

Bias-variance decomposition in Random Forests

Gilles Louppe [@glouppe](https://twitter.com/glouppe)

Paris ML S02E04, December 8, 2014

Motivation

In supervised learning, combining the predictions of several **randomized** models often achieves **better results** than a single non-randomized model.

Why ?

Supervised learning

- The **inputs** are random variables $\mathbf{X} = X_1, \dots, X_p$;
- The **output** is a random variable Y .
- Data comes as a finite learning set

$$\mathcal{L} = \{(\mathbf{x}_i, y_i) | i = 0, \dots, N - 1\},$$

where $\mathbf{x}_i \in \mathcal{X} = \mathcal{X}_1 \times \dots \times \mathcal{X}_p$ and $y_i \in \mathcal{Y}$ are randomly drawn from $P_{\mathbf{X}, Y}$.

- The goal is to find a model $\varphi_{\mathcal{L}} : \mathcal{X} \mapsto \mathcal{Y}$ minimizing

$$Err(\varphi_{\mathcal{L}}) = \mathbb{E}_{\mathbf{X}, Y} \{L(Y, \varphi_{\mathcal{L}}(\mathbf{X}))\}.$$

Performance evaluation

Classification

- Symbolic output (e.g., $\mathcal{Y} = \{\text{yes, no}\}$)
- Zero-one loss

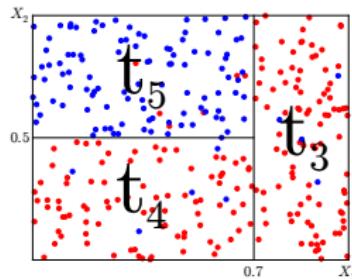
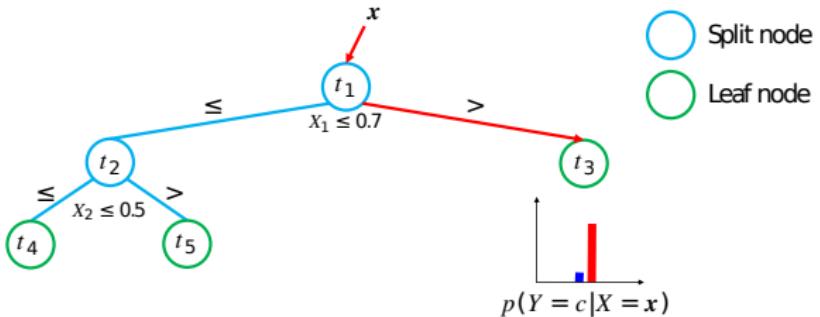
$$L(Y, \varphi_{\mathcal{L}}(X)) = 1(Y \neq \varphi_{\mathcal{L}}(X))$$

Regression

- Numerical output (e.g., $\mathcal{Y} = \mathbb{R}$)
- Squared error loss

$$L(Y, \varphi_{\mathcal{L}}(X)) = (Y - \varphi_{\mathcal{L}}(X))^2$$

Decision trees



$t \in \varphi$: nodes of the tree φ

X_t : split variable at t

$v_t \in \mathbb{R}$: split threshold at t

$\varphi(\mathbf{x}) = \arg \max_{c \in \mathcal{Y}} p(Y = c | X = \mathbf{x})$

Bias-variance decomposition in regression

Theorem. For the *squared error loss*, the bias-variance decomposition of the expected generalization error at $X = \mathbf{x}$ is

$$\mathbb{E}_{\mathcal{L}}\{Err(\varphi_{\mathcal{L}}(\mathbf{x}))\} = \text{noise}(\mathbf{x}) + \text{bias}^2(\mathbf{x}) + \text{var}(\mathbf{x})$$

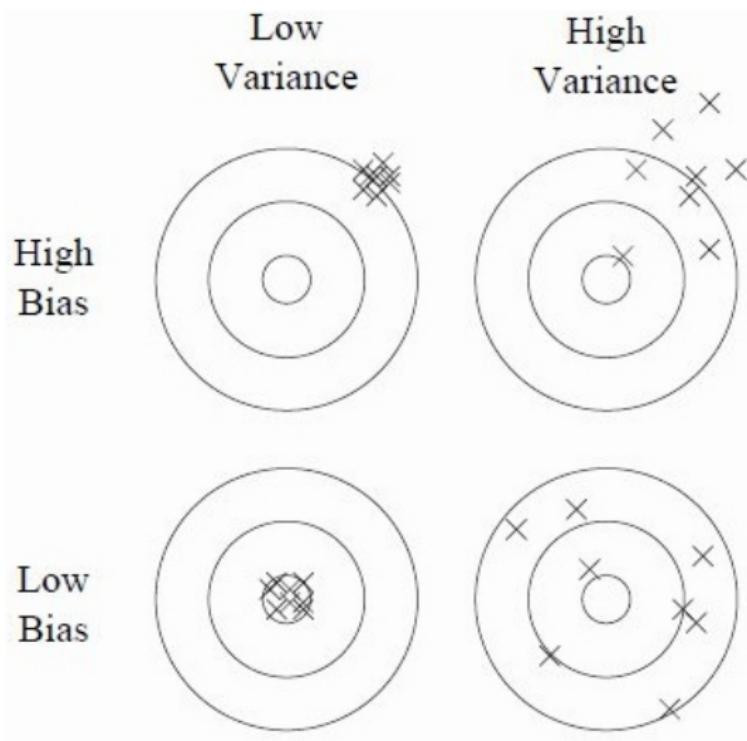
where

$$\text{noise}(\mathbf{x}) = Err(\varphi_B(\mathbf{x})),$$

$$\text{bias}^2(\mathbf{x}) = (\varphi_B(\mathbf{x}) - \mathbb{E}_{\mathcal{L}}\{\varphi_{\mathcal{L}}(\mathbf{x})\})^2,$$

$$\text{var}(\mathbf{x}) = \mathbb{E}_{\mathcal{L}}\{(\mathbb{E}_{\mathcal{L}}\{\varphi_{\mathcal{L}}(\mathbf{x})\} - \varphi_{\mathcal{L}}(\mathbf{x}))^2\}.$$

Bias-variance decomposition



Diagnosing the generalization error of a decision tree

- (Residual error : Lowest achievable error, independent of $\varphi_{\mathcal{L}}$.)
- Bias : Decision trees usually have **low bias**.
- Variance : They often suffer from **high variance**.
- Solution : *Combine the predictions of several randomized trees into a single model.*

Random forests



Randomization

- Bootstrap samples
- Random selection of $K \leq p$ split variables
- Random selection of the threshold

} Random Forests

} Extra-Trees

Bias-variance decomposition (cont.)

Theorem. For the *squared error loss*, the bias-variance decomposition of the expected generalization error

$\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L}, \theta_1, \dots, \theta_M}(\mathbf{x}))\}$ at $X = \mathbf{x}$ of an ensemble of M randomized models $\varphi_{\mathcal{L}, \theta_m}$ is

$$\mathbb{E}_{\mathcal{L}}\{Err(\psi_{\mathcal{L}, \theta_1, \dots, \theta_M}(\mathbf{x}))\} = \text{noise}(\mathbf{x}) + \text{bias}^2(\mathbf{x}) + \text{var}(\mathbf{x}),$$

where

$$\text{noise}(\mathbf{x}) = Err(\varphi_B(\mathbf{x})),$$

$$\text{bias}^2(\mathbf{x}) = (\varphi_B(\mathbf{x}) - \mathbb{E}_{\mathcal{L}, \theta}\{\varphi_{\mathcal{L}, \theta}(\mathbf{x})\})^2,$$

$$\text{var}(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L}, \theta}^2(\mathbf{x}) + \frac{1 - \rho(\mathbf{x})}{M}\sigma_{\mathcal{L}, \theta}^2(\mathbf{x}).$$

and where $\rho(\mathbf{x})$ is the Pearson correlation coefficient between the predictions of two randomized trees built on the same learning set.

Interpretation of $\rho(\mathbf{x})$ (Louppe, 2014)

$$\textbf{Theorem. } \rho(\mathbf{x}) = \frac{\mathbb{V}_{\mathcal{L}}\{\mathbb{E}_{\theta|\mathcal{L}}\{\varphi_{\mathcal{L},\theta}(\mathbf{x})\}\}}{\mathbb{V}_{\mathcal{L}}\{\mathbb{E}_{\theta|\mathcal{L}}\{\varphi_{\mathcal{L},\theta}(\mathbf{x})\}\} + \mathbb{E}_{\mathcal{L}}\{\mathbb{V}_{\theta|\mathcal{L}}\{\varphi_{\mathcal{L},\theta}(\mathbf{x})\}\}}$$

In other words, it is the ratio between

- the variance due to the learning set and
- the total variance, accounting for random effects due to both the learning set and the random perturbations.

$\rho(\mathbf{x}) \rightarrow 1$ when variance is mostly due to the learning set ;

$\rho(\mathbf{x}) \rightarrow 0$ when variance is mostly due to the random perturbations ;

$\rho(\mathbf{x}) \geq 0$.

Diagnosing the generalization error of random forests

- Bias : Identical to the bias of a single randomized tree.
- Variance : $\text{var}(\mathbf{x}) = \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x}) + \frac{1-\rho(\mathbf{x})}{M}\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$
As $M \rightarrow \infty$, $\text{var}(\mathbf{x}) \rightarrow \rho(\mathbf{x})\sigma_{\mathcal{L},\theta}^2(\mathbf{x})$
 - The stronger the randomization, $\rho(\mathbf{x}) \rightarrow 0$, $\text{var}(\mathbf{x}) \rightarrow 0$.
 - The weaker the randomization, $\rho(\mathbf{x}) \rightarrow 1$, $\text{var}(\mathbf{x}) \rightarrow \sigma_{\mathcal{L},\theta}^2(\mathbf{x})$

Bias-variance trade-off. Randomization **increases bias** but makes it possible to **reduce the variance** of the corresponding ensemble model through averaging.

The crux of the problem is to **find the right trade-off**.

Tips : tune `max_features` in Random Forests.

Bias-variance decomposition in classification

Theorem. For the zero-one loss and binary classification, the expected generalization error $\mathbb{E}_{\mathcal{L}}\{Err(\varphi_{\mathcal{L}}(\mathbf{x}))\}$ at $X = \mathbf{x}$ decomposes as follows :

$$\begin{aligned}\mathbb{E}_{\mathcal{L}}\{Err(\varphi_{\mathcal{L}}(\mathbf{x}))\} &= P(\varphi_B(\mathbf{x}) \neq Y) \\ &+ \Phi\left(\frac{0.5 - \mathbb{E}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\}}{\sqrt{\mathbb{V}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\}}}\right)(2P(\varphi_B(\mathbf{x}) = Y) - 1)\end{aligned}$$

- For $\mathbb{E}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\} > 0.5$, $\mathbb{V}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\} \rightarrow 0$ makes $\Phi \rightarrow 0$ and the expected generalization error tends to the error of the Bayes model.
- Conversely, for $\mathbb{E}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\} < 0.5$, $\mathbb{V}_{\mathcal{L}}\{\hat{p}_{\mathcal{L}}(Y = \varphi_B(\mathbf{x}))\} \rightarrow 0$ makes $\Phi \rightarrow 1$ and the error is maximal.

Questions ?