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Abstract. Considering a semicoherent system made up of n components hav-

ing i.i.d. continuous lifetimes, Samaniego defined its structural signature as the
n-tuple whose k-th coordinate is the probability that the k-th component fail-
ure causes the system to fail. This n-tuple, which depends only on the structure
of the system and not on the distribution of the component lifetimes, is a very

useful tool in the theoretical analysis of coherent systems.
It was shown in two independent recent papers how the structural signature

of a system partitioned into two disjoint modules can be computed from the

signatures of these modules. In this work we consider the general case of a
system partitioned into an arbitrary number of disjoint modules organized in
an arbitrary way and we provide a general formula for the signature of the
system in terms of the signatures of the modules.

The concept of signature was recently extended to the general case of semi-
coherent systems whose components may have dependent lifetimes. The same
definition for the n-tuple gives rise to the probability signature, which may
depend on both the structure of the system and the probability distribution of

the component lifetimes. In this general setting, we show how under a natural
condition on the distribution of the lifetimes, the probability signature of the
system can be expressed in terms of the probability signatures of the modules.
We finally discuss a few situations where this condition holds in the non-i.i.d.

and nonexchangeable cases and provide some applications of the main results.

1. Introduction

We consider an n-component system S = (C,ϕ,F ), where C is the set [n] =
{1, . . . , n} of components, ϕ∶{0,1}n → {0,1} is the structure function (which ex-
presses the state of the system in terms of the states of its components), and F
denotes the joint c.d.f. of the component lifetimes T1, . . . , Tn, that is,

F (t1, . . . , tn) = Pr(T1 ⩽ t1, . . . , Tn ⩽ tn) , t1, . . . , tn ⩾ 0.

We assume that the system is semicoherent, i.e., the structure function ϕ is nonde-
creasing1 in each variable and satisfies the conditions ϕ(0, . . . ,0) = 0 and ϕ(1, . . . ,1) =
1. We also assume that the c.d.f. F has no ties, that is, Pr(Ti = Tj) = 0 for all dis-
tinct i, j ∈ [n].

The concept of signature was introduced in 1985 by Samaniego [12], for sys-
tems whose components have continuous and i.i.d. lifetimes, as the n-tuple s =
(s1, . . . , sn) whose k-th coordinate sk is the probability that the k-th component
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failure causes the system to fail. In other words, we have

sk = Pr(TS = Tk∶n), k ∈ [n],
where TS denotes the system lifetime and Tk∶n denotes the k-th smallest lifetime,
i.e., the k-th order statistic obtained by rearranging the variables T1, . . . , Tn in
ascending order of magnitude.

It was shown in [2] that sk can be explicitly written in the form2

(1) sk = ∑
A⊆C

∣A∣=n−k+1

1

( n
∣A∣)

ϕ(A) − ∑
A⊆C
∣A∣=n−k

1

( n
∣A∣)

ϕ(A) .

This formula shows that, in the i.i.d. case, the probability Pr(TS = Tk∶n) does
not depend on the distribution F of the component lifetimes. Thus, the system
signature is a purely combinatorial object associated with the structure ϕ. Due to
this feature, in both the i.i.d. and non-i.i.d. cases the n-tuple s = (s1, . . . , sn), where
sk is defined by (1), is referred to as the structural signature of the system.

Since its introduction the concept of structural signature proved to be a very
useful tool in the analysis of semicoherent systems, especially for the comparison
of different system designs and the computation of the system reliability (see [13]).

The interest of extending the concept of signature to the general case of de-
pendent lifetimes has been pointed out in several recent papers. Just as in the
i.i.d. case, we can consider the n-tuple p = (p1, . . . , pn), called probability signature,
whose k-th coordinate is the probability pk = Pr(TS = Tk∶n). Thus defined, the
probability signature obviously coincides with the structural signature when the
component lifetimes are i.i.d. and continuous. Actually, it is easy to see that both
concepts also coincide when the lifetimes are exchangeable and the distribution F
has no ties; see, e.g., [8,9] for more details. However, these two concepts are gener-
ally different. Contrary to the structural signature, the probability signature may
depend on the distribution of the component lifetimes. It is then considered as a
probabilistic object associated with both the structure ϕ and the distribution F ;
see [6, 7, 10,14] for basic properties of this concept.

Even in the i.i.d. (or exchangeable) case, the computation of the signature may
be a hard task when the system has a large number of components. However, the
computation effort can be greatly reduced when the system is decomposed into
distinct modules (subsystems) whose structural signatures are already known.

First results along this line were presented in [3, 4]. In particular, in [4] explicit
expressions for the structural signatures of systems consisting of two modules con-
nected in series or in parallel were provided in terms of the structural signatures of
the modules. A general procedure to compute the structural signatures of recurrent
systems (i.e., systems partitioned into identical modules) was also described. More-
over, the key role of the concepts of tail and cumulative signatures were pointed
out (see definitions in Section 2).

In this work we extend these results in the following two directions:

1. Considering the general case of a system partitioned into an arbitrary num-
ber of disjoint modules connected according to an arbitrary semicoherent
structure, we yield an explicit formula for the modular decomposition of

2As usual, we identify Boolean vectors x ∈ {0,1}n and subsets A ⊆ [n] by setting xi = 1 if and
only if i ∈ A. We thus use the same symbol to denote both a function f ∶{0,1}n → R and the

corresponding set function f ∶2[n] → R, interchangeably. For instance, we write ϕ(0, . . . ,0) = ϕ(∅).
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the structural signature of the system, that is, an explicit expression of the
structural signature of the system only in terms of the structural signa-
tures of the modules and the structure of the modular decomposition (i.e.,
the structure that defines the way the modules are interconnected). This
result, which holds without any additional assumption and is obviously in-
dependent of the distribution F of the component lifetimes, is presented in
Section 2.

2. Considering again the general case of systems partitioned into an arbitrary
number of disjoint modules, we show that a similar modular decomposition
of the probability signature still holds if and only if the distribution of the
component lifetimes (i.e., the function F ) satisfies a natural decomposition
condition (associated with the decomposition of the system into modules).
Thus, a modular decomposition of the probability signature appears when-
ever two decomposition properties hold: a structural decomposition of the
system into modules combined with a decomposition of the distribution of
the component lifetimes. We also yield an explicit formula for this modu-
lar decomposition of the probability signature. This result is presented in
Section 3. Also, we note that the proofs of our decomposition formulas are
simpler than those in [3, 4].

It is noteworthy that both the structural and probability signatures of the system
can be computed by our modular decomposition formulas without knowing the
structures of the modules. Only the knowledge of the signatures of the modules
and the structure of the modular decomposition (i.e., the way the modules are
connected) is required. Thus, the computation of the signature of a large system
can be made much easier when it is decomposed into a small number of modules
whose signatures are known.

In Section 4 we discuss and demonstrate our results through a few examples and
provide an interpretation of the new concept of decomposition of the distribution.
Some concluding remarks are then given in Section 5.

2. Modular decomposition of the structural signature

We assume that the system is partitioned into modules, which in turn can be
regarded as subsystems. By exploiting formula (1), in this section we provide an
explicit formula for the structural signature of the system in terms of the structural
signature of each module and the structure of the modular decomposition of the
system (see Theorem 2).

Recall first that a modular decomposition of a system (C,ϕ,F ) into r disjoint
modules is given by a partition C = {C1, . . . ,Cr} of the set of components into
modular subsets3 such that

● for every j ∈ [r], the components in Cj are connected in a semicoherent
structure described by the function χj ∶{0,1}nj → {0,1} (where nj = ∣Cj ∣)
and thus form the moduleMj = (Cj , χj ,Gj), whereGj denotes the marginal
distribution, determined by F , of the lifetimes of the components in Cj ;
● the modules are connected according to a semicoherent system described
by a structure function ψ∶{0,1}r → {0,1};

3Thus the subsets C1, . . . , Cr are such that C = ⋃r
j=1 Cj and Cj ∩Ck = ∅ whenever j /= k.
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● the structure ϕ of the system expresses through the composition

(2) ϕ(x) = ψ(χ1(xC1), . . . , χr(xCr)) , x ∈ {0,1}n,
where xCj = (xi)i∈Cj , or equivalently,

(3) ϕ(A) = ψ(χ1(A ∩C1), . . . , χr(A ∩Cr)), A ⊆ C,
(see [1, Chap. 1] for more details). For instance, if the system consists of three
serially connected modules, then we have the structure function ψ(z1, z2, z3) =
min(z1, z2, z3) = z1 z2 z3 and hence

ϕ(x) = χ1(xC1)χ2(xC2)χ3(xC3) .
Recall also that the structural signature can be equivalently expressed through

the tail signature, a concept introduced in [2] and named so in [4]. This concept is
actually algebraically more convenient than that of signature and we will use it to
state our formula for the modular decomposition of the signature.

The tail (structural) signature of the system is the (n+1)-tuple S = (S0, . . . , Sn)
defined by Sk = ∑n

i=k+1 si for 0 ⩽ k ⩽ n−1 and Sn = 0.4 The structural signature can

obviously be recovered from the tail signature by using the formula sk = Sk−1 −Sk,
for k ∈ [n].
Remark 1. Coming back to Samaniego’s probabilistic definition, we may interpret
the number Sk = ∑n

i=k+1Pr(TS = Ti∶n) = Pr(TS > Tk∶n) as the probability that
the system survives beyond the k-th failure (provided the component lifetimes are
continuous and i.i.d.)

Defining the function q0∶2[n] → [0,1] by

(4) q0(A) =
1

( n
∣A∣)

,

by (1) we have

(5) Sk = ∑
A⊆C
∣A∣=n−k

q0(A)ϕ(A), 0 ⩽ k ⩽ n .

Similarly, the cumulative (structural) signature of the system is the (n+1)-tuple
S = (S0, . . . , Sn) defined by Sk = 1 − Sk = ∑k

i=1 si for 0 ⩽ k ⩽ n.
Finally, when the system has a modular decomposition, for every j ∈ [r], we

define the function q
Cj

0 ∶2Cj → [0,1] by

(6) q
Cj

0 (A) =
1

(nj

∣A∣)
,

and we denote by S
j
and Sj the tail and cumulative signatures, respectively, of

module (Cj , χj ,Gj), that is

S
j

k = 1 − Sj
k = ∑

A⊆Cj

∣A∣=nj−k

q
Cj

0 (A)χj(A) , 0 ⩽ k ⩽ nj = ∣Cj ∣ .

As already mentioned, our goal here is to obtain a general formula that expresses
the structural signature of the system in terms of the structural signatures of the
modules (Theorem 2). This formula was obtained in [4] and independently in [3] in

4Clearly, Sn = 0 and S0 = 1 do not contain any information, but are defined for convenience.
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the special case of two modules. For two modules connected in series, the formula
can be written as follows (using our notation):

(7) Sn−k = ∑
0⩽a1⩽n1, 0⩽a2⩽n2

a1+a2=k

(n1

a1
)(n2

a2
)

(n
k
)

S
1

n1−a1
S
2

n2−a2
.

We immediately see that the right-hand expression in this formula is independent
of the structures of the modules. This means that changing these structures while
keeping the same module signatures has no effect on the signature of the system.

To extend this formula to the general case, we need to recall the concept of
multilinear extension of a (pseudo)-Boolean function (see [11]).

Definition 1. The multilinear extension of a pseudo-Boolean function χ∶{0,1}m →
R is the polynomial function χ̂ ∶ [0,1]m → R defined by

(8) χ̂(z1, . . . , zm) = ∑
B⊆[m]

χ(B) ∏
j∈B

zj ∏
j∈[m]∖B

(1 − zj) .

For instance, if χ is the structure function of a series system made up of three
components, we have

χ̂(z1, z2, z3) = z1z2z3.

Similarly, if the components are connected in parallel, we then have

χ̂(z1, z2, z3) = 1 − (1 − z1)(1 − z2)(1 − z3).

Remark 2. The multilinear extension of a pseudo-Boolean function χ∶{0,1}m → R
is the unique function χ̂ ∶ [0,1]m → R that has the following properties:

(i) χ̂ is a polynomial function of degree at most one in each variable,
(ii) χ̂ coincides with χ on {0,1}m.

In particular, Eq. (8) is the natural extension of the classical formula

(9) χ(z1, . . . , zm) = ∑
B⊆[m]

χ(B) ∏
j∈B

zj ∏
j∈[m]∖B

(1 − zj) .

It is well known that if a semicoherent system, with structure function χ, is made
up of independent components, then χ̂ is precisely the reliability function of the
system. Namely, for r = (r1, . . . , rm) ∈ [0,1]m, χ̂(r) is the reliability of the system
expressed as a function of the single component reliabilities r1, . . . , rm.

Define the function c0∶∏r
i=1{0, . . . , ni}→ [0,1] by

c0(a1, . . . , ar) =
(n1

a1
)⋯(nr

ar
)

( n
a1+⋯+ar

)
.

Combining this function with (4) and (6), we obtain

(10) q0(A) = c0(∣A ∩C1∣, . . . , ∣A ∩Cr ∣)
r

∏
i=1
q
Cj

0 (A ∩Cj) , A ⊆ C.

Remark 3. Even though formula (10) is trivial (since it follows immediately from

the definitions of q0, q
Cj

0 , and c0), we will see that it is actually a key result for the
decomposition of the structural signature. We will also see that this formula is at
the root of the decomposition of the distribution function of the component lifetimes
that we will introduce in the next section to derive the modular decomposition of
the probability signature (see Definition 8).
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For every k = 0, . . . , n, we also introduce the following set

Tk = {a = (a1, . . . , ar) ∈ Nr ∶ 0 ⩽ aj ⩽ nj for j = 1, . . . , r and ∑r
j=1 aj = k}.

The algebraic tools introduced above allow us to state and prove our main the-
orem, which gives an explicit expression of the system tail signature S in terms of

the tail signatures S
1
, . . . ,S

r
of the modules, thus generalizing formula (7).

Note that the component lifetimes are irrelevant in the results of this section
(since we deal with structural signatures). To stress on this fact, we write (C,ϕ)
and (Cj , χj) instead of (C,ϕ,F ) and (Cj , χj ,Gj), respectively.

Theorem 2. For every semicoherent system (C,ϕ) with a modular decomposition
into r disjoint modules (Cj , χj), j = 1, . . . , r, connected according to a semicoherent
structure ψ, we have

(11) Sn−k = ∑
a∈Tk

c0(a) ψ̂(S
1

n1−a1
, . . . , S

r

nr−ar
), 0 ⩽ k ⩽ n.

Proof. By combining (5) with (3) and (9) we have for 0 ⩽ k ⩽ n

Sn−k = ∑
∣A∣=k

q0(A)ϕ(A) = ∑
∣A∣=k

q0(A)ψ(χ1(A ∩C1), . . . , χr(A ∩Cr))

= ∑
B⊆[r]

ψ(B) ∑
∣A∣=k

q0(A) ∏
j∈B

χj(A ∩Cj) ∏
j∈[r]∖B

(1 − χj(A ∩Cj)) .

Since C = {C1, . . . ,Cr} is a partition of C, the map from 2C to ∏r
j=1 2

Cj given by

A↦ (A ∩C1, . . . ,A ∩Cr)
is a bijection that maps {A ∶ ∣A∣ = k} onto {(A1, . . . ,Ar) ∶ (∣A1∣, . . . , ∣Ar ∣) ∈ Tk}.
Therefore, we obtain

Sn−k = ∑
B⊆[r]

ψ(B) ∑
a∈Tk

∑
A1⊆C1

∣A1∣=a1

⋯ ∑
Ar⊆Cr

∣Ar ∣=ar

q0(
r

⋃
j=1

Aj) ∏
j∈B

χj(Aj) ∏
j∈[r]∖B

(1 −χj(Aj)) .

By (10) the right-hand side of this expression becomes

∑
B⊆[r]

ψ(B) ∑
a∈Tk

c0(a) ∑
A1⊆C1

∣A1∣=a1

⋯ ∑
Ar⊆Cr

∣Ar ∣=ar

r

∏
j=1

q
Cj

0 (Aj) ∏
j∈B

χj(Aj) ∏
j∈[r]∖B

(1 − χj(Aj)),

or equivalently,

∑
a∈Tk

c0(a) ∑
B⊆[r]

ψ(B) ∏
j∈B

⎛
⎝ ∑

Aj⊆Cj

∣Aj ∣=aj

q
Cj

0 (Aj)χj(Aj)
⎞
⎠ ∏

j∈[r]∖B

⎛
⎝ ∑

Aj⊆Cj

∣Aj ∣=aj

q
Cj

0 (Aj) (1−χj(Aj))
⎞
⎠
.

Since we have ∑Aj⊆Cj ,∣Aj ∣=aj
q
Cj

0 (Aj) = 1 for any aj in {1, . . . , nj}, we immediately
obtain

Sn−k = ∑
a∈Tk

c0(a) ∑
B⊆[r]

ψ(B) ∏
j∈B

S
j

nj−aj
∏

i∈[r]∖B
(1 − Sj

nj−aj
) ,

where, by (8), the inner sum is precisely ψ̂(S1

n1−a1
, . . . , S

r

nr−ar
). �

It is clear that Theorem 2 is not really useful for small systems whose signatures
can be computed easily. However, we now give a small example to show how
Formula (11) can be applied.
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Example 3. Consider the six-component system indicated in Figure 1, for which
we intend to compute the tail structural signature. Consider also the partition
C = ({1,2},{3,4,5,6}) associated with the modular decomposition whose organizing
structure function is given by ψ(z1, z2) = z1z2. The tail signatures of the modules
are respectively given by

S
1 = (1,1,0), S

2 = (1,1/2,0,0,0).
We have S0 = 1 by definition and, using Formula (11), we obtain

S1 = c0(2,3)S
1

0 S
2

1 + c0(1,4)S
1

1 S
2

0 = 2/3

S2 = c0(2,2)S
1

0 S
2

2 + c0(1,3)S
1

1 S
2

1 + c0(0,4)S
1

2 S
2

0 = 4/15.
We also obtain S3 = S4 = S5 = S6 = 0.

2

1

3 4

6

5r r

Figure 1. A six-component system

Interestingly, we immediately observe that the right-hand side of (11) can be
interpreted as an expected value with respect to the distribution defined by the
function c0 over Tk, namely the multivariate hypergeometric distribution. Note
that (11) can also be regarded as the law of total probability for a system whose
components have i.i.d. lifetimes (see, in a more general setting, Proposition 10
and Remark 5). This observation provides a sound, but heuristic, explanation of
Theorem 2. We give however a more general and formal proof of the theorem,
allowing a straightforward extension to the general case of probability signatures
(see Theorem 9).

Theorem 2 immediately yields the following corollary.

Corollary 4. The structural signature of a system with a modular decomposi-
tion does not change when one modifies the modules without changing their struc-
tural signatures. In particular, the structural signature can be computed from the
structural signatures of the modules without the explicit knowledge of the structures
χ1, . . . , χr of the modules.

Example 5. Suppose that the system consists of r serially connected modules
(hence ψ(z) = ∏r

j=1 zj). Then, by (11) we see that Sn−k is given by the hypergeo-
metric convolution product

Sn−k = ∑
0⩽aj⩽nj

a1+⋯+ar=k

(n1

a1
)⋯(nr

ar
)

(n
k
)

r

∏
j=1

S
j

nj−aj
.

We also obtain the following dual version of Theorem 2 in which the tail signa-
tures are replaced by the cumulative signatures. Recall that the dual of a structure
function χ∶{0,1}m → {0,1} is the structure function χd∶{0,1}m → {0,1} defined by
χd(x) = 1 − χ(1 − x), where 1 = (1, . . . ,1).
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Theorem 6. For every semicoherent system (C,ϕ) with a modular decomposition
into r disjoint modules (Cj , χj), j = 1, . . . , r, connected according to a semicoherent
structure ψ, we have

(12) Sn−k = ∑
a∈Tk

c0(a) ψ̂d(S1
n1−a1

, . . . , S1
nr−ar

) .

Proof. By definition of ψd we have ψ̂d(z1, . . . , zr) = 1 − ψ̂(1 − z1, . . . ,1 − zr), for all
z1, . . . , zr ∈ [0,1], and therefore we have

ψ̂d(S1
n1−a1

, . . . , Sr
nr−ar

) = 1 − ψ̂(1 − S1
n1−a1

, . . . ,1 − Sr
nr−ar

)

= 1 − ψ̂(S1

n1−a1
, . . . , S

r

nr−ar
).

The right-hand side of (12) becomes

∑
a∈Tk

c0(a) (1 − ψ̂(S
1

n1−a1
, . . . , S

r

nr−ar
)) ,

and the result follows from Theorem 2 since the restriction of the function c0 to Tk
is a probability distribution. �

Example 7. Suppose that the system consists of r modules connected in parallel
(hence ψd(z) = ∏r

j=1 zj). Then, by (12), we see that Sn−k is given by the hyperge-
ometric convolution product

Sn−k = ∑
0⩽aj⩽nj

a1+⋯+ar=k

(n1

a1
)⋯(nr

ar
)

(n
k
)

r

∏
j=1

Sj
nj−aj

.

3. Modular decomposition of the probability signature

We now analyze the problem of modular decomposition for the probability signa-
ture. Recall that the probability signature of a system S = (C,ϕ,F ) is the n-tuple
p = (p1, . . . , pn) whose k-th coordinate is the probability pk = Pr(TS = Tk∶n). As
already mentioned, p depends on F and in general does not coincide with the
structural signature s.

It was shown in [6] that the dependence of p on the c.d.f. F is captured by the

relative quality function q∶2[n] → [0,1] associated with F . This function is defined
by

(13) q(A) = Pr (max
i∉A

Ti <min
i∈A

Ti), A ⊆ C,

with the convention that q(∅) = q(C) = 1 and satisfies the immediate property

(14) ∑
∣A∣=k

q(A) = 1, 0 ⩽ k ⩽ n.

It was shown [6] that, if F is absolutely continuous (actually the assumption that
F has no ties is sufficient), then

(15) pk = ∑
∣A∣=n−k+1

q(A)ϕ(A) − ∑
∣A∣=n−k

q(A)ϕ(A) .

We clearly see that (15) reduces to (1) whenever q is a symmetric function, i.e.,
q(A) = 1/( n

∣A∣) = q0(A), and this property holds when the component lifetimes are

exchangeable.
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In the general dependent case, we naturally introduce the tail probability signa-
ture of the system as the (n + 1)-tuple P = (P 0, . . . , Pn) defined by Pn = 0 and

P k =
n

∑
i=k+1

pi = Pr(TS > Tk∶n) , 0 ⩽ k ⩽ n − 1.

Just as for the structural signature, the probability signature can be recovered by
using the formula pk = P k−1 − P k, for k ∈ [n].

According to (15), the analog of (5) for the probability signatures is

(16) P k = ∑
A⊆C
∣A∣=n−k

q(A)ϕ(A), 0 ⩽ k ⩽ n .

Similarly, the cumulative probability signature of the system is the (n + 1)-tuple
P = (P0, . . . , Pn) defined by Pk = 1 − P k = ∑k

i=1 pi = Pr(TS ⩽ Tk∶n) for 0 ⩽ k ⩽ n.
As in the previous section we consider systems that are partitioned into mod-

ules. Thus, we have a partition C = {C1, . . . ,Cr} of the set of components and the
components in each Cj are connected according to a semicoherent structure χj .

We now define the tail and cumulative probability signatures of module (Cj , χj ,Gj),
which we denote by P

j
and Pj , respectively. We denote by qCj the relative quality

function associated with Cj obtained from the marginal distribution Gj ; that is,

qCj(A) = Pr ( max
i∈Cj∖A

Ti <min
i∈A

Ti) , A ⊆ Cj .

Applying (16) in module (Cj , χj ,Gj) we then obtain

P
j

k = 1 − P j
k = ∑

A⊆Cj

∣A∣=nj−k

qCj(A)χj(A) , 0 ⩽ k ⩽ nj .

Since the probability signatures depend on the distribution of lifetimes, we can-
not expect to obtain an extension of Theorem 2 to the case of probability signa-
tures without any assumption on the function F . Since the signatures depend on
F through the relative quality functions q and qCj only, it is natural to impose
a condition on these functions only. This can be done by extending (10) to the
relative quality functions as follows.

Definition 8. Given a partition C = {C1, . . . , Cr} of C, we say that the relative
quality function q is C-decomposable if there exists a function c ∶∏r

i=1{0, . . . , ni}→ R
such that

(17) q(A) = c(∣A ∩C1∣, . . . , ∣A ∩Cr ∣)
r

∏
j=1

qCj(A ∩Cj) , A ⊆ C .

Remark 4. We observe from Definition 8 that the C-decomposability of q depends
only on the partition C = {C1, . . . ,Cr} and the function F (through the functions
q and qCj ) but not on the structures of the system and its modules. Moreover,
the corresponding function c is completely determined by the functions q and qCj

(j = 1, . . . , r). Indeed, given any r-tuple (a1, . . . , ar), such that 0 ⩽ aj ⩽ ∣Cj ∣, by (17)
we have

c(a1, . . . , ar) =
q(A1 ∪⋯ ∪Ar)
∏r

j=1 q
Cj(Aj)
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whenever the subsets Aj ⊆ Cj are such that ∣Aj ∣ = aj and qCj(Aj) ≠ 0 for j = 1, . . . , r.
To see that such subsets Aj exist, just observe that Eq. (14) still holds when q is
replaced with qCj .

At first glance, the condition given in Definition 8 might seem artificial and rarely
satisfied in applications. However, we will show that in a sense this condition is
not only sufficient (Theorem 9) but also necessary (Theorem 12) for the modular
decomposition of the probability signature to hold. We will also provide in Section
4 a few examples in which this condition follows from natural assumptions.

We now state the extension of Theorem 2 to probability signatures. Under the
assumption that function q is C-decomposable, this result gives an explicit expres-
sion of the tail probability signature P in terms of the tail probability signatures

P
1
, . . . ,P

r
of the modules.

Theorem 9. Assume that the relative quality function q associated with a distri-
bution F is C-decomposable for some partition C = {C1, . . . ,Cr} of C. Then, for
every semicoherent system (C,ϕ,F ) with a modular decomposition into r disjoint
modules (Cj , χj ,Gj), j = 1, . . . , r, connected according to a semicoherent structure
ψ∶{0,1}r → {0,1}, we have

(18) Pn−k = ∑
a∈Tk

c(a) ψ̂(P 1

n1−a1
, . . . , P

r

nr−ar
), 0 ⩽ k ⩽ n.

Proof. The proof is exactly the same as that of Theorem 2, except that q0 and c0
must be replaced with q and c, respectively, and Eq. (10) with Eq. (17). �

To obtain Theorem 6, the dual version of Theorem 2, we have used the fact that
the restriction of function c0 to each set Tk is a probability distribution (namely
the multivariate hypergeometric distribution). The following result shows that the
restriction of function c to each set Tk is also a probability distribution whenever
the relative quality function q is C-decomposable for some partition C.

For every k ∈ {0, . . . , n} and every a ∈ Tk we introduce the following event:

Ek,a = (among the first n − k failed components, there are exactly(19)

nj − aj components in Cj for all j ∈ [r]).

We observe that Ek,a is also the following event: (among the best k components,
there are exactly aj components in Cj for all j ∈ [r]).

Proposition 10. Assume that the relative quality function q is C-decomposable for
some partition C = {C1, . . . ,Cr} of C. Then, for each k ∈ {0, . . . , n} the restriction
of function c to Tk is a probability distribution. More precisely, for every a ∈ Tk,
c(a) is exactly the probability Pr(Ek,a).

Proof. Since q(A) is the probability that the best ∣A∣ components are precisely
those in A, we must have

(20) Pr(Ek,a) = ∑
A⊆C∶ ∣A∩C1∣=a1,...,∣A∩Cr ∣=ar

q(A).
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Since q is C-decomposable, by (17) we have

Pr(Ek,a) = ∑
A1⊆C1∶ ∣A1∣=a1

⋯ ∑
Ar⊆Cr ∶ ∣Ar ∣=ar

c(a)
r

∏
j=1

qCj(Aj)

= c(a)
r

∏
j=1
( ∑

Aj⊆Cj ∶ ∣Aj ∣=aj

qCj(Aj)),

where the product is 1 (apply Eq. (14) to every function qCj ). �

Remark 5. We note that a formula similar to (18) can be derived from the law of
total probability. In fact, since the events Ek,a (a ∈ Tk), as defined right before
Proposition 10, form a partition of the sample space, we have

Pn−k = Pr(Ek) = ∑
a∈Tk

Pr(Ek ∣ Ek,a) Pr(Ek,a),

where

Ek = (T > Tn−k∶n)
= (The system is still surviving after the first (n − k) component failures).

On the one hand, we saw in (20) that Pr(Ek,a) is a sum of q values and reduces to
c(a) under the C-decomposability of q (Proposition 10). On the other hand, one
can show that, under the conditional independence of the events (TCj > Tn−k∶n),
j = 1, . . . , r, given Ek,a, where TCj is the lifetime of module (Cj , χj ,Gj), we obtain

(21) Pr(Ek ∣ Ek,a) = ψ̂(Pr(TC1 > Tn−k∶n ∣ Ek,a), . . . ,Pr(TCr > Tn−k∶n ∣ Ek,a)).
Finding general conditions under which the probability Pr(TCj > Tn−k∶n ∣ Ek,a)
reduces to P j,nj−aj remains an interesting open question.

We now provide the dual form of Theorem 9, that is the extension of Theorem 6
to the probability signatures. The proof is similar to that of Theorem 6 and thus
is omitted.

Theorem 11. Assume that the relative quality function q associated with a distri-
bution F is C-decomposable for some partition C = {C1, . . . ,Cr} of C. Then, for
every semicoherent system (C,ϕ,F ) with a modular decomposition into r disjoint
modules (Cj , χj ,Gj), j = 1, . . . , r, connected according to a semicoherent structure
ψ∶{0,1}r → {0,1}, we have

(22) Pn−k = ∑
a∈Tk

c(a) ψ̂d(P 1
n1−a1

, . . . , P r
nr−ar

) .

We end this section by showing that in a sense the C-decomposability of q is
necessary for the modular decomposition of the probability signature to hold.

Theorem 12. Consider a partition C = {C1, . . . ,Cr} of C and a distribution F of
the component lifetimes. Assume that there exists a function γ∶∏r

j=1{0, . . . , nj}→ R
such that, for every semicoherent system (C,ϕ,F ) with a modular decomposition
into r disjoint modules (Cj , χj ,Gj), j = 1, . . . , r, connected according to a semico-
herent structure ψ∶{0,1}r → {0,1}, we have

(23) Pn−k = ∑
a∈Tk

γ(a) ψ̂(P 1

n1−a1
, . . . , P

r

nr−ar
) .

Then the relative quality function q associated with F is C-decomposable.
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Proof. Let us consider a subset B of the set of components C and try to decompose
q(B). The key observation is that the relative quality function is determined by
the tail signature of appropriate systems. Those systems are only semicoherent.

If B is empty, then q(B) = 1 (by definition) and, since B ∩ C1, . . . ,B ∩ Cr are
also empty, we have qCj(B ∩Cj) = 1. Therefore we can set c(0, . . . ,0) = 1.

If B is nonempty, then so is the set mB = {j ∈ [r] ∶ B ∩ Cj /= ∅}. For every
j ∈mB , let us form the module (Cj , χj ,Gj), where χj ∶2Cj → {0,1} is defined by

χj(D) = {
1, ifD ⊇ B ∩Cj ,
0, otherwise.

In other words, the pseudo-Boolean function χj ∶ {0,1}nj → R is given by

χj(y1, . . . , ynj
) = ∏

k∈B∩Cj

yk.

It is semicoherent since B ∩Cj is nonempty.
Now, let us connect these modules in series to obtain a structure ϕ that is also

semicoherent (this means that we consider ψ(z1, . . . , zr) =∏j∈mB
zj). Actually, the

function ϕ is nothing other than the set function ϕB ∶2C → {0,1} defined by

ϕB(D) = {
1, ifD ⊇ B,
0, otherwise.

Now, we compute the tail probability signatures of such functions using the formula

Pn−k = ∑
A⊆C
∣A∣=k

q(A)ϕ(A) .

It follows that for 0 ⩽ k < ∣B∣, we have Pn−k = 0. Moreover, setting k = ∣B∣, we have

Pn−k = Pn−∣B∣ = ∑
A⊆C
∣A∣=∣B∣

q(A)ϕB(A) = ∑
A⊇B
∣A∣=∣B∣

q(A)ϕB(A) = q(B).

We obtain the same results for the module signatures: for every j ∈ mB , we have

P
j

nj−k = 0 for 0 ⩽ k < ∣B ∩Cj ∣ and

P
j

nj−∣B∩Cj ∣ = qCj(B ∩Cj).

Now, applying formula (23) to the system (C,ϕ,F ) with k = ∣B∣ leads to

(24) q(B) = ∑
a∈T∣B∣

γ(a) ψ̂(P 1

n1−a1
, . . . , P

r

nr−ar
) = ∑

a∈T∣B∣
γ(a) ∏

j∈mB

P
j

nj−aj
.

We notice that the latter sum contains only one nonzero term. Indeed, by definition
we have

T∣B∣ = {a = (a1, . . . , ar) ∈ Nr ∶ 0 ⩽ aj ⩽ nj for j = 1, . . . , r and ∑r
j=1 aj = ∣B∣}

but in Eq. (24) the product corresponding to an a ∈ T∣B∣ is zero unless aj ⩾ ∣B∩Cj ∣ =
bj for all j ∈ mB , and we obviously have aj ⩾ bj for j /∈ mB . Taking the condition

∑r
j=1 aj = ∣B∣ into account, the only term that does not vanish corresponds to aj = bj

for all j ∈mB, and aj = 0 = bj for every j /∈mB , which yields

q(B) = γ(b1, . . . , br) ∏
j∈mB

qCj(B ∩Cj) = γ(b1, . . . , br)
r

∏
j=1

qCj(B ∩Cj)

and thus completes the proof. �
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The fact that C-decomposability of q is both necessary and sufficient to ensure
the modular decomposition of the probability signature motivates the following
definition, which extends the concept of modular decomposition to the general
non-i.i.d. case.

Definition 13. We say that a semicoherent system (C,ϕ,F ) is decomposable if,
for some partition C = {C1, . . . ,Cr} of C with 1 < r < n,

(i) the structure ϕ∶{0,1}n → {0,1} has a modular decomposition into r disjoint
semicoherent modules (Cj , χj ,Gj), j = 1, . . . , r, and

(ii) the function q is C-decomposable.

We note that Theorem 9 gives a very compact and quite explicit formula for the
tail probability signature of a decomposable system.

4. Applications and interpretations

The results obtained in the previous sections require some comments in terms
of applications and interpretations. In this section we first show the impact of
our main theorems through a few natural examples. Then, observing that the C-
decomposability of function q is a key property in the main results, we show its
relevance by providing some natural situations where it holds (without requiring
that q is symmetric) and give a possible interpretation of it as a form of indepen-
dence.

4.1. Applications of the main theorems. In addition to Examples 5 and 7, we
give here a few more examples of how the main theorems can be applied in usual
situations. For the sake of simplicity, we focus here on the structural signature.

Example 14. Let (C1, χ1),...,(Cr, χr) be r modules consisting of serially connected

components. The tail structural signature of (Cj , χj) is given by S
j

0 = 1 and S
j

l = 0
for 1 ⩽ l ⩽ nj and 1 ⩽ j ⩽ r. We observe that the tuples S

j
are Boolean. Therefore,

in Formula (11) we can use ψ in place of ψ̂ and we obtain

Sn−k = ∑
a∈Tk

(n1

a1
)⋯(nr

ar
)

(n
k
)

ψ(1{a1=n1}, . . . ,1{ar=nr}) , 0 ⩽ k ⩽ n,

where 1{p} denotes the truth value of proposition p.
Recalling (9), this formula can also be written as

Sn−k = ∑
a∈Tk

(n1

a1
)⋯(nr

ar
)

(n
k
)

∑
B⊆[r]

ψ(B)∏
j∈B

1{aj=nj} ∏
j∈[r]∖B

1{aj<nj}.

As a special case, assume that the modules are connected in parallel. Then ψ is
the maximum function and we obtain

Sn−k = ∑
a∈Vk

(n1

a1
)⋯(nr

ar
)

(n
k
)

,

where Vk = {a ∈ Tk ∣ aj = nj for some j ∈ [r]}.



14 JEAN-LUC MARICHAL, PIERRE MATHONET, AND FABIO SPIZZICHINO

We can extend the previous example by considering modules of kj-out-of-nj
type.5

Example 15. For each j ∈ [r], let (Cj , χj) be a kj-out-of-nj system, with 1 ⩽
kj ⩽ nj , and let ψ be the organizing structure function of these modules. The tail

structural signature of (Cj , χj) is then given by S
j

l = 1 if 0 ⩽ l < kj and S
j

l = 0
otherwise. Using Theorem 2, we obtain (as in Example 14)

Sn−k = ∑
a∈Tk

(n1

a1
)⋯(nr

ar
)

(n
k
)

ψ(1{a1>n1−k1}, . . . ,1{ar>nr−kr}) , 0 ⩽ k ⩽ n.

When the modules are connected in parallel, ψ is the maximum function and we
obtain

Sn−k = ∑
a∈Vk

(n1

a1
)⋯(nr

ar
)

(n
k
)

,

where this time Vk = {a ∈ Tk ∣ aj > nj − kj for some j ∈ [r]}.

We observe that formulas in Examples 14 and 15 also hold for the tail probability
signatures whenever the relative quality function is decomposable for the consid-
ered partition, up to replacement of the multivariate hypergeometric coefficients
(n1

a1
)⋯(nr

ar
)/(n

k
) by the coefficients c(a1, . . . , ar) associated with the decomposition

of q.
Different papers, starting from [5], have shown that stochastic comparisons be-

tween lifetimes of two systems can be established in terms of their signatures. These
results can be combined with ours in different forms. In the following example we
consider the analysis of redundancy.

Example 16. We consider a coherent structure χ∶{0,1}n → {0,1} and two disjoint
sets of components C ′ and C ′′, each containing n components. The components
are assumed to have i.i.d. lifetimes.

Having at our disposal the two sets C ′ and C ′′, we can build redundant struc-
tures. A classical problem amounts to determining the optimal way to arrange
redundancies. In particular one can compare redundancy at system level with re-
dundancy at component level. More formally, starting from χ, let us consider the
two structures ϕ1, ϕ2∶{0,1}2n → {0,1} defined as follows for x,y ∈ {0,1}n:

ϕ1(x,y) =max(χ(x), χ(y)) and ϕ2(x,y) = χ(max(x1, y1), . . . ,max(xn, yn)).

It is a well-known fact (see e.g. [1]) that the structure ϕ2 is more reliable than
ϕ1. Our arguments can allow us to obtain some more detailed results along this
direction. In fact, once the signatures of ϕ1 and ϕ2 have been computed, results
presented in [5] can be applied to obtain different stochastic comparisons between
the lifetimes associated with ϕ1 and ϕ2.

Let S = (S0, . . . , Sn) denote the cumulative signature associated with χ. We
now apply Theorem 6 to compute the cumulative signatures associated with ϕ1
and ϕ2. For the first one, the structure inside each module is χ and the modules
are connected in parallel. Thus the organizing function ψ in Theorem 6 is the

5Recall that a k-out-of-n system is an n-component system that is in a failed state if and only

if at least k components are in a failed state (such a system is also referred to as a k-out-of-n∶F
system). In particular a series system is a 1-out-of-n system.
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maximum function (in two variables), whose dual ψd is the minimum function. We

thus have ψ̂d(s, t) = s t for s, t ∈ [0,1], and obtain the formula

S
(1)
2n−k =

min(n,2n−k)

∑
a=max(0,n−k)

(n
a
)( n

2n−k−a)
(2n
k
)

SaS2n−k−a , 0 ⩽ k ⩽ 2n.

For the second one, the structure inside each module is parallel, so the associated
cumulative structural signature is Sj = (0,0,1) for j = 1, . . . , n. Moreover the
modules are connected according to χ. Therefore we have

S
(2)
2n−k = ∑

a∈Tk

( 2
a1
)⋯( 2

an
)

(2n
k
)

χd(1{a1=0}, . . . ,1{an=0}) , 0 ⩽ k ⩽ 2n.

4.2. On the C-decomposability of the relative quality function. We examine
some natural cases where the relative quality function q is C-decomposable for some
partition C = {C1, . . . ,Cr}.

The conditions on the probability distribution of lifetimes for q to be C-decompo-
sable express through a finite number of consistent equations on the values of the
functions q and qCj . It is known that the values of these functions depend on
the distribution of lifetimes only through the values pσ = Pr(Tσ(1) < ⋯ < Tσ(n))
(σ ∈ Sn), where Sn is the set of permutations on [n]. In fact we have (see [6])

q(A) = ∑
σ∈Sn ∶{σ(n−∣A∣+1),...,σ(n)}=A

pσ

and a similar formula can be derived for qCj (see Example 21).
Therefore, (17) is a set of conditions on the values pσ (σ ∈ Sn). Every fam-

ily (pσ ∶ σ ∈ Sn) satisfying (17) provides infinitely many distributions of lifetimes
for which q is C-decomposable: C-decomposability holds regardless of the prob-
ability laws L(T1, . . . , Tn ∣ Tσ(1) < ⋯ < Tσ(n)). Clearly, setting pσ = 1/n!, the

functions q and qCj (j = 1, . . . , r) reduce to q0 and q
Cj

0 , respectively, and hence q
is C-decomposable. We thus have an infinite family of distributions of lifetimes for
which q is C-decomposable. This family subsumes the i.i.d. and exchangeable cases.

Let us now consider situations where the relative quality function q may be
different from q0 and is C-decomposable for some partition C = {C1, . . . ,Cr}.

Definition 17. We say that the function q∶2C → R is C-symmetric for a partition
C = {C1, . . . , Cr} if q(A) = q(B) for every A,B ⊆ C such that ∣A ∩Cj ∣ = ∣B ∩Cj ∣ for
every j ∈ [r].

In other terms, q is C-symmetric if and only if q(A) depends on A only through
the numbers ∣A ∩C1∣, . . . , ∣A ∩Cr ∣.

Proposition 18. If the function q is C-symmetric for some partition C = {C1, . . . ,Cr}
and the functions qCj are symmetric for j = 1, . . . , r, then q is C-decomposable.

Proof. Under the assumptions of the proposition, we have qCj(B) = 1/(nj

∣B∣) for all
B ⊆ Cj and all j ∈ [r]. Hence (17) holds since the expression

q(A)
∏r

j=1 q
Cj(A ∩Cj)

= q(A)
r

∏
j=1
( nj
∣A ∩Cj ∣

) , A ⊆ C ,

depends only on the r-tuple (∣A ∩C1∣, . . . , ∣A ∩Cr ∣). �
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The special case where the functions q and qCj (j = 1, . . . , r) are symmetric is
presented in the next corollary.

Corollary 19. If q and qCj (j = 1, . . . , r) are symmetric, then q is C-decomposable
for every partition C = {C1, . . . ,Cr} and we have

(25) c(a) =
(n1

a1
)⋯(nr

ar
)

( n
a1+⋯+ar

)
.

The following example shows that the assumptions of Proposition 18 do not
imply those of Corollary 19. Similarly, as already mentioned, the assumptions of
Corollary 19 do not imply that the component lifetimes are i.i.d. or exchangeable.

Example 20. Let us consider a system made up of three components, with lifetimes
T1, T2, T3, such that for every permutation σ on {1,2,3}, we have

Pr(Tσ(1) < Tσ(2) < Tσ(3)) = {
1/4 if σ(3) = 3,
1/8 otherwise.

Let us show that the function q is C-symmetric for the partition C = ({1,2},{3}).
We have

q({1}) = Pr(T2 < T3 < T1) +Pr(T3 < T2 < T1) =
1

4
.

Similarly, q({2}) = 1/4, q({3}) = 1/2, and q({1,3}) = q({2,3}) = 3/8. We also have

q{1,2}({1}) = Pr(T2 < T1) =
1

2
= Pr(T1 < T2) = q{1,2}({2}).

It follows that the assumptions of Proposition 18 are satisfied. However, q is not
symmetric.

Let us now show that the assumptions of Proposition 18 are not necessary for q
to be C-decomposable. In the next example the function q is C-decomposable for a
given partition C but it is not C-symmetric.

Example 21. Let us consider a system made up of three components, with lifetimes
T1, T2, T3, such that for every permutation σ on {1,2,3}, we have

Pr(Tσ(1) < Tσ(2) < Tσ(3)) = {
2/9 if σ−1(1) < σ−1(2),
1/9 otherwise.

In other words, we have Pr(Tσ(1) < Tσ(2) < Tσ(3)) = 2/9 if and only if the event
(Tσ(1) < Tσ(2) < Tσ(3)) is included in the event (T1 < T2).

We consider the partition C = ({1,2},{3}). By using the definitions of functions

q and q{1,2}, we obtain for instance

q({1}) = Pr(T2 < T3 < T1) +Pr(T3 < T2 < T1) =
2

9
and

q{1,2}({1}) = Pr(T2 < T1 < T3) +Pr(T2 < T3 < T1) +Pr(T3 < T2 < T1) =
1

3
.

Similarly, we obtain the following values:

q({1}) = q({1,3}) = 2

9
, q({3}) = q({1,2}) = q{1,2}({1}) = 1

3
,

q({2}) = q({2,3}) = 4

9
, q{1,2}({2}) = 2

3
.
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It is then easy to see that the function q is C-decomposable for the partition C =
({1,2},{3}) by showing that (17) is satisfied. For instance, we must have

q({1}) = c(1,0) q{1,2}({1}) q{3}(∅)

and

q({2}) = c(1,0) q{1,2}({2}) q{3}(∅),
which are satisfied when c(1,0) = 2/3. However, q is not C-symmetric since we have
q({1}) = 2/9 and q({2}) = 4/9.

Several results obtained in reliability theory require the independence of the
component lifetimes. Since our results are based on the C-decomposability of q,
it is natural to interpret this property as a weak form of independence. In this
respect, we have the following result, which makes use of the events Ek,a defined in
(19).

Proposition 22. Let C = {C1, . . . ,Cr} be a partition of C. Then q is C-decomposable
if and only if, for every A ⊆ C, we have Pr(Ek,a) = 0 (with k = ∣A∣ and aj = ∣A∩Cj ∣)
or

Pr (max
i∉A

Ti <min
i∈A

Ti ∣Ek,a) =
r

∏
j=1

qCj(A ∩Cj).

Proof. On the one hand, by Proposition 10, q is C-decomposable if and only if

q(A) = Pr(Ek,a)
r

∏
j=1

qCj(A ∩Cj) , A ⊆ C .

On the other hand, we always have

q(A) = Pr(Ek,a) Pr (max
i∉A

Ti <min
i∈A

Ti ∣Ek,a) , A ⊆ C ,

which completes the proof. �

Proposition 22 says that q is C-decomposable if and only if, for every A ⊆ C,
if Pr(Ek,a) ≠ 0 (with k = ∣A∣ and aj = ∣A ∩ Cj ∣), then the probability that the
best k components are precisely those in A knowing that among them there are
exactly aj components in Cj , j ∈ [r], factorizes as the product over j ∈ [r] of the
probabilities that the best aj components in Cj are precisely those in A∩Cj . Thus,
the C-decomposability of q turns out to be a form of independence.

5. Conclusion

The main purpose of this paper is to analyze the computation of the signature
of a system decomposed into disjoint modules in terms of the signatures of these
modules. This problem was considered recently in [3] and independently in [4] in
the special case of a 2-module system with i.i.d. or exchangeable lifetimes, that is,
for the structural signature. We provide here the most general result for computing
the structural signature of an arbitrary system decomposed into disjoint modules
in terms of the corresponding module signatures (Theorem 2), thus fully answering
the question raised in [3] and [4]. We observe that our derivations are substantially
based on formula (1). Such a formula, which was first pointed out in [2], ties the
concept of structural signature with the family of path sets, which constitutes a
classical tool in the reliability analysis of coherent systems. In fact, formula (1)
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shows that only the numbers of the path sets of the different sizes are relevant in
the computation of the tail structural signature.

This general answer is further extended to the general non-i.i.d. case in Theo-
rem 9 for the computation of the probability signature of the system in terms of
the probability signatures of the modules. In this general case one cannot expect to
obtain a general decomposition result that would hold without any assumption on
the distribution of the lifetimes. This is why we introduce here a concept of factor-
ization for the quality function associated with a system decomposed into disjoint
modules (Definition 8). This concept might be seen as a special notion of partial
exchangeability defined in terms of the relative quality function q. Even though
this property may seem artificial or unnatural at first glance, Theorems 9 and 12
together show that in a sense it is actually necessary and sufficient for decomposing
the probability signature. Finally, we present natural examples of non-exchangeable
distributions of lifetimes where this factorization condition holds.

We also note that our approach allows us to treat the general non-i.i.d. case of
arbitrary systems with proofs that are much simpler than those used in [3] to deal
with the case of 2-module systems with i.i.d. lifetimes.
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