
On the Representation of In�nite Temporal Data and Queries

�

(Extended Abstract)

Marianne Baudinet

y

Universit�e Libre de Bruxelles

Marc Ni�ezette

z

Universit�e de Li�ege

Pierre Wolper

x

Universit�e de Li�ege

1 Introduction

Time is unbounded by nature. A temporal predicate

(one that varies with time) will thus often have an in�-

nite extension. To store such a predicate in a database,

one can either arti�cially restrict its extension to a �nite

set or, more desirably, use a formalism that allows the

�nite representation of at least some in�nite temporal

extensions. Several such formalisms have been proposed

in the past few years.

The formalism that extends traditional relational

databases most directly is the generalized databases de-

scribed in [KSW90]. There, database tuples are ex-

tended with an arbitrary number of additional columns

carrying linear repeating points. These represent peri-

odic sets of time points possibly constrained by linear in-

equalities. The query language proposed in [KSW90] is

a multi-sorted �rst-order logic in which predicates have

speci�c temporal parameters in addition to the usual

data parameters. Queries are evaluated by computing

algebraic operations on the relations of the database,

and the answers are given in the form of relations with

repeating point arguments. The answers to queries can

thus be in�nite, but always have a �nite representation.

Approaching the problem from a di�erent angle,

Chomicki and Imieli�nski [CI88, Cho90] proposed a tem-

poral language that extends Datalog by adding one tem-

poral parameter to every Datalog predicate. This allows

�

The following text presents research results of the Belgian

National incentive-program for fundamental research in arti�cial

intelligence initiated by the Belgian State { Prime Minister's Of-

�ce { Science Policy Programming. The scienti�c responsibility

is assumed by its authors.

y

Address: Service d'Informatique, 50 Avenue F.D. Roosevelt,

C.P. 165, 1050 Brussels, Belgium.

Email: mb@monte�ore.ulg.ac.be

z

Address: Institut Monte�ore B28, 4000 Li�ege Sart Tilman,

Belgium. Email: niezette@monte�ore.ulg.ac.be

x

Address: Institut Monte�ore B28, 4000 Li�ege Sart Tilman,

Belgium. Email: pw@monte�ore.ulg.ac.be

To appear in 10th ACM Symposium on Principles of Database

Systems, Denver, May 1991.

the de�nition of predicates with in�nite extensions by

stating for example that the predicate holds at time 0

and that, if it holds at time t, it also holds at time

t + 5. This extension of Datalog is also a natural way

of querying the temporal data. A set of clauses in this

language can be seen as an implicit representation of

the in�nite extension of temporal predicates. Chomicki

and Imieli�nski have devoted much e�ort to obtaining

more explicit representations of these extensions, for in-

stance in the form of equivalence classes of congruence

relations on the temporal domain [CI89, CI90].

An alternative to the language proposed by Chomicki

and Imieli�nski is the language Templog of [AM89,

Bau89a, Bau89b]. Templog is an extension of logic pro-

gramming with the operators of temporal logic. Tem-

plog allows the use of

(next) anywhere in clauses,

the use of 2 (always) in the head of clauses or outside

clauses, and the use of 3 (eventually) in the body of

clauses. Because of these restrictions on the use of tem-

poral operators, Templog programs satisfy the model-

intersection property and have a unique minimalmodel.

Templog and the language of [CI88, Cho90] are actually

very closely related and to a large extent notational vari-

ants of each other. This makes the comparison of the ex-

pressiveness results that have been established for Tem-

plog and for the language of Chomicki and Imieli�nski

rather puzzling. Indeed, in [Bau89b, Bau90] the expres-

siveness of Templog is characterized as that of �nitely

regular !-languages, whereas in [CI88] the expressive-

ness that is mentioned is that of periodic sets! These

are certainly not identical.

The �rst contribution of this paper is to clarify the

concepts needed to compare the expressiveness of vari-

ous temporal database formalisms and to discuss the ex-

pressiveness of the formalisms we have just described.

The key observation is that when considering in�nite

temporal databases, there are two distinct notions of ex-

pressiveness: data expressiveness and query expressive-

ness. The data expressiveness is the expressive power

of the formalism for storing in�nite temporal data. The

Page 1

query expressiveness is the expressive power of the lan-

guage used for querying the temporal database. Al-

though the latter notion is already familiar in classical

database query languages, the former notion is never

mentioned, because trivial, in the context of classical

databases. Indeed, there is no discrepancy between the

set of possible relations and the set of relations repre-

sentable in a classical database. This is because one only

considers �nite relations, which are obviously all repre-

sentable. In temporal databases, however, the number

of possible temporal relations is uncountable, so they

cannot all be �nitely represented. Any choice of for-

malism hence imposes a restriction on the set of repre-

sentable temporal relations, and it is important to be

able to characterize and compare the various languages

from this point of view.

With these concepts, the discrepancy between

[Bau89b, Bau90] and [CI88] is simple to explain: in

[Bau89b, Bau90] it is the query expressiveness that is

considered, whereas [CI88] explores the data expres-

siveness. In fact, it is easy to show that both for-

malisms have the same data expressiveness (periodic

sets) and the same query expressiveness (�nitely regu-

lar !-languages). Moreover, when extended with strat-

i�ed negation, these languages have a query expres-

siveness that corresponds to the class of !-regular lan-

guages [Bau89b, Bau90]. When limited to one tempo-

ral argument, the data expressiveness of the generalized

databases of [KSW90] is also periodic sets. However,

the expressiveness of the associated query language cor-

responds to the class of star-free !-regular languages,

which is incomparable to �nitely regular !-languages,

but is strictly weaker than !-regular languages. The in-

tuitive reason for this is that, in the query language of

[KSW90], negation is allowed but there is no recursion

mechanism, whereas, in [CI88] and in Templog, nega-

tion is not allowed but queries can be recursive.

The situation can thus be summarized as follows. We

have three equally expressive formalisms for represent-

ing in�nite temporal data. They are thus all inter-

changeable. However, we would advocate using the for-

malism of [KSW90] since it is more explicit and since it

allows a predicate to have an arbitrary number of tem-

poral arguments as opposed to at most one in the other

two frameworks. In addition, as is show in [CI89, CI90],

any recursive de�nition of in�nite temporal data can

be converted into an explicit form and this sometimes

expensive computation is better done once and for all

rather than each time the data is queried.

1

As far as

query languages, the situation is less straightforward.

Indeed, we would like the query language to have a de-

1

Note that in this type of temporal databases, the deductive

layer is used to de�ne the temporal extension of all predicates,

not just of derived predicates.

ductive capability as in [CI88] and in Templog, but also

to be able to handle several temporal arguments as in

[KSW90].

This leads us to the second contribution of our pa-

per. We de�ne a deductive query language that operates

on the temporal databases of [KSW90]. This language

allows the de�nition of predicates that operate on sev-

eral temporal arguments. Unfortunately, the bottom-up

evaluation of such predicates often leads to in�nite ex-

ecutions. However, we show that, if some assumptions

are satis�ed, the queries of this language can be �nitely

evaluated when applied to in�nite periodic data. Fur-

thermore, their answers can be �nitely represented as

temporal databases (that is, in closed form). Finally, we

characterize the expressiveness of this query language.

2 Existing Formalisms for Tem-

poral Databases

This section brie
y recalls the main features of the

temporal database formalisms of [KSW90] and [CI88,

Cho90], and of the language Templog [AM89, Bau89a,

Bau89b].

2.1 Generalized Databases with Linear

Repeating Points

The framework proposed in [KSW90] generalizes the no-

tion of relational database by allowing tuples to contain

an arbitrary number of temporal attributes in addition

to the usual data attributes. The temporal attributes

represent periodic sets of integers, namely, linear repeat-

ing points. Moreover, the repeating points appearing in

tuples of a relation can be constrained with linear in-

equalities.

De�nition (Linear Repeating Point) A linear re-

peating point (lrp) is a set

fx(n) 2 Z j x(n) = an+ b; with n ranging

from �1 up to +1 in Z; and a; b in Zg

where Z denotes the set of integers. Such an lrp is

simply denoted by an+ b.

For instance, the lrp 5n+3 denotes the in�nite periodic

set of integers f: : : ;�7;�2; 3; 8; 13; : : :g.

De�nition (Ground Generalized Tuple) A

ground generalized tuple of temporal arity m and data

arity ` is a ground tuple of the form

(a

1

n

1

+ b

1

; : : : ; a

m

n

m

+ b

m

; d

1

; : : : ; d

`

)

with constraints(T

1

; : : : ; T

m

)

Page 2

where

� each d

k

(1 � k � `) is a data constant,

� each a

i

n

i

+ b

i

(1 � i � m) is an lrp with non-zero

period, that is, a

i

6= 0,

� constraints(T

1

; : : : ; T

m

) denotes a �nite set of con-

straints over the temporal attributes T

1

; : : : ; T

m

.

Each constraint is of one of the following forms:

T

i

< T

j

+ c, T

i

< T

j

� c, T

i

= T

j

+ c, T

i

= T

j

� c,

T

i

< c, T

i

= c, or c < T

i

, where c is any integer

constant, T

i

; T

j

2 fT

1

; : : : ; T

m

g.

A ground generalized tuple is in fact a �nite representa-

tion of a possibly in�nite set of ground tuples, namely

the set

f(t

1

; : : : ; t

m

; d

1

; : : : ; d

`

) j

t

1

2 fa

1

n

1

+ b

1

g; : : : ; t

m

2 fa

m

n

m

+ b

m

g;

and constraints(t

1

; : : : ; t

m

) is satis�edg

For instance, the generalized tuple (2n

1

+ 3; 2n

2

+ 5)

constrained by T

2

= T

1

+ 2 represents the in�nite set

of tuples f: : : ; (�1; 1); (1; 3); (3;5); : : :g. Note that we

impose here that all the lrp's in a generalized database

have a non-zero period, an assumption which was not

made in [KSW90]. This assumption will be useful when

we discuss the evaluation of our deductive language in

Section 4. It is not restrictive since an lrp with zero

period is simply an integer constant, say c, which is

nothing else than the lrp n with associated constraint

T = c.

De�nition (Generalized Database) A generalized

database with relations p

1

; : : : ; p

r

such that p

i

(1 � i �

r) is of temporal arity m

i

and data arity `

i

consists,

for each p

i

, of a set of generalized tuples of temporal

arity m

i

and data arity `

i

.

Example 2.1 Let us consider a generalized database

storing train schedules (relation train with temporal ar-

ity 2 and data arity 2). The following table stores the

schedule of trains going from Li�ege to Brussels. Assum-

ing that time 0 is at midnight some Monday morning

and that the time unit is a minute, it states that there

is a train leaving Li�ege for Brussels 5 minutes after time

0 and every 40 minutes thereafter, and arriving 60 min-

utes after having left.

train

40n

1

+ 5 40n

2

+ 65 li�ege brussels

with T

1

� 0 ^ T

2

= T

1

+ 60

The query language proposed in [KSW90] for gener-

alized databases of lrp's is a partially interpreted �rst-

order logic, that is, a logic in which predicates have

temporal parameters interpreted over the integers in ad-

dition to the uninterpreted data parameters. The lan-

guage is equipped with negation, but since it is �rst-

order, it does not have a recursion mechanism.

2.2 The Temporal Formalism Proposed

by Chomicki and Imieli�nski

The temporal language proposed in [CI88] and further

studied in [Cho90] is exactly like Datalog [Ull88, Ull89]

except that every predicate has one temporal parame-

ter in addition to the usual uninterpreted parameters.

A temporal term in this language is obtained from the

constant 0 or from any temporal variable by applying

the successor function any number of times (the tem-

poral domain is the natural numbers, as opposed to the

integers in [KSW90]).

Example 2.2 Let us consider again the train sched-

ule of Example 2.1. The train relation cannot be

represented as such in the language of Chomicki and

Imieli�nski, which only allows one temporal parameter

per predicate. But we can, for instance, represent the

departure times and de�ne the arrival times in terms of

them.

train-leaves(5; li�ege; brussels)

train-leaves(t+ 40; li�ege; brussels)

 train-leaves(t; li�ege; brussels)

train-arrives(t+ 60; li�ege; brussels)

 train-leaves(t; li�ege; brussels)

In [CI89, CI90], the temporal language is generalized

to allow functional terms rather than simply temporal

terms. Functional terms are similar to temporal terms

except that they are built using several function sym-

bols. However, database predicates are still only allowed

to have no more than one such functional parameter.

2.3 Templog

Templog extends logic programming to temporal logic

(a version that views time as isomorphic to the natural

numbers) [AM89, Bau89b]. In this language, predicates

can vary with time, but the time point they refer to is

Page 3

de�ned implicitly by temporal operators rather than by

an explicit temporal argument.

The three temporal operators used in Templog are

(next), which refers to the next time instant, 2 (al-

ways), which refers to the present and all the future

time instants, and 3 (eventually), the dual of 2, which

refers to the present or to some future time instant. In

Templog,

is allowed both in the head and in the body

of clauses, 2 is allowed only in the head of clauses or

outside entire clauses, and 3 is allowed only in the body

of clauses (possibly nested with conjunction).

Example 2.3 The following clauses are the Templog

translation of the temporal program given in Exam-

ple 2.2. (

i

is an abbreviation for

� � �

| {z }

i

.)

5

train-leaves(li�ege; brussels)

2

�

40

train-leaves(li�ege; brussels)

 train-leaves(li�ege; brussels)

�

2

�

60

train-arrives(li�ege; brussels)

 train-leaves(li�ege; brussels)

�

Example 2.3 illustrates the correspondence between

Templog and the language of Chomicki and Imieli�nski.

In fact, it has been shown in [Bau89b] that Templog is

equivalent to a fragment of itself, namely TL1, where

is the only operator allowed within clauses, whereas 2

is still allowed to appear outside entire clauses. It turns

out that this fragment corresponds exactly to the lan-

guage of [CI88], described in Section 2.2. This is why

Templog and the language of [CI88] can essentially be

seen as notational variants of each other.

3 Expressiveness Issues

A classical relational database consists of a �nite num-

ber of �nite relations de�ned by their extension. As

any �nite relation can be represented, in classical rela-

tional databases, there is no di�erence between the set

of possible relations and those that are representable in

a database.

In a temporal database, however, this is no longer

the case. Indeed, there is a discrepancy between the

set of possible temporal relations and those that are ex-

pressible in a given formalism. To see this, consider a

temporal formalism in which relations have exactly one

temporal attribute and let us assume that the temporal

domain is the natural numbers. Then, a temporal re-

lation consists of an !-sequence of �nite relations. So,

the number of possible temporal relations is uncount-

able, and no language with �nite expressions can repre-

sent all temporal relations. It is then useful to capture

the expressive power of any particular formalism used

for representing temporal data. We call this the data

expressiveness of the formalism.

Although in classical databases the data expressive-

ness is not an issue, the expressiveness of the language

for extracting data from a database { the query lan-

guage { is a very crucial feature (e.g. [CH82, CH85]).

For a temporal database formalism, the situation is

identical, and we call this expressiveness the query ex-

pressiveness, to avoid any possible confusion with the

data expressiveness.

3.1 Data Expressiveness

Let us denote by T the temporal domain. In the case

of generalized databases with linear repeating points

over the integers, this temporal domain is the set of

integers Z, whereas, in the language of Chomicki and

Imieli�nski and in Templog, this domain is the set of nat-

ural numbers N . For the sake of clarity and simplicity,

we consider databases consisting of a �nite set of pred-

icates } that we take to be all of the same temporal

arity m and of data arity 0. All the de�nitions given

below extend directly to more general cases.

A temporal relation of temporal arity m is a subset

of T

m

, namely the set of m-tuples of time instants at

which the relation holds. A temporal database thus

stores the m-tuples of time points at which its relations

hold.

De�nition (Temporal Database) A

temporal database is a function mapping every predi-

cate in } into a subset of T

m

(the set of m-tuples of

time instants at which the predicate holds). It is thus a

function in B = (}! 2

T

m

).

Notice that, even with one temporal predicate of arity 1,

there are 2

@

0

temporal databases, all of which cannot

be �nitely represented. We thus introduce the following

notion.

De�nition (Data Expressiveness) The data ex-

pressiveness of a temporal database formalism is the

set of temporal databases that can be de�ned in this

formalism, that is, the subset of the set of functions in

B = (}! 2

T

m

) that can be de�ned.

For deductive temporal databases, in which data is

stored as temporal Horn clauses, the data expressiveness

Page 4

is characterized by the minimal models of the clausal

rules of the language. Chomicki and Imieli�nski prove

in [CI88] that their temporal database language is able

to express eventually periodic sets of points

2

. More pre-

cisely, the result states that the minimal model of a

set of temporal Horn rules is eventually periodic and it

provides upper bounds on the o�set and the periodic-

ity. The same result holds for Templog since it can be

translated into the language of [CI88].

Finally, the generalized relations with linear repeating

points of [KSW90] naturally de�ne eventually periodic

sets of points, and hence, when restricted to just one

temporal attribute, coincide in data expressiveness with

the other two languages.

3.2 Query Expressiveness

Temporal queries are formally de�ned in the following

way. (We use the same notational conventions as in

Section 3.1).

De�nition (Temporal Query)

� A yes/no temporal query is a function mapping any

given database into an element of the set f0; 1g. In

other words, it is a function in (B ! f0; 1g) =

((} ! 2

T

m

)! f0; 1g), or equivalently, it de�nes a

subset of the set of databases.

� An all-answer temporal query is a function mapping

any given database into a temporal relation, that is,

into a subset of T

m

(the m-tuples of time instants

at which the query holds for the given database). It

is thus a function in (B ! 2

T

m

) = ((} ! 2

T

m

) !

2

T

m

).

Hence, there are 2

jBj

= 2

2

@

0

yes/no queries, \many"

more than can be �nitely represented. This leads us to

the notion of query expressiveness.

De�nition (Query Expressiveness) The query ex-

pressiveness of a temporal query language is the set of

temporal queries that can be de�ned in this formalism.

For yes/no queries, the query expressiveness is charac-

terized by the class of subsets of the set of databases,

that is, the class of subsets of (} ! 2

T

m

), that can be

de�ned.

The query expressiveness of Templog without data

arguments has been studied in [Bau89b, Bau90]. It is

shown that the (yes/no) query expressiveness of such

Templog predicates essentially corresponds to the class

of �nitely regular !-languages. This result is obtained

2

which actually are the Presburger de�nable sets of points.

by viewing a Templog database not as a function in

(} ! 2

T

) but equivalently as a function in (T ! 2

}

)

and hence, when T = N , as an in�nite word (!-word)

over the alphabet 2

}

. An !-language L is �nitely reg-

ular if there is a regular language L

0

such that L can

be obtained from L

0

by extending all the words of L

0

to

in�nite strings in all possible ways. These languages

are exactly those accepted by �nite-acceptance �nite

automata on in�nite words, that is, automata that ac-

cept an in�nite word if they accept a �nite pre�x of

that word. Other results relate Templog queries and

various logics such as �TL, a temporal logic extended

with �xpoint quanti�ers [Var88], and ETL

f

, a temporal

logic extended with automaton-operators [WVS83]. It

is also shown that, when extended with strati�ed nega-

tion, Templog attains a query expressiveness that cor-

responds to the full class of !-regular languages.

The query expressiveness results concerning Tem-

plog also apply directly to the temporal language of

Chomicki and Imieli�nski. Indeed, these results are actu-

ally proved for the fragment TL1 of Templog, which is

equivalent to the language of Chomicki and Imieli�nski.

When restricted to the case of one temporal param-

eter and to the natural numbers, the query language

proposed in [KSW90] has an expressiveness that cor-

responds to the class of star-free !-regular languages.

Indeed, this query language is the �rst-order theory of

one successor, which is expressively equivalent to the

star-free !-regular languages [Tho81]. It is also the ex-

pressiveness of temporal logic with the operators

, 2,

3 and U (until) [GPSS80].

4 A Temporal Deductive

Language

We consider a Horn clause deductive language where

each predicate can have any number of uninterpreted

(data) arguments as well as any number of temporal ar-

guments interpreted over the integers (positive and neg-

ative). Moreover, we allow the use of the interpreted

relations < and = (two temporal arguments), of the

constant 0, and of the functions +1 and �1 applied to

temporal arguments. On the other hand, no functions

operate on data arguments. Our language is thus Dat-

alog over integer order with the successor and the pre-

decessor functions. It is essentially the extension of the

language of [CI88] to an arbitrary number of temporal

arguments.

This deductive language is used for de�ning the inten-

sional database (IDB) relations. When we consider the

evaluation of our deductive language, we will consider

it in conjunction with the generalized database formal-

Page 5

ism of [KSW90] (see Section 2.1) used for providing the

extensional database (EDB) relations.

4.1 De�nitions

The deductive language involves both temporal terms

and data terms. There are thus two types of variables:

data variables and temporal variables, which are used to

construct respectively data terms and temporal terms.

De�nitions (Data Term and Temporal Term)

� A data term is either an uninterpreted constant or

a data variable.

� A temporal term is de�ned inductively as a tempo-

ral variable, the constant 0, the successor function

(+1) applied to a temporal term, or the predecessor

function (� 1) applied to a temporal term.

Note that we will usually write � + c (� � c, respec-

tively) as a shorthand for the temporal term obtained

by c applications of the successor function (predecessor

function, respectively) to � .

We distinguish between intensional and extensional

predicate symbols, which are used to construct respec-

tively intensional and extensional atoms. Intensional

atoms are the only ones that can appear both in the

head and in the body of clauses. Extensional atoms

appear only in the body of clauses. There is a third

type of atomic formulas that can appear in the body of

clauses, namely those constructed with the interpreted

relational symbols = and < applied to temporal terms.

De�nitions (Atom, Clause, Program)

� An atom is an intensional atom, an extensional

atom, or a constraint atom.

� An intensional atom (extensional atom, resp.) is a

formula of the form p(�

1

; : : : ; �

m

; d

1

; : : : ; d

`

) where p

is an intensional (extensional, resp.) predicate sym-

bol, �

1

; : : : ; �

m

are temporal terms, and d

1

; : : : ; d

`

are data terms.

� A constraint atom is a formula of the form �

1

= �

2

or �

1

< �

2

where �

1

and �

2

are temporal terms. No-

tice, however, that atomic constraints can always

be reduced to constraints of one of the following

forms: t

1

< t

2

+ c, t

1

< t

2

� c, t

1

= t

2

+ c,

t

1

= t

2

� c, t < c, t = c, c < t, where t, t

1

, and t

2

are temporal variables and c is an integer.

� A clause of the deductive language is a formula of

the form

A A

1

; : : : ; A

r

where A is an intensional atom, and A

1

; : : : ; A

r

are

atoms (intensional, extensional, or constraint).

� A program is a �nite set of clauses.

Notice that extensional relations are not de�ned in the

deductive language, but rather are provided by general-

ized database relations. In other words, an extensional

relation consists of a �nite set of generalized tuples,

which may correspond to an in�nite set of ground tuples

(see Section 2.1).

Example 4.1 Let us consider the following extensional

relation course stating that the database course is

taught every Monday morning from 8 until 10. We as-

sume that time 0 is at midnight some Monday morn-

ing and that the time unit is one hour (so one week is

168 time units).

course

168n

1

+ 8 168n

2

+ 10 database T

2

= T

1

+ 2

The extension of the course relation is thus the in�nite

set of ground tuples (t

1

; t

2

; database) such that t

1

2

f168n

1

+ 8g, t

2

2 f168n

2

+ 10g, and t

2

= t

1

+ 2.

The fact that database problem sessions are given

right after the course and every other day thereafter can

be represented as follows in our deductive language, by

the derived (intensional) predicate problems.

problems(t

1

+ 2; t

2

+ 2; database)

 course(t

1

; t

2

; database)

problems(t

1

+ 48; t

2

+ 48; database)

 problems(t

1

; t

2

; database)

4.2 Semantics

The semantics of our deductive language is given with

respect to two-sorted domains. Indeed, the temporal

terms are interpreted over the set of integers, whereas

the data terms are interpreted over a set of con-

stants. Such interpretations have already been used

in [CI88, JL87], for instance. It is possible to show

that the declarative semantics of classical logic programs

[vEK76] extend to the case of programs in our deductive

language [JL87]. The declarative semantics of a deduc-

tive program considered together with an extensional

database is captured by its minimal Herbrand model,

which can be obtained by iterating a mapping operat-

ing over Herbrand interpretations.

A term or an atom is said to be ground if it is variable

free. A ground temporal term is thus an integer con-

stant c. A Herbrand interpretation is a set of ground

Page 6

atoms; in other words, for each extensional or inten-

sional predicate symbol, it provides an extension, that

is, a set of ground tuples for which the predicate is true.

Let P denote a deductive program in our language. The

semantic mapping T

P

, operating over Herbrand inter-

pretations, that is associated with P is de�ned in the

following way.

De�nition (Mapping T

P

) Let H denote a Herbrand

interpretation. Then T

P

(H) is the set of ground inten-

sional atoms A such that A A

1

; : : : ; A

r

is a ground

instance of a clause of P , and for each ground atom A

i

(1 � i � r),

{ either A

i

is a ground intensional or extensional

atom, in which case it must appear in H,

{ or A

i

is a ground constraint, in which case it must

be true.

Given an extensional database EDB , the minimal

model of a deductive program P considered in conjunc-

tion with EDB is obtained as the least �xpoint of the

mapping T

P

+ I, where I is the identity function. We

denote this minimal model by M

(P;EDB)

.

M

(P;EDB)

=

1

[

j=0

(T

P

+ I)

j

(EDB)

where (T

P

+ I)

0

(EDB) = EBD , and

(T

P

+ I)

j+1

(EDB)

= (T

P

+ I)

�

(T

P

+ I)

j

(EDB)

�

= T

P

�

(T

P

+ I)

j

(EDB)

�

[

�

(T

P

+ I)

j

(EDB)

�

:

Notice that when EDB is a generalized database, it

provides, for each extensional predicate, an extension

in the form of a �nite set of generalized tuples. Each

such generalized tuple represents a possibly in�nite set

of ground tuples. More precisely, if the generalized tuple

(a

1

n

1

+ b

1

; : : : ; a

m

n

m

+ b

m

; d

1

; : : : ; d

`

)

with constraints(T

1

; : : : ; T

m

)

appears in the extension of a predicate q in EDB , then

this corresponds to having in EDB the possibly in�nite

set of ground atoms

fq(t

1

; : : : ; t

m

; d

1

; : : : ; d

`

) j

t

1

2 fa

1

n

1

+ b

1

g; : : : ; t

m

2 fa

m

n

m

+ b

m

g;

and constraints(t

1

; : : : ; t

m

) is satis�edg:

Applying T

P

to such a generalized database EDB thus

boils down to applying it (one at a time) to the possi-

bly in�nite set of ground extensional atoms that EDB

represents.

4.3 Evaluating Predicates

As we have just seen, in our deductive language, the

straightforward bottom-up evaluation of predicates by

iterations of the mapping T

P

is problematic since it cor-

responds to computing on a tuple-at-a-time basis on

predicates with possibly in�nite extensions. Moreover,

these in�nite extensions are not limited to being pe-

riodic as in the case of a unique temporal parameter

[CI88]. For instance, our language allows the de�nition

of the relation (i; i

2

); with i 2 Z (more on the expres-

siveness of this language in Section 4.4). So, bottom-up

evaluation of such predicates might seem pretty hope-

less. However, the situation can be very di�erent if one

operates directly on in�nite periodic extensions as illus-

trated below.

Example 4.1 (continued) Let us consider the naive

bottom-up evaluation of the predicate problems. It can

be done by operating directly on generalized tuples (rep-

resenting possibly in�nite sets of ground tuples) rather

than operating a tuple at a time. One obtains the fol-

lowing sequence of generalized tuples (we omit the data

argument database)

(168n

1

+ 10; 168n

2

+ 12) T

2

= T

1

+ 2

(168n

1

+ 58; 168n

2

+ 60) T

2

= T

1

+ 2

(168n

1

+ 106; 168n

2

+ 108) T

2

= T

1

+ 2

(168n

1

+ 154; 168n

2

+ 154) T

2

= T

1

+ 2

(168n

1

+ 202; 168n

2

+ 204) T

2

= T

1

+ 2

(168n

1

+ 250; 168n

2

+ 252) T

2

= T

1

+ 2

(168n

1

+ 298; 168n

2

+ 300) T

2

= T

1

+ 2

(168n

1

+ 346; 168n

2

+ 348) T

2

= T

1

+ 2

after which the evaluation stops since no new points are

added to the extension of the predicate. Indeed,

(168n

1

+ 346; 168n

2

+ 348)

=

�

168(n

1

+ 2) + 10; 168(n

2

+ 2) + 12

�

is a set of tuples of integers contained in a previously

obtained set of tuples. The intuitive reason for which

the computation terminates is that it starts with an

in�nite periodic set and can be seen as a computation

in modulo-arithmetic, hence on a �nite domain.

As Example 4.1 illustrates, when the extensional rela-

tions are in�nite and periodic, we can proceed to evalu-

ate the predicates of our deductive language bottom-up,

representing the successive extensions of each predicate

by a generalized relation as in [KSW90]. This corre-

sponds to computing on generalized tuples, which rep-

resent in�nite periodic sets, rather than computing a �-

nite number of tuples at a time, so every iteration may

bring in an in�nite number of tuples. This presents no

particular problem using the operations on generalized

Page 7

relations de�ned in [KSW90]. Indeed, the intersection,

the join, and the projection operations on generalized

relations can be computed in PTIME (see [KSW90]),

and applying the operation +1 (or �1) to a generalized

relation is straightforward. We now de�ne more pre-

cisely the evaluation procedure on generalized tuples.

Generalized Programs

We adopt a normalized form for extensional databases

and we rewrite our deductive programs so that deduc-

tive rules can operate directly on generalized tuples.

This requires a number of de�nitions.

De�nitions

� The notion of generalized tuple is de�ned exactly

as the notion of ground generalized tuple (see Sec-

tion 2.1) except that temporal and data arguments

may respectively be non-ground temporal or data

terms.

� A generalized intensional atom (generalized exten-

sional atom, resp.) is the result of applying an

intensional (extensional, resp.) predicate to a gen-

eralized tuple. If the generalized tuple is ground,

then the generalized atom is also said to be ground .

� A generalized atom is an intensional or an exten-

sional generalized atom.

� A generalized Herbrand interpretation is a set of

ground generalized atoms.

A generalized atom is thus a �nite representation for

a possibly in�nite set of ground atoms, and a general-

ized Herbrand interpretation that is �nite may actually

represent an in�nite Herbrand interpretation.

We make a few simplifying (but not restrictive) as-

sumptions on the form of the programs and of the ex-

tensional database. First, we eliminate all integer con-

stants from the programs. Indeed, we can replace every

integer constant c in the ith position of a generalized

tuple by the lrp n with associated constraint T

i

= c.

Any constraint atom in the deductive program can be

seen as a generalized atom. For instance, the constraint

t

1

< t

2

+ c can be seen as a special predicate sym-

bol constraint applied to the generalized tuple (n

1

; n

2

)

with T

1

< T

2

+ c. So a deductive program can be trans-

formed into an equivalent program, called a generalized

program, which is a set of clauses constructed with gen-

eralized atoms. Moreover, an extensional database is a

�nite set of ground generalized atoms, that is, of ground

generalized facts. This leads us to another view of the

bottom-up iterations of our deductive programs.

Generalized Mapping

We associate with the generalized version GP of a de-

ductive program P a mapping T

GP

operating on gen-

eralized Herbrand interpretations. This mapping will

serve as a basis for generalized-tuples-at-a-time compu-

tations.

One additional precaution has to be taken. The gen-

eralized clauses must be transformed in such a way that

their heads are generalized atoms with all their tempo-

ral parameters being distinct temporal variables. This

transformation may introduce additional constraints in

the body of the clauses, but simpli�es the evaluation.

De�nition (Mapping T

GP

) Let GH denote a gener-

alized Herbrand interpretation. Then T

GP

(GH) is the

set of ground generalized intensional atoms GA such

that

{ there exist a clause A A

1

; : : : ; A

r

in P and

ground generalized instances GA

1

; : : : ;GA

r

respec-

tively of A

1

; : : : ; A

r

in GH , and

{ GA is a ground generalized atom obtained by com-

puting the join of GA

1

; : : : ;GA

r

, and projecting

the result over the variables of A.

It is easy to see that computing with T

GP

yields the

same result as computing with T

P

.

Lemma 4.1 Let GH be a generalized Herbrand inter-

pretation and let extension(GH) be the corresponding

Herbrand interpretation. We then have

extension

�

T

GP

(GH)

�

= T

P

�

extension(GH)

�

We can thus legitimately compute with T

GP

on the

ground generalized tuple representation of the exten-

sional database EDB . The problem is to determine

when this computation will terminate. It will termi-

nate in many cases where the computation with T

P

on

the ground tuples is impossible (because the extension is

in�nite) or in�nite, but it will not always terminate. We

now establish conditions under which it does terminate.

First some de�nitions.

De�nition (Free Extension) The free extension of a

ground generalized tuple

(a

1

n

1

+ b

1

; : : : ; a

m

n

m

+ b

m

; d

1

; : : : ; d

`

)

with constraints(T

1

; : : : ; T

m

)

is the ground generalized tuple freed from its constraints

(i.e., with constraint true), namely

(a

1

n

1

+ b

1

; : : : ; a

m

n

m

+ b

m

; d

1

; : : : ; d

`

)

with true:

The constraint true is usually simply omitted.

Page 8

De�nition (Free-Extension Safety) Let GH be a

generalized Herbrand interpretation and let free(GH)

be its free extension. GH is free-extension safe for a

program P if

T

GP

�

free(GH)

�

� free(GH):

A generalized Herbrand interpretation is thus free-

extension safe if applying the mappingT

GP

to this inter-

pretation generates no ground generalized tuples with

new free extensions (new tuples can be generated, but

they will only di�er from tuples in GP by their con-

straints). The interesting property is that when apply-

ing a mapping T

GP

to an extensional database of gen-

eralized tuples, we eventually reach a generalized Her-

brand interpretation that is free-extension safe.

Theorem 4.2 Let EDB be an extensional database of

ground generalized tuples, let T

GP

be the generalized

mapping associated with a deductive program P , and I

the identity mapping. Then, there exists a k such that

(T

GP

+ I)

k

(EDB)

is free-extension safe.

Proof sketch: The theorem follows simply from the

fact that there is a �nite bound on the number of possi-

ble free extensions. Indeed, let p = �p

i

be the product

of the periods of the lrp's in EDB . Then, all lrp's ap-

pearing in the computation of (T

GP

+ I)

j

(EDB) are of

period less than p and hence there is only a �nite num-

ber of such lrp's.

Once a generalized Herbrand interpretation is free-

extension safe for the mapping T

GP

, applying T

GP

can

still lead to the modi�cation of constraints. It is only

when the new constraints are implied by existing ones

that the evaluation can be stopped. We use the follow-

ing de�nition.

De�nition (Constraint Safety) Let GH be a gen-

eralized Herbrand interpretation and, for each ground

generalized tuple gt , let constraints(gt) be the con-

straints of that tuple. Then, GH is constraint safe for

a program P if for every ground generalized tuple gt

0

2

T

GP

(GH) there are generalized tuples gt

1

; : : :gt

n

2 GH

with the same free extension as gt

0

such that

constraints(gt

0

)

) constraints(gt

1

) _ : : :_ constraints(gt

n

):

We can now give a su�cient criterion for the termina-

tion of the naive bottom-up generalized-tuple-at-a-time

evaluation of a program P .

Theorem 4.3 Let EDB be a generalized extensional

database and let P be a program. Then, if for some k,

(T

GP

+ I)

k

(EDB) is both free-extension safe and con-

straint safe, then the naive generalized-tuple-at-a-time

bottom-up evaluation of P on EDB terminates after k

iterations.

Of course, Theorem 4.3 does not completely solve the

problem since we might never reach a generalized Her-

brand interpretation that is constraint safe. In prac-

tice, once the generalized Herbrand interpretation is

free-extension safe (which is guaranteed to happen by

Theorem 4.2), it is reasonable to give up on the compu-

tation if the interpretation does not become constraint

safe after a few iterations.

4.4 Expressiveness

As in Section 3, we distinguish data and query expres-

siveness. As far as data expressiveness, our language is

very powerful. Indeed, it is easy to show that it can

express at least all the primitive recursive relations. On

the other hand, notice that if the language is only used

when the conditions of Theorem 4.3 are satis�ed, its

data expressiveness is the same as that of generalized

databases with linear repeating points. This is of course

the price to pay for being able to obtain a closed form for

derived predicates. Indeed, one cannot expect a closed

form for all primitive recursive relations that is much

else than an algorithmic de�nition of the predicate.

Concerning query expressiveness, the situation is

quite di�erent. Indeed, we have already shown in Sec-

tion 3 that in the case of a unique temporal argument,

this type of deductive language can de�ne queries that

are not �rst-order de�nable. This result can be ex-

tended to the case of several temporal variables. The

interesting point is that the increase in query expressive-

ness is meaningful even in cases where the conditions of

Theorem 4.3 are satis�ed.

5 Conclusions and Comparison

with Other Work

Our contributions are

1. the clari�cation of the necessary concepts for com-

paring the expressiveness of databases in which

predicates with in�nite extensions can appear;

2. a closed form evaluation algorithm for a class of

Datalog programs over the integers.

Page 9

Our �rst result is not limited in scope to tempo-

ral databases. The same concepts are useful whenever

databases can include predicates with in�nite exten-

sions, for instance as in [KKR90]. Our second result

can be interpreted as saying that you can both have

your cake and eat it. Indeed, it shows that you can

have temporal databases with good data and query ex-

pressiveness and �nite bottom-up evaluation. The only

catch is that the bottom-up evaluation is not always

possible. Nevertheless, we feel that the combination of

an extensional database de�ned by extended relations

and a deductive layer using predicates with multiple

temporal variables is an interesting one.

It was already noticed in [CI88] that evaluating least

�xpoints on in�nite extensions could be easier than the

same problem on �nite extensions. However, this ob-

servation was limited to the case of deductive programs

with one temporal argument and linear repeating points

were not used as a representation formalism. Closed

forms for Datalog over the integers naturally brings

to mind [Rev90]. There are notable di�erences. In

[Rev90], the closed form is not limited to some exten-

sional databases and programs, but is only obtained for

a restricted language. Indeed, this language does not al-

low the use of incrementation over recursion, and thus

cannot express periodic sets of points. It can be made as

expressive as (actually more expressive than) our lan-

guage by the use of strati�ed negation. However, the

closed form result is not obtained in this case.

References

[AM89] Mart��n Abadi and Zohar Manna. Tempo-

ral logic programming. Journal of Symbolic

Computation, 8:277{295, 1989.

[Bau89a] Marianne Baudinet. Logic Programming Se-

mantics: Techniques and Applications. PhD

thesis, Computer Science Department, Stan-

ford University, Stanford, CA, February

1989.

[Bau89b] Marianne Baudinet. Temporal logic pro-

gramming is complete and expressive. In

Sixteenth ACM Symposium on Principles

of Programming Languages, pages 267{280,

Austin, Texas, January 1989.

[Bau90] Marianne Baudinet. On the expressiveness of

temporal logic programming. Submitted to a

Technical Journal, July 1990.

[CH82] Ashok K. Chandra and David Harel. Struc-

ture and complexity of relational queries.

Journal of Computer and System Sciences,

25:98{128, 1982.

[CH85] Ashok K. Chandra and David Harel. Horn

clause queries and generalizations. Journal

of Logic Programming, 2(1):1{15, 1985.

[Cho90] Jan Chomicki. Polynomial time query pro-

cessing in temporal deductive databases. In

Ninth ACM Symposium on Principles of

Database Systems, pages 379{391, Nashville,

Tennessee, April 1990.

[CI88] Jan Chomicki and Tomasz Imieli�nski. Tem-

poral deductive databases and in�nite ob-

jects. In Seventh ACM Symposium on Prin-

ciples of Database Systems, pages 61{73,

Austin, Texas, March 1988.

[CI89] Jan Chomicki and Tomasz Imieli�nski. Re-

lational speci�cations of in�nite query an-

swers. In ACM-SIGMOD International Con-

ference on Management of Data, pages 174{

183, Portland, Oregon, May 1989.

[CI90] Jan Chomicki and Tomasz Imieli�nski. Fi-

nite representation of in�nite query an-

swers. Technical Report TR-CS-90-10,

Kansas State University, Manhattan, KS,

August 1990.

[GPSS80] Dov Gabbay, Amir Pnueli, Saharon She-

lah, and Jonathan Stavi. On the temporal

analysis of fairness. In Seventh ACM Sym-

posium on Principles of Programming Lan-

guages, pages 163{173, Las Vegas, NV, Jan-

uary 1980.

[JL87] Joxan Ja�ar and Jean-Louis Lassez. Con-

straint logic programming. In Fourteenth

ACM Symposium on Principles of Program-

ming Languages, Munich, West Germany,

January 1987.

[KKR90] Paris C. Kanellakis, Gabriel M. Kuper, and

Peter Revesz. Constraint query languages.

In Ninth ACM Symposium on Principles of

Database Systems, pages 299{313, Nashville,

Tennessee, April 1990.

[KSW90] F. Kabanza, J-M. Stevenne, and P. Wolper.

Handling in�nite temporal data. In Ninth

ACM Symposium on Principles of Database

Systems, pages 392{403, Nashville, Ten-

nessee, April 1990.

[Rev90] Peter Revesz. A closed form for Datalog

queries with integer order. In Proceedings

Page 10

of the Third International Conference on

Database Theory, pages 187{201, Paris, De-

cember 1990. LNCS 470, Springer-Verlag.

[Tho81] Wolfgang Thomas. A combinatorial ap-

proach to the theory of !-automata. Infor-

mation and Control, 48(3):261{283, March

1981.

[Ull88] Je�rey D. Ullman. Principles of Database

and Knowledge-Base Systems { Volume I.

Computer Science Press, 1988.

[Ull89] Je�rey D. Ullman. Principles of Database

and Knowledge-Base Systems { Volume II:

The New Technologies. Computer Science

Press, 1989.

[Var88] Moshe Y. Vardi. A temporal �xpoint calcu-

lus. In Fifteenth ACM Symposium on Princi-

ples of Programming Languages, pages 250{

259, San Diego, CA, January 1988.

[vEK76] M.H. van Emden and R.A. Kowalski. The se-

mantics of predicate logic as a programming

language. Journal of the ACM, 23(4):733{

742, October 1976.

[WVS83] Pierre Wolper, Moshe Y. Vardi, and

A. Prasad Sistla. Reasoning about in�-

nite computation paths. In 24th Symposium

on Foundations of Computer Science, pages

185{194, Tucson, Arizona, November 1983.

Page 11

