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ABSTRACT 

 

The ongoing changes in the extent and the properties of sea ice, associated with the warming 

climate, are affecting the polar ecosystem and the interactions between the atmosphere, sea 

ice and the underlying waters. How sea ice biogeochemistry will change in the foreseeable 

future is currently uncertain, but is a crucial problem to tackle.  

To better understand how sea ice biogeochemistry could change, we investigated the factors 

regulating the distribution of some dissolved compounds (e.g., nutrients, dissolved organic 

matter (DOM)) and gaseous compounds (e.g., Ar, O2, N2, CH4) in sea ice, from ice growth to 

ice decay. The results were obtained from a 19-day indoor experiment in Hamburg 

(Germany) and a five-month-long field survey in Barrow (Alaska). They were then compared 

to the physical properties of the ice (temperature, salinity, and other derived parameters such 

as brine volume fraction) and different biological parameters (bacterial activity, bacterial 

abundance, chlorophyll-a and phaeopigments).  

Our work indicates that the physical properties of sea ice exert a strong influence on the 

distribution of the biogeochemical compounds in the ice, through their impact on brine 

dynamics, gas bubble formation and ice permeability. We have described 4 stages of brine 

dynamics, which affect the distribution of the dissolved compounds (e.g., silicate and DOM) 

in sea ice. However, inert gas (Ar) shows a different dynamic in comparison to the dissolved 

compounds, indicating a different transport pathway. We suggest that the formation of gas 

bubbles in sea ice is responsible for that different transport pathway, because gas bubbles 

should move upward owing to their buoyancy in comparison to brine, while dissolved 

compounds are drained downward due to gravity. Our observations further indicate that the 

critical permeability threshold for the upward gas bubble transport should range between 7.5 

and 10 % of brine volume fraction, which is higher than the 5 % suggested for the downward 

brine transport. Increasing ice permeability and prolonged gas exchange tend to draw gas 

concentrations toward their solubility values, except when the under-ice water is 

supersaturated relative to the atmosphere (e.g., CH4) or when in-situ production occurs in sea 

ice (e.g., O2). 
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Because ammonium and O2 obviously accumulate in the ice layers where convection is 

limited, we suggest that the changes of these biogeochemical compounds in sea ice depend 

on the competing effect between the physical transport and the biological activity; the 

biological impact on these biogeochemical compounds in sea ice is obvious when the 

biological production rate exceeds largely the physical transport rate. We further discussed on 

the potential of using Ar and N2 as inert tracers to correct the physical controls on O2 and to 

determine the net community production in sea ice.  

In addition to the physical and biological controls, the chemical properties of some 

biogeochemical compounds (e.g., nitrate, ammonium, DOM) may further influence their 

distribution in sea ice; further investigations are however needed to confirm this.   

Finally, based on our findings, we present an update of the processes regulating the 

distribution of gases in sea ice, with references to recent observations supporting each of the 

process. We also provide some insights on how sea ice biogeochemistry could change in the 

future and the research priorities for an accurate quantification of these changes.  
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RESUME 

 

Les changements dans l’extension et les propriétés de la glace de la mer, liés au 

réchauffement climatique, affectent l’écosystème polaire, ainsi que les interactions entre 

l’atmosphère, la glace de mer et l’eau sous-jacente. Cependant, des incertitudes subsistent 

quant aux changements potentiels qui affecteront la biogéochimie de la glace de mer dans un 

futur proche. 

Afin de mieux comprendre les changements potentiels qui affecteront la biogéochimie de la 

glace de mer, nous avons étudié les facteurs qui influencent la distribution de certains 

composés dissouts (e.g., nutriments, matière organique dissoute (DOM)) et gazeux (e.g., Ar, 

O2, N2, CH4) au sein de la glace de mer, depuis la croissance de la glace, jusqu’à sa fonte. Les 

résultats ont été obtenus à partir d’une expérience de 19 jours dans un bassin expérimental à 

Hambourg (Allemagne) et une étude de terrain de 5 mois à Barrow (Alaska). Ils ont été 

ensuite comparés aux propriétés physiques de la glace (température, salinité et autres 

paramètres dérivés) et à des paramètres biologiques (activité bactérienne, abondance 

bactérienne, chlorophylle-a et phaeopigments).  

Nos travaux ont montré que les propriétés physiques de la glace exercent une forte influence 

sur la répartition des composes biogéochimiques dans la glace de mer, à travers leur impact 

sur la dynamique des saumures, la formation de bulles de gaz et la perméabilité de la glace. 

Nous avons décrit 4 stades dans la dynamique des saumures qui influencent la distribution 

des composés dissouts (e.g., silice et DOM) dans la glace. Cependant, le gaz inerte étudié 

(Ar) montre une dynamique différente de celle des composés dissouts, indiquant un 

mécanisme de transport différent. Nous suggérons que la formation de bulles de gaz dans la 

glace de mer est le mécanisme responsable de cette différence, parce que les bulles de gaz 

devraient migrer vers le haut, à cause de leur différence de densité par rapport aux saumures, 

alors que les saumures sont drainées vers le bas à cause de la gravité. Nos observations 

montrent également que le seuil critique de perméabilité pour l’ascension des bulles de gaz 

devrait se trouver entre 7.5 et 10 % de volume relatif en saumure ; seuil qui est plus élevé que 

les 5 % suggérés pour le transport de saumure vers le bas. L’augmentation de la perméabilité 

de la glace et les échanges de gaz prolongés tendent à amener les concentrations de gaz vers 

leur valeur de solubilité, sauf lorsque l’eau sous-jacente présente une sursaturation par 
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rapport à l’atmosphère (e.g., CH4), ou lorsque une production in-situ se produit au sein de la 

glace (e.g., O2). 

Etant donné que l’ammonium et O2 s’accumulent clairement dans les couches de glace où la 

convection est limitée, nous suggérons que les variations de ces composés biogéochimiques 

dans la glace dépendent de la balance entre le transport physique et l’activité biologique ; 

l’impact de cette dernière sur les composés biogéochimiques est particulièrement visible 

lorsque le taux de production biologique du composé excède largement la vitesse 

d’élimination du composé par le transport physique.  Nous avons ensuite discuté du potentiel 

d’utiliser Ar et N2 comme traceurs inertes pour corriger l’impact des processus physiques sur 

les variations de O2, afin de déterminer la production communautaire nette dans la glace de 

mer. 

Les propriétés chimiques de certains composés biogéochimiques (e.g., nitrate, ammonium, 

DOM) pourraient également influencer leur répartition au sein de la glace de mer, en plus des 

processus physiques et biologiques. Cependant, il est nécessaire d’avoir plus d’études à ce 

sujet pour confirmer cela.  

Enfin, sur base de nos résultats, nous présentons une mise à jour des processus qui régulent la 

répartition des gaz dans la glace de mer, avec des références à des observations récentes qui 

illustrent chacun des processus. Nous donnons également un aperçu des changements qui 

pourraient affecter la biogéochimie de la glace de mer à l’avenir, et des pistes de recherches 

pour une quantification précise de ces changements.  
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Chapter I – Motivation 

 

Sea ice forms from the freezing of seawater [WMO, 1970]. It covers about 7 % of the Earth’s 

ocean surface [Vaughan et al., 2013] and plays an important role in the climate system, the 

ocean circulation and the global biogeochemical cycles. Indeed, sea ice formation increases 

the albedo of the ocean surface and reduces the exchange of heat, moisture and momentum 

between the ocean and the atmosphere. Sea ice formation further leads to the rejection of 

brine in the upper layers of the ocean, inducing thereby deep-water formation, while sea ice 

melt induces water mass stratification. Finally, sea ice affects the global biogeochemical 

cycles either directly, through the biogeochemical processes within the ice, or indirectly, 

through the exchanges of gases and fluid at the air-ice and ice-ocean interfaces 

[Vancoppenolle et al., 2013b, for a review]. The significance of that last role of sea ice is the 

less well quantified at large scales, because the involved processes are not precisely 

understood or quantified [Vancoppenolle et al., 2013b]. The most relevant processes are 

given here below.  

First, sea ice biogeochemistry affects the primary production in the polar oceans. Sea ice 

hosts microorganisms, which produce organic matter depending on the light and nutrient 

availability. Therefore, by hosting microorganisms, sea ice extents the duration of the 

primary production in the polar oceans and provides food source for the higher trophic-level 

species in winter and early spring. The thickness of sea ice and the snow cover further alter 

the light available for the phytoplankton production in the under-ice water. In addition, when 

sea ice melts, it stratifies the surface water, releases organic matter and nutrients, and in 

particular trace metals like iron, which affect phytoplankton growth in the iron-limited 

Southern Ocean. However, one main uncertainty is the partitioning of the released materials: 

how much is in-situ remineralized, and how much is exported to the seafloor? 

Second, sea ice affects the exchanges of gases between the atmosphere and the ocean, and in 

particular, the exchanges of climate-active gases, like carbon dioxide CO2, dimethylsulfide 

DMS and methane CH4. Although sea ice has long been assumed to be an inert and 

impermeable ice layers that impede all gas exchanges between the atmosphere and the ocean, 

recent measurements of CO2 [Delille et al., 2007; Geilfus et al., 2012; Nomura et al., 2010; 

Papakyriakou and Miller, 2011], DMS [Nomura et al., 2012; Zemmelink et al., 2008] and 

CH4 fluxes [He et al., 2013] at the ice-air interface indicates that sea ice is permeable. 
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Theoretical considerations [Golden et al., 1998] and laboratory experiments [Gosink et al., 

1976; Pringle et al., 2009] further support that sea ice may be permeable under specific 

conditions of temperature and salinity. Therefore, by assuming that sea ice is impermeable, 

we underestimate the duration of gas exchange between the ocean and the atmosphere. In 

addition, brine rejection associated with sea ice formation may also drain gases to the surface 

ocean [Rysgaard et al., 2007]. The issue of gas exchange through sea ice is further 

complicated by the biogeochemical processes that occur within the ice: carbonate 

precipitation [Geilfus et al., 2013; Rysgaard et al., 2011] and microbial activity within the ice 

change the amount of CO2 in transit through sea ice [Geilfus et al., 2012], and in-situ 

biological production affects oxygen O2 and DMS [Delille et al., 2007]. Thus, sea ice is not 

simply a physical barrier across which a certain amount of gases transits, it is also a platform 

where the production and consumption of some biogases occur.  

CO2 is one of the most studied gases in sea ice. The concentrations of CO2 in the ice not only 

depends on the air-ice exchange of CO2, but also the export of inorganic carbon transport 

with brine rejection, calcium carbonate precipitation and biological activity in sea ice. 

Although the mechanisms responsible for the changes in CO2 concentrations in sea ice are 

identified, their significance has been rarely quantified [Vancoppenolle et al., 2013b]. As a 

result, the overall contribution of sea ice in terms of air-ocean gas exchange is still debated. 

Some claim that Antarctic sea ice may accounts for 58 % of the annual uptake of CO2 in the 

Southern Ocean [Delille et al., 2014], while others claim that sea ice from the Bering Sea 

accounts for less than 2 % of the annual CO2 fluxes [Cross et al., 2014]. 

DMS has drawn considerable interest, because the oxidation of DMS may produce sulphate 

aerosols, which affect the radiative properties of the atmosphere, with a potential cooling 

effect on the planet [Charlson et al., 1987]. Sea ice has been suggested to be a potentially 

important source of DMS in the polar oceans, because the microorganisms in sea ice produce 

large amounts of dimethylsulfoniopropionate DMSP, the precursor of DMS. Sea ice melt is 

indeed associated with an increase of the DMS concentration in the surface water, which may 

contribute to the regional oceanic DMS emission [Levasseur et al., 1994; Tison et al., 2010; 

Trevena and Jones, 2012]. DMS fluxes through sea ice before ice melt may represent an 

additional source of DMS, but very few measurements have been done [Nomura et al., 2012; 

Zemmelink et al., 2008]. Therefore, a general picture of DMS emission over the whole Arctic 

and Antarctic sea ice is missing, and the contribution of sea ice to the global DMS emission 

is currently unknown.  



I - Motivation 

3 
 

CH4 is an important greenhouse gas which accounts for 20 % of the global radiative forcing 

of well-mixed greenhouse gases [Myhre et al., 2013]. Its emission from the destabilized 

permafrost and hydrates in the Arctic shelf regions, associated with the ongoing climate 

warming may have positive feedback on the climate, as it occurred in the past  [O'Connor et 

al., 2010]. The role of sea ice in that scenario is uncertain. To date, CH4 measurements in sea 

ice are scarce [Lorenson and Kvenvolden, 1995; Shakhova et al., 2010b], but some suggest 

that sea ice impedes air-ice CH4 exchange [He et al., 2013; Kitidis et al., 2010; Kort et al., 

2012; Shakhova et al., 2010b], and that CH4 oxidation could occur in the ice [He et al., 2013] 

and in the under-ice water [Kitidis et al., 2010], based on CH4 measurements in air and 

seawater. It has also been suggested that the degradation of DMSP could produce CH4 in 

seawater [E. Damm et al., 2010], but whether the same pathway could occur in sea ice where 

large DMSP concentrations are found is currently uncertain. 

In the Arctic, sea ice extent has drastically decreased over the last thirty years (decrease of 

13.5 % and 4.1% per decade for multi-year ice and first-year ice respectively) [Vaughan et al., 

2013]. In Antarctica, despite the overall increase of sea ice extent (1.8 % per decade), 

regional variability is large [Vaughan et al., 2013], and model simulations project significant 

decrease of the Antarctic sea ice extent by the end of this century [Arzel et al., 2006]. In that 

context, we may wonder how the sea ice related biogeochemical cycles will change; in 

particular, how the exchanges of the climate-active gases will be affected, and would it have 

feedbacks on the climate. Earth system models could help to answer these questions, but 

since they currently represent sea ice as a biogeochemically inert blanket, a first step would 

be to identify the most relevant processes to implement in the models.  

The overarching objective the thesis is thus to identify the most relevant processes 

regulating the dynamics of solutes and gases in sea ice. The work is based on observations 

made on experimental ice and Arctic first-year sea ice. The focus on first-year ice is 

motivated by its proportion to the total amount of ice; it accounts for 60 and 80 % of the 

maximum sea ice extent in the Arctic and Antarctica, respectively [Vaughan et al., 2013]. 

That percentage is increasing in the Arctic, because the loss of multi-year ice was more 

drastic than the loss of first-year ice (Figure 3a on http://nsidc.org/arcticseaicenews/2014/09/). 

Focusing on Arctic first-year ice is also relevant for studying the interactions between sea ice 

and the emission of CH4 from the Arctic shelf regions as described earlier.  

 

http://nsidc.org/arcticseaicenews/2014/09/
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Chapter II – State of the art 

 

Before identifying the most relevant processes affecting the dynamics of solutes and gases in 

sea ice, we will first review the state of the art on the biogeochemical compounds in sea 

ice, with a focus on the differences compared to seawater. The most important concepts are 

synthesized here below, with references to the more detailed explanations in the next sections.  

1. Sea ice is a heterogeneous material  

Although sea ice is formed from the seawater, the biogeochemical compounds are not 

homogeneously distributed as they were in seawater (section 1). Most of the solutes and 

gases are concentrated in the brine inclusions within the pure ice matrix. Therefore, the 

physical transport of solutes and gases (section 4) are mainly exchanges between the 

atmosphere, the brine inclusions and the ocean; not with the pure ice matrix.  

The brine volume fraction, which is the percentage of the total ice volume occupied by brine, 

is a function of the ice temperature and ice salinity (section 3). Assuming that all the solutes 

and gases are in brine inclusions, dividing the measured concentrations in bulk ice by the 

brine volume fraction (section 3) allow to assess the concentration in brine.  

The heterogeneous structure has also implications on the measurement techniques. Ice 

melting may induce biases in the estimate of the biological activity, due to the realted 

osmotic shock on the microorganisms. It may also dissolve some mineral precipitates, which 

change the concentrations of some dissolved compounds. Other examples are given and 

further described in section 6. 

2. The concentrations of solutes in sea ice  

Both physico-chemical and biological processes may affect the concentrations of solutes in 

sea ice (section 5). To assess the significance of the concentration of a solute in sea ice, we 

need to compare it with a reference value; that reference value could be determined by the 

dilution curve. A solute is said conservative against salinity, i.e., it was incorporated (section 

2) and transported (section 4.1) in the same way as salts, if its concentration in the ice 

increases linearly with the ice salinity, along the dilution curve. Deviation of the solute 

concentration from the dilution curve is generally attributed to biological processes (section 

5.2).  
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3. The concentrations of gases in sea ice  

Similarly to the solutes, physico-chemical and biological processes also affect the 

concentrations of gases in sea ice (section 5). However, the transport of gases through sea ice 

may be different to that of the solutes for two reasons. First, gas exchange could occur at the 

air-ice interfaces (section 4.2); while most of the solutes are drained out of the ice, at the ice-

ocean interfaces, through brine drainage (section 4.1). Second, gases may be present in the 

form of gas bubbles, which should tend to move upward – if the ice is permeable – while the 

dissolved gases tend to move downward, as the other solutes, due to brine drainage (section 

4.1).  

The saturation level of a gas is a crucial parameter determining the gas fluxes at the ice-air 

interfaces, and affects gas bubble formation (section 5.1.2). Gas supersaturation, i.e., gas 

concentration that is higher than its solubility, could easily occur during ice growth, because 

of the brine concentration effect and the decrease of gas solubility. First, decreasing ice 

temperature decreases the brine volume fractions, which increases the concentration of the 

dissolved gases in brine; this is the so-called brine concentration effect (section 3). Second, 

decreasing ice temperature tends to increase gas solubility, but its associated increase of brine 

salinity (section 3.2) over-compensates the effect of cooling on the solubility, and induces a 

net decrease of gas solubility. In addition to these physical processes, biological activity and 

mineral precipitation could also affect gas saturation. Gas supersaturation could lead to ice-

air gas fluxes if the ice is permeable, and the formation of gas bubbles, if the sum of the 

partial pressures of all the dissolved gases is higher than the local hydrostatic pressure. 
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The detailed section of the state of the art starts from here. It first describes the crystal 

structure (section 1) and the different textures of sea ice (section 2), which play an important 

role in the distribution of the biogeochemical compounds (e.g., gases, nutrients) in sea ice 

during sea ice formation. Section 3 describes the physical parameters of sea ice which have 

been proven to affect the transport of the biogeochemical compounds (section 4) and the 

biogeochemical processes in sea ice (section 5). Section 6 further highlights the observational 

constraints related to the sampling and the measurements of the biogeochemical compounds.  

1 The crystal structure of sea ice 

At the Earth’s surface, water crystallises in the Ih structure, with the « h » indicating the 

hexagonal crystal system, as described in Figure 1 [Weeks, 2010]. The water molecules 

(H2O) are arranged tetrahedrally around each other, and the so-formed crystal system is 

characterized by four axes: three equivalent a-axes, which lie in a basal plane separated by 

angles of 120°, and the c-axis, which is oriented perpendicular to the basal plane [Weeks, 

2010]. The c-axis is the principal crystallographic axis, because it is the axis of maximum 

(six-fold) rotational symmetry; it is also referred to as the optic axis of the crystal, i.e., the 

direction along which a ray of transmitted light can go through the crystal without 

undergoing double refraction, and perpendicular to which the ray cannot pass [Hobbs, 1974, 

p. 200-205]. It is based on the optical properties of the c-axis that the universal stage system 

determines the exact orientation of each crystal in a thin section [Langway, 1958].   

Because of the tetrahedral arrangement of the water molecules, the ice Ih has a lower density 

than liquid water; this allows sea ice to float [Weeks, 2010]. However, despite the low density 

of the ice Ih, only few species of ions and molecules, with specific size and/or electric charge, 

may be incorporated in the ice crystal lattice (e.g., F
-
, HF, NH4

+
, NH3 and to a minor extent, 

HCl, HBr and HI) [Hobbs, 1974, p. 112-119 and references therein]. In contrast, most of the 

impurities that were present in seawater (e.g., Na
+
, Cl

-
, K

+
, Ca

2+
, Mg

2+
, SO4

2-
, CO3

2-
) are not 

incorporated into the ice crystal lattice, and are rejected ahead the advancing ice-water 

interface during ice growth [Petrich and Eicken, 2010]. Therefore, although sea ice is formed 

from seawater, the biogeochemical compounds that were initially present in seawater are no 

longer homogeneously distributed in sea ice. Instead, the water molecules form a matrix of 

pure ice, whereas most of the biogeochemical compounds are concentrated in the brine 

inclusions.  
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Figure 1 Crystal structure of sea ice (from Weeks and Ackley [1986]) on the left. The central panel 

presents the arrangement of oxygen atoms along (top) and perpendicular (bottom) to the c-axis 

(symmetry axis of order-6). The 3 a-axes (symmetry of order-2) are lying within the basal plane (left 

panel). 

 

2 Sea ice formation and the incorporation of impurities in sea ice 

Macroscopically, the matrix of pure ice presents different types of ice textures depending on 

the conditions of sea ice formation. There are three main types of ice textures associated with 

ice growth (frazil ice, columnar ice and platelet ice) and two others associated with the 

presence of snow on the top of the ice and ice melt (snow ice and superimposed ice); these 

are summarized by Petrich and Eicken [2010] in Figure 2. At larger scale, sea ice cover 

presents different morphologies which are classified according to their genetic processes (ice 

growth, melt or deformation), their ice age and their thickness [Petrich and Eicken, 2010] 

(Figure 3)  (see also aspect.antarctica.gov.au for a glossary based on WMO [1970] and an 

image library of the most commonly encountered ice types). 
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Figure 2 Scheme summarizing the main ice textures encountered in different ice growth conditions 

and at time scales for first-year ice [Petrich and Eicken, 2010] 
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Figure 3 Large-scale morphologies of sea ice cover associated with ice growth, melt and deformation 

processes [Petrich and Eicken, 2010] 
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2.1 Frazil ice  

The top of sea ice cores generally consists of frazil ice, because they are the first ice crystals 

to form in the open ocean, under agitated conditions (wind and waves). They have granular 

texture, with rounded millimetre-sized crystals, but could take the shape of needles, spicules 

or platelet, and are often intertwined with aggregates [Weeks and Ackley, 1986].  

According to Weeks and Ackley [1986], the frazil ice found at the surface of sea ice forms as 

following. In winter, when seawater cools down, it becomes denser than the underlying 

(relatively warmer) seawater. This is because the temperature of the maximal density of 

seawater is below its freezing point (Figure 4). As a result, the relatively cooler and denser 

body of seawater sinks, while the relatively warmer and less dense water at depth rises, 

causing a mixing process [e.g., Foster, 1968] termed “convection” or “convective 

overturning” [Petrich and Eicken, 2010]. Theoretically, that convection will continue until 

the entire mixed layer is at the freezing point. In practice, however, frazil ice crystals may 

form before that the entire mixed layer has reached the freezing point, because the aggregates 

in seawater may serve as nucleation site for ice crystals [Petrich and Eicken, 2010]. Frazil ice 

has a granular texture, because the convective overturning is usually supported by wind and 

waves, which break the new protrudes of the growing ice crystals; it is often intertwined with 

aggregates, which are entrained with the ice crystals in suspension during the convective 

overturning [Weeks and Ackley, 1986]. That process of entrainment is also referred to as 

harvesting or scavenging [Garrison et al., 1983; Weissenberger and Grossmann, 1998].   

 

Figure 4 Temperature of the maximum of density tρmax and the freezing point tg of seawater for 

different temperatures and salinities [Weeks and Ackley, 1986] 
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While the layer of frazil ice is millimetre-thick in the Arctic, it is generally much thicker in 

the Southern Ocean, because the higher wind speeds and the open-configuration of the 

Southern Ocean allow a larger number of openings in the ice (i.e., leads and polynyas – see 

ice deformation, divergent regimes in Figure 3), which favour the formation of frazil ice 

[Weeks and Ackley, 1986]. Frazil ice growing in these turbulent waters may also aggregate 

into larger floes of crystals than in the Arctic (e.g., pancake ice, Figure 3) [Lange et al., 1989].  

2.2 Columnar ice 

Following the consolidation of a surface ice layer composed of frazil ice, which reduces the 

wind- and wave-driven turbulence, a relatively quiet ice growth condition develops; the 

formation of columnar ice may then take place through downward congelation. The process 

leading to congelation ice formation is well described in Petrich and Eicken [2010] and is 

summarized here below.  

As described in section 1, growing sea ice rejects most of the impurities in brine (including 

salt), because they are not incorporated in the ice crystal lattice. The rejected salt thus 

increases the salinity of a thin layer, which is a few millimetres to a few centimetres thick, 

ahead of the advancing interface; this results in a transport of salt from the more saline 

ice/water interface toward the less saline seawater (see section 4 for a detailed description of 

the transport process). At the same time, assuming thermodynamic equilibrium, the increase 

of salinity at the ice-water interface goes along with a decrease of the freezing point and a 

decrease of the temperature (Figure 4). As a result, there is a heat flux in the opposite 

direction (i.e., from the seawater towards the ice-water interface). Because heat transport 

occurs faster than the transport of salt, the thin layer ahead of the ice-water interface is said 

constitutionally supercooled; in other words, the temperature of the layer is below the 

salinity-dependent freezing point (Figure 5).  

Any ice crystal that protrudes into the constitutionally supercooled zone will have an 

advantaged ice growth, because the heat released from the formation of the protrusion is 

conducted away from the ice-water interface (either upward through the ice, or downward, 

into the heat sink of the supercooled water layer). In addition, that ice crystal will grow faster 

than adjacent crystals, because it will reject the salt, which reduces the freezing point of the 

brine along its boundaries, making ice growth more difficult just next to it. Further, because 

ice grows faster in the basal plane, crystals with horizontal c-axes will outgrow those with c-

axes off the horizontal (this is the so-called “geometric selection”). As a result of the previous 
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processes, the ice/water interface generally consists of submillimetre-thick vertical lamellar 

blades of ice crystals (termed “columnar ice” texture), separated by narrow films of brine 

(termed “brine layers”) (Figure 5), and the layer where the ice volume fraction varies from 0 

to 30 % is referred to as the skeletal layer.  

 

Figure 5 Drawing of the lamellar ice crystals and representation of the changes of salinity (left) and 

temperature (right) below the ice/water interface (dashed horizontal line). Tf(z) is the freezing 

temperature  for the actual salinity (S(z)). The shaded area where (T(z)) is below the Tf(z) is the 

constitutionally supercooled layer [Petrich and Eicken, 2010] 

. 

As the skeletal layer further grows (i.e., addition of ice underneath), the ice temperature will 

decrease in the upper part of the skeletal layer; the water molecules in brine will freeze, 

adding ice to the existing ice blades, and resulting in a decrease of brine volume fraction. 

Eventually, the ice lamellae join up to form the so-called pure ice matrix, with isolated brine 

inclusions which concentrate almost all the impurities of the ice.  

2.3 Platelet ice 

Although platelet ice may have resulted from the processes described for granular frazil ice 

or columnar ice, it has neither the granular or columnar texture. Platelet texture is made of 

elongated (needle-like) grains, both in the vertical and horizontal thin sections [Lange, 1988] 

and could present a mixed platelet/congelation facies [Jeffries et al., 1993] (see [Tison et al., 

1998] for a detailed description and illustrations of the different types of platelet textures). 

The highly disorganized texture of platelet ice (i.e., with crystals extending in all directions) 

results from a repetitive cycle of in-situ ice growth and freezing of voids in between the 

randomly orientated platelets [Dempsey and Langhorne, 2012]. The process of platelet 

formation is still discussed, but appears that to be associated with the presence of supercooled 
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water [Crocker and Wadhams, 1989; Eicken and Lange, 1989; Jeffries et al., 1993; Lewis 

and Perkin, 1983]. 

In the vicinity of Antarctic ice shelves, platelet ice may form at deep water-depths 

[Dieckmann et al., 1986], in supercooled ice shelf waters (ISW) which formation is 

associated with the deep thermohaline convection (DTC). Sea ice growth and the associated 

salt rejection contribute to the formation of the cold and saline high salinity shelf water 

(HSSW), which adiabatically descends to the ice shelf grounding line and melts the 

continental glacial ice (as it is warmer than the local freezing point at depth). The mixing 

between the meltwater and the HSSW forms the ISW, which rises adiabatically under its 

buoyancy and becomes supercooled (due to the changes of freezing point with depth) 

[Crocker and Wadhams, 1989; Eicken and Lange, 1989; Foldvik and Kvinge, 1974; Jacobs et 

al., 1992]. Frazil ice crystals that unrestrainedly nucleate and grow from that supercooled 

ISW form platelet ice crystals [Jeffries et al., 1993], which may then float or be dragged by 

the ISW to the front of the ice shelf, where they accrete at the bottom of sea ice [Tison et al., 

1998].  

Direct nucleation and growth of platelet ice at the bottom of an existing ice cover from a 

supercooled water mass is also possible [Gow et al., 1998]. The formation mechanism is thus 

similar to that of columnar ice, but since platelet ice directly grows into the supercooled 

water, while columnar forms its own pool of supercooled water through salt rejection (section 

2.2), in-situ grown platelet ice presents a more disorientated texture than columnar ice, 

although less random than the “buoyant” platelet ice (described here above) [Gow et al., 

1998]. 

In Arctic, where large ice shelves are absent, platelet ice is scarce and supercooling is more 

usually associated with under-ice melt ponds [Eicken, 1994; Jeffries et al., 1995] where 

double diffusion occurs (i.e, supercooling induced by the more rapid transfer of heat than salt 

between the under-ice meltwater and the surrounding water mass) [Martin and Kauffman, 

1974].  
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2.4 Snow ice 

Snow ice is frequently observed in the Southern ocean, where the snow is sufficiently thick, 

in comparison to the ice thickness, to depress the ice under the sea level (i.e., negative 

freeboard). Seawater may thus infiltrate laterally and vertically, floods the ice surface and 

subsequently refreezes with the water-saturated snow to form snow ice [Fritsen et al., 1998]. 

Because snow ice has also a granular texture as for frazil ice, stable water isotope 

measurements are useful to discriminate the two ice types [Eicken, 1998; Lange et al., 1990] 

(section 3.3). 

2.5 Superimposed ice 

In late summer, surface snow melt may percolate into the underlying snow. Depending on the 

snow permeability and the thermal regime of the ice, the meltwater can refreeze as a distinct 

bubble-free layer of pure ice within the snow or at the snow/ice interface, forming the 

superimposed ice [Haas et al., 2001; Nicolaus et al., 2003].  

2.6 Large-scale deformation of sea ice covers 

Depending on the intensity and the direction of winds and depending on the ocean circulation, 

sea ice cover may experience a convergent or divergent regime over a large extent (Figure 3). 

Divergent regimes may results in the formation of opening in the pack of ice: (with 

increasing width) cracks or fractures, leads or polynyas. Cracks and fractures do not allow the 

navigation of surface vessels, in contrast to leads and polynyas [WMO, 1970]; the latter may 

extend over tens to tens of thousands of square kilometres [Brandon and Wadhams, 1999]. 

Convergent dynamics result in the overlap of ice layers on the top of each other [e.g., Eicken 

and Lange, 1989]. Thin ice layers (e.g., frequently new ice) that slide on the top of each other 

are referred to as “rafting”, while thicker ice layers that fracture and pile on the top of 

themselves are referred to as “ridging” [WMO, 1970].  

2.7 Implications of sea ice texture and morphologies on the distribution of 

biogeochemical compounds 

The identification of sea ice texture not only provides information on the history of the sea 

ice cover, but also on the development of the different biological communities in it. It has 

been suggested [Garrison et al., 1983] and verified experimentally [Garrison et al., 1989] 

that the scavenging associated with the formation of frazil crystals leads to the incorporation 

of microorganisms at the beginning of the ice growth, forming thereby the surface 
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community. As sea ice further grows, it may serve as a substrate for the development of the 

internal-, the bottom-, and the sub-ice communities [Horner et al., 1992]. For the surface- 

and the internal communities, where nutrient availability is often restricted [Arrigo et al., 

2010], the infiltration of seawater associated with snow ice formation, rafting or ridging, 

appears crucial for the nutrient supply of the surface and internal communities [Ackley and 

Sullivan, 1994; Kattner et al., 2004]. For the bottom communities, where nutrient supply is 

less restricted because of the proximity to seawater, the formation of platelet ice, which is 

more porous than the columnar ice and any other ice types, is known to be associated with a 

much larger concentrations of microorganisms [Arrigo et al., 2010]. 

The influence of sea ice texture on gases has been little studied. Theoretical considerations 

suggest that the formation of the “primary ice layer” (i.e., frazil ice) and “infiltration ice” (i.e., 

snow ice and superimposed ice) should induce the incorporation of gases from both seawater 

and the atmosphere [Tsurikov, 1979]. Observations show that turbulent conditions enhance 

gas incorporation in sea ice [Tison et al., 2002], and there are both evidence indicating that 

superimposed ice affects gas exchanges through sea ice [Tison et al., 2008] and the contrary 

[Nomura et al., 2010].  

3 Characterization of the physical properties of sea ice 

For the interpretation of biogeochemical dynamics in sea ice, it is recommended to provide 

data about the physical framework [Miller et al., under revision]. These data – namely 

temperature, salinity, brine volume fraction, brine salinity, ice texture and water stable 

isotopes – are often referred to as the physical properties of sea ice, although the term 

“physical properties” may have a wider meaning, including properties like thermal 

conductivity, albedo, dielectric properties and ice strength [Petrich and Eicken, 2010]. 

Ice temperature and bulk salinity (i.e., the salinity of a melted ice sample) are arguably the 

two most important physical variables for understanding the physical constraints on 

biogeochemical processes on non-deformed sea ice [Hunke et al., 2011]. Indeed, using 

temperature and salinity, and assuming thermodynamic equilibrium between ice and brine, 

we may calculate the brine volume fraction and the brine salinity of sea ice, which determine 

the permeability of the ice [Golden et al., 1998] (section 3.1), and whether mineral 

precipitation [Assur, 1958] (section 5.1.1) or brine convection could occur [Notz and Worster, 

2009] (section 4.1.1). 
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3.1 Brine volume fraction 

Based on the data compiled by Assur [1958] for the phase relations and based on the 

continuity equations for a multiphase sea ice mixture, Cox and Weeks [1983] derived a set of 

equations describing the brine volume fraction (φ) as a function of ice temperature (T) and 

salinity (S):  

 φ = (1 −
𝑉𝑎

𝑉
)

(𝜌𝑖 1000⁄ )𝑆

𝐹1(𝑇)−(𝜌𝑖 1000⁄ )𝑆  𝐹2(𝑇) 
       (Eq. 1) 

The density of pure ice is given as: 

𝜌𝑖 = 917 − 0.1403 𝑇         (Eq. 2) 

with ρi in kg m
-3

 and T in °C. F1 (T) and F2 (T) are empirical polynomial functions Fi(T) = ai 

+ biT + ciT
2
 +diT

3
, based on the phase relations. The coefficients for different temperature 

intervals are listed in Table 1. Va/V is generally neglected in the calculation of brine volume 

fraction in eq.1, because it is typically much smaller than φ in first-year ice. However, in 

multiyear or deteriorated ice [Timco and Frederking, 1996], where Va/V may be significant, 

it is important to either measure the density of a sea ice sample or its total gas content, in 

order to subtract the air volume fraction (Va/V) for accurate estimate of φ.  

Table 1 Petrich and Eicken [2010]’s compilation of the coefficients for F1(T) and F2(T) for different 

temperature intervals, based on Cox and Weeks [1983] and Leppäranta and Manninen [1988]. 

 

With the introduction of the mushy layer theory to sea ice, describing sea ice as a mixture of 

solid ice and liquid brine (i.e. assuming an ideal gas-free sample) [Wettlaufer et al., 1997], 

bulk salinity S is given by the salinity of brine Sbr multiplied by the brine volume fraction (φ ), 

and the salinity of the pure ice (Sice) multiplied by the fraction of solid ice (1- φ) (eq. 3).  
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S = φ *Sbr + (1- φ) * Sice         (Eq. 3) 

Rearranging eq. 3 and assuming that Sice equals to 0:  

φ =  S / Sbr            (Eq. 4) 

In comparison to the previous equations from Cox and Weeks [1983] (eq. 1), this mushy-

layer formulation only considers two phases (ice and brine), and thus is only valid for ideal 

gas-free samples. However, the main advantage is that eq. 3 is much easier to grasp (i.e, to 

represent physically) than the eq. 1. 

φ fraction is often used as a proxy of sea ice permeability, following Golden et al. [1998], 

who suggested that the permeability for fluid in sea ice increases drastically when the φ 

fraction exceeds 5 %. Since this corresponds to an ice temperature of 5 °C for a typical ice 

salinity of 5, that theory is also referred to as “the law of fives”. However, as discussed later, 

this is probably not fully accurate (section 4.1.4). 

3.2 Brine salinity 

Phase equilibrium between the brine and its surrounded pure ice matrix implies that changes 

in ice temperature result in changes in φ and Sbr [Hunke et al., 2011]. Indeed, when cooling a 

sea ice sample, some of the liquid water of the brine freezes, reducing the volume of the brine 

inclusion (i.e., φ) and increasing Sbr. In contrast, when warming a sea ice sample, some of the 

freshwater ice dissolves in brine, increasing the φ and decreasing the Sbr [Hunke et al., 2011].  

Notz et al. [2005] determined an empirical function for BrS as a function of the ice 

temperature (T) based on the data of [Assur, 1958]:  

Sbr  = −1.2 − 21.8T − 0.919T
2
 − 0.0178T

3
.        (Eq. 5) 

Vancoppenolle et al. [2013a] noted that a simpler, linear relationship between Sbr and T is 

sometimes used [e.g., Bitz and Lipscomb, 1999; Schwerdtfeger, 1963] (eq. 6). That 

relationship is based on a linear extrapolation of the dependence of the freezing point to 

seawater salinity (seen in Figure 4) and gives quite different results in comparison to eq. 5 

(about a difference of 100 in Sbr at -15 °C). As Sbr strongly affects the calculation of φ (eq. 4) 

and Ra (eq. 8), it is recommended to use eq. 5 rather than eq. 6 [Vancoppenolle et al., 2013a].   

Sbr = - T / 0.054         (Eq. 6) 
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3.3 Water stable isotopes in sea ice (δ
18

O, δD) 

The measurement of water stable isotopes (δ
18

O and δD) has been shown useful for 

distinguishing snow ice and superimposed ice from naturally frozen sea ice (which all have a 

granular texture; section 2.1), and for highlighting the changes in water masses and sea ice 

growth rate (section 4.1.2) [Eicken, 1998]. 

δ
18

O of a sample describes the relative abundance of the 
18

O/
16

O ratio of the sample in 

comparison to that of the standard VSMO (Vienna Standard Mean Ocean Water), as in the 

following equation where 
18

O and 
16

O are two isotopes of oxygen: 

𝛿 𝑂18   (‰) =  
(

𝑂18

𝑂16 )𝑠𝑎𝑚𝑝𝑙𝑒− (
𝑂18

𝑂16 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

(
𝑂18

𝑂16 )𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑

𝑥 1000     (Eq. 7) 

δD of a sample can be expressed with the same equation, but with 
2
H/

1
H instead of 

18
O/

16
O, 

and where 
2
H and 

1
H are two isotopes of hydrogen. 

The interest in measuring δ
18

O and δD is based on the isotope fractionation (i.e. changes in 

the abundance of 
18

O/
16

O and 
2
H/

1
H respectively) that occurs during a phase transition. When 

a water mass evaporates, the vapour phase is enriched in light isotopes (
16

O and 
1
H), leaving 

the parent water mass with a higher abundance of heavy isotopes (
18

O and 
2
H). When 

precipitation occurs, the rain droplets or snow are enriched in heavy isotopes in comparison 

to the clouds, but as they are derived from the vapour phase, they are still more depleted in 

heavy isotopes than the parent water mass. Now, as seawater freezes, the solid phase (ice) is 

enriched in heavy isotopes in comparison to the parent seawater. As a result of the isotope 

fractionation described here above, the δ
18

O and δD of snow are more negative than those of 

seawater, which are more negative than those of sea ice (from the same location).  

Because δ
18

O and δD have a conservative property (i.e. they do not change due to chemical 

or biological processes), knowing the distinct δ
18

O or δD of snow, ice and seawater (e.g., 

δ
18

O of -21, 2.1 and 0.3 ‰ respectively in Fram Strait [Meredith et al., 2001]), it is possible 

to highlight the influence of snow meltwater in superimposed ice and the influence of 

seawater in snow ice [Eicken, 1998; Eicken et al., 2002].  

In addition, since the δ
18

O and δD of sea ice depend on those of the parent water, and the 

fractionation efficiency (i.e., the difference of δ
18

O and δD between sea ice and the parent 
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water) partly depends on sea ice growth rate, δ
18

O and δD of sea ice have been used for the 

study of under-ice water circulation and mixing in estuaries [Macdonald et al., 1999; 

Macdonald et al., 1995], and for deducing ice growth rate [Eicken, 1998; I J Smith et al., 

2012; Souchez et al., 1987]. 

4 Initial incorporation and transport processes in sea ice 

Among all the transport processes, those related to the transport of brine have been the most 

extensively discussed. As some concepts for describing the transport of gases directly derive 

from those established for the transport of brine [Tsurikov, 1979], this section begins with a 

state-of-art on the transport of brine, in non-deformed ice.  

4.1 The transport of brine 

4.1.1 Processes regulating the vertical distribution of salinity in sea ice 

It is well known that the bulk salinity of sea ice is lower than that of the seawater from which 

it has formed, and that the bulk salinity profile changes across seasons [e.g., Malmgren, 1927; 

Nakawo and Sinha, 1981]. Nine processes have been suggested to explain these observations; 

five of which are associated with the ice growth (the initial rejection of salt at the ice-ocean 

interface during ice growth, the diffusion of salt, brine expulsion, gravity drainage and 

flushing), two others, with snow load (flooding and flushing), one, with tidal effect, and the 

last one, with EPS (extracellular polymeric substances) secretion. Each of these processes 

will be described here below, and their significance discussed in the next section (see Weeks 

[2010, p.156-170] for a more detailed discussion).  

 Initial entrapment or initial rejection 

The initial rejection of salt has been described using the “Burton-Prim Slichter” model [Cox 

and Weeks, 1975; Cox and Weeks, 1988], also referred to as the stagnant boundary-layer 

diffusion model [Eicken, 1998]. This model is based on the concept of Burton et al. [1953], 

where the solidification of a multi-component melt (e.g., a mixture of two metal melts) leads 

to a fractionation, so that the mixing ratio of the two components in the solid is different from 

that in the initial liquid. Applied to sea ice, the BPS model suggests that the mixing ratio of 

salt and water in sea ice is different from that in seawater, due to the salt rejection during ice 

growth. That fractionation is described by the effective distribution coefficient keff (=Si/Sw), 

which is derived from empirical functions of ice growth velocity and the thickness of the 
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boundary layer (see equations in Weeks [2010, p.156-170] and Eicken [1998, p.101-102]). 

Note that keff varies largely in the literature, ranging from 0.12 [Nakawo and Sinha, 1981] to 

0.95 (for frazil ice) [Smedsrud et al., 2003]. 

 Brine diffusion  

Initially proposed by Whitman [1926], brine diffusion describes the migration of brine 

inclusions due to decreasing ice temperature. In winter, if the ice temperature increases 

downward, the colder upper end of a brine pocket is more saline than the warmer lower end 

(due to phase equilibrium), and salt will diffuse from the upper end to the lower end. Because 

of that salt diffusion, ice would form in the now-less-saline upper end but dissolve in the 

now-more-saline bottom. The repetition of that migration process in cooling sea ice results in 

a downward migration of brine pockets, which eventually leave the ice.  

 Brine expulsion 

Brine expulsion describes the transport of salt due to the increasing pure ice volume during 

ice growth. When a sea ice sample is cooled, part of the liquid water in brine freezes, forming 

a pure ice structure, which is less dense than brine and which thus, occupies a larger volume 

than brine (section 1). That increase of pure volume may fracture the ice, resulting in an 

upward or downward redistribution of brine [Bennington, 1963].  

 Gravity drainage 

When the ice temperature increases downwards, brine salinity decreases downwards (section 

3.2). This salinity gradient drives an unstable density gradient that promotes brine convection 

in permeable ice layers. That convection of brine and its replacement with the less dense 

underlying seawater is referred to as gravity drainage, brine convection, or mushy-layer mode 

convection [Notz and Worster, 2009; Worster and Wettlaufer, 1997] (section 4.1.3). 

The potential of gravity drainage at an ice depth z using the Rayleigh number, formulated as 

following: 

𝑅𝑎 =  
𝑔 ℎ ∆ρ 𝛱(𝜑𝑚𝑖𝑛)

𝜅𝜇
          (Eq. 8) 
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where g is the gravity coefficient, ∆ρ and h, the density gradient and the thickness between 

the ice depth z and the bottom of the ice respectively. κ is the thermal diffusion coefficient, µ 

the viscosity of the ice, and П the permeability of the ice, which is a function of φ. 

The Rayleigh number can be interpreted in two ways: it could be the ratio of the potential 

energy g∆ρh available for convection and the energy Kµ/∏ that is dissipated during 

convection through thermal diffusion and internal friction due to the viscosity of brine [Notz 

and Worster, 2009], or, it could be the ratio between a conductive time scale z
2
/k and a 

convective time scale zµ/g∆r∏ as determined from Darcy’s law [Vancoppenolle et al., 

2013a]. If the conductive time scale is shorter than the convective time scale, i.e., heat 

conduction occurs faster than the brine convection, then, the convecting brine will quickly 

adopt the temperature of the surrounding pure ice, with an adjustment of the brine salinity 

(due to phase equilibrium), and convection will stop as there is no longer density gradient 

[Vancoppenolle et al., 2013a].  

 Flushing 

Flushing describes the downward movement of brine under the pressure of the overhead 

snow meltwater [Eicken et al., 2002; Eicken et al., 2004]. It can further cause a smaller scale 

downward displacement of brine afterwards, if the ice is still permeable and if the meltwater 

refreezes at the bottom of the ice, which results in an elevation of the freeboard and a 

hydrostatic readjustment [Eicken et al., 2002; Eicken et al., 2004]. 

 Flooding  

In locations where the snow load is sufficient to press the ice surface below the sea level, the 

brine may displace upward due to hydrostatic readjustment until it causes flooding. That 

process has been investigated in details in Hudier et al. [1995] (although it was termed 

“upward flushing”) and in Maksym and Jeffries [2000]. But as highlighted in Maksym and 

Jeffries [2000], there are other ways by which surface flooding can occur: infiltration from 

the edges of an ice floe, and migration through poorly consolidated ice (e.g., ridged ice and 

cracks). 
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 Forced-convection 

Forced-convection occurs at the bottom of the ice and is driven by a shear flow (above 5.8 

cm s
-1

) under the ice (i.e. ocean current or tides) [Neufeld and Wettlaufer, 2008a; b]. The 

shear flow is thought to create pressure perturbations at the ice/water interface, which drive 

brine convections (i.e., gravity drainage) [Feltham et al., 2002; Neufeld and Wettlaufer, 

2008b]. This process supports the previous hypotheses of tide-driven nutrient supply for ice 

algae [Cota and Horne, 1989; Cota et al., 1987].  

Forced-convection is also found to be associated with the formation of aligned ice lamellae 

[Neufeld and Wettlaufer, 2008a], because the under-ice current that drives forced-convection 

also causes an alignment of ice lamellae perpendicular (c-axes parallel) to the direction of the 

flow [e.g., Langhorne and Robinson, 1986; Stander and Michel, 1989; Weeks and Gow, 

1978]. Some have suggested that the alignment is due to the mechanic strains exerted by the 

current on the ice crystals [Stander and Michel, 1989], while others claim that the alignment 

is due to the formation of forced-convection rolls [Neufeld and Wettlaufer, 2008a] or 

turbulent eddies [Weeks and Gow, 1978]. In the latter theory, ice lamellae orientated 

perpendicularly to the current flow have a advantaged ice growth and will quickly outgrow 

the other ice crystals, because they promote the formation of rolls and eddies that favour salt 

transport away from their ice/water interface [Neufeld and Wettlaufer, 2008a; Weeks and 

Gow, 1978]. Although there is no consensus on how the current affects the alignment of ice 

crystals, it is however certain that under-ice current significantly modifies the texture (i.e., the 

arrangement, size and shape) and the porosity of the ice [Petrich and Eicken, 2010], and 

thereby influences the incorporation of salts [Petrich and Eicken, 2010] and gases [Tison et 

al., 2002] in the ice.  

 EPS production 

It has been suggested that the microbial production of EPS (extracellular polymeric 

substance) (section 5.2.2) alters the microstructure of the brine channels, reducing the pore 

spaces, and thus the permeability of the ice [Krembs and Deming, 2008]. As a result, salt 

expulsion from the ice is less efficient and salts are better retained in ice than if EPS was 

absent [Krembs et al., 2011].  
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4.1.2 Significance of each process regulating the vertical distribution of salinity in sea 

ice 

To determine the significance of each process of desalination during ice growth, Notz and 

Worster [2009] simulated the changes of bulk salinity with depth and over time, assuming 

that sea ice is a mushy layer (section 3.1), and assuming a conservation of heat, mass and 

solutes, and phase equilibrium between brine and the pure ice matrix, but without gravity 

drainage. Their results show that brine diffusion and brine expulsion are relevant for the 

redistribution of salt within sea ice, but not for large-scale loss of salt from it. The velocity of 

salt advection due to brine diffusion is only a few centimetres per year, whereas the velocity 

due to brine expulsion is always lower than the growth rate of the ice. Further, their 

simulations result in a continuum of brine salinity between the bottom of the ice and the 

underlying seawater, which are consistent with observations in the laboratory [Notz et al., 

2005]; hence, there is apparently no segregation of salt at the ice/water interface, and thus, no 

initial rejection of salt (section 4.1.1)), in the absence of gravity drainage. Therefore, Notz 

and Worster [2009] conclude that gravity drainage (or brine convection) should be the main 

process of desalination during ice growth. 

Although the initial rejection of salt does not contribute to large-scale loss of salt from sea ice 

[Notz and Worster, 2009], it is useful for describing the fractionation of 
16

O and 
18

O between 

seawater and ice during sea ice formation [Eicken, 1998]. This is expected since the 

formulation was expressly developed for describing the solidification (e.g., seawater – sea 

ice) rather than the concentration (e.g., seawater - brine) (section 4.1.1). When describing the 

fractionation of 
16

O and 
18

O, the use of the fractionation factor α or coefficient ε replaces that 

of the effective distribution coefficient keff (section 4.1.2) [Eicken, 1998]. 

Flushing is commonly recognized to be the main desalination process during ice decay, and 

flooding may also significantly affect the salinity profiles in locations with heavy snow 

loading. However, their large-scale impacts remain difficult to assess, because these are 

three-dimensional processes [Eicken et al., 2002; Eicken et al., 2004]; assessing flushing and 

flooding requires a good estimate of both the horizontal and the vertical permeability, which 

is currently missing. The impact of forced-convection on bulk ice salinity has not been 

investigated yet, but EPS production may apparently increase bulk ice salinity by 11 to 59 %, 

according to the experiment of Krembs et al. [2011].   
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4.1.3 The mushy-layer theory and its implications 

The observations of the continuum of salinity at the ice/water interface in experiments [Notz 

et al., 2005] and in mushy-layer-based simulations [Notz and Worster, 2009] have marked a 

significant transition in our understanding of the incorporation of impurities in sea ice during 

ice growth.  

 Boundary-layer theory versus mushy-layer theory 

Figure 6 presents the differences between the boundary-layer theory (i.e., the traditional view 

on how impurities get incorporated in sea ice) and the mushy-layer theory (i.e., the relatively 

more modern view).  

The boundary-layer theory suggests that a fractionation (with a coefficient keff) occurs during 

sea ice formation, leading to a difference of salinity, between the ice and seawater (section 

4.1.1). It was initially suggested that salts diffuse in the boundary-layer, from the ice/water 

interface that is enriched in salt (due to the rejection of salt from sea ice ahead of the growing 

freezing front) to the underlying seawater [e.g., Cox and Weeks, 1988; Nakawo and Sinha, 

1981]. However, since it was then verified that the transport of solutes rarely occurs through 

molecular transport alone, but is enhanced by convecto-diffusive fluxes and turbulent mixing 

[e.g., Garandet et al., 2000], the concept of convecto-diffusion is then used for describing the 

transport of solutes in the boundary layer [Eicken, 1998].  

In contrast to the boundary-layer theory, the mushy-layer theory suggests a continuum of 

salinity at the ice/water interface. Because bulk ice is a mixture between pure ice and brine, at 

the ice/water interface where the solid fraction approaches 0 % and the liquid fraction 100 %, 

bulk ice salinity approaches the brine- and seawater salinity. The proponents of the mushy-

layer theory agree on the rejection of salt by the growing ice crystals, with enrichment of the 

interstices of the mushy layer and the boundary-layer (green and orange dashed lines 

respectively in Figure 6). However, they suggest that convection occurs when the conditions 

become sufficiently unstable, i.e., with increasing Rayleigh numbers. The convection is 

referred to as a “boundary-layer mode convection”, when it is limited to the boundary-layer 

or as a “mushy-layer mode convection” (i.e., gravity drainage or brine convection (section 

4.1.1)) when it develops within the ice and beyond the lower-bond of the boundary-layer. As 

a result, the salinity of bulk ice approaches brine- and seawater salinity [Worster, 2000; 

Worster and Wettlaufer, 1997]. 
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Figure 6 Schematic diagrams showing the differences in the perception of the salinity profiles at the 

ice/water interfaces between the boundary-layer theory and the mushy-layer theory. Dashed-lines in 

the right hand figure are temporary profiles of brine salinity and seawater salinity, before a convection 

event (see details in the text). 

 

 Percolation theory versus mushy-layer theory 

The introduction of the mushy-layer theory has also brought a new point of view in our 

understanding on the transport of impurities in sea ice during ice growth, initially focused on 

the percolation theory. 

The percolation theory suggests that sea ice, like other porous materials (e.g., soils, rocks), 

has a critical porosity threshold below which the permeability decrease drastically (i.e., the 

pores are too disconnected to allow a downward fluid percolation through the pore network) 

[e.g., Hunt et al., 2014]. That threshold is estimated to be at a φ of 5 %, based on the similar 

microstructural properties between compressed powder and columnar ice [Golden et al., 

1998]; on the percolation model of Golden et al. [2007]where sea ice is described as a lattice 

network with randomly placed open and closed bonds; and on the measurements made on 

natural ice cores (Figure 7). Since φ of 5 % corresponds to an ice temperature of 5 °C for a 

typical ice salinity of 5, that theory is also referred to as “the law of fives” [Golden et al., 

1998]. 
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Figure 7 (a) Changes in permeability as a function of the ice temperature from Golden et al. [1998], 

based on Ono and Kasai [1985], and (b) changes in vertical permeability as a function of the brine 

volume fraction from Golden et al. [2007]. Фc is the critical percolation threshold, φ = 5 %. The SI 

unit for permeability is m² (as in b). What Golden et al. [1998] and Ono and Kasai [1985] have 

described as permeability and expressed in ms
-1

 was likely the hydraulic conductivity, according to 

the description of their measurement method. Permeability is the property of the porous media, while 

the hydraulic conductivity integrates both the permeability and the property of the fluid (i.e., its 

viscosity and density) that passes through the media [ASCE, 1996, p.263-264]. 

  

Although a φ of 5 % is generally used as a criterion for distinguishing the permeable and the 

impermeable ice layers, one needs to be aware of some important assumptions underlying 

that critical percolation threshold. First, sea ice permeability strongly depends on the 

distribution of brine inclusions. Golden et al. [1998] have thus suggested that the percolation 

threshold that was established for columnar ice could be higher for granular ice, which is 

more randomly distributed. In addition, Zhu et al. [2006] and Golden et al. [2007] used a 

percolation model and a hierarchical model respectively, but with a different representation 

of the distribution of the brine inclusions than Golden et al. [1998], and found no critical 

threshold. Pringle et al. [2009], in contrast, found critical vertical percolation thresholds 

ranging from 3.9 to 6.9 % of φ, using finite size scaling analyses. Second, the percolation 

threshold is lowered if the pore network contains excluded volumes, i.e., non-brine inclusions 

that are accounted in the brine volume fraction. The so-called excluded volumes include 

precipitated crystals and microorganisms, as well as gas bubbles, while air volume is 

assumed to be negligible in eq. 1 – section 3.1).  

While the percolation theory is solely based on φ for describing the propensity for a fluid to 

transit from the top to the bottom of sea ice – either naturally or forced –, the mushy-layer 

Rayleigh number (Ra) describes the propensity for – natural – gravity drainage based on the 
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competing effect of the energy available for convection and the energy that is dissipated 

during convection through thermal diffusion and internal friction due to the viscosity of brine 

[Notz and Worster, 2009]. Therefore, φ is only one parameter among many others in the 

calculation of Ra (section 4.1.1), in contrast to the percolation theory. As a result, an ice layer 

could have a φ above 5 % (i.e., being permeable according to Golden et al. [1998]), but with 

a Ra below the critical threshold [Jardon et al., 2013]; this indicates that natural convection 

does not occur, but does not mean that forced convection or diffusion could not occur 

through the permeable ice layer [Neufeld and Wettlaufer, 2008b; Worster and Wettlaufer, 

1997].  

Similar to the controversy on the critical threshold in the percolation theory discussed above, 

there is currently no consensus on the critical Ra values for convection: theoretically 1 [Notz, 

personal communication], but 3.2-7.1 in Griewank and Notz [2013], 5 in Vancoppenolle et al. 

[2010], 7 in Notz and Worster [2008] and 10 in Worster and Wettlaufer [1997]. These diverse 

critical Ra values result from the differences in their assessment method and parameterization 

[Vancoppenolle et al., 2013a]. For instance, using the linear relationship between the 

temperature and brine salinity instead of the formulation of Notz et al. [2005] leads to a 

difference of Sbr of 100 g/kg at -15 °C (section 3.2), which inevitably results in different 

values for the critical Ra. In addition, different formulations also exist for the thermal 

diffusivity [Notz and Worster, 2008; Pringle et al., 2007] and the ice permeability [Eicken et 

al., 2004; Freitag, 1999, p. 48; Petrich et al., 2006] (section 4.1.4). The issue of 

parameterization is further complicated if the Ra number is derived from temperature and 

salinity that are measured on extracted ice cores. Indeed, brine drainage due to gravity during 

the sampling may lead to an underestimation of the salinity. An average salt loss of about 0.3 

induces an underestimation of Ra by 0.5, and an salt loss of 5 at the ice base, an 

underestimation of Ra by 2.7 [Vancoppenolle et al., 2013a]. 

4.1.4 The relationship between the brine volume fraction and sea ice permeability  

Sea ice permeability is a crucial parameter for quantifying the fluid flow through sea ice, 

regardless of whether we consider the percolation- or the mushy-layer theory (section 4.1.3) 

[Pringle and Ingham, 2009].  
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Vertical ice permeability has been shown to depend on the total porosity of the ice, thus φ, 

although the scarcity of the data does not help to establish one obvious empirical relationship 

between vertical permeability and φ (Figure 8); instead, diverse relationships between these 

parameters have been proposed [Eicken et al., 2004; Freitag, 1999; Petrich et al., 2006]. 

Figure 8 Vertical permeability as a function of total porosity from Petrich et al. [2006]. Relationships 

are from Petrich et al. [2006] (solid), Eicken et al. [2004] (dashed) and Freitag [1999] for young and 

old ice (dash-dot and dotted lines respectively). The data points are from Saeki et al. [1986] (squares), 

Maksym and Jeffries [2000] (crosses) based on Ono and Kasai [1985] and Saito and Ono [1978], and 

Cox and Weeks [1975] (grey dots).  

φ represents the total porosity ft of sea ice, whereas the volume fraction of brine that is 

effectively connected for fluid transport is the effective porosity fe. Therefore, it is more 

accurate to calculate sea ice vertical permeability as a function of fe, rather than φ, as in 

Freitag [1999, p. 48, eq. 2.18]. In spite of that, different authors provide equations for 

calculating the vertical permeability as a function of φ rather than fe [Eicken et al., 2004; 

Freitag, 1999, p. 48, eq. 2.19; Petrich et al., 2006]; this is understandable, because φ can be 

easily obtained from temperature and salinity measurements (section 3.1), and because the 

difference between fe and φ is only significant for φ between 5 and 9 %. Indeed, fe 

approaches 0 for φ below 5 % (following the percolation theory of Golden et al. [1998]) and 

approaches φ for φ exceeding 9 % (see Petrich et al. [2006] for a detailed discussion). 

Sea ice permeability further depends on the morphology of the brine inclusions, in addition to 

the pore space connectivity (determined by the φ) [Pringle et al., 2009]. The early 

experiment of Ono and Kasai [1985] has already shown that sea ice permeability is different 

for upward and downward brine movement, but Pringle et al. [2009] provide a far more 
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comprehensive study on the anisotropy of sea ice permeability: they found vertical critical 

porosities ranging from 3.9 to 6.9 % of φ, and horizontal critical porosities of 9 and 14 % for 

fluid motion parallel and normal to the ice lamellae.  

4.1.5 A synthesis on the relationship between the brine volume fraction, sea ice 

permeability, and brine transport 

Sections 4.1.3 and 4.1.4 have highlighted how the relationship between φ, sea ice 

permeability and brine transport is not straightforward. The most certain and relevant 

observation is that brine transport halts (or near halts) at low φ, but the exact critical φ and Ra 

below which brine transport and natural brine convection halt are still matter of debate. This 

calls for caution when assessing sea ice permeability and brine convection based on φ and Ra 

respectively. A solution is to interpret the data qualitatively and relatively (e.g., “in winter, 

the ice is more prone to convection at the base than at the top”, from [Vancoppenolle et al., 

2013a]), another one is to combine different approaches (or measurements) to strengthen the 

indication of φ and Ra on sea ice permeability and brine convection [e.g., Jardon et al., 2013; 

Zhou et al., 2013].  

4.2 Transport of gaseous compounds 

4.2.1 Comparison with the transport of sea salt 

Because gases may be present in the dissolved and gaseous states in sea ice, the temperature-

driven processes causing salt loss from sea ice should be relevant for dissolved gases, but not 

for gas bubbles. However, most of the proposed processes for describing gas transport, 

reviewed in Tsurikov [1979], are primarily theoretical, i.e., unsubstantiated. Tsurikov [1979] 

boldly wrote that he has “imagined some processes which result (or would result) in the 

formation of gas inclusions”.  

Similarly to initial rejection, Matsuo and Miyake [1966] have also proposed that gas diffuses 

from sea ice before its consolidation (processes 1a in Tsurikov [1979]). Moreover, similarly 

to brine diffusion, gas inclusions are also believed to move downward under the effect of the 

temperature gradient in the ice (process 3b in Tsurikov [1979]). The increase of pure ice 

volume, which has been suggested to cause brine pocket migration, has not been discussed in 

Tsurikov [1979], but intuitively, dissolved gas should be redistributed in sea ice as does salt. 

The reverse process (i.e., the decrease of pure ice volume during ice melt) has been proposed 

to cause the formation of “water-vapour-filled pores” in sea ice (process 2b in Tsurikov 
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[1979]). Because the pure ice is less dense than brine, pure ice melt inevitably causes the 

formation of void that will rapidly be filled with water vapour [Tsurikov, 1979]. Observations 

showing that gas inclusions increase in size during ice melt [Light et al., 2003] tends to 

support that suggestion, but it is doubtful that the gas inclusions are exclusively filled with 

water vapour, because gas equilibrium between the gas inclusions and brine would change 

the composition of the gas inclusions [Perovich and Gow, 1996].  

Brine drainage should also cause the loss of dissolved gas. However, although that process 

has been suggested as the main cause of desalination during ice growth, its impact on gases 

still need to be assessed. Indeed, the impact of brine drainage on the gas content in sea ice 

depends on the partitioning of gases between the gas inclusions (or gas bubbles) and brine. 

The transport pathway for gas bubbles has not yet been described, but it would differ from 

that of dissolved gases which are subject to brine drainage, if one assumes that gas bubbles 

migrate upward due to their buoyancy (as the gas bubbles in a champagne flute) [Liger-

Belair, 2005]. Therefore, if gases are mainly present in sea ice as gas bubbles, then brine 

drainage will not be effective for removing gases from sea ice. In contrast, if gases are mainly 

present in sea ice as dissolved gases, then brine drainage would be more effective. The 

partitioning of gases between gas bubbles and brine still has to be verified experimentally for 

the temperature and salinity conditions of sea ice (section 5.1.2), but gas bubbles likely 

contribute a significant part to the total gas content in sea ice during ice growth, because gas 

concentrations that are 2000 % larger than their solubility in seawater have been observed in 

sea ice [Killawee et al., 1998]. Therefore, the effect of brine drainage in changing the total 

gas content could be minor during ice growth. 

The formation of snow ice and superimposed ice may also change the gas composition of the 

ice (process 3a in Tsurikov [1979]) in addition to the ice salinity (section 2.7), but the impact 

of rifted/rafted ice, forced-convection and EPS production on gas composition has not yet 

been investigated.  

4.2.2 Gas exchange at the air/ice interface, the specific particularity of the transport of 

gases in comparison to salts 

The main particularity for the transport of gases is the air-ice exchange, which is much less 

relevant for the transport of salts. Direct injection of atmospheric air into sea ice is possible, 

during the formation of frazil ice (process 1a in Tsurikov [1979]), and during the whole ice 
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growth, as long as part of the sea ice remains above the sea-level (i.e., positive freeboard) 

(process 2a in Tsurikov [1979]), and provided that sea ice is permeable.  

Based on our knowledge from open seawater studies, air-ice gas exchange should at least 

depend on the difference of partial pressure between brine and the atmosphere, wind speed 

and the diffusion coefficient [Wanninkhof, 1992]. However, in contrast to air-sea exchange, 

the diffusion coefficient in sea ice is only known for a few species (CO2, SF6, O2, Ar and N2) 

at specific temperatures (Table 2). The parameterization of air-ice gas exchange is further 

complicated by the fact that gas exchange does not occur through a free-surface of seawater, 

but rather through the pores of a perforated surface, that is possibly covered with snow; 

therefore air-ice gas exchange also depends on the permeability of the ice and the snow. As 

described in section 4.1.4, ice permeability is related to the φ and the morphology of the brine 

inclusions; in particular, the formation of superimposed ice may impede air-ice gas exchange 

[Tison et al., 2010]. Snow permeability depends on the grain radius and the density of the 

snow [e.g., Zermatten et al., 2014]. Although snow is generally more permeable than ice (ca. 

10
-10

 to 10
-8

 m² for snow [Zermatten et al., 2014] in comparison to 10
-14

 to 10
-10

 m² for sea ice 

[Petrich et al., 2006]), snow cover may still act as an intermediate reservoir (or buffer) for 

gases until wind speed exceeds a critical threshold [Heinesch et al., 2009; Papakyriakou and 

Miller, 2011]. 

Table 2 Diffusion coefficients in sea ice 

References 

Ice 

Temperature 

(°C) 

Diffusion coefficients (10
-5

 cm
2
 s

-1
) 

CO2 SF6 O2 Ar N2 

Gosink et al. [1976] -15 to -7 2 0.01 

   Loose et al. [2010] -12 to -2 24 13 3.9 

  Crabeck et al. 

[submitted] 
-3.8 to - 0.8 

    1.5-1.8 1.5-1.8 2.5 

 

4.3 Transport of particulate compounds 

Particulate compounds in sea ice are either inorganic (solid precipitates) or organic 

(particulate organic matter and microorganisms). Although some processes for their transport 

have been identified, they are not yet well constrained [Vancoppenolle et al., 2013b]. For 

instance, it is still a matter of debate as to whether inorganic and organic particles are 
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transported passively as brine or whether they are retained by the sticky EPS (extracellular 

polymeric substance) [e.g., Juhl et al., 2011; Krembs et al., 2000], as for salts [Krembs et al., 

2011] (section 4.1.1). Further, some of the microorganisms (e.g., flagellates) are known to 

move actively (i.e., independently of the brine movement) within the brine channels [Ackley 

and Sullivan, 1994]; this makes the parameterisation of the particulate compounds in sea ice 

even more difficult [Vancoppenolle et al., 2013b]. 

5 Biogeochemical processes in sea ice 

In addition to the transport processes (section 4), biogeochemical processes within sea ice 

also change the concentrations of the biogeochemical compounds. Some of them are abiotic 

(section 5.1), while others are biotic (section 5.2). 

5.1 Abiotic processes 

5.1.1 Mineral precipitation 

Decreasing ice temperature increases the ions concentrations in sea ice (section 3.2) and 

decreases the equilibrium constant Ksp, which both may result in mineral precipitation in sea 

ice. The simultaneous changes in brine concentration and Ksp theoretically result in the 

precipitation of different minerals [Assur, 1958]: for instance,  calcite (CaCO3) at -2.2 °C, 

mirabilite (Na2SO4 . 10H2O) at -6.3 °C, gypsum (CaSO4 . 2H2O) and hydrohalite (NaCl . 

2H2O) at -22.9 °C, sylvite (KCl) at -33.0 °C, and hydrates of magnesium chloride (MgCl2 . 

12H2O) at -36.2 °C, following the thermodynamic models of Marion and Farren [1999].  

It has been suggested that mineral precipitation changes the ion composition of the brine in 

comparison to seawater, because the ions that are part of the minerals are less subject to 

diffusion and gravity drainage than those dissolved in brine [Reeburgh and Springer-Young, 

1983]. For instance, because sylvite precipitates at lower temperature than mirabilite, gravity 

drainage and diffusion may reduce the concentration of Cl
-
 in comparison to SO4

2-
; as a result, 

SO4
2-

 is more enriched with respect to Cl
-
 in brine, in comparison to their respective 

concentration in seawater [Reeburgh and Springer-Young, 1983]. However, more recent 

results of Maus et al. [2011], which combine both ion measurements and a description of the 

physical framework (including ice temperature and salinity), suggest that the differential 

diffusion of ions from fine lateral pore networks, coupled with intermittent brine convection 
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in the large vertical brine channels, may also induce ion fractionation in sea ice in 

comparison to seawater.  

5.1.2 Gas bubble formation 

In comparison to mineral precipitation (section 5.1.1), gas bubble formation also depends on 

the temperature, salinity and pressure constraints, but the equilibrium constant and solubility 

values are more poorly constrained.  

The equilibrium between the gaseous phase and the aqueous phase in sea ice pores is 

described by Henry’s law: 

pi= Ci / KH          (Eq. 9) 

were pi is the partial pressure of a given gas i just above the solution (in the gaseous phase), 

Ci, the concentration of the gas dissolved in the solution (the aqueous phase), and KH, the 

Henry’s law constant, which is a function of the temperature, salinity and pressure, as does 

Ksp (section 5.1.1). However, while Ksp is known for the temperature and salinity conditions 

in sea ice, it is not the case for KH. 

The levels of saturation (ΔCi) compare the concentration of the gas in brine (Ci) with respect 

to an equilibrium state (Ceq), the solubility of the gas i in brine at equilibrium with the 

atmosphere: 

          (Eq. 10) 

where ΔCi higher than, equals to or lower than 1 indicates that the gas is supersaturated, at 

saturation or undersaturated respectively [Craig and Hayward, 1987].  

Gas supersaturation could easily occur during ice growth, because of two synergetic effects 

related to decreasing ice temperature. First, decreasing ice temperature decreases the brine 

volume fraction, which increases dissolved gas concentration in brine Ci. Second, decreasing 

ice temperature decreases gas solubility (Ceq). Actually, Ceq has not been established yet for 

the range of temperatures and salinities in brine. However, if we assumed that the 

relationships established for seawater (i.e., generally, for temperatures between 0 and 30 °C 

and salinities between 0 and 35) still hold for brine – although sea ice temperature may be as 

low as -30 °C [Miller et al., 2011], which corresponds to a brine salinity of 306 (Eq. 5) – then, 

1
eq

i

i
C

C
C
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Ceq in brine should increase with decreasing temperature and decrease with increasing 

salinity (Figure 9a,b), but with a stronger dependency to salinity rather than temperature. In 

other words, Ceq in brine should decrease during ice growth, due to increasing brine salinity 

that is coupled with the decreasing ice temperature (Figure 9c). Above saturation, if the sum 

of the partial pressures of all the dissolved gases is higher than the local hydrostatic pressure, 

gas bubbles can nucleate and accumulate in the direct vicinity of the brine inclusions (see 

Lubetkin [2003] for a review on the conditions required for gas bubble formation). 

 

Figure 9 The solubility of gases in seawater for different temperature and fixed 35 of salinity (a), for 

different salinity and fixed temperature of 0 °C (b), and the solubility of gases in brine (c). The 

solubility of N2, O2 and Ar are in µmol L
-1

, the solubility for CH4 is in nmol L
-1

. 

 

5.1.3 The particular case of calcium carbonate precipitation 

The precipitation of calcium carbonate (CaCO3) is particular in the way that it combines the 

processes related to mineral precipitation (section 5.1.1) and gas equilibrium (section 5.1.2). 

Indeed, it produces CO2 (gas) and CaCO3 (solid) according to the equation: 

Ca
2+

 + 2HCO3
-
 <-> CaCO3 + CO2 + H2O      (Eq. 11) 
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The parameterization of CaCO3 precipitation is complicated because of the equilibrium 

between the carbonate species (CO2(aq) or H2CO3, HCO3
-
 and CO3

2-
). The respective 

abundance of the carbonate species in brine depend on the following equilibrium: 

           (Eq. 12) 

where K1 and K2 are respectively the first and second dissociation constants of the carbonate 

system, which depend on temperature, salinity and the pH (see Zeebe and Wolf-Gladrow 

[2001] for a review).  

To date, observations of CaCO3 are scarce in natural sea ice [Dieckmann et al., 2010; 

Dieckmann et al., 2008; Geilfus et al., 2013], but they already feed speculation on the amount 

of CaCO3 that can precipitate in sea ice and the related climate impacts [Moreau et al., 

submitted; Rysgaard et al., 2013]. In addition, conjectures on the subsequent transport 

pathways of CaCO3 and CO2 [Delille, 2006] lead Rysgaard et al. [2011] to suggest that the 

formation of ikaite (a form of CaCO3) in sea ice may favour the export of atmospheric CO2 to 

the deep ocean. Their proposed scenario is as follows: when ikaite precipitates in sea ice, if 

the minerals are trapped in the tortuosity of the pore network while the produced CO2 is 

expelled from the ice due to gravity drainage and then sinks due to the dense water formation, 

then sea ice would contribute to the export of CO2  to the deep water. In addition, when the 

dissolution of ikaite occurs, it would further pump CO2 from the atmosphere if sea ice is 

permeable. However, that proposed scenario is still debated, because of current uncertainty of 

the transport pathway of CO2. Indeed, if the produced CO2 remains in sea ice, or if it is 

expelled to the atmosphere (as suggested in Geilfus et al. [2013]) rather than the underlying 

water, then the impact of CaCO3 precipitation on the annual budget of CO2 in the atmosphere 

is nil (see  Delille et al. [2014] for a recent and detailed review).  

5.2 Biotic processes 

In addition to the previously described abiotic (geochemical) processes, microorganisms that 

are able to survive at high salinity and low temperature in sea ice also modify the chemical 

composition of sea ice through their activity. This section aims to provide an overview of the 

impact of the biological activity on the changes in the biogeochemical compounds, with a 

focus on the impact of these changes on the underlying seawater and the atmosphere, and 

vice-versa.  
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A simplified metabolism pathway in sea ice would be as follows: providing that light is not 

limiting, ice-algae utilize inorganic macro- and micro-nutrients (section 5.2.1) and CO2 for 

their metabolisms, transferring therefore part of the dissolved inorganic compounds from 

brine within their cells, and producing particulate organic matter (POM). That organic matter 

(section 5.2.2) could be released to brine (forming dissolved organic matter, DOM) after 

algal exudation due to physiological stress, cell-lysis or grazing, and then be broken down 

due to the activity of grazers and decomposers. In that process, termed remineralization, the 

organic matters that can easily be broken down are said “labile”, and the others, “refractory”. 

The metabolic cycle of the microorganisms in sea ice may also be accompanied by the 

production and consumption of biogases (section 5.2.3).  

5.2.1 Inorganic nutrient dynamics 

 Macro-nutrients 

All macro-nutrients in sea ice (nitrate, nitrite, phosphate, silicic acid) are dissolved in brine, 

with the exception of ammonium that can be incorporated within the lattice of the pure ice 

matrix (section 1). Therefore, except for ammonium, it is assumed that macro-nutrients are 

subject to brine drainage as for salt (section 4.1) and that they are thus conservative against 

salinity in abiotic conditions. Thus, their concentrations increase linearly with increasing bulk 

ice salinity, following the so-called dilution curve, as it has been observed for the major ions 

(e.g., sodium, potassium, magnesium, calcium), which are much less involved in biological 

processes than the macro-nutrients [Meese, 1989] (Figure 10). In biotic conditions however, 

because of the uptake or the release of the macro-nutrients due to the metabolic cycle of the 

microorganisms living in sea ice (and possibly, complexation processes), macro-nutrients 

become non-conservative against salinity [e.g., Becquevort et al., 2009; Meese, 1989; 

Papadimitriou et al., 2007; Thomas et al., 2010].  

Following the initial incorporation of nutrient during sea ice formation (entrapment of the 

brine inclusions or frazil accumulation) (section 2.1), nutrient exchange through brine 

convection, lateral infiltration of seawater or vertical infiltration of seawater or meltwater 

with atmospheric deposit may affect algal growth [Ackley and Sullivan, 1994; Granskog et al., 

2003; Vancoppenolle et al., 2010]. Nutrient limitation changes significantly the metabolism 

of ice algae (e.g., leading to the production of high carbon-weight molecules [Lee et al., 

2008], which then can alter the rates at which algal debris sink, their potential to form 
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aggregates, and thus in fine, the potential for carbon export to the deep ocean once the 

microorganisms are released in seawater following the ice melt. 

 

Figure 10 Concentrations of sulphate, phosphate, silicate and magnesium (clockwise from the top-left 

corner) in first-year sea ice in comparison with their dilution curve (note that here, chlorine 

concentration is used as a proxy of the salinity [Meese, 1989, p. 46-47]). Magnesium is conservative, 

but not phosphate and silicate (due to biological activities) or sulphate (due to mineral precipitation of 

differential diffusion (section 5.1.1)). 

 

 Micro-nutrients 

Some trace metals are micro-nutrients that are essential for the metabolic cycle; the most 

widely discussed micro-nutrient in sea ice is iron (Fe). Because Fe availability limits 

phytoplankton growth in regions like Southern Ocean and North Pacific, observations 

showing that Fe concentrations are orders of magnitude higher in sea ice than in the water 

column [Aguilar-Islas et al., 2008; Lannuzel et al., 2007; Lannuzel et al., 2010] suggest that 

the Fe release that goes along with the sea ice melt triggers phytoplankton blooms in surface 

seawater, where Fe is limited [Lancelot et al., 2009].  
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Because Fe is bio-essential for the metabolism of the micro-organisms in sea ice, they are 

expected to be generally non-conservative to salinity as for the macro-nutrients [Lannuzel et 

al., 2011]. However, the transport pathway is much more complex than that of the macro-

nutrients. First, Fe is present in sea ice in either the dissolved (dFe) or the particulate form 

(pFe). While biological assimilation may convert dFe into pFe, and cell-lysis and 

heterotrophic activity convert pFe back to dFe (as for the macronutrients) [Hassler and 

Schoemann, 2009], photo-reduction also participates to the conversion of pFe to dFe [Kim et 

al., 2010; Rijkenberg et al., 2008]. Second, the incorporation of dissolved “free” Fe is 

unexpected in contrast to the macro-nutrients, because most of the dFe and pFe present in 

seawater are complexed by organic ligands [Boye et al., 2001]. Third, because of that 

complexation process, brine drainage should be less efficient in removing dFe in comparison 

to the other macro-nutrients which have no complexation properties [Vancoppenolle et al., 

2010]. 

5.2.2 Organic matter 

The microorganisms in sea ice produce a large variety of dissolved and particulate organic 

matters (DOM and POM respectively). The distinction between DOM and POM may be 

unclear over a certain range of size, because dissolved organic matter is usually defined as 

smaller than 0.2 µm, but the characterization of DOM is generally done after the filtration 

through precombusted GF/F glass fiber filters of 0.7 µm [Thomas et al., 2010] or 0.45 µm 

[McMinn et al., 2009] in practice. 

DOM availability in sea ice has many ecological implications. For instance, labile DOM is a 

food source for the microbial foodweb within sea ice. In addition, DOM includes some 

chelating agents that may affect the bio-availability of Fe in sea ice, and the coloured DOM 

(CDOM) alter the quality of the light penetrating through sea ice and serve as substrate for 

photochemical reactions [Belzile et al., 2000; Norman et al., 2011]. Further, and most 

importantly for this thesis, some DOM may spontaneously assemble into gel-like organic 

substances [Chin et al., 1998], which then alter the effective porosity of sea ice and 

significantly impact the transport of the biogeochemical compounds in sea ice [Krembs et al., 

2011].  

Extracellular polymeric substances (EPS) are part of these organic compounds that are 

produced by algae (and to a minor extent by bacteria) [Passow, 2002] and which can form 

gels, in particular with the presence of cations such as potassium, hydrogen and calcium 



II - State of the art 

39 
 

[Verdugo et al., 2004]. EPS can undergo different phase transition (condensed or hydrated, 

DOM or gels) depending on the temperature, salinity and pH of the brine [Riedel et al., 2008]. 

EPS plays a fundamental role for the microbial communities [Krembs and Deming, 2008]. It 

protects cells against changes associated with decreasing ice temperature and brine 

concentration [Krembs et al., 2002], it represents a carbon-rich substrate for bacterial 

colonization and grazers [Meiners et al., 2004; Riedel et al., 2006; Riedel et al., 2007], and its 

viscosity favours cell adherence to the brine wall [Krembs et al., 2002] and affect the 

transport of salts [Krembs et al., 2011] and ions [Krembs and Deming, 2008]. The increase of 

tortuosity due to the presence of EPS further offers a protection from grazers and improves 

sea ice habitability [Krembs and Deming, 2008]. Interestingly, EPS appears to remain in sea 

ice while the POM is released into the surface seawater during ice melt [Juhl et al., 2011; 

Riedel et al., 2006]; hence, there is a discontinuous export of organic matter from sea ice to 

the underlying seawater, and the quality and the quantity of that organic matter change across 

the melt season. 

5.2.3 Biogas production and consumption 

The most studied biogases in sea ice are O2, CO2 and dimethylsulphide (DMS). The study of 

O2 dynamics is mainly motivated by the assessment of the net community production (NCP) 

in sea ice (i.e. the net balance of photosynthesis and respiration) [e.g., McMinn and Ashworth, 

1998; Mock et al., 2003], which is generally the sole source of fixed-carbon for the higher 

trophic level species in the ice-covered regions [Arrigo et al., 2010]. Because of the tight 

relationship between O2 and CO2 during photosynthesis and respiration [Laws, 1991], 

assessing the net production of O2 in sea ice helps to quantify the net uptake of CO2 due to 

biological activity.  

The dynamics of CO2 is more complicated than the one of O2, because it also depends on 

carbonate mineral precipitation and dissolution (section 5.1.1), in addition to the NCP and to 

the partitioning between CO2, HCO3
-
 and CO3

2- 
[e.g., Geilfus et al., 2012]. The partitioning of 

the CO2 (in the form of CO2 in gas bubbles or in the form of CaCO3, i.e., as solid) has strong 

implications in the role of sea ice as a source or sink for the atmospheric CO2 as described in 

Delille et al. [2014] and section 5.1.3. 

DMS (dimethylsulfide) is a by-product of the degradation of DMSP 

(dimethylsulfoniopropionate). The latter is synthesized by some species of ice-algae and is 
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found in much larger concentrations in sea ice than in seawater [e.g., Stefels et al., 2007]. 

When DMS is released to the atmosphere, the oxidation of DMS may produce aerosol 

particles, which affect the radiative properties of the atmosphere. Indeed, aerosols scatter the 

incoming solar radiation and may promote the formation of clouds which reflect part of the 

radiation [Charlson et al., 1987]. 

In addition to O2, CO2 and DMS, the study of other biogases should gain interest in the 

coming years; these are methane (CH4), nitrous oxide (N2O) and halogen-organic compounds. 

CH4 is a greenhouse gas which accounts for 20 % of the global radiative forcing of well-

mixed greenhouse gases [Myhre et al., 2013]. It potential emission from the destabilized 

permafrost and hydrates in the Arctic shelf regions, associated with the ongoing climate 

warming may have positive feedback on the climate, as it occured in the past [O'Connor et 

al., 2010]. The role of sea ice in that scenario is uncertain. To date, CH4 measurements in sea 

ice are scarce [Lorenson and Kvenvolden, 1995; Shakhova et al., 2010b]. However, 

observations showing strong supersaturation of CH4 relative to the atmosphere in the under-

ice water, large mixing ratio of CH4 in sea ice [Shakhova et al., 2010a] and CH4 emissions in 

the ice-covered central Arctic [Kort et al., 2012] have raised questions (and speculations) on 

the role of sea ice in the exchange and the cycling of CH4 in the polar regions. Shakhova et al. 

[2010a] have suggested that sea ice impedes air-sea exchange and allows CH4 accumulation 

under the ice, while He et al. [2013] measured air-ice CH4 fluxes and Kitidis et al. [2010] 

showed CH4 oxidation under the ice based on incubations. Note that although many 

measurements have been carried out in the air, in seawater, and in the sediment, no study has 

yet discussed the CH4 dynamics within sea ice. CH4 production (methanogenesis) was 

thought to mainly occur in abiotic conditions (e.g., in anoxic sediment), but recent studies 

indicate that methanogenesis could also occur in aerobic seawater, as a result of DMSP 

degradation [E. Damm et al., 2010; Florez-Leiva et al., 2013; Zindler et al., 2012]. Whether 

the same pathway could occur in sea ice, where large DMSP concentrations are found, has 

yet to be verified. 

N2O is a greenhouse gas and may be produced in Antarctic sea ice as a result of ammonium 

oxidation [Priscu et al., 1990]. However, in the Arctic, N2O production via denitrification 

appears to be limited to anaerobic micro-niches [Kaartokallio, 2001; Rysgaard and Glud, 

2004]. Recent study on the dynamics of N2O indicates that brine dilution leads to air-ice 
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fluxes of N2O during ice decay [Randall et al., 2012], but without any evidence of N2O 

production in sea ice.  

Finally, it is well known that active forms of bromine are responsible for the ozone depletion 

event during polar spring [e.g., Simpson et al., 2007]. Sea ice has been suggested to be a 

source of bromine that participates to the ozone depletion events [e.g., Simpson et al., 2007], 

because both Arctic and Antarctic sea ice algae produce a significant amount of halocarbons 

(volatile halogenated organic compounds), part of which may be converted photochemically 

into active forms of bromine [Granfors et al., 2013a; Granfors et al., 2013b; Sturges et al., 

1992; Sturges et al., 1993]. However, since a recent study indicates that the catalytic reaction 

of ozone depletion requires an acidic reaction substrate, whereas sea ice brine has basic pH 

because of its salt content, the significance of sea ice contribution to the ozone depletion 

event still need to be assessed [Pratt et al., 2013]. 

6 Constraints on observations and measurements 

6.1 Demand for long-time survey 

Biogeochemical measurements are currently scarce and sparse in time and in space. The 

study of biological and geochemical processes dates back to the beginning of the previous 

century [Weeks, 2010]. However, it has experienced a fast growth in the last 10-20 years, due 

to the recent technological development, which allows an easier access to the polar regions, 

and due to the growing demand for a better understanding of the future changes in the polar 

ecosystem, in the context of a warming climate [Miller et al., under revision]. Ideally, our 

understanding of the incorporation and transport of bio-essential dissolved compounds (e.g., 

nutrients, DOM) and gases should reach the same levels of details as for salts, for accurate 

simulations of the future changes in sea ice primary production and the air-sea exchange of 

climate-active gases. While Malmgren [1927] described the evolution of the bulk salinity 

profile in sea ice across seasons, equivalent time-series do not exist for any of the 

biogeochemical compounds to date. Instead, current biogeochemical data are mainly limited 

to the ice decay, probably due to the more favourable navigation and sampling conditions 

[Miller et al., under revision]. The eight-months long time series study, named International 

Circumpolar Flaw Lead System Study (CFL), which has been conducted in the Amundsen 

Gulf (Arctic), during the International polar year (IPY), 2007-2008, have provided interesting 
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results [e.g., Carnat et al., 2013; Geilfus et al., 2012] and calls for additional long time-series 

studies, and preferably in areas of low spatial variability. 

6.2 Spatial variability 

Spatial variability is important for process studies, as it partly determines the uncertainty of 

the results. Indeed, assuming that we measure a variable and its changes over time, how 

relevant is a change of 30 % between two ice cores collected at different time, in the same 

area, if the spatial variability already accounts for 50 % (i.e., if there is a difference of 50% 

between two ice cores collected at the same time)? While mean salinity generally shows low 

standard deviations between cores [Eicken et al., 1991; Tucker et al., 1984], large standard 

deviation (up to one order of magnitude) has been observed for chlorophyll-a [Eicken et al., 

1991]. The problem of spatial variability also exists at a smaller scale due to the 

heterogeneous structure of sea ice. For instance, when measuring the salinity of two ice 

samples from the same ice core and ice depth, the results may be different if one contains a 

large brine channel while the other one does not [Cottier et al., 1999]. To avoid the issues 

related to the small-scale heterogeneity of the ice, it is therefore crucial to measure a 

representative ice volume, i.e., a sufficiently large ice sample with a representative φ [Miller 

et al., under revision]. For the large-scale spatial variability, it would be valuable to measure 

the standard deviation of the variable among multiple ice cores [Eicken et al., 1991; Miller et 

al., under revision], unless we aim at describing temporal and spatial trends rather than 

obtaining absolute values as in Meiners et al. [2012]. 

6.3 Measurement methods 

The heterogeneous structure imposes different constraints to the measurement methods. The 

most relevant methods and limitations are described here, based on the review of Miller et al. 

[under revision]. Because most of the methods for the measurements of biogeochemical 

compounds in sea ice directly derived from existing methods for seawater, ice samples are 

generally melted before the measurements. Melting the ice results in an addition of 

freshwater in brine, hence, a dilution of the brine content, because most of the 

biogeochemical compounds are concentrated in brine, while the surrounding ice matrix is 

almost pure. The associated abrupt change of salinity is known to cause osmotic shock to the 

microorganisms [Garrison and Buck, 1986; Kottmeier and Sullivan, 1988], induce artificial 

conversion of DMSP into DMS [Stefels et al., 2012] and dissolve mineral precipitates like 

calcium carbonate. Because melting the ice inevitably alters bulk ice biogeochemistry, an 



II - State of the art 

43 
 

alternative would be to measure the concentrations of the solutes in brine rather than in the 

melted ice samples. To collect brine, we simply need to make a half-core hole (or sackhole) 

and let the brine percolates into it. However, the measurements in brine have two main 

drawbacks: first, if the ice temperature is very low, the brine pockets may be disconnected, or 

it may take a long time before obtaining the required volume; second, if some compounds are 

adsorbed at the surface of the sticky EPS, their concentrations will be underestimated in the 

brine samples. Currently, there is no ideal solution for the measurements of the dissolved 

compounds in sea ice; one needs to do with the caveats underlying each method. 

Gas concentrations may also be underestimated in brine samples, because gas exchange may 

occur between the percolated brine and the atmosphere during the sampling. There are 

however four others methods for gas measurements in ice. (1) The oldest method is wet 

extraction; it requires melting the ice and refreezing the meltwater from the bottom so that the 

whole gas content are expelled in the headspace above the refrozen ice [Tison et al., 2002]. 

For insoluble gases at high concentrations, the refreezing step is not necessary. We simply 

need to equilibrate the meltwater with a volume of gas standard, and measured the 

equilibrated volume of gas. (2) Dry-extraction involves the crushing of ice samples with 

stainless steel balls under vacuum [Stefels et al., 2012; Tison et al., 2002], and the 

measurements of the released gases by gas chromatography. However, that method does not 

suit for CH4 measurements because the metal-metal friction during the crushing process 

artificially release of CH4 [Higaki et al., 2006]. The method of dry-crushing also requires a 

step of pre-concentration if we aim to measure trace gases like DMS [Stefels et al., 2012]. (3) 

For CO2 measurements, where melting and vacuum disrupts the equilibrium of the carbonate 

system, the ice samples may be equilibrated with a small volume of gas standard, which will 

be analyzed by gas chromatography [Geilfus et al., 2012]. (4) In situ probes has been used for 

determining O2 concentrations in sea ice [McMinn et al., 2009], based on photochemical 

detection. However, the results vary depending on whether the probes are inserted in gas 

bubbles, brine, or microbial biofilms [Mock et al., 2002]. In addition, unless the probes can 

be deployed before the freezing, their installation within the ice requires disturbing the ice 

cover. 
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Chapter III – Objectives 

 

The main question we aim to answer is: “What are the most relevant processes affecting the 

dynamics of solutes and gases in sea ice?”  

That general question may be divided into three sub-questions: 

1. How does the concentration of solutes and gases in sea ice change with depth 

and time? 

2. How do these changes compare to those of the physical properties of the ice? 

3. How do these changes compare to those of the biological properties of the 

ice? 

Indeed, in order to identify the most relevant processes that affect the dynamics of solutes 

and gases in sea ice, it is first important to describe the dynamics themselves, hence, how 

their concentrations vary with depth and across seasons (Question 1). Then, because the state 

of the art shows that both the physical and biological properties of the ice affect the changes 

of solutes and gases in sea ice, it appears necessary to compare the observed changes with the 

changes in the physical properties (Question 2) and the biological properties of the ice 

(Question 3), in order to identify the most relevant processes. 
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Chapter IV – Thesis outline 

 

1 Manuscript presented in the present thesis 

This thesis comprises four manuscripts (Chapters V to VIII). All of them describe the vertical 

distribution of different biogeochemical compounds in sea ice, from ice growth to ice decay 

(Question 1), in parallel with the physical properties (Question 2), and the biological 

properties of the ice (Question 3). The aims and the original findings of the manuscripts are 

synthesized here below, and on table 1. 

Table 1 Comparison of the manuscripts presented in the thesis, based on the location and the duration 

of the sampling, and the analyzed compounds.   

 Location, duration Analyzed compounds (in addition to 

temperature, salinity) 

Chapter V 
Indoor experiment in 

Hamburg, 19 days 
 Inorganic nutrients, DOC 

 Bacterial abundance, bacterial activity  

Chapter 

VI 

Barrow, field survey from 

Jan- June 2009 

  Inorganic nutrients  

  Water stable isotopes 

  Chlorophyll a 

  Argon 

Chapter 

VII 
 Methane  

Chapter 

VIII 
  Oxygen, argon, nitrogen  

 

The first manuscript (Chapter V) describes the evolution of nutrients, DOM, bacterial activity 

and abundance, in two series of mesocosms from ice growth to ice decay during a 19-day 

experiment in Hamburg (Germany). One series was filled with seawater, and the other one, 

with seawater and river water. The main aim was to identify the potential differences in sea 

ice biogeochemistry due to the additional riverine dissolved organic matter (DOM). We 

found that most of the dissolved compounds were more enriched in sea ice than we would 

expect if they were conservative against salinity, and the enrichment of DOM was more 
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important in the mesocosms with river water. This indicates that the physico-chemical 

properties of the DOM themselves may affect the incorporation efficiency. The addition of 

riverine DOM slightly boosted the bacterial abundance and bacterial activity. However, 

although bacterial abundance was the highest at the bottom of the ice, bacterial impact on the 

dissolved compounds was not obvious there. This is likely to be the result of brine convection, 

i.e., brine exchange with seawater, which tended to draw the concentrations of the dissolved 

compounds back to the conservative behaviour.  

1. Zhou, J., B. Delille, H. Kaartokallio, G. Kattner, H. Kuosa, J-L. Tison, R. Autio; G. S. 

Dieckmann, K-U. Evers, L. Jørgensen, H. Kennedy, M. Kotovitch, A-M. Luhtanen, C. A. 

Stedmon, D. N. Thomas, (2014) Physical and biological controls on the distribution of 

inorganic nutrients and DOC in sea ice during an experimental ice growth and decay 

cycle. Marine Chemistry, 166, 59-69, doi: 

http://dx.doi.org/10.1016/j.marchem.2014.09.013 

My contribution: I did the sampling, measured temperature and salinity, and calculated the 

other physical parameters presented in the manuscript. I led the writing of the manuscript.  

In contrast to the previous manuscript, the second manuscript (Chapter VI) deals with natural 

ice cores that were collected in Barrow, Alaska from February to June 2009. It aimed to 

compare the behaviour among the dissolved (nutrients and δ
18

O, δD), particulate 

(chlorophyll-a) and gaseous (argon) compounds with respect to the increase of sea ice 

permeability and brine drainage. Argon clearly responded different to brine dynamics than 

the other biogeochemical compounds; we attributed that contrast to the impact of gas bubble 

formation on gas transport compared to the other analyzed compounds.  

2. Zhou, J., B. Delille, H. Eicken, M. Vancoppenolle, F. Brabant, G. Carnat, N.-X. Geilfus, 

T. Papakyriakou, B. Heinesch, and J.-L. Tison (2013). Physical and biogeochemical 

properties in landfast sea ice (Barrow, Alaska): Insights on brine and gas dynamics across 

seasons, J. Geophys. Res. Oceans, 118, doi:10.1002/jgrc.20232. 

My contribution: I did all the measurements (except the water stable isotopes). I led the 

writing of the manuscript.  

The third paper (Chapter VII) also deals with natural ice cores that were collected in Barrow, 

Alaska from February to June 2009, but focuses on the dynamics of methane (CH4), which is 

a biogas of low solubility with a high global warming potential. The release of CH4 from the 

Arctic shelf regions potentially causes positive feedback on current global warming. 

However, the role of sea ice in the exchange of CH4 between seawater and the atmosphere is 

http://dx.doi.org/10.1016/j.marchem.2014.09.013
http://dx.doi.org/10.1002/jgrc.20232
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unclear. This manuscript aims at improving our understanding of the role of sea ice, by 

describing the changes of CH4 in sea ice, brine and seawater, over time. Our main conclusion 

is that sea ice mainly act as a temporary storage for the CH4 in seawater; the biological 

impact on the CH4 in sea ice was likely negligible in comparison to the physical impact.  

3. Zhou, J., J.-L. Tison, G. Carnat, N.-X. Geilfus, B. Delille (2014) Physical controls on the 

storage of methane in landfast sea ice. The Cryosphere, 8, 1019-1029, doi:10.5194/tc-8-

1019-2014. 

 

My contribution: I did all the sea-ice related measurements. I led the writing of the 

manuscript.  

The fourth paper (Chapter VIII) also deals with natural ice cores that were collected in 

Barrow, Alaska from February to June 2009, but compares the dynamic of O2, a biogas, with 

that of N2 and Ar, which are here considered as inert. We further discussed in that paper the 

potential of using N2 and Ar to correct the physical contribution to O2 variations, and thus, to 

determine the biological production of O2 in sea ice. That manuscript has two main 

originalities: first, we analyzed the total O2 content in the ice (gaseous and dissolved), while 

current studies mainly focus on the dissolved O2 concentrations. Second, we discussed on an 

innovative method for determining biological production, which does not require to melt the 

ice or to deploy in situ probes. Therefore, we avoid obtaining biased biological production 

related to the ice melt or because the probes are inserted in gas bubbles or biofilms. 

4. Zhou, J., B. Delille, F. Brabant, J-L. Tison. Insights into oxygen transport and net 

community production in sea ice from oxygen, nitrogen and argon concentrations, 

Biogeosciences Discuss., 11, 2045-2081, doi:10.5194/bgd-11-2045-2014, 2014. 

My contribution: I did all the measurements. I led the writing of the manuscript.  

 

Following the four manuscripts, Chapter IX synthesizes the findings of the present thesis and 

provides concluding comments and insights on how current transport and biogeochemical 

processes likely evolve in the future. 
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2 Additional contribution to the peer-reviewed literature 

In addition to the four manuscripts presented in the thesis, I also participated to 6 other 

publications, which are directly related to the topic of the thesis.  

5. Carnat, G., T.N. Papkyriakou, N.-X. Geilfus, F. Brabant, B. Delille, M. Vancoppenolle, G. 

Gilson, J. Zhou, and J.-L. Tison (2013). Year-round investigations of Arctic first-year sea 

ice physical and textural properties in the Amundsen Gulf (IPY-CFL system study). 

Journal of Glaciology, 59 (217), pp. 819-837. 

My contribution: I participated to the discussion related to the physical properties of the ice, 

and I provided comments and suggestions at various stages of the manuscript preparation.  

Interests: That manuscript provides a long-time dataset of sea ice physical properties in the 

Amundsen Gulf. We point out that the evolution of the ice temperature and other ice physical 

properties are more closely linked to the evolution of the air temperature rather than the 

spatial distribution of the sampling. In addition, the temporal evolution of the ice physical 

properties is similar to that observed in Barrow (Chapter VI-VIII); this suggests our findings 

in Barrow may be valid for Amundsen Gulf and all of the ice covers that experience the same 

temperature regime.  

 

6. Carnat, G., J. Zhou, T. Papakyriakou, B. Delille, T. Goossens, T. Haskell, V. Schoemann, 

J.-L. Tison. Physical and biological controls on DMS, P dynamics in ice shelf-influenced 

fast ice during a winter-spring and a spring-summer transitions, J. Geophys. Res. Oceans, 

119, doi: 10.1002/2013JC009381. 

My contribution: I participated to the field samplings (4-5 months in Antarctica, including 

two months in winter), I measured some of the concentrations of DMS,P, in ice and water; I 

also did the filtration and some of the measurements of chlorophyll a. I computed the 

temperature and salinity-dependent parameters; this includes writing the Matlab routine for 

the calculation of Rayleigh number. I provided comments and suggestions at various stages 

of the manuscript preparation.  

Interests: We presented the interactions between the physical and biological controls on the 

DMS,P cycle in ice. We highlighted the complexity to interpret the DMS(P) concentrations in 

parallel with the chlorophyll-a concentrations, when neglecting the physical framework. 

Indeed, in winter, platelet ice formation incorporated dinoflagellates, which are strong DMSP 
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producers. In winter-spring transition, increasing solar radiation stimulated the synthesis of 

DMSP, before the increase in the abundance of diatoms further increases DMSP 

concentrations in ice. In spring-summer transition, drastic changes in brine dynamics released 

DMS to the under-ice water and redistributed DMSP in the ice, without affecting the 

chlorophyll-a distribution.   

 

7. Moreau M., M. Vancoppenolle, J. Zhou, J.-L. Tison, B. Delille, H. Goosse, (2014). 

Modeling argon dynamics in first-year sea ice, Ocean Modelling, 73, doi: 

10.1016/j.ocemod.2013.10.004 

My contribution: I participated to the discussions on the components to implement to the 

models; I provided the data for the validation of the model; I provided comments and 

suggestions at various stages of the manuscript preparation.  

Interests: While model efforts have mainly focused on the dissolved compounds (e.g salt), 

Moreau et al. (2014) have implemented, a component that describes the incorporation and the 

transport of argon in ice, to a 1D-model for dissolved compounds in ice. The model 

simulations confirm that the formation of gas bubbles impacts the gas content in ice (as we 

have suggested in Chapter VI). Neglecting gas bubble formation (i.e., by taken into account 

only the dissolved gas compounds) could lead to an underestimation of the argon content in 

sea ice up to 70 %.  

 

8. Moreau, S., M. Vancoppenolle, B. Delille, J-L. Tison, J. Zhou, M. Kotovitch, D.N. 

Thomas, N-X. Geilfus, H. Goosse, Drivers of inorganic carbon dynamics in first-year sea 

ice: a model study, Under review in Journal of geophysical Research. 

My contribution: I participated to the discussion on the components to implement to the 

models; I provided the data for the validation of the model; I provided comments and 

suggestions at various stages of the manuscript preparation.  

Interests:  Following the model simulations on argon (manuscript #7 hereabove), we further 

developed model simulations on the dynamics of CO2 in sea ice. The results were validated 

against some data obtained in both natural and experiment ice cores. In contrast to argon 

(Chapter VI), CO2 may mainly remain in the dissolved state (in the form of DIC, dissolved 

organic carbon), because of the equilibria of the CO2 system. A significant part of the DIC in 
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sea ice is released to the under-ice water, through brine drainage; but how much of this DIC 

is exported to the deep ocean remains uncertain.  

 
9. Miller, L., F. Fripiat, B.G.T. Else, J. S. Bowman, K. A. Brown, R. E. Collin, M. Ewert, A. 

Fransson, M. Gosselin, D. Lannuzel, K.M. Meiners, C. Michel, J. Nishioka, D. Nomura, 

S. Papadimitriou, L.M. Russell, L.L. Sørensen, D.N. Thomas, J-L. Tison, M.A. van 

Leeuwe, M. Vancoppenolle, E.W. W., J. Zhou. Methods for Biogeochemical Studies of 

Sea Ice: the state of the art, caveats and recommendations. Under review in Elementa. 

My contribution: I participated to the writing of the section related to gases in sea ice. I also 

provided comments and suggestions at various stages of the manuscript preparation for the 

other sections. 

Interests:  This manuscript reviews the existing methods for sea ice biogeochemical studies. 

Sea ice biogeochemistry has experienced a fast growth in the last 10 to 20 years, due to the 

recent technological development, and the growing demand for a better understanding of the 

future changes in the polar regions. Specialists have come from different disciplines, and 

used diverse methods for their measurements. As a result, it is not only complicate to 

compare the data, but also, to choose the appropriate method to use. That manuscript reviews 

the existing methods, and highlighted their caveats and limitations. 

 

10. Vancoppenolle, M., D. Notz, F. Vivier, J.-L. Tison, B. Delille, G. Carnat, J. Zhou, F. 

Jardon, P. Griewank, A. Lourenço, and T. Haskell (2013). Technical Note: On the use of 

the mushy-layer Rayleigh number for the interpretation of sea-ice-core data, The 

Cryosphere Discuss., 7, 3209-3230, doi:10.5194/tcd-7-3209-2013. 

My contribution: I provided comments and suggestions at various stages of the manuscript 

preparation. 

Interests:  This manuscript contains recommendations on the parameterization and the 

interpretation of the Rayleigh number (Ra). My co-authors and I realized that different 

parameterizations have been used for the computation of the Ra. As a result, it makes it 

difficult to compare the Rayleigh number from one study to another. In addition, we noticed 

that the Ra computed from field study were generally lower than those obtained from 

experiments, with in-situ salinity measurements. In that paper, we discussed on the change in 

Ra related to the different parameterization, and suggested to interpret the Ra qualitatively 

when it is computed from field data, because brine drainage, and the snapshot character of the 

sampling may lead to an underestimation of the Ra. 
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Chapter V - Physical and bacterial controls on the 

distribution of inorganic nutrients and DOC in sea ice 

during an experimental ice growth and decay cycle 

 

Marine Chemistry, 166, 59-69, doi: 10.1016/j.marchem.2014.09.013 
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Abstract 

We investigated how physical incorporation, brine dynamics and bacterial activity regulate 

the distribution of inorganic nutrients and dissolved organic carbon (DOC) in artificial sea ice 

during a 19-day experiment that included periods of both ice growth and decay. The 

experiment was performed using two series of mesocosms: the first consisted of seawater 

(SW) and the second consisted of seawater enriched with humic-rich river water (SWR). We 

grew ice by freezing the water at an air temperature of -14 °C for 14 days after which ice 

decay was induced by increasing the air temperature to -1 °C. Using the ice temperatures and 

bulk ice salinities, we derived the brine volume fractions, brine salinities and Rayleigh 

numbers. The temporal evolution of these physical parameters indicates that there were two 

main stages in the brine dynamics: bottom convection during ice growth, and brine 

stratification during ice decay. The major findings are: (1) the incorporation of dissolved 

compounds (nitrate, nitrite, ammonium, phosphate, silicate, and DOC) into the sea ice was 

not conservative (relative to salinity) during ice growth, which is different to commonly held 

assumptions. Brine convection clearly influenced the incorporation of the dissolved 

compounds, since the non-conservative behavior of the dissolved compounds was 

particularly pronounced in the absence of brine convection. (2) Bacterial activity further 

regulated nutrient availability in the ice: ammonium and nitrite accumulation was evidently a 

consequence of remineralization processes, although bacterial production was too low to 

induce major changes in DOC concentrations. (3) Different forms of DOC have different 

properties and hence incorporation efficiencies. In particular, the terrestrially-derived DOC 

from the river water was less efficiently incorporated into sea ice than the DOC in the 

seawater. Therefore the main factors regulating the distribution of the dissolved compounds 

within sea ice are clearly a complex interaction of brine dynamics, biological activity and in 

the case of DOM the physico-chemical properties of the dissolved constituents themselves.  

1 Introduction 

Sea ice is formed from the freezing of seawater, and therefore the dissolved inorganic and 

organic nutrient concentrations in sea ice depend on those of the parent water [Petrich and 

Eicken, 2010; Weeks, 2010]. Most of these compounds are concentrated in the brine 

inclusions, as they are not incorporated within the matrix of pure ice crystals [Weeks, 2010].  
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The two principal regions of sea ice production, the Arctic and Southern Oceans, differ 

widely in the concentrations of nutrients and dissolved organic matter (DOM) present in the 

surface waters from which sea ice is formed. The waters of the Arctic Ocean have 

comparatively lower nutrient concentrations (e.g, nitrate and phosphate), except the Pacific 

water inflow, but higher input of riverine particulates and DOM, as well as silicate [Dittmar 

et al., 2001; Wheeler et al., 1997]. In contrast, the Southern Ocean generally has high 

inorganic nutrient concentrations [Gleitz et al., 1994], whereas DOM is of oceanic origin and 

at comparatively low concentrations [Hansell et al., 2009]. A consequence of this 

fundamental difference is that Arctic sea ice can be expected to have a higher DOM content 

than ice produced in the Southern Ocean [Stedmon et al., 2011; Stedmon et al., 2007], and as 

such may promote greater bacterial production, leading to higher pCO2 concentrations in the 

brines [Geilfus et al., 2012]. In turn, this could result in the air-ice CO2 exchange in the 

Arctic and Antarctic being fundamentally different, although this hypothesis is yet to be 

verified.  

In addition to bacterial production, other mechanisms may regulate differences in the 

dynamics of dissolved constituents (nutrients and DOM) in sea ice. Previous studies have 

indicated selective incorporation of DOM during sea ice formation [Aslam et al., 2012; 

Giannelli et al., 2001; Müller et al., 2013], raising the question as to whether or not there is a 

segregation among dissolved compounds during the incorporation phase, and in particular, 

whether the incorporation is comparable between Arctic and Antarctic sea ice because of the 

different compositions of DOM in the parent waters. Secondly, various physical mechanisms 

induce changes in the nutrient pools in ice after the initial incorporation. Among these, brine 

convection is the most important [Notz and Worster, 2009; Vancoppenolle et al., 2010], since 

its impact lasts over the whole ice growth period and episodically during spring sea ice decay 

[Carnat et al., 2013; Zhou et al., 2013]. Other mechanisms exist, but are thought to be of 

minor importance in comparison to brine convection (e.g., brine expulsion, and migration of 

individual pockets) [Notz and Worster, 2009], or are only effective during the ice melt period 

(e.g., infiltration of snow meltwater [Granskog et al., 2003], flooding of seawater [Fritsen et 

al., 1998; Fritsen et al., 2001], and infiltration of gap water in internal ice layers [Ackley et 

al., 2008; Haas et al., 2001]).  

The aim of the present study was to better understand the differences in sea ice 

biogeochemistry and bacterial activity, related to additional allochthonous riverine DOC 
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during a whole cycle of sea ice formation, consolidation and subsequent decay. In our 

mesocosm experiment, we reproduced ice growth and ice decay on two series of mesocosms: 

One consisting of North Sea seawater and another consisting of North Sea seawater amended 

with 10% natural DOM-rich river water. The latter was designed to simulate the dissolved 

organic matter conditions that occur in Arctic shelf waters where much ice formation occurs. 

We hypothesized that the dissolved compounds of the parent waters would be predominantly 

incorporated conservatively into the ice (relative to salinity), and would then deviate from the 

conservative behavior due to bacterial activity, given that there was no autotrophic 

component in the experiment. We also expected that a deviation from the conservative 

behavior would be higher in the river-water amended mesocosms because the higher organic 

matter content would stimulate increased bacterial activity, if the riverine DOM is 

bioavailable.  

2 Material and methods 

2.1 Experimental setting and sampling routine 

The 19-day experiment took place in the Hamburg Ship Model Basin (www.hsva.de). We 

used 21 polyethylene experimental mesocosms with a volume of 1.2 m³ each. Eleven of the 

mesocosms were filled with 1000 L of seawater from the North Sea (referred here after as 

SW), and the remaining 10  were filled with 900 L of seawater from the North Sea and 100 L 

of river water (referred here after as SWR). The North Sea water was collected on 24 May 

2012 (54°7’N 7°54’E near Helgoland) and transported to Hamburg where the mesocosms 

were filled within 24 hours of collection. The river water was collected during spring freshet 

in mid May 2012 from River Kiiminkijoki (NW Finland), just before it enters the estuary, 

stored one week in the cold (4 °C), filtered through 0.2 µm using Durapore 10 inch 

(Millipore) and Clariflow G 10 inch (Parker) cartridge filters and added to the mesocosms 2 

days afterwards. 

As there was a slight temperature gradient in the main test basin, the mesocosms were 

distributed only partially randomly. As shown in Figure 1, the units were first randomly 

positioned into rows, but the respective manipulations (SW and SWR) were located at the 

same or adjacent row. The unit SW11 was reserved for instrumentation and it was excluded 

from all subsequent calculations and analysis due to possible contamination from 

instrumentation that was placed inside it.  
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Figure 1. (a) The experimental basin at HSVA, (b) The spatial distribution of the SW and SWR 

mesocosms. Note that SW11, although sampled, was not included into the data set, because it was 

reserved for continuous physical measurements. 

 

The salinities of the SWR mesocosms were adjusted to the SW values by adding aquarium 

standard salt (Tropic Marin
®
). Nitrate (NO3

-
) and phosphate (PO4

3-
) were also adjusted to 

concentrations that did not limit bacterial growth in both series of mesocosms. The addition 

of river water caused large difference in dissolved silicate (Si(OH)4) and DOC concentrations 

between the SW and SWR mesocosms (Table 1), while nitrite (NO2
-
) and ammonium (NH4

+
) 

concentrations were similar.  

Table 1 reports the mean and standard deviation of the starting conditions of both SW and 

SWR mesocosms (i.e, day 0). Differences in the mean starting conditions between SW and 

SWR were less than 10 % (which was about the range of standard deviation within each 

series of mesocosms), except for Si(OH)4, DOC and bacterial production derived from 

leucine (BP Leu) and thymidine (BP TdR) incorporation, which were about 4, 1.7, 1.3 and 

1.2 times higher in SWR, respectively.  
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Table 1. Mean and standard deviation (stdv) of the parameters measured at the beginning of the 

experiment (day 0) in SW and SWR mesocosms. Bact. Refers to bacterial abundance, BP Leu and BP 

TdR, to leucine-based and thymidine-based bacterial production respectively. 

  S NO3
-
 NO2- Si(OH)4 PO4

3-
 NH4

+
 DOC Bact. BP Leu 

BP 

TdR 

    µmol L-1 µmol L-1 µmol L-1 µmol L-1 µmol L-1 µmol L-1 106 cell ml-1 µgC L-1h-1 µgC L-1h-1 

Mean 

          

SW 31.1 27.4 0.2 3.0 1.9 1.9 140.7 1.0 0.9 0.8 

SWR 30.6 27.2 0.2 12.3 1.9 1.9 245.8 0.9 1.2 0.9 

           Stdv 

          SW 0.0 4.4 0.0 0.7 0.1 0.1 4.3 0.2 0.1 0.2 

SWR 0.1 3.5 0.0 1.1 0.1 0.1 21.7 0.1 0.2 0.0 

 

 

The adjusted NO3
-
 and PO4

3-
 concentrations (27.2 – 27.4 and 1.9 µmol L

-1
 respectively: Table 

1) are clearly higher than the maxima observed in the coastal Arctic Ocean during summer (3 

and 0.5 µmol L
-1

 respectively [Dittmar et al., 2001], but were realistic compared to Southern 

Ocean values [e.g., Becquevort et al., 2009; Gleitz et al., 1994]). DOC concentrations in both 

SW and SWR (141 and 246 µmol L
-1

 respectively) were consistent with the range observed 

in coastal Arctic Ocean [Dittmar and Kattner, 2003] for a similar salinity as in the present 

study, and were also consistent with the range of DOC in surface waters of the Weddell Sea 

(50-60 µmol L
-1

) [Hansell et al., 2009; Lechtenfeld et al., 2014; Norman et al., 2011]. 

Therefore, the outcome of our experiment on the incorporation of DOC and the consequence 

on sea ice biogeochemistry may be pertinent to areas in both Arctic and Southern Oceans, 

where NO3
-
 and PO4

3- 
are not limiting for bacterial growth. 

Ice was grown from day 0 to 14, during which the air temperature was maintained at -14 °C, 

and then the air temperature was increased to -1 °C to trigger a decay phase. The resulting 

changes in ice thickness are shown in Figure 2 for each row of the mesocosms. Water and ice 

sample were collected at regular intervals from day 0 to day 1 respectively (Table 2). Brine 

samples were collected from day 8 onwards (at 6 cm of ice depth from the top), when the ice 

was thick enough to avoid lateral infiltration of seawater. The brines were collected 15 to 30 

minutes after drilling (depending on the percolation rate) using a portable peristaltic pump 
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(Master Flex
®
, E/S portable sampler). Once the ice in a mesocosm was sampled it was 

considered to be compromised and not used again in the experiment.  

 

Figure 2. Evolution of the ice thickness during the experiment. The ice thickness is given per row. 

Row 1 refers to the bottommost row of mesocosms (Figure 1), while row 6 refers to the topmost row 

of mesocosms in Figure 1. The vertical dashed line represent the day when we increased the air 

temperature from -14 to 0 °C. 

 

Table 2. Days of the experiment with samplings and the associated sampled mesocosms. For all the 

mesocosms, available data in ice, under-ice water and brine are marked with a cross, while 

unavailable data are marked with a minus. 

Day of the 
experiment 

1 2 5 7 8 12 14 15 16 19 

Mesocosms 
(SW and 
SWR) 

2 3 6 8 4 7 1 5 9 10, 11 

Ice and 
under-ice 
water 

x x x x x x x x x x 

Brine - - - - x x x x x x 

 

 

A PVC tube was set at the corner of each mesocosm to maintain pressure equilibrium 

between the water and the atmosphere, and this was cleared of ice daily to relieve pressure 
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and as a portal for sampling under-ice waters. Ice thickness was measured on all sampling 

days outside, but adjacent to, the mesocosms in order not to disturb the ice growth in the 

mesocosms before the sampling. The absence of active photoautotrophic organisms in ice and 

underlying waters was verified on all sampling days using epifluorescence microscopy, 

which would reveal the existence of functioning chloroplasts. 

2.2 Physical characteristics of the ice 

Ice temperature was measured using a calibrated probe (Testo 720), immediately after the 

extraction of the ice core. The probe was inserted into holes (matching the diameter of the 

probe) drilled perpendicular to the ice core axis with a depth resolution of 2 cm. The 

precision of the probe was ± 0.1 °C. Bulk ice salinity was measured using two approaches: 

first, with melting of ice sections; and second, with employing the approach of Cottier et al. 

[1999], which limits possible brine drainage and where ice was frozen with under-ice water, 

and then, sectioned. The latter method was used together with temperature to derive brine 

volume fraction and brine salinity, following the relationships of Cox and Weeks [1983] 

(neglecting the air volume fraction). Measurements of the bulk ice salinity were performed 

on 2 or 4 cm vertical core sections. Salinities were measured with a portable conductivity 

meter (SEMAT Cond 315i/SET salinometer with WTW Tetracon 325 probe) on melted ice 

samples at room temperature. The precision was ± 0.1. This salinity was used to normalize 

the dissolved compounds to salinity (see section 2.6).  

For the brine calculations we assumed that the sea ice was permeable for a brine volume 

fraction exceeding 5 % [Golden et al., 1998], since the thin sections showed columnar ice 

structures (not shown). The derived brine salinity was comparable to the brine salinity 

measured on collected brine samples (data not shown). We therefore used temperature, bulk 

ice salinity, derived brine salinity and brine volume fraction to calculate the Rayleigh number 

(Ra), which is a proxy for brine convection as described by Notz and Worster [2008]. 

Theoretically, convection is possible in an ice layer (of a thickness h) when Ra exceeds 1 and 

decreases from the top to the bottom of that layer. However, critical Ra of 10 [Notz and 

Worster, 2008] and up to 8 [Zhou et al., 2013] was observed in experimental study and 

natural conditions respectively. Because the calculation of Ra depends on the gradient of 

brine salinity, salt loss by drainage during ice core extraction, or the sampling resolution may 

lead to different Ra values. As there is currently no consensus on the critical value of Ra, we 

simply assume the critical Ra being 1 following the theoretical consideration.   
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2.3 Nutrients and DOC 

Samples for inorganic nutrient analyses were stored frozen in 50 mL PE bottles. Inorganic  

nutrients (NO3
-
, NO2

-
, NH4

+
, PO4

3-
 and Si(OH)4) were measured with an autoanalyzer system 

(Evolution III, Alliance Instruments) according to slightly modified seawater standard 

methods [e.g.,Grasshoff et al., 1999; Kattner and Becker, 1991]; NH4
+
 concentrations were 

measured according to Kérouel and Aminot [1997]). 

Samples for the determination of dissolved organic carbon (DOC) were stored frozen (-

20 °C) in glass vials (Wheaton; precombusted at 500 °C, 5 h) and determined by high 

temperature catalytic oxidation and subsequent non-dispersive infrared spectroscopy (TOC-

VCPN, Shimadzu). After each batch of five samples, one reference standard (DOC-DSR, 

Hansell Research Lab, University of Miami, US), one ultrapure-water blank and one 

potassium hydrogen phthalate standard were measured. The accuracy of the DOC 

measurements was ± 5 %. 

2.4 Bacterial abundance and production 

Bacterial abundance was determined by flow cytometry after Gasol et al. [1999] and Gasol 

and Del Giorgio [2000]. Samples for bacterial abundance were fixed with particle-free (0.2 

μm-filtered) paraformaldehyde (final concentration of 1 %) and stored at -80 °C. Cells were 

stained with SYBR Green I (Molecular Probes) and counted on an LSR II flow cytometer 

(BD Biosciences, San Jose, USA) using a 488 nm laser. CountBright beads (Molecular 

Probes) with known concentration were added to each sample to calculate the measured 

volume. The bacterial counts were acquired for 1 minute, and the cell populations identified 

from bivariate plots of green fluorescence versus side scatter. Gating analysis was performed 

using FACS Diva software (BD Biosciences). The bacterial abundance counted (in cells 

mL
−1

) was calculated from the sample flow rates and number of events recorded. All samples 

were analyzed during one measurement session. 

For the bacterial production measurements, samples containing a known amount of crushed 

ice and sterile-filtered seawater [Kaartokallio, 2004] were prepared as follows: Each intact 5–

10 cm ice core section was crushed using a spike and electrical ice cube crusher. 

Approximately 10 mL of crushed ice was weighed in a scintillation vial. To better simulate 

the brine pocket salinity and ensure an even distribution of labeled substrate, 2–4 mL of 

sterile filtered (through 0.2 μm filter) seawater from the sample bags was added to the 
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scintillation vials. All the work was carried out in a cold room. 

Bacterial production was measured immediately after sample collection using simultaneously 

the 
14

C-leucine [Kirchman et al., 1985] and 
3
H-thymidine [Fuhrman and Azam, 1980; 1982] 

incorporation methods. Two aliquots and a formaldehyde-fixed absorption blank were 

amended with L-[U-
14

C] leucine (PerkinElmer, USA, sp. act. 310 mCi mmol
-1

) and [methyl-

3H] thymidine (PerkinElmer, USA, specific activity 20 Ci mmol
-1

). For thymidine, the 

concentrations were 30 nmol L
-1

 for all sample types; for leucine, the concentrations were 

1000 nmol
 
L

-1
 for ice samples, 330 nmol

 
L

-1
 for water samples and 670 nmol

 
L

-1
 for brine 

samples. The samples were incubated in the dark at -0.6°C on crushed ice in an insulated 

container according to the projected level of activity: ice samples were incubated 19-22 h, 

and water and brine samples 4-6 h. The incubations were stopped by the addition of 

formaldehyde and samples were processed using the standard cold-TCA extraction and 

filtration procedure. Labeled macromolecules were collected on 0.2 μm mixed cellulose ester 

membrane filters (Osmonics) and placed in clean scintillation vials. A Wallac WinSpectral 

1414 counter and InstaGel (Perkin-Elmer) cocktail were used in scintillation counting. 

Bacterial production was calculated using a cell conversion factor of 2.09×10
18

 cells mol
-1

 [R 

H Smith and Clement, 1990], a cell volume of 0.3 µm
3
 [Kaartokallio, 2004; R H Smith and 

Clement, 1990] and a carbon conversion factor of 0.12 pg C µm
3
 [Nagata and Watanabe, 

1990; Pelegri et al., 1999] for thymidine, leucine-based bacterial production was calculated 

using a factor of 3.0 kg C mol
-1

 [Bjornsen and Kuparinen, 1991]. 

2.5 Data normalization and enrichment factor 

In order to compare the nutrients and DOC concentrations between SW and SWR mesocosms, 

we needed to remove the effect of bulk ice salinity on the nutrient and DOC concentrations, 

and to take into account the variability of the starting conditions between the individual 

mesocosms. Therefore the data was normalized to both salinity and the starting conditions, 

according to the following equation: 

𝑋𝑡_𝑛

𝑚 = 𝑋0
̅̅ ̅  ∗  

𝑋𝑡
𝑚∗𝑆0

𝑚

𝑆𝑡
𝑚∗𝑋0

𝑚        (Eq.1) 

Where 𝑋𝑡_𝑛

𝑚 =normalized concentration of the mesocosms m for a given time t. 

𝑋𝑡
𝑚 =concentration of the sample (water, brine or ice) for mesocosm m at time t 
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S
m

t =salinity of the sample (water, brine or ice) in mesocosm m at time t 

S
m

0=salinity of the parent water in mesocosm m at time 0, which is 30.9 

X
m

0=concentration in the parent water in mesocosm m at time 0 

𝑋0
̅̅ ̅ =mean start concentrations of SW (or SWR) if the sample was collected from SW (or 

SWR) mesocosms  

The data that have been normalized are referenced hereafter with “_n” after the name of the 

variable. The equation 1 without 𝑋0
̅̅ ̅  provides the enrichment factor. 

3 Results 

3.1 Ice thickness 

The ice thickness increased until day 16, reaching a maximum ice thickness of 24 cm, and 

then stabilized or slightly decreased towards the end of the experiment (Figure 2). Overall, 

there was a general trend in the basin where the ice thickness decreased from row 1 to row 6. 

The difference was particularly obvious at the end of the experiment (4.5 cm of difference 

between row 1 and row 5 on day 19). The maximum difference of ice thickness between 

adjacent rows was 2.6 cm. The majority of mesocosms sampled on the same day were 

generally located on the same row (e.g., SW8 and SWR8) or adjacent rows (e.g. SW3 and 

SWR3) (Figure 1), which minimized the influence of this cross-basin gradient.  

3.2 Physical properties of the ice 

There was an increasing temperature gradient between the top and the bottom of the ice from 

day 1 to 15 (the freezing phase). In the subsequent melting phase the ice temperatures 

became more vertically homogeneous, approaching -1.8 °C on day 19 (Figure 3).  

The salinity of the bulk ice was homogeneous until day 3, before developing a typical c-

shape profile with a higher salinity at the top and the bottom of the ice compared to the ice 

interior. From day 3 to 15, the bulk ice salinity ranged between 4.6 and 23.5. In the bottom 

ice horizons salinities of the SW ice were up to 3.9 times higher than those of SWR between 

day 8 and day 14. From day 15 onwards, the salinity decreased in both the top and the bottom 

and ranged between 4.6 and 10.5. 
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Figure 3. Ice temperature (T), salinity (Bulk S), brine volume fraction (BrV), brine salinity (BrS) and 

Rayleigh number (Ra) for both SW and SWR mesocosms. Each black dot refers to one data point, the 

color in between results of interpolation.  
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The brine volume fraction remained above 5 % during the whole experiment in both SW and 

SWR mesocosms. The bottom of the ice always had a larger brine volume fraction compared 

with the upper ice layers, except between day 17 and 19 when the estimated brine volume 

fractions were homogeneous over the whole ice cover. As for the bulk ice salinity, the brine 

volume fractions at the bottom of SW ice were higher than in SWR between day 8 and 14. 

The calculated brine salinities decreased from the top to the ice bottom from day 1 to 16 in 

both SW and SWR mesocosms. During the final melting stage brine salinities became more 

homogeneous throughout the ice cover. On day 19, they approached 32, which was lower 

than the salinity in the under-ice water (36.7). 

The temporal changes of Ra were similar to those in the bulk salinity: Ra exceeded 1 

throughout the ice of both SW and SWR between day 1 and 3. From day 3 to 15, there was a 

sharp contrast of the Ra between the ice bottom and the ice interior: Ra was as high as 17.9 in 

the bottom of SWR and contrasted with the 0.1 value in the ice interior. The differences in 

salinity and brine volume fractions at the ice bottom between SWR and SW was particularly 

evident in Ra: On day 8, when the difference in salinity was 3.9, the difference in Ra reached 

7.3. Ra dropped below 0.5 on day 15 and was equal to 0 at all ice depths on day 19.  

It is worth noting the difference of up to 3.9 in salinity and up to 7.3 in Ra between SW and 

SWR in the very bottom ice layer on day 8. We observed a salinity of 23.5 in the ice bottom 

of SW, which is higher than the salinity measured on ice blocks that were obtained under 

similar conditions (salinity of 9 in Cottier et al. [1999]). However, since there is a continuum 

of salinity between the ice and the under-ice water [Notz et al., 2005], a salinity of 23.5 (i.e., 

below 30.9, the salinity of the under-ice water) may be realistic. Furthermore, the resolution 

of the cutting was clearly different for the last layer (2 cm for SW but 3 cm for SWR). 

Because ice salinity increased sharply in the last few centimeters of the ice [Notz et al., 2005], 

lower resolution sampling naturally results in higher ice salinities. The differences in salinity 

resulted in a difference in Ra [Vancoppenolle et al., 2013a], but does not influence our 

interpretation since the qualitative interpretation of Ra (e.g., Zhou et al. [2013]) is sufficient 

to describe the brine dynamics.  

3.3 Nutrients and DOC 

Figure 4 presents the normalized concentrations of the dissolved compounds in ice, brine and 

seawater (and the corresponding EF) for both SW and SWR mesocosms. If the nutrients had 
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behaved conservatively with respect to salinity, they would exhibit an EF of 1. Therefore, 

Figure 4 shows that, with the exception of the dissolved compounds in the under-ice water, 

all nutrients in ice and brine were not conservative. This observation was true for both SW 

and SWR mesocosms.  

For NO3
-
_n, PO4

3-
_n, NO2

-
_n and NH4

+
_n, the EFs varied similarly in both treatments: NO3

-

_n in ice approached an EF of 2 for both mesocosms, while PO4
3-

_n reached an EF of 1.4. 

NO2
-
_n and NH4

+
_n in ice approached an EF of 6, but local NO2

-
_n in brine, and NH4

+
_n in 

ice may reach an EF up to 10 in SWR. This contrasts with the NO3
-
_n in brine that was only 

half of the concentration of the starting water concentrations (EF = 0.5). 

The normalized dissolved compounds did not show obvious changes over time, with the 

exception of: NO2
-
_n, which increased until day 7 and then remained constant.  NH4

+
_n and 

DOC_n increased until day 19 in SW, but peaked already on days 12-14 and thereafter 

decreased in SWR. 

In contrast to all the previous dissolved compounds, Si(OH)4_n and DOC_n had different EFs 

in both treatments. Although Si(OH)4 and DOC concentrations were both higher in SWR 

than in SW in the parent waters, the EFs in ice were lower in SWR than SW (Figure 5). 

Figure 5 also indicates a similarity between Si(OH)4_n and DOC_n: their EF decreased from 

the top to the bottom of the ice, where the EFs generally approached a value of 1.  
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Figure 4. Normalized concentrations and enrichment factor in ice (circle), brine (triangle), and under-

ice water (square), in both SW (left) and SWR (right). The horizontal lines indicate the mean starting 

concentration for all the mesocosms, and thus represent an enrichment factor of 1. The vertical dashed 

lines refer to day 14, the beginning of the warming stage of the experiment.  
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Figure 5. Evolution of the enrichment factor (EF) of Si(OH)4_n and DOC_n in ice, between SWR and 

SW mesocosms. The black dots are depth-interpolated data points, while the colors in between are 

interpolations (natural neighbor). 

3.4 Bacterial abundance and production 

In both mesocosm series, bacterial abundance in ice (ca. 0.1 to 0.8 x 10
6
 cells mL

-1
) (Table 3) 

was lower than in the parent water (0.9 to 1.0 x 10
6
 cells mL

-1
) (Table 1). Figure 6 shows the 

temporal evolution of bacterial abundance and its vertical variability. During the ice growth 

phase (day 0 to 14), bacterial abundance was higher in the beginning and in the bottom of the 

ice, in comparison to the ice interior. During the ice decay phase, bacterial concentrations 

decreased, and the ice bottom maximum observed during ice growth phase disappeared.  

In order to compare the bacterial activity in both treatments, without the effect of bacterial 

abundance, we compared both Leu and TdR incorporation per cell (Figure 6), rather than per 

volume of ice. It is evident that : (1) all the values in ice were lower than those in the parent 

water at the starting conditions, but (2) both Leu and TdR incorporation per cell increased 

from day 14 onwards in parallel with the increase of air temperature, and (3) they were both 

higher in SWR than in SW.  
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Figure 6. Evolution of the bacterial abundance (Bacteria) in 10
6
 cells ml

-1
, cell-specific leucine and 

thymidine incorporation (in 10
21

 mol cell
-1

 h
-1

) in ice, in SW and SWR mesocosms. The black dots are 

depth-interpolated data points, while the colors in between are interpolations (natural neighbor). For 

each category, the corresponding value in the parent water is mentioned for comparison. (10
6
 cells ml

-

1
) 

 

For comparison with the literature, we also calculated bacterial production from both Leu and 

TdR incorporation. Overall leucine-based bacterial production rates ranged between 0.04 and 

0.47 µg C L
-1

h
-1

 and TdR-based bacterial production rates between 0.01 and 0.47 of µg C L
-

1
h

-1 
(Table 3). The median Leu/TdR ratio was 44 in SW and 26 in SWR. 
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4 Discussion 

4.1 Physical imprints on nutrient incorporation 

There were no significant differences in the physical parameters of SW and SWR (Figure 3), 

except small differences in ice thickness (Figure 2), and the vertical changes of the physical 

properties of the ice from growth to decay were consistent with observations from Arctic sea 

ice [Carnat et al., 2013; Zhou et al., 2013]. We identified two main stages in brine dynamics, 

which affected the incorporation of nutrients. From day 1 to day 2, the homogeneous bulk 

salinity throughout the ice indicates that convection had occurred. However, sea ice has to 

reach a thickness of about 5 cm for gravity drainage to occur [Worster and Wettlaufer, 1997], 

while our samples were all thinner than 5 cm. We therefore suggest that we may have 

artificially induced convection while sawing the ice during the sampling. From day 2 to day 

15, the Ra profile only suggests brine convection at the ice bottom, although the brine volume 

fraction remained above 5 % at all depths (i.e., permeable [Golden et al., 1998]). Finally, 

from day 15 to the end of the experiment, the increase of air temperature (Figure 2) increased 

the ice temperature. As a consequence brine salinity decreased and Ra dropped below 1 and 

brine convection stopped.  

It is noteworthy that we did not observe full-depth brine convection at the beginning of the 

warming phase, as found in natural ice covers by Carnat et al. [2013] and Zhou et al. [2013]. 

This is likely to be a result of the temperature not being low enough at the ice surface to 

promote a strong brine salinity gradient (a requirement for full-depth brine convection).  

The impact of brine dynamics on nutrient distribution was clear (Figure 5): Because 

convection favors the exchange of nutrients between the brine and the under-ice water 

[Vancoppenolle et al., 2010], the EF of Si(OH)4 approached 1 in the bottom of the ice, but 

increased towards the top of the ice, where convection was limited (Ra close to 0.1). Ice melt 

implies an addition of freshwater to the brine, which will dilute the nutrient concentrations; 

however, brine dilution was not seen in our data, since they were all double-normalized 

(including normalization to salinity).  

A solute that is solely subject to physical incorporation should behave conservatively with 

respect to salinity (i.e., concentrations evolve in parallel with salinity, on a dilution curve 

[Thomas et al., 2010]). If other processes such as biological uptake or regeneration occur, 

solute concentrations will deviate from the dilution curve. This will materialize as an EF that 
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differs from 1. All measured parameters had an ice EF between 1.1 and 1.8 during initial 

freezing (day 1 to 2) indicating a net production or preferential incorporation (relative to 

salinity). This is in agreement with earlier results from natural sea ice for most of the 

nutrients, as opposed to other major ions [Meese, 1989].  

One explanation is that the direct incorporation favors the accumulation of dissolved 

compounds in sea ice, although this has only been shown for DOC [Giannelli et al., 2001; 

Müller et al., 2013] and NH4
+
 [Zhou et al., 2013]. This explanation is at least true for 

fluorescent DOM, since optical measurements performed during this experiment showed a 

selective incorporation of different fluorescent DOM fractions in sea ice (i.e., amino-acid-like 

and humic-like fluorescent DOM [Jørgensen et al., submitted]. Our range of EF for DOC is 

consistent with the one previously presented for artificially produced DOM (1.0 – 2.7) under 

similar ice growth conditions [Müller et al., 2013]. 

Another explanation for the EFs above 1 is that the compounds were initially incorporated as 

particulate, and then converted to DOM after incorporation. This could occur if organisms 

and particulate organic matter (POM) were incorporated in the ice: Algal and bacterial lyses 

and POM degradation may have then increased the concentrations of the dissolved 

compounds in sea ice, leading to EFs above 1. This hypothesis is valid for DOC as it may 

originate from the degradation of POM [Thomas et al., 1995]. It is valid for Si(OH)4 as well: 

Although no functioning chloroplast was observed, we cannot exclude the possible existence 

of dead algal cells and their fragments, and other POMs in the parent water, because the 

seawater had not been filtered (see Material and methods). Further, because of the relative 

abundance of carbon, silicon, nitrogen and phosphorus in algae (i.e., Redfield-Brzezinski 

ratio for diatoms), it is not surprising to observe the highest EF for DOC and Si(OH)4, and the 

lowest for PO4
3-

 on day 2.  

NO3
-
 showed a negative EF in brine, in contrast to all the other compounds, suggesting either 

a consumption of NO3
-
 in sea ice or an adsorption of NO3

-
 to the ice crystals [Bartels et al., 

2002] (i.e., parts of the NO3
-
 were not collected in brine). Potential pathways for NO3

-
 

consumption are NO3
-
 respiration to NO2

-
 and/or denitrification [Kaartokallio, 2001; 

Rysgaard et al., 2008] with production of NO2
-
, N2O and N2. However, NO2

-
 in ice (Table 3) 

or N2O in brine (data not shown) did not increase significantly, suggesting that NO3
-
 

reduction and denitrification were minor. Therefore, the adsorption of NO3
-
 is more likely the 
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factor responsible for the observed negative EF. This is also coherent with the observation of 

positive NO3
-
 EFs in the ice. 

4.2 Bacterial growth, production and imprints on nutrient concentrations 

Our Leu- and TdR-based bacterial production estimates are convergent, pointing to the 

reliability of the results. Overall BP Leu and TdR in ice were low, but were comparable to 

those of Kuparinen et al. [2011] obtained on predator-free batch cultures from melted 2-

week-old sea ice. The bacterial abundance and ice salinities were in the same range to other 

studies measuring bacterial production in sea ice in the Southern Ocean [Grossmann and 

Dieckmann, 1994; Helmke and Weyland, 1995], the Arctic Ocean [Kaartokallio et al., 2013; 

Nguyen and Maranger, 2011] and the Baltic Sea [Kuparinen et al., 2007]. Unlike many 

studies done in natural sea ice, algae and other typical larger sea ice organisms were absent in 

our experiment, which may have led to lower bacterial production, since ice algae may be a 

source of autochtonous DOM in ice [Thomas et al., 2001] .  

Overall, cell-specific Leu and TdR were lower in ice than in parent water, indicating different 

physiological adaptations required in these two adjacent environments. The dynamics in 

bacterial activity appeared to be associated with three different stages in cell-specific Leu and 

TdR and bacterial abundance. At the beginning of the experiment, the majority of bacteria in 

ice were probably not well-acclimated to the sea ice environment and possibly undergoing a 

community shift [Eronen-Rasimus et al., 2014], resulting in higher cell-specific Leu and TdR 

and a decrease in abundance throughout the ice before day 7. After day 7, cell-specific Leu 

and TdR were generally stable, but bacterial abundance increased in the bottom ice sections 

and decreased in the ice interior, pointing to active bacterial growth in the lower ice layers 

also subject to brine convection before day 15. After day 15, corresponding to the onset of 

the melting phase, bacterial abundance decreased throughout the ice column and a sharp 

increase in cell-specific Leu and TdR occurred. This points to a direct effect of physical 

changes on the bacterial physiology, most likely to be initiated by a sudden change in brine 

salinity and ice temperature or decreasing nutrient supply due to brine stratification. Brine 

dilution and direct cell loss from bottom ice during the melting phase could explain the 

decrease of bacterial abundance. 

While cell-specific Leu showed a similar pattern in both treatments, TdR was higher in SWR 

(compared to SW) both in ice and parent water. This indicates that DOC addition had a 
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positive impact on bacterial growth, which is also in agreement with the slightly higher 

bacterial abundance and overall higher bacterial production in SWR series (Table 3).  

Bacterial activity impacted NH4
+
 and NO2

-
 concentrations in sea ice, but had no notable 

effect on NO3
-
 and DOC. Indeed, NH4

+
 and NO2

-
 further accumulated in sea ice (on day 7) 

after their physical incorporation into sea ice, in SW and SWR. The accumulation of NH4
+
 

and NO2
-
 likely indicates bacterial remineralization. Remineralization of DOC was almost 

negligible because bacterial productions were low in comparison to the large pool of DOC in 

sea ice. Indeed, median bacterial production was 0.16 µg C L
-1

 h
-1

, which is equivalent to 

0.013 µmol C L
-1

 h
-1

, and this is several orders lower than the DOC concentrations (up to 170 

µmol L
-1

) (Table 3). As a consequence, the difference in bacterial productions could not 

explain the difference in the EFs of DOC between SW and SWR.                                                                                                                                                                                               

4.3 The particular cases of Si(OH)4 and DOC 

All the dissolved compounds showed similar EF in both SW and SWR with the exception of 

Si(OH)4 and DOC. We did not expect a difference in the brine convection as possible 

explanation since the physical conditions were comparable between the two treatments. Also, 

bacterial production might not have affected DOC and Si(OH)4 concentrations significantly, 

as it was too low in comparison to the large DOC pool, and as bacterial activity is not known 

to affect Si(OH)4.  

A possible explanation for the difference in EF for Si(OH)4 is the degradation of algal cells 

that were incorporated into the ice (see section 4.1), which may have induced a bias in the EF. 

Adding the same amount of Si(OH)4 in both SW and SWR would have induced a higher EF 

in SW than SWR, because the Si(OH)4 in the parent water was lower in SW than SWR.  

To verify the hypothesis of particulate silicate (PSi) conversion into Si(OH)4 (DSi), we 

calculated the deviation of mean Si(OH)4 in ice at the mean ice salinity of 8 from the dilution 

curve: The mean Si(OH)4 in sea ice was 1.9 and 4.3 µmol L
-1

 in SW and SWR respectively, 

while it should be 0.8 and 3.2 µmol L
-1

 if it behaved conservatively. Thus, the deviation from 

the dilution curve was 1.1 µmol DSi L
-1

 for both SW and SWR. This deviation is the 

additional of Si(OH)4 that we attribute to PSi degradation. Because DSi_n increased 

considerably on day 2 and then remained constant, the PSi degradation rate should approach 

0.55 µmol L
-1

 d
-1

 and then became negligible. This PSi degradation rate corresponds to a 

dissolution rate constant of PSi of 0.15 d
-1

 (assuming a first order reaction). Similar PSi 
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degradation rate (0.52 – 0.6 µmol L
-1

 d
-1

 [Fripiat et al., 2009] and dissolution rate constants 

(0.16 d
-1

 [Demarest et al., 2009], 0 - 0.2 d
-1

 [Beucher et al., 2004]) were found in seawater. In 

addition, similar rapid decreases in the dissolution rate constants was also observed in 

Demarest et al. [2009], and was attributed to the decrease of overall reactive surface area and 

the increase of the proportion of less soluble structure as dissolution proceeded. 

For DOC, a possible explanation for the differences in incorporation is its molecular 

composition and the affinity to the other compounds in sea ice. In contrast to the other 

parameters measured, DOC represents a complex mixture of compounds spanning a range in 

physical characteristics (e.g. hydrophobicity and size). The addition of river water in the 

SWR mesocosms resulted in a higher DOC concentration and higher contribution of 

terrestrial DOC than in the SW mesocosms. Terrestrial DOM is generally composed of older 

soil-derived and younger vegetation-derived material of which the former is less degradable. 

We therefore conclude that the addition of riverine DOC, being half of the total DOC, 

notably changed the composition compared to the prevailing marine (mainly phytoplankton-

derived) DOC in the seawater. Thus, the SWR mesocosms contained a higher proportion of 

refractory DOM than SW. Our data agree with the report that the more labile form of DOC 

are better retained in sea ice than the refractory form (e.g., humic acids) [Jørgensen et al., 

submitted; Müller et al., 2013], and that the DOC_n concentrations in ice may be even lower 

than in the under-ice water when the water contains higher concentrations of soil-derived 

DOC [Granskog et al., 2005; Hagström et al., 2001]. Furthermore, Dittmar and Kattner 

[2003] referred to the intra-molecular contraction and coiling of humic acids with increasing 

salinity to explain differences in their chromatographic behavior. Therefore, even among 

different types of humic acids, there may be differences in the incorporation efficiency. 

4.4 Conclusion and perspectives 

The aim of our experiments was to better understand the difference in sea ice 

biogeochemistry from ice growth to ice decay related to additional DOC contribution and 

bacterial production. We reproduced two main stages in brine dynamics that affect the 

biogeochemistry in natural sea ice (i.e., bottom convection and brine stratification) despite 

the short duration of the experiment (19 days).  

The experiment has shown that dissolved compounds do not necessarily behave 

conservatively in relation to salinity during ice formation, consolidation and melt. Particulate 

organic matter incorporated into sea ice may rapidly be converted to dissolved compounds, 
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thereby inducing a deviation from the conservative dilution curve. Such deviation from the 

conservative behavior is however reduced at the bottom of the ice where brine convection 

occurs. 

Three distinct phases in bacterial abundance and carbon production were identified 

corresponding to physical changes. The overall cell-specific bacterial production was lower 

than in the starting waters, but increased one week after as a response to the bacterial growth 

in the ice cover. The initiation of a melting phase seemed to introduce unfavorable growth 

conditions for bacteria, presumably due to sudden change in brine salinity. Our results 

demonstrate that there is a direct regulation of bacterial activity by ice physical processes 

(brine stability and melting) and suggest that the length, and periodicity of freeze-melt cycles 

may be important for the functioning of bacterial communities in sea ice. Although NH4
+
 and 

NO2
-
 accumulations are consequences of bacterial activity, the bacterial carbon demand was 

too low to significantly impact the overall DOC pool in sea ice during the experiment.  

This experiment has provided evidence that the inter-hemispheric difference of DOC 

dynamics and bacterial respiration are more complex than initially hypothesized. Indeed, 

although DOC concentrations are higher in the Arctic Ocean compared to those in the 

Southern Ocean, Arctic DOC may be less efficiently incorporated into sea ice (because of the 

properties of terrestrially-derived DOC). The difference in sea ice biogeochemistry between 

the Arctic and Southern Oceans may also depend on the amount of bio-available DOC 

(arising from POM in parent seawater) and the associated bacterial production, rather than 

the total input of allochtonous riverine DOC in seawater.  
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Abstract 

We present and compare the dynamics (i.e., changes in standing stocks, saturation levels and 

concentrations) of O2, Ar and N2 in landfast sea ice, collected in Barrow (Alaska), from 

February through June 2009. The comparison suggests that the dynamic of O2 in sea ice 

strongly depends on physical processes (gas incorporation and subsequent transport). Since 

Ar and N2 are only sensitive to the physical processes in the present study, we then discuss on 

the use of O2/Ar and O2/N2 to correct for the physical contribution to O2 supersaturations, and 

to determine the net community production (NCP). We conclude that O2/Ar suits better than 

O2/N2, due to the relative abundance of O2, N2 and Ar, and the lower biases when gas bubble 

formation and gas diffusion are maximized. We further estimate NCP in the impermeable 

layers during ice growth, which ranged from -6.6 to 3.6 µmol O2 L
-1

 d
-1

, and the 

concentrations of O2 due to biological activity in the permeable layers during ice decay (3.8 

to 122 µmol O2 L
-1

). We finally highlight the key issues to solve for more accurate NCP 

estimates in the future.  

1 Introduction 

Sea ice is a composite material with a matrix of pure ice and inclusions of brine [Weeks, 

2010]. The latter concentrates most of the impurities of the ice, including dissolved 

compounds, gas bubbles, and micro-organisms that are able to survive at high salinities and 

low temperatures [Thomas and Dieckmann, 2002]. The net community production (NCP), i.e. 

the net carbon fixation due to photosynthesis and respiration of the microorganisms in sea ice 

is a crucial measurement in polar ecological studies, because it is generally the sole source of 

fixed carbon for the higher trophic-level species in ice-covered oceans [Arrigo et al., 2010; 

Brierley, 2002; Michel et al., 1996].  

However, the measurement of NCP in sea ice is challenging due to the composite structure of 

sea ice. A traditional standard technique is to measure the accumulation of algal biomass and 

its temporal change via the measurements of chlorophyll a (chl a) or particulate organic 

carbon (POC). Another traditional standard technique is to measure the maximum 

photosynthetic rate and photosynthetic efficiency in a laboratory, and then to deduce the 

changes of biomass based on the concentration of chl a and the light intensity from the field, 

assuming that the photosynthetic parameters obtained in laboratory still hold for field 

measurements. Both standard techniques have one major limitation: they require the 
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extraction and the melting of sea ice, which inevitably modify the growth environment of the 

microorganisms (e.g. sudden change of brine salinity due to bulk ice melting).  

The more recent techniques for NCP measurement favor in-situ measurements with 

minimized disturbance on sea ice. These include pulse amplitude modulated (PAM) 

fluorometry [Glud et al., 2002], O2 microelectrodes [McMinn and Ashworth, 1998], O2 

micro-optodes [Mock et al., 2002] and ice/water interface O2 eddy correlation [Long et al., 

2012]. Nonetheless, the results still depend on the composite structure and the physical 

properties (i.e., permeability and brine dynamics) of sea ice. For instance, the PAM 

fluorescence depends on the spatial distribution of the algal biomass and the optical 

properties of the ice [Glud et al., 2002]. Another example is that the amount of O2 measured 

using microsensors depends on whether the sensors were set in brine, ice, gas bubbles or 

bacterial films [Mock et al., 2002] and whether the ice permeability allows the diffusion of O2 

to the microsensors [Glud et al., 2002]. Although the ice/water O2 eddy correlation seems 

promising, because of its large footprint in comparison to the other techniques, it may be 

sensitive to the additional input of O2 from sea ice due to brine convection and ice melt [Long 

et al., 2012]. In that context, understanding the dynamics of O2 within the ice will better 

constrain the O2 fluxes at the ice-water interface, obtained from eddy correlation. 

The present study first aims to describe the dynamics of O2 in sea ice, based on a time-series 

of O2 concentrations within sea ice from ice growth to ice decay. The O2 measurements were 

obtained from ice crushing, which allow the measurement of both dissolved and gaseous O2 

(i.e. O2 in brine and gas bubbles), in both permeable and impermeable sea ice layers (i.e., ice 

layer with brine volume fraction above and below 5 % respectively [Golden et al., 1998]). 

Since current studies have mainly focused on the dissolved O2 in the permeable ice layers 

[Glud et al., 2002; Mock et al., 2002], our study undeniably extends the current knowledge 

on O2 dynamic. 

Second, as it is well-know that gas diffusion and brine convection affect the measured O2 

concentrations in sea ice [e.g. Glud et al., 2002; Long et al., 2012], we will also discuss the 

possibility to correct the imprints of these physical processes on O2, using nitrogen (N2) and 

argon (Ar) and to determine NCP. Some recent studies yielded the NCP in seawater from the 

measurements of O2/Ar ratio [Cassar et al., 2009; Castro-Morales et al., 2013; Hendricks et 

al., 2004; Reuer et al., 2007], while others have proven that O2/N2 was sensitive to the 

biological activity in basal continental ice [e.g., Souchez et al., 2006]. These approaches 
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consider Ar and N2 as inert to biogeochemical processes (hence, not affected by NCP), where 

the use of O2/Ar and O2/N2 ratios allows for the correction of physical processes (e.g., 

temperature, salinity or pressure changes and bubble effects).  

2 Materials and methods 

2.1 Sampling area and sampling events 

The ice cores were collected on landfast sea ice, off Barrow (Figure1), from January through 

June 2009. The sampling area covered a surface of 50 m by 50 m. The north-eastern corner of 

the square was located at 71° 22.013' N, 156° 32.447' W. The ice cores were extracted by 

drilling and then stored at -30 °C in the dark, to prevent brine drainage and to limit biological 

activity. All of the analyses were completed within the following year. The physical 

framework has been presented and discussed in Zhou et al. [2013]. In brief, all of the ice 

cores had similar crystallographic structure, with a dominance of columnar ice that suggests 

low spatial variability.  

In the present paper, five sampling events (out of ten) were selected to illustrate the temporal 

evolution of chl a, O2, O2/Ar and O2/N2 at our location: one in winter (BRW2 - February 3), 

two in early spring (BRW4, BRW7 - corresponding to March 31 and April 10 respectively), 

one in mid spring (BRW8 - May 8), and the last one in late spring (BRW10 - June 5). The 

first four sampling events occurred during ice growth, the last one during ice decay. As 

discussed in Zhou et al. [2013], full-depth convection occurred in BRW8, leading to the 

drainage of the dissolved compounds in brine, and a partial replenishment by seawater. This 

contrasted with the sampling events prior to BRW8, where convection only occurred in the 

permeable bottom ice layers. Finally, in BRW10, the increase of air temperature led to ice 

melt, full permeability, brine stratification, and the formation of 20 cm of superimposed ice at 

the surface of the ice. The formation of superimposed ice indicates that seeping snow 

meltwater had frozen on contact with sea ice [Haas et al., 2001]. 
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Figure 1 The study site, North of Barrow (Alaska, USA). 

2.2 Chlorophyll a and phaeopigment 

The ice samples were melted in the dark, in 0.2 µm filtered seawater (1:4 volume ratio) to 

avoid osmotic stress. We used 10 μm and 0.8 μm polycarbonate filters in a sequence in order 

to distinguish larger micro-algae species from the smaller ones. Extractions and calculations 

were made following the procedure of Arar and Collins [1997]. The standing stocks of 

chlorophyll a (chl a) were calculated by integrating the chl a concentrations over the whole 

ice length and have been discussed in Zhou et al. [2013]. The percentage of phaeopigment 

was obtained by dividing the concentration of phaeopigment by the sum of both chl a and 

phaeopigment concentrations. As phaeopigments result from chl a degradation, a high 

percentage of phaeopigments indicates strong grazing pressure (i.e. strong impact of 

respiration on NCP), and/or high algal mortality.  

2.3 O2, Ar and N2 concentrations in ice and their respective solubility 

We used the dry-crushing technique developed for gas measurements in continental ice 

[Raynaud et al., 1982] to extract O2, Ar and N2 from the ice samples. This technique extracts 

the gas bubbles in the ice and the gas in the dissolved state within liquid brine. Each ice core 
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was cut every 5 cm, and about 60 g of sample was introduced into a vessel, with 7 stainless 

steel balls. The ice was crushed in the vessel, under vacuum (10
-3

 torr), as described in Stefels 

et al. [2012] at -25 °C. Subsequently, the vessel was kept at -50 °C in a cold ethanol bath, and 

was connected to the gas chromatograph equipped with a thermal conductivity detector for 

concentration analyses [Skoog et al., 1997]. We used AlphagazTM2 - He (Air Liquide – 

P0252) as carrier-gas and a 22 ml packed column (Mole Sieve 5A 80/100; 5 m x 1/8”). The 

reproducibility of the analyses (i.e., the precision of the gas chromatograph) was 99.3 % for 

O2, 97.8 % for Ar and 99.9% for N2. It corresponds to 100 % minus the variation coefficient 

(in %) obtained from triplicate analysis of four different standards (2, 3, 5, 10 torrs of 

injection pressures). In addition, diel O2 production/respiration may account for 3 to 6 % of 

variations in our O2 concentrations, as all the ice cores were not sampled at the same time of 

the day; more details on the error estimates are given in the supplementary material (S1). 

To compute the saturation levels (i.e. the deviation from saturation) of O2, Ar and N2 in ice 

and for further calculations (sections 2.4 and 2.5), we also determined the theoretical 

solubility of each gas in ice at saturation. The solubility in brine was calculated using 

temperature and salinity in brine following the relationship of Garcia and Gordon [1992] for 

O2 and the relationship of Hamme and Emerson [2004] for N2 and Ar. This value weighted 

by the brine volume fraction consitutes the solubility in ice. Weighting is necessary, as most 

of the impurities (including gases) are concentrated within the brine structure, but not in the 

pure ice matrix [Weeks, 2010]. It is noteworthy that the relationship of Hamme and Emerson 

[2004] was established for temperatures between 0 °C and 30 °C and salinities between 0 and 

34.5, and the relationship of Garcia and Gordon [1992] for temperatures between 0 and 40 

°C and salinities between 0 and 42. We thus assumed in our calculations of gas solubility that 

                                                        

 (S1) Estimate of bias on O2 concentrations due to diel O2 production/respiration 

Since the ice cores were not always sampled at the same time of the day, but between 11AM and 3PM, 

we estimated the potential bias on the measured O2 concentrations as following: According to the 

incubation experiments of Mar Fernández Méndez (https://www.mpi-

bremen.de/Binaries/Binary16430/M.Sc._Thesis_Mar_Fern%C3%A1ndez.pdf, p.27), the net primary 

production (NPP) of F. cylindrus (a typical cold-water species that can be found in Arctic and 

Antarctic seawater and sea ice) was 1.73 µmol O2 Lincubation water
-1

 h
-1

. Assuming a 12 hours of daylight, 

we may expect a NPP of 20.76 µmol O2 Lbrine
-1

 d
-1

 in the field. Because brine volume fraction 

approach 20 % in the bottom of the ice where the highest chlorophyll-a concentrations was observed 

(Figure 3), we may expect a NPP of 20.76 * 20 % µmol O2 Lice
-1

 d
-1

, hence 4.15 µmol O2 Lice
-1

 d
-1

. 

This accounts for 3 to 6 % of the mean O2 concentrations in bulk ice (ranging from 67.4 to 122.4 

µmol O2 Lice
-1

).  
 

https://www.mpi-bremen.de/Binaries/Binary16430/M.Sc._Thesis_Mar_Fern%C3%A1ndez.pdf
https://www.mpi-bremen.de/Binaries/Binary16430/M.Sc._Thesis_Mar_Fern%C3%A1ndez.pdf
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those relationships still hold for the range of temperature and salinity found in our brine 

samples.  

Gas saturation levels are described following Craig and Hayward [1987] for seawater as: 

∆Ci =
Ci

Ceq
− 1           (1)  

where Ci is the measured concentration of the gas i in bulk ice and Ceq the solubility of gas i 

in bulk ice at equilibrium with the atmosphere, calculated at in situ temperature, salinity and 

pressure as described above. Note that for comparison with the literature, gas saturations are 

given in percentage in the text. Supersaturation and undersaturation are therefore represented 

by positive and negative percentage values respectively. 

2.4 O2/Ar and O2/N2  

The use of O2/Ar and O2/N2 is only valid if both Ar and N2 are inert. Ar is a noble gas, i.e. 

inert and not affected by any biogeochemical processes. N2 is affected by denitrification, 

which was found to occur in sea ice [Rysgaard et al., 2008], but whose impact on N2 

concentrations should be negligible in the present study. The maximum reported 

denitrification rate (23 nmol N2 L
-1

 d
-1

) was 4 orders of magnitude lower than the average 

bulk ice N2 concentrations (248 µmol N2 L
-1

) presented here. The correlation between N2 and 

Ar with a r² of 0.98 (Figure 2) further supports that N2 can be treated as inert like Ar, and 

used to trace physical processes.  

 

Figure 2 Concentrations of N2 in ice plotted against the concentrations of Ar in ice. The equation and 

r² are calculated assuming a linear regression between both gas concentrations.  
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O2/Ar and O2/N2 ratios were calculated from the concentrations of O2, Ar and N2 in ice, and 

were compared with their respective ratios in seawater and the atmosphere. The relative 

solubility of O2/Ar in seawater (at 0°C, with 32 of salinity) is 20.48 [Garcia and Gordon, 

1992; Hamme and Emerson, 2004]. However, even in abiotic conditions, the gas ratios in sea 

ice after gas incorporation and before sea ice consolidation (i.e. being impermeable) may 

differ from that in seawater due to diffusion process at the ice/seawater interface [Killawee et 

al., 1998; Tison et al., 2002]. We thus applied the relative diffusion coefficient of O2 and Ar 

(1.2/0.8 = 1.5) [Broecker and Peng, 1982] to our relative solubility of O2/Ar to obtain a value 

of O2/Ar with maximized diffusion processes at the bottom of sea ice (13.65) as described 

below. Note that different diffusion coefficients exist in the literature (Table 1) for 

temperature close to 0 °C or below, for seawater, water or ice; we chose to use the diffusion 

coefficients of Broecker and Peng [1982] because it is the most recent peer-reviewed study 

that provides diffusion coefficients for O2, Ar and N2 near the freezing temperature. Salinity 

is not given in Broecker and Peng [1982], but one may expect a maximum decrease of 4.9 % 

of the diffusion coefficient per 35.5 of salinity increase [Jähne et al., 1987].   

Table 1 Diffusion coefficients of O2, Ar and N2 found in the literature for different medium (water, 

seawater and sea ice) for temperature at or below 0 °C. Salinity is given when available. The diffusion 

coefficients in use in the present study are those of Broecker and Peng [1982] (in bold). 

  Medium Temperature Salinity O2 Ar N2 

    °C   10
-5

cm
2
s

-1
 10

-5
cm

2
s

-1
 10

-5
cm

2
s

-1
 

Broecker and 

Peng [1974] 
Water 0 ? 1.17 0.88 0.95 

Broecker and 

Peng [1982] 
Seawater 0 ? 1.2 0.8 1.1 

Ferrell and 

Himmelblau 

[1967], Jahne 

et al. [1987] 

Seawater 0 35 1.18* - 0.94* 

Loose et al. 

[2010] 
Ice -12 to -4 3.78 - 6.58 3.9 - - 

Crabeck et al. 

[submitted]** 
Ice -3.8 to -0.8 3.2 1.6-1.8 1.6-1.8 2.5 

* Computed solubility using the matlab code available on http://web.uvic.ca/~rhamme/download.html 

** The values are gas diffusivities which should take into account the geometry of the brine structure. 

http://web.uvic.ca/~rhamme/download.html
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The initial values of O2/Ar could range between 13.65 and 20.48, based on the magnitude of 

gas diffusion at the ice/seawater interface. Further, as O2/Ar in the atmosphere is 22.5, gas 

input from the atmosphere (during frazil ice formation or when sea ice is permeable) and gas 

bubble formation in the permeable ice should pull the bulk ice O2/Ar towards 22.50. 

Therefore, if both dissolved and gaseous states exist in the ice, O2/Ar could range between 

13.65 and 22.50 due to physical processes, hereafter referred to abiotic range of O2/Ar. 

We applied the same calculation to O2/N2. The relative solubility in seawater is 0.56 [Garcia 

and Gordon, 1992; Hamme and Emerson, 2004]. Since the relative diffusion coefficient 

between O2 and N2 is 1.09 [Broecker and Peng, 1982], the relative solubility with maximized 

diffusion processes is 0.51. Given that the atmospheric ratio of O2/N2 is 0.27, the abiotic 

range of O2/N2 in ice is 0.27 – 0.51. O2/N2 that is above or below this abiotic range is 

attributed to an impact of biological activity [Souchez et al., 2006]. 

2.5 Deviation of the O2/Ar from saturation 

The deviation of O2/Ar from saturation, Δ(O2/Ar) (which is referred to as “biological O2 

supersaturation” in seawater studies [e.g., Castro-Morales et al., 2013]) is formulated as in 

equation 2, and we define the O2 concentrations associated with the in situ biological activity 

([O2]bio) as in equation 3: 

∆(O2 Ar⁄ ) =
[O2] [Ar]⁄

[O2]eq [Ar]eq⁄
− 1         (2) 

[O2 ]bio  = [O2 ]eq∆ (O2/ Ar)         (3) 

For seawater, [O2]eq and [Ar]eq are respectively the solubility of O2 and Ar at saturation. In 

ice, however, [O2]eq and [Ar]eq may differ from these solubilities due to physical processes 

such as bubble nucleation, diffusion and convection (sections 2.4 and 4.6). 

Multiplying the [O2]bio obtained in equation 3 (in mol O2 Lice
-1

) by the ice thickness of the 

samples (generally 5 cm) gives a production of O2 in mol O2 m
-2

. With an O2/C ratio of 1.43 

[Glud et al., 2002] and the molar mass of C, we can calculate the equivalent C uptake in gC 

m
-2

. The change of that C uptake over time is the NCP. Since NCP is derived from the 

comparison of C uptake obtained in distinct ice cores that are separated by a certain time 

interval, how nutrient and light availability locally affect the C uptake is not taken into 

consideration.   
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3 Results 

3.1 A general overview from the standing stocks 

 

Figure 3 Evolution of the standings stocks of N2, O2 and Ar (squares, circles and triangles 

respectively) compared to the evolution of sea ice thickness (vertical grey bars). The break in gas 

standing stocks is set at 50 mmol m
-2

. 

 

Figure 3 shows the standing stocks of Ar, O2 and N2, in parallel with the ice thickness, for the 

different sampling events. N2 has the largest standing stocks among the three gases, followed 

by O2 and then Ar. The temporal variation of the three gas standing stocks were similar, but 

differed from that of the ice thickness: while sea ice continuously thickened from BRW2 (82 

cm) to BRW10 (142 cm), the gas standing stocks increased from BRW2 to BRW8 but 

decreased at BRW10. 

3.2 Gas saturation levels 

The saturation levels of N2, O2 and Ar decreased with increasing brine volume fraction 

(Figure 4). The highest supersaturation of N2, O2 and Ar (7030, 3180 and 2960 % 

respectively) corresponded to the lowest brine volume fraction (2.2 %), while the lowest 

undersaturations (-33, -52 and -54 % respectively) corresponded to the largest brine volume 

fraction (29.3 %). In addition, N2 saturation levels contrasted with those of O2 and Ar: for 

similar brine volume fraction, N2 generally reached higher supersaturation levels than O2 and 

Ar, which have much similar saturation levels.  
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Figure 4 Saturation levels (ΔCi in Eq. 1, in percentage) of N2, O2 and Ar (squares, circles and 

triangles respectively) compared to the brine volume fraction.  

 

3.3 O2 concentrations 

Figure 5a shows the concentration of O2 in bulk ice [O2], compared to the solubility of O2 in 

ice. The dashed areas refer to the permeable ice, i.e., layers with brine volume fraction above 

5 %, while the non-dashed areas right above refer to the impermeable layers, i.e., with brine 

volume fraction below 5 % [Golden et al., 1998]. Mean [O2] increased from BRW2 (67.4 

µmol Lice
-1

) to BRW8 (122.4 µmol Lice
-1

) and decreased at BRW10 (93.4 µmol Lice
-1

). At 

BRW2 and BRW4, [O2] generally exceeded the solubility of O2 in the impermeable layers, 

but reached the solubility values in the permeable layers. The trends changed from BRW7 

onwards: in BRW7 and BRW8, [O2] was higher than the solubility at all depths, except in the 

5 last centimeters of the ice core. In BRW10, [O2] was close to the solubility of O2 in the 

upper layers (from 12.5 to 72.5 cm), but exceeded the solubility of O2 below these layers. 
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Figure 5 (a) O2 concentration in bulk ice (black dots) compared to its solubility in ice (white dots), the 

dashed areas refer to permeable ice layers (i.e. with a brine volume fraction above 5%); (b) Chl a 

concentrations (horizontal bars) with a break at 2 µg Lice
-1

 compared to the percentage of 

phaeopigments (diamonds); (c) O2/Ar in ice (upside triangles) with a break at 25, compared to the 

same ratios in seawater (straight black line) and in the atmosphere (dashed black line); (d) O2/N2 in 

ice (downside triangles) compared the same ratios in seawater (straight grey line) and in the 

atmosphere (dashed grey line). 
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3.4 Chlorophyll a and phaeopigment concentrations 

The concentrations of chl a [chl a] varied largely with depth (Figure 5b) and ranged from 0 to 

83.9 µg Lice
-1

 over all the sampling events. The highest [chl a] were always in the ice bottom, 

except in BRW4. Above the bottom layer, the [chl a] was generally below 1 μg Lice
-1

. Drastic 

changes occurred in BRW8 when sea ice permeability increased sharply: [chl a] dropped at 

all depths, and particularly in the ice interior. [chl a] increased again at BRW10, showing a 

vertical profile and standings stocks similar to those of BRW7. 

The percentage of phaeopigment also varied strongly with depth in BRW2, with over 60% of 

phaeopigments in the upper ice layers but less than 20 % at the ice bottom. It varied between 

20 and 40 % in BRW4 and BRW7, and increased drastically in BRW8 (with phaeopigments 

reaching 100% in some layers). In BRW10, the percentage of phaeopigments varied between 

about 40 and 70%, with generally higher values in the upper ice layers. 

3.5 O2/Ar and O2/N2 

O2/Ar in ice ranged between 15.8 and 97.6 (Figure 5c) and O2/N2, between 0.3 and 1.5 

(Figure 5d). Both O2/Ar and O2/N2 ratios are compared to their respective values in the 

atmosphere (22.5 and 0.3) and in seawater with maximized diffusion processes (13.7 and 0.5). 

O2/Ar in ice at BRW2 was highly homogeneous at all depths, with a mean and standard 

deviation of 18.49 +/- 0.84. These ratios were found between the value of O2/Ar in the 

atmosphere and that in seawater with maximized diffusion processes. Over the next sampling 

events, O2/Ar in ice increased on average, exceeding the O2/Ar in the atmosphere (the upper 

limit of O2/Ar that can be explained by abiotic processes), and became more variable 

vertically (Figure 5c). It is also noteworthy that from BRW4 onwards, the maximum O2/Ar in 

each sampling event was found in the lower part of the ice, but never coincided with the 

maximum of [chl a], even at BRW10 where the whole profile of O2/Ar clearly mimicked the 

one of [chl a]. 

Although both O2/N2 and O2/Ar in ice have similar coefficient of variation (respectively, 49 

and 46%, n=121), O2/N2 only exceeded once its abiotic range between BRW2 and BRW8, 

while O2/Ar exceeded its abiotic range from BRW4 onwards (Figs. 5c and 5d). Similarities 

between O2/Ar and O2/N2 became more obvious in BRW10: both ratios were close to their 

respective atmospheric values at the ice surface, and they exceeded their respective abiotic 
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range in the ice interior, with a maximum in the lower part of the ice that did not coincide 

with the maximum in [chl a]. 

4 Discussion 

4.1 Overview on the dynamic of O2 in comparison to those of Ar and N2  

Since N2 and Ar are only sensitive to physical processes in the present study, the fact that O2 

standing stocks varied in the same way as N2 and Ar over time (Figure 3) indicates that the 

physical controls on O2 standing stocks dominated over the biological ones. Two main 

physical processes affect the standing stocks of gases in ice: the incorporation during ice 

growth and the subsequent gas transport within the ice. Gas incorporation during ice growth 

would result in similar changes in gas standing stock and ice thickness, while subsequent gas 

transport within the ice could result in decoupled changes. 

Figure 6 compares the changes in gas standing stocks and ice thickness in all the sampling 

events relative to BRW2. Increasing standing stocks and ice thickness in one sampling event 

(relative to BRW2) will result in a value of changes above 1. Further, if the gas standing 

stocks increased solely due to ice growth, gas standing stocks and ice thickness will show a 

similar value of changes. Therefore, the changes of gas standing stocks that (almost) evolve  

in the same way as the ice thickness from BRW2 to BRW7 indicate that gas incorporation 

was (mainly) associated with ice growth, while the significant differences in BRW8 and 

BRW10 indicate subsequent gas transport.  

Subsequent gas transport may have occured in BRW8 and BRW10 because both ice cores 

were permeable (brine volume fraction above 5%) at all depths. However, the processes 

leading to the subsequent gas transport were different in both sampling events, as the changes 

relative to BRW2 increased in BRW8 for all the gases (indicating an addition of gases), but 

decreased in BRW10  (indicating a removal of gases), and more particularly for N2 and Ar 

than for O2 (Figure 6).  

Therefore, the temporal changes of the standing stocks indicate 3 distinct stages in the gas 

dynamics: (1) gas incorporation during ice growth from BRW2 to BRW7, (2) gas 

accumulation in BRW8 despite the increase of ice permeability at all depths, and (3) gas 

removal in BRW10, but with larger removal of Ar and N2 than O2.  
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4.2 Gas incorporation during ice growth 

If the entrapment of gases in sea ice was constant during ice growth, we should expect a 

constant [O2] in ice with depth. The slight decreasing [O2] in ice from the surface to the 

bottom of the impermeable ice layers (2 to 4.9 % of brine volume fraction) (Figure 5) then 

indicate a decrease in the entrapment efficiency during ice growth. That decrease in the 

incorporation efficiency has been suggested for Ar in Zhou et al. [2013] and is also valid for 

CH4 [Zhou et al., 2014b]. Briefly, when sea ice forms, gas concentration increases in parallel 

with salinity (this is the so-called “brine concentration”). At the same time, because of the 

temperature gradient at the beginning of ice growth, brine salinity increases above seawater 

salinity, leading to the decrease of gas solubility in brine. Both increasing gas concentration 

and decreasing gas solubility lead to gas supersaturation, and eventually gas bubble formation. 

Whatever the ice depth where gas bubble formation take place, the formed gas bubbles may 

then ascend due to their buoyancy and accumulate under the impermeable ice layers. Because 

gas bubbles move upwards due to their buoyancy, while dissolved compounds are subject to 

gravity drainage (i.e., downward movement), gas bubble formation favors gas accumulation 

in sea ice in contrast to the dissolved compounds. However, as sea ice thickens, the 

temperature gradient (i.e., brine salinity gradient) decreases in the ice, and gas bubble 

formation due to solubility changes becomes less efficient. This mechanism explains the 

slight decreasing trend in [O2] in ice from the surface to the bottom of the impermeable ice 

layers. 

The presence of gas bubbles in the impermeable ice layers is confirmed by ice thin sections 

[Zhou et al., 2013], and the large N2 supersaturations also indicate the presence of gas 

bubbles in our ice samples. Indeed, N2 supersaturation reached up to 7000 % in the 

impermeable ice layers, while supersaturation of 2200 % already corresponds to gas bubble 

formation [Killawee et al., 1998].  

Because the accumulation of gas bubbles occurred at the beginning of the ice growth, i.e., in 

the upper ice layers, which are also associated with high brine salinity (hence low gas 

solubility) and low brine volume fractions at the sampling, it is not surprising to observe high 

O2, Ar and N2 supersaturation at low brine volume fractions (Figure 4). 
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4.3 Gas accumulation subsequent to ice formation 

4.3.1 Gas bubble formation due to biological activity 

The changes in gas standing stocks that deviated from the changes in ice thickness in BRW8 

(relative to BRW2) indicate an addition of gases. The addition of gases may be counter-

intuitive because BRW8 was permeable at all depths; hence, gas exchanges (diffusion and/or 

convection) should tend to alleviate the supersaturation that is formed during ice growth (see 

previous section), leading to a decrease of the standing stocks, rather than an accumulation of 

gases as it is observed.   

Further, the simultaneous addition of O2, Ar and N2 (Supplementary material S2)
 
was only 

possible through gas bubble formation and accumulation in sea ice. Since full-depth 

convection occurred in BRW8 (section 2.1), additional dissolved gases would be drained out 

of the ice through convection, while additional gas bubbles may remain in the ice due to their 

buoyancy despite brine convection. The resulting questions are then: how do these gas 

bubbles form in sea ice and how can they accumulate in the permeable ice layers? 

One explanation for the accumulation of gas bubbles could be the growth of gas bubbles from 

pre-existing gas cavities, triggered by local supersaturation fluctuations [Jones et al., 1999]. 

Because [O2] in bulk ice was at solubility in the bottom 30 cm of the ice in BRW2 and 

BRW4, but became locally supersaturated in BRW7 when [chl a] increased sharply (Figure 

5), we postulate that biological activity in BRW7 created O2 supersaturation and possibly gas 

bubbles [Tsurikov, 1979] in some local micro-niches (i.e. confined pores created by microbial 

excretion and/or structure), forming the so-called “pre-existing gas cavities”. Then, the 

increasing ice permeability and full-depth convection in BRW8 allowed the local 

supersaturation fluctuation, which favored the growth of gas bubbles [Jones et al., 1999] and 

supports the observed O2 accumulation. Once the O2 gas bubbles are formed, other dissolved 

gases (e.g. N2 and Ar) may diffuse from brine into the gas bubbles, because the partial 

pressure of N2 and Ar in brine is higher than that in the O2 gas bubbles [e.g. Lubetkin, 2003]. 

This process eventually allows the accumulation of all the gases in sea ice, and more 

particularly N2 rather than Ar (see the larger changes in N2 than in Ar in Figure 6), because 

the partial pressure of N2 is higher than that of Ar (see the range of [N2] and [Ar] in the 

supplementary material S2).
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Supplementary material S2 
 
Gas concentrations in bulk ice (black dots) compared to their solubility in ice (white dots). From left to 
right, O2, Ar and N2 concentrations. The dashed areas refer to ice layers with brine volume fraction above 
5 %. 
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Theoretically, the formed gas bubbles should rise through the brine channels and escape from 

the permeable ice. The fact that we observed an accumulation of gases in BRW8 indicates 

that the process of gas bubble escape was not instantaneous. The geometry of the brine 

network or tortuosity [e.g. Golden et al., 2007], the impurities in brine [Liger-Belair, 2005], 

the presence of biogenic exopolymer substances [Krembs et al., 2011] and the intensity of 

brine drainage [Moreau et al., 2014] may all slow down the ascension of gas bubbles through 

the brine network, i.e. increasing the duration needed for gas equilibrium. 

4.3.2 Void formation in warming sea ice 

Another explanation for gas bubble formation in warming sea ice (BRW 8) is the formation 

of voids, caused by the melting of the pure ice which has a lower density than brine [Light et 

al., 2003; Tsurikov, 1979]. Although void formation in sea ice inevitably leads to gas 

exsolution from brine, these voids had to form before brine convection for significant gas 

bubble formation. Otherwise, brine convection may fill the voids in sea ice, impeding the 

process of exsolution.   

4.3.3 Superimposed ice formation 

Superimposed ice formation was found in the 20-first cm at the surface of BRW10 [Zhou et 

al., 2013], which implies the seepage of snow meltwater and subsequent freezing on contact 

with sea ice [Haas et al., 2001]. The mechanism leading to gas accumulation in or right 

below the superimposed ice is unclear, but there are 3 potential explanations for this 

observation according to Tsurikov [1979]: (1) direct input of atmospheric air in the ice pores 

(because of the positive freeboard) before the formation of the superimposed ice layers, (2) 

accumulation of gas bubbles that have risen through the brine network, or (3) accumulation 

of gases associated with the rapid freezing of snow meltwater (see Zhou et al. [2013] for a 

more extensive discussion). 

4.4 Difference in the changes of standing stocks between O2 and both Ar and N2 

The changes of the standing stocks (relative to BRW2) decreased between BRW8 and 

BRW10 (Figure 6) for all the gases, indicating the removal of gases from sea ice. The fact 

that both [Ar] and [N2] dropped to their respective solubility in ice (below the superimposed 

ice layers) (Supplementary material S2) is a result of prolonged gas exchange (through gas 

bubble escape and gas diffusion). The addition of snow- and ice meltwater likely have further 

drawn down [Ar] and [N2] to below their respective solubility in ice. Previous analyses of 
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water stable isotopes in brine, nitrate concentrations and ice texture [Zhou et al., 2013] 

support the suggestion of snow- and ice meltwater infiltration. 

 

Figure 6 Changes of ice thickness, Ar, O2 and N2 concentrations for each sampling event relative to 

BRW2. Value above, equal to or below 1, indicates an observed change that is respectively higher, 

equal to or lower than the value in BRW2. 

 

In the layers comprised between 20 cm (i.e. below the superimposed ice layer) and 75 cm of 

BRW10, [O2] also approached the saturation as for [N2] and [Ar], indicating that all the gases 

are likely dissolved in brine. Dividing the observed [O2] in ice by the brine volume fraction, 

and assuming a density of the brine of 1 (because brine salinity was close to seawater 

salinity), we obtain the range of [O2] in brine, which range from 232 to 647 µmol kg
-1

, with a 

mean of 400 µmol kg
-1

. That range is close to that presented in Papadimitriou et al. [2007] 

(212 to 604 µmol kg
-1

) where the loss of O2 from ice was also evident.   

In contrast to [Ar] and [N2], [O2] was supersaturated at the bottom of BRW10 

(Supplementary material S2), and the changes of O2 standing stocks (relative to BRW2) 

decreased with a lower magnitude than Ar and N2 (Figure 6). The reason is that biological O2 

production partly compensated the loss of O2 due to gas exchange. [O2] higher than the 

solubility were indeed found in the lower part of BRW10 – where high [chl-a] were also 

observed. 
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We made a simple calculation to estimate the changes of saturation associated with the 

biological O2 production, between BRW8 and BRW10. Mean Ar solubility in the whole ice 

column has increased from 1.9 (in BRW8) to 2.8 µmol Lice
-1

 (in BRW10), i.e. by 50 %. 

Similarly O2 solubility has increased from 38 to 57 µmol Lice
-1

, i.e. also by 50 %. Therefore, 

in a closed system, the saturation levels of both Ar and O2 should have decreased by 50 %. 

Meanwhile, mean Ar saturation has decreased from 263 to -15 %, i.e. by 106 %. Hence, the 

50 % of changes in Ar solubility are not large enough to explain the changes in the saturation 

levels, and about 56 % of the decrease in Ar saturation is associated to the escape of gas 

bubble escape, gas diffusion – and possibly the addition of snow meltwater that contributed 

to the Ar saturation levels down to -15 %. Mean O2 saturation has decreased from 180 to 

58 %, i.e. by 79 %, which was lower than the 106 % observed for Ar. The difference (106 % 

– 79 % = 27 %) is likely the contribution of biological activity to the O2 supersaturation.  

There is one fundamental difference between BRW8 and BRW10 that is worth to discuss: 

why did biological activity trigger gas accumulation in BRW8, but not in BRW10? One 

simple reason would be the larger brine volume fraction in the upper layers of BRW10 (10 to 

30%) in comparison to BRW8 (7.5 to 10 %), which allowed the evacuation of the formed gas 

bubbles. Another explanation would be that gas bubbles were more difficult to nucleate in 

BRW10. Indeed, the production of O2 in BRW8 occurred at the beginning of the increase of 

ice permeability, when both gas cavities and supersaturated gases were present, and when 

brine convection allowed the fluctuations of local supersaturations. In contrast, in BRW10, 

low N2 and Ar supersaturation due to prolonged gas equilibration between the atmosphere 

and brine (Figure 4), in combination with brine stratification (i.e, absence of local 

supersaturation fluctuations due to brine convection), could have made it more difficult to 

form gas bubbles from O2 production in BRW10.   

4.5 Gas exchange at the bottom of the ice 

Although ice-algae produce O2, the maximum of [chl a] did not coincide with the maximum 

of [O2] over all the sampling events. The low phaeopigment percentage (20-30 %) in those 

bottom layers (Figure 5b) suggests low algal degradation, and hence low consumption of O2 

by the heterotrophs in comparison to the algal production. A potential pathway that allows 

the removal of the produced O2 in these bottom permeable ice layers is the transport through 

diffusion and convection. The fact that [O2], [Ar], [N2] in ice all reached the solubility in the 
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bottom of the ice supports the suggestion of gas exchange with seawater – where all the gases 

are assumed to be at saturation.    

4.6 Caveats and uncertainties when calculating NCP from O2/Ar with O2/N2 in 

sea ice 

Recent studies have determined NCP in seawater, using Ar to correct for the physical 

contribution in the variation of O2 [Cassar et al., 2009; Castro-Morales et al., 2013; 

Hendricks et al., 2004; Reuer et al., 2007], while O2/N2 was shown to be sensitive to the 

biological activity in basal continental ice [e.g. Souchez et al., 2006]. In this section, we will 

discuss caveats and uncertainties related to the calculation of NCP from O2/Ar or O2/N2 in 

sea ice. 

4.6.1 O2/N2 and O2/Ar trends in this study 

The range of O2/N2 from BRW2 to BRW7 (0.27 and 0.41) remained within the abiotic range 

(0.27-0.51), indicating that we cannot exclude the possibility that these were solely associated 

with physical processes. Indeed, the observed range is consistent with those obtained from ice 

growth experiments in abiotic conditions (0.37 – 0.45) [Killawee et al., 1998], or with 

negligible bacterial activity (0.32 – 0.44) [Tison et al., 2002]. In contrast, the increase of 

O2/N2 up to 1.47, i.e., beyond the abiotic range, in BRW10, indicates that the contribution of 

biological activity to the [O2] dominated over that of the physical processes. This is in 

agreement with what we have observed from the changes of gas standing stocks over time 

(section 4.4).  

To the best of our knowledge, O2/Ar has never been measured in ice before. However, the 

range of O2/Ar observed in the present study (15.8 - 97.6) is comparable to (if not higher 

than) the range of O2/Ar in seawater studies (10 – 55) [Nemcek et al., 2008; Shadwick et al., 

in press.], pointing to the reliability of our results. Further, since O2/Ar and O2/N2 evolve 

similarly toward higher values over the sampling events, the sharp increase of O2/Ar in 

BRW10 likely indicates, as for O2/N2, the switch from a situation where the physical 

contribution to O2 supersaturation dominated to a situation where the biological contribution 

dominated. 

The main difference between O2/Ar and O2/N2 (Figs. 5c and 5d) was their variability with 

depth: O2/Ar exceeded the abiotic range from BRW4 onwards (versus BRW8 for O2/N2). 

That difference may result from (1) the relative abundance of O2 compared to those of Ar and 
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N2, (2) the relative solubilities of the gases and (3) the relative diffusion rates of the gases. 

Firstly, since [O2] is about 20 times higher than [Ar], but about 3 times lower than [N2], 

adding the same amount of O2 (due to biological activity) will induce a higher increase in the 

O2/Ar ratio than in the O2/N2 ratio. Secondly, N2 solubility in brine was clearly different from 

that of O2 and Ar, as suggested by the larger supersaturation of N2 in comparison to O2 and 

Ar (Figure 4). That difference in gas solubility impacts the partitioning of gases between 

brine and gas bubbles, which then affect differently the O2/Ar and O2/N2 ratios. Thirdly, 

although there is currently no consensus on the diffusion coefficient of O2, Ar, and N2 in 

brine (Table 1), it is well established that O2/Ar and O2/N2 ratios will change if diffusion 

occurs in the permeable bottom ice layers [Killawee et al., 1998]. 

4.6.2 Biases on [O2]eq/[Ar]eq and [O2]eq/[N2]eq due to physical processes 

Before calculating NCP from equations 2 and 3, we first assess the potential biases on NCP 

associated with the impact of gas diffusion and gas bubble nucleation on [O2]eq/[Ar]eq and 

[O2]eq/[N2]eq. The presence of gas bubbles will draw [O2]eq/[Ar]eq from 20.48 (solubility in 

seawater) to 22.5 (ratio in gas bubbles) and [O2]eq /[N2]eq from 0.56 to 0.27 (section 2.4). Gas 

diffusion privileges the loss of O2 in comparison to Ar and N2 by a factor of 1.5 and 1.1 

respectively, if one considers the ratio of diffusion coefficient following Broecker and Peng 

[1982]. But if one considers the work of Crabeck et al. [submitted], the ratio of diffusion 

coefficient for O2/Ar will change by a factor of 0.9 to 1.1 and for O2/N2, by a factor of 0.6 to 

0.72 (Table 1). The expected changes (given in percentage in Table 2) thus range between -

9.2 to -33.3 % for [O2]eq /[Ar]eq and between -8.9 to +66 % for [O2]eq/[N2]eq depending on 

whether we consider the work of Broecker and Peng [1982] or Crabeck et al. [submitted]. 

Considering the lower range of bias on [O2]eq/[Ar]eq in comparison to [O2]eq/[N2]eq, we 

suggest using the former in the calculation of [O2]bio and NCP. 

We estimated the propagation of errors on [O2]bio (calculated from equation 3), using the 

Monte Carlo procedure and neglecting the error on gas diffusion (i.e., assuming equivalent 

diffusivities for O2 and Ar in sea ice as in Crabeck et al. [submitted]), we used random values 

of the measured parameters (T, S and O2/Ar) between the mean ± standard deviation over 

1000 iterations, assuming a maximum error of 9.9 % on [O2]eq/[Ar]eq due to gas bubble 

formation and an absolute error of 0.1 for T and S (Table 2). The calculated maximum 

uncertainty of [O2]bio is then 34 %. 
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Table 2 Synthesis on the trends of changes of O2/Ar and O2/N2 at the ice-water interface. An upward 

arrow indicates that the process increases the ratio, while a downward arrow indicates that the process 

decreases the ratio. The percentages in brackets indicate the maximal changes of the ratio associated 

with the physical processes (section 4.6.2). 

  
O2/Ar O2/N2 

Photosynthesis 

 
↑ ↑ 

Respiration 

 
↓ ↓ 

Gas bubble formation 

 
↑  (+9.9 %) ↓ (-51.8 %) 

Diffusion (1)   ↓ (-33.3 %) ↓ (-8.9 %) 

Diffusion (2)   ? (-9.2 to +11 %) ↑ (+39 to +66%) 

(1) Broecker and Peng [1982] ; (2) Crabeck et al. [submitted] 

 

4.6.3 Biases on [O2]eq due to physical processes 

Equation 3 implicitly assumes that [O2] equals to [O2]eq in the absence of biological activity. 

However, as discussed in section 2.5, [O2]eq prior to biological activity may be higher than 

the gas solubility calculated at in situ temperature and salinity following Garcia and Gordon 

[1992] and Hamme and Emerson [2004], because of gas bubble accumulation (section 4.2). 

Indeed, Ar supersaturation approached 500 % for brine volume fraction of 5 % (the transition 

from permeable to impermeable layers) (Figure 4) – in comparison to 1 % of supersaturation 

reported in seawater studies [Hamme and Severinghaus, 2007], and 564 % in Antarctic lake 

ice [Hood et al., 1998]. Similarly, [O2]eq at sea ice consolidation, may be supersaturated as 

well: at least 500 % if we assume similar solubility for O2 and Ar [Weiss, 1970], and even 

more if we take into account the O2 production in the bottom ice layers.  

4.7 Estimate of [O2]bio and NCP and in sea ice 

4.7.1 The impermeable layers 

Previous sections have shown how physical processes and biological activity both influence 

[O2] in sea ice. Therefore, NCP calculations from [O2] require removing the physical imprints. 

Since we assume that the impermeable ice layers are closed systems, only biological activity 

could change O2 concentration in these layers over time. Thus, theoretically, the changes of 

the standing stocks of O2 in the impermeable layers (0-50 cm) from BRW2 to BRW7 (Table 

3 – O2 meth column) should be equal to NCP. However, since BRW2, BRW4 and BRW7 
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refer to different sampled ice cores, rather than the changes in the same ice core over time, 

spatial variability affects the calculated NCPs. For instance, the simultaneous drop in [O2], 

[Ar] and [N2] to the solubility values in BRW4, between 20 and 40 cm depth, 

(Supplementary material S2) points to spatial variability rather than NCP changes. That 

spatial variability was likely associated with changes in water masses, as water stable 

isotopes also showed anomalies at the same ice depths [Zhou et al., 2013]. NCP calculated 

following equation 3 should then correct for spatial variability, because it corrects for O2 

variations using Ar, which evolved under the same physical conditions (i.e., experiencing the 

same spatial variability). 

Table 3. NCP in the impermeable ice layers (0 to 50 cm depth) from BRW2 to BRW4 and from 

BRW4 to BRW7, in µmol O2 L
-1

 d
-1

 The columns entitled “O2 meth.” refer to the NCP derived from 

the standing stocks of [O2] in bulk ice, while the columns entitled “O2/Ar” refer to the NCP derived 

using the O2/Ar (see Eqs. (2) and (3), considering 500 to 3000 % of supersaturation). The latter could 

be further affected by a maximum uncertainty of 35 % (section 4.6.2). 

  BRW2-BRW4 BRW4-BRW7 

Ice depth (cm) O2 meth.   O2/Ar meth. O2 meth.   O2/Ar meth. 

0-10 1.0 

 

0 – 0.1 -1.2 

 

0.6 – 3.6 

10-20 1.9 

 

-0.1 – 0 -4.3 

 

-0.2 – 1.3 

20-30 0.4 

 

-0.1 – 0 4.9 

 

0.2 – 1.0 

30-40 2.0 

 

0 – 0.3 -6.6 

 

-0.6 – 3.3 

40-50 1.5   0 – 0.2 -3.9   -3.3 – -0.5 

 

We further multiplied the NCP (calculated following equation 3) by a factor of 5 to 30 to take 

into account the full range of observed O2 supersaturation when the ice became impermeable 

(Figure 4 and section 4.6.3). Dividing the obtained values by the number of days between the 

sampling events then provides NCP (Table 3 – O2/Ar meth). Note that, as demonstrated in 

section 4.6.2, these ranges have a maximum uncertainty of 40 % due to the impact of 

physical processes on [O2]eq/[Ar]eq (34 %, section 4.6.2) and the sampling time (up to 6 %, 

section 2.3 and Supplementary material S1). 

Both positive and negative NCP from BRW4 to BRW7 indicate that heterotrophic and 

autotrophic processes coexist in sea ice; this is possible due to the presence of micro-niches 
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in sea ice [Rysgaard et al., 2008]. The change from a net autotrophic (BRW2-BRW4) to a 

both autotrophic and heterotrophic system (BRW4-BRW7) is also in agreement with 

previous results suggesting increased remineralisation (i.e., net heterotrophic processes) in 

BRW7 [Zhou et al., 2013].  

Measurements of NCP in the ice interior are scarce, which limit the comparison of our values 

with the literature. However, the positive NCPs reported here (0 – 3.6 µmol O2 L
-1

 d-1, which 

are equivalent to 0 to 1.3 mgC m
-3

 h
-1

) are consistent with those measured in the melt ponds 

in the Canada Basin in 2005 (0.03 and 2.12 mgC m
-3

 h
-1

) [Lee et al., 2012], with similar [chl 

a] (0.02 and 0.7 mg Chl a m
-3

 in the present study versus 0.1 and 0.6 mg Chl a m
-3

 in Lee et al. 

[2012]). The negative NCPs (-0.2 to -6.6 µmol O2 Lice
-1

 d
-1

) are comparable to the range of O2 

consumption rates measured in the bottom of sea ice in Franklin Bay (0 - 3 µmol O2 Lice
-1

 d
-1

) 

[Rysgaard et al., 2008]. 

4.7.2 The permeable layers 

In the permeable layers, [O2]eq should be closer to the gas solubility calculated at in situ 

temperature and salinity following Garcia and Gordon [1992] than in the impermeable layers. 

However, brine convection and diffusion may have affected [O2]eq/[Ar]eq. Beside the fact that 

a large range of diffusion coefficients exist in the literature (Table 1), our present 

understanding of brine dynamics and gas transport does not allow assessing the frequency or 

the impact of the convection on the variations of [O2] over the sampling period (e.g., not in 

BRW8). Therefore, rather than calculating NCP based on the change of [O2] between BRW8 

and BRW10, and neglecting the differential impact of brine convection and permeability on 

[O2] in both sampling events (section 4.4), we simply provide a conservative estimate of 

[O2]bio in BRW10, where brine convection was absent and hence, when only biological 

activity and diffusion took place.  

In contrast to the impermeable layers, we simply consider [O2]eq at saturation (hence no 

supersaturation), since all the gas bubbles have escaped from the ice (section 4.4). The 

maximum uncertainty is 21 %: This was calculated following the procedure described in 

section 4.6.2, but neglecting the 9.9 % of error due to gas bubble accumulation (because of 

the absence of gas bubbles), and adding the 6 % of error due to diel O2 production/respiration.  

The calculated [O2]bio varies between 5.4 and 174.5 µmol O2 Lice
-1

 (Figure 7), which is 

equivalent to a carbon uptake (or autotrophic organic carbon production) of 3.8 - 122 µmol C 
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Lice
-1

, considering the O2/C ratio of 1.43 [Glud et al., 2002]. This minimum estimate is 

comparable to the range of POC found in the bottom of Barrow sea ice, in May (105 – 212 

µmol C L
-1

) [Juhl et al., 2011]. 

 

Figure 7 [O2] bio in BRW10 calculated following equation 3. The results may be converted into C 

uptake, assuming a photosynthetic quotient O2/C of 1.43 [Glud et al., 2002]. 

 

Integrating [O2]bio leads to a standing stock of 52.3 mmol O2 m
-2

 due to biological activity, 

which is equivalent to 36.6 mmol C m
-
², or 438.9 mgC m

-
². This fits within the range of 

integrated sea-ice POC reported in the Chukchi and Beaufort Seas during May/June 2002 

(200 – 2000 mg C /m
2
) [Gradinger, 2009]. Given that the chl a standing stocks were 8.3 mg 

m-² [Zhou et al., 2013], our calculation provides a C:Chla ratio of 52, which compares well 

with the 57 used in Jin et al. [2006] and obtained from their observations (Jin, personal 

communication). The consistency of C:chl a with the literature and the similarity between 

[O2]bio with POC in the literature, in spite of neglecting diffusion, suggest that diffusion 

occurred at a much lower rate than NCP.   

5 Conclusion and perspectives 

We presented the first time-series of O2, Ar and N2 measurements in natural landfast sea ice, 

collected in Barrow from February through June 2009. The gases were extracted from ice 
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crushing – a technique that allows the measurement of O2 from both brine and gas bubbles, 

both in impermeable and permeable layers. The results thus extend our current knowledge, 

which is limited to dissolved O2 in the bottom permeable ice layers. 

We have highlighted 3 distinct stages in the dynamics of O2 as compared to Ar and N2: (1) 

gas incorporation in the form of gas bubbles or dissolved gases. In the latter situation, gas 

standing stocks increase with increasing ice thickness; (2) gas accumulation subsequent to ice 

growth, through the formation of gas bubbles due to biological activity, voids and 

superimposed ice; (3) gas removal due to prolonged gas exchange in permeable ice layers. 

However, the gas removal was less marked for O2 than for Ar and N2, because biological O2 

production partly compensated the loss of O2 due to gas exchange (gas bubble escape and gas 

diffusion). 

The dynamics of O2 in landfast sea ice was highly sensitive to physical processes: gas 

incorporation and subsequent transport. Brine concentration and decreasing solubility 

(associated with decreasing temperature and increasing brine salinity) cause a non-linear 

relationship between gas saturation levels and brine volume fraction. In particular, 

supersaturations of O2 up to 500 % were still observed in the permeable layers (where brine 

volume fraction exceeds 5 %), probably due to the formation of gas bubbles and/or slow gas 

equilibrium. It still remains unclear how O2 supersaturation affect the O2 dissolved in brine 

and its diffusion at the ice/water interface, but solving this issue will be crucial for the 

estimate of NCP based on O2 diffusion (e.g. under-ice eddy covariance [Long et al., 2012], 

and O2 optode measurements [Mock et al., 2002]). 

Finally, we discussed the possibility to correct for the physical imprints (including spatial 

variability) on O2 variations using Ar and N2. The main problem associated with gas 

measurements in sea ice is the uncertainty of gas exchange within the permeable sea ice. 

[O2]eq upon sea ice consolidation is indeed uncertain. Also, the wide range of diffusion 

coefficients for O2, Ar and N2 found in the literature, and the uncertainty of how both brine 

convection and diffusion affect the O2/Ar signal in sea ice have to be solved for accurate 

NCP estimates. We acknowledge the limitations of our pioneering study, but as our 

conservative estimate of NCP and [O2]bio are comparable to the literature, NCP calculation 

using O2/Ar appear promising – especially  in cases like BRW10, where brine convection 

was absent and diffusion probably negligible in comparison to NCP. 
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Chapter IX – Conclusions 

 

1 The most relevant processes affecting the dynamics of solutes 
and gases in sea ice 

The overarching objective of the thesis was to identify the most relevant processes affecting 

the dynamics of solutes and gases in sea ice. To fulfil that objective, we raised three 

questions. How this thesis contributed to address these questions is summarized hereafter. 

1. How does the concentration of solutes and gases in sea ice change with depth 

and time? 

We analyzed different inorganic macronutrients, dissolved organic carbon (DOC), and 

different gases in sea ice. Most of them were not conservative against salinity in the ice.  

In the Interice V experiment (Chapter V), the dissolved compounds were 4 to 6 times more 

enriched in the ice than what we would expect if they were transported as salts. The 

enrichment factors of most of the compounds decrease from the top, to the bottom of the ice, 

where they approach 1. The enrichment of DOC in ice was higher in the mesocosms with 

seawater than in the mesocosms with the addition of river water.  

Gases in natural ice cores showed much larger enrichment factors in the ice (Chapter VI-

VIII) than the inorganic nutrients and DOC in the experiment ice. N2 reached 7000 % of 

supersaturation, which means that it was 70 times more enriched in the ice that it would have 

been if it were only dissolved in brine, and no supersaturation existed. O2, Ar and CH4 were 

also supersaturated, reaching about 3000 % of supersaturation. The maximum supersaturation 

was reached in the upper ice layer (about 15-25 cm depth), where the brine volume fraction 

was lowest (2%) and where large gas bubble accumulation was observed in thin sections. 

Inert gas concentrations (N2 and Ar) were close to their solubility values at the bottom of the 

ice, and at all depths when the ice became fully permeable, except when a superimposed ice 

layer forms at the ice surface. In contrast, CH4 was always supersaturated, in both permeable 

and impermeable ice layers; O2 was supersaturated in the bottom permeable layers, but only 

in late spring. 
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2. How do these changes compare to those of the physical properties of the ice? 

We have shown that the physical properties of the ice exert a strong influence on the 

distribution of the (dissolved and gaseous) biogeochemical compounds in sea ice, as they 

influence ice permeability and brine dynamics, and gas bubble formation. 

Increasing ice permeability affects both the dissolved and the gaseous compounds: it allows 

the infiltration of snow meltwater, which may affect the nutrients and δ18O in brine (chapter 

VI); it also allows gas exchange between the atmosphere and the ice, and between the ice and 

seawater (chapters VI-VIII). Gas exchange through sea ice generally tends to draw gas 

concentrations in sea ice toward their solubility values, as we have observed for Ar and N2, 

except when there is in situ production, as for O2, and when the under-ice is supersaturated, 

as for CH4. 

Brine dynamics affect the dissolved compounds. When brine convection occurs, it tends to 

draw the concentrations of nutrients, DOM and δ18O in brine towards their respective 

concentrations in seawater. The reach of brine convection in the ice depends on the stages of 

brine dynamics, and we have identified three of them in our studies. (1) Gravity-driven 

bottom convection lasts during most of the ice growth period. Because decreasing air 

temperature reduces the permeability in the ice interior, convection is limited to the bottom of 

the ice, although brine salinity decreases with depth. (2) Gravity-driven full-depth convection 

may then take place (or not) depending on the competing effect between the potential energy 

for gravity drainage and the dissipation of the energy as the brine moves downward. (3) 

Finally, brine stratification develops when further temperature increase triggers internal ice 

melt, which eventually stabilizes the brine density profile, slowing down the exchange of 

nutrients between brine and seawater.  

The formation of gas bubbles affects the transport pathway of gases in sea ice, because 

while dissolved gases tend to move downward due to gravity drainage (as with the other 

dissolved compounds), gas bubbles tend to move upward due to buoyancy. This difference in 

the transport pathways between the dissolved and gaseous compounds explains the larger 

accumulation of gases in sea ice, in comparison to salts and the other dissolved compounds.  
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3. How do these changes compare to those of the biological properties of the 

ice? 

In our study, the largest bacterial abundance and chlorophyll-a concentrations were found at 

the bottom of the ice. However, because brine convection was also generally the most intense 

at the bottom of the ice, it was difficult to assess the biological impact based on the changes 

of the biogeochemical compounds only. In other words, there was a competing effect 

between the biological impact and the physical impact. As a result, the maximum O2 

concentration was not observed at the same depth as the maximum chlorophyll-a, but slightly 

above, where brine convection was limited and diffusion was slow.  

In addition, biological impacts on the changes of biogeochemical compounds were only 

obvious when the biological production or consumption rate is larger than the initial pool. As 

a result, because of the large initial DOC concentrations, bacterial respiration did not 

significantly affect the concentrations of DOC.  

To the general question “what are the most relevant processes affecting the dynamics of 

solutes and gases in sea ice?”, the answer is that physical processes induced the most 

significant changes in the observed stocks of the biogeochemical compounds analysed in 

this thesis.  

Brine convection tends to pull the concentrations of the biogeochemical compounds to 

conservative behaviour (and override any potential biological impacts), while gas bubble 

formation, due to brine concentration and gas solubility decrease, induces a selective 

retention for gases. Increasing permeability enhances gas exchange through sea ice; this 

could induce a drastic decrease in gas standing stocks, which may be partly compensated for 

by in situ biological production (O2) and external input (CH4). 

2 Implications of our findings on regional scale and in a climate 
change perspective 

The findings from this work have not only helped to identify the most relevant processes 

affecting gas and solute dynamics in sea ice, they may also have larger scale implications.  
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2.1 Sea ice retains the more labile form of DOC 

In the Interice V experiment (Chapter V), we have observed that there was a significant 

enrichment of DOC in the ice, and that enrichment was higher in the mesocosms filled with 

seawater than in the mesocosms filled with seawater and river water. Because riverine DOC 

contains older soil-derived material, which is more refractory than the marine DOC (mainly 

phytoplankton-derived), our results suggest that the more labile forms of DOC are better 

retained in sea ice than the refractory forms. This is in agreement with the results of Müller et 

al. [2013] and Jørgensen et al. [submitted]. 

Through the selective retention of the labile form of DOC in sea ice, sea ice plays an 

important role in the carbon cycle. By selectively retaining the labile form of DOC, sea ice 

growth likely drives segregation of the microorganism species between the ice and the under-

ice water, hence, different community development and production in sea ice and in 

seawater.  

In the context of a warming climate, sea ice may play a more significant role in the carbon 

cycling in the Arctic. In the coastal regions, if the riverine input of refractory DOC increased 

(e.g., because warmer temperature increases higher bacterial respiration), carbon cycling 

could be more efficient in sea ice than in the under-ice water, because sea ice would contain a 

larger fraction of labile DOC.  

2.2 Gas bubble formation enhances gas accumulation in sea ice, and possibly 
gas transfer towards the atmosphere 

In Chapter VI – VIII, we suggested that the formation of gas bubbles in sea ice is a 

mechanism leading to the accumulation of gases in sea ice. As a result, argon responded 

differently to brine dynamics than the other dissolved biogeochemical compounds (Chapter 

VI). Model simulations support this suggestion: Moreau et al. [2014] described the 

incorporation and the transport of argon in ice. Our results indicate that neglecting gas bubble 

formation (i.e., by taking into account only the dissolved gas compounds) would lead to an 

underestimate of the argon content in sea ice of 40 to 60 %.  

However, the impact of the gas bubble formation in the retention of the gases may vary 

depending on the gases. For instance, for the soluble gas CO2, because of the equilibria of the 

CO2 system, CO2 in gas bubbles only represent 5 % of the total CO2 content [Moreau et al., 

submitted]. 
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2.3 The 3 main stages of brine dynamics from ice growth to ice decay 

We described 3 main stages of brine dynamics from ice growth to ice decay: (1) Bottom 

convection which lasts during most of the ice growth period, (2) Full-depth convection in 

early spring, and (3) brine stratification when further temperature increase triggers internal 

ice melt and stabilizes the brine density profile. Since the different stages of brine dynamics 

mainly depend on the unstable brine density profile and the ice permeability, which are both 

a function of the ice temperature, all the areas with similar physical constraints (air 

temperature and water salinity) should experience the same successive stages in brine 

dynamics. This suggestion is at least pertinent for the Canadian Arctic basin: Carnat et al. 

[2013] have indeed observed the 3 same stages in their field study, despite the large spatial 

coverage of the sampling. 

2.4 The role of sea ice in the CH4 cycle 

Chapter VII presented the first time-series of CH4 in sea ice, in parallel to the physical 

properties of the ice; the results improved our understanding on the role of sea ice in the 

exchange of CH4 between seawater and the atmosphere. This is important, because CH4 is a 

greenhouse gas with a high global warming potential, and its release from the Arctic coastal 

waters potentially causes positive feedback on current global warming. However, there is not 

yet consensus on the role of sea ice in the methane cycle.   

Our results indicate that Barrow landfast sea ice mainly acts as a temporary storage for the 

CH4 release from the seafloor, and that biological impacts on the CH4 concentrations should 

be minor in comparison to the physical incorporation. These results may be pertinent for the 

other Arctic shelf regions with shallow water depths. 

However, our results can probably not be generalized to the whole Arctic, or Antarctica. Kort 

et al. [2012] measured significant fluxes of CH4 over the ice-covered central Arctic. Because 

the water depth is deeper in the central Arctic than the coastal regions, the CH4 released from 

the seafloor could be oxidized before reaching the surface water. Therefore, ice-air CH4 

fluxes in the central Arctic must indicate a production of CH4 in the ice or in the under-ice 

water (with emission of CH4 via leads). CH4 production in aerobic water has been found in 

the Pacific side of the central Arctic [E. Damm et al., 2008]. Whether the same process could 

occur in sea ice remains an open question.  
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2.5 O2/Ar, a new method for studying net community production in sea ice 

The manuscript presented in Chapter VIII has two main originalities: first, we measured the 

total O2 content in the ice (gaseous and dissolved), while current studies mainly focus on the 

dissolved O2 concentrations. Second, we discussed the use of inert gases N2 and Ar to correct 

the physical contribution to O2 variations, and thus, to determine the net community 

production in sea ice. This method does not require melting the ice or deploying in situ 

probes; we therefore avoid obtaining biased net community production related to the ice melt 

or because the probes are inserted in gas bubbles or biofilms. Although this is a pioneer study, 

and further improvements are required (e.g, equations describing the diffusion of O2 at the 

ice-water interface), the method seems promising.  

3 Revision of the processes regulating the distribution of gases in 
sea ice 

Because the previous review on the processes regulating the distribution of gases in sea ice 

dates back to 1979 [Tsurikov, 1979] and was mainly based on theoretical considerations, we 

here present an update of the processes with references to observations supporting each of the 

processes (Table 1). While all the processes could occur in both Arctic and Antarctic sea ice, 

the entrapment of CH4 gas bubbles (an example of process2) should be more common in the 

Arctic shelf regions, like the East Siberian shelf, with a large input of terrestrial organic 

matter, shallow water depths, and melting sub-sea permafrost. Because positive freeboards 

are more generally encountered in the Arctic; and negative freeboards in the Antarctic, the 

substitution of air for brine due to positive freeboard (process3) should be more common in 

the Arctic, while the capture of air during the formation of snow ice (process5) should be 

more common in Antarctica. 
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Table 1 Review of the processes regulating gas concentrations in sea ice 

PROCESSES EXAMPLE(S) 

E
n

tr
a
p

m
en

t 

1 The entrapment of the dissolved gases 
Tsurikov [1979]; Tison et al. 

[2002] 

2 The entrapment of gas bubbles (e.g., CH4) 
Tsurikov [1979]; Perovich and 

Gow [1996]; Shakhova et al. 

[2010b]; Zhou et al. [2014b] 

3 
Air replacing the downward moving brine in 

permeable ice pores above the freeboard 
Tsurikov [1979]; Perovich and 

Gow [1996] 

4 
Superimposed ice formation : The entrapment of 

the air contained in the snow 
Zhou et al. [2013] 

5 
Snow ice formation : The entrapment of the air in 

snow and the dissolved gases in seawater  
Tsurikov [1979] 

T
ra

n
sp

o
rt

 

6 Gas transport with brine movement 
Moreau et al. [2014] for brine 

drainage; Geilfus et al. [2013] 

for brine expulsion 

7 Air-ice and ice-ocean exchanges 

Delille et al. [2014]; Loose 

and Schlosser [2011]; Nomura 

et al. [2010] ; Rysgaard et al. 

[2011] 

8 Gas bubble rise due to buoyancy 
Moreau et al. [2014]; Zhou et 

al. [2013] 

N
u

cl
ea

ti
o
n

 a
n

d
 d

is
so

lu
ti

o
n

 

9 
Brine concentration (cooling) and brine dilution 

(warming) 
Zhou et al. [2013] ; Zhou et al. 

[2014a] ; Zhou et al. [2014b] 

10 Changes in gas solubility 
Zhou et al. [2013] ; Zhou et al. 

[2014a] ; Zhou et al. [2014b] 

11 
Pressure changes (e.g., void formation due to 

internal ice melt) 

Tsurikov [1979]; Light et al. 

[2003] and Zhou et al. [2014a] 

for void formation 

B
io

g
eo

ch
em

ic
a
l 

p
ro

ce
ss

es
 12 Biological production and consumption 

Zhou et al. [2014a] for O2; 

Carnat et al. [2014] for DMS; 

Delille et al. [2007] for CO2 

13 
Mineral precipitation and dilution (e.g., calcium 

carbonate) 
Delille et al. [2007]; Geilfus et 

al. [2013] 
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4 Research perspectives 

4.1 Multi-year sea ice 

Our work has mainly focused on the study of first-year ice. Although it has brought lots of 

interesting results, we need to compare them with results obtained from multi-year sea ice, in 

order to better predict the changes in the global biogeochemical cycles. This is particularly 

pertinent in the Arctic, where the proportion of first sea ice is increasing, and the proportion 

of multi-year ice is decreasing.  

For instance, we found that the labile forms of DOC are better retained in first-year sea ice 

than the more refractory forms. Because the incorporation and retention is related to sea ice 

formation, we may expect the DOC enrichment to be more pronounced in first-year ice than 

in multi-year ice. This conjecture needs to be verified with measurements on multi-year ice. 

If it is verified, then, carbon cycling will likely be enhanced in Arctic sea ice, with the 

increasing proportion of first-year sea ice. 

Another interest in measuring multi-year sea ice is related to the CH4 cycle. Significant ice-

air CH4 fluxes that have been measured in the central Arctic (Kort et al., 2010) indicate a 

production of CH4 in the ice or in the under-ice water (with emission of CH4 via leads). 

Measuring CH4 in the multi-year ice of the central Arctic would help to better understand the 

contribution of sea ice to the observed fluxes.  

4.2 Exchanges at the ice-water and ice-air interfaces 

Our work has shown that brine convection affect the vertical distribution the dissolved 

compounds (e.g., inorganic nutrients, DOC) in sea ice. How frequent and how far is the reach 

of brine convection within the ice is still in need of quantification. Monitoring changes of 

salinity at fine vertical resolution and at high frequency (time-intervals) using in-situ salinity 

probes should help to better quantify the impact of brine convection on the ice. The results 

would help to better parameterize ice algal growth within the ice.  

In addition to brine convection, more work could also be done with respect to the diffusive 

transport. In the absence of turbulence (e.g., waves and tides), purely diffusive transport 

regime could occur between two episodes of convection, at the bottom of the ice, when the 

Ra increases but has not yet reached the critical number, It could also occur when the ice 

pack growth reaches a steady state, because salt rejection is then reduced and brine 
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convection limited. We have shown that diffusion affect the estimate of the biological O2 

stock at the bottom of the ice (Chapter VIII). A better understanding of the ice-water 

exchanges will improve our estimate of the biological O2 stock and thus net community 

production.  

Finally, because of the potential emission of climate active gases (CO2, DMS, CH4, N2O) 

from the ice to the atmosphere, it would be valuable to better budget gas fluxes through sea 

ice. Our work highlighting the different transport pathways of gases and their dependence to 

gas solubility is a first step. Formulating gas solubility equations for the range of ice 

temperature and brine salinity in sea ice, determining more gas diffusion coefficients, and 

finding a good parameterization for the ice permeability for upward gas transport should 

further help to improve our assessment of gas fluxes through sea ice.   
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1 
 

THE PHYSICAL AND BIOLOGICAL CONTROLS ON THE DISTRIBUTION 

OF GASES AND SOLUTES IN SEA ICE FROM ICE GROWTH TO ICE 

DECAY 

 

The ongoing changes in the extent and the properties of sea ice, associated with the warming climate, 

are affecting the polar ecosystem and the interactions between the atmosphere, sea ice and the 

underlying waters. How sea ice biogeochemistry will change in the foreseeable future is currently 

uncertain, but is a crucial problem to tackle.  

To better understand how sea ice biogeochemistry could change, we investigated the factors 

regulating the distribution of some dissolved compounds (e.g., nutrients, dissolved organic matter 

(DOM)) and gaseous compounds (e.g., Ar, O2, N2, CH4) in sea ice, from ice growth to ice decay. The 

results were obtained from a 19-day indoor experiment in Hamburg (Germany) and a five-month-long 

field survey in Barrow (Alaska). They were then compared to the physical properties of the ice 

(temperature, salinity, and other derived parameters such as brine volume fraction) and different 

biological parameters (bacterial activity, bacterial abundance, chlorophyll-a and phaeopigments).  

Our work indicates that the physical properties of sea ice exert a strong influence on the distribution 

of the biogeochemical compounds in the ice, through their impact on brine dynamics, gas bubble 

formation and ice permeability. We have described 4 stages of brine dynamics, which affect the 

distribution of the dissolved compounds (e.g., silicate and DOM) in sea ice. However, inert gas (Ar) 

shows a different dynamic in comparison to the dissolved compounds, indicating a different transport 

pathway. We suggest that the formation of gas bubbles in sea ice is responsible for that different 

transport pathway, because gas bubbles should move upward owing to their buoyancy in comparison 

to brine, while dissolved compounds are drained downward due to gravity. Our observations further 

indicate that the critical permeability threshold for the upward gas bubble transport should range 

between 7.5 and 10 % of brine volume fraction, which is higher than the 5 % suggested for the 

downward brine transport. Increasing ice permeability and prolonged gas exchange tend to draw gas 

concentrations toward their solubility values, except when the under-ice water is supersaturated 

relative to the atmosphere (e.g., CH4) or when there is in-situ production (e.g., O2). 

Because ammonium and O2 obviously accumulate in the ice layers where convection is limited, we 

suggest that the changes of these biogeochemical compounds in sea ice depend on the competing 

effect between the physical transport and the biological activity; the biological impact on these 

biogeochemical compounds in sea ice is obvious when the biological production rate exceeds largely 

the physical transport rate. We further discussed on the potential of using Ar and N2 as inert tracers to 

correct the physical controls on O2 and to determine the net community production in sea ice.  

In addition to the physical and biological controls, the chemical properties of some biogeochemical 

compounds (e.g., nitrate, ammonium, DOM) may further influence their distribution in sea ice; further 

investigations are however needed to confirm this.   

Finally, based on our findings, we present an update of the processes regulating the distribution of 

gases in sea ice, with references to recent observations supporting each of the process. We also 

provide some insights on how sea ice biogeochemistry could change in the future and the research 

priorities for an accurate quantification of these changes. 




