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Motivation

In supervised learning, combining the predictions of several
randomized models often achieves better results than a single
non-randomized model.

Why ?
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Supervised learning

The inputs are random variables X = X1, ..., X;;

The output is a random variable Y.

Data comes as a finite learning set
L :{(x,',y;)|i :0,...,N—1},

where x; € X = X1 x ... x X, and y; € Y are randomly drawn
from Px y.

The goal is to find a model @ : X +— Y minimizing

Err(@c) =Ex y{L(Y, 9 (X))}
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Performance evaluation

Classification

e Symbolic output (e.g., Y = {yes, no})

e Zero-one loss

LY, @2 (X)) =1(Y # @ (X))

Regression

e Numerical output (e.g., Y =R)

e Squared error loss

LY, 9£(X) = (Y = @g(X))?



Decision trees

07 X,

t € @ : nodes of the tree @

X: @ split variable at t

vt € R : split threshold at ¢t

@(x) = argmax.cy p(Y = c|X =x)

p(Y =c|X =x)
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Bias-variance decomposition in regression

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error at X = x is

E:{Err(@c(x))} = noise(x) + bias?(x) + var(x)
where

noise(x) = Err(@g(x)),
bias®(x) = (@5(x) — Ec{@c (x)})?,
var(x) = Ec{(Ec{@c (x)} — @ (x))%).
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Bias-variance decomposition
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Diagnosing the generalization error of a decision tree

(Residual error : Lowest achievable error, independent of ¢ .)

Bias : Decision trees usually have low bias.

Variance : They often suffer from high variance.

Solution : Combine the predictions of several randomized trees
into a single model.
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Random forests

x
Py, (Y =c|X =x) Po, (Y =clX =x)

™

Py(Y = clX = x)

Randomization
e Bootstrap samples
e Random selection of K < p split variables } Random Forests
e Random selection of the threshold } Extra-Trees
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Bias-variance decomposition (cont.)

Theorem. For the squared error loss, the bias-variance
decomposition of the expected generalization error
Ec{Err(WV s 0,,..0,(x))} at X = x of an ensemble of M
randomized models @ g, is

Ec{Err(Pe e,,..0,(x))} = noise(x) + bias?(x) + var(x),
where
noise(x) = Err(@g(x)),
bias®(x) = (@&(x) —Ec,e{@c,0(x)})?,

1—p(x) 2

var(x) = p(X)Gi,e(X) + M 0¢,0(x).

and where p(x) is the Pearson correlation coefficient between the
predictions of two randomized trees built on the same learning set.
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Interpretation of P(X) (Louppe, 2014)

_ Ve{Egie{@s,o(x)}}
T VeEgiclose () HHEc{Vecleos,o(x)}}

Theorem. p(x)

In other words, it is the ratio between
e the variance due to the learning set and

e the total variance, accounting for random effects due to both
the learning set and the random perburbations.

p(x) — 1 when variance is mostly due to the learning set ;
p(x) — 0 when variance is mostly due to the random
perturbations;

p(x) > 0.
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Diagnosing the generalization error of random forests

e Bias : Identical to the bias of a single randomized tree.

e Variance : var(x) = p(X)G%’e(X) + 17,8,()() UZL,G(X)
As M — oo, var(x) — p(X)O‘%Ye(X)
m The stronger the randomization, p(x) — 0, var(x) — 0.
m The weaker the randomization, p(x) — 1, var(x) — G%VG(X)

Bias-variance trade-off. Randomization increases bias but makes
it possible to reduce the variance of the corresponding ensemble
model through averaging.

The crux of the problem is to find the right trade-off.

Tips : tune max_features in Random Forests.
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Bias-variance decomposition in classification

Theorem. For the zero-one loss and binary classification, the
expected generalization error Eo{Err(@c(x))} at X =x
decomposes as follows :

EelErr(pz(x))) = Plop(x) # V)
0.5 —Ec{pc(Y = @a(x))}
2P =Y)—-1
VTelbelY = asa)] oo I

+ O

e For Eg{pc(Y = @(x)} > 05, Ve{ps (Y = @p(x))} =0
makes @ — 0 and the expected generalization error tends to
the error of the Bayes model.

e Conversely, for Ex{p:(Y = @g(x)} < 0.5,

Ve{pe (Y = @g(x))} — 0 makes @ — 1 and the error is
maximal.



Questions ?
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