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Motivations
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Installation of wind and solar power generation resources 
at the distribution level

Environmental concerns are driving the growth of 
renewable electricity generation

Current fit-and-forget doctrine for planning and operating 
of distribution network comes at continuously increasing 

network reinforcement costs
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Active Network Management
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Curtail the production of generators.

ANM strategies rely on short-term policies that  
control the power injected by generators and/or taken 
off by loads so as to avoid congestions or voltage 
problems.

Simple strategy:

Move the consumption of loads to 
relevant time periods.

More advanced strategy:

Such advanced strategies imply solving large-
scale optimal sequential decision-making 
problems under uncertainty.
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Observations
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Several researchers tackled this 
operational planning problem.

They rely on different formulations of the 
problem, making it harder for one 
researcher to build on top of another 
one’s work.

We are looking to provide a generic formulation of the 
problem and a testbed in order to promote the 
development of computational techniques.
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Problem description
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We consider the problem faced by a DSO willing to 
plan the operation of its network over time, while 
ensuring that operational constraints of its 
infrastructure are not violated.

This amounts to determine over 
time the optimal operation of a 
set    of electrical devices.

We describe the evolution of the system 
by a discrete-time process having a time 
horizon T (fast dynamics is neglected).
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Control Actions
Control actions are aimed to directly impact the 
power levels of the devices         .

0

1

2

3

4

5

6

7

8

Time

P
(M

W
)

 

 

Potential prod.
Modulated prod.

Figure 3: Curtailment of a distributed generator.

We also consider that the DSO can modify the consumption of the flexible loads. These loads
constitute a subset F out of the whole set of the loads C ⇢ D of the network. An activation fee
is associated to this control mean and flexible loads can be notified of activation up to the time
immediately preceding the start of the service. Once the activation is performed at time t

0

, the
consumption of the flexible load d is modified by a certain value during T

d

periods. For each of
these modulation periods t 2 [[t

0

+ 1; t
0

+ T

d

]], this value is defined by the modulation function
�P

d

(t � t

0

). An example of modulation function and its influence over the consumption curve
is presented in Figure 4.
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(a) Modulation signal of the consumption (Td = 9).
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(b) Impact of the modulation signal over the con-

sumption.

Figure 4

Loads cannot be modulated in an arbitrary way. They are indeed constraints to be imposed
on the modulation signal. Those are inherited from the flexibility source of the loads, such as an
inner storage capacity (e.g. electric heater, refrigerator, water pump) or a process that can be
scheduled with some flexibility (e.g., industrial production line, dishwasher, washing machine).
In any case, we will always consider that the modulation signal �P

d

has to respect the following
conditions:

• A downward modulation is followed by an increase of the consumption, and conversely.
It models the rebound e↵ect.
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Curtailment instructions can 
be imposed to generators.
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Cost: Encurt [MWh]⇥ Price
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Flexibility service of loads can 
be activated.
Cost: activation fee

Time-coupling effect.
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Problem Formulation
The problem of computing the right control actions is 
formalized as an optimal sequential decision-making 
problem.

We model this problem as a first-order Markov 
decision process with mixed integer and continuous 
sets of states and actions.

st, st+1 2 S
st+1 = f(st,at,wt+1)

wt+1 ⇠ p(·|st)
at 2 Ast
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System state st

The electrical quantities can be deduced from the 
power injections of the devices.

Active power injections of loads and power level of 
the primary energy sources of DG (i.e. wind and 
sun).

The control instructions of the DSO that affect the 
current period and/or future periods are also stored in 
the state vector.

Upper limits on production levels and the number 
of active periods left for flexibility services

in st

in st

st = (P1,t, . . . , P|C|,t, irt, vt, P 1,t, . . . , P |G|,t, s
(f)
1,t , . . . , s

(f)
|F|,t, qt)
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Transition Function

3.3 Transition function

The system evolution from a state s
t

to a state s
t+1

is described by the transition function f .
The new state s

t+1

depends, in addition to the preceding state, of the control actions a
t

of the
DSO and of the realization of the stochastic processes, modeled as Markov processes. More
specifically, we have

f : S ⇥ As ⇥ W 7! S ,

where W is the set of possible realizations of a random process. The general evolution of the
system is thus governed by relation

s
t+1

= f(s
t

,a
t

,w
t

) , (12)

where w
t

2 W and such that it follows a conditional probability law pW(·|s
t

). In order to define
this function in more detail, we now describe the various processes that constitute it.

3.3.1 Load consumption

The uncertainty about the behavior of consumers inevitably leads to uncertainty about the
power level they withdraw from the network. However, over a one day horizon, some trends can
be observed. Consumption peaks arise for example in the early morning and in the evening for
residential consumers but at levels that fluctuate from one day to another and among consumers.
Finally, we model the evolution of the consumption of each load d 2 C by

P

d,t+1

= f

d

(P
d,t

, q

t

, w

d,t

) , (13)

where w

d,t

is a component of w
t

⇠ pW(·|s
t

). The dependency of functions f

d

to the quarter
of hour in the day q

t

allows capturing the daily trends of the process. Given the hypothesis of
constant power factor for the devices, the reactive power consumption can directly be deduced
from P

d,t+1

:
Q

q,t+1

= tan �

d

· P

d,t+1

.

In Section 5, we describe a possible procedure to model the evolution of the consumption of
an aggregated set of residential consumers using relation (13).

3.3.2 Wind speed and power level of wind generators

The uncertainty about the production level of wind turbines is inherited from the uncertainty
about the wind speed. The Markov process that we consider governs the wind speed, which
is assumed to be uniform over the network. The production level of the wind generators is
then obtained by using a deterministic function that depends of the wind speed realization, this
function if the power curve of the considered generator. We can formalize this phenomenon as:

v

t+1

= f

v

(v
t

, q

t

, w

(v)

t

) , (14)

P

g,t+1

= ⌘

g

(v
t+1

), 8g 2 wind generators ⇢ G , (15)

such that w

(v)

t

is a component of w
t

⇠ pW(·|s
t

) and where ⌘

g

is the power curve of generator
g. A typical example of power curve ⌘

g

(v) is illustrated in Figure 5. Like loads, the production
of reactive power is obtained using:

Q

g,t+1

= tan �

g

· P

g,t+1

.

A possible approach to determine f

v

from a set of measurements is described in Section 5.
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Curtailment instructions for 
next period and activation 
of flexible loads.

Set of possible realizations of 
a random process, with wt ∈ W 
that follows a conditional 
probability law

3.3 Transition function

The system evolution from a state s
t

to a state s
t+1

is described by the transition function f .
The new state s

t+1

depends, in addition to the preceding state, of the control actions a
t

of the
DSO and of the realization of the stochastic processes, modeled as Markov processes. More
specifically, we have

f : S ⇥ As ⇥ W 7! S ,

where W is the set of possible realizations of a random process. The general evolution of the
system is thus governed by relation

s
t+1

= f(s
t

,a
t

,w
t

) , (12)

where w
t

2 W and such that it follows a conditional probability law pW(·|s
t

). In order to define
this function in more detail, we now describe the various processes that constitute it.

3.3.1 Load consumption

The uncertainty about the behavior of consumers inevitably leads to uncertainty about the
power level they withdraw from the network. However, over a one day horizon, some trends can
be observed. Consumption peaks arise for example in the early morning and in the evening for
residential consumers but at levels that fluctuate from one day to another and among consumers.
Finally, we model the evolution of the consumption of each load d 2 C by

P

d,t+1

= f

d

(P
d,t

, q

t

, w

d,t

) , (13)

where w

d,t

is a component of w
t

⇠ pW(·|s
t

). The dependency of functions f

d

to the quarter
of hour in the day q

t

allows capturing the daily trends of the process. Given the hypothesis of
constant power factor for the devices, the reactive power consumption can directly be deduced
from P

d,t+1

:
Q

q,t+1

= tan �

d

· P

d,t+1

.

In Section 5, we describe a possible procedure to model the evolution of the consumption of
an aggregated set of residential consumers using relation (13).

3.3.2 Wind speed and power level of wind generators

The uncertainty about the production level of wind turbines is inherited from the uncertainty
about the wind speed. The Markov process that we consider governs the wind speed, which
is assumed to be uniform over the network. The production level of the wind generators is
then obtained by using a deterministic function that depends of the wind speed realization, this
function if the power curve of the considered generator. We can formalize this phenomenon as:

v

t+1

= f

v

(v
t

, q

t

, w

(v)

t

) , (14)

P

g,t+1

= ⌘

g

(v
t+1

), 8g 2 wind generators ⇢ G , (15)

such that w

(v)

t

is a component of w
t

⇠ pW(·|s
t

) and where ⌘

g

is the power curve of generator
g. A typical example of power curve ⌘

g

(v) is illustrated in Figure 5. Like loads, the production
of reactive power is obtained using:

Q

g,t+1

= tan �

g

· P

g,t+1

.

A possible approach to determine f

v

from a set of measurements is described in Section 5.

9

3.3 Transition function

The system evolution from a state s
t

to a state s
t+1

is described by the transition function f .
The new state s

t+1

depends, in addition to the preceding state, of the control actions a
t

of the
DSO and of the realization of the stochastic processes, modeled as Markov processes. More
specifically, we have

f : S ⇥ As ⇥ W 7! S ,

where W is the set of possible realizations of a random process. The general evolution of the
system is thus governed by relation

s
t+1

= f(s
t

,a
t

,w
t

) , (12)

where w
t

2 W and such that it follows a conditional probability law pW(·|s
t

). In order to define
this function in more detail, we now describe the various processes that constitute it.

3.3.1 Load consumption

The uncertainty about the behavior of consumers inevitably leads to uncertainty about the
power level they withdraw from the network. However, over a one day horizon, some trends can
be observed. Consumption peaks arise for example in the early morning and in the evening for
residential consumers but at levels that fluctuate from one day to another and among consumers.
Finally, we model the evolution of the consumption of each load d 2 C by

P

d,t+1

= f

d

(P
d,t

, q

t

, w

d,t

) , (13)

where w

d,t

is a component of w
t

⇠ pW(·|s
t

). The dependency of functions f

d

to the quarter
of hour in the day q

t

allows capturing the daily trends of the process. Given the hypothesis of
constant power factor for the devices, the reactive power consumption can directly be deduced
from P

d,t+1

:
Q

q,t+1

= tan �

d

· P

d,t+1

.

In Section 5, we describe a possible procedure to model the evolution of the consumption of
an aggregated set of residential consumers using relation (13).

3.3.2 Wind speed and power level of wind generators

The uncertainty about the production level of wind turbines is inherited from the uncertainty
about the wind speed. The Markov process that we consider governs the wind speed, which
is assumed to be uniform over the network. The production level of the wind generators is
then obtained by using a deterministic function that depends of the wind speed realization, this
function if the power curve of the considered generator. We can formalize this phenomenon as:

v

t+1

= f

v

(v
t

, q

t

, w

(v)

t

) , (14)

P

g,t+1

= ⌘

g

(v
t+1

), 8g 2 wind generators ⇢ G , (15)

such that w

(v)

t

is a component of w
t

⇠ pW(·|s
t

) and where ⌘

g

is the power curve of generator
g. A typical example of power curve ⌘

g

(v) is illustrated in Figure 5. Like loads, the production
of reactive power is obtained using:

Q

g,t+1

= tan �

g

· P

g,t+1

.

A possible approach to determine f

v

from a set of measurements is described in Section 5.

9

3.3 Transition function

The system evolution from a state s
t

to a state s
t+1

is described by the transition function f .
The new state s

t+1

depends, in addition to the preceding state, of the control actions a
t

of the
DSO and of the realization of the stochastic processes, modeled as Markov processes. More
specifically, we have

f : S ⇥ As ⇥ W 7! S ,

where W is the set of possible realizations of a random process. The general evolution of the
system is thus governed by relation

s
t+1

= f(s
t

,a
t

,w
t

) , (12)

where w
t

2 W and such that it follows a conditional probability law pW(·|s
t

). In order to define
this function in more detail, we now describe the various processes that constitute it.

3.3.1 Load consumption

The uncertainty about the behavior of consumers inevitably leads to uncertainty about the
power level they withdraw from the network. However, over a one day horizon, some trends can
be observed. Consumption peaks arise for example in the early morning and in the evening for
residential consumers but at levels that fluctuate from one day to another and among consumers.
Finally, we model the evolution of the consumption of each load d 2 C by

P

d,t+1

= f

d

(P
d,t

, q

t

, w

d,t

) , (13)

where w

d,t

is a component of w
t

⇠ pW(·|s
t

). The dependency of functions f

d

to the quarter
of hour in the day q

t

allows capturing the daily trends of the process. Given the hypothesis of
constant power factor for the devices, the reactive power consumption can directly be deduced
from P

d,t+1

:
Q

q,t+1

= tan �

d

· P

d,t+1

.

In Section 5, we describe a possible procedure to model the evolution of the consumption of
an aggregated set of residential consumers using relation (13).

3.3.2 Wind speed and power level of wind generators

The uncertainty about the production level of wind turbines is inherited from the uncertainty
about the wind speed. The Markov process that we consider governs the wind speed, which
is assumed to be uniform over the network. The production level of the wind generators is
then obtained by using a deterministic function that depends of the wind speed realization, this
function if the power curve of the considered generator. We can formalize this phenomenon as:

v

t+1

= f

v

(v
t

, q

t

, w

(v)

t

) , (14)

P

g,t+1

= ⌘

g

(v
t+1

), 8g 2 wind generators ⇢ G , (15)

such that w

(v)

t

is a component of w
t

⇠ pW(·|s
t

) and where ⌘

g

is the power curve of generator
g. A typical example of power curve ⌘

g

(v) is illustrated in Figure 5. Like loads, the production
of reactive power is obtained using:

Q

g,t+1

= tan �

g

· P

g,t+1

.

A possible approach to determine f

v

from a set of measurements is described in Section 5.

9

0 5 10 15 20 25 30
0

v (m/s)

P
(M

W
)

Pnominal

Figure 5: Power curve of a wind generator.

3.3.3 Solar irradiance and photovoltaic production

Like wind generators, the photovoltaic generators inherit their uncertainty in production level
from the uncertainty associated to their energy source. This source is represented by the level of
solar irradiance, which is the power level of the incident solar energy per m

2. The irradiance level
is the stochastic process that we model while the production level is obtained by a deterministic
function of the irradiance and of the surface of photovoltaic panels. This function is simpler
that the power curve of wind generators and is defined as

P

g,t

= ⌘

g

· surf
g

· ir

t

,

where ⌘

g

is the e�ciency factor of the panels, assumed constant and equal to 15%, while surf
g

is the surface of the panels in m

2 and is specific to each photovoltaic generator. The irradiance
level is denoted by ir

t

and the whole phenomenon is modeled by the following Markov process:

ir

t+1

= f

ir

(ir
t

, q

t

, w

(ir)

t

) , (16)

P

g,t+1

= ⌘

g

· surf
g

· ir

t+1

, 8g 2 solar generators ⇢ G , (17)

such that w

(v)

t

is a component of w
t

⇠ pW(·|s
t

). The technique used in Section 5 to build f

ir

from a dataset is similar to the one of the wind speed case.

3.3.4 Impact of control actions

The stochastic processes that we described govern the evolution of the state s(1)
t

2 S(1) of the
consumption of loads (flexibility services excluded) and of the power level of energy sources
of DG. The following transition laws define the evolution of the components of the state of

modulation instructions s(2)
t

2 S(2) by integrating the control actions of the DSO:

8g 2 G : P

g,t+1

= p

g,t

, (18)

8d 2 F : s

(f)

d,t+1

= max(s(f)
d,t

� 1 ; 0) + a

(f)

d,t

T

d

, (19)

8d 2 F : �P

d,t+1

=

(
�P

d

(T
d

� s

(f)

d,t+1

+ 1) si s

(f)

d,t+1

> 0

0 si s

(f)

d,t+1

= 0 .

(20)

10
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Reward Function

r : S ⇥As ⇥ S 7! RThe reward function               associates an 
instantaneous rewards for each transition of the 
system from a period t to a period t+1:

From vectors s(1)
t

and s(2)
t

, we can determine, for each node n 2 N , the active and reactive
power injections and thus obtain the value of the electrical quantities of the network:

P

P

n,t

=
X

g2G(n)

min(P
g,t

; P
g,t

) +
X

d2C(n)\F(n)

P

d,t

+
X

d2F(n)

(P
d,t

+ �P

d,t

) , (21)

Q

P

n,t

=
X

g2G(n)

min(tan �

g

P

g,t

; Q
g,t

) +
X

d2C(n)\F(n)

Q

d,t

+
X

d2F(n)

(Q
d,t

+ tan �

d

�P

d,t

) , (22)

0 = g

n

(e,f , P

P

n,t

, Q

P

n,t

) , (23)

0 = h

n

(e,f , P

P

n,t

, Q

P

n,t

) , (24)

and, in each link l 2 L, we have:

i

l

(e,f) = 0 . (25)

3.4 Reward function and goal

In order to evaluate the performance of a policy, we first specify the reward function r : S ⇥
As ⇥ S 7! R that associates an instantaneous rewards for each transition of the system from a
period t to a period t + 1:

r(s
t

,a
t

, s
t+1

) = �
X

g2G
max{0,

P

g,t+1

� P

g,t+1

4
}C

curt

g

(q
t+1

)

| {z }
curtailment cost of DG

�
X

d2F
a

(f)

d,t

C

flex

d

| {z }
activation cost

of flexible loads

� �(s
t+1

)| {z }
barrier function

,

(26)

where C

curt

g

(q
t+1

) is the day-ahead market price pour the quarter of hour q

t+1

in the day and

C

flex

d

is the activation cost of flexible loads, specific to each of them. The function � is a
barrier function that allows to penalize a policy leading the system in a state that violates the
operational limits. It is defined as

�(s
t+1

) =
X

n2N
[�(e2

n,t+1

+ f

2

n,t+1

� V

2

n

) + �(V 2

n

� e

2

n,t+1

� f

2

n,t+1

)]

+
X

l2L
�(|I

l,t+1

| � I

l

) , (27)

where e

n,t+1

, f

n,t+1

(n 2 N ) and I

l,t+1

(l 2 L) are determined from s
t+1

using equations (21)-
(25) and

�(x) =

(
105 si x > 0

0 sinon .

(28)

The higher are the operational costs and the larger is the number of violated operational limits,
the more negative is the reward function.

We can now defined the return over T periods, denoted R

T

, as the weighted sum of the
rewards that are observed over a system trajectory of T periods

R

T

=
T�1X

t=0

�

t

r(s
t

,a
t

, s
t+1

) , (29)
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Because the operation of a DN must be always be 
ensured, we consider the return R over an infinite 
trajectory of the system:

where � 2]0; 1[ is the discount factor. Given that �

t

< 1 for t > 0, the further in time is the
transition from period t = 0, the less importance is given to the associated reward. Because
the operation of a DN must be always be ensured, it does not seem relevant to consider returns
over a finite number of periods and we introduce the return R as

R = R1 = lim
T!1

T�1X

t=0

�

t

r(s
t

,a
t

, s
t+1

) , (30)

that corresponds to the weighted sum of the rewards observed over an infinite trajectory of the
system. Given that the costs and penalties have finite values and that the reward function r

is the sum of an infinite number of these costs and penalties, it exists a constant C such that,
8(s

t

,a
t

, s
t+1

) 2 S ⇥ As ⇥ S, we have |r(s
t

,a
t

, s
t+1

)| < C and thus

|R| < lim
T!1

C

T�1X

t=0

�

t =
C

1 � �

. (31)

It means that even if the return R is defined as an infinite sum, it converges in a finite value.
One can also observe that, because s

t+1

= f(s
t

,a
t

,w
t

), it exists a function ⇢ : S ⇥ A ⇥ W 7! R
that aggregates functions f and r and such that

r(s
t

,a
t

, s
t+1

) = ⇢(s
t

,a
t

,w
t

) , (32)

with w
t

⇠ pW(·|s
t

). Let ⇡ : S 7! As be a policy that associate a control action to each state of
the system. We can define, starting from an initial state s

0

= s, the expected return R of the
policy ⇡ by

J

⇡(s) = lim
T!1

E
wt⇠pW (·|st)

{
T�1X

t=0

�

t

⇢(s
t

, ⇡(s
t

),w
t

)|s
0

= s} . (33)

We denote by ⇧ the space of all the policies ⇡. For a DSO, addressing the operational planning
problem described in Section 2 is equivalent to determine an optimal policy ⇡

⇤ among all the
elements of ⇧, i.e. a policy that satisfies the following condition

J

⇡

⇤
(s) � J

⇡(s), 8s 2 S, 8⇡ 2 ⇧ . (34)

It is well know that such a policy satisfies the Bellman equation [9], which can be written

J

⇡

⇤
(s) = max

a2As

E
w⇠pW (·|s)

�
⇢(s,a,w) + �J

⇡

⇤
(f(s,a,w))

 
, 8s 2 S . (35)

If we only take into account the space of stationary policies (i.e. that select an action indepen-
dently of time t), it is without loss of generality comparing to the space of policies ⇧0 : S⇥T 7! A
because the return to be maximized corresponds to an infinite trajectory of the system [10].

4 Solution techniques

We identify in this section three classes of solution techniques that could be applied to the op-
erational planning problem. The first one is mathematical optimization, a technique for which
we also provide a review of the literature concerning research about solving multi-period OPF.
The second approach that we consider is constituted by techniques relying on the dynamic pro-
gramming framework, such as approximate dynamic programming and reinforcement learning.
Finally, simulation-based optimization techniques are discussed.

12
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erational planning problem. The first one is mathematical optimization, a technique for which
we also provide a review of the literature concerning research about solving multi-period OPF.
The second approach that we consider is constituted by techniques relying on the dynamic pro-
gramming framework, such as approximate dynamic programming and reinforcement learning.
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dently of time t), it is without loss of generality comparing to the space of policies ⇧0 : S⇥T 7! A
because the return to be maximized corresponds to an infinite trajectory of the system [10].

4 Solution techniques

We identify in this section three classes of solution techniques that could be applied to the op-
erational planning problem. The first one is mathematical optimization, a technique for which
we also provide a review of the literature concerning research about solving multi-period OPF.
The second approach that we consider is constituted by techniques relying on the dynamic pro-
gramming framework, such as approximate dynamic programming and reinforcement learning.
Finally, simulation-based optimization techniques are discussed.
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Solution Techniques

We identified three classes of solution techniques that 
could be applied to the operational planning problem:

• mathematical programming and, in particular, 
multistage stochastic programming; 

• approximate dynamic programming; 

• simulation-based methods, such as direct policy 
search or MCTS.
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Figure 6: Test network.

iteration k, parameter values ✓

i

(i 2 I(k)) are evaluated by simulating trajectories of the system
which are associated to the policies ⇡

✓i . The result of these simulation allows the selection of
new parameter values ✓

i

(i 2 I(k+1)) for the next iteration. The goal of such an algorithm is
to converge as fast as possible towards a parameter value ✓̂

⇤ that defines a good approximate
optimal policy ⇡

ˆ

✓

⇤ .
Another subset of simulation-based methods is the Monte-Carlo tree search technique [26,

27]. A each time-step, this class of algorithms usually rely on the simulation of system trajec-
tories to build, incrementally, a scenario tree that does not have a uniform depth. These are
the previous simulations that are exploited to select the nodes of the scenario tree that have to
be developed. When the construction of the tree is done, the action that is deemed optimal for
the root node of the tree is applied to the system.

5 Test instance

In this section, we describe a test instance of the considered problem. The set of models
and parameters that are specific to this instance as well as documentation for their usage
are accessible at http://www.montefiore.ulg.ac.be/

~

anm/ as a Matlabr class. It has been
developed to provided a black-box-type simulator which is quick to set up. The DN on which
this instance is based is a generic DN of 75 buses [28] that has a radial topology, it is presented
in Figure 6. We bound various electrical devices to the network in such a way that it is possible
to gather the nodes of this network into four distinct categories:

• each residential node is the connection point of a load that represents a set of residential

15

We designed a benchmark of the ANM 
problem with the goal of promoting 
computational research in this complex 
field.

The set of models and parameters that 
are specific to this instance as well as 
documentation for their usage are 
accessible as a Matlab class at 
www.montefiore.ulg.ac.be/~anm/ .
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Figure 8: Power withdrawal scenarios of the devices. Negative values indicate that DG inject
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Figure 9: Market price of electricity per MWh over the day.

activation costs are proportional to the magnitude of the modulation signals (Cflex

d

/ �P

nom

d

).

The approach used to build the transition functions of the stochastic quantities (i.e. the
consumption of loads, the wind speed and the level of solar irradiance) is to learn from a dataset
functions µ

i

(s
i,t

, q

t

) and �

2

i

(q
t

), which predict the mean and the variance, respectively, for period
t+1 of each of these quantities i. The input values used for this purpose are the realization s

i,t

of the quantity i at period t and the quarter of hour in the day q

t

to which it corresponds. The
following procedure has been used to build the approximate functions µ̂

i

and �̂

2

i

:

1. formatting of the dataset into K tuples (s(k)
i,t

, q

(k)

t

, s

(k)

i,t+1

);

2. let µ̂

✓

be a neural network and ✓ its learning parameters, µ̂

i

is determined by solving

✓

⇤
i

= arg min
✓

KX

k=1

[s(k)
i,t+1

� µ̂

✓

(s(k)
i,t

, q

(k)

t

)]2

with µ̂

i

= µ̂

✓

⇤
i
;

17
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Example of Policy

Figure 12: Scenario tree that is built at each time step.

presented solution technique can be written as3:

⇡̂

⇤(s) = arg min
a2As(s)

min
8k2Kt: sk ,

8k2Kt\{0}:aAk

X

k2Kt\{0}

h

P
k

�

Dk
X

g2G

��P

g,k

4
C

curt

g

(q
k

) + ✏

2

�P

2

g,k

�✏

1

�M

g,k

+ ✏

2

�M

2

g,k

�

i

+
X

d2F

h

C

flex

d

a

(f)

d,0

i

(54)

s.t. s
0

= s (55)

a
0

= a (56)

s
k

= f(sAk ,aAk ,wAk) , 8k 2 K
t

\{0} (57)

aAk 2 AsAk
, 8k 2 K

t

\{0} (58)

a(f)

Ak
= 0 , 8k 2 {k 2 K

t

| D
k

> 1} (59)

s
k

2 Ŝ(ok)

, 8k 2 K
t

\{0} (60)

�P

g,k

= max(0, P
g,k

� P

g,k

), 8(g, k) 2 G ⇥K
t

\{0} (61)

�M

g,k

= max(0, P
g,k

� P

g,k

), 8(g, k) 2 G ⇥K
t

\{0} ,(62)

where Equation (59) enforces that the activation of flexible loads is not accounted as a recourse

action. The set Ŝ(ok)

k

is an approximation of the set S(ok) of the system states that respect
operational limits. For the test instance presented in this paper, this set is defined using a linear
constraint over the upper limits of active production levels and over the active consumption of
loads:

Ŝ(ok) ⌘
n

s 2 S
�

�

�

X

g2G
P

g

+
X

d2C

�

P

d

+�P

d

�

< C

o

, (63)

where C is a constant that can be estimated by trial and error and with �P

d,k

defined as in
Equation (20). The physical motivation behind this constraint is that issues usually occur when
a high level of distributed production and a low consumption level take place simultaneously.

In order to get control actions that are somehow robust to the evolutions of the system that
would not be well accounted in the scenario tree, the objective function of Problem (54)-(62)
includes, for each node k but the root node, the following terms:

P
k

�

Dk
X

g2G

�

✏

2

�P

2

g,k

� ✏

1

�M

g,k

+ ✏

2

�M

2

g,k

�

, (64)

where ✏

1

and ✏

2

are small positive parameters. The goal of these terms is to drive the solution
towards curtailment instructions that are as equally shared as possible among generators and
towards margins between the production upper limits and the forecasted production levels
that are as large as possible while being also equally shared among generators. By doing so, the

3

This formulation is used for the sake of understanding. It di↵ers from the exact implementation but defines

an equivalent mathematical program.

20

In order to illustrate the operational planning problem 
and the test instance, let’s consider a simple solution 
technique. It consists in a simplified version of a 
multi-stage stochastic program:
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where Equation (59) enforces that the activation of flexible loads is not accounted as a recourse
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is an approximation of the set S(ok) of the system states that respect
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a high level of distributed production and a low consumption level take place simultaneously.
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action. The set Ŝ(ok)

k

is an approximation of the set S(ok) of the system states that respect
operational limits. For the test instance presented in this paper, this set is defined using a linear
constraint over the upper limits of active production levels and over the active consumption of
loads:

Ŝ(ok) ⌘
n

s 2 S
�

�

�

X

g2G
P

g

+
X

d2C

�

P

d

+�P

d

�

< C

o

, (63)

where C is a constant that can be estimated by trial and error and with �P

d,k

defined as in
Equation (20). The physical motivation behind this constraint is that issues usually occur when
a high level of distributed production and a low consumption level take place simultaneously.

In order to get control actions that are somehow robust to the evolutions of the system that
would not be well accounted in the scenario tree, the objective function of Problem (54)-(62)
includes, for each node k but the root node, the following terms:

P
k

�

Dk
X

g2G

�

✏

2

�P

2

g,k

� ✏

1

�M

g,k

+ ✏

2

�M

2

g,k

�

, (64)

where ✏

1

and ✏

2

are small positive parameters. The goal of these terms is to drive the solution
towards curtailment instructions that are as equally shared as possible among generators and
towards margins between the production upper limits and the forecasted production levels
that are as large as possible while being also equally shared among generators. By doing so, the

3

This formulation is used for the sake of understanding. It di↵ers from the exact implementation but defines

an equivalent mathematical program.
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Abstract

In order to operate an electrical distribution network in a secure and cost-e�cient way,
it is necessary, due to the rise of renewable energy-based distributed generation, to de-
velop Active Network Management (ANM) strategies. These strategies rely on short-term
policies that control the power injected by generators and/or taken o↵ by loads in order
to avoid congestion or voltage problems. While simple ANM strategies would curtail the
production of generators, more advanced ones would move the consumption of loads to rel-
evant time periods to maximize the potential of renewable energy sources. However, such
advanced strategies imply solving large-scale optimal sequential decision-making problems
under uncertainty, something that is understandably complicated. In order to promote
the development of computational techniques for active network management, we detail a
generic procedure for formulating ANM decision problems as Markov decision processes.
We also specify it to a 75-bus distribution network. The resulting test instance is available
at http://www.montefiore.ulg.ac.be/

~

anm/. It can be used as a test bed for comparing
existing computational techniques, as well as for developing new ones. A solution technique
that consists in an approximate multistage program is also illustrated on the test instance.

Index terms— Active network management, electric distribution network, flexibility services,
renewable energy, optimal sequential decision-making under uncertainty, large system

1 Introduction

In Europe, the 20/20/20 objectives of the European Commission and the consequent finan-
cial incentives established by local governments are currently driving the growth of electricity
generation from renewable energy sources [1]. A substantial part of the investments lies in the
distribution networks (DNs) and consists of the installation of units that depend on wind or sun
as a primary energy source. The significant increase of the number of these distributed genera-
tors (DGs) undermines the fit and forget doctrine, which has dominated the planning and the
operation of DNs up to this point. This doctrine was developed when DNs had the sole mission
of delivering the energy coming from the transmission network (TN) to the consumers. With
this approach, adequate investments in network components (i.e., lines, cables, transformers,
etc.) must constantly be made to avoid congestion and voltage problems, without requiring con-
tinuous monitoring and control of the power flows or voltages. To that end, network planning
is done with respect to a set of critical scenarios consisting of production and demand levels, in

1
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Example of Policy

Figure 14: Example of a simulation run of the system controlled by policy (54)-(62), over two
days.

which is supported by Matlabr code that implements a simulator of this test instance (cf.
http://www.montefiore.ulg.ac.be/

~

anm/). In addition, an example of solution technique
was presented and its performance was reported.
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