On the Representation of Infinite Temporal Data and Queries”

(Extended Abstract)

Marianne Baudinet?
Université Libre de Bruxelles

1 Introduction

Time is unbounded by nature. A temporal predicate
(one that varies with time) will thus often have an infi-
nite extension. To store such a predicate in a database,
one can either artificially restrict its extension to a finite
set or, more desirably, use a formalism that allows the
finite representation of at least some infinite temporal
extensions. Several such formalisms have been proposed
in the past few years.

The formalism that extends traditional relational
databases most directly is the generalized databases de-
scribed in [KSW90]. There, database tuples are ex-
tended with an arbitrary number of additional columns
carrying linear repeating points. These represent peri-
odic sets of time points possibly constrained by linear in-
equalities. The query language proposed in [KSW90] is
a multi-sorted first-order logic in which predicates have
specific temporal parameters in addition to the usual
data parameters. Queries are evaluated by computing
algebraic operations on the relations of the database,
and the answers are given in the form of relations with
repeating point arguments. The answers to queries can
thus be infinite, but always have a finite representation.

Approaching the problem from a different angle,
Chomicki and Imieliriski [CI88, Cho90] proposed a tem-
poral language that extends Datalog by adding one tem-
poral parameter to every Datalog predicate. This allows

*The following text presents research results of the Belgian
National incentive-program for fundamental research in artificial
intelligence initiated by the Belgian State — Prime Minister’s Of-
fice — Science Policy Programming. The scientific responsibility
is assumed by its authors.

t Address: Service d’Informatique, 50 Avenue F.D. Roosevelt,
C.P. 165, 1050 Brussels, Belgium.

FEmail: mb@montefiore.ulg.ac.be

{Address: Institut Montefiore B28, 4000 Litége Sart Tilman,
Belgium. Email: niezette@montefiore.ulg.ac.be

§ Address: Institut Montefiore B28, 4000 Liége Sart Tilman,
Belgium. Email: pw@montefiore.ulg.ac.be

To appear in 10th ACM Symposium on Principles of Database
Systems, Denver, May 1991.

Marc Niézettet

Université de Liege

Pierre Wolper®
Université de Liege

the definition of predicates with infinite extensions by
stating for example that the predicate holds at time 0
and that, if it holds at time ¢, it also holds at time
t + 5. This extension of Datalog is also a natural way
of querying the temporal data. A set of clauses in this
language can be seen as an implicit representation of
the infinite extension of temporal predicates. Chomicki
and Imielinski have devoted much effort to obtaining
more explicit representations of these extensions, for in-
stance in the form of equivalence classes of congruence
relations on the temporal domain [CI89, CI90].

An alternative to the language proposed by Chomicki
and Tmieliiski is the language Templog of [AMS9,
Bau89a, Bau89b]. Templog is an extension of logic pro-
gramming with the operators of temporal logic. Tem-
plog allows the use of O (next) anywhere in clauses,
the use of O (always) in the head of clauses or outside
clauses, and the use of & (eventually) in the body of
clauses. Because of these restrictions on the use of tem-
poral operators, Templog programs satisfy the model-
intersection property and have a unique minimal model.
Templog and the language of [CI88, Cho90] are actually
very closely related and to a large extent notational vari-
ants of each other. This makes the comparison of the ex-
pressiveness results that have been established for Tem-
plog and for the language of Chomicki and Imielinski
rather puzzling. Indeed, in [Bau89b, Bau90] the expres-
siveness of Templog is characterized as that of finitely
regular w-languages, whereas in [CI88] the expressive-
ness that is mentioned is that of periodic sets! These
are certainly not identical.

The first contribution of this paper is to clarify the
concepts needed to compare the expressiveness of vari-
ous temporal database formalisms and to discuss the ex-
pressiveness of the formalisms we have just described.
The key observation is that when considering infinite
temporal databases, there are two distinct notions of ex-
pressiveness: data expressiveness and query expressive-
ness. The data expressiveness is the expressive power
of the formalism for storing infinite temporal data. The

Page 1

query expressiveness is the expressive power of the lan-
guage used for gquerying the temporal database. Al-
though the latter notion is already familiar in classical
database query languages, the former notion is never
mentioned, because trivial, in the context of classical
databases. Indeed, there is no discrepancy between the
set of possible relations and the set of relations repre-
sentable in a classical database. This is because one only
considers finite relations, which are obviously all repre-
sentable. In temporal databases, however, the number
of possible temporal relations is uncountable, so they
cannot all be finitely represented. Any choice of for-
malism hence imposes a restriction on the set of repre-
sentable temporal relations, and it is important to be
able to characterize and compare the various languages
from this point of view.

With these concepts, the discrepancy between
[Baug9b, Bau90] and [CI88] is simple to explain: in
[Bau89b, Bau90] it is the query expressiveness that is
considered, whereas [CI88] explores the data expres-
siveness. In fact, it 1s easy to show that both for-
malisms have the same data expressiveness (periodic
sets) and the same query expressiveness (finitely regu-
lar w-languages). Moreover, when extended with strat-
ified negation, these languages have a query expres-
siveness that corresponds to the class of w-regular lan-
guages [Bau89b, Bau90]. When limited to one tempo-
ral argument, the data expressiveness of the generalized
databases of [KSWI0] is also periodic sets. However,
the expressiveness of the associated query language cor-
responds to the class of star-free w-regular languages,
which is incomparable to finitely regular w-languages,
but is strictly weaker than w-regular languages. The in-
tuitive reason for this is that, in the query language of
[KSW90], negation is allowed but there is no recursion
mechanism, whereas, in [CI88] and in Templog, nega-
tion is not allowed but queries can be recursive.

The situation can thus be summarized as follows. We
have three equally expressive formalisms for represent-
ing infinite temporal data. They are thus all inter-
changeable. However, we would advocate using the for-
malism of [KSW90] since it is more explicit and since it
allows a predicate to have an arbitrary number of tem-
poral arguments as opposed to at most one in the other
two frameworks. In addition, as is show in [CI89, CT90],
any recursive definition of infinite temporal data can
be converted into an explicit form and this sometimes
expensive computation is better done once and for all
rather than each time the data is queried.! As far as
query languages, the situation 1s less straightforward.
Indeed, we would like the query language to have a de-

INote that in this type of temporal databases, the deductive
layer is used to define the temporal extension of all predicates,
not just of derived predicates.

ductive capability as in [CI88] and in Templog, but also
to be able to handle several temporal arguments as in

[KSW90].

This leads us to the second contribution of our pa-
per. We define a deductive query language that operates
on the temporal databases of [KSW90]. This language
allows the definition of predicates that operate on sev-
eral temporal arguments. Unfortunately, the bottom-up
evaluation of such predicates often leads to infinite ex-
ecutions. However, we show that, if some assumptions
are satisfied, the queries of this language can be finitely
evaluated when applied to infinite periodic data. Fur-
thermore, their answers can be finitely represented as
temporal databases (that is, in closed form). Finally, we
characterize the expressiveness of this query language.

2 Existing Formalisms for Tem-
poral Databases

This section briefly recalls the main features of the
temporal database formalisms of [KSW90] and [CI88,
Cho90], and of the language Templog [AM89, Bau89a,
Bau89b].

2.1 Generalized Databases with Linear
Repeating Points

The framework proposed in [KSW90] generalizes the no-
tion of relational database by allowing tuples to contain
an arbitrary number of temporal attributes in addition
to the usual data attributes. The temporal attributes
represent periodic sets of integers, namely, linear repeat-
wng points. Moreover, the repeating points appearing in
tuples of a relation can be constrained with linear in-
equalities.

Definition (Linear Repeating Point) A linear re-
peating point (Irp) is a set
{x(n) € Z | x(n) = an + b, with n ranging
from — oo up to +ocoin Z, and a,bin Z}
where Z denotes the set of integers. Such an Irp is

simply denoted by an + b.

For instance, the Irp bn+3 denotes the infinite periodic
set of integers {... —7,—2,3,8,13,...}.

Definition (Ground Generalized Tuple) A
ground generalized tuple of temporal arity m and data
arity £ 1s a ground tuple of the form
(alnl + bla sy ATy +bmad1a .. 'adZ)
with constraints(Ty, ..., Ti)

Page 2

where

e cach dj, (1 <k < ¢)is a data constant,

e each a;n; + b; (1 <4 < m)is an Irp with non-zero
period, that is, a; # 0,

o constraints(Ty, ..., Ty) denotes a finite set of con-
straints over the temporal attributes T7i,...,7T,,.
Each constraint i1s of one of the following forms:
Ty <Tj+e, Ti<Tj—c, Ti=Ty+e, Ty =Tj—c,
T <c¢, T, =c or ¢ <1, where ¢ is any integer
constant, T3, T; € {T1,...,Tn}.

A ground generalized tuple is in fact a finite representa-
tion of a possibly infinite set of ground tuples, namely
the set

{1, stmydy, ... de) |
tl S {alnl + bl}a .. 'atm S {amnm +bm}a

and constraints(ty, ..., ty) is satisfied }

For instance, the generalized tuple (2n; + 3,2ns 4 5)
constrained by 75 = T3] + 2 represents the infinite set
of tuples {...,(=1,1),(1,3),(3,5),...}. Note that we
impose here that all the Irp’s in a generalized database
have a non-zero period, an assumption which was not
made in [KSW90]. This assumption will be useful when
we discuss the evaluation of our deductive language in
Section 4. It is not restrictive since an lrp with zero
period is simply an integer constant, say ¢, which is
nothing else than the Irp n with associated constraint
T=c.

Definition (Generalized Database) A generalized
database with relations py,..., p, such that p; (1 <i<
r) is of temporal arity m; and data arity ¢; consists,
for each p;, of a set of generalized tuples of temporal
arity m; and data arity ¢;.

Example 2.1 Let us consider a generalized database
storing train schedules (relation train with temporal ar-
ity 2 and data arity 2). The following table stores the
schedule of trains going from Liége to Brussels. Assum-
ing that time 0 is at midnight some Monday morning
and that the time unit 1s a minute, it states that there
is a train leaving Liége for Brussels 5 minutes after time
0 and every 40 minutes thereafter, and arriving 60 min-
utes after having left.

train
40n1 + 5 | 40no + 65 | liége | brussels

The query language proposed in [KSW90] for gener-
alized databases of Irp’s is a partially interpreted first-
order logic, that 1s, a logic in which predicates have
temporal parameters interpreted over the integers in ad-
dition to the uninterpreted data parameters. The lan-
guage is equipped with negation, but since it is first-
order, it does not have a recursion mechanism.

2.2 The Temporal Formalism Proposed
by Chomicki and Imielinski

The temporal language proposed in [CI88] and further
studied in [Cho90] is exactly like Datalog [UlI88, Ul189)
except that every predicate has one temporal parame-
ter in addition to the usual uninterpreted parameters.
A temporal term in this language 1s obtained from the
constant 0 or from any temporal variable by applying
the successor function any number of times (the tem-
poral domain is the natural numbers, as opposed to the

integers in [KSW90]).

Example 2.2 Let us consider again the train sched-
ule of Example 2.1. The train relation cannot be
represented as such in the language of Chomicki and
Imielinski, which only allows one temporal parameter
per predicate. But we can, for instance, represent the
departure times and define the arrival times in terms of
them.

train-leaves(b, liége, brussels) —
train-leaves(t + 40, liége, brussels)

— train-leaves(t, liege, brussels)

train-arrives(t 4+ 60, liége, brussels)

— train-leaves(t, liege, brussels)

In [CI89, CI90], the temporal language is generalized
to allow functional terms rather than simply temporal
terms. Functional terms are similar to temporal terms
except that they are built using several function sym-
bols. However, database predicates are still only allowed
to have no more than one such functional parameter.

2.3 Templog

Templog extends logic programming to temporal logic
(a version that views time as isomorphic to the natural
numbers) [AM89, Bau89b]. In this language, predicates
can vary with time, but the time point they refer to is

Page 3

defined implicitly by temporal operators rather than by
an explicit temporal argument.

The three temporal operators used in Templog are
O (next), which refers to the next time instant, O (al-
ways), which refers to the present and all the future
time instants, and < (eventually), the dual of O, which
refers to the present or to some future time instant. In
Templog, O is allowed both in the head and in the body
of clauses, O is allowed only in the head of clauses or
outside entire clauses, and < is allowed only in the body
of clauses (possibly nested with conjunction).

Example 2.3 The following clauses are the Templog
translation of the temporal program given in Exam-
ple 2.2. (O" is an abbreviation for O ---O.)

——

)

o train-leaves(li¢ge, brussels) —

a (040 train-leaves(liége, brussels)

— tmin-leaves(liége,brussels))

a (060 train-arrives(liége, brussels)
— tmin-leaves(liége,brussels))

Example 2.3 illustrates the correspondence between
Templog and the language of Chomicki and Imielinski.
In fact, it has been shown in [Bau89b] that Templog is
equivalent to a fragment of itself, namely TL1, where O
is the only operator allowed within clauses, whereas O
1s still allowed to appear outside entire clauses. It turns
out that this fragment corresponds exactly to the lan-
guage of [CI88], described in Section 2.2. This is why
Templog and the language of [CI88] can essentially be
seen as notational variants of each other.

3 Expressiveness Issues

A classical relational database consists of a finite num-
ber of finite relations defined by their extension. As
any finite relation can be represented, in classical rela-
tional databases, there is no difference between the set
of possible relations and those that are representable in
a database.

In a temporal database, however, this is no longer
the case. Indeed, there is a discrepancy between the
set of possible temporal relations and those that are ex-
pressible in a given formalism. To see this, consider a
temporal formalism in which relations have exactly one

temporal attribute and let us assume that the temporal
domain is the natural numbers. Then, a temporal re-
lation consists of an w-sequence of finite relations. So,
the number of possible temporal relations is uncount-
able, and no language with finite expressions can repre-
sent all temporal relations. It is then useful to capture
the expressive power of any particular formalism used
for representing temporal data. We call this the data
erpressiveness of the formalism.

Although in classical databases the data expressive-
ness is not an issue, the expressiveness of the language
for extracting data from a database — the query lan-
guage — is a very crucial feature (e.g. [CH82, CH85]).
For a temporal database formalism, the situation is
identical, and we call this expressiveness the query ex-
pressiveness, to avoid any possible confusion with the
data expressiveness.

3.1 Data Expressiveness

Let us denote by 7 the temporal domain. In the case
of generalized databases with linear repeating points
over the integers, this temporal domain is the set of
integers Z, whereas, in the language of Chomicki and
Imieliniski and in Templog, this domain is the set of nat-
ural numbers A'. For the sake of clarity and simplicity,
we consider databases consisting of a finite set of pred-
icates p that we take to be all of the same temporal
arity m and of data arity 0. All the definitions given
below extend directly to more general cases.

A temporal relation of temporal arity m is a subset
of 7™ namely the set of m-tuples of time instants at
which the relation holds. A temporal database thus
stores the m-tuples of time points at which its relations

hold.

Definition (Temporal Database) A

temporal database is a function mapping every predi-
cate in p into a subset of 7™ (the set of m-tuples of
time instants at which the predicate holds). Tt is thus a
function in B = (p — 277).

Notice that, even with one temporal predicate of arity 1,
there are 2%° temporal databases, all of which cannot
be finitely represented. We thus introduce the following
notion.

Definition (Data Expressiveness) The dala ez-
pressiveness of a temporal database formalism 1s the
set of temporal databases that can be defined in this
formalism, that is, the subset of the set of functions in

B=(p—27") that can be defined.

For deductive temporal databases, in which data is
stored as temporal Horn clauses, the data expressiveness

Page 4

is characterized by the minimal models of the clausal
rules of the language. Chomicki and Imielinski prove
in [CI88] that their temporal database language is able
to express eventually periodic sets of points?. More pre-
cisely, the result states that the minimal model of a
set of temporal Horn rules is eventually periodic and it
provides upper bounds on the offset and the periodic-
ity. The same result holds for Templog since it can be
translated into the language of [CI88].

Finally, the generalized relations with linear repeating
points of [KSW90] naturally define eventually periodic
sets of points, and hence, when restricted to just one
temporal attribute, coincide in data expressiveness with
the other two languages.

3.2 Query Expressiveness

Temporal queries are formally defined in the following
way. (We use the same notational conventions as in
Section 3.1).

Definition (Temporal Query)

o A yes/no temporal query is a function mapping any
given database into an element of the set {0,1}. In
other words, it is a function in (B — {0,1}) =
((p — 27™) — {0,1}), or equivalently, it defines a
subset of the set of databases.

e An all-answer temporal query is a function mapping
any given database into a temporal relation, that is,
into a subset of 7™ (the m-tuples of time instants
at which the query holds for the given database). Tt
is thus a function in (B —27") = ((p —27") —
27™).

Hence, there are 28l = 927 yes/no queries, “many”
more than can be finitely represented. This leads us to
the notion of query expressiveness.

Definition (Query Expressiveness) The query ez-
pressiveness of a temporal query language is the set of
temporal queries that can be defined in this formalism.
For yes/no queries, the query expressiveness is charac-
terized by the class of subsets of the set of databases,
that is, the class of subsets of (p — 27 ™), that can be
defined.

The query expressiveness of Templog without data
arguments has been studied in [Bau89b, Bau90]. It is
shown that the (yes/no) query expressiveness of such
Templog predicates essentially corresponds to the class
of finitely regular w-languages. This result is obtained

2which actually are the Presburger definable sets of points.

by viewing a Templog database not as a function in
(p — 27) but equivalently as a function in (7 — 2%)
and hence, when 7 = A, as an infinite word (w-word)
over the alphabet 2. An w-language L is finitely reg-
ular if there is a regular language L’ such that L can
be obtained from L’ by extending all the words of L’ to
infinite strings in all possible ways. These languages
are exactly those accepted by finite-acceptance finite
automata on infinite words, that is, automata that ac-
cept an infinite word if they accept a finite prefix of
that word. Other results relate Templog queries and
various logics such as pTL, a temporal logic extended
with fixpoint quantifiers [Var88], and ETL¢, a temporal
logic extended with automaton-operators [WVS83]. Tt
is also shown that, when extended with stratified nega-
tion, Templog attains a query expressiveness that cor-
responds to the full class of w-regular languages.

The query expressiveness results concerning Tem-
plog also apply directly to the temporal language of
Chomicki and Imieliniski. Indeed, these results are actu-
ally proved for the fragment TL1 of Templog, which is
equivalent to the language of Chomicki and Imielinski.

When restricted to the case of one temporal param-
eter and to the natural numbers, the query language
proposed in [KSW90] has an expressiveness that cor-
responds to the class of star-free w-regular languages.
Indeed, this query language is the first-order theory of
one successor, which is expressively equivalent to the
star-free w-regular languages [Tho81]. Tt is also the ex-
pressiveness of temporal logic with the operators O, O,

<& and U (until) [GPSSS80].

4 A Temporal Deductive
Language

We consider a Horn clause deductive language where
each predicate can have any number of uninterpreted
(data) arguments as well as any number of temporal ar-
guments interpreted over the integers (positive and neg-
ative). Moreover, we allow the use of the interpreted
relations < and = (two temporal arguments), of the
constant 0, and of the functions +1 and —1 applied to
temporal arguments. On the other hand, no functions
operate on data arguments. Our language is thus Dat-
alog over integer order with the successor and the pre-
decessor functions. It 1s essentially the extension of the
language of [CI88] to an arbitrary number of temporal
arguments.

This deductive language is used for defining the inten-
stonal database (IDB) relations. When we consider the
evaluation of our deductive language, we will consider
it in conjunction with the generalized database formal-

Page 5

ism of [KSW90] (see Section 2.1) used for providing the
extensional database (EDB) relations.

4.1 Definitions

The deductive language involves both temporal terms
and data terms. There are thus two types of variables:
data variables and temporal variables, which are used to
construct respectively data terms and temporal terms.

Definitions (Data Term and Temporal Term)

e A data term is either an uninterpreted constant or
a data variable.

e A temporal term is defined inductively as a tempo-
ral variable, the constant 0, the successor function
(+1) applied to a temporal term, or the predecessor
function (— 1) applied to a temporal term.

Note that we will usually write 7+ ¢ (7 — ¢, respec-
tively) as a shorthand for the temporal term obtained
by ¢ applications of the successor function (predecessor
function, respectively) to 7.

We distinguish between intensional and extensional
predicate symbols, which are used to construct respec-
tively intensional and extensional atoms. Intensional
atoms are the only ones that can appear both in the
head and in the body of clauses. Extensional atoms
appear only in the body of clauses. There is a third
type of atomic formulas that can appear in the body of
clauses, namely those constructed with the interpreted
relational symbols = and < applied to temporal terms.

Definitions (Atom, Clause, Program)

e An atom 1s an intensional atom, an extensional
atom, or a constraint atom.

o An intensional atom (extensional atom, resp.) is a
formulaof the form p(7y, ..., Tm,d1, ..., dg) where p
is an intensional (extensional, resp.) predicate sym-
bol, 7,..., T, are temporal terms, and dq,...,d,
are data terms.

o A constraint atom 1s a formula of the form 7 = m
or 7 < T3 where 1 and 15 are temporal terms. No-
tice, however, that atomic constraints can always
be reduced to constraints of one of the following
forms: 1 < ta4+¢, t3 <ty —¢, t;1 = ty3+c
tiy =ta—c, t<c, t=c, ¢<t,wheret, t;, and 1,
are temporal variables and ¢ is an integer.

e A clause of the deductive language is a formula of
the form

A Ay, A,

where A is an intensional atom, and A4, ..., A, are
atoms (intensional, extensional, or constraint).

e A program is a finite set of clauses.

Notice that extensional relations are not defined in the
deductive language, but rather are provided by general-
1zed database relations. In other words, an extensional
relation consists of a finite set of generalized tuples,
which may correspond to an infinite set of ground tuples
(see Section 2.1).

Example 4.1 Let us consider the following extensional
relation course stating that the database course is
taught every Monday morning from 8 until 10. We as-
sume that time 0 is at midnight some Monday morn-
ing and that the time unit is one hour (so one week is
168 time units).

course

168n1 + 8 | 168n, + 10 | database

Ty =T, +2

The extension of the course relation is thus the infinite
set of ground tuples (t1,%2, database) such that ¢, €
{168711 + 8}, to € {168712 + 10}, and 1, =t + 2.

The fact that database problem sessions are given
right after the course and every other day thereafter can
be represented as follows in our deductive language, by
the derived (intensional) predicate problems.

problems(ty + 2,12 + 2, database)
— course(ty,t2, database)
problems(ty + 48,12 + 48, database)

— problems(t1,tq, database)

4.2 Semantics

The semantics of our deductive language is given with
respect to two-sorted domains. Indeed, the temporal
terms are interpreted over the set of integers, whereas
the data terms are interpreted over a set of con-
stants. Such interpretations have already been used
in [CI88, JL87], for instance. It is possible to show
that the declarative semantics of classical logic programs
[VEKT6] extend to the case of programs in our deductive
language [JL87]. The declarative semantics of a deduc-
tive program considered together with an extensional
database i1s captured by its minimal Herbrand model,
which can be obtained by iterating a mapping operat-
ing over Herbrand interpretations.

A term or an atom is said to be ground if it is variable
free. A ground temporal term is thus an integer con-
stant ¢. A Herbrand interpretation is a set of ground

Page 6

atoms; in other words, for each extensional or inten-
sional predicate symbol, it provides an extension, that
18, a set of ground tuples for which the predicate is true.
Let P denote a deductive program in our language. The
semantic mapping Tp, operating over Herbrand inter-
pretations, that is associated with P is defined in the
following way.

Definition (Mapping Tp) Let H denote a Herbrand
interpretation. Then Tp(H) is the set of ground inten-
sional atoms A such that A — A; ... A, is a ground
instance of a clause of P, and for each ground atom A;

— either A; 1s a ground intensional or extensional
atom, in which case it must appear in H,

— or A; is a ground constraint, in which case it must
be true.

Given an extensional database EDB, the minimal
model of a deductive program P considered in conjunc-
tion with EDB is obtained as the least fixpoint of the
mapping Tp + I, where [is the identity function. We
denote this minimal model by Mp gpp).

oQ

MpEDB) = U(TP + 1Y (EDB)

where (Tp + I)°(EDB) = EBD, and
(Tp + I TY(EDB)
= (Tp + I)((Tp + I (EDB))
= Tp((Tp + 1)’ (EDB)) U ((Tp + Iy (EDB)).

Notice that when EFDB is a generalized database, it
provides, for each extensional predicate, an extension
in the form of a finite set of generalized tuples. Each
such generalized tuple represents a possibly infinite set
of ground tuples. More precisely, if the generalized tuple

(a1n1+b1a~~~aamnm +bmad1a"'adﬁ)
with constraints(Ty,...,Tpy)

appears in the extension of a predicate ¢ in £#DB, then
this corresponds to having in DB the possibly infinite
set of ground atoms

{q(tl,...,tm,dl,...,dz) |
tl S {alnl + bl}a .. 'atm S {amnm +bm}a

and constraints(ty, ..., 1) is satisfied }.

Applying Tp to such a generalized database EDB thus
boils down to applying it (one at a time) to the possi-
bly infinite set of ground extensional atoms that EDB
represents.

4.3 Evaluating Predicates

As we have just seen, in our deductive language, the
straightforward bottom-up evaluation of predicates by
iterations of the mapping Tp is problematic since it cor-
responds to computing on a tuple-at-a-time basis on
predicates with possibly infinite extensions. Moreover,
these infinite extensions are not limited to being pe-
riodic as in the case of a unique temporal parameter
[CI88]. For instance, our language allows the definition
of the relation (i,i?), with i € Z (more on the expres-
siveness of this language in Section 4.4). So, bottom-up
evaluation of such predicates might seem pretty hope-
less. However, the situation can be very different if one
operates directly on infinite periodic extensions as illus-
trated below.

Example 4.1 (continued) Let us consider the naive
bottom-up evaluation of the predicate problems. It can
be done by operating directly on generalized tuples (rep-
resenting possibly infinite sets of ground tuples) rather
than operating a tuple at a time. One obtains the fol-
lowing sequence of generalized tuples (we omit the data
argument database)

(168ny + 10,

(168ny + 58,
(168ny + 106, 168ns + 108)

(168n; + 154, 168ny+154) To =T, + 2
(168n; +202, 168ny+204) To=T, +2
(168n; + 250, 168ny+252) To=T, +2
()

()

168n2 + 12) Ty =T, +2
Ty =T, +2

168n; + 298, 168n2+300) Ty =142
168n; + 346, 168na+348) Ty =142

after which the evaluation stops since no new points are
added to the extension of the predicate. Indeed,

(168n1 + 346, 168ns -+ 348)
= (168(n1 +2) + 10, 168(ns + 2) + 12)

is a set of tuples of integers contained in a previously
obtained set of tuples. The intuitive reason for which
the computation terminates is that it starts with an
infinite periodic set and can be seen as a computation
in modulo-arithmetic, hence on a finite domain. B

As Example 4.1 1llustrates, when the extensional rela-
tions are infinite and periodic, we can proceed to evalu-
ate the predicates of our deductive language bottom-up,
representing the successive extensions of each predicate
by a generalized relation as in [KSW90]. This corre-
sponds to computing on generalized tuples, which rep-
resent infinite periodic sets, rather than computing a fi-
nite number of tuples at a time, so every iteration may
bring in an infinite number of tuples. This presents no
particular problem using the operations on generalized

Page 7

relations defined in [KSW90]. Indeed, the intersection,
the join, and the projection operations on generalized
relations can be computed in PTIME (see [KSW90]),
and applying the operation +1 (or —1) to a generalized
relation is straightforward. We now define more pre-
cisely the evaluation procedure on generalized tuples.

Generalized Programs

We adopt a normalized form for extensional databases
and we rewrite our deductive programs so that deduc-
tive rules can operate directly on generalized tuples.
This requires a number of definitions.

Definitions

e The notion of generalized tuple is defined exactly
as the notion of ground generalized tuple (see Sec-
tion 2.1) except that temporal and data arguments
may respectively be non-ground temporal or data
terms.

o A generalized intensional atom (generalized exten-
stonal atom, resp.) is the result of applying an
intensional (extensional, resp.) predicate to a gen-
eralized tuple. If the generalized tuple is ground,
then the generalized atom is also said to be ground.

e A generalized atom is an intensional or an exten-
sional generalized atom.

e A generalized Herbrand interpretation is a set of
ground generalized atoms.

A generalized atom is thus a finite representation for
a possibly infinite set of ground atoms, and a general-
ized Herbrand interpretation that is finite may actually
represent an infinite Herbrand interpretation.

We make a few simplifying (but not restrictive) as-
sumptions on the form of the programs and of the ex-
tensional database. First, we eliminate all integer con-
stants from the programs. Indeed, we can replace every
integer constant ¢ in the ith position of a generalized
tuple by the Irp n with associated constraint 7; = c.
Any constraint atom in the deductive program can be
seen as a generalized atom. For instance, the constraint
t; < to 4+ ¢ can be seen as a special predicate sym-
bol constraint applied to the generalized tuple (ny,n2)
with 77 < T5 4 ¢. So a deductive program can be trans-
formed into an equivalent program, called a generalized
program, which is a set of clauses constructed with gen-
eralized atoms. Moreover, an extensional database is a
finite set of ground generalized atoms, that is, of ground
generalized facts. This leads us to another view of the
bottom-up iterations of our deductive programs.

Generalized Mapping

We associate with the generalized version GP of a de-
ductive program P a mapping Tgp operating on gen-
eralized Herbrand interpretations. This mapping will
serve as a basis for generalized-tuples-at-a-time compu-
tations.

One additional precaution has to be taken. The gen-
eralized clauses must be transformed in such a way that
their heads are generalized atoms with all their tempo-
ral parameters being distinct temporal variables. This
transformation may introduce additional constraints in
the body of the clauses, but simplifies the evaluation.

Definition (Mapping Tgp) Let GH denote a gener-
alized Herbrand interpretation. Then Tgp(GH) is the
set of ground generalized intensional atoms GA such
that

— there exist a clause A — Ay,..., A, in P and
ground generalized instances GAq, ..., GA, respec-

tively of A;,..., A, in GH, and

— GA is a ground generalized atom obtained by com-
puting the join of GA;,..., GA,, and projecting
the result over the variables of A.

It is easy to see that computing with Tgp yields the
same result as computing with 7Tp.

Lemma 4.1 Let GH be a generalized Herbrand inter-
pretation and let extension(GH) be the corresponding
Herbrand interpretation. We then have

ertension (TGP(GH)) =Tp (e:ptension(GH))

We can thus legitimately compute with T'¢p on the
ground generalized tuple representation of the exten-
sional database EDB. The problem is to determine
when this computation will terminate. It will termi-
nate in many cases where the computation with 7Tp on
the ground tuples is impossible (because the extension is
infinite) or infinite, but it will not always terminate. We
now establish conditions under which it does terminate.
First some definitions.

Definition (Free Extension) The free extension of a
ground generalized tuple

(a1n1+b1a~~~aamnm +bmad1a"'adﬁ)
with constraints(Ty, ..., Ti)

is the ground generalized tuple freed from its constraints
(i.e., with constraint true), namely

(a1n1+b1a~~~aamnm+bmad1a"'adﬁ)

with true.

The constraint frue is usually simply omitted.

Page 8

Definition (Free-Extension Safety) Let GH be a
generalized Herbrand interpretation and let free(GH)
be its free extension. GH is free-extension safe for a
program P if

Tap (free(GH)) C free(GH).

A generalized Herbrand interpretation is thus free-
extension safe if applying the mapping T¢p to this inter-
pretation generates no ground generalized tuples with
new free extensions (new tuples can be generated, but
they will only differ from tuples in GP by their con-
straints). The interesting property is that when apply-
ing a mapping T'gp to an extensional database of gen-
eralized tuples, we eventually reach a generalized Her-
brand interpretation that is free-extension safe.

Theorem 4.2 Let EDB be an extensional database of
ground generalized tuples, let Tgp be the generalized
mapping associated with a deductive program P, and [
the identity mapping. Then, there exists a k such that

(Tep + D*(EDB)
15 free-extenston safe.

Proof sketch: The theorem follows simply from the
fact that there is a finite bound on the number of possi-
ble free extensions. Indeed, let p = IIp; be the product
of the periods of the lrp’s in EDB. Then, all Irp’s ap-
pearing in the computation of (Tgp + 1) (EDB) are of
period less than p and hence there is only a finite num-
ber of such Irp’s. R

Once a generalized Herbrand interpretation is free-
extension safe for the mapping Tsp, applying Tgp can
still lead to the modification of constraints. It is only
when the new constraints are implied by existing ones
that the evaluation can be stopped. We use the follow-
ing definition.

Definition (Constraint Safety) Let GH be a gen-
eralized Herbrand interpretation and, for each ground
generalized tuple gt, let constrainis(gt) be the con-
straints of that tuple. Then, GH is constraint safe for
a program P if for every ground generalized tuple gt' €
Tap(GH) there are generalized tuples gt,,...¢t, € GH
with the same free extension as gt such that

constraints(gt')

= constraints(gty) V ...V constraints(gt,,).

We can now give a sufficient criterion for the termina-
tion of the naive bottom-up generalized-tuple-at-a-time
evaluation of a program P.

Theorem 4.3 Let EDB be a generalized extensional
database and let P be a program. Then, if for some k,
(Tgp + D*(EDB) is both free-extension safe and con-
straint safe, then the naive generalized-tuple-at-a-time
bottom-up evaluation of P on EDB terminates after k
iterations.

Of course, Theorem 4.3 does not completely solve the
problem since we might never reach a generalized Her-
brand interpretation that is constraint safe. In prac-
tice, once the generalized Herbrand interpretation is
free-extension safe (which is guaranteed to happen by
Theorem 4.2), it is reasonable to give up on the compu-
tation if the interpretation does not become constraint
safe after a few iterations.

4.4 Expressiveness

As in Section 3, we distinguish data and query expres-
siveness. As far as data expressiveness, our language is
very powerful. Indeed, it is easy to show that it can
express at least all the primitive recursive relations. On
the other hand, notice that if the language is only used
when the conditions of Theorem 4.3 are satisfied, its
data expressiveness is the same as that of generalized
databases with linear repeating points. This is of course
the price to pay for being able to obtain a closed form for
derived predicates. Indeed, one cannot expect a closed
form for all primitive recursive relations that is much
else than an algorithmic definition of the predicate.

Concerning query expressiveness, the situation is
quite different. Indeed, we have already shown in Sec-
tion 3 that in the case of a unique temporal argument,
this type of deductive language can define queries that
are not first-order definable. This result can be ex-
tended to the case of several temporal variables. The
interesting point is that the increase in query expressive-
ness is meaningful even in cases where the conditions of
Theorem 4.3 are satisfied.

5 Conclusions and Comparison
with Other Work

Our contributions are

1. the clarification of the necessary concepts for com-
paring the expressiveness of databases in which
predicates with infinite extensions can appear;

2. a closed form evaluation algorithm for a class of
Datalog programs over the integers.

Page 9

QOur first result is not limited in scope to tempo-
ral databases. The same concepts are useful whenever
databases can include predicates with infinite exten-
sions, for instance as in [KKR90]. Our second result
can be interpreted as saying that you can both have
your cake and eat it. Indeed, i1t shows that you can
have temporal databases with good data and query ex-
pressiveness and finite bottom-up evaluation. The only
catch is that the bottom-up evaluation is not always
possible. Nevertheless, we feel that the combination of
an extensional database defined by extended relations
and a deductive layer using predicates with multiple
temporal variables is an interesting one.

It was already noticed in [CI88] that evaluating least
fixpoints on infinite extensions could be easier than the
same problem on finite extensions. However, this ob-
servation was limited to the case of deductive programs
with one temporal argument and linear repeating points
were not used as a representation formalism. Closed
forms for Datalog over the integers naturally brings
to mind [Rev90]. There are notable differences. In
[Rev90], the closed form is not limited to some exten-
sional databases and programs, but is only obtained for
a restricted language. Indeed, this language does not al-
low the use of incrementation over recursion, and thus
cannot express periodic sets of points. It can be made as
expressive as (actually more expressive than) our lan-
guage by the use of stratified negation. However, the
closed form result is not obtained in this case.

References

[AM89] Martin Abadi and Zohar Manna. Tempo-
ral logic programming. Journal of Symbolic

Computation, 8:277-295, 1989.

[Bau89a] Marianne Baudinet. Logic Programming Se-
mantics: Techniques and Applications. PhD
thesis, Computer Science Department, Stan-
ford University, Stanford, CA, February

1989.

[Bau89b] Marianne Baudinet. Temporal logic pro-
gramming 1s complete and expressive. In
Sizteenth ACM Sympositum on Principles
of Programming Languages, pages 267-280,

Austin, Texas, January 1989.

[Bau90] Marianne Baudinet. On the expressiveness of
temporal logic programming. Submitted to a

Technical Journal, July 1990.

[CH82] Ashok K. Chandra and David Harel. Struc-

ture and complexity of relational queries.

[CTS5)

[Cho90]

[CT188]

[CT89)]

[CT90]

[GPSS80]

[JL87]

[KKR90]

[KSW90]

[Rev90]

Journal of Computer and System Sciences,

25:98-128, 1982.

Ashok K. Chandra and David Harel. Horn
clause queries and generalizations. Journal
of Logic Programming, 2(1):1-15, 1985.

Jan Chomicki. Polynomial time query pro-
cessing in temporal deductive databases. In
Ninth ACM Symposium on Principles of
Database Systems, pages 379-391, Nashville,
Tennessee, April 1990.

Jan Chomicki and Tomasz Imieliniski. Tem-
poral deductive databases and infinite ob-
jects. In Seventh ACM Symposium on Prin-
ciples of Database Systems, pages 61-73,
Austin, Texas, March 1988.

Jan Chomicki and Tomasz Imielinski. Re-
lational specifications of infinite query an-
swers. In ACM-SIGMOD International Con-
ference on Management of Data, pages 174—
183, Portland, Oregon, May 1989.

Jan Chomicki and Tomasz Imielinski. Fi-
nite representation of infinite query an-
swers. Technical Report TR-CS-90-10,
Kansas State University, Manhattan, KS,
August 1990.

Dov Gabbay, Amir Pnueli, Saharon She-
lah, and Jonathan Stavi. On the temporal
analysis of fairness. In Seventh ACM Sym-
postum on Principles of Programming Lan-
guages, pages 163-173, Las Vegas, NV, Jan-
uary 1980.

Joxan Jaffar and Jean-Louis Lassez. Con-
straint logic programming. In Fourteenth
ACM Symposium on Principles of Program-
ming Languages, Munich, West Germany,
January 1987.

Paris C. Kanellakis, Gabriel M. Kuper, and
Peter Revesz. Constraint query languages.
In Ninth ACM Symposium on Principles of
Database Systems, pages 299-313, Nashville,
Tennessee, April 1990.

F. Kabanza, J-M. Stevenne, and P. Wolper.
Handling infinite temporal data. In Ninth
ACM Symposium on Principles of Database
Systems, pages 392-403, Nashville, Ten-
nessee, April 1990.

Peter Revesz. A closed form for Datalog
queries with integer order. In Proceedings

Page 10

[Tho81]

[U1188]

[U1189]

[Varg8]

[VEKT6]

[WVS83]

of the Third International Conference on
Database Theory, pages 187-201, Paris, De-
cember 1990. LNCS 470, Springer-Verlag.

Wolfgang Thomas. A combinatorial ap-
proach to the theory of w-automata. Infor-
mation and Control, 48(3):261-283, March
1981.

Jeffrey D. Ullman. Principles of Database
and Knowledge-Base Systems - Volume 1.
Computer Science Press, 1988.

Jeffrey D. Ullman. Principles of Database
and Knowledge-Base Systems — Volume II:
The New Technologies. Computer Science

Press, 1989.

Moshe Y. Vardi. A temporal fixpoint calcu-
lus. In Fifteenth ACM Symposium on Princi-
ples of Programming Languages, pages 250—
259, San Diego, CA, January 1988.

M.H. van Emden and R.A. Kowalski. The se-
mantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733—
742, October 1976.

Pierre Wolper, Moshe Y. Vardi, and
A. Prasad Sistla. Reasoning about infi-
nite computation paths. In 2/th Symposium
on Foundations of Computer Science, pages
185-194, Tucson, Arizona, November 1983.

Page 11

