number of
elements elements nodes
Real model (L = 80 m) 4000 419862 451122
Fictitious model (L = 18 m) 4000 94772 105972

Table D.4. Size of the real and fictitious models

In order to reduce the numerical effort, a ficisomodel is also constructed, with a reservoir
having this time a length ddh; = 18 m. Doing so requires less tha®0 000 elements,
which represents a non negligible size reductiasthBhe real and fictitious configurations
are then submitted to a longitudinal accelerafign) through a dynamic analysis performed
with the softwareLs-DYNA. Doing so leads to a numerical evaluation of thdrddynamic
pressures acting on the flexible walls during thisrs.

To check if it is correct to work with = 18 m instead of the real lengih= 80 m, the total
hydrodynamic pressurB(t) defined by (7.90) and calculated bg-DYNA is compared for
both the real and fictitious models. For convengertbe results are only plotted on Figure
D.10 for a period o seconds, which is approximately half of the toatation of the signal
depicted on Figure 7.13. It is clear that the amge® between the numerical results is rather
perfect. The maximal resulting pressures over fgkisod of time are found to #26.18 kN

for L =80m and311.44 kN for L = 18 m, which corresponds to a relative difference of
4 %. On the other hand, the total time required tdgoer the dynamic analysis has been
reduced by a factor &f.4.
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The good coherence found in this example betweerrghl and fictitious models tends to
corroborate the simplified methodology detailedhis section. This will be quite useful later,
when working on lock gates.

Total pressure (kN) —L=80m e L=18m
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Figure D.10. Time evolution of the total hydrodynamic pressure for L=80 mand L =18 m
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APPENDIX E. Additional developments for the seismic
analysis of lock gates

This addendum to Chapter 8 is divided in two main parts. In Appendix E.1, some
complementary results to section 8.2 are presented. These ones are mainly
additional formulae that are useful to derive the modal properties for both a gate
supported or free at the bottom. Some other numerical comparisons are also
performed for wide and high lock gates.

The information presented Appendix E.2 is directly related to section 8.3. It
provides additional theoretical considerations about the dynamic analysis of lock
gates.

Finally, in Appendix E.3, further developments are made to investigate some
pending questions. The case of working with real boundary conditions for the sill is
treated numerically, while additional indications are provided on the way to
extend the analytical approach. In particular, the method to account for the
presence of the upstream and downstream reaches is detailed. The case of the
other components of the seismic action is also considered.

*kk
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E.1. Appendix E.1

E.1.1. Additional formulae for the Rayleigh quotient

This appendix gives the mathematical forms of ttrmsf"jk and Ujk used in the Rayleigh

quotient, but it is worth remembering that an addal coefficient of1/2 is introduced in
(8.27). The expressions are provided for a strecsupported at the bottom or not.

E.1.1.1. Case of a gate supported at the bottom

For such a situation of a gate supported by aasiiottom, the pseudo-admissible functions
Y;(y,z) are calculated according to (8.3), wigh(z) and f;(y) given by (8.6) and (8.10)
respectively. With these expressions, the tefmsand l7jk can be calculated by applying
(8.28) and (8.29). In order to simplify the respltsis required to use the following more
compact notations:

Furthermore, as the mathematical expressions ate gomplex, let us introduced the next
additional set of notations that are valid for amjue ofA; andA,:

L= Ay cosh(A;h) sin(ljh) -4 cos(Ajh) sinh(A;h)

(E.2)
’ A2+ A2
I, = A cosh(Ajh) sin(A3h) — A4 cos(Ah) sinh(ljh) (E3)
A+ AR
sin(Axh) + By sinh(Ah) cos(Aih) + By cosh()ljh)
11 = 12h - 1 (E4)
k k
sin(A;h) — By sinh(Ah)  cos(Axh) — By, cosh(4;h)
112 = AZ A - /1 (E.S)
k k
| sin(/ljh) + B; sinh(/ljh) cos()ljh) + B; cosh()ljh) (E6)
13 = - .
A]?h A
_ sin(/ljh) - B; sinh(/ljh) cos()ljh) — B; cosh()ljh) (E7)

114 -
AZh A

In addition to equations (E.1) to (E.7), the follog definitions are adopted. They are only
holding if 4; = 4:

h  sin(24;h) sinh(2A,h) h
= =L 2 (5)

_h sin(22;h) _ sinh(24;h) h
I7 _E-l_—ll-lk [10 —_4/1’( +E (E.g)

Finally, if the particular conditioid; # 4 is fulfilled, it is quite convenient to introduc¢ke
expressions listed hereafter as they will be usdtie next results:
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A sin(4;h) cos(Ah) — A; cos(4;h) sin(A,h) (E.10)
2= 2222
j k
- Aj cosh(;h) sinh(Ah) — A, sinh(2;h) cosh(4;h) (E11)
° 22
j k
. A sin()ljh) cos(Agh) — A cos()ljh) sin(Ah)
7 A2 -2 (E.12)
- Ay cos(A;h) sinh(Ah) + 2; sin(4;h) cosh(A,h) (E.13)
° A7 422
Iy = Aj sinh(A;h) cos(Ah) + 2, cosh(A;h) sin(A,h) (E.14)
A+

A sinh(/ljh) cosh(Axh) — A cosh()ljh) sinh(4; h)
10 2 -2 (E.15)
With all the notations given from (E.1) to (E.1%), andU;, can be calculated by summing
up the individual contributions coming from bothetiplating and the entire reinforcing
system:

~ ~ ~(h ~ —~ —~ ~(h —~
T =TP+T0+10 Up=00+0 +T% (E.16)
where the superscript®), (h) and (v) respectively refer to the plating, to the horiadnt

stiffeners and to the vertical ones. These indiaigharticipations may be evaluated with help
of the subsequent formulae, according to the vadfids anday:

* If 4; # 0 andi, = 0:

T}g{p) = ptij11]13 (E.17)

~ sin(A;h) — B; sinh(A;h

q$>=Am<ﬁﬁhy+x1—wwm (1) h’ (])+Vﬁ%h0h (E.18)
Np

&) _ . . Y

Ty = z pApnd;(sin(A;y,) — B; smh(ljyn))znll (E.19)
n=1
Np

~(h . . Y

U]-(k) = Z EIh_nAjyjzy,f(51n()ljyn) — B, smh(/ljyn))fll (E.20)
n=1
Ny

T}ﬁj’) = ZpAv’nAj sin(yjzn) sin(Yxzy) I13 (E.21)
n=1

0y =0 (E.22)

* If 4; # 0 andA, # 0O:

@@::mﬂﬁdg—m@—@u+@&gn, (E.23)

318



If A

+ o+ + o+

APPENDIX E. Additional developments for the seismic analysis of lock gates

DA; Ak(AZAZ + v( 222 4 yklz) + yjz )1112

DA;AyB; (A]ZA,ZC + v(y,%ljz - yjzllzc) - yjzy,f)lll4
DA;jAyBy (Ajzli + v(yjzllzc - y,fljz) - yjz)/,%)1113
DA;AB;Bi(AF A% + v(vi A% + Vi d?) + vivi ) Lls
2D(1 = V)A;AryjvrAiAx(I; — Bilg — Bjly + BjBylyo)l4
Np
Z pAh,nAjAk(sin()ljyn) - B; sinh()ljyn))(sin(/lkyn) — By, sinh(A )1
n=1
Np
> Bl FrRA;Ag sin(3n) (sin(icyn) — By sinh (i)
n=1
Np
Z EIh,anZVI%AjAkBj Sinh(ljyn) (Sin(lkyn) - Bk Sinh(Akyn))Il
n=1
Ny
Z pAynAjAy sin(y;z,) sin(yyz,) (I; — Bxls — Bjly + B;Byls)
n=1
Ny
z El,nAjAy sin(y;z,) sin(yyzy) (I + Bils + Bjly + B;Byl5)
n=1

= 0 andA, = 0:

A _ nYivVk (YiVk _
tp3h Uj’ = D== ( h?+2(1-v)|I
h y2

am

> pAnaas, O = z Bl 2Py,
n=1
- h : 7 @)
z pAv,nESIn(yjzn) Sln(]/an) Ujk =0
n=1
0 and4, # 0:

ptyAililia

sin(A,h) — By, sinh(4,.h
( k ) hk ( k )+VA]2)/]%[12>11

AyD <V]-2V;§In +2(1 = V)y;vx

Np

. : Y
> pAnnAx(sin(icyn) = Biesinh () I
£

Np

. . Y
> Bl Ay v (sin(ii) = By sinh(icyn) 21y
n=1

(E.24)

(E.25)

(E.26)

(E.27)

(E.28)

(E.29)

(E.30)

(E.31)

(E.32)

(E.33)

(E.34)

(E.35)
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Ny
T}ch) = szv,nAkSin(yjzn) Sin(ykzn)lll (E36)
n=1
o =0 E.37
Jjk (E.37)

All the previous results may be inserted in (E t6puild the matrice§T'] and[T], which are
in turn useful to evaluate the modal propertie$&$2).

E.1.1.2. Case of a gate free at the bottom

For the situation of a gate that is not supportea Bill at the bottom, the pseudo-admissible
functionsy;(y, z) are still calculated according to (8.3), wgh(z) andf;(y) given by (8.6)
and (8.13) respectively. Here agafp(, andﬁjk are to be found by applying (8.28) and (8.29).
The results also have to be discussed accorditigetoalues ofl; anda,, but this time two
different rigid beam modes can be found 4p= 0, as shown by (l1.3). For clarity, the first
one will be related tal; = 0, while the second one will be associated to therdy value
Ai=-—1,ie.

i) =y/h if y;=-1 fio=11if y;=0 (E.38)

Using the fictitious valuel; = —1 has no consequence, as it is not a solution 4#f8In
addition to (E.1), it is also interesting to adtyp next convention:

S;j=1 if sin(a;h) >0 S;j=—1 if sin(3;r) <0 (E.39)

Furthermore, in order to simplify the mathematieapressions of}k andl7jk, let us have the
following definition of ¢, which is only consistent &; = 4,:

= (v2 4+ v2) — ayy2y2
I, =B (1723 = 2v) + h C;Sj — Cj cos(2;h) ith G =0 +v)) =4 (E40)
=B. | 1.v2(3 - Wi .
6 i\ v sin()ljh)

* _ (2 2\2 2.2
¢ =0 —v) + 4y

If A; # Ak, the previous definition of; is no longer valid and the subsequent one hagto b
adopted:

Y (Sik=Skj)

L= S; + Sk — (1 + S;S)) cos(Ah)
6 22—z

— 4 _ _ 4
Sie = 4 (vA} — (2 = 3v)A}) S

(E.41)

As a final requirement, a kind of Kronecker deltdl we designated byuj,, for which

Wi = 0if A; # A, anduj, = 1 if 4; = 4. With all the notations given from (E.38) to (E)41
T;x and Uy, can be calculated by summing up the different rifmutions coming from the
plating and the stiffening system, as it was don¢i16). For the case of a gate supported at
the bottom of the lock chamber, all these individparticipations may be evaluated
separately by applying the formulae listed hereafiecording to the particular values Hf
andAy:

* If 4 =0andl, = 0:

TP = ptyhl, 0P = Dhy?yil (E.42)
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Np Np
gm _
> phnals Oy = Elayivih
n=1 n=1
Ny

. . 7w _
szv,nhsm(VjZn) sin(yxzy) Ujllj =0

n=1

0 andi, = —1:

@ _ Dh
'Dtpzll Ujk - 7]/]'2]/}%11
Np, N,

Y ON y
szh'"Tnll U™ = zElh,anjzy;?ll
n=1 =1
Ny b

i - gw —
szv,nESm(VjZn) sin(ygz,) Uy~ =0
n=1
—1 and, = —1:

h () vAvE  2(1-v)
ptpgh Ujk = Dh 3 oz Vive |
S Vn N 2

gy _

szh'"h_gll U™ = ZEIh.nh—ZV,-ZV%Il
n=1 n=1
Ny b

i i gw —
ZPAV,HESIn(ijn) sm(ykzn) Ujk =0
n=1
—1 and4; > 0:
0 O = 2vDAY] (1= Sk
Np

. . Y
> pAnnAx(sinQicyn) = Biesinh(iy)) 2 I
n=1

Np

> Bl Ay FrEGsin(u) = By sinh(eyy)

n=1

Y
2,

(1 +S,)(1 — cos(kh))

am _

0 0 =0
0 andA, > 0:

0 0P = 2DAy? ((2—1/)

Np

> phnnAi(sinGiy) = By sinh ()l

n=1

H sin(kh)

- Vlksk> 11

(E.43)

(E.44)

(E.45)

(E.46)

(E47)

(E.48)

(E.49)

(E.50)

(E.51)

(E.52)

(E.53)

(E.54)

(E.55)

(E.56)
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Np

iy (h . .

Uj(k) = zElh,nAkyjzylg(SIn(Akyn)_Bk sinh(Agyn)) 1y (E.57)
n=1

T =0 0y =0 (E.58)

* If 4 > 0 andi; > 0:

TP = ptplAjAxB b O = 4DAjALs (E.59)
Np

~(h ) ) ) .

7}-5() = Z pAh,nAjAk(sm()ljyn) - B; smh(/'ljyn))(sm(/lkyn) — By, sinh(A,y,) 14 (E.60)
n=1

Np

() _ . . .

05 = > Elnnv?viAsde sin(hy,) (sinGheyn) = B sinh (o)
n=1

Nh (E.61)
- Z Elh,nyjzylgAjAkBj Sinh(ljyn) (Sin(lkyn) - Bk Sinh(Akyn))Il
n=1
Ny
T}ﬁj’) = Z pAynAiAx sin(y;z,) sin(ygz,) A}*B]?hujk (E.62)
n=1
N'U
lAfj(;) = Z El,,AiAx sin(y;zy,) sin(yyzy,) /'l]‘-*BjZ iy (E.63)

n=1

The previous formulae may be inserted in (E.16puidd the matrice§T] and[U], which
allows for the derivation of the modal propertibsotigh (8.32). It is worth noting that the
solutions for:

have not been discussed here above, but they megdiy derived by invertingandk in the
appropriate corresponding results.

E.1.2. Additional comparisons for gate 2

In order to cover a certain category of lock gatesljdations were also performed by
comparing the numerical and analytical resultsditver configurations. This appendix deals
with the second gate presented in section 8.2.3dejscted on Figure E.1, this one has an
extreme rectangular shape, with an important widdh 22.5 m and a reasonable height
equal to8 m. So the lowest admissible valuemfl is almost reached.

The material properties are still those listed iablé 8.2, while the cross-sections
characterizing the stiffening elements have theedisions listed in Table E.2. The modal
analysis performed witNASTRAN shows that the structure has two dominant globades.
This is particularly true for a gate that is fredhee bottom.

If a sill is present, the importance of the firsbae is found to be predominant, while the
contribution from all the subsequent ones is négkg
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9X25

A

10 X 0.25

8 X 0.25

8 X 0.25

o
L

6 X 0.25

Figure E.1. Structural configuration and main dimensions (m) of gate 2

Gate supported at the bottom Gate free at the bottom
0, 0
Mode Frequency (Hz) Error (%) Mode Frequency (Hz) Error (%)
NASTRAN | LS-DYNA | Analytical | NASTRAN | LS-DYNA NASTRAN | LS-DYNA | Analytical | NASTRAN | LS-DYNA
1 7.34 7.57 7.49 2.07 1.05 1 7.19 7.33 7.37 2.51 0.55
2 39.15 38.47 44.55 14.25 15.81 2 8.48 8.43 8.63 1.77 2.37

Table E.1. Comparison of the natural frequencies obtained numerically and analytically for gate 2
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(a) Gate 2 supported at the bottom - First mode shape

(c) Gate 2 free at the bottom - First mode shape

Normalized modal displacement

Normalized modal displacement

Figure E.2. Comparison of the vertical profiles in the plane z = I/2 obtained numerically and analytically for the two first modes of gate 2
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The frequencies are listed in Table E.1, where i&eqgood agreement can be observed
between the analytical and numerical results. Thigarticularly true if the structure is not
supported at the bottom. On the contrary, the Grom on the second mode is not so good if
it is resting against a sill, with a relative eradrabout15 %. This discrepancy is however of
minor importance, as the contributions coming friw@ higher modes is not really decisive in
this case.

hy, (m) | t, (m) | hy (M) | t; (m)

Horizontal girders 0.98 0.02 0.4 0.025
Vertical frames 0.98 0.02 0.5 0.025
Horizontal stiffeners 0.21 0.006 0 0

Table E.2. Geometrical parameters for gate 2

The vertical profiles of the two first mode shajpeshe planez = [/2 (calledm; on Figure
7.8) are plotted on Figure E.2 for the two sup@itations. Here again, the agreement is
sufficient for a first approximation.

From all the observations made above, it transghas the simplified analytical procedure
may also be applied to the limit case of a gatd witratioh/l close to its lowest practical
value of0.5. As smaller values di/l are not really expected for gates with a singégipg,
such configurations have been disregarded.

E.1.3. Additional comparisons for gate 3

The third gate analyzed as an example is tota#lyoiposite of the previous one. It has a very
important height of 21 m, with a much more modest widtlof 10.5 m. For such values, the
ratio h/l is equal ta2, which may be seen as the maximal practical viustructures with a
single plating. The main dimensions and the pasitip of the reinforcing system are
represented on Figure E.3. From this picture, itlear that the horizontal and vertical
stiffening elements are disposed in a quite regmianner, but this is only motivated to
simplify the construction of the finite element netsl Indeed, the simplified analytical
procedure perfectly allows for a non-uniform digpos of these elements.

The same comment is also valid for the cross sextivhich may also be varied over the
heighth. However, for convenience, only three sets ofigeat properties have been chosen,
each of them characterizing the girders, the fraamekthe stiffeners respectively (see Table
E.3).

For the material properties of Table 8.2, the matallysis performed witRASTRAN gives
the vibration frequencies listed in Table E.4. Canmy them to the analytical predictions
leads to the conclusion that the discrepancy doegxceedl 0 % on the two first dominant
modes, which seems to be more or less acceptabéeapproximate solutions provided by
LS-DYNA are also shown in Table E.4 and are found to belose agreement with the
analytical ones.

The vertical profiles in the plane= /2 (calledr, on Figure 7.8) are plotted on Figure E.4
for the two first modes. As it was already obserf@dgate 1, there is a global accordance
between the numerical and analytical shapes, bilit some indentations at very localized
points. This particularity is totally similar toglone discussed in section 8.2.3.3, where it was
pointed out that the beams were not strictly beatiad the neutral fiber of the plating (see
Figure 8.13).
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Horizontal girders
1n h, (m) | t, (m) | hy (M) | & (M)
3 0.7 | 0.018 | 035 | 0.018
= Vertical frames
hy (m) |t (m) | hy (M) | tr (M)
0.6 0.016 0.3 0.016
2 Horizontal stiffeners
X h,, (m) | t,, (m) | by (m) | t; (m)
0.14 0.08 0 0
Table E.3. Geometrical parameters for
i gate 3
n
i | Gate 3 supported at the bottom
" b NASTRAN | Analytical Error
] 1| 19Hz | 2079Hz | 943 %
" i 215Hz | 23.65Hz | 10.01 %
3 . LS-DYNA | Analytical Error
© 1 19.7Hz | 20.79Hz | 576%
] 2| 227Hz | 23.65Hz | 415%
" 1 Gate 3 free at the bottom
i . NASTRAN | Analytical Error
© i 1| 19Hz | 20.79Hz | 9.48 %
— 2| 213Hz | 2341Hz | 2341%
2 1 LS-DYNA | Analytical | Error
x . 1| 19.7Hz | 20.79 Hz 5.75 %
- 2| 223Hz | 2341Hz | 474%
2 . Table E.4. Comparison of the natural
X 7 frequencies for gate 3
i —
Figure E.3. Structural configuration and main dimensions (m)

of gate 3

In other words, it can be said that the generalfial profile adopted by the gate is dominated
by the horizontal girders (see the red dotted bneFigure E.4a for example), while the
portions of plating located between two girderseid suffer an additional bending around
their neutral fiber. Another conclusion that maydsawn from Figure E.4 is that the mode
shapes are very similar for the two types of supponditions. This seems logical: as the
height h is quite important, the presence or the absence sifl at the bottom has little
influence on the mode shapes at the top of thectsiet This last observation is also
corroborated by comparing the natural frequencigsined for the two support situations.
From Table E.4, it appears that they are quiteeclws each other (they are even nearly
identical for the first mode), whatever the preseota sill.

All the comparisons made above show that the aoalydpproach is also applicable to treat
the limit case of a gate havinghd!l ratio more or less equal to its maximal valueofs
greater values ok/l are not really expected in practice, such configans have not been
investigated.
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(a) Gate 2 supported at the bottom - First mode shape

(c) Gate 2 free at the bottom - First mode shape

Normalized modal displacement

Normalized modal displacement

Figure E.4. Comparison of the vertical profiles in the plane z =1/2 obtained numerically and analytically for the two first modes of gate 3
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E.2. AppendixE.2

E.2.1. Considerations about the wet modes

In this appendix, it is shown that deriving the wetdal properties of a lock gate is not really
of primary importance. This can be justified byrgpback to Chapter 7, where applying the
virtual work principle leads to (7.85). In this eqion, the matrice$T| — [W] and[U] are
diagonal, as the wet modes satisfy the orthoggnadguirement (7.86).

Nevertheless, the presence of a mass-proportioamalpeohg terma[T] does not allow to
decouple the set of equations expressed by (7 &&use this matrix is not diagonal. This
was already explained in section 7.4.2.3. Therefa@king with the wet mode shapes is
only profitable if the two following restrictionsasatisfied:

» Mass-proportional damping forces are not involvadthe equilibrium equation of the
immerged structure. It should be noted however timatsidering the damping matrix
a([T] — [W]) instead ofx[T] implies a diagonalization of the system (7.85) thig is not
totally satisfactory.

* The boundary conditions have to be strictly satsfby the wet modes, otherwise the
orthogonality property (7.86) is not verified anohsequently the matricg%] — [W] and
[U] are not diagonal.

From the two previous conditions, it transpirest tvarking with the wet eigenmodes of a
lock gate does not provide any substantial advantgen for an undamped structure. Indeed,
as it was explained in 8.2.1.3, it seems verydiffito find an analytical function that fully
satisfies the boundary conditions associated tatiffened plate, which is a serious objection
for diagonalizing the equations given by the vilwark principle.

Nevertheless, one may argue that the displaceménisg, t) affecting the structure should be
better approximated if they were expressed as eatiam of the wet mode shapds(y, z)
instead of working with the dry oné$(y, z). In fact, it can be shown that working with one
of the two following modal decompositions:

N M
¥0,50 =) aOLGD  uwzO = ) 3050, (E65)
i=1 =1

is strictly equivalent. Indeed, as stated by (7.33%(y, z) may be related t6;(y, z) with help

of the coefficientsy;; derived by the Rayleigh-Ritz method (this was adie detailed in
section 7.3.2.1 when dealing with the mathematpgroach). Therefore, in the first part of
equation (E.65)A;(y, z) can be replaced by a linear combinatiodg¥, z), as expressed by
(7.35). Doing so leads to:

N M N
w20 = ) aONG.2) = ) 0.2 ) 5ia® (E.66)
i=1 j=1 i=1

A further comparison of (E.66) with (E.65) showsttithe coefficients;(t) affected to the
dry modes may be expressed as a linear combinattigsit):
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N
GO =) Ba® o a0 =" (E67)

i=1
where[v] is the matrix containing the Ritz factarg. Now that (E.67) is established, one can
go back to the virtual work principle expressedr85). It is worth bearing in mind that the
matrices[T], [U], [W] andV calculated with the wet mod@&s(y, z) are directly related to the
corresponding matriceld’], [U], [W] andV calculated with the dry one%(y, z). This was
already stated in (7.88) and is recalled hereatfter:

[T =WIT]w]”  W]=WI[W]L]" [U]=WI[0]k]" V=I[V (E.68)

As a final step, (E.68) can be introduced in (7 &) the following simple developments can
be performed:

I([7] = (WD) 2L+ w)(al] + BTN Sl + [0 S = (o)
@([T]—[W])<v]Td >+(a[T]+,B[U])(v]T 99) 4 [0)wirq = Vi (E.69)

2

= (IT]=1"]); A+(a[T]+ﬁ[UD—+[U]q(t)—VX(t)

where the last equivalence is justified by (E.@7can be seen that (E.69) is precisely the
virtual work principle equation expressed in thsibaf the dry modes shapes. Consequently,
solving (E.69) and rebuilding the displacementhwite second relation in (E.65) is strictly
equivalent to solving (7.85) and applying the fidgcomposition in (E.65). The short
mathematical developments performed here above shawworking with the wet modes is
strictly equivalent to using the dry ones.

E.2.2. Considerations about the exactness of the solution

The goal of this short appendix is to explain whg texactness of the solution may be
criticized when applying the virtual work principie perform the dynamic analysis of a lock
gate. In section 7.4.2, it is claimed that the dispmentai(y, z, t) obtained by applying the
virtual work principle are simply an approximatiohthe exact theoretical solution because
of the limited numbelN of wet modes considered in the decomposition E®EE.67). Of
course, as only dry mode shapes are still used in (8.40), suabnalasion is also holding in
the present case, but this is not the unique re#ilsanmay affect the exactness of the
procedure.

Indeed, an additional approximation is also comge from the fact that the functions
Y;(y,z) used in (8.2) are only pseudo-admissible. As dised in 8.2.1.3, they do not satisfy
the boundary conditions along the free edges. Becali(8.2) this is also the case for all of
the N modess;(y, z) in (8.40). Consequently, the solution found bylgiog (8.40) could not
tend to the exact one simply by increasig

From the previous considerations, it appears t{a z, t) fails to satisfy the virtual work
principle for all kinematically admissible displawentséu(y,z,t). In this case, it is quite
common to work with a virtual fieldu(y, z, t) that is similar tai(y, z, t), as given by (8.41).
With this definition, u(y, z,t) can be used in the virtual work principle. Doing, $he
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solution obtained fow(y,z,t) only implies a global equilibrium, but the locaheis not
guaranteed. In other words, by considering (8.4d) (&.41), it is to fear that evenufy, z, t)
meets the global equilibrium requirement expresbealigh the virtual work principle, it will
not necessarily satisfy the local one given by &équg8.39).

The implications of the last conclusion can be itkdlan a more explicit way. Going back to
(8.39), this expression can be rewritten in theofwing condensed manner:

Blw) =—-pu) ©Bw) +p(uw) =0 (E.70)

whereB(:) is the linear differential operator correspondiaghe left-hand side of (8.39). The
termp(u) corresponds to the total seismic hydrodynamicqumesobtained by summing up
(7.7) and (7.8) fou(y, z, t) given by (8.40). Nevertheless, a6y, z, t) does not respect the
virtual work principle for any kinematically admibke du(y, z, t), the local balance (E.70) is
not verified. So instead of (E.70), one should &vrit

B(w +pw) =p*(w) (E.71)

wherep*(u) may be seen as an additional pressure that has tapplied on the gate to
reestablish the equilibrium (Figure E.5).

B(u) +p(u)

)

X

<,

Figure E.5. Additional pressure for restoring the local equilibrium

As a conclusion, it is important to bear in mingtthhe solution derived analytically by
applying the virtual work principle is only an apgimation because the local balance and the
static boundary conditions on the free edges areaspected. From (E.71), it is clear that this
approximation is better ip* < p. Such a requirement may be seen as a kind ofiarite
assess the exactness of the solution.

In order to illustrate the importance of these uaheed forcep*(y,z, t) with respect to
p(y,z,t), one can consider the examples presented in Bed@i@.3.1 and 8.3.3.2 for a gate
resting against a sill or free at the bottom. Tdkensure that the analytical solutions are valid,
it may be interesting to check if the resulting alaimced force " (t) satisfies the following
condition:

h l
F*(t) = f dyfp*(y,z, t)dz K F(t) (E.72)
0o 0

where F(t) is the total hydrodynamic pressure applied on dghte already introduced in
expression (7.90). The curve showing the time dwwls of F*(t) and the one giving the
total hydrodynamic pressure applied on the gatedasmcted on Figure E.6 (if a sill is
present) and on Figure E.7 (if no sill is present).
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Figure E.6. Comparison between the unbalanced forces and the total pressure for gate 1 supported by a sill
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Figure E.7. Comparison between the unbalanced forces and the total pressure for gate 1 free at the bottom
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From these curves, it appears that the requirelftei®) is respected in a quite satisfactory
way. Moreover, calculating the maximal value of tago |F*(t)/F(t)| shows that this latter

is more or less equal @11. Consequently, even if the functiogs(y, z) are only pseudo-
admissible and simply satisfy the beams conditidhs, analytical approach appears to be
quite acceptable as the unbalanced pressures renoaierate. This seems to be logical: as a
lock gate is mainly behaving like a set of beamsrking with functionsy;(y,z) derived
from the beam theory should not be totally incohere

E.2.3. Additional formulae for the external work

This appendix briefly provides the analytical exgsiens allowing for the evaluation of the
matrix [W] given in (8.51). To evaluat®,, it appears from (8.51) that a closed-form

expression fof,(,f,)1 is required. For a gate supported at the bottore, has:
1 —(=1)"cos(y,1)

% — HO .
11(21?1:0 v W =VYm Lan = W ]7131_]/7”2

wherey,, = mr/l andy, is defined in (8.7). The functiof, is different for a rigid mode
than for a flexible one. It has the following exgsmns:

1+ ap(~1D"h

e If2,=0: E, 2h (E.74)
E,=0 (E.75)
Ar + (=)™ sin(A, h
c A #00 Ey=-4,7 “"512 _)aszm( rhs) (E.76)
T n
_ Ay + ay(—1)" sin(Ah
E =48 an(—=1)" sin(4,hy) (E.77)

A2+ a?

in which A, is the modal amplitude. The two parametgrsand B, are given by (8.11).
Considering the situation where the gate is tota#lg at the bottom, it can be shown that:

1+ an(~Dhy _

e IfA,=-1 E, o E,=0 (E.78)
—1)n _
e If 2, =0 g, =D E,=0 (E.79)
an
A + (=1 (sin(A,h) — By cos(A,h
« 1A, 20  E,=-4,7 o (1) (SIn(A, 2) r cos(rhs)) (E.80)

2
A —a;

— Ar + a, (—1)"(sinh(A,-hg) — B, cosh(4,hy))
En = 4 A2+ a2
T n

(E.81)

n

in which A4, is still the modal amplitude, but this tinde and B, have to be found by the
equations given in (8.14).
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E.3. Appendix E.3

The comparisons performed in section 8.3.3 show tihe simplified approach tends to
provide a quite good approximation of the numeriesllts. Nevertheless, one has to bear in
mind that the theoretical approach is based on thgses that are not always realistic. The
aim of this appendix is to go a little bit further the dynamic analysis of lock gates by
discussing the following particular points:

« For a gate resting against a sill, the true supponditions are not those considered in
8.3.3.1, so it is interesting to investigate thesamuences of working with the true ones.

« The flexible impulsive pressure is derived from a&tipn (7.8), which is based on the
hypothesis of a symmetric configuration. Nevertbglahis not necessarily the case in a
real lock. Therefore, it is desirable to see theat$ of not having two identical gates.

« All the developments performed in section 8.3 dda oonsider the presence of the
upstream and downstream reaches, so it could hmblal to briefly detail the analytical
and numerical procedures to realize the seismilysisaf an entire lock structure.

« Finally, as announced in section 8.1, only the torinal componenk (t) of the seismic
acceleration has been considered so far. Nevesthdlee vertical and transversal ones still
need to be treated analytically.

In this appendix, the only purpose is to have shoalytical or numerical investigations of the
topics listed here above. The aim is to brieflyeexk the analytical procedure detailed so far,
but also to show some limitations of the simplifigoproach and maybe open the door for
future researches.

E.3.1. Case of a gate with the real boundary conditions

In section 8.1.2, the true boundary conditionshatliottom of the lock chamber were briefly
discussed. It is clear that the model considere8l3m3.1 is not entirely satisfactory, as both
the positive and negative displacements alongethgis (Figure 8.3) are prohibited there. In
reality, the gate is free to move backwards. Tcestigate this particularity, a solution is to
perform numerical simulations witts-DYNA in which the sill is really modeled (Figure E.8)
and also submitted to the soil acceleraf@n).

The contact between the gate and its support @rattcally controlled by the software. In
reality, this latter is provided by some particytégces made of wood or of elastomers, so the
material properties affected to the sill are thagted in Table E.5.

Young modulus | 12500 MPa
Mass density 710 MPa
Poisson Ratio 0.3

Table E.5. Material properties of wood

The numerical results obtained by imposing thes& heundary conditions to gate 1 are
presented on Figure E.10 together with those ajrdagicted on Figure 8.15 for a gate totally
supported at the bottom. On this picture, the cufime boundary” corresponds to the
resulting pressure obtained for the model of Fiduge
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Figure E.8. Representation of the true boundary conditions by modeling the sill with shell elements

The extreme values on Figure E.10 are summarizdalihe E.6, from which it appears that

smaller pressures are reached when the sill is imdd€onsequently, one may consider that
working with the true boundary at the bottom is relevant when dealing with the seismic

analysis of lock gates. Nevertheless, this conafusias to be further investigated. Indeed, it
is evident from Figure E.10 that the two curves gude dissimilar. This sounds logical, as

the structure does not have the same rigidity amgpat conditions. In other words, the

vibration frequencies and mode shapes are notigdgém both cases, which implies that the
interaction between the fluid and the structurd different as well. Consequently, one may
not conclude a priori that the maximal resultinggsure is automatically lower if the true

boundary conditions are used.

Solution with Solution with Rigid Relative difference | Ratio

true boundary Fr asill Fg solution Fy |1 — Fp/Fs| Fr/Fg
Maximal value 1078.53 kN 1382.8 kN 375.2 kN 22% 2.9
Minimal value —1079.15 kN —1417.6 kN —517.1 kN 24 % 2.1

Table E.6. Comparison between the extreme values for gate 1 supported by a sill or by cables

In order to investigate further this last assertmme can perform similar analyses with gate 2
(Figure E.1). Indeed, in the previous case of datthe structure was quite rigid and had a
total width! of only 13.1 m (Figure 8.7). For this reason, the out-of-plargpldicements,,
occurring in the horizontal plane= 0 (see Figure E.9) were quite moderate, so theteffec
allowing for free backwards motions may be limitétbwever, in the case of gate 2, the
structure is this time much more flexible, withcaal width of 22.5 m. For this reason, the
relative displacements, between the gate and the sill may be attemptée targer than for
gate 1, leading to more severe consequences alyti@nic pressures induced by the seism.
The results for gate 2 are depicted on Figure EEV&n though they are quite dissimilar, it
can be observed that the extreme values are rstichily different and are a bit smaller if the
sill is properly modeled.

V Sill 3

Gate i Up

> Z

Figure E.9. Out-of-plane displacements in the horizontal plane y = 0

From the two cases presented above, it is hazatdozanclude that imposing a total restrain
at the bottom of the lock automatically leads tsaée evaluation of the pressure field, even
though this tends to be corroborated by the cudegscted on Figure E.10 and on Figure
E.11. This is due to the fact the resulting hydradyic force is influenced by the contact
conditions between the gate and the sill.

334



Resulting force (kN)

Resulting force (kN)

1500

1000

500

-500

-1000

-1500

300

200

100

-100

-200

-300

APPENDIX E. Additional developments for the seismic analysis of lock gates
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Figure E.10. Comparison of the numerical results for gate 1 if the boundary conditions are correctly modeled at the bottom
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Indeed, if more stiffer material properties are dusestead of those listed in Table E.5,
numerical simulations performed witB-DYNA have shown that higher water pressures were
reached because of the shocks that take place éetive gate and its support. Therefore, it
can be said as a summary that assuming a pertciireat the bottom of the lock does not
necessarily leads to a conservative evaluatiorhefseismic hydraulic forces. Doing so is
only valid as a first approximation if the conthetween the structure and the sill is provided
by some flexible materials, such as wood or elastsmif this is not the case, this approach
may turns out to be unsafe

As a final remark, it should be noted that modelihg true boundary conditions is also
questionable at the lock walls. This may be rougidplained from Figure E.12, where the
lateral supports have been approximately repregdertecan be seen that the positive
displacements of the structure are prohibited, bezaf the contact provided by the sealing
device. Nevertheless, the backward motions areahays totally restrained, as there might
be a gap between the extreme vertical frame angvéiie For this reason, as for the sill, the
support is also not perfectly restrained alongulagrection (Figure E.12).

Gap > |«
A
o v AN “
((JB | E— —
T v —
g =
Frame z Frame g
S A
Q =)
— <t
74— _ _ —
Gate Sealing
Sealing device
device i y
; | N
»

Figure E.12. Support conditions at lock wall

From all the previous developments, it transpited thodeling the real conditions of a lock
gate is not easy. Indeed, one has to account éostibcks that may occur against the sill and
the lock walls, but with due consideration for tkéasticity of the contact materials.
Nevertheless, finding an analytical procedure asting for such non-linear phenomena is
quite unrealistic and working with finite elemeseems to be unavoidable. Such a numerical
approach is probably not required for a preliminstydy of the structure, where the present
approximate method may still be relevant, but ttopic has to be more thoroughly
investigated during the upcoming design phases.

E.3.2. Case of an asymmetric configuration

All the results presented in Chapter 8 were obthineder the hypothesis of a symmetric
configuration, which means that the two gates lmgitthe lock chamber were perfectly
similar. These ones have of course the same madpégies and vibrates in unison, which
implies that the proper accelerationgy,zt) are the same fox =0 and x = L.
Consequently, this is also the case for the hydradyc pressure.

9 However, this last assertion has to be nuancedusecof the damping effect due to the water codfine
between the gate and the sill.
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Figure E.13. Asymmetric configuration of the reservoir

Nevertheless, except for standardization purpdkesg is no objective reason for having two
identical structures. Therefore, it is quite releivéo analyze the case of an asymmetric
situation, where the upstream and downstream ¢asgectively located im = 0 andx = L
on Figure E.13) are dissimilar. With such a siwmtithe accelerationsi,(y,z,t) and
i, (y, z, t) are not expected to be the same, which is alsoake for the pressurgsg(y, z, t)

andp,(y, z, t).

On a mathematical point of view, it is obvious tiab) and (7.7) remain valid, but this is not
the case for equation (7.8). Going back to thelteguen in (7.2), it can be seen that the
hydrodynamic pressure has to be determined byrfgndivelocity potential (x, y, z, t) that
satisfies the Laplace equation (7.3) with the appabe boundary conditions. It is clear that
the restrictions (a) to (d) associated to (7.3) siié holding, but the conditions (e) and (f)
have now to be modified to account for the asymynetrthe problem. Indeed, they have to
be replaced by:

© 0H P ou, for x = 0 The horizontalk component of the fluid velocity has
ox ® + ot N to be equal to the one of the upstream gate.
0 0 P ou, for x = L The horizontalk component of the fluid velocity has
Ox © + ot - to be equal to the one of the downstream gate.

Finding an analytical solution that satisfies &k tprevious requirements is not particularly
difficult. For conciseness, the developments wit be provided here, but it can be shown
that the flexible hydrodynamic pressure on thengiash gate (i.e. im = 0 on Figure E.13) is
given by:

+00 400

hs l
2
(0 2,t) = mzzo;hsl L frn,2) Icoth@an) Oj dy Oj ity (5, 2,6) fon (3, 2)d2

m

hs ! (E.82)
- ; d f ( ) frn (v, 2)dz
Sinh(fan)Of yo UV, Z, ) Jmn V)

wheref,,, (v, z) = cos(a,y) cos(y,,z). In all the previous expressions, the notatiepsy,,,
&nn and l,, have the same meaning than in section 7.1.2. Mvaosth noting that if
i, (y, z,t) = ii,(y, 2 t) as for a symmetric configuration, then (E.82) daegates into (7.8)
as it could be expected. Concerning the pressuigasn the downstream gate (i.e.xin= L
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on Figure E.13), this one may simply be obtainedriwerting the accelerations, (y, z, t)
andii,(y, z, t) in (E.82).

From (E.82), it appears that the total flexible g3rge acting on the gate m=20 is
influenced by the accelerations of both the upstraad downstream structures, which means
that there is a kind of coupling between them. @qguently, all the developments performed
so far in chapters 7 and 8 are no longer validpdrticular, the vibration frequencies and
mode shapes have to be recalculated by accoumtin@ 82) instead of (7.8). Realizing such
an adaptation is quite fastidious but may be adddtirough the Rayleigh-Ritz method, as it
was done in sections 7.3 and 8.2. Nevertheleserdstarting this quite long calculation, it is
worth wondering if it is really useful or not. Ingl from a careful analysis of (E.82), it can
be stated that:

» the contribution coming fronii, (y, z,t) is multiplied by the factocoth(é,,,L), which
tends to unity ifL/h; —» . Moreover, asoth(¢,,,,L) is an increasing function of and
n, the limit will be reached more rapidly for largalues of these two parameters.

 the contribution due td,(y, z, t) is weighted byl/sinh(¢,,,L), which comes very close
to 0 with increasing values of the ratigh,. Once again, at/ sinh(¢,,,L) is a decreasing
function ofm andn, the limit will be reached more rapidlynt > andn >.

Consequently, following a similar approach as imtisea D.1.2.3 of Appendix D.1, it
transpires from the previous considerations thist sufficient to deal with the dominant term
of the series in (E.82), which is found fer = 0 andn = 1. This one will be denoted by
Pr(y,z,t) and may be simply derived by limiting the develgmitom =0 andn =1 in
(E.82), so it is easy to show that:

U,(t)

Ul (t) COth(Tl’L/ZhS) - m C

p ) It =
pr(yv,z,t) -

os (;T—Zs) (E.83)

whereU, (t) andU,(t) may be seen as the mean accelerations exhibitéaehypstream and
downstream gates respectively. In fact, the dédimgt are as follows:

Uy () —f dyful(y,z t)COS( h )dz RN —f dyfuz(y,z t)cos( e )dz (E.84)

The curves showing the evolution of the two coéfits coth(rrL/2h,) and 1/sinh (tL/
2hy) are plotted on Figure E.14, where it can be skahthey have already reached their
asymptotic behavior fat/hg > 3. In fact, forL/hg > 3, coth(nL/2hs) = 1 and1/sinh (tL/
2hs) < 0.018. Consequently, in (E.83), if we want the contriobns coming from the
downstream and upstream gates to be at leasiaitioaof one tenth, the amplitud&g(t) and
U,(t) have to satisfy:

U,(t)/ sinh(nL/2hy) - 1 o U,(t)
0, (t) coth(mL/2hy) = 10 U, (t)

>55 ; L/hg >3 (E.85)

The previous relation means that the proper ac#bas of the downstream structure should
be at leasb times greater than those of the upstream oneue Aaon-negligible effect on
the pressures appearingan= 0. Such a requirement is a bit unrealistic for atzdslock
configurations, where the gates vibration propsréiee somewhat similar.
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Figure E.14. Curves showing the evolution of coth(nL/2hs) and 1/sinh(mL/2h,) with the ratio L/hs

Consequently, under the hypothedigh, > 3, it may be stated that the upstream and
downstream gates do not influence each others.tHer ovords, they may be said to be
decoupled, which implies that the hydrodynamic guesp;(y,z,t) in x = 0 (Figure E.13)
only depends on the proper acceleratidn®, z, t) of the upstream structure. This means that
the second term in (E.82) may be omitted to getftlewing expression for the flexible
contribution:

+co +00 hs

l
br=- Z Z Cmn €OS(any) COS(VmZ)f dyfill(y, z,t) cos(a,y) cos(Vmz) dz (E.86)
0 0

m=0n=1

in which ¢z, = —2pgcoth (§nl) /sl &mn. A similar result may be derived for the flexible
pressure ix = L simply by substitutingi, (y, z, t) by ii,(y, zt) in (E.86).

Furthermore, from a more careful analysis of (E.86appears that the expression is very
closed to the solution (7.8) obtained for a symmetonfiguration, except that this time the
coefficientc,,, is used instead af,,,,. However, forL/hg, > 3, it may be shown that;,, is
practically equal ta,,,,. Therefore, all the results obtained previouslghapters 7 and 8 for
a symmetric situation are still applicable to aynasetric one, provided thay/h, > 3.

In order to corroborate the previous conclusiohs, three following asymmetric situations
can be considered (see Figure E.15):

» Configuration 1: as a starting case (Figure E.16ag can examine a lock having a total
length of 50 m and limited at the upstream side by the first gé#scribed in 8.2.3. A
flexible structure with a more important stiffenisgstem is placed at the downstream
location. The water level is of abditn, so as to have/h; = 6.25 > 3.

» Configuration 2: this intermediate situation (Figu£.15b) is the same as the previous one,
except that the lock chamber has a length of a6hn. ThereforeL /hy = 2 < 3.

e Configuration 3: as an extreme disposition (Figargsc), the same lock chamber as in the
first case is analyzed, but this time the downstréaxible gate is replaced by an infinitely
rigid structure.
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Figure E.15. Description of the three asymmetric configurations
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Figure E.16. Comparison between the numerical results obtained for a symmetric an asymmetric configuration (L = 16 m)
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The purpose now is to compare the numerical reslitained for each of these three
asymmetric situations with those derived for there&gponding symmetric one. Concerning
the configurations 1 and 3 for whidlfh, > 3, the curves showing the time evolution of the
resulting pressure applied on gate 1 were founoketalmost perfectly identical with the one
obtained for the symmetric case and already predeah Figure 8.15. However, in the
second configuration whetle/hy < 3, the discrepancy is much more important, as itlwan
observed on Figure E.16. In this case, it transpitat it is relevant to account for the
coupling that may occur between the gates if tok tlhamber is not long enough.

It is worth mentioning that for the three situasodescribed here above, the gates were
assumed to be perfectly restrained at the bottdme. Same configurations were also tested
with structures totally free at the bottom and tlmclusions were very similar to those

detailed previously.

E.3.3. Seismic analysis of an entire lock structure

So far, in sections 8.1 to 8.3 as well as in Chapteve have been dealing with structures that
were in contact with a fluid on one side only. Netveless, as depicted on Figure E.17, a lock
chamber is preceded by the upstream reach andvidldy the downstream one. Except
during maintenance operations where cofferdams Ipeaysed, these ones are rarely totally
empty, which implies that the gates are usuallyrosurded by water on both sides.
Consequently, during the longitudinal seismic et@in X(t), one should account for the
hydrodynamic pressures in the chamber but alseemedach.

ui(y,z,t) uz2(y,z,t)
Upstream reach %ﬂ Lock chamber %" Downstream reach
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Figure E.17. Representation of a complete lock structure

In section 7.1.2, the total pressur€y, z,t) appearing inside the lock chamber was derived
for a symmetric configuration. Here above, the Itssuave been extended to an asymmetric
situation, so the pressupéy, z, t) is already quite well characterized. The purpsseow to

do the same work for the case of an infinite reach.

E.3.3.1. Hydrodynamic pressures in a reach

Before considering the seismic analysis of an emtick gate, it is first required to go one step
further by finding closed-form expressions for tia¢al pressurep*(y,z, t) appearing in a
reach. As in equation (7.1), this one is givenhmysum of three different contributions:

p*(y,zt) =pr () +pr(y,t) + pr (¥, 2, 1) (E.87)

where p,(y) and p;(y,t) + pr(y,zt) are respectively the hydrostatic and hydrodynamic
pressures acting on the gate. Once again, the dhylamic term can be derived from (7.2),
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where the potential functioH (x, y, z, t) may be found by solving the Laplace equation (7.3)
with the appropriate boundary conditions. Workingdhe reference frame of Figure E.17, it is
clear that the restrictions (a) to (d) introduced’il.2 are still holding, but the requirements
(e) and (f) have to be replaced by:

1 The horizontalx component of the fluid velocity

(e) a—}(=)'((t)+ai forx =0

ox ot has to be equal to the one of the upstream gate.

0H In an infinite reach, the hydrodynamic pressure has
M =——o forx — —oo :

ot to decrease when moving away from the gate.

The rigid solution to this problem was originallgtablished by Westergaard [166] and has
been applied by many other authors to treat th&rseibehavior of dams with an infinite
reservoir. As these equations have already beea foonally redeveloped in [17], there is no
need to reproduce them once again. Regarding éélie contributionpz(y, z, t), this one
may be evaluated in a very classical way by soltirggLaplace equation. More information
may be found in [17], where the derivation is perfed in details. So gathering all these
developments leads to the following results forghge inx = 0:

pr(¥) = —prg(hy —y) (E.88)
< 8prhy 2n— Dy .,

) = 2(_1)n+1 2n i)fl)znz C°S<( n2hu)ny>X(t) (E-89)
n=1

l
Pi(y,2,t) = Z Z <, C°S(“”y Jeostin) [ dy f ih1 (7,2, ) cos(any) cos(Fmz)dz  (E.90)
0

mn
0

in which h,, is the water level in the upstream reach and wtiexeother notations have the
definitions already given in (7.9). It is worth mg that the pressure is positive if it is acting
in opposition with thex axis (see Figure E.17). So it is interesting tdenthat the
hydrodynamic pressures in the chamber and in thehralways act in the same sense. Of
course, this is not holding for the hydrostaticgstees.

Now that all the pressures acting on a lock gate teeen established, it is possible to realize
the dynamic analysis of the structure depicted muré E.17. The approach is however

slightly different from the one exposed in secti®B. Indeed, this has to be done by

accounting for some modifications on both analytarad numerical aspects. These ones are
briefly described hereafter.

E.3.3.2. Analytical analysis of an entire lock

Concerning the simplified analytical approach, milsir procedure to the one exposed in
section 8.3 can be applied. The goal here is ngeetéorm this quite voluminous work, but
simply to give some more information on the waydlow for achieving such an operation,
which can be useful for future developments.

Under the assumption that/hg >3 (which is usually the case for classical lock
configurations), the upstream and downstream ged®s be analyzed separately, without
having to account for any coupling in the chamli@onsequently, for the upstream gate,
going back to the equilibrium equation (8.39) letas
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np ny
o 0*u o*u o*u
.Dtp(ul +X) +fa+D <ay41 +2 ayzazz + az4l> + z fon + Z fon = —D1 (E.91)
n=1 n=1

wherep; (y, z,t) denotes the total hydrodynamic pressure actinthergate. It is given by
summing up the contributions coming from both sides

p1(,zt) =) + (v, 2,t) + pr (1, 2, t) + Dr (Y, 2, 1) (E.92)

wherep,.(y,t), pr(y,t) andpr(y, z, t) are given by (7.7), (E.89) and (E.90) respectivéhe
last termp,(y, z,t) may be evaluated by (7.8), (E.86) or even (E.82hase three formulae
are reputed to give similar resultd.ifhy > 3.

Consequently, to account for an upstream reaclks #vident from (E.91) that the only
modification is due to the pressure term in theildyium equation. Furthermore, keeping
developing the proper displacementg(y,z,t) in accordance with (8.40), applying the
virtual work principle leads to an equation thatsisilar to (8.53). Nevertheless, in this
expression, the tern{$/] andV have to be modified to include the additional cimitions
pr(y,t) andp(y,zt). Indeed, instead of using (7.78), the virtual wpedformed by the
external pressurev,(y,z,t) has to be modified in the following way to includee
contributions coming from both sides of the gate:

hs l hy

!
—fdzf Su(p, +pf)dy—fdzf su(p; + py)dy (E.93)
o 0 o 0

From this previous equation, it is clear that tieevradditional termg; (y, t) andps(y, z, t)
have to be respectively integrated in the defingiof V and [W]. Apart from these two
modifications, all the other mathematical developteeperformed in section 8.3 remain
entirely applicable.

E.3.3.3. Numerical analysis of an entire lock

On a numerical point of view, the situation is momplex because representing an infinite
upstream reach is not easy. Ideally, such an aperaas to be achieved by modeling the
fluid domain over a certain length,. Doing so, the liquid is in contact with the flble gate

on the downstream side, while a non-reflecting lolauy is imposed on the upstream one (see
Figure E.18). With this condition, the pressure sawmoving away from the gate are
absorbed after travelling a distantg and never go back in the direction of the vibmtin
structure, which is in fact what would happen inu infinite reach.

Lu Flexible gate

A

Non-reflecting
boundary

Figure E.18. Numerical model of an infinite reach

343



APPENDIX E. Additional developments for the seismic analysis of lock gates

The problem is thats-DYNA only provides that kind of boundary conditionstwarbitrary
Lagrangian-Eulerian (ALE) formulations, so they am available if the fluid is modeled as
an elastic medium. Nevertheless, this difficultyn che overcome by resorting to an
approximate approach. Let us consider a lock chamite a water leveh, and having a
total lengthL,, bounded by a flexible gate on one side and liunivgy a perfectly rigid
structure on the other one. For this asymmetridigoration (see Figure E.19), the flexible
pressure is given by (E.82), in whidh(y, z, t) andii,(y, z, t) have been inverted and where
i, (y, z,t) is set to zero, as the upstream structure is asdumbe infinitely rigid. In other
words, we have:

hu lmfmn

m=0n=1

+00 +00 hy l
2 h(&nnLy
przn=y y LMt oy [y [0 0o 0a: (£94)
0 0

If it is further assumed that the lock chamber Ibees infinitely long [, » +), then
coth(é,,,L,) — 1 in the previous relation and in such a case, (E®#entical to (E.82). In
other words, the flexible pressure in an infinkach is the same as the one generated in an
infinite lock chamber. In fact, there is no needh&vel,, — +oo as it is obvious that the limit

is already valid fot.,, = 3h,,.

;4 L, — +00 ;
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Figure E.19. Impulsive pressure in an infinite asymmetric lock chamber

Concerning the rigid pressupe(y, t) appearing in the lock chamber of Figure E.1% itill
given by the initial formula (7.7), i.e.:

_ - 4L, cosh((2n — Dmy/Ly) Ly
pr(y,t) = —ps (; @n— 1772 cosh((2n = Drh/Ly) 2 )X(t) (E.95)

Nevertheless, it is not so straightforward to shemvalytically that (E.95) degenerates into
(E.89) whenL, — +c. This was already discussed in section D.2.2.Ambendix D.2,
where it was stated that the limit is also validfip > 3h,,.

As a conclusion, it can be said that the rigid #edible pressures appearing in the lock
chamber of Figure E.19 with, = 3h,, are the same as those generated in an infinihrea
Consequently, to study numerically the seismic bigimaof an upstream lock gate, it is
sufficient to consider the model depicted on Figk:20 and submit it to a longitudinal
accelerationX(t). On this figure, it can be seen that fictitiougidi plates have been
represented to close the fluid domains. In fadg ot required to use real lock gates at these
locations. Only non-flexible structures are simpBeded there. Of course, doing so is only
valid under the hypothesis bf> 3h,, otherwise it is required to account for the caupthat
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may occur between the upstream and downstream. Jdttisshypothesis also justifies the fact
that the lock chamber is only modeled over a lef8h;.

Rigid plate Upstream reach Flexible gate Lock chamber Rigid plate
2 3h, | /
- j 3hs l
1
¥ ¥l
= vl K
< <
1

Figure E.20. Numerical model for studying the seismic behavior of an upstream lock gate

With the explanations given here above, it is gaesto extend the simplified analytical
approach to account for the presence of the upstiaad downstream reaches. Moreover,
realizing a numerical validation of these new depeients seems to be quite accessible, as
the model of Figure E.20 should be convenient téop@ such an operation.

E.3.4. Other components of the seismic acceleration

So far, only the longitudinal component of the secsacceleration has been considered. This
one was denoted bY(t) and oriented along theaxis on Figure 8.2). Nevertheless, it is also

required to work with the vertical and transversamponents because a seism is a spatial
phenomenon. As already mentioned in 8.1.2, thess are denoted B§(t) andZ(t). They

are supposed to act respectively alongptlaadz axes (Figure 8.2).

In the pre-design stage of a lock gate, it is gei@mon to negledt(t) andZ(t) because the
associated pressures are smaller than those appeader a longitudinal excitatiof(t). So

it is not of prior importance to include them in amalytical approach. Nevertheless, in view
of potential future developments, it is probablyenmesting to provide here some more
information on the way to proceed to extend theptifred method.

E.3.4.1. Vertical ground acceleration

It is clear that under a vertical ground accelergtihe gate may be assumed to be quite rigid,
so that the fluid-structure interaction should blatively modest. Consequently, the flexible
pressurep(y,zt) andps(y,zt) appearing in the chamber and in the reach resgécti
may be expected to be negligible. It can be shadl that the formulae (E.82) and (E.90)
remain applicable to evaluatg (y,z,t) andps(y,zt), even when dealing with a vertical
acceleration. Furthermore, it is worth recallingttthe pressure is positive when it is oriented
in opposition with ther axis. Consequently, the flexible contributionsuoed on both sides
of the gate always act in the same sense (seeeHigdf) and have additive effects.

Concerning the rigid impulsive contributions(y,t) and p;(y,t), it is demonstrated by
Buldgen [17] that they simply vary linearly withetldepth. For this reason, in static analyses,
they are often applied in conjunction with the logtatic pressure. These terms have the
following expressions:

Pr.t) = pphs =Y (@) 5 pr,t) = —ps(hy — VY () (E.96)
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wherehg andh,, are the water levels in the chamber and in thehreaspectively. This time,

these two pressures act in opposition and partippemsate each others, which is a non
negligible advantage for the design.
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Figure E.21. Hydrodynamic pressures induced by a vertical seismic acceleration

From the previous developments, it is clear thatviertical acceleration is not attempted to be
responsible for a large increase of the resultorgefs acting on the gate. This is due to the
fact that the vertical stiffness of the structigguite important, but also because of the partial
cancellation of the rigid pressures acting onvits sides. For this reason, it does not seem of
prior importance to includ&(t) in a pre-design tool for lock gates. However, thisrk is
quite easy to realize, as only the vedfon (8.53) has to be corrected to account for e n
formulae (E.96) giving the rigid impulsive actianthe present case.

E.3.4.2. Transversal ground acceleration

In the case of a ground acceleratif(t) acting along the horizontalaxis (Figure 8.2), it can
also be argued that the structure has a suffidiramisversal stiffness to neglect the fluid-
structure interaction. However, for completenesse @an try to examine the flexible
pressurep;(y, z, t) andpr(y, z, t) induced on both sides of the gate (see Figure)Eli2dde
the lock chamber, it may be mathematically demanedr that (E.82) is still valid, but the
situation is more complicated in the reach. If @ has an infinite length, then is clear that
the lock walls inz = 0 andz = [ will be submitted to a uniform seismic accelenatif(t)

over a certain finite length,, (see Figure E.23), but after this distance, thectf of the
earthquake will progressively disappear.
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Figure E.22. Hydrodynamic pressures induced by a transversal seismic acceleration
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ConsequentlyZ(x,t) is a decreasing function af and solving the Laplace equation (7.3)
with the correct boundary conditions is mathemdticguite difficult. Nevertheless, under the
assumption that,, is sufficiently large, (E.90) may still be usedas approximate solution

for the flexible pressure in the reach. Doing dojsi worth noting thatp,(y,zt) and

pr(¥,z,t) actin the same sense, so their effects are eediti

Regarding the rigid contributions, the fluid eqoati(7.3) inside the lock chamber may be
solved quite easily. The solution is very similar the one obtained in the case of a
longitudinal acceleratio (t) and the following relation may demonstrated [17]:

I ©— 4 cosh(B,y)

t) = — . P27 cnch( R B
pr(¥,2,t) P<Z > 1 BZLcosh(Byhs)
n=

cos(ﬂnz)> Z(t) (E.97)
wherep,, = (2n — 1)m/l. The derivation of a closed-form expression#p€y, z, t) is more
difficult, as it should be accounted for a non-omf distribution of the seismic acceleration
Z(x,t) along the lock walls. Once again, assuming thats quite large, the hydrodynamic
pressure near the gate should be correctly appetgoby replacing, by h,, in (E.97).

i == | T X
. LT T T
L
VA
~ Upstream reach - Chz(r)rflger
—
—
T O T T T Z G £

Figure E.23. Distribution of the seismic transversal acceleration along the lock walls

From the previous considerations, it transpires $bane approximations are made to treat the
case of a transversal acceleration, but it is rfoprir importance to have a rigorous
approach. This may be justified by the followinguanents:

« The transversal gate stiffness is usually suffickenlimit the fluid-structure interaction.
Therefore, the flexible pressurgs(y, z, t) andp(y, z, t) should not be determinant.

e The rigid contributions, (y,z,t) andp,(y,zt) act in opposition (see Figure E.22), so
there is a partial compensation.

« From a more careful analysis of (E.97), it appehas the pressure distribution along the
transversalz axis is antisymmetric (see Figure E.22). Consetiyethe resultant force
applied on the entire gate is equal to zero.

For the three previous reasons, the transversapooemt of the seismic acceleration is not
expected to produce an important increase of tlsaltreg forces acting on the gate.
Consequently, accounting faf(t) in the pre-design stage is probably not partitylar
relevant®. However, this should not be an overwhelming taskthe only modification to
realize in the virtual work equation (8.53) is twrect the vectoV to include (E.97).

%2 This component of the seismic acceleration was eeglected for the seismic pre-design of the ramkd in
the Panama canal.

347



References

References

All the references listed hereafter are sorted wébpect to the alphabetic order of the
authors. They are numbered accordingly.

[10]

[11]

W. Abramowicz, Crush resistance of T, Y and X sewj Joint MIT-Industry Project
on Tanker Safety, Report 24, Cambridge, 1994.

H.N. Abramson, The dynamic behavior of liquids irowimg containers, NASA
Technical Reports, National Aeronautics and SpackeniAistration, Washington,
1966.

Y. Akita, N. Ando, Y. Fujita, K. Kitamura, Studi@s collision-protective structures in
nuclear powered ships, Nuclear Engineering Dedig§r(1972), 365-401.

G. Aksu, Free vibration analysis of stiffened etaby including the effect of in-plane
inertia, Journal of Applied Mechanics, 49 (1982)62212.

J.M. Alexander, An approximate analysis of the aygdle of thin cylindrical shells
under axial loading, Quarterly Journal of Mecharacgl Applied Mathematics, 13
(1960), 10-15.

H.S. Alsos, J. Amdahl, On the resistance of stdtemplates, Part | - Experiments,
International Journal of Impact Engineering, 360@)0 799-807.

H.S. Alsos, J. Amdahl, On the resistance of tamkgtom structures during stranding,
Marine Structures, 20 (2007), 218-237.

J. Amdahl, Energy absorption in ship-platform inmpahD Thesis, Norwegian
Institute of Technologies, Trondheim, 1982.

J. Amdahl, D. Kavlie, A. Johansen, Tanker groundiegjstance, Proceedings of the
Sixth International Symposium on Practical Desifisbips and Mobile Units, Seoul,
South Korea, 1995.

S.N. Amiri, A. Esmaeily, Prediction of dynamic pemse of stiffened rectangular
plates using hybrid formulation, Journal of Engmire@ Science and Technology, 5
(2010), 251-263.

J.R. Arroyo, R.M. Ebeling, B.C. Barker, Analysisiofpact loads from full-scale, low
velocity, controlled barge impact experiments, UAmy Corps of Engineers
Research and Development Center, Vicksburg, 1998.

Y. Basar, D. Weichert, Nonlinear continuum mechanaf solids: fundamental
concepts and perspectives, Springer Verlag, B&A0.

348



[26]

[27]

References

Z.P. Bazant, L. Cedolin, Stability of structurekastic, inelastic, fracture, and damage
theories, Oxford University Press, New York, 1991.

R.D. Blevins, Formulas for natural frequencies amode shape, Krieger Publishing
Company, Malabar, 1995.

A.J. Brown, J.AW. Sajdak, Modeling longitudinalndage in ship collisions, Ship
Structure Committee, Report SSC-437, Washingto@520

L. Brubak, J. Hellesland, Semi-analytical posthimgk and strength analysis of
arbitrarily stiffened plates in local and globalndeng, Thin-Walled Structures, 45
(2007), 620-633.

L. Buldgen, Analyse des portes d'écluse sous #atiien sismique, Master Thesis,
University of Liége, Liége, 2010.

L. Buldgen, H. Degée, H. Le Sourne, P. Rigo, A@ified procedure to assess the
dynamic pressures on large reservoirs, Proceedofgshe Ninth International
Conference on Structural Dynamics, Porto, Portu2fzl4.

L. Buldgen, H. Degée, H. Le Sourne, P. Rigo, Sifigal seismic analysis of lock
gates, Proceedings of the Thirty-Third PIANC Wdddngress, San Francisco, United
States, 2014.

L. Buldgen, A. Gazerzadeh, A. Bela, H. Le SoufeRigo, A simplified procedure to
assess the dynamic pressures on lock gates, Piogeexd the Seventh International
Conference on Thin-Walled Structures, Busan, Kaz8a4.

L. Buldgen, H. Le Sourne, P. Rigo, A simplified i@al method for estimating the
crushing resistance of an inclined ship side, MaBitructures, 33 (2013), 265-296.

L. Buldgen, H. Le Sourne, P. Rigo, A simplified i@al method for estimating the
resistance of lock gates to ship impacts, Jourhapplied Mathematics, 2012 (2012),
1-39.

L. Buldgen, H. Le Sourne, P. Rigo, A simplifiecbpedure to assess the strength of a
ship impacting a lock mitered gate, Proceedingthef Twenty-Second International
Conference on Ocean, Offshore and Arctic Engingeilantes, France, 2013.

L. Buldgen, H. Le Sourne, P. Rigo, Fast strengtbeasment of mitre gates to ship
impact, International Journal of Crashworthine§s(2013), 423-443.

Centre d'études techniques maritimes et fluvidkestection des portes d'écluses et
des barrages contre les chocs de bateaux, notice/8I197.01, Paris, 1997.

Centre d'études techniques maritimes et fluvidRegommandations pour le calcul
aux états-limites des ouvrages en site aquatigQ&AR2000, Paris, 2000.

J.Z. Chen, A.R. Ghaemmaghami, M.R. Kianoush, Dygaamnalysis of concrete
rectangular liquid storage tanks, Proceedings efRburteenth World Conference on
Earthquake Engineering, Beijing, China, 2008.

349



[32]

[33]

References

W.F. Chen, D.J. Han, Plasticity for structural ewgrs, J. Ross Publishing, Fort
Lauderdale, 2007.

J.Z. Chen, M.R. Kianoush, Seismic response of aaarectangular tanks for liquid
containing structures, Canadian Journal of CivijiBeering, 32 (2005), 739-752.

S.R. Cho, H.S. Lee, Experimental and analyticakgtigations on the response of
stiffened plates subjected to lateral collisiongride Structures, 22 (2009), 84-95.

S.R. Cho, B.S. Seo, B.C. Cerik, H.K. Shin, Expentaéand numerical investigations
on the collision between offshore wind turbine supstructures and service vessels,
Proceedings of the Sixth International Conferent€ollision and Grounding of Ship
and Offshore Structures, Trondheim, Norway, 2013.

S.K. Choi, T. Wierzbicki, J. Culbertson-Driscollr@hing resistance of a web girder,
Joint MIT-Industry Project on Tanker Safety, Re@8t Cambridge, 1994.

S.K. Choi, T. Wierzbicki, O. Goksyr, J. Culbertsbniscoll, Crushing resistance of a
web girder with application to ship structures,nddIT-Industry Project on Tanker
Safety, Report 38, Cambridge, 1995.

A.K. Chopra, Hydrodynamic pressures on dams dueaghquakes, Journal of the
Engineering Mechanics Division, 93 (1967), 205-223.

A.K. Chopra, Earthquake analysis, design and sagggluation of concrete dams,
Proceedings of the Fifth Canadian Conference onhfaake Engineering, Ottawa,
Canada, 1987.

M.A. Criesflield, Non-linear finite element analgsbf solids and structures, John
Wiley & Sons, Chichester, 1991.

I.G. Currie, Fundamental mechanics of fluids, Maekker Incorporated, New York
2003.

N.M. Dehousse, Les écluses de navigation, Lectates\ University of Liege, Liege,
1985.

N.M. Dehousse, J. Deprez, Les bordages orthotrpfas: calcul d'une porte plane
d'écluse, Mémoires du CERES n°22 (nouvelle sétietre d'études, de recherches et
d'essais scientifiques du génie civil, Liege, 1967.

E.J.M. Delhez, Analyse mathématique, Lecture Notésversity of Liege, Liege,
2005.

V.S. Deshpande, N.A. Fleck, Energy absorption oégg-box material, Journal of the
Mechanics and Physics of Solids, 51 (2003), 187.-208

Deutsches Institut fur Normung, Locks for waterwéysinland navigation- Principles
for dimensioning and equipment, Beuth Verlag, Berli995.

S. M. Dickinson, The buckling and frequency ofxfleal vibration of rectangular
isotropic and orthotropic plates using Rayleigh'sthmd, Journal of Sound and
Vibration, 61 (1978), 1-8.

350



References

R. Donner, F. Besnier, H. Le Sourne, Numerical usation of ship-submarine
collisions, Proceedings of the Eighth InternatioBginposium on Practical Design of
Ships and Other Floating Structures, Shanghai, & 12001.

S. Ehlers, Material relation to assess the crasimvass of ship structures, Doctoral
Dissertation, Helsinki University of Technology,de®, 2009.

S. Ehlers, Strain and stress relation until fraestiar finite element simulations of a
thin circular plate, Thin-Walled Structures, 48 1R}, 1-8.

S. Ehlers, J. Broekhuijsen, H.S. Alsos, F. Biehl, Tabri, Simulating the collision
response of ship side structures: a failure catdrenchmark study, International
Shipbuilding Progress, 55 (2008), 127-144.

S. Ehlers, P. Varsta, Strain and stress relatipndao-linear finite element simulations,
Thin-Walled Structures, 47 (2009), 1203-1217.

H.I. Epstein, Seismic design of liquid storage grlournal of the Structural Division,
102 (1976), 1659-1673.

European Committee for Standardization, Eurocod®a8sis of structural design, EN
1990, Brussels, 2002.

European Committee for Standardization, EurocodeAttions on structures - Part
1.7: General actions and accidental actions, pr&®L11-7, Brussels, 2004.

European Committee for Standardization, EurocodeD@sign of steel structures -
Part 1.5: Plated structural elements, prEN 1991 Brbssels, 2003.

European Committee for Standardization, EurocodeD@sign of steel structures -
Part 1.1: General rules and rules for buildinggENA991-1-1, Brussels, 2005.

European Committee for Standardization, Eurocode Besign of structures for
earthquake resistance - Part 4: Silos, tanks apdlipes, prEN 1998-4, Brussels,
2006.

European Conference of Ministers of Transport, Reem 92/2 on new classification
of inland waterways, Athens, 1992.

European Environment Agency, Overall energy effickeand specific C@emissions
for passenger and freight transport, Indicatorstaett, TERM 2003 27 EEA 31,
Brussels, 2004.

D. F. Fischer, Dynamic fluid effects in liquidigd flexible cylindrical tanks,
Earthquake Engineering and Structural Dynamic4979), 587-601.

D. Fischer, F.G. Rammerstorfer, The stability iqbiid-filled cylindrical shells under
dynamic loading, Proceedings of a State-of-Art @Qulium on Buckling of Shells,
Stuttgart, Germany, 1982.

351



[59]

[60]

References

G. Forsyth, A. Porteous, The design and constrmatif seismically qualified steel
caissons at Rosyth Royal Dockyard, The Structungirteer, 78 (2000), 24-31.

K. Fujita, K. Shiraki, Approximate seismic respenanalysis of self-supported thin
cylindrical liquid storage tanks, Proceedings @& Hourth International Conference on
Structural Mechanics in Reactor Technology, Saméisao, United States, 1977.

A.R. Ghaemmaghami, M.R. Kianoush, Effect of wadixibility on dynamic response
of concrete rectangular liquid storage tanks unuatizontal and vertical ground
motions, Journal of Structural Engineering, 1361(20441-451.

N.F. Grace, J.B. Kennedy, Dynamic analysis ofartipic plate structures, Journal of
Engineering Mechanics, 111 (1985), 1027-1037.

E.W. Graham, A.M. Rodriguez, The characteristicsfuwdl motion which affect
airplane dynamics, Journal of Applied Mechanics(11952), 381-388.

A.E. Green, P.M. Naghdi, A general theory of ars@étaplastic continuum, Archive
for Rational Mechanics and Analysis, 18 (1965),-281.

J.E. Greenspon, Vibration of cross-stiffened aaadsvich plates with application to
underwater sound radiators, Journal of the AcoalsBociety of America, 33 (1961),
1485-1497.

J.O. Hallquist, Ls-DYNA theoretical manual, Livermore Software Technology
Corporation, Livermore, 2006.

M.A. Haroun, Stress analysis of rectangular wallsdar seismically induced
hydrodynamic loads, Bulletin of Seismological Sogief America, 74 (1984), 1031-
1041.

M.A. Haroun, G.W. Housner, Earthquake responsestidrdhable liquid storage tanks,
Journal of Applied Mechanics, 48 (1981), 411-418.

R.M. Haythornthwaite, Beams with full end fixityngineering, 183 (1957), 110-112.

L. Hong, J. Amdahl, Crushing resistance of web asdin ship collision and
grounding, Marine Structures, 21 (2008), 374-401.

L. Hong, J. Amdahl, Plastic design of laterallyghatoaded plates for ships, Marine
Structures, 20 (2007), 124-142.

L. Hong, J. Amdahl, Plastic mechanism analysishefresistance of ship longitudinal
girders in grounding and collision, Internationauthal of Ships and Offshore
Structures, 3 (2008), 159-171.

H.G. Hopkins, On the plastic theory of plates, Remings of the Royal Society A,
241 (1957), 153-179.

G.W. Housner, Dynamic pressures on acceleratedl faontainers, Bulletin of
Seismological Society of Americay (1957), 15-37.

352



[85]

[86]

[87]

[88]

[89]

References

N.J. Huffington, Theoretical determination of dgy properties of orthogonally
stiffened plates, Journal of Applied Mechanics(2366), 15-20.

R.A. lbrahim, Liquid sloshing dynamics: theory arapplications, Cambridge
University Press, Cambridge, 2005.

T. Irie, G. Yamada, H. Ida, Free vibration of dfshed trapezoidal cantilever plate,
Journal of the Acoustical Society of America, 7982), 1508-1513.

K.T. lyengar, R. Narayana, Determination of theéhotropic plate parameters of
stiffened plates and grillages in free vibratiompphied Sciences Research, 17 (1967),
422-438.

N. Jones, Consistent equations for the large dedles of structures, Bulletin of
Mechanical Engineering Education, 10 (1971), 9-20.

N. Jones, Influence of in-plane displacements attbundaries of rigid-plastic beams
and plates, International Journal of Mechanicaé&oes, 15 (1973), 547-561.

N. Jones, Structural impact, Cambridge UniversigsB, Cambridge, 2003.

N. Jones, T. Liu, J.J. Zheng, W.Q. Shen, Clampeuinbgrillages struck transversally
by a mass at the centre, International Journaingfact Engineering, 11 (1991), 379-
399.

M.R. Kianoush, J.Z. Chen, Effect of vertical accal®mn on response of concrete
rectangular liquid storage tanks, Engineering $tmes, 28 (2006), 704-715.

M.R. Kianoush, H. Mirzabozorg, M. Ghaemian, Dynanaicalysis of rectangular
liquid containers in three dimensional space, Cemadournal of Civil Engineering,
33 (2006), 501-507.

J.K. Kim, H.M. Koh, 1.J. Kwahk, Dynamic response m&ctangular flexible fluid
containers, Journal of Engineering Mechanics, 1226), 807-817.

A.N. Kinkead, A method for analyzing cargo proteantiafforded by ship structures in
collision and its application to an LNG carrieramsactions of the Royal Institution of
Naval Architects, 122 (1980), 299-323.

C.L. Kirk, Vibration characteristics of stiffeneglates, Journal of Mechanical
Engineering Sciences, 2 (1960), 242-253.

M. Kotelko, Load-capacity estimation and collapsalgsis of thin-walled beams and
columns: recent advances, Thin-Walled Structur2$2004), 153-175.

M. Kotelko, V. Ungureanu, D. Dubina, M. MacdonaRlastic strength of thin-walled
plated members - Alternative solutions review, Talled Structures, 49 (2001),
636-644.

353



[99]

[100]

[101]

[102]

[103]

[104]

References

K.Y. Lam, K.M. Liew, A numerical model based onthtargonal plate functions for
vibration of ring supported elliptical plates, Comtational Mechanics, 9 (1992), 113-
120.

H. Lamb, On the vibration of an elastic plate amtact with water, Proceedings of the
Royal Society of London, 98 (1921), 205-216.

P.A. Laura, G.A. Smith, Vibrations of rib-stiffethethin elastic plates carrying
concentrated masses, Journal of the Acousticale§oof America, 43 (1968), 332-
335.

E. Lehmann, Peschmann J., Energy absorption bgtést structure of ships in event
of collisions, Marines Structures, 15 (2002), 429-4

E. Lehman, X. Yu, Progressive folding of bulbousvbp Proceedings of the Sixth
International Symposium on Practical Design of Skapd Mobile Units, Seoul, South
Korea, 1995.

A.W. Leissa, The free vibration of rectangular efgtJournal of Sound and Vibration,
31 (1973), 257-293.

S.G. Lekhnitskii, Anisotropic plates, Gordon ande&ch Science Publishers, New
York, 1968.

H. Le Sourne, A ship collision analysis programdih®n super-elements method
coupled with large rotational ship movement analyeol, Proceedings of the Forth
International Conference on Collision and Groundiigships, Hamburg, Germany,
2007.

H. Le Sourne, N. Besnard, C. Cheylan, N. Buannish# collision analysis program
based on upper bound solutions and coupled witdrge Irotational ship movement
analysis tool, Journal of Applied Mathematics, 202@12), 1-28.

H. Le Sourne, J.C. Rodet, C. Clanet, Crashwortliaeslysis of a lock gate impacted
by two different river ships, Internal Journal ala€hworthiness, 7 (2002), 371-396.

C.C. Liang, C.C. Liao, Y.S. Tai, W.H. Lai, Thedrgibration analysis of submerged
cantilever plates, Ocean Engineering, 28 (20012511245.

K.M. Liew, C.M. Wang, Vibration analysis of platdsy the pb-2 Rayleigh-Ritz
method: mixed boundary conditions, reentrant asrr@nd internal curved supports,
Mechanics of Structure and Machine: an Internatidournal, 20 (2007), 281-292.

J. Lubliner, Plasticity theory, Dover Publicatiohgw-York, 2008.

M. Liatzen, Ship collision damage, PhD Thesis, TeminUniversity of Denmark,
Copenhagen, 2001.

M. Liutzen, B.C. Simonsen, P.T. Pedersen, Rapidigied of damage to struck and
striking vessels in collision event, ProceedingsSafp Structure Symposium for the
New Millennium: Supporting Quality in Shipbuildingylington, United States, 2000.

354



[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

References

P.K. Malhotra, Seismic response of soil-supportadnghored liquid-storage tanks,
Journal of Structural Engineering, 123 (1997), 450-

C. Massonet, S. Cescotto, Mécanique des matérkaditions De Boeck Supérieur,
Brussels, 1994.

J.F. Mc Dermott, R.G. Kline, E.L. Jones, N.M. ManidV.P. Chiang, Tanker
structural analysis for minor collisions, Transans of the Society of Naval
Architects and Marine Engineers, 82 (1974), 382-414

W. Meinhold, Kollisionsbeanspruchungen im Stahlvealsgau - Untersuchungen zum
SchiffsstoR auf Schleusentore und abzuleintende nstafden, Bundesanstalt fir
Wasserbau, Karlsruhe, 2011.

K. Meskouris, B. Holtschoppen, C. Butenweq, J. RoSeismic analysis of liquid
storage tanks, Proceedings of the Second Intenatiworkshop on Active Tectonics,
Earthquake Geology, Archaeology and Engineeringin@g Greece, 2011.

M.M. Mikulas, J.A. McElman, On free vibrations @centrically stiffened cylindrical
shells and flat plates, NASA Technical Reports, icdatl Aeronautics and Space
Administration, Washington, 1965.

Ministére des Transports de la Républiqgue Frang&iéeurité des portes d'écluses sur
les voies navigables a grand gabarit, Circulaineistérielle 1423, Paris, 1980.

A. Mitra, P. Sahoo, K. Saha, Effect of in-planeubdary conditions on forced
vibration analysis of stiffened plates with a fredge, Journal of Vibration and
Control, 19 (2013), 234-261.

S. Mitra, K.P.Sinhamahapatra, 2D simulation ofdtstructure interaction using finite
element method, Finite Elements in Analysis andigde5 (2008), 52-59.

MSC Software,MSC NASTRAN 2012 reference manual, MSC Software Corporation,
Santa Ana, 2012.

M. Muto, N. Von Gersdorff, Z. Duron, M. Knarr, Effeve modeling of dam-reservoir
interaction effects using acoustic finite elemer®spceedings of Twenty-Second
Annual US Society on Dams Conference, New Orlednged States, 2012.

M.H. Oh, J. H. Kim, Y. S. Jang, E. Bird, Impact bs& of greater plutonio FPSO
considering ship collision, Proceedings of the ddftth International Offshore and
Polar Engineering Conference, Seoul, Korea, 2005.

H. Ohtsubo, G. Wang, An upper-bound solution to pineblem of plate tearing,
Journal of Marine Science Technology, 1 (1995)546-

J.K. Paik, P.T. Pedersen, Modeling of the intemathanics in ship collisions, Ocean
Engineering, 23 (1996), 107-142.

355



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

References

J.K. Paik, P.T. Pedersen, Ultimate and crushirgngth of plated structures, Journal
of Ship Research, 39 (1995), 250-261.

J.K. Paik, A.K. Thayamballi, A concise introductiom the idealized structural unit
method for nonlinear analysis of large plated $tmes and its application, Thin-
Walled Structures, 41 (2003), 329-355.

J.K. Paik, A.K. Thayamballi, Ultimate limit stateesign of steel-plated structures,
John Wiley and Sons, Chichester, 2003.

J.K. Paik, A.K. Thayamballi, B.J. Kim, Large deflien orthotropic plate approach to
develop ultimate strength formulations for stiffdneanels under combined biaxial
compression/tension and lateral pressure, Thin&d&kructures, 39 (2001), 215-246.

J.K. Paik, T. Wierzbicki, A benchmark study on ¢mng and cutting of plated
structure, Journal of Ship Research, 41 (1997);1607

Panama Canal Authority (ACP), Design and constoacof the third set of locks -
Employer's requirements - Part 1: Locks performasce design criteria, Panama,
2007.

Panama Canal Authority (ACP), Atlantic locks compléevel | seismic analysis,
Panama, 2011.

P.K. Pani, S.K. Bhattacharyya, Finite element agialpf a vertical rectangular plate
coupled with an unbounded fluid domain on one sisiag a truncated far boundary,
Journal of Hydrodynamics, 21 (2009), 190-200.

P.K. Pani, S.K. Bhattacharyya, Fluid-structure riatgion effects on dynamic pressure
of a rectangular lock-gate, Finite Elements in Asm and Design, 43 (2007), 739-
748.

P.K. Pani, S.K. Bhattacharyya, Hydrodynamic pressur a vertical gate considering
fluid-structureinteraction, Finit&elementsn AnalysisandDesign, 44 (2008),59-766.

R.C. Patev, B.C. Parker, L.V. Koestler, Full-schrge impact experiments, U.S.
Army Corps of Engineers Research and DevelopmentefeV/icksburg, 2003.

P.T. Pedersen, S. Valsgaard, D. Olsen, S. SpanggrBl@p impacts: bow collisions,
International Journal of Impact Engineering, 1393 163-187.

S. Quist, K.B. Nielsen, M.H. Schmidt, S.H. Mads&hjp collision: experimental and
numerical analysis of double hull models, Procegdof the Ninth Technical
Conference on Material and Structural Modelling Gollision Research, Munich,
Germany, 1995.

C. Rajalingham, R.B. Bhat, G.D. Xistris, Vibratioh rectangular plates using plate
characteristic functions as shape functions in Ragleigh-Ritz method, Journal of
Sound and Vibration, 193 (1996), 497-509.

356



[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

References

F.G. Rammerstorfer, K. Scharf, F.D. Fischer, Reltee, Collapse of Earthquake
Excited Tanks, Res Mechanica, 25 (1988), 129-143.

A.A. Rashed, W.D. Ilwan, Dynamic analysis of sHertgth gravity dams, Journal of
Engineering Mechanics, 111 (1985), 1067-1083.

K.A. Reckling, Mechanics of minor ship collisionisiternational Journal of Impact
Engineering, 1 (1983), 281-299.

J. Rohacs, G. Simongati, The role of inland wasgrwmavigation in a sustainable
transport system, Transport, 22 (2010), 148-153.

I.H. Shames, C.L. Dym, Energy and finite elementhmods in structural mechanics,
New Age International, New Delhi, 1995.

W.Q. Shen, Dynamic response of rectangular platederu drop mass impact,
International Journal of Impact Engineering, 199@) 207-229.

Z.A. Siddigi, A.R. Kukreti, Analysis of eccentriba stiffened plates with mixed
boundary conditions using differential quadraturetimod, Applied Mathematical
Modelling, 22 (1998), 251-275.

B.C. Simonsen, Ship grounding on rock - I. Thedwarine Structures, 10 (1997),
519-562.

B.C. Simonsen, Ship grounding on rock - Il. Validatand application, 10 (1997),
563-584.

B.C. Simonsen, The mechanics of ship grounding, PhBsis, Technical University
of Denmark, Copenhagen, 1997.

B.C. Simonsen, L. P. Lauridsen, Energy absorptimh @uctile failure in metal sheets
under lateral indentation by a sphere, Internatidoarnal of Impact Engineering, 24
(2000), 1017-1039.

B.C. Simonsen, H. Ocakli, Experiments and theorydeck girder crushing, Thin
Walled Structures, 34 (1999), 195-216.

Société Momentanée Bureau Greisch-Tractebel EngmgeNote d'hypotheses pour
le calcul de la nouvelle écluse d'lvoz-Ramet, Lj&§®)9.

W.J. Stronge, T. Yu, Dynamics models for structyskdsticity, Springer Verlag,
London, 1995.

P.S. Symonds, T.J. Mentel, Impulsive loading osptabeams with axial constraints,
Journal of the Mechanics and Physics of Solid4,9568), 186-202.

F. Tin-Loi, Post-yield analysis of rigid-plastic dmas with variable restraints, Journal
of Engineering Mechanics, 117 (1991), 54-69.

357



[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]
[162]

[163]

References

F. Tin-Loi, Post-yield behavior of a rigid-plastbeam with partial axial and rotational
end fixities, International Journal of Mechanicaleéhces, 32 (1990), 623-630.

Y. Ueda, S.M.H. Rashed, The idealized structural mrethod and its application to
deep girder structures, Computers and StructuBegl9484), 277-293.

V. Ungureanu, M. Kotelko, R.J. Mania, D. Dubinaa®lic mechanisms database for
thin-walled cold-formed steel members in compressamd bending,Thin-Walled
Structures, 48 (2010), 818-826.

U.S. Army Corps of Engineers, Design of hydrautees structures, EM 1110-2-2105,
Washington, 1993.

U.S. Army Corps of Engineers, Lock gates and opegaequipment, EM 1110-2-
2105, Washington, 1994.

U.S. Department of Transportation, U.S. Coast GUEE5 oil pollution research
grants publications, Report CG-D-22-97, Cambrid@87.

A.S. Veletsos, Seismic effect in flexible liquidbstge tanks, Proceedings of the Fifth
World Conference of the International AssociationEarthquake Engineering, Rome,
Italy, 1974.

K. Vijayakumar, Natural frequencies of rectanguathotropic plates with a pair of
parallel edges simply supported, Journal of Sountt\dbration, 35 (1974), 379-394.

V. de Ville de Goyet, L'analyse statique non limégiar la méthode des éléments finis
des structures spatiales formées de poutres @oientin symétrique, PhD Thesis,
University of Liege, Liége, 1989.

K.Y. Volokh, An approach to elastoplasticity atdardeformations, European Journal
of Mechanics and Solids, 39 (2013), 153-162.

G.Z. Voyiadjis, P.D. Kiousis, Stress rate and #ggrangian formulation of the finite-
strain plasticity for a Von Mises kinematic hardenimodel, International Journal of
Solids and Structures, 23 (1987), 95-109.

A.W. Vredeveldt, J.H.A. Schipperen, Q.H.A. Nass@A. Spaans, Safe jacket
configurations to resist boat impact, Collision a&abunding of Ships and Offshore
Structures, J. Leira Editors, London, 2013.

T. Wah, Vibration of stiffened plates, The Aerotieal Quartely, 15 (1964), 285-298.

G. Wang, Some recent studies on plastic behaviptates subjected to large impact
loads, Journal of Offshore Mechanics and Arcticikegring, 124 (2002), 125-131.

G. Wang, K. Arita, D. Liu, Behavior of a double hinn a variety of stranding or
collision scenarios, Marine Structures, 13 (2004);-187.

358



[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

References

G. Wang, H. Ohtsubo, Deformation of ship plate jscted to very large load,
Proceedings of the Sixteenth International Confegean Offshore Mechanics and
Arctic Engineering, Yokohama, Japan, 1997.

G. Wang, H. Ohtsubo, Impact load of a supply vesBebceedings of the Ninth
International Offshore and Polar Engineering Casriee, Brest, France, 1999.

H.M. Westergaard, Water pressure on dams durintpcgaakes, Transactions of the
American Society of Civil Engineers, 98 (1933), 4138.

T. Wierzbicki, Concertina tearing of metal plategernational Journal of Solids and
Structures, 32 (1995), 2923-2943.

T. Wierzbicki, W. Abramowicz, On the crushing mectta of thin-walled structures,
Journal of Applied Mechanics, 50 (1983), 727-734.

T. Wierzbicki, J. Culbertson-Driscoll, Crushing dage of web girders under localized
static loads, Journal of Constructional Steel Retea&83 (1995), 199-235.

World Association for Waterborne Transport anddsfructure (PIANC), Innovation
in navigation lock design, PIANC, Brussels, 2009.

World Association for Waterborne Transport and dsfructure (PIANC), Rapport
final de la commission internationale pour I'étdes écluses, PIANC, Brussels, 1986.

J.Y. Yang, Dynamic behavior of fluid-tank systen®)D Thesis, Rice University,
Houston, 1976.

Y. Yamada, P.T. Pedersen, A benchmark study ofegoha®s for analysis of axial
crushing of bulbous bows, Marine Structures, 2080257-293.

P.D.C. Yang, J.B. Caldwell, Collision energy absiomp of ship's bow structures,
International Journal of Impact Engineering, 7 @9881-196.

T. Yu, An analytical model of the cantilever beambjected to oblique impact,
Sciences in China, 34 (1991), 191-200.

C.N. Zangar, Hydrodynamic pressures on dams dudoamzontal earthquakes,
Proceedings of the Society for Experimental StAessysis, 10 (1953), 93-102.

H. Zeng, C.W. Bert, A differential quadrature aysgd of vibration for rectangular
stiffened plates, Journal of Sound and Vibratictl, 22001), 247-252.

H. Zeng, C.W. Bert, Free vibration analysis ofcdaely stiffened skew plates,
International Journal of Structural Stability angriamics, 1 (2001), 125-144.

S. Zhang, Plate tearing and bottom damage in stwpngling, Marine Structures, 15
(2002), 101-117.

S. Zhang, The mechanics of ship collisions, PhDsigheTechnical University of
Denmark, Copenhagen, 1999.

359



