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Boolean functions

Consider a function:

(x1, x2, . . . , xn)→ F (x1, x2, . . . , xn).

To be interesting,

• each variable should take at least two distinct values, and

• the function should take at least two distinct values.

So: the most elementary interesting functions are those for which each

variable takes exactly two values, and for which the function itself can take

exactly two values.

Named Boolean functions, after George Boole (1815-1864).
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Applications of Boolean functions

• In spite of their simplicity, Boolean functions possess a rich theory and

have found an amazing array of applications over the last 150 years.

• Boole was interested in modeling human reasoning (Laws of Thought):

Each variable and output can be interpreted as “True” or “False”.

• Electrical and electronic engineering: signal goes through a network

depending on the state of intermediate gates (Open or Closed).

• Computer science: computation output is 0 or 1 depending on the initial

input (in binary format: string of 0’s and 1’s).

• Game theory and social choice: a resolution is adopted (Yes or No)

by a governing body depending on the votes (Yes or No) of individual

members.



• Artificial intelligence: an action is taken (Yes or No) depending on

the presence or absence of certain features (e.g, medical diagnosis:

prescribe additional tests or not).

• Reliability: complex system operates (Yes or No) depending on the state

of its elements (operating or failed).

Thousands of publications on related topics.



Two recent books

A monograph:

BOOLEAN FUNCTIONS

Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER

Cambridge University Press, 2011, 710 pages (Available as e-Book)

with contributions by C. Benzaken, E. Boros, N. Brauner, M.C. Golumbic,

V. Gurvich, L. Hellerstein, T. Ibaraki, A. Kogan, K. Makino, B. Simeone



Two recent books

A collection of surveys:

BOOLEAN MODELS AND METHODS

in Mathematics, Computer Science and Engineering

Yves CRAMA and Peter L. HAMMER, editors.

Cambridge University Press, 2010, 780 pages



Basic concepts

Attributes: V = {1,2, ..., n}.

Boolean function: f : {0,1}V −→ {0,1}.

True vectors of f : T (f) = {x ∈ {0,1}V | f(x) = 1}.

False vectors of f : F (f) = {x ∈ {0,1}V | f(x) = 0}.

T (f) ∩ F (f) = ∅ and T (f) ∪ F (f) = {0,1}V



Basic concepts

A term t is a Boolean function defined by an elementary conjunction

(AND)

t(x) =
∧
j∈P

xj ∧
∧
j∈N

xj

where P,N ⊆ V , and x = 1− x.

The conjunction takes value 1 (or “true”) if and only if

xj = 1 for all j ∈ P and xj = 0 for all j ∈ N.

The set of true vectors of a term forms a sub-cube of {0,1}V , and vice-

versa, every sub-cube, is the set of true vectors of a Boolean function,

defined by a unique term.
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Sub-cubes and Terms in {0, 1}3
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Basic concepts

Every Boolean function can be represented as a disjunctive normal form

(DNF), that is, as a disjunction (OR) of terms (elementary conjunctions):

f(x) =
∨

(P,N)∈E

( ∧
j∈P

xj ∧
∧
j∈N

xj
)

where P,N ⊆ V , and x = 1− x.

The DNF takes value 1 (or “true”) if and only if at least one of its terms

takes value 1.

Geometrically: the set of true vectors of f is covered by a union of subcubes

of {0,1}V .



Boolean functions as DNFs
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Process of Learning ...

Data: Examples
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Some typical examples

• Credit approval. Data: attributes of applicants for credit card vs.

decision.

• Customer targeting. Data: attributes of customers vs. decision to

buy.

• Medical diagnosis. Data: symptoms or bio-medical features vs. diag-

nosis.
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Data Sets and Classifiers

Attributes: A,B, ... in domains A, B,...

Data Set: D =
{
Xi = (Xi

A, X
i
B, ...) | i = 1, ...,M

}
Class: c : D 7−→ {C1, . . . , Cs}

Classifier: f : A × B × · · · 7−→ {C1, . . . , Cs}

We usually expect: f(X) = c(X) for all X ∈ D

There may be many classifiers for a same data set.



A small example
7 patients in the training set with 4 test results for each
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A small example
7 patients in the training set with 4 test results for each
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Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Definitions

Training Data: a pair of subsets (T,F) such that

T ⊆ {0,1}V , F ⊆ {0,1}V , and T ∩ F = ∅.

We call such a pair (T,F) a partially defined Boolean function (or pdBf in

short).

Classifier: a Boolean function f : {0,1}V −→ {0,1}, which is an extension

of (T,F), i.e., for which

T ⊆ T (f) and F ⊆ F (f).

Let E(T,F) denote the family of all extensions. We have

|E(T,F)| = 22n−|T∪F|



What can guide learning?

If |V | = 20 and |(T,F)| = 1000, then

|E(T,F)| > 21,000,000
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What can guide learning?

If |V | = 20 and |(T,F)| = 1000, then

|E(T,F)| > 21,000,000

• Simplicity

– Essential attributes

– Efficient computation (DNF, CNF, decision tree, etc.)

• Interpretability

• Justifiability

Note on framework: we focus here on unspecified models, as opposed to

specified models such as regression models (which assume prior knowledge

about the relation between inputs and outputs).



Building reasonable extensions

Given (T,F), how can we build a reasonable extension f ∈ ET (T,F)?

Many ways....

For example, nearest neighbor methods, decision trees, or neural net-

works build such classifiers.



Nearest Neighbor classifiers

Define a notion of distance ρ(X,Y ) between any two points X,Y in the

input space.
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Nearest Neighbor classifiers

Define a notion of distance ρ(X,Y ) between any two points X,Y in the

input space.

Data: Examples
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Nearest Neighbor classifiers

Example in the Boolean case.
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Nearest Neighbor classifiers

Example in the Boolean case.
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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Decision Trees for pdBfs
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fD = x1x2 ∨ x1x2x3 = x1x2 ∨ x1x3

Note: (001) is classified differently by NN and by DT



Linear separator
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Decide whether T and F can be separated by a hyperplane.

This is a simple linear programming problem.

Similar to recognizing a weighted majority game.



Outline

• Boolean Functions

• Learning from Examples

• Partially Defined Boolean Functions

• Logical Analysis of Data



Logical Analysis of Data

LAD: Introduced in Crama, Hammer and Ibaraki (1988).

More than a well-circumscribed mathematical theory, rather:

• a way of looking at classification problems through the Boolean prism,

• a collection of concepts, algorithms, and structural properties.

Based on the representation of extensions by DNFs and on selection of

• subsets of relevant variables (support sets)

• relevant terms (patterns)

• relevant disjunctions of terms (theories)

Similarities with other models used in data mining, concept learning, qual-
itative analysis, etc.



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Finding Essential Attributes

• Select relevant features.

• Compress data.



Relevance and its evaluations

• Well defined for complete systems: an attribute is relevant, if changing

its value changes the classification of some situations.

• Measures of relevance are based on counting such situations (with slight

variations, e.g., coalitions’ power in game theory; voters’ influence in

voting schemes, etc., Shapley (1954), Chow (1961), Banzhaf (1965),

Winder (1971), Kahn, Kalai and Linial (1988), Hammer, Kogan and

Rohtblum (2000))

• These definitions cannot be easily extended to incomplete data sets in

a consistent way, see e.g., John, Kohavi and Pfleger (1994).



Data compression

• The simpler, the better! – “Occam’s Razor:”

Theories built on smaller attribute sets, generalize better.

Blumer,Ehrenfeucht,Haussler and Warmuth (1987)

• Decreases the computational complexity of finding and using a classifier.

• Decreases the cost of future data collection.



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).

T

1 0 0 1 1 0 0 0 0
1 1 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 1

F

0 0 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0



Feature selection based on separating power

Find a small (smallest, if possible) subset of the attributes which distin-

guishes the sets T and F. Such a subset is called a support set.

Crama, Hammer and Ibaraki (1988).

T

1 0 0 1 1 0 0 0 0
1 1 1 1 0 0 1 0 0
0 1 1 0 1 1 1 0 0
1 0 1 0 0 1 1 1 1

F

0 0 1 1 1 1 0 0 1
0 1 0 1 1 1 1 1 1
0 0 0 0 1 1 0 1 0
1 1 0 0 0 0 0 1 0



Feature selection based on separating power

Finding a smallest support set is NP-hard.

Algorithmic Approaches to find a small(est) support set:

• complete enumeration: FOCUS (Almuallim and Dietterich, 1994) ...

• greedy search: Rel-FSS (Bell and Wang, 2000) ...

• computing relevance index: (Kira and Rendell, 1992) ...

• etc., ... over 40 references in the past decade.

Note that decision trees automatically select a (small) support set.



Feature selection based on separating power

A set covering model to find a small(est) support set:

• associate a 0-1 variable ai with each attribute Ai

• for every pair of false example X and true example Y , express that at

least one of the attributes differentiating X from Y must be chosen:

for all X ∈ F, Y ∈ T,
∑

i:xi 6=yi

ai ≥ 1

• minimize
∑
i ai.

This model can be solved either exactly, or heuristically.



Feature selection based on separating power
Questions to clarify

Why a small(est) feature set??

Which one??

How to measure the quality of a support set?



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.

• The larger the data set, the less likely to have a small support set.

(Tested in experiments by Boros, Horiyama, Ibaraki, Makino and Yag-

iura, 2003 on random data sets.)
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• The larger the data set, the more surprising to have a small support

set.



Why a small(est) feature set??
Which one??

• Typically, there are many support sets of different sizes.

• The larger the data set, the less likely to have a small support set.

(Tested in experiments by Boros, Horiyama, Ibaraki, Makino and Yag-

iura, 2003 on random data sets.)

• The larger the data set, the more surprising to have a small support

set.

• In practice, real-world data set often have small support sets, which can

be expected to be meaningful.



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Definitions

Remember: A term t is a Boolean function defined by an elementary

conjunction (AND)

t(x) =
∧
j∈P

xj ∧
∧
j∈N

xj.

A term t is a pattern of (T,F) if

T ∩ T (t) 6= ∅ and F ⊆ F (t),

or

t(x) = 1 for at least one x ∈ T and t(x) = 0 for all x ∈ F.

A pattern corresponds to a combination of attributes which has been ob-

served at least once in a true point, but never in a false point.

A pattern of (F,T) is called a co-pattern of (T,F).

Pat(T,F) and co-Pat(T,F) denote the families of all patterns and co-

patterns of (T,F), respectively.



Returning to the medical example

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
1

0
1
1

1
1
0

F

T
U
V
W

0
1
1
0

0
0
0
1

1
0
1
1

1
1
0
0

Some patterns:

x1x2, x2x3, x2x4, . . .

Some co-patterns:

x1x2, x2, x1x4, . . .



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Generating efficiently all patterns is possible (in total time).



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Generating efficiently all patterns is possible (in total time).

But there are too many!



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Ideally, we would like to generate all patterns with high coverage:

P(T,F, γ) = {P | cov(P) ≥ γ|T|}



Pattern Generation

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
0

0
0
0

1
1
0

F

T
U
V
W

0
1
1
0

0
0
1
1

0
1
0
0

1
1
0
0

Pattern: P(x) = x2x4

P(b) = 0 ∀ b ∈ F

Coverage: cov(P) = 2 > 0

number of positive examples covered

Precision: π(P) = 2/7 > 0

fraction of data correctly classified

Ideally, we would like to generate all patterns with high coverage:

P(T,F, γ) = {P | cov(P) ≥ γ|T|}

NP-hard!



Patterns

In practice, generation heuristics concentrate for instance on patterns of

small degree, high coverage, high precision.

There is considerable empirical evidence that patterns with high precision

on a training (data) set generalize well, in the sense that they provide

classifiers with high precision on subsequent test sets.

In fact, in many cases, even a single pattern can be used as a good

classifier.



Mushroom Database
http://www.ics.uci.edu/ mlearn/MLRepository.html

• Number of Instances: 8124 (status of April 27, 1987)

• Number of Attributes: 22 with nominal values (126 categories)

• Missing attribute values: 2480, all for attribute stalk-root.

• Class distribution:

– edible: 4208 (51.8%)

– poisonous: 3916 (48.2%)



Mushroom Database

• Training set: 161 records (≈ 2%)

• Attributes: 56 binary

• Number of patterns P with π(P) ≥ 0.85: 218 (of degrees 2− 9)



Mushroom Database



Mushroom Database

• Training set: 161 records (≈ 2%)

• Attributes: 56 binary

• Number of patterns P with π(P) ≥ 0.85: 218 (of degrees 2− 9)

• Single best pattern: 98.5%-classifier!!

P(X) = (Odor 6= none) ∧ (Odor 6= anise) ∧ (Odor 6= almond)

• Best results reported in literature: 95− 99%



Partially Defined Boolean Functions

• Definition

• Support sets

• Patterns

• Theories



Theories and Co-Theories

An extension f ∈ E(T,F) is called a theory of (T,F) if it can be represented

as a disjunction of some of the patterns of (T,F): it is a disjunction of

patterns which cover all true points of (T,F).

A theory g of (F,T) is called a co-theory of (T,F): it is a disjunction of

co-patterns which cover all false points of (T,F)).

Denote by ET (T,F) and ET (F,T) the families of theories and co-theories of

a given pdBf (T,F).

Typically we have

|ET (T,F)| << |E(T,F)|



Examples

Test Results
ID x1 x2 x3 x4

T
A
B
C

1
0
1

1
1
1

0
1
1

1
1
0

F

T
U
V
W

0
1
1
0

0
0
0
1

1
0
1
1

1
1
0
0

Some patterns: x1x2, x2x3, x2x4, . . .

A theory: x1x2 ∨ x2x4

Some co-patterns: x1x2, x2, x1x4, . . .

A co-theory: x1x2 ∨ x1x4



Examples

Nearest Neighbor classifier
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w (111) is classified as red (false)

~

w (000) is classified as blue (true)

Classifier: fNN = x1x2 ∨ x2x3.

This classifier is a theory.



Examples

Decision Trees for pdBfs
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fD = x1 ∨ x1x2x3 = x1 ∨ x2x3

fD = x1x2 ∨ x1x2x3 = x1x2 ∨ x1x3

fD is a theory and fD is a co-theory .



Theories as justifiable classifiers

How can we jsutify the choice of a theory over another one?

Typically done experimentally, with measures of classifier quality that in-

volve new data:

• training - test partition, cross validation (assumes distribution of

future examples follows that of data)

• simulation (assumes knowledge of distribution of future examples)

• clinical trial (done “in the future”)



Theories as justifiable classifiers

Theory f classifies an example x as a “positive” example if f(x) = 1.

This is the case only if (at least) one pattern of f is “triggered” by x, mean-

ing that we have observed earlier another positive example displaying the

same features, and we have never observed a negative example displaying

these features.
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But we don’t necessarily have a good justification for the opposite classifi-
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Similarly, co-theory g classifies an example x as a “negative” example if

g(x) = 1.



Theories as justifiable classifiers

Theory f classifies an example x as a “positive” example if f(x) = 1.

This is the case only if (at least) one pattern of f is “triggered” by x, mean-

ing that we have observed earlier another positive example displaying the

same features, and we have never observed a negative example displaying

these features.

But we don’t necessarily have a good justification for the opposite classifi-

cation.

Similarly, co-theory g classifies an example x as a “negative” example if

g(x) = 1.

In both cases, we can provide some explanation or justification for the

classification, but not for the opposite one.



Theories, Co-Theories and Bi-Theories

A pair of a theory f ∈ ET (T,F) and a co-theory g ∈ ET (F,T) can be used

to define a classifier F :

Ff,g(x) =


1 if f(x) = 1 and g(x) = 0,
0 if f(x) = 0 and g(x) = 1,
? otherwise

Such a classifier can justify all its definite answers with evidence from (T,F),

however, it may not be able to give an answer for all x ∈ {0,1}V !

To avoid such uncertainties, ideally we would like to use a pair for which

g = f



Theories, Co-Theories and Bi-Theories

A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.
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A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.

Do bi-theories always exist for all data sets?
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Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.

Do bi-theories always exist for all data sets?

YES, in fact (most) nearest neighbor and decision tree algorithms build

a classifier Ff,f for some bi-theory f ∈ EB(T,F).



Theories, Co-Theories and Bi-Theories

A theory f ∈ ET (T,F) is called a bi-theory of (T,F) if f is a co-theory of

(T,F).

Then, the pair (f, f) defines a classifier Ff,f which always provides evidence

to support its answers.

Do bi-theories always exist for all data sets?

YES, in fact (most) nearest neighbor and decision tree algorithms build

a classifier Ff,f for some bi-theory f ∈ EB(T,F).

But in general, some bi-theories do not correspond to any decision

tree nor to any nearest neighbor classifier.



Theory Building

Theories can be built by selecting enough patterns to cover all positive

examples.

This can be done for instance by solving an optimization problem, either

exactly or in a greedy way.

Similarly for co-theories.

Many applications in the literature...



Theory Building

Theory formation: for each vector a ∈ T we choose at most 5 patterns

with the highest coverage from P(a,T,F, γ).

Results of 10-fold cross validation
Data Set Training Test
AU CREDIT∗ 88.9% 85.4%
BCW 99.7% 97.4%
BUPA 97.4% 90.1%
DNA∗ 87.2% 87.5%
HEART 100.0% 96.3%
HEPATITIS 100.0% 87.0%
IONOSPHERE 99.9% 95.2%
PIMA 81.3% 77.9%
VEHICLE∗† 93.2% 80.8%
VOTES 100.0% 98.3%
WINE 100.0% 97.9%

∗ STATLOG Data Collection
† 4 classes



Conclusions

In conclusion

♠ A best pattern alone is a very good, simple and robust classifier.

♥ Theories built as disjunctions of good patterns provide excellent clas-

sifiers for a large variety of applications.

♣ Theories provide classifications that are both understandable and

justifiable.

♦ Several software packages have been developed.
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