

Chapitre 2-3 Suivi de l'évolution de la ressource ligneuse et des stocks de carbone

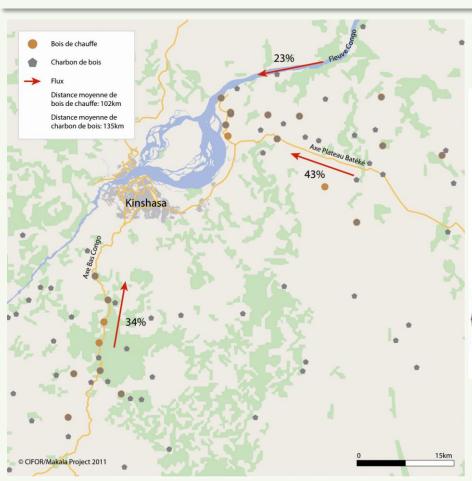
2.3.1 - Introduction

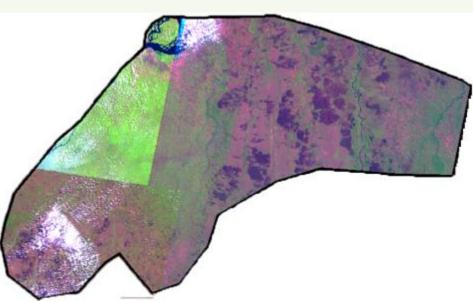
Exemple dans le bassin d'approvisionnement en bois énergie de Kinshasa, République démocratique du Congo *

Kinshasa consomme 490 000 T de charbon de bois / an et 60 000 T de bois de chauffe / an. (J. Schure & al., 2011)

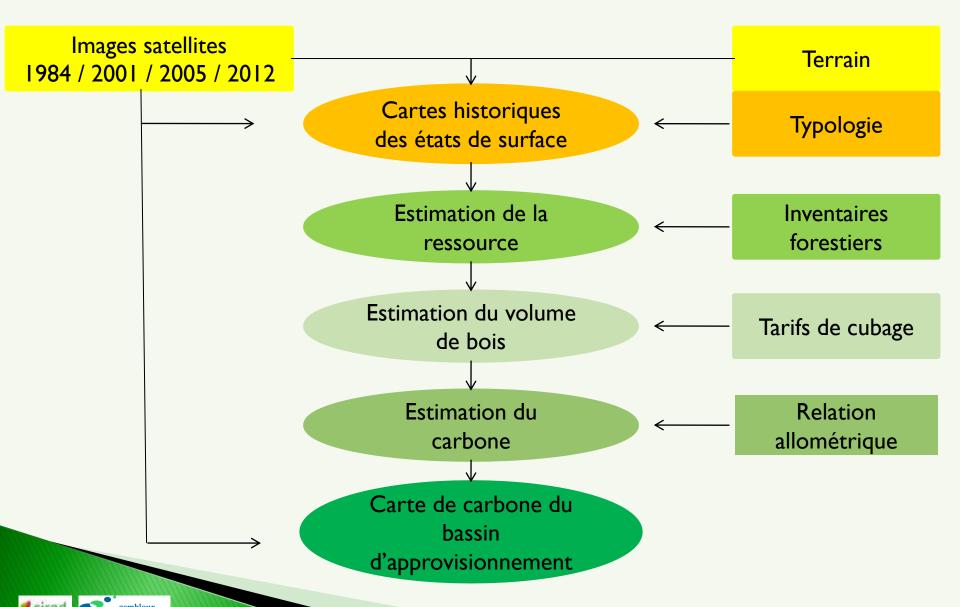
4,9 millions de m³ de bois.

12 fois plus que la production officielle de bois d'œuvre (ITTO, 2011)



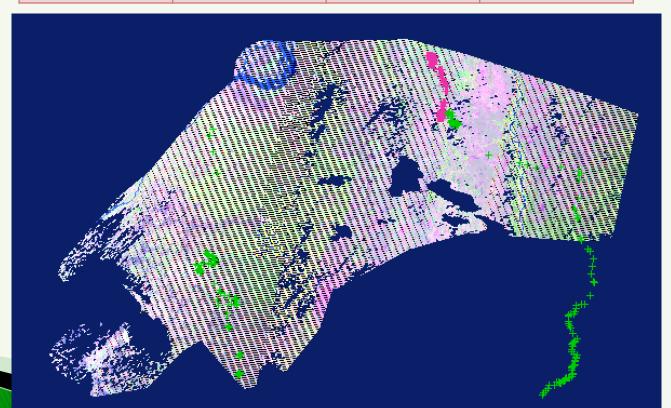


Bassin d'approvisionnement en bois énergie de la ville de Kinshasa


Composition colorée (5,4,3) du bassin d'approvisionnement en bois énergie de Kinshasa Landsat 7 ETM 2012 (M. Boulogne, 2012)

Méthodologie

2.3.2 - Cartographie de l'occupation du sol



Relevés de terrain (GPS)

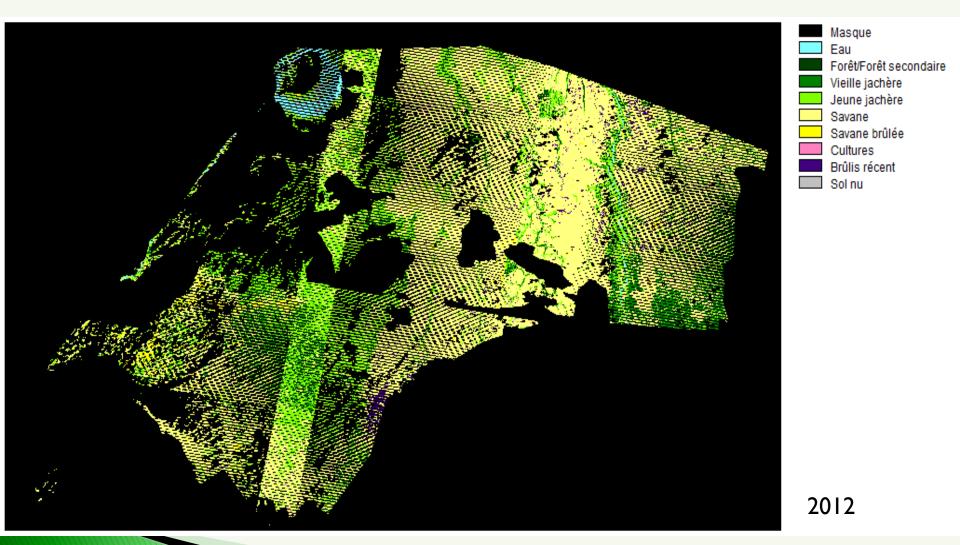
Données utilisées

181/63	181/64	182/63	182/64
07/09/1984	09/10/1984	01/02/1995	20/09/1986
28/07/2001	28/07/2001	30/04/2001	19/07/2001
10/07/2006	10/07/2006	31/08/2006	31/05/2005
04/03/2012	04/03/2012	02/08/2012	02/08/2012

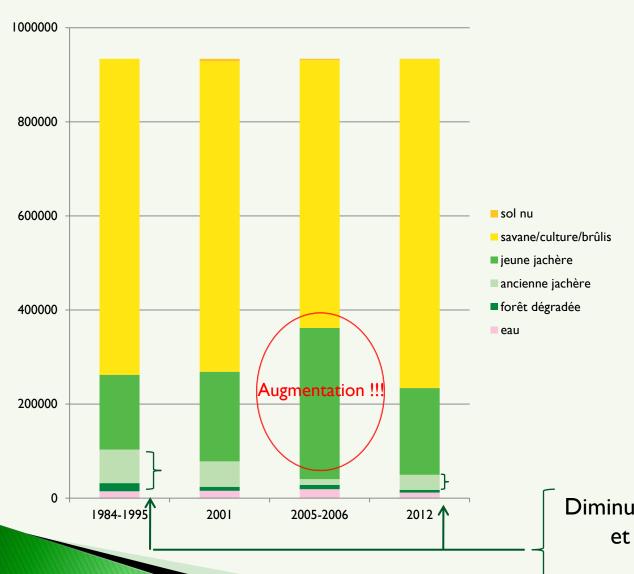
+ Relevés GPS 284 points

Classification des types de sols

- Méthode :
 - ✓ Pré-traitements
 - ✓ Classification
 - √ Validation
- Typologie retenue :
- → Forêt (primaire/secondaire/ripisylve)
- → Vieille Jachère (+ de 6 ans)
- → Jeune jachère (moins de 6 ans)
- → Savanes (herbeuse, arbustive ...
- → Champ
- → Brûlis avant culture

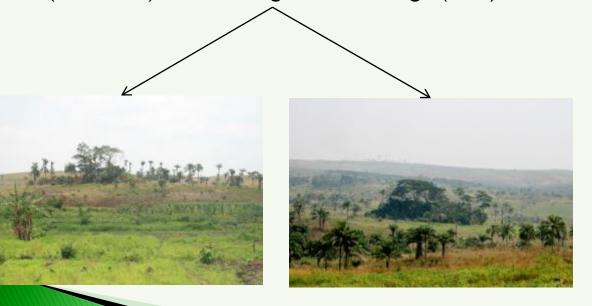


Occupation du sol en 2012


Résultats

Evolution des états de surface entre 1984 et 2012

Diminution des forêts dégradées et des vieilles jachères : passent de 88 000 ha à 37 000 ha en 28 ans.

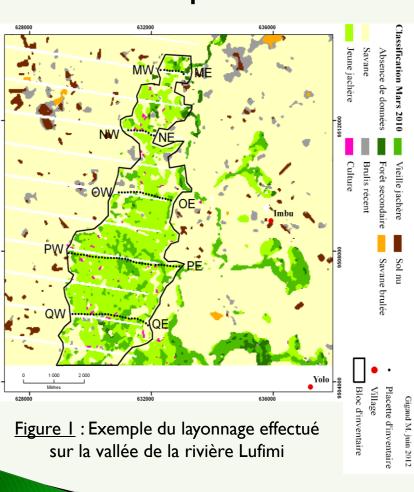

Limites de l'étude

· Limites de l'étude

- → Qualité des données + confusion de classes.
- → La typologie a été réduite pour valider les cartes de 1986 et pour limiter les erreurs.

Exemple: Espace forestier de petite taille (0,2 à 1 ha), ancien village au Bas Congo (Voka)

<u>Exemple</u>: Confusion entre jeune et vieille jachère.



2.3.3 - Inventaires forestiers

Carte d'occupation du sol

Inventaires forestiers

Type de formation	S (Ha)	Nb de placettes	S inventoriée (Ha)	% inventorié
Jeune jachère	2425	102	1,57	0,06%
Vieille jachère	972	51	0,78	0,08%
Forêt secondaire	207	24	0,37	0,18%
Savane	1599	87	1,34	0,08%

Limites de l'étude

- → Les surfaces inventoriées sont trop faibles pour avoir une estimation précise.
- → Les inventaires ont été effectués seulement dans une zone du bassin d'approvisionnement.

Il faudrait faire d'autres inventaires au Bas Congo pour avoir une meilleure estimation des biomasses aériennes à l'échelle du bassin.

2.3.4 – Tarifs de cubage

Prendre des mesures dendrométriques

Calculer le volume des arbres

Construire les tarifs

Vérifier les régressions

Méthodologie

Mesure de 30 arbres/espèce

Equirépartition des arbres en 4 à 6 classes prédéterminées grâce aux travaux d'inventaires et réajustées sur le terrain

Mesure de la circonférence à 1,30m,

Mesure de la hauteur sur pied

Mesure de la longueur et des circonférences gros et fin bouts des billons (jusqu'à 13 cm de circonférence fin bout)

Espèces retenues

Prendre des mesures dendrométriques

Calculer le volume des arbres

Construire les tarifs

Vérifier les régressions

6 espèces + l Tarif complémentaire :

Albizia adianthifolia

Hymenocardia ulmoïdes

Markhamia tomentosa

Oncoba welwitschii

Pentaclethra eetveldeana

Espèces secondaires (Draceana manii, Macaranga monendra, Millettia laurentii, Millettia eetveldeana, Vitex congolensis, Sapium cornutum)

+ Acacia auriculiformis

Calculs

Prendre des mesures dendrométriques

Formule de Smalian

$$V = \frac{1}{4\pi} \left(\frac{C_1^2 + C_2^2}{2} \right) L$$

Calculer le volume des arbres

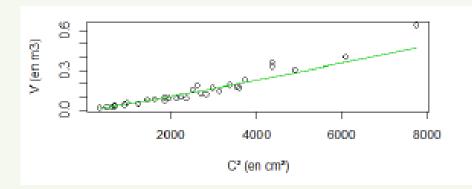
Logiciel R Package nlme

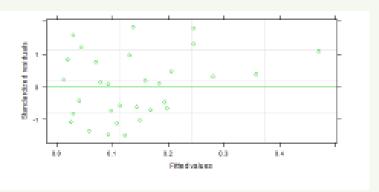
$$V = f(C_{130}^2) = a + b(C^2)^C$$
 $V = f(C_{130}^2 H) = a + b(C^2 H)^C$

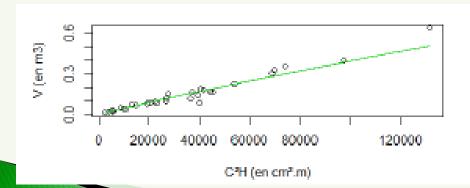
Construire les tarifs

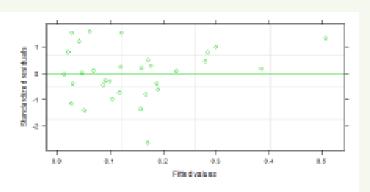
Vérifier les régressions

R² hautement significatif si >0,80 Dispersion des résidus






Résultats

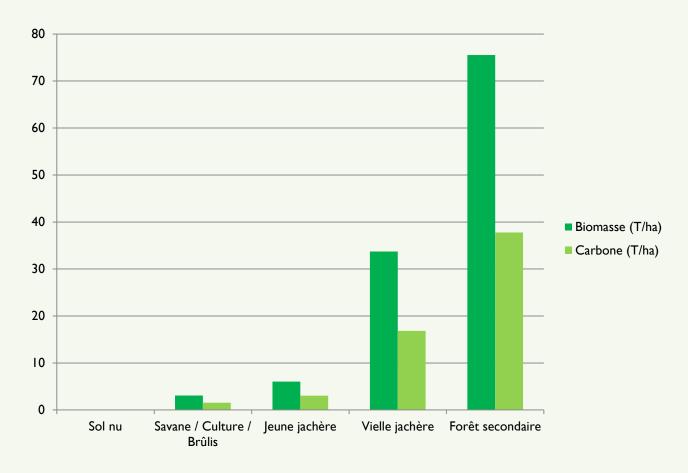


Essence (Nombre d'arbres mesurés)	Equation	R²	Validité (circonférence en cm)	Validité (diamètre en cm)	Validité (Hauteur en m)
Albizia adianthifolia (31)	$V=0,0000187(C^2)^{1,1320393}$	0,971	18 - 88	5,7 – 28	6,5 -17
Albizia adianthifolia (31)	$V=0,0000108(C^2H)^{0,9124693}$	0,977	18 - 88	5,7 - 28	6,5 -17

Tarifs de cubage : Limites de l'étude

- → Nombre d'arbre assez faible en forêt naturelle,
- → Fin bout (13 cm de circonférence) relativement important
- → Définir d'autres tarifs de cubage sur d'autres espèces pour avoir une meilleure estimation des volumes de bois et des stocks de carbone dans les différents types de formations végétales.

5 – Evolution des stocks de carbone

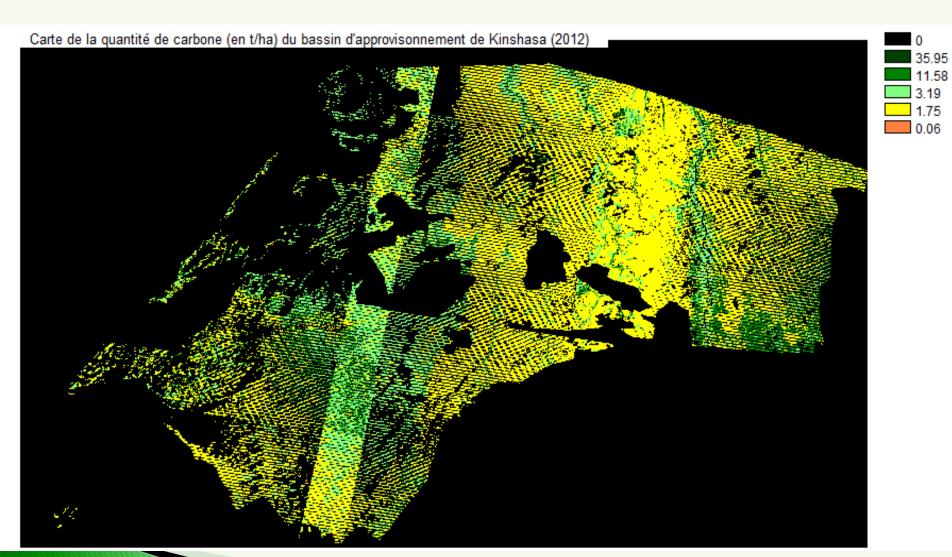

Mesure de la biomasse et du carbone

- → Densité calculée à partir de Global Wood Density Database (Espèce, Genre, Famille) ;
- → Densité moyenne déterminée = 0,546 T/m³;
- → 46% des mesures effectués avec les tarifs monospécifiques ;
- → 18% des mesures effectuées avec le tarif établi pour les essences secondaires ;
- -> 36% des masuras affectuées avec un tarif regroupant l'ensemble des masures.

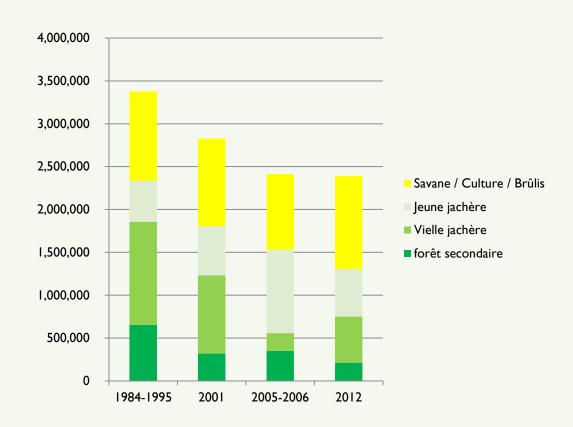
Type de formation	AGB (T/ha)	C (T/ha)
Jeune jachère	6,05	3,03
Vielle jachère	33,71	16,85
Forêt secondaire	75,52	37,76
Savane	2,99	1,5

Dans les types de formation

Le stock de C en savane a été mesuré à partir de la formule de Chave & al., 2005 = AGB=e(-2,977 + ln(rs.D^2.H)). I,5 T de C/ha dans les savanes



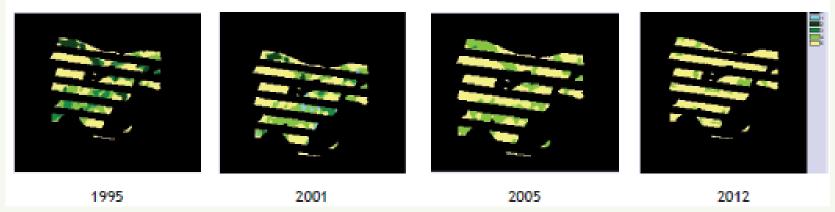
Dans le bassin d'approvisionnement de Kinshasa en 2012 🕺



Résultats

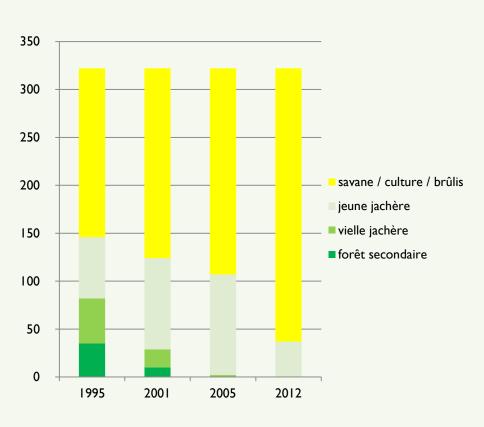
De 1984 à 2012

- → En 28 ans, la diminution du stock de carbone sur le bassin d'approvisionnement en bois énergie de Kinshasa est de l'ordre de 30% soit une perte de plus de 1%/an.
- → Pour les forêts secondaires, la perte de stocks est estimée à plus de 65%.


Evolution des stocks de carbone sur pied (en milliers de tonnes) entre 1984 et 2012 sur la zone d'étude en fonction du type de végétation

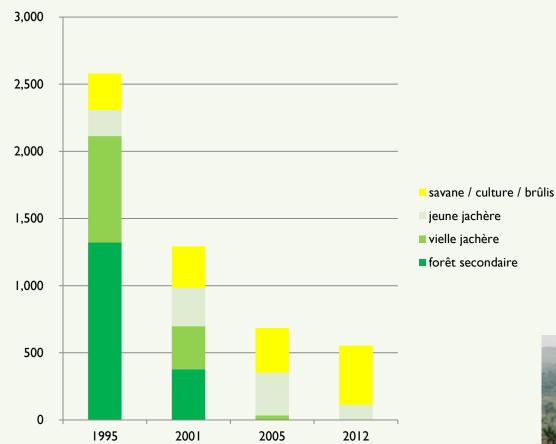
Evolution des terroirs villageois : Kinduala

- → Grâce à l'utilisation combinée des mesures de terrain et de la télédétection, chaque finage du bassin d'approvisionnement peut être analysé individuellement.
- → Le finage du village de Kinduala, se situe à 120 km au sud de Kinshasa dans la province du Bas Congo


Images satellites de l'évolution des états de surface du finage de Kinduala entre 1995 et 2012

→ Elaboration de Plan Simple de Gestion pour la gestion de la ressource bois énergie. Le suivi de l'évolution des stocks de carbone à l'échelle des terroirs peut faciliter le financement futur des actions contribuant à l'augmentation du stock de carbone (REDD+).

Evolution des états de surface : Kinduala


Estimation des changements d'états de surface (en ha)

- → Augmentation des surfaces cultivées et de savanes, diminution importante des jeunes jachères et disparition des forêts dégradées et des vielles jachères.
- → Bamba & al., 2008, étude entre 1960 et 2005 :
 - 49,95% de forêts secondaires (FS) dans la matrice du paysage (1960)
 - dégradée au profit des savanes (conquis 14,23% des FS) et des jachères et champs (conquis 27,23% des FS) (2005)

Evolution des stocks de carbone : Kinduala

Estimation des stocks de carbone dans le finage du village de Kinduala entre 1984 et 2012

→ Chute vertigineuse des stocks de carbone :

moins 79% en 17 ans

→ En réalité, forêts ripisylves et anciens villages encore présents mais en petites superficies.

2.3.6 - Discussion

- → Limites liées aux données utilisées:
 - Télédétection: nébulosité
 - gap fill
 - pas de données dans les années 90
 - Biomasse: surface couverte
 zone d'échantillonnage

- → Limites liées à la méthode de cartographie du carbone:
 - Dépendance à la classification
 - méthode réductrice: différences dans les types de végétation appartenant à la même classe

→ Utilisation des données LIDAR?

- → Tester d'autres méthodes de cartographie de la biomasse

 ex: mettre en relation avec le NDVI, utilisation de modèles statistiques
- → Pour avoir des estimations + précises, revoir l'échantillonnage
 - + peut être mettre en place des plots permanents

Merci de votre attention

Auteurs: Emilien Dubiez *

Co-auteur : V. Gond, R. Peltier, M. Boulogne, M. Gigaud, A. Péroches, A. Pennec, P. Proces, C. Vermeulen & J.N. Marien

* Projet Makala, 57 Avenue des Sénégalais, Gombé, Kinshasa, R.D.Congo) (emilien.dubiez@cirad.fr)