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ABSTRACT 

Microsporum canis is the most common dermatophyte in pets and is of zoonotic importance 

but currently there is no effective vaccine available to prevent dermatophytosis. The aim of 

this work was to assess the immunogenicity and protective efficacy of secreted components 

(SC) from M. canis adjuvanted with the monophosphoryl lipid-A (MPLA), in a vaccine study 

using the guinea pig as an experimental model. Animals were vaccinated with either the SC 

adjuvanted with the MPLA, the MPLA adjuvant alone or PBS three times at two-week 

intervals, until 42 days prior to M. canis infection. A blind evaluation of dermatophytosis 

symptoms development and fungal persistence in skin was monitored weekly. The antibody 

response towards the SC and the levels of Interferon (IFN)γ and Interleukin-4 expressed in 

peripheral blood mononuclear cells were assessed along or at the end of the study period 

respectively. The animals that received MPLA had a significantly lower clinical score than 

those inoculated with PBS. However, no significant difference was observed between the 

guinea pigs vaccinated with the SC adjuvanted with the MPLA and those having received 

MPLA alone. The results also showed that vaccination induced a strong antibody response 

towards the SC and an increase in IFNγ mRNA level. Our results show that the MPLA 

adjuvant used in this vaccine study can induce per se a partial protection against a M. canis 

infection. Although they induce a delayed-type hypersensitivity reaction in guinea pigs, the 

SC do not confer a protection under the present experimental conditions.  
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INTRODUCTION 
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Microsporum canis is a filamentous fungus that causes superficial mycoses in pet animals 

(Weitzman and Summerbell, 1995; Mignon and Monod, 2011; Moriello and DeBoer, 2012). 

It is the main agent of dermatophytosis in cat, its natural host (Mignon and Losson, 1997), and 

is responsible for a frequent zoonosis (Seebacher et al., 2008). Successful treatment of 

M. canis dermatophytosis includes the use of systemic and topical antifungal agents for at 

least five weeks, confinement of the infected pet until cured and environmental 

decontamination. This makes the disease expensive and time consuming to treat and, because 

of the highly contagious nature of the disease a major problem in any animal husbandry 

situation (Moriello, 2004; Carlotti et al., 2010; Moriello and DeBoer, 2012). 

Immunoprophylaxis would present an important alternative to current control measures (Lund 

and Deboer, 2008). Several commercial and experimental vaccines against dermatophytosis 

have been developed and tested. In some cases there were encouraging results (Elad and 

Segal, 1994, 1995; Milan et al., 2004; Westhoff et al., 2010) while in other no protective 

immunity was found (DeBoer and Moriello, 1994, 1995; DeBoer et al., 2002). The exception 

is a vaccine for bovine dermatophytosis (Bovilis® Ringvac Intervet, the Netherlands). This 

vaccine, containing an attenuated strain LFT-130 Trichophyton verrucosum, has dramatically 

reduced the prevalence of dermatophyte infections in cattle and zoonotic infections in humans 

(Gudding and Naess, 1986). In cats, several attempts have been made to develop vaccines 

using characterized antigens from M. canis. The protective efficacy of a crude exo-antigen 

and two recombinant proteases, the subtilisin rSub3, a fungal endopeptidase involved in 

adherence of M. canis to human and animal epidermis (Baldo et al., 2010; Bagut et al., 2012), 

and the metalloprotease rMep3 have been tested in experimentally induced M. canis 

infections in guinea pig with inconclusive results (Descamps et al., 2003; Vermout et al., 

2004). 
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The development of safe and effective vaccines requires the use of both appropriate antigens 

and adjuvants. In dermatophytoses, the Th1 cellular immune response, associated with 

delayed-type hypersensitivity (DTH), appears to be correlated with clinical recovery and 

protection against reinfection (Almeida, 2008; Mignon et al., 2008). Consequently, the use of 

adjuvants promoting the development of a Th1 immune response appears to be of major 

importance in the set-up of an effective vaccine against dermatophytosis. The 

monophosphoryl lipid-A (MPLA) adjuvant, a toll-like receptor (TLR)-4 agonist, is able to 

promote a Th1 response (Thompson et al., 2005) and could favour a protective immunity in 

dermatophytoses. 

Recently, the secreted components (SC) from M. canis were shown to be potent activators of 

feline polymorphonuclear neutrophils by inducing the production of pro-inflammatory 

cytokines (Cambier et al., 2013). The aim of this study was therefore to assess the protective 

efficacy of the M. canis SC adjuvanted with the MPLA, using the guinea pig as an 

experimental infection model. 

 

MATERIALS AND METHODS 

Animals 

Eighteen pathogen-free three-month-old female Hartley strain guinea pigs (Charles River 

Laboratories, Wilmington, MA, USA) were used for the vaccine study. Four additional 

animals were used for DTH test. The guinea pigs were housed in group cages, however 

vaccinated and non-vaccinated controls were strictly separated during the study. This study 

was approved by the local ethics committee of University of Liège, (ethics protocol no. 1053). 

 

Production of M. canis arthroconidia and secreted components 
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Arthroconidia were produced from M. canis strain IHEM 21239 (Institute of Hygiene and 

Epidemiology-Mycology, Brussels, Belgium) using a previously described protocol (Tabart et 

al., 2007). The concentration of arthroconidia per ml was 1 × 106 as determined by serial 

dilutions on Sabouraud’s (Sab; 2% glucose/1% peptone) agar medium plates. 

The M. canis SC were obtained after growing arthroconidia in liquid Sab medium for 5 days 

at 27 °C (Cambier et al., 2013). Culture supernatant, containing SC, was separated from 

fungal elements by centrifugation, concentrated by ultrafiltration on an Amicon cell 

(Millipore, Billerica, MA, USA) using a filtration membrane with a size threshold of 10 kDa, 

dialyzed against 0.01 M PBS and stored at –20 °C until use. Protein concentrations were 

determined using the Bradford assay. The SC were subjected to 12% sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE) under reducing conditions using the method 

of Laemmli to determine the protein profile (Fig. 1). Liquid Sab medium (negative control) 

was also subjected to ultrafiltration and dialysis against 0.01 M PBS. 

 

DTH test 

Skin tests were performed in two guinea pigs 50 days after experimental infection and in two 

non-infected control animals. Ten µg of SC (100 µL) were injected intradermally at two sites 

on the flanks of animals. Both a negative (100 µL of liquid Sab medium) and a positive 

control consisting of 10 µg/100µL of a M. canis antigen known to induce DTH in immune 

guinea pigs (Mignon et al., 1999) were also performed. The skin thickness was measured 

before and 24 h after injection with a micrometre gauge (Kulche Coppieters, Brussels, 

Belgium) and the mean relative increases in skin thickness were determined. 

 

Vaccination 
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The vaccine preparation (500 µL) contained 50 µg of SC mixed with 25 µg of MPLA 

(InvivoGen, San Diego, CA, USA) adjuvant. 

Guinea pigs were randomly allocated to one of four groups. Group 1 guinea pigs (n=6) were 

vaccinated with the SC adjuvanted with MPLA. Group 2 guinea pigs (n=6) was the negative 

control group and received a preparation (500 µL) containing 25 µg of MPLA diluted in 

liquid Sab. Two additional control groups (groups 3 and 4), each consisting of three guinea 

pigs, received 500 µL of PBS only. Animals were vaccinated subcutaneously three times at 

two-week intervals (on days −70, −56 and −42) before challenge infection. 

 

Challenge infection 

On day 0 (42 days from the last vaccination) guinea pigs from groups 1, 2, and 3 were 

experimentally infected under general anaesthesia [medetomidine (500 µg/kg) and ketamine 

(40 mg/kg)] with M. canis while the animals from group 4 remained uninfected and served as 

a negative control of infection. The skin on the dorsum was shaved, gently abraded with a 25 

G needle, and 250-µL inoculum containing 3 × 105 M. canis arthroconidia suspended in 5% 

(w/w) poloxamer 407 was applied to 15-cm2 area of skin. Guinea pigs from group 4 were 

inoculated with 250 µL of poloxamer only.  

 

Clinical and mycological follow-up 

Infection sites were monitored weekly and evaluated clinically using four criteria: alopecia, 

erythema, scaling and crusts. The same investigator scored each animal and was blinded to 

the treatment groups. Each clinical criterion was evaluated on a scale of 0 to 3. Infection sites 

were examined with a Wood’s lamp and given a score of 0 (no fluorescence on hairs) or 1 

(positive fluorescence). M canis infections were confirmed by microscopic examination of 
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fluorescent hairs. A global score was calculated for each guinea pig by adding the clinical and 

fluorescence scores. Finally, a mean global score was calculated for each group. 

 

Histology 

At day 17 post-infection (PI), biopsy specimens were collected under general anaesthesia 

from one randomly selected guinea pig in each group. The selected animal showed clinical 

signs consistent with dermatophytosis. Samples were fixed in 10% neutralised buffered 

formalin and paraffin embedded for routine processing. To assess the invasion of keratinized 

skin structures by M. canis, 4-µm thick sections were stained with periodic acid-Schiff. The 

histopathological lesions were assessed using a routine haematoxylin-eosin staining. 

 

Antibody response 

In groups 1 and 2, blood samples (250 µL) were collected from the saphenous vein on days 

−70, −56, −42 and at two week intervals from day 0 to day 56 PI. The serum samples were 

obtained by centrifugation and stored at −20 °C until used. 

An enzyme-linked immunosorbent assay (ELISA) was performed in the vaccinated and 

control groups. All assays were performed in one batch at the end of the study period. The 

antigens consisting of the M. canis SC, positive and negative reference antisera and rabbit 

anti-guinea pig immunoglobulins (Ig) were appropriately diluted after standard checkerboard 

titration. 96-well ELISA microplates (MICROLON® 600 High binding, Greiner Bio-One, 

Frickenhausen, Germany) were coated with 100 µL per well of 2.5 µg/mL SC diluted in PBS 

(pH 7.2) and incubated for 1 h at 37 °C. Odd-numbered rows were sensitized with the 

antigens while even-numbered rows remained free of antigen (control wells). After washing 

with PBS, unoccupied protein-binding sites were blocked by the addition of 200 μL per well 

of dilution buffer consisting of a 3.6% solution of casein hydrolysate (Merck, Whitehouse 
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Station, NJ, USA) in PBS containing 0.1% Tween 20 (PBS-T) for 1 h at 37 °C. Triplicate 

serum samples were diluted 1:100 in the dilution buffer and 100 µL of each was added for 1 h 

at 37 °C to both the antigens-coated and control wells. After washing four times with PBS-T, 

100 µL of horseradish-peroxidase-conjugated rabbit anti-guinea pig Ig (Polyclonal Anti-

Guinea Pig Immunoglobulins/HRP, Dako, Glostrup, Denmark) diluted 1:1000 in dilution 

buffer was added to each well. After a further-1-h incubation period at 37 °C and three 

subsequent washes with PBS-T, peroxidase activity was revealed by addition of 100 μL of a 

solution containing tetramethylbenzidine and hydrogen peroxide. The reaction was stopped 

after 5 min by adding 100 μL of 1 N phosphoric acid and the absorbance at 450 nm was 

measured directly with a Multiscan RC spectrophotometer (Thermo Labsystems, Vantaa, 

Finland). On each ELISA plate positive and negative references were processed alongside the 

samples in triplicate. The negative reference was serum from a guinea pig prior to M. canis 

experimental infection (Mignon et al., 1999) and the positive reference was serum from the 

same guinea pig collected 14 days after infection. Optical density was defined as the 

difference between the mean absorbance for each triplicate serum sample tested and the 

control wells. 

 

Quantification of IFNγ and IL-4 mRNA levels 

On day 56 PI, three guinea pigs from groups 1, 2, 3 and 4 were anaesthetised and blood 

samples were collected by intracardiac puncture before euthanasia. Heparinised blood was 

diluted 1:4 in calcium- and magnesium-free Hank's buffered salt solution (CMF-HBSS) and 

incubated for 30 min at room temperature. Four mL of diluted blood was layered over 10 mL 

of Ficoll-Paque™ PLUS 1077 solution (Amersham Biosciences, Uppsala, Sweden) and 

centrifuged for 30 min at 400 × g. The peripheral blood mononuclear cell (PBMC) ring was 

harvested, washed twice in CMF-HBSS and suspended in 24-well cell culture plates (Greiner 
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Bio-One) at a concentration of 5 × 105 cells/mL in RPMI 1640 + GlutaMAX™ medium 

(Gibco Life Technologies, Carlsbad, CA, USA) supplemented with 10% foetal calf serum 

(Gibco Life Technologies) and 1% penicillin-streptomycin (Gibco Life Technologies). Cells 

were stimulated with 5 µg of SC or with liquid Sab medium as a negative control for 72 h at 

37 °C in a humidified atmosphere containing 5% CO2. After stimulation, the PBMCs were 

collected by centrifugation and cell pellets were stored at −80 °C until use. All experiments 

were performed in triplicate. 

Cell pellets were thawed on ice and total RNA was isolated using TRIzol® reagent 

(Invitrogen, Burlington, ON, Canada) as recommended by the manufacturer. The purified 

RNA was treated with DNase I (Invitrogen). Template cDNA was synthesized from RNA by 

reverse transcription using iScript™ cDNA Synthesis kit (Bio-Rad, Hercules, CA, USA). 

Reverse transcriptase was omitted in the control reactions. The sequences of oligonucleotide 

primers for guinea pig 18S rRNA (internal control), IFNγ and IL-4 have already been 

published (Allen and McMurray, 2003; Oh et al., 2008) and were synthesized by Eurogentec 

(Liège, Belgium) (Table 1). The quantitative PCR reactions were assembled using the iQ™ 

SYBR® Green Supermix (Bio-Rad) and subjected to the following protocol in a MiniOpticon 

System (Bio-Rad): 10 min at 95 °C and 45 cycles of 45 s at 95 °C, 45 s at 60 °C and 45 s at 

72 °C. The melting curve was performed from 45 °C to 95 °C in 1 °C/15 s increments. 

Results in terms of cycle thresholds were converted to folds 18S rRNA expression using the 

2―ΔΔCt method. The levels of cytokine mRNA in stimulated PBMCs were expressed relative 

to that in the negative control PBMCs. 

 

Statistical analysis 

The two-way analysis of variance (ANOVA) test followed by Bonferroni post hoc tests was 

used for the statistical comparison of both mean global scores and ELISA results between the 
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vaccinated and the non-vaccinated groups. It was also used for statistical comparison of DTH 

results. This test was performed with the GraphPad Prism 5.0 statistical software (GraphPad 

Software, San Diego, CA, USA). The levels of cytokine mRNA in stimulated PBMCs were 

compared with those determined in negative control PBMCs using a general linear model 

(GLM procedure of SAS; SAS Institute Inc., Cary, NC, USA). A P value of < 0.05 was 

considered as statistically significant.  

 

RESULTS 

Efficacy of the vaccine to prevent skin lesions development after M. canis challenge 

The M. canis SC inducing the production of pro-inflammatory cytokines in feline PMNs 

(Cambier et al., 2013) represent attractive antigens to test in a vaccine study. These 

components were tested for their ability to elicit DTH responses in immune guinea pigs, i.e. 

having spontaneously recovered from an experimental infection with M. canis. Animals 

injected with the SC developed a significant increase in skin thickness 24 h after injection 

(Fig. 2). A vaccine study was therefore performed in guinea pigs with the M. canis SC 

adjuvanted with the MPLA, and a clinical and mycological follow-up was realised.  

All three guinea pigs from group 3 (PBS), four of six guinea pigs from group 1 (SC + MPLA) 

and one of six guinea pigs from group 2 (MPLA) developed clinical signs consistent with 

dermatophytosis after M. canis challenge (Fig. 3). Typical skin lesions were observed at day 7 

PI and were associated with a positive Wood’s lamp and positive direct examination. Mean 

global scores accounting for clinical and fluorescence evaluations are shown in Fig. 4. Groups 

1 and 2 had a significantly lower mean global score than group 3 on days 14 and 28 PI and on 

days 14, 21 and 28 PI, respectively. No significant difference was observed between groups 1 

and 2. The application of poloxamer 407 without fungus did not produce any lesions in guinea 

pigs from group 4 (PBS, no challenge). Unlike clinical and mycological scores, histological 
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analyses performed on day 17 PI showed no obvious difference regarding to invasion of 

keratinized skin structures by M. canis between animals having received the MPLA (groups 1 

and 2) and PBS-inoculated animals (group 3) (Fig. 5a). Subjectively, inflammatory lesions did 

not differ from one group to another (Fig. 5b, c). 

 

Immune response conferred by the M. canis SC 

Both the antibody response and the expression of IFNγ and IL-4 mRNA by PBMCs were 

evaluated along or at the end of the study period respectively. 

Guinea pigs from group 1 (SC + MPLA) developed a high and rapid antibody response 

towards the M. canis SC (Fig. 6). After challenge infection, this antibody response still 

continued to increase and was maximal at the end of the experiment (day 56 PI). From day 

−42 until the end of the study, the antibody levels in guinea pigs from group 1 were 

significantly higher than those observed in animals from group 2 that received the MPLA 

adjuvant without the M. canis SC.  

The level of IFNγ mRNA was higher in group 1 than in other groups (Fig. 7). However, a 

statistically significant difference was only observed by comparing with group 3. The level of 

IL-4 mRNA increased significantly in group 1 with regard to the group 2. However, this result 

was not interpretable as the level of this cytokine was also increased in group 4 (non-infected 

animals) by comparing with groups 2 and 3.  

 

DISCUSSION 

The most remarkable and unexpected result of this vaccination study was the partial 

protective effect conferred by the MPLA adjuvant in guinea pigs exposed to a challenge 

infection with M. canis. MPLA is a detoxified form of the endotoxin lipopolysaccharide 

recognised by TLR-4 (Johnson et al., 1987) and is used as a vaccine adjuvant in humans 
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(Thoelen et al., 1998). The MPLA improves the innate immune response to bacterial 

infections by increasing the number of cells with phagocytic functions at the sites of infection, 

which in turn enhances the bacterial clearance (Romero et al., 2011). This adjuvant is also 

able to stimulate the adaptive immune response by promoting the differentiation of CD4+ T 

cells into IFNγ-producing Th1 cells in mice (Thompson et al., 2005). In dermatophytosis, the 

protective immune response is considered to be of the Th1 type and associated with a DTH 

(Almeida, 2008; Mignon et al., 2008). However, in this study, no significant increase in IFNγ 

production was observed in guinea pigs having received MPLA alone suggesting that the 

partial protection conferred by the adjuvant was not related to its capacity to stimulate the 

adaptive immune system. Recent studies have demonstrated that the innate immune system 

has adaptive characteristics and could provide protection against infections in a B-/T-cell-

independent manner (Bowdish et al., 2007; Netea et al., 2011; Quintin et al., 2012). In our 

study, MPLA could have triggered a non-specific innate immune response inducing 

protection in guinea pigs infected with M. canis. More precisely, this adjuvant could stimulate 

the cells of the innate immunity such as macrophages or polymorphonuclear neutrophils, 

allowing the elimination of the fungus.  

Although the SC produce DTH in immune guinea pigs, they did not confer an additional 

protection effect with regard to the MPLA alone, suggesting that these fungal components 

could be not protective per se. The possibility that some particular proteins from the SC of 

M. canis could be useful as specific immunogens cannot be excluded. Indeed, the M. canis SC 

consist of a mix of proteins, some of which being potentially able to negatively modulate the 

immune response. Such immunomodulatory effects have already been revealed for other 

dermatophytes, such as Trichophyton rubrum able to grow inside macrophages after 

phagocytosis (Campos et al., 2006). Therefore, the characterisation and the selection of 
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appropriate antigens from the SC appear to be of major importance in the development of a 

highly effective vaccine against M. canis.  

Vaccination induced a strong antibody response towards the SC and the production of IFNγ 

by PBMCs. Specific antibodies have been shown to be produced during M. canis (Sparkes et 

al., 1993) and other dermatophytic infections (Woodfolk et al., 1996) but no correlation has 

been observed between antibody levels and recovery from the disease. The strong antibody 

response induced by the M. canis SC could be irrelevant or even detrimental with regard to 

protection against challenge infection. The production of IFNγ in vaccinated animals is 

correlated with DTH reactions in immune guinea pigs and strengthens our hypothesis that the 

SC may contain Th1 antigens which are attractive candidates for further vaccination assays.  

In conclusion, our results show that the MPLA adjuvant can induce per se a partial protection 

against a M. canis infection in guinea pigs while the crude fungal SC do not confer protection 

in our experimental conditions. 
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Figure legends 

Figure 1: Protein profile of the Microsporum canis secreted components (SC) separated in 

12% sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Lane A, SC; 

lane B, Sabouraud medium; lane C, protein marker. The molecular weights (in kDa) are 

indicated on the right.  

 

Figure 2: Secreted components (SC) from Microsporum canis induce a strong delayed type 

hypersensitivity (DTH) reaction in guinea pigs having spontaneously recovered from an 

experimental infection. Typical DTH reactions were observed 24 h after intradermal injection 

of SC (2) in comparison with positive control (3) and Sab (1) used as negative control, in 

animals 50 days after experimental infection (b). The same antigens do not elicit obvious 

DTH reactions in naive (non-infected) guinea pigs (a). The increase in skin thickness was 

measured 24 h after injection and corresponds to the difference between values determined 24 

h after and before injection. Data are representative of two experiments (mean ± SEM) and 

are expressed in percentage (c). *P < 0.05; **P < 0.01; ***P < 0.001. 

 

Figure 3: Comparative clinical follow-up of skin lesion development in vaccinated and 

control (PBS) guinea pigs after experimental infection with Microsporum canis. Pictures were 

taken at different stages of infection. They show skin lesions from 3 guinea pigs per group. In 

both group 1 (secreted components + MPLA) and 2 (MPLA), 3 out of 6 animals were 

randomly selected for pictures. Skin lesions were subjectively more severe in guinea pigs 

inoculated with PBS (group 3) than in those having received MPLA especially at days 14 and 

28 after experimental infection. D, day post-infection are indicated on the left.  
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Figure 4: Kinetics of mean global score (± SEM) of infection in vaccinated and non-

vaccinated guinea pigs after experimental infection with Microsporum canis. A significantly 

lower mean global score was observed in group 1 (secreted components + MPLA; n=6) and 

group 2 (MPLA; n=6) with regard to the group 3 (PBS; n=3) on days 14 and 28 post-infection 

(PI) and on days 14, 21 and 28 PI, respectively. No significant difference was observed 

between group 1 and group 2 throughout the study. Mean global scores of infection were 

assessed blindly on the basis of clinical and mycological criteria. *P < 0.05; **P < 0.01; 

***P < 0.001. 

 

Figure 5: Evaluation of invasion of keratinized skin structures (a) and histopathological lesions 

(b, c) 17 days after experimental infection with Microsporum canis. Periodic acid-Schiff 

staining (a) reveals the presence of hyphae inside the hair shaft (long arrow) and the 

surrounding dermatophytic conidia (short arrow). Haematoxylin-eosin staining reveals 

significant inflammatory lesions (b) characterised by epidermal acanthosis (double arrow), 

erosions (*) and a moderate cellular infiltration in the dermis (†). Higher magnification shows 

epidermal spongiosis (c). The figure shows histological sections performed in a guinea pig 

from group 2 (MPLA). Scale bars represent 50 µm. 

 

Figure 6: Evolution of the antibody response (optical density ± SEM) assessed by enzyme-

linked immunosorbent assay (ELISA) against the Microsporum canis secreted components in 

guinea pigs from group 1 (secreted components + MPLA; n=6) and group 2 (MPLA; n=6). V: 

vaccination; C: challenge infection. *P < 0.05; **P < 0.01; ***P < 0.001 

 

Figure 7: Quantification of IFNγ and IL-4 mRNA levels in peripheral blood mononuclear 

cells (PBMCs) stimulated with the Microsporum canis secreted components (SC) in guinea 
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pigs from group 1 (SC + MPLA; n=6), group 2 (MPLA; n=6), group 3 (PBS; n=3) and group 

4 [PBS (no challenge); n=3] at day 56 post-infection. The levels of IFNγ and IL-4 mRNA in 

stimulated PBMCs were quantified by quantitative RT-PCR and expressed relative to that in 

negative control PBMCs. Data are representative of three independent experiments (mean ± 

SEM). *P < 0.05; **P < 0.01. 


