CONTRIBUTIONS TO THE DEVELOPMENT OF A SINGLE ROOM VENTILATION UNIT WITH HEAT RECOVERY

CONFIDENTIAL

A Thesis

Submitted to the Faculty of Applied Sciences

of the

University of Liège

By

Samuel GENDEBIJN

In Partial Fulfillment of the Requirements for the Degree

Of

Doctor of Applied Sciences

Liège, October 2014
To my family,
Acknowledgment

First, I would like to thank Prof Vincent Lemort and Luc Prieels for the opportunity they offered me to realize this thesis in the frame of the Green + project. This was a real pleasure for me to work at their sides. I learned immensely from their knowledge.

I wish to thank Jean Lebrun, Philippe André and Philippe Ngendakumana for their precious comments.

I am really grateful to Stéphane Bertagnolio for his unconditional support and his precious advices all along my thesis.

I am also very grateful to Ian Bell for his review and his many advices during the writing of the thesis.

A special thank go to all the members of Greencom company, especially Ludovic Detaille and Jonathan Martens for their unconditional help.

I would also like to thank all my colleagues from the Thermodynamics Laboratory of the University of Liège. A special thank goes to Sébastien for sharing the office with me during 5 years. I would like to thank François, Jean-François, Roberto, Arnaud, Kévin, Ludovic, Bertrand, Sylvain, Adrianno, Emeline, Damien, Yannick, Clément, Sébastien, Olivier, Bernard, Isabelle, José, Richard, Guy and Rémy. I am also grateful to all the administrative and technical staff for their team spirit and the nice working atmosphere they contribute to. A special thank goes to Little Bernard for his many advices during test bench construction.

I thank Piersouko, Matthaus, Matti and Floski for sharing the Buckingham apartment and supporting me during the good and the hard times. I would also like to thank all of my friends for their friendship and support.

A very special thank goes to my parents and my sister for their unwavering support and their encouragement.

Last but not least, I would like to thank Maraki Tsonaki for her support during the last year of this PhD.
ABSTRACT

The present thesis contributes to the knowledge, characterization and development of single room ventilation with heat recovery (SRVHR) systems dedicated to the residential sector. Investigation focuses on both the thermal and hydraulic aspects of such units. Thus, a large part of the thesis focuses particularly on air-to-air heat exchangers dedicated to SRVHR systems.

Impacts of the operating conditions (dry, partially wet and frosting conditions) on the performance are investigated. The thesis relies on the results of experimental and modeling studies carried out on several polystyrene air-to-air heat exchangers. An experimental apparatus was built in order to characterize the thermal and hydraulic performance of air-to-air heat exchanger under various operating conditions. The first developed model includes prediction of thermal and hydraulic performances in dry conditions but also in totally and partially wet conditions. The developed model is based on a moving boundary model (“two zones” heat exchanger model) initially dedicated to cooling coil. The validation of the developed model is first realized on a cooling coil experimental data set and then on experimental results collected on an air-to-air heat exchanger. In order to characterize the behavior under frosting conditions, the moving boundary model is later improved by taking into account the frost growth (three zones heat exchanger model). This dynamic model allows to determine the heat transfer rate as well as the pressure drop evolution due to the presence of frost. Once again, validation of this developed dynamic model is carried out by means of experimental results collected on an air-to-air heat exchanger. Strategies under frosting conditions are presented and compared by using a newly defined factor of energy performance.

In the frame of the design of heat exchanger dedicated to SRVHR unit, a methodology in order to choose the best geometry parameters for the heat recovery exchanger is proposed. This methodology is based on the optimization of the overall coefficient of performance of the unit. This corresponds to the best trade-off between hydraulic and thermal performance and involves numerical and experimental investigations. An innovative method in the field of air-to-air heat exchanger was developed. It consists in determining the evolution of pressure drop as a function of flow rate on a sample composed of only two “corrugated” plates. Those plates have been quickly fabricated thanks to a rapid prototyping process. Finally, the so-called optimized heat exchanger was manufactured and tested by means of the developed test rig. A deep study of the core of the heat exchanger was realized. This investigation permits to highlight some manufacturer defects, which were verified by comparison with the predictions of a new heat exchanger simulation model.

A whole newly developed SRVHR unit (composed of fans, filters, heat exchanger) is also experimentally characterized. The main characteristic of the investigated device is its possible integration into windows ledge, which makes it particularly suitable for housing retrofitting. In the performance assessment of this unit, both thermal and hydraulic performances of the unit have been investigated. First, each single component of the unit (fans, filters, heat exchanger) has been tested separately. It has been decided to use a technique, called pressure compensated box method, in order to determine the flow rate delivered by the device. Initially, this method is dedicated to measure flow rate delivered by fan coil units. Fan performance curves have also been experimentally determined for various rotational speeds. Tests in climatic chamber have been carried out to determine the performance of the overall device. Once the whole performance of the device has been characterized, a performance map was established. The perfect knowledge of the device performance (on the contrary to centralized system which depends on the ducting characteristics) allows us to compare the system to several types of ventilation in terms of primary energy, CO₂ emissions and energy costs by means of the Heating Degree Day (HDD) method, given a specific climate.
Chapter I General introduction
1. Introduction
2. Energy context
3. Ventilation
4. Balanced single room ventilation with heat recovery
5. Market trends
6. Objectives of the thesis
7. Organization of the manuscript
8. References

Chapter II Development of a ventilation heat recovery exchanger simulation model
1. Introduction
2. Simulation of the ventilation heat recovery
3. Heat recovery exchanger test bench description
4. Experimental investigations on the studied heat recovery exchanger: testing conditions and measured performance
5. Calibration and validation of the model
6. Parametric studies
7. Comparison with discretized models
8. Conclusions
9. References

Chapter III Development steps of a heat exchanger dedicated to single room ventilation
1. Introduction
2. Main characteristics of the developed heat exchanger
3. Optimization of the heat exchanger geometry
4. CFD analysis
5. Rapid prototyping testing method
6. Characterization of the final heat exchanger
7. Conclusions
8. References

Chapter IV Investigations of strategies under frosting conditions
1. Introduction
2. Heat exchanger model under frosting conditions
3. Experimental investigations
4. Strategies under frosting conditions
5. Conclusions
6. References
Chapter V Experimental characterization of single room ventilation with heat recovery
1. Introduction
2. Presentation of the final device
3. Hydraulic performance establishment during design step
4. Acoustic performance of the final unit
5. Performance map of the final unit
6. Heating degree day method
7. Conclusions
8. References

Chapter VI Conclusions and perspectives