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González,10 N. Kharchenko,11 M.-F. Nieva,4,6 R.-D. Scholz,3 A. de
Koter,12,13 W.-R. Hamann,7 A. Herrero,8,9 J. Máız Apellániz,14 H.
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Abstract. The B fields in OB stars (BOB) survey is an ESO large programme collecting spec-
tropolarimetric observations for a large number of early-type stars in order to study the oc-
currence rate, properties, and ultimately the origin of magnetic fields in massive stars. As of
July 2014, a total of 98 objects were observed over 20 nights with FORS2 and HARPSpol. Our
preliminary results indicate that the fraction of magnetic OB stars with an organised, detectable
field is low. This conclusion, now independently reached by two different surveys, has profound
implications for any theoretical model attempting to explain the field formation in these objects.
We discuss in this contribution some important issues addressed by our observations (e.g., the
lower bound of the field strength) and the discovery of some remarkable objects.
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1. Magnetic fields in OB stars

Magnetic fields are one of the key factors affecting the evolution and properties of
massive stars. Yet it is only very recently that the number of magnetic OB stars known
has reached a level that allows us to evaluate the field incidence, examine the properties
of the fields, and critically test the various models that were proposed for their creation.
The picture now emerging is that relatively strong fields (above, say, 100-200 G at the
surface) are only found in a small fraction of all massive stars and that the field topology
is rather simple (dipolar, or, in some rare cases, low-order multipolar). Moreover, the
field strength is not directly linked to the stellar parameters. These characteristics are
similar to those presented by the chemically-peculiar Ap/Bp stars (Donati & Landstreet
2009). This suggests a similar origin of the field.

Despite the dramatic progress made over the last few years, the answers to some
important questions are still eluding us, e.g., the effects of fields on the internal rotational
profile and on the transport of the chemical species. Even how the field is created is
not completely settled. The magnetic field permeating the interstellar medium (ISM)
is amplified during star formation and may naturally relax into a large-scale, mostly
poloidal field emerging at the surface (e.g., Braithwaite & Spruit 2004). The similarity
between the magnetic properties of OB and Ap/Bp stars suggests that today we observe
the remnant of the field frozen-in in the ISM. However, in view of the significant fraction
of OB stars that may suffer a merger or a mass-transfer event during their evolution
(Sana et al. 2012), it cannot be ruled out that fields are created through such processes
(e.g., Wickramasinghe et al. 2014). Finally, a dynamo operating in subsurface convection
layers could produce short-lived, spatially localised magnetic structures (Cantiello &
Braithwaite 2011) that are, however, much more challenging to detect.

A better understanding of the origin and effects of magnetic fields requires the identi-
fication of additional magnetic objects (e.g., only in about ten O stars has a field been
firmly detected). This has motivated us to initiate the B fields in OB stars (BOB) survey.

2. The BOB survey

A total of 35.5 observing nights were allocated during P91-P96 as part of an ESO large
programme (191.D-0255; PI: Morel). About 20 nights are dedicated to obtain snapshot
observations of a large number of OB stars, while the remaining nights are devoted to
confirm the field detection for the candidate magnetic stars and to better characterise
the field properties for those that are firmly identified as being magnetic. Two different
state-of-the-art instruments with circular polarisation capabilities were used (with low
and high spectral resolution, respectively): FORS2 at the VLT for the fainter targets and
HARPSpol at the 3.6-m telescope at La Silla for the brighter ones. About two thirds of
the nights are scheduled on HARPSpol. As of July 2014, 20 nights of observations were
completed. Only one night (with FORS2) was lost because of bad weather.

Previously known magnetic OB stars on average appear to have rotation speeds sig-
nificantly lower than the rest of the population. We therefore mostly targeted stars with
v sin i below 60 km s−1 to enhance the probability of detecting fields. Contrary to the
MiMeS survey (Grunhut et al., these proceedings), we concentrate on normal, main-
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sequence OB stars and do not consider, e.g., Of?p, Be or Wolf-Rayet stars. The sample
is composed in roughly equal parts of O (∼40%) and B (∼60%) stars. The vast majority
are late O- and early B-type stars. BOB and MiMeS can be viewed as two complementary
surveys in the sense that there are very few targets in common.

One important aspect of our survey is that the data reduction and analysis are carried
out completely independently by two groups (one from the Argelander-Institut für As-
tronomie in Bonn and the other from the Leibniz-Institut für Astrophysik in Potsdam) to
ensure that the results are robust. The two groups process both the FORS2 and HARP-
Spol data separately, and employ different tools and analysis techniques (for details, see
Hubrig et al. 2014).

3. The occurrence of magnetic fields in massive stars

The results obtained by the only other large-scale survey of this kind up to now
(MiMeS; Wade et al. 2013) indicate that about 7% of massive stars host a magnetic
field detectable with current instrumentation (& 100 G). We have so far observed 98 tar-
gets and only unambiguously detected five magnetic stars. For all the stars, the detection
is not only confirmed by the two groups (Bonn and Potsdam), but the field measurements
also systematically agree within the errors. In addition, the field is detected at a high
significance level with both FORS2 and HARPSpol.

Therefore, our results tend to support those independently obtained by MiMeS, and
confirm that the incidence rate of strong magnetic fields is low in massive stars and is
similar to that inferred for intermediate-mass stars. It should be emphasised, however,
that a number of candidate magnetic stars are still being followed up and that the
preliminary incidence rate that we obtain (∼5%) may eventually be revised upwards.

Regardless of the exact figures, the scarcity of strong fields has far-reaching implica-
tions, from the interpretation of the statistical properties of young stellar populations
(e.g., impact of magnetic braking on the rotational velocities, X-ray characteristics) to
the fate of massive stars as degenerate objects following the supernova explosion (e.g.,
as magnetars).

4. The first magnetic stars discovered in the course of the survey

4.1. A magnetic field in a multiple system in the Trifid nebula

One of the aims of our survey is to uncover magnetic stars with specific and unusual
characteristics that would allow us to discriminate between the various channels that
could lead to the field formation. An interesting discovery is therefore the detection of
a magnetic field in a multiple system in the Trifid Nebula (Hubrig et al. 2014), which
is a very young and active site of star formation. We first observed the three brightest
components in the central part of the nebula (A, C, and D; Kohoutek et al. 1999) with
FORS2 and clearly detected a circularly polarised signal in component C (HD 164492C).

Further observations on two consecutive nights with HARPSpol confirmed the exis-
tence of a field with a longitudinal strength ranging from 400 to 700 G. These high-
resolution observations reveal complex and variable line profiles pointing towards a mul-
tiple system (made up of at least two early B-type stars). The situation is complicated
further by the possible existence of chemical patches on the surface of some components.
We will keep monitoring this system to establish whether only one or more components
are magnetic. A complete characterisation of this peculiar system may provide valuable
information about the interplay between binarity and magnetic fields in massive stars.
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Figure 1. Stokes I (black), V (red), and diagnostic null N (blue) profiles of HD 54879 obtained
with HARPSpol through least-squares deconvolution (LSD). From Castro et al., in preparation.

4.2. A new magnetic, helium-rich star with a tight age constraint

The variability of the rare magnetic, helium-rich stars (the prototype is σ Ori E) arises
from a dipolar field that is tilted with respect to the rotational axis. The competition
between radiative levitation and gravitational settling in the presence of a stellar wind
leads to photospheric abundance anomalies. Some stars undergo rapid rotational braking
(e.g., Mikulášek et al. 2008), which provides an unique opportunity to study virtually in
real time the poorly-understood effects of angular momentum loss through magnetically
channeled, line-driven winds (e.g., ud-Doula et al. 2009).

Our observations of the B1 star CPD –57◦ 3509 in the young (∼10 Myr) open cluster
NGC 3293 with FORS2 and HARPSpol reveal a strong and rapidly varying field (by up to
900 G for the longitudinal component between two consecutive nights). The field is found
to change polarity, which shows that both magnetic hemispheres are visible as the star
rotates. The polar field exceeds 3 kG assuming a dipole geometry. A preliminary NLTE
spectral analysis indicates that the star is helium rich (∼3 times solar) and has evolved
throughout about one third of its main-sequence lifetime (Przybilla et al., in prep.). This
is one of the most evolved He-rich stars with a tight age constraint, promising to provide
crucial information on the evolution of stars with magnetically-confined stellar winds.

4.3. A non-peculiar magnetic O star

The few magnetic O stars known are very often peculiar. Their strong magnetic fields are
believed to give rise to spectral peculiarities and/or to drive periodic line-profile variations
(e.g., the Of?p stars or θ1 Ori C). In contrast, we have discovered a narrow-lined O9.7
V star (HD 54879) hosting a strong field (with a dipole strength above 2 kG; Fig.1),
yet displaying no evidence in the few optical spectra taken over five years for spectral
peculiarity or variability. Only the broad and emission-like Hα profile is variable. This
might be related to the presence of a centrifugal magnetosphere (Castro et al., in prep.).
Further observations are necessary to confirm the lack of spectral peculiarities and, if so,
to understand the distinct behaviour with respect to other strongly magnetised O stars.
A parallel investigation of the magnetic variability also needs to be undertaken.

4.4. Weak fields in OB stars

One of the most intriguing properties of magnetic stars of intermediate mass is the
bimodal nature of the fields that are either strong (above 300 G) or extremely weak (.1
G). The lack of objects with ordered fields of intermediate strength appears to reveal
a real dichotomy (e.g., Lignières et al. 2014). Investigating the origin of this “magnetic
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Figure 2. Time series of the longitudinal field measurements of β CMa (top panels) and ε CMa
(bottom panels) using a line mask which contains (left panels) or does not contain (right panels)
helium lines. Black crosses: observations carried out on four different nights in December 2013.
Red rhombs: values obtained from consecutive observations on 21 April 2014 (the blue triangle
is the average value obtained on that night). Green circle: ESPaDOnS measurement of β CMa
carried out in 2008 by Silvester et al. (2009). From Fossati et al., in preparation.

desert” is essential to understand the origin and evolution of fields in stars that cannot
support a dynamo acting in a deep, outer convective envelope.

To estimate the lower bound of the field in more massive stars, we have obtained very
high-quality observations with HARPSpol of two very bright, early B-type stars (β CMa
and ε CMa), and repeatedly detected for both stars a weak Zeeman signature across the
line profiles. Interestingly, the field appears to be constant within the errors and relatively
weak in both cases. The longitudinal components are at most ∼30 G in modulus (Fig.2),
which translates into a polar strength of ∼150 G assuming a dipolar geometry. Although
all the available measurements of β CMa are consistent with a field of that magnitude,
there is some indication in the literature for a stronger field in ε CMa (Hubrig et al. 2009;
Bagnulo et al. 2012). Therefore, the case for a weak field is much stronger in β CMa.

Detecting fields of that magnitude in fainter targets is very challenging. Are the weak
fields found in these two bright objects only the tip of the iceberg? Is there a large
population of stars with weaker fields or that are even truly non-magnetic (see Neiner
et al. 2014)? It seems conceivable that weak fields are considerably more widespread than
the data currently available would suggest. Fields that are remnants of the star formation
are prone to decay on evolutionary time-scales (see Landstreet et al. 2008). A different
field strength distribution for intermediate- and high-mass stars thus raises the issue of
a mass-dependent time-scale for the field decay (Fossati et al., in prep.).
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Discussion

Landstreet: Possible detection of a σ Ori E analogue is very interesting. Have you
looked for indications of a trapped magnetosphere with detailed comparisons of Balmer
line profiles as observed with model profiles, to identify weak emission or shell absorption?

Morel: This is certainly something we plan to do, but we have still not investigated this
in detail. Dedicated follow-up observations are needed to fully characterise the behaviour
of the Balmer lines. We have recently been granted time on UVES to monitor this object.
These spectra can be used for that purpose.

Wade: The detection of V signatures in β + ε CMa rely on magnetic precision of ∼ 5
G. For how many other stars is a comparable precision achieved? (Since this will tell us
about the frequency of such apparently weak fields.)

Morel: A comparable precision was only achieved for another star, and in that case a
field was not detected. Such high-quality data can only be obtained for very bright stars,
and it cannot be ruled out that weak fields also exist in the fainter targets.

Aerts: Did you try to fold your polarimetric data of β CMa on the seismic rotation
period to check if they are consistent, as is the case for V2052 Oph and HD 43317?

Morel: We still have too few measurements to investigate whether the magnetic period
is compatible with the rotational one determined by Mazumdar et al. (2006, A&A, 459,
589). However, it has to be kept in mind that the weakness of the magnetic signal may
hamper a clear detection of the variability.
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