

Microwave-assisted extraction of pectin from unused pumpkin biomass

Zuzana Košťálová ^{a*}, Mario Aguedo ^b, Zdenka Hromádková ^a

CONTACT

a) Slovak Academy of
Sciences, Chemical
Institute, Centre for
Glycomics, Dúbravská
cesta 9, 845 38
Bratislava, Slovakia

b) Unit of Industrial and
Biological Chemistry,
Gembloux Agro-Bio Tech
– Univ. of Liège, Belgium

INTRODUCTION

The research was focused on the seeded oil pumpkin (*Cucurbita pepo* L. var. *Styriaca*) biomass as an agricultural waste, a significant and not yet utilized source of pectin. After harvesting seeds, the residual biomass has a limited application and is usually left in the field. For the valorisation of the pumpkin biomass, the objectives of our previous studies were aimed to the overall chemical composition of the pumpkin biomass and of its different tissues (1). Several methods for isolation of polysaccharide have been reported (1,2).

MATERIALS AND METHODS

Raw materials:

Biomass represents the graded residue of Styrian oil pumkin fruit after separation of seeds (2.4 % Klason lignin, 3.5 % uronic acid, 7.9 % ash)(1).

Isolation

Pumpkin biomass

- 1. Swell 1h in water
- 2. Adjust pH to 2.5 with HCI
- 3. Microwave heating (Milestone StartSYNTH)

^{*} 4. Filter

Filtrate

factors:

+ 4.233*10⁻³*C

- 5. Adjust pH to 5.6 with KOH
- 6. Precipitate with ethanol
- ↓ 7. Filter

RESPONS SURFACE METHODOLOGY

Levels of extraction variables used in Box-Behnken design.

Variable	Levels			
Liquid/solid ratio	А	30	40	50
Extraction time (min)	В	2	6	10
Extraction temperature (C)	С	80	100	120

Sequential model fitting: 1. Response = *yield*

Model	Lack of		
	L :1	Р	

*chemzuko@savba.sk

ACKNOWLEDGEMENT

The Slovak Grant Agency VEGA, grant No. 2/0085/13 and COST TD1203 financially supported this contribution.

EXPERIMENTAL DESIGN ANALYSIS

Analysis of variance for the pectin *yield*

Source	F Value	P value Prob>F	Model is significant
Model	23.32	< 0.0001	> and is
А		< 0.0001	suitable for
В		0.0141	use
С		0.0007	

In this case variables A, B, C are significant model terms.

The microwave-assisted extraction techniques have been employed as complementary methods to extract polysaccharides from vegetable sources. The effect of variables - (A) microwave heating time, (B) liquid/solid ratio, (C) extraction temperature - on the yield and quality of extracted pectin from the pumpkin biomass was investigated. The **response surface methodology** was used to optimize the effects of processing parameters.

RESULTS

The equation obtained in terms of coded factors:

Yield = 5.32+1.14*A+0.52*B+0.84*C Yield (as % of pectin from air dried raw material)

Influence of variables on yield

Response surface plots representing the effect A) L/S ratio, B) time of sonication and C) temperature on extraction yield.

Wet pectin 8. Dialysis 9. Freeze-dried Pumpkin pectin

Experimental data were analyzed using Design-Expert 8.0.7.1 statistical package including ANOVA to obtain the interaction between the process variables and the response. The three variable levels **Box**– **Behnken response surface experimental design** (BBD) was employed.

The equation obtained in terms of coded

 $M_{\rm w} = 0.016 - 7.116^{10^{-3}} \text{A} + 8.215^{10^{-4}} \text{B}$

Influence of variables on molecular weight

Response surface plots representing the effect

 $M_{\rm w}$ (weight averaged molecular weight)

A) L/S ratio, B) time of sonication and C)

temperature on molecular weight

		Analysis	IIL	R-Square	
	Source	Prob>F	Prob>F	Press	
\leq	Linear	< 0.0001	0.0714	5.37	
	Quadratic	0.1692	0.0627	11.72	
	Cubic	0.0627	aliased	aliased	_
	2. Response	e = molecu	lar weigh	ot	
<	Linear	0.0003	0.0580	2.41*10-4	227
	Quadratic	0.1534	0.0583	6.64*10-4	
	Cubic	0.0583	aliased	aliased	

OPTIMALIZATION

Optimalization criteria:

- Yield \rightarrow maximum (lower importance)
- Molecular weight → target to 100 kDa with limits 80 -120 kDa (higher importance)

The medium-molecular-weight pectin has still lower viscosity, higher solubility and retains biological activity (3).

<u>Optimal conditions</u>: L/S ratio = 50, time= 10 min temperature = 102.2 C

Predicted results:

Analysis of variance for the pectin *molecular weight*

	F	P value	 Model is
Source	Value	Prob>F	_ significan
Model	15.88	0.0003	> and is
A	34.86	< 0.0001	suitable fo
В	0.46	0.5096	430
С	12.33	0.0049	

In this case variables A and C are significant model terms. Variable B (extraction time) is not significant.

REFERENCES

1.Košťálová Z., Hromádková Z., Ebringerová A. Chemical Papers 63 (2009) 406–413.
2.Košťálová Z., Hromádková Z, Ebringerová A. Industrial Crops and Products 31 (2010) 370–377.
3.Yamaguchi, F. et al. Bioscience, Biotechnology, and Biochemistry 59 (1995) 2130-2131.

* Molecular weight was determined by HPSEC chromatography

Yield = 7 %, $M_{\rm w}$ = 100 kDa

CONCLUSION

- Probability value (P<0.0003) demonstrates a very high significance for both regression models.
- The coefficient of determination (R²) for the yield model is 0.8641 and M_w model is 0.8125.
- Yield of polysaccharides was increased linearly with increasing all variables.
- Molecular weight of polysaccharides increase rapidly in L/S ratio = 50.
- The increasing temperature degraded the pectin matrix to small molecular weight.
- The time of sonication had only a very small effect to both responses.
- Optimal condition L/S ratio = 50, time= 10 min and temperature = 102.2 C was determined.
- Verification of optimal conditions is in progress.