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Abstract

Along with technical developments, internationatleanges of genetic material
(e.g., frozen semen, embryos) have increased dihee1970s. However, genetic
evaluations are traditionally based on phenotypid @enealogical data which are
internally recorded, i.e., within well defined berd. Because imported (i.e., external)
genetic material is usually strongly selected irirtlrespective populations, internal
genetic evaluations for external animals could ilasddl and less accurate if external data
used for their selection is ignored. Moreover, camgon of internal and external animals
based on their internal and external estimateseoktc merit is needed to select and
potentially import the most suitable ones accordingthe internal breeding goal.
However, such comparison is usually not possibleraminternal and external genetic
evaluations due, e.g., to differences among unitsneasurement. Thereby, several
approaches and algorithms have been developethtierénternal and external genetic
evaluations comparable, and to combine or blendhgtypic and genealogical data and
external information, i.e., estimates of geneticritmend associated reliabilities.
Furthermore, the recent development of genomiccBete also increased needs for
combining phenotypic, genealogical and genomic @atd information. Therefore, the
aim of this thesis was first to develop innovat@gorithms to combine diverse sources of
phenotypic, genealogical and genomic data andnmdtion, and second to test them on
simulated and real data in order to check theirembtness. Based on a Bayesian view of
the linear mixed models and addressing severaksshighlighted by previous studies,
systems of equations combining simultaneously deresources of data and external
information were developed for (multivariate) geocetand single-step genomic
evaluations. Double counting of contributions doerelationships and due to records
were considered as well as computational burdee. @érformances of the developed
systems of equations were evaluated using simutitabets and real datasets originating
from genetic (genomic) evaluations for Holsteintleaand for show jumping horses. The
different results showed that the developed eqnatiotegrated and blended several

sources of information in a proper way into a genet a single-step genomic evaluation.



It was also observed that double counting of cbations due to relationships and due to
records was (almost) avoided. Furthermore, morahiel estimates of genetic merit were
also obtained for external animals and for thelatiees after integration of external
information. Also, the developed equations can asily adapted to complex models,
such as multivariate mixed models. Indeed, it wasws that external information
correlated to the internal phenotypic traits wagpprly integrated using the developed
equations. Finally, research of this thesis lethtodevelopment of a genomic evaluation
system for Holstein cattle in the Walloon RegiorBeigium for production traits, as well
as for other traits, like somatic cell score. Basedthe research of this thesis, future
research topics, e.g., concerning integration ofetated external information and of

genomic information, were finally presented.
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Résumé

Suite aux progres techniques, les échanges inienaak de matériel génétique
(par exemple, la semence congelée ou les embryonsyaugmenté depuis les années
1970. Toutefois, les évaluations génétiques sadittonnellement basées sur des données
phénotypiques et généalogiques qui sont enregsséré® niveau interne, c'est-a-dire dans
des frontieres bien définies. Parce que le mat§éelétique importé (appelé ci-aprés
externe) est habituellement fortement sélectiorarés deurs populations respectives, les
évaluations génétiques internes pour les animauterrees pourraient étre biaisées et
moins précises si les données externes utiliséas lpar sélection sont ignorées. En
outre, la comparaison des animaux internes et reedeen fonction des estimations
internes et externes de leurs valeurs geénétiquesiéeessaire pour sélectionner et,
potentiellement, importer les plus appropriés encfion de I'objectif de reproduction
interne. Cependant, une telle comparaison n'esérglament pas possible entre les
évaluations génétiques internes et externes eonigmmr exemple, des différences entre
les unités de mesure utilisées pour mesurer lesgiyyges. Ainsi, plusieurs approches et
algorithmes ont été développés pour rendre comlemratles évaluations génétiques
internes et externes, ou pour combiner des dorpt&asotypiques et généalogiques ainsi
gue de l'information externe, c'est-a-dire les meations de valeurs génétiques et les
fiabilités associées. De plus, I'évolution récedée la sélection génomique augmente
également les besoins de combinaisons de donnéetghiques et généalogiques et
d’'informations génomiques. Par conséquent, I'olfjdet cette these a été, premierement,
de développer des algorithmes innovants pour coenhiiverses sources de données et
d’'informations phénotypiques, généalogiques et gégoes et, deuxiemement, de tester
ces algorithmes sur des données réelles et simali@esde vérifier leur exactitude.
Fondée sur une vision bayésienne des modeéles niiézsres et reposant sur plusieurs
guestions soulevées par des études précédentesysteésnes d'équations combinant
simultanément diverses sources de données et whafmns externes ont été élaborés
pour des évaluations génétiques et génomiques pie ¢ysingle-step », potentiellement

multi-caracteres. Les doubles comptages de cotisiisidus aux liens de parenté entre



les animaux externes et dus aux données ainsiagciearge de calcul ont été examinés.
Les performances des systémes d'équations dévelampéité évaluées en utilisant des
jeux de données simulées et des données réellgsnamat des évaluations génétiques
(génomiques) pour les bovins Holstein et pour lesvaux de saut d'obstacle. Les
différents résultats ont montré que les équatiodégeldppées integrent et combinent
plusieurs sources d'information d'une maniére gppe pour les évaluations génétiques
et génomiques de type «single-step ». Il a égalera& observé que les doubles
comptages des contributions dus aux liens de pamarite animaux externes et dus aux
données étaient (presque) évités. En outre, dematisins plus fiables de valeurs
génétiques ont également été obtenues pour lesariaxternes et pour les animaux qui
leur sont apparentés apres l'intégration de I'médion externe. De plus, les équations
développées peuvent étre facilement adaptées anddsles complexes, tels que les
modéles mixtes multi-caracteres. En effet, il a @@ntré que l'information externe
corrélée avec les caractéres phénotypiques intexsedien intégrée en utilisant les
équations développées. Enfin, la recherche de t&tse a conduit a la mise en place d'un
systeme d'évaluation génomique pour bovins HolsteirRégion Wallonne (Belgique)
pour, notamment, les caractéeres de productione Qwix recherches menées lors de cette
these, des sujets de recherche futurs, par exeogleernant l'intégration d’informations

externes corrélées et d'informations génomiquddjrmalement été présentés.
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General introduction

CONTEXT

One of the major objectives in animal breedingigstimate the genetic merit of
animals for traits of interest in order to rankrthéBased on these rankings, the best ones
can be selected and mated to finally generate gwowed generation with optimal
performances regarding these traits of intereshe@e merits can be estimated through
different statistical methods, such as selectiaexn(Sl; Hazel, 1943), mixed models
(Henderson, 1984) or Bayesian methods (Gianola Ferttando, 1986). Under some
assumptions, these statistical methods allow tmahbreeders to obtain estimates of
genetic merit (EGM) either for animals (e.g., estied breeding values; EBV) or for
what they transmit to their progeny (e.g., expecprdgeny differences, predicted
transmitting abilities). All these methods aim thigve the highest reliability (REL) for
the EGM with regards to available data. Nevertieledatever method used, the aim is
the same, i.e., ranking animals to choose the twes$ in order to generate improved
progeny.

Whereas SI, mixed models and Bayesian methods apuéd equivalent results
under some assumptions, the linear mixed model®loleed by Henderson (e.g.,
Henderson, 1984) are commonly used for geneticuatiahs since the 1970s, replacing
the Sl theory popularized by Hazel (Powell and Namp2006). Several properties of the
linear mixed models can explain their widespreagl ésfirst property of linear mixed
models is to differentiate the effects betweenédfiXxand “random” effects, following the
frequentist school. These effects have “Best Lingabiased Estimate” (BLUE) and
“Best Linear Unbiased Prediction” (BLUP) propertiesspectively. Other properties of
linear mixed models are their easy adaptation to-marmally distributed data, their
potential application in a Bayesian context, oiirtleasy understanding (Robinson, 1991;
VanRaden, 2001; Powell and Norman, 2006).

Traditionally, phenotypic and genealogical data @eorded following official
recording schemes performed on populations withefi defined borders (e.g., country
borders). Based on these data, genetic evaluatienperformed for these populations.
Such genetic evaluations are hereafter called rfial& genetic evaluations because they
are only based on internal data, i.e., collectethiwiestablished borders. Internal genetic
evaluations are characterized by their own scatés of measurement and/or genetic
bases. However, since the 1970s, technical deveofanlike frozen semen or embryos,

increase exchanges of genetic material worldwidedihg to internationalization of
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breeding schemes and breeds. Within well defineddss, the internal population might
have a large proportion of genes from external fagmns. Such situations are especially
observed in sport horse (Arnason, 2013) and datstecbreeding (Philipsson, 1987).
Hence, different issues may arise if genetic maltésiwidespread outside borders while
genetic evaluations are performed within bordeirstlly, because imported (i.e., external)
genetic material is usually strongly selected,rimaé EGM for external animals could be
biased with an internal genetic evaluation if ex#érdata used for their selection in
external populations is ignored (VanRaden, 201&vextheless, although one of the
major objectives in animal breeding is to intemaltedict genetic merits of animals with
the highest REL by using all available data, indérgenetic evaluations are usually
performed using only data collected internally. &aVreasons leading to internal genetic
evaluations that ignore external data are mentiobeldw. Secondly, selection and
importation of the most suitable external genetiaterial according to the internal
breeding needs and goals require the comparisaniofals through their own EGM and
REL. However, such a comparison is usually not ipbsdetween internal and external
populations due to differences among scales, whitaeasurement and genetic bases of
genetic evaluations (Weigel and Rekaya, 2000).

One way to solve both issues is to use simultargalisavailable phenotypic and
genealogic data, i.e., from all concerned poputatito get unbiased EGM through a joint
genetic evaluation. Some studies, for example ortdporse breeding (e.g., Furre et al.,
2013) and in dairy cattle breeding (e.g., Banoalgt1992; Weigel and Rekaya, 2000),
showed results of joint genetic evaluations. Howeusually, joint genetic evaluations
cannot be performed because data from the diffgreptlations are not available in the
same dataset for several reasons, like politicatiibtocks, or because data cannot be
merged due to inconsistencies. Moreover, even t& @¢an be combined in the same
dataset, joint genetic evaluations could not bdéopered due to computing or logistical
problems (Powell and Sieber, 1992). Neverthelemsparison of genetic material is still
needed. To make it feasible, instead of performjoigt evaluations based on the
combination of raw data, that are mostly unavadagkenetic merits can be approximated
by converting or combining the available informatio.e., EGM and associated REL
obtained for each population. Therefore, differapproaches and algorithms converting
or combining EGM and their associated REL acrogsufaions were developed over the
years to improve accuracies of internal genetiduatens and to render genetic merits of

animals comparable across populations in orderelecs the most appropriate genetic
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material in a widespread pool of genes. These dpedl approaches and algorithms were
mainly derived from Sl theory (e.g., VanRaden, 200diixed models methodology (e.g.,
Schaeffer, 1985) and Bayesian statistics (e.gn@#eand Fernando, 1986).

For a few decades, molecular data at the deoxyuitdeit acid (DNA) level have
been considered in genetic evaluations as an additisource of data that permits to
improve genetic progress through both an increbseauracy of selection and a decrease
of generation intervals. Selection based on modcirformation was first based on
molecular genetic marker information (e.g., micteB#es) and was called marker-
assisted selection (Fernando and Grossman, 1989001, Meuwissen et al. (2001)
proposed to use genome-wide dense marker mapglinglseveral thousands of single
nucleotide polymorphisms (SNP) to estimate genmieits of animals. This led to the
recent massive development of the so-called genaeliection in many species. The
increasing availability of bi-allelic SNP data atite subsequent increasing amount of
information derived from this data source (i.e.n@mic EGM and associated REL)
highlighted the necessity to develop approachesasgutithms for combining sources of

phenotypic, genealogical and genomic data andnmdton.

AIM OF THE THESIS

The aim of this thesis was to develop innovativgoathms to combine
phenotypic, genealogical as well as genomic dath iaformation originating from
diverse sources and to test them on simulated ead data in order to check their

correctness.

THESIS OUTLINE

This thesis is a compilation of published scieatfiapers proposing algorithms
that combine different sources of data and infoiromatind investigating their use in
simulated and real contexts. Firstly, a literatteeiew of the different approaches and
algorithms that render EGM and associated REL coatg@ or to combine them is
provided in Chapter Il. Then, a detailed comparisbrdifferent Bayesian approaches
integrating external information into genetic exalans is provided (Chapter Ill). Based
on this comparison, some improvements are prop@Séapter Ill), mainly to limit
computational burden and to avoid double countingomtributions due to relationships.
In Chapter IV, the resulting improved Bayesian apph is implemented in the context of

the Belgian genetic evaluation for jumping hors@&ayesian approaches require



Chapter |

alterations of expectations and of (co)variances remdom effects of linear mixed
models. However, most available software packagsed on linear mixed models used
in animal breeding do not allow for such alterasiomherefore, a method is proposed to
allow for those alterations while using availabt#tware packages (Chapter V). This
method is based on the use of an extended datarfdea user supplied (co)variance
matrix (Chapter V). In Chapter VI, a unified methodegrating and blending several
sources of information into a genetic evaluatiodeseloped and tested on simulated and
real data. In addition to integrate and blend sav&urces of information, the developed
method allows to take into account double counthgontributions due to records. An
implementation of this latter method is the Wallosimgle-step genomic evaluation
integrating Walloon and multiple across countryleaion (MACE) information, and is
presented in Chapter VII. Chapter Ill to Chapterl \show improvements and
implementations of Bayesian approaches that integseveral sources of external
information into an internal genetic or single-stggenomic evaluation. These
investigations are performed in a context whererivdl and external information were
provided for the same trait, although these appresmovere developed to integrate
correlated external information, i.e., to integrasgernal information from a certain trait
correlated to the internal phenotype traits. Troeef the first part of Chapter VIii
presented the results of a study which integrateselated external information into an
internal multivariate evaluation for a simulatecs&€aA comparative study among the
different approaches that combine simultaneoustgraal information and internal data
is then detailed in the second part of Chapter.\Hihally, implications, future research

topics and a general conclusion are presented apt€hlX.

THESIS FRAMEWORK

The research of this thesis was initiated in Oat@.0. The first academic year
2010-2011 was mainly dedicated to the NovaUddetHeptoject financed by the
Ministry of Agriculture of Walloon Region of Belgm (Service Public de Wallonie,
Direction générale opérationnelle “Agriculture, Bagrces naturelles et Environnement”
— DGARNE) and to the FP7 European project RobugtMiince October 2011, this
research has been supported by a fellowship (“Refsdzellow”) funded by the National
Fund for Scientific Research (FRS-FNRS, Belgium).
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Chapter Il. S TRATEGIES TO RENDER COMPARABLE AND TO
COMBINE RESULTS FROM DIFFERENT GENETIC AND GENOMIC

EVALUATIONS : A REVIEW

Exchange of genetic materials among populations aat
(inter)national level rapidly increased with thevel®pment of
artificial insemination and frozen embryos, leading an
increasing necessity to render comparable or tdbamerestimates
of genetic merit (e.g., estimated breeding valuasyl their
associated reliabilities provided for the variouspylations.
Combination of different sources of information &e® even
more crucial with the development of genomic eviatunes.
Therefore, the objective of this Chapter was taewvdifferent
approaches and algorithms developed in order toeswsues
regarding comparison and combination of severalegyerand

genomic evaluations.
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INTRODUCTION

The issue of comparing or combining estimates afetie merit (EGM) and
associated reliabilities (REL) arose from the fiegsthanges of genetic material among
populations. Populations may be considered atma favel (e.g., Henderson, 1975) or at a
country level (e.g., Schaeffer, 1985). Differenpagaches and algorithms were developed
to solve this issue and the objective of this Chaiajg to review them. All reviewed
approaches and algorithms were sorted following st@tegies. Firstly, EGM and
associated REL provided for external populatioresedfter called external information,
can be rendered comparable or combined with intét@M and associated REL after
performing internal and external evaluations. Thpsset evaluation approaches were
described hereafter in the subsection “Post evialuapproaches”. Secondly, external
information provided for external populations cae tombined simultaneously with
internal phenotypic and genealogic data in integeetic evaluations performed for
internal populations. These approaches were destritiereafter in the subsection
“Simultaneous combinations”. Also, it was notedtth@st of the reviewed approaches
and algorithms were developed for (multi-breed) agienevaluations in dairy and beef
cattle. With the advent of genomic selection, ndedsombine genomic information with
phenotypic and genealogical data and informatiore hegppeared, and several previous
approaches were adapted. Therefore, a subsectassigned to approaches adapted and
developed in the context of genomic selection.

POST EVALUATION APPROACHES

CONVERSION EQUATIONS

The oldest and simplest approach to render EGMaasdciated REL comparable
across two populations (e.g., from two countries)the use of a regression-based
conversion equation which converts EGM from oneoettpg (i.e. external) population to
the scale, units of measurement and genetic baae iafporting (i.e. internal) population.
In the context of dairy cattle, the first formulaamnversion equations recommended by
the International Dairy Federation in 1981 (Gray&883) was of the form:

y =al+bx
where y is the vector of internal EGMx is the vector of external EGMa is the

intercept ando is the slope of the conversion equation.
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The intercepta can be considered as the difference in genetie basveen the two
populations. It is valid as long as the genetiebasf the two populations are fixed or are
moving at the same rate (Philipsson, 1987). If eREL of EGM are observed in both
populations (i.e., the same number of observataons the same heritability) and if no
genotype x environment interaction exists (i.enege correlations between the two
populations is equal to 1), the slopeis equal to the ratio of the standard deviations i
genetic merit as expressed in the two populatigvir(ink et al., 1986; Philipsson, 1987,
Powell and Sieber, 1992). The slopecan be considered as the relationships between
scales and definitions of EGM (e.g., estimated diree values (EBV) or predicted
transmitting abilities (PTA)) of the two populat®n.e., as a scaling factor (Powell, 1988;
Powell and Sieber, 1992).

However, the previous conditions are usually ndfilled in practice and several
approaches (e.g., Goddard, 1985; Philipsson efl@86; Wilmink et al., 1986; Powell,
1988) were proposed to estimate the inter@@aind the slopd. These approaches also
take into account the REL associated with the E@Whfeach population. In this context,
the slopeb also considers genetic correlations among popustihat could be lower
than 1 due to different heritabilities and defimits of traits (Philipsson, 1987).
Approaches were also proposed to approximate REbcaged with converted EGM
depending on REL associated with external EGM, @metic correlations among
populations and on accuracy of conversion equati@msddard, 1985; Powell et al.,
1994). It is noted that genetic correlations lowvem 1 as well as preferential treatments
are mainly responsible for the non-reciprocity ledé tonversion equations (Powell et al.,
1994).

To compare different conversion equations, Phibps®et al. (1986) defined
desirable properties. Thus, methods should 1) gimbiased estimates of both the
intercepta and the slopd, 2) consider the difference in REL from each papah, 3)
allow for the possibility for a genetic correlatiteéss than 1 between the true genetic
merits in each population, and 4) minimize theamae of differences between converted
EGM and true values in the external population. dBese accuracy of the conversion
equations is influenced by preferential matingseaternal animals, by preferential
treatments for some animals, and by suitabilitgrmals selected for the estimationaof
andb (Powell et al., 1994), Wickham and Philipsson (&%roposed recommendations

for the estimation of both the interceptand the slopdé in the context of dairy cattle.
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Following these recommendations, bulls with datacted for the estimation should 1) be
born within a period of 10 year before the birtlaryef the youngest selected bull, 2) have
daughters in at least 20 herds in each populasiod,3) be associated with EGM having
REL equal or higher than 75% in both populationgttiermore, most recent data should
be used and, if sufficient number of bulls is aafalié, bulls initially sampled in the
exporting populations (i.e., according to the gdiosv) should be selected for the
estimation ofa andb. Recommendations for cases with a non-random tuelis, or a
correlation between EGM lower than 0.75, or a nunabeselected bulls lower than 20 or
a number of common used bulls very low, were atep@sed (Wickham and Philipsson,
1990a). All these recommendations lead to thetfettsome internal populations did not
have enough animals from the external populatioavgm in their own internal
population. Therefore, conversions of EGM were qenked through a third population
having enough common proven animals with the eateand internal populations
(Wickham and Philipsson, 1990b).

To summarize, conversion equations are simple, ®aapply and provide results
for use in internal populations. However, estimati@of a and b are mostly based on a
small number of animals being evaluated in the papulations. Also, conversion
equations can only be applied to render genetiduatians of two populations
comparable at a time, mostly for only one directiamd may not be accurate for animals
with extremely high merit (Banos and Sigurdsson96)9 Furthermore, relationships
among animals are not taken into account by thevarsion equations and external
information is not propagated to relatives. Finallgnversion equations do not remove

the issue of animals associated with more tharE@® within a population.

WEIGHTED AVERAGES

Conversion equations do not allow for the consitil@naof external information
associated with an animal into its internal evatmator for the propagation of this
external information to its progeny, leading ovetal a loss of REL. Hence, other
approaches and algorithms were developed to conaxteznal and internal information.
Thereby, in the context of Holstein dairy cattlejggans et al. (1992) proposed an
approach to combine US and Canadian bull evaluati@sed on the decomposition of a
bull's evaluation between parent averages (PA) mmodjeny contributions (PC). After
conversion of Canadian evaluations and PC fromQhaeadian trait to the US trait by

using conversion equations, US and Canadian evahsatvere combined as a weighted
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average of either a combined PA or a PA from the ddShe Canadian evaluations,
depending on the availability, and US and Canadid adjusted for the bull's

contribution. The adjustment of PC for the bulntribution was due to the fact that the
bull's contribution to PC through PA in the progelB&M could be important. Because
combination of PC across countries could changebiilés evaluation, it should be

removed before combination. Also, the process wasedrom the oldest bull to the

youngest one in order to propagate additional mairon from the oldest bulls to the
youngest ones. Estimated REL associated with casdbavaluations were a function of
the sum of daughter equivalents (DE) from pareodsitributions from the combined

evaluations, and DE from PC for both US and Camadialuations. However, because
the approach considered only bulls, cows’ evaluatiprovided from the national

evaluations could disagree with the combined eviaoaof their sire. Moreover, the

approach did not adjust progeny’s evaluations fonges in bulls’ EGM and foreign

cows were also not considered.

Derived from the equations of the random genetieces, Mrode et al. (1996)
proposed a similar procedure, solving some disadgas of the Wiggans’ method, to
combine United Kingdom and converted foreign euvadums. Combinations of
evaluations for bulls and also for cows were pented as a weighted average of PA, yield
deviations and PC. Evaluations of progeny were sdédglifor changes in evaluations of
their parents. Because changes in parents’ evahsaffect only PA, only a weighted
difference between PA from combined evaluations BAdrom internal evaluations was
added to the progeny’s evaluations. Specific rulese defined for progeny with
unknown parents. Combined REL for bulls, cows armjeny were estimated from the
decomposition in different contributions of the ioadl and foreign information,
expressed in DE, similarly to Wiggans et al. (1992)

To summarize, both methods approximate animal mestehates. In order words,
both methods took all relationships among animate iaccount, and this led to an
increase of REL and eliminated the problem of afsnassociated with more than one
EGM within a country. However, both methods did nohvert external information and

conversion equations were still needed.
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LINEAR MIXED MODELS

MULTIPLE ACROSS COUNTRY EVALUATION

In the context of dairy cattle breeding, the fisethod based on linear mixed
models to analyze jointly national evaluations fre@veral countries was called multiple-
country evaluation (MCE) and proposed by Schaefi€85). This method provided
international estimates for all bulls in all panpiating countries. The MCE was based on a
single-trait model assuming equal heritability @sraountries, several interactions as
unimportant (e.g., genotype by environment intéoas), a diagonal (co)variance matrix
for the residual effect and unbiased internal (reti) evaluations. The MCE had the
advantage to use a pedigree relationship matrosaarountries increasing connectedness
among countries resulting in better estimates td@rimational EGM. Furthermore, MCE
allowed for the simultaneous comparison among gelarumber of countries (unlike
conversion equations), based on a large numberaafiders per bull in multiple
countries. MCE also allowed for the prediction @ngtic merits on the scale of each
country (Schaeffer, 1985). Furthermore, compared ctmversion equations, all
information can be used instead of only informatielated to animals evaluated at least
in two countries.

Since some assumptions of MCE were unrealistic g&itdr, 1994), Schaeffer
(1994) proposed the multiple across country evadndfMACE), which is a multiple-trait
model for which similar traits in different courgs are considered as different traits. In
addition to the advantages of MCE, MACE overconmesdisadvantages. Indeed, MACE
allows for different scales, for different units iwkeasurement, for different heritabilities
and genetic parameters for each country, and foetgecorrelations between countries
lower than one. Genetic correlations less than aswunt for 1) differences between
statistical models used for genetic evaluationsaweral countries and 2) genotype by
environment interactions. Different rankings ofraals in the participating countries can
be therefore observed (especially due to the cersiiddn of genotype by environment
interactions) and the degree of difference amorgdhkings is dependent on the genetic
correlations among countries (Banos and Sigurdsk@s®).

The model proposed by Schaeffer (1994) is a sireemal grandsire model and is
described for a countiyas follows:

Yi =Xi¢, +2,Qg; +Z;s t€ (11.1)
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wherey, is the vector of observations, is the vector of country of evaluation effegt,
is the vector of genetic groups of bull effest, is the vector of genetic merits of bull
effect, e, is the vector of residuals, antl, Z,, Q are incidence matrices.

The (co)variance matrices efand e for n countries are, respectively,

e, —Dlo'é 0 |
Var (e)=Var| ... [=| .. ... |and
e, 0 Dnasn
s,| [As; .. As,
Var (s) = Var =l ..
S, | [Asy As,,

where aé is the residual variance for couniryD; is a diagonal matrix with elements

equal to 1 divided by the number of daughters dful, s; is the sire (co)variance

between countryandj, and A is a sire-maternal grandsire additive relationshagirix.
The residual (co)variance matrix was assumed tadiagonal although covariances
among observations within a country are not zemafances among observations and
among countries equal to zero assume that natievauations are performed from
independent data sets. Also, observations usedhfrmodel (1l.1) should represent
unregressed measures of progeny performances tiréar several effects (e.g., herd
effects, genetic merit of mates) in each countiygdested observations were national
EGM (Schaeffer, 1994), deregressed proofs (DRPzRaizal., 1990) and daughter yield
deviations (DYD; Schaeffer, 1994). Comparison asth three estimates as observations
for the model (11.1) were performed by Sigurdsson 8anos (1995) and these authors
recommended the use of DRP as observations. For €fRetive daughter contributions
(EDC) of bulls were suggested as weighting fadtdtge and Banos, 2001).

A major limitation of MACE is that it can combinely one trait for a bull within
a country because one of the assumptions is tlseddueds are not correlated among
countries. However, because more and more evahsatvere changed from single-trait to
multiple-trait, an extension of MACE to considermultiple traits within a country was
needed (e.g., Schaeffer et al., 2000). Therefarea&fer (2001) proposed a multiple-trait
MACE (MT-MACE) allowing multiple traits within a amtry. Nevertheless, de-
regression steps for multiple-trait evaluationsiddue difficult, especially because each
country could have a different number of traitsrtRermore, de-regression steps could
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not be harmonized among countries if it is perfairbg each country (Schaeffer, 2001).
To avoid these difficulties, some studies (e.glli&n and Wilton, 2001; Liu et al., 2004)
proposed modifications to MT-MACE to simplify itseL

To summarize, (MT-)MACE has several advantagese ltke simultaneous
comparison among a large number of countries, sleeofia pedigree relationship matrix,
the use of all available information, and the pradn of genetic merits on the scale of
each country. However, some limitations of (MT-)MB@Xxist, like de-regression steps
(Schaeffer, 2001) and the definition of traits daling the country borders instead of
environment differences (e.g., climate, manageméfieigel and Rekaya, 2000).
Furthermore, in the context of dairy cattle, MACEbyades international EBV only for
bulls, leading to potential issues. Indeed, theblgations as “official” by a country can
lead to conflicts if national EBV for the same Isulire much different, and, therefore,
disagree with EBV associated with close relatives).( progeny, cows, bulls without
international EBV; Taubert et al., 1999). The cdesation of only bulls by MACE is also
a problem to evaluate without bias females out fwr@ign dam as well as females with a
highly selected foreign sire without national pnoge data in comparison to females
having a local origin (Pedersen et al., 1999). &hgr although MACE solves issues
concerning combinations of national EBV for mostlfua need to propagate and to

integrate MACE results into national genetic evabres appeared.

BLENDING ALGORITHM

Publications of MACE EBV for some bulls togetheittwhational EBV for other
bulls, cows and young animals could lead to cotsflid herefore, Taubert et al. (2000)
proposed an iterative algorithm to combine natiaral MACE EBV simultaneously for
all animals. Their algorithm was based on the egnatof the part of random effects of
the mixed model equations (MME):

(D + A‘l/l)ﬂ =r

where D is a diagonal matrix with diagonal elements edqagberformances equivalents
for bulls with MACE EBV, A™ is the inverse of the relationships matrixjs the ratio of
error to genetic variances, is the vector of blended EBYV, andis the right hand side
(RHS) of the equation.

To summarize, knowing the RHS for bulls with MACB¥ and for other bulls,
cows and young animals, the blending algorithm daew iteratively national and
MACE EBV simultaneously for all animals by weigldinMACE EBV through
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performances equivalents. Taubert et al. (2000¢mves that blended EBV of progeny of
bulls were influenced in the same way as thoseheir tsires and that conflicts were

solved.

SELECTION INDEX

Based on selection index (Sl) theory, methods waegeloped to combine
different genetic evaluations related to the sarag br to correlated traits. A first Sl
approach was developed by Weigel et al. (1998) rovige an evaluation of the
productive life (PL) trait in dairy cattle. PL iglated to culling data of progeny which are
extensively available only relatively late in théelof a dairy sire. Also, it has a low
heritability. Therefore, REL associated with PTA fgoung bulls are low. Therefore,
Weigel et al. (1998) developed a Sl approach tolioenearly indirect PL information
obtained from correlated traits and direct PL infation. An indirect PTA for PL{,,)

was obtained as follows:

aind = COV(UPL Ut )'Var (u MT )_laMT
where Cov(uPL,uMT) is the covariance between PTA for Pl,() and the true
transmitting abilities for correlated traitsi(; ), Var(u,, ) is the variance ofi,,;, and
d,,r is the vector of multiple-trait Best Linear Unbidderediction (BLUP) predictions of

correlated traits.

The reliability of u,,, was calculated as follows:

REL,, = Cov(ug, U, )Var(u,, ) *Var (0, Var(u,, ) Cov(ug, ,u,,; )/Var(u,, ).
Direct and indirect PL predictions},, and U, respectively, were then combined in a
weighted mean where weights were function of REtoamted withd, and G, .

Weights also accounted for the lack of independebetveen direct and indirect
evaluations because some progeny had both dirécindirect observations. Also, many
traits correlated with PL may be highly correlaggdong them. Because high correlations
could lead instability of indirect predictions, aingipal component procedure on a
correlation matrix was applied to discard redundeaits.

Later, VanRaden et al. (2000) and VanRaden (20@f9gsed another Sl approach
to combine genetic evaluations of the same or tade® traits. It consists of combining
estimates of Mendelian samplings (MS) from eacfediht genetic evaluation through Sl

and then to add the combined predictions to PAesgad on the desired scale. Therefore,
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for an animal associated with different predictiagtscombined EGM{_,,,, is equal to:

aconb = l,']PA + COV(UMS’ OMS )Iva‘r (GMS )_1GMS (”'2)
where (,, is the estimated PA on the scale of inter&@y(u,.,0,,s) is the covariance
between the true MSu(,;) and the vector of predicted M%) and Var(0,,s) is the
variance ofQ,, .

A combination of genetic evaluations can be domeeéxh animal from the oldest

animal to the youngest animal by updating figist and then by applying the equation
(1.2) (VanRaden, 2001). Some rules were definedestimate (., if parents were

unknown, similarly to Mrode et al. (1996). With suan approach, information from
foreign parents and progeny is propagated to docngsbgeny. However, some
information is still lost because information fraioreign progeny does not contribute

back to the parents of the considered animal. Rerr¢liabilities ofU they can be

comb !
approximated from the decomposition of additionafoimation between different
contributions, expressed in DE.

In a dairy cattle context, the proposed Sl approaal used to approximate an
international evaluation (VanRaden et al., 200(pRaden, 2001) as well as to combine
predictions related to correlated traits (VanRad2801). Regarding the context of
international evaluations, the Sl approach canidminternational evaluations for cows,
which was not the case for MACE. Another advantegepared to MACE is that an
international relationship matrix is not neededsites showed that small differences
were observed between the Sl approach and MACHEbUbs. Correlations were about
0.99. However, REL associated with the Sl approsab higher because sire and dam
information was integrated instead of only sire andternal grandsire information
(VanRaden, 2001). Regarding the context of mudiitevaluations, the comparison of the
approaches proposed by Weigel et al. (1998) andR&dan (2001) showed that gains in
REL were higher with the S| approach developed laypRaden (2001) because the
VanRaden’s approach included parents, animal aodeoy information (VanRaden,
2001).

To summarize, the Sl approaches are approximateasetcombining accurately
different sources of information related to the samon correlated traits and need lower
computational needs than other methods based oednmrodels, e.g., MACE or a joint

BLUP evaluation. Also, unlike MACE, estimates arejided for all animals and
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information provided by cows is considered. Howetlke S| approaches may not take
the different effects of selection into accountagectly as a joint evaluation (VanRaden,
2001).

SIMULTANEOUS COMBINATIONS

ABSORPTION OF EQUATIONS

An approach to combine simultaneously external rmidion and internal
phenotypic and genealogic data is to integrate reateinformation into a genetic
evaluation by considering a genetic evaluation gusiternal and external data and by
absorbing the equations related to the externa. dddsed on an algorithm writing
directly the inverse of a relationship matrix ahérefore allowing the use of an animal
model, the approach based on the absorption oftieqaa(hereafter called absorption
based approach) was first implicitly proposed bynétrson (1975) in order to
incorporate artificial insemination (Al) sire evalions based on records of artificially
sired daughters in other herds into intraherd ptexis, as an alternative to an interherd
genetic evaluation. The proposed method allowedctmparison of cows across herds
and accounts for non-random usage of sires (Heoned975; Bolgiano et al., 1983).
While it does not seem to be a problem nowadaystarherd genetic evaluation based
on an animal model for a particular breed in a Besubpopulation was not
computationally feasible at that time (Bolgiano a&t, 1983). Based on external

information associated with a sire, the approacmsisted of adding the value
n(l— r)/(4— hz) to the diagonal element of the sire’s equatiothenleft hand side (LHS)
of the internal MME wher¢n is the number of effective daughters calculatednfithe

sire’s external RELr is the repeatability, anh® is the heritability of the considered

trait. The value(‘%))hfz(4+ (n—l)hz)ﬁ , wherel is the sire’s external EBV, was added

to the element in the RHS corresponding to théssaguation in the internal evaluation.
In the context of milk yields evaluations for daicgttle, this element is equal to O for
sires with no external information. Later, Quaa87@) and Van Vleck (1982) proposed
two different derivations of the method suggestgdHenderson (1975). An application
was also proposed to estimate genetic values fws @dthin a herd and to compare them
among different herds for the Dairy Herd Improvemm&ssociation herds in the United
States (Bolgiano et al., 1983).
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To summarize, the absorption based approach iglsti@ward to incorporate
external information of sires into an intraherd gf@n evaluation and to propagate this
information to sires’ progeny in the considereddhéfowever, although approximations
were proposed for more complicated cases (Hendefs®rb; Van Vleck, 1982), this
method is difficult to generalize (Quaas and Zha2@)6). Furthermore, the approach
assumes that external information is expressecwasttbn from the genetic merit of the
base population, which could not be a trivial pesbl(Henderson, 1975).

PSEUDO-RECORDS

Bonaiti and Boichard (1995) proposed a methoditi@dtides external information
into an internal genetic evaluation for dairy atiksing a single-trait animal model. This
method consists of adding a number of virtual déerghfor each bull associated with
external information to the internal phenotypic gadligree datasets. The second parents
of the virtual daughters are assumed to be unknamth belonged to a genetic group
which is related to the a-factor of the conversiguation. Each additional virtual
daughter is associated with a pseudo-record remiiegethe genetic merit of the bull.
Pseudo-records could be DYD or DRP derived fronemal EBV of the bulls (Bonaiti
and Boichard, 1995). Because external informatibrelated bulls could be included in
the internal evaluation, double counting of conitibns due to relationships could
appear. Therefore, the number of additional virtlalghters for thgh external animal is
equivalent to the number of DE computed from exdEREL of theith animal subtracted
by the number of DE associated with its externaligree index. The subtraction is
needed to avoid double counting of contributions telationships. One limitation of this
method is that pseudo-records are assumed to bétotige same trait as the internal
phenotypes. Thereby, DYD or EBV must be first cotee to the internal unit and scale,
e.g., with conversion equations, before their isao in the internal genetic evaluation. It
is noted that Bonaiti and Boichard (1995) showee #imilarities of their proposed
pseudo-records based approach with the absorptisedoapproach (Henderson, 1975). It
is also noted that the effect of external informatwill never be zero, although the weight
for external information of an animal decreases rwh®re and more internal data is
collected (Pedersen et al., 1999).

Pedersen et al. (1999) applied the pseudo-recardsdbapproach proposed by
Bonaiti and Boichard (1995) in the context of theni3h genetic evaluation for Holsteins,
Jerseys and Red Danish cattle. External informaitietuded MACE EBV and REL,
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provided by International Bull Service (Interbullppsala, Sweden), for sires and, for
cows, external EBV and REL provided by the courtfyorigin. Before the inclusion,
external EBV for cows were converted to the Dasislle. Also, REL were restricted to a
maximum of 80% for MACE EBYV for sires and were assd to be equal to 30% for
converted external EBV for external cows. Suchriggins could limit double counting
of Danish information. The authors concluded tinatuding external information in the
Danish evaluation led to avoid differences betweational and MACE EBV and to the
possible comparison of females with local or exaeorigins.

Based on a pseudo-records based approach, VanRad&p), VanRaden and
Tooker (2012) and VanRaden et al. (2014) proposeddude MACE information in an
internal genetic evaluation by using one pseudoftedor each bull weighted by DE,
instead of one pseudo-record for each virtual derghThe pseudo-records were
expressed as DRP and were estimated using a omelaati-a-time deregression method,
similarly to Bonaiti and Boichard (1995). Becaus&GE information associated with
bulls that have internal and external daughtertude contributions from both internal
and external information, VanRaden et al. (2014ppsed to use internal EBV instead of
PA to compute DRP for those bulls and to subtnaigdrnal DE from the total amount of
DE associated with MACE EBYV in order to estimate #mount of external DE. Double
counting of internal information was therefore alem. For multiple-trait models,

VanRaden et al. (2014) proposed to adapt theircaggpr by adding, for eadth external
animal, the producAyS G, 'A% to theith external animal’s elements of the LHS where
Ay 1s a diagonal matrix associated to ttheexternal animal with a diagonal element for
the jth trait equal tc RELij/(l— REL”), REL; is the reliability ofith external animal for
the jth trait, and G, is the genetic (co)variance matrix among traitBe Tproduct
(AS2 G 'AVa )y is also added to thigh external animal's elements of the RHS where
Yq IS the vector that includes DRP for each traittfegith external animal. VanRaden

and Tooker (2012) tested their approach on US Eiolsiata and concluded that their
approach was simple and enough accurate to inaxtirnal information into national

evaluations. While this approach showed similesitigth the absorption based method
proposed by Henderson (1975) for univariate analyssults from these two approaches
could differ in practice because the computatio™BP and their consideration into the

MME are different between the two approaches.
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Another pseudo-records based approach was develppdier et al. (1999) to
integrate external information into BREEDPLAN, angéc evaluation system for beef
cattle (vww.breedplan.une.edu.aiSimilarly to Bonaiti and Boichard (1995), thettzars

added virtual progeny with pseudo-records for atsmassociated with external
information. The number of virtual daughters wasited to a maximum in order to allow
that 1) internal records were reflected in interB&M and 2) pseudo-records were
computed from the multiplication between an apprated multi-trait external LHS and
a vector of external EGM. This approach to comppseudo-records is similar to
deregression approaches, such as the one propp€&us et al. (2014). Similarly to the
other pseudo-records based approaches, Tier €9819) observed a correct integration
of external information into their genetic evaloatisystem.

To summarize, different authors proposed to inclualecurately external
information in internal genetic evaluations by amdito internal datasets weighted
pseudo-records associated with animals or withr thieiual daughters. The similarities
between the absorption based approaches and peseatds based approaches were
detailed (Bonaiti and Boichard, 1995). However,sase DYD are not usually available,
a deregression step is needed to estimate DRPe\Wiilderegression approaches used by
some authors were based on a one-animal-at-a-tievegeession method, better
approaches could be used (VanRaden et al., 20Mghws mostly not a trivial problem,

as already discussed before.

BAYESIAN APPROACHES

Henderson (1984) proposed MME modified to incorponarevious estimates of
fixed effects, like breed or sex differences, agged with a non-singular (co)variance
matrix. Later, Gianola and Fernando (1986) derigederal MME from the Bayesian
methodology. Unlike the previous proposed systerecpfations (Henderson, 1984), the
derivation of Gianola and Fernando (1986) concertfedtd” and “random” effects
because those effects are not distinguished inyadtan context. Assuming the following
prior multivariate normal (MVN) distributions:

- for the “fixed” effects,[B[B]~MVN(b,B),
wherebis a mean vector anl is a (co)variance matrix,

- for the “random” effects|u|G|~MVN(g,G),

whereg is a mean vector an@ is a (co)variance matrix, and
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- for the residual effec{dR|~MVN(0,R),

where R is a (co)variance matrix, the developed equatiese written as follows
(Gianola and Fernando, 1986):

XRIX+B* XR7'z |[p|_[XRly+B 1.3)
ZR7X ZR7'Z+G™M |G| |ZR'Yy+G™g '

wherey is the vector of record:fi and U are vectors of estimates pfandu related to

the records through the incidence matridesand Z , respectively.

If a non-informative prior is considered f@ (i.e. B™ -~ 0) and g=0, the system of

equations (I1.3) simplifies to traditional Hendem& MME (e.g., Dempfle, 1977;
Henderson, 1984; Gianola and Fernando, 1986; Roijri991).

A proposed application using the system of equat{tir3) was the updating df
and u estimated from data increasing sequentially owee.tA joint analysis of all data
or an analysis of actual data with prior distribn8 based on a previous analysis of
previous data would give the same results if ther@nd posterior distributions are in the
same family (Gianola and Fernando, 1986). A secapplication was proposed in the
context described by Henderson (1975), which isinberporation of Al sire evaluations
based on records of artificially sired daughterstimer herds into intraherd predictions. In
this case, the vectay and the matrixG are partitioned between herd animals, which are
called internal animals (described by the subsdjigince they are not associated with
external information, and Al sires, so-called emédranimals (described by the subscript

H — gl — GII GIE -
E), leading tog= and G = G where the vectog, , equal to0, is the

E El GEE
vector of prior means related to internal animéfge vector g, is the vector of the
external animals’ EGM associated with the predicgoror (co)variance matri6 .. and
the matricesG, , G and G are functions of the additive relationships betwee
internal and external animals. The matBx' is considered as equal . BecauseG .

is unknown or could lead to difficulties for thensputation ofG™, G could be taken

as a diagonal matrix with elements equal to appnates or real values of diagonal
elements of the inverse needed to solve the systeequations (11.3) (Gianola and
Fernando, 1986).

Later, Bayesian approaches were proposed in thexioof multi-breed genetic
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evaluations for beef cattle to combine data witlorpliterature estimates to estimate
across-breed genetic values (Klei et al., 1996).tHa same context, the Bayesian
approach was extended to integrate external infoomaassociated with animals
originating from another breed than the main bremtsidered in the internal multi-breed
evaluation into this multi-breed genetic evaluat{ery., Quaas and Zhang, 2001, 2006;
Legarra et al., 2007). Animals originating from #rey breed are mostly bulls accurately
evaluated in their own external system and hawewggrogeny in the internal multi-breed
genetic evaluation. While Quaas and Zhang (2008)Lagarra et al. (2007) proposed 2
different Bayesian derivations to integrate extenmformation into internal genetic
evaluations by considering external informationpasrs of u, the proposed system of

equations (11.4) had a similar compact notatiothe system of equations (l1.3):

X' RIX X' Rz 0 B X Ry
ZR'X ZR'zZ+G?' G'Q |d|=|zRYy+G™g (11.4)
0 QG* QGTQ|b QG™g

where b is a vector of genetic base differences amongtgeaealuations aniQ is the

incidence matrix relating the elementsbito the animals.
Similarly to Gianola and Fernando (1986), the veotp and the matrixG™" were

partitioned between internal animals and externaimals as g:{g'} and
E

1] IE
G'= LC;E' CC;EE}. ConcerningG ™, instead to approximat€& . as a diagonal matrix
(Gianola and Fernando, 1986) for the computatiosof, Quaas and Zhang (2006) and

Legarra et al. (2007) proposed to directly apprataG ™ as follows:

1 *IE
G - = G* *c; = G*_l + O O
G El G EE +A O A

G*II G*IE

G*EI G*EE

whereG ™™ :{ } is the inverse of the additive (co)variance madiixl A is a

matrix that must be approximated.

Concerning the producG™g, Quaas and Zhang (2006) and Legarra et al. (2007)

computed the product iG “g=
PrEETEP ] {(G:éEm)gE

genetic (co)variance matrix that only accounts tloe relationships among external

} whereG ;¢ is the inverse of the additive
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animals. The differences between the two Bayeswnoaches (Quaas and Zhang, 2006;
Legarra et al.,, 2007) concern mainly the calcufetiof the matrixA . Legarra et al.
(2007) considered the matrix as a diagonal variance matrix and computed thgodel

elements of A as the difference between the diagonal elementheoprediction error
(co)variance matrix and the diagonal elementsGif.. Quaas and Zhang (2006)
consideredA as a block diagonal variance matrix with one blpek external animal.

Block diagonals for theth animal were equal ttsziG{,lAQi where the matrixG, is a

matrix of genetic (co)variances among traits. Thatrim Ay is a diagonal matrix with

elementsy; equal to\/ REL,; /(1— REL; ), where REL; is the reliability for theth trait of

ith external animal. It is noted that the block etats of the matrixA computed by
Quaas and Zhang (2006) are equivalent to the eksneemputed by VanRaden et al.

(2014) and added to the external animal's elemafitise LHS (i.e. AJ2 G AV ).

Based on Legarra et al. (2007), an applicatiomtegrate MACE information for
Holstein bulls into an internal dairy cattle genedvaluation was proposed (Gengler and
Vanderick, 2008). However, some limitations condienproposed Bayesian approaches.
Firstly, the proposed approaches did not take adoount several double counting of
contributions, e.g., due to relationships amongeme animals and due to records.
Indeed, an EBV of an animal combines informatioonfrits own records (i.e.,
contributions due to own records) and from recafdsll relatives through its parents and
its progeny (i.e., contributions due to relatiopshi VanRaden, 2001; Misztal and
Wiggans, 1988). Therefore, integration of EBV felatives can lead to counting several
times the same contributions due to relationshipd &iases the internal genetic
evaluation. Double counting of contributions duerézords could appear if external
information resulted from an external evaluatioat ttombined both external and internal
records. In this case, some contributions duedords would be considered several times
if external information was combined with intermalcords. To our knowledge, in the
context of Bayesian approaches, double countingootributions due to relationships
received very little consideration (e.g., Jones &@wtidard, 1990). Only Gengler and
Vanderick (2008) proposed an additional pre-praogsstep to avoid double counting of
contributions due to records, despite the fact that issue could be a major issue for
common sources of external information (e.g., MAGH#ormation). Secondly, the

proposed Bayesian approaches were developed taifi@ences among genetic bases
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into account. However, Legarra et al. (2007) assumhat differences among genetic
bases were equal to zero to improve software’sopadnces. Furthermore, in addition to
be expressed on a different genetic base, exterfmmation may be also expressed in
other scales or units of measurement than thenaitenes. For example, in the context of
dairy cattle, it was noted that EBV are mostly mgod as the average of lactation yields
for three lactations while genetic evaluations amestly based on test-day models
(Gengler and Vanderick, 2008). Thereby, approachest be developed to avoid these
issues, similarly to other approaches detailed ipusly. Thirdly, in many situations,
integration of several sources of external infororainto an internal genetic evaluation
may be needed, although, to our knowledge, it lsbeen studied yet. Fourthly, the
derivations of Legarra et al. (2007) and Quaas Zmahg (2006) assumed that external
information came from a similar theoretical gene@luation, which is not necessarily
the case.

To summarize, Bayesian approaches based on MME weee of the first
approaches proposed to combine simultaneouslyretterformation and internal data.
Different advantages may be observed as the avoeédainan explicit deregression step or
the possibility to avoid high computational needsstimate breeding values from data
accumulating over time. However, Bayesian appraadahmiegrating external information
are not commonly used in animal breeding and sévieses must be studied.
Furthermore, most of current software packageslablai in animal breeding do not

permit the application of, for example, the systd#raquations (11.3).

COMBINATIONS IN GENOMIC SELECTION

Currently, genomic information provided by paneiseveral thousands of single
nucleotide polymorphisms (SNP) can be used follgwimulti-step or single-step
approaches. The multi-step approaches (e.g., VarRad al., 2009) consist of 1)
estimating SNP effects based on (pseudo-)phenotgpia related to non-candidate
genotyped animals, 2) calculating estimates of genmerit (mostly called direct
genomic values (DGV)) for candidate genotyped atsnmsed on estimates of SNP
effects and 3) combining genomic information, espesl as DGV, with traditional EBV
(i.e., EBV estimated only from phenotypic and géogia data) or with phenotypic and
genealogical data. Following the traits and thefailability, (pseudo-)phenotypic data
may include traditional phenotypic records, DYDRIRP. The third step is necessary to

avoid the publication of several EGM per animal ahdws the need of approaches and
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algorithms to combine EGM originating from divessmirces. The single-step approaches
consist of replacing the traditional pedigree-basdationship matrix used in MME by a
relationship matrix combining pedigree-based retethips and genomic relationships
(Aguilar et al., 2010; Christensen and Lund, 2018dwever, unlike the multi-step
approaches allowing for the combination of genonméormation with external
information, single-step approaches do not allow ftbe integration of external
information, like traditional MME. Therefore, foroth approaches, methods and
algorithms were developed to combine internal, retieand genomic information. Most
approaches and algorithms were derived from appesaalready detailed previously and,
therefore, will not be detailed extensively.

For the multi-step approaches, proposed methodsecoed the combination of
DGV with traditional EBV or phenotypic and geneata data. Regarding the
combination of DGV and EBYV, a first class of apmioas is based on Sl theory (e.g.,
VanRaden et al., 2009; Harris and Johnson, 201® .91 approaches are mostly used in a
dairy cattle context. A second class of approadoesbining DGV and EBV is based on
bivariate (random) models (Mantysaari and Stran@®&1,0). Phenotypic data included
DYD for conventional phenotypic and genealogic miation and DGV as pseudo-
records for genomic information. Heritability assded with DGV was assumed to be
(close to) 1 and genetic correlation between DYD BGV was assumed to be equal to
the square root of the predictive ability of DG\edarding the combination of DGV and
conventional phenotypic and genealogic data, differapproaches were proposed.
Similarly to Bonaiti and Boichard (1995), the fikstes consisted of calculating pseudo-
records and associated weights from DGV and agsocREL and to include them in the
conventional dataset considering pseudo-recorasvasrecords and from the same trait
(Ducrocq and Liu, 2009; Liu et al., 2009; DucroardaPatry, 2010). Therefore, it was
assumed that genomic and conventional informatiad the same genetic variance. A
second class of approaches consisted of calculgiseydo-records and associated
weights from DGV and including them in conventiogahetic evaluation as a correlated
trait. Similarly to Mantysaari and Strandén (201DJGV were considered as pseudo-
records with a heritability equal or close to 1 d;yme authors (e.g., Kachman, 2008;
Johnston et al., 2009; Spehar et al., 2013; Stbah,2013). Contrarily to these authors,
Stoop et al. (2011) proposed to include pseudordscaerived from DGV with an
heritability equal to the predictive reliability ttie prediction equation and with a genetic

correlation with the trait of interest equal toAlmass-selection model was considered for
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the pseudo-records. Finally, Bayesian approaches @also proposed to integrate DGV
into conventional evaluations. In the context afyaattle, Gengler and Verkenne (2007)
proposed to consider DGV as prior information falypomials of order O associated

with random polygenic additive effectsi() of a multi-trait multi-lactation test-day
model. It was assumed th&(u,) = u,., andVar(u,)=G,, where E(u,)=u,, is the
vector of DGV andG ,, is the additive genetic (co)variance matrix assed withu,.

Reliabilities associated with DGV were not consaderin the context of beef cattle, DGV
and associated REL were integrated into a multmgenetic evaluation following the
approach proposed by Quaas and Zhang (2006; Hyadle €013). Their results showed
that this approach can lead to inappropriate sgatih DGV or double counting of
contributions between DGV and conventional data.

For the single-step evaluations, approaches cona#eyration of external
polygenic information into single-step genomic enaions, instead of combination or
integration of genomic information into conventibngenetic evaluations. To our
knowledge, proposed approaches integrating extemi@rmation into single-step
genomic evaluations were only pseudo-records baggoaches (VanRaden, 2012;
Pribyl et al., 2013). These approaches were develtpéetdegrate MACE EBV in a dairy
cattle context by taking into account possible deutbunting of contributions among
different sources. Only one pseudo-record and &gsdcweight per animal was derived
from external information and added to the conweral data.

At an international level, in the dairy cattle ocextt possible exchange of
genotypes and predicted maker/SNP effects could teanternal genomic evaluations
dependent from each other while an assumption fACH is that internal information
originates from independent datasets. Therefompdified MACE, so called genomic
MACE (GMACE), was developed to avoid this assummptice., to account for non-zero
residual correlations among genomic predictionsercountries. GMACE was also
extended to an animal model because genomic int@massociated with cows is
increasing. GMACE is still under development (Suah and VanRaden, 2009; Sullivan
and Jakobsen, 2014).

DISCUSSION AND CONCLUSION

This review highlights different approaches andoedtgms that render genetic

evaluations originating from different sources camgble or that combine these
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evaluations to a single one. Each approach or iligorwas developed in a particular
context (e.g., in a dairy cattle context) to sothe same common issue, that is the
impossibility to run a joint genetic evaluation dwepolitical roadblocks, inconsistencies
among datasets, computing or logistic problemsyds also worth noting that some
approaches, like MACE, SI and Bayesian approachespseudo-records based
approaches, were extended to other contexts {eeggenomic context). All approaches
and algorithms were sorted following the way exaéinformation was combined.

Firstly, external information can be combined winkernal EGM and REL after
performing internal evaluations. Advantages of poatluation combinations are that 1)
internal evaluations can be performed without bedegendent on the publication of
external information and 2) internal EGM and RELyntee used to develop conversion
equations without running additional evaluationsefrof external evaluations. In an
international context, internal information freeefdternal information is also a condition
to perform unbiased MACE. However, these advantagesd also be a disadvantage
because external information does not contribut¢héo estimation of fixed and other
random effects in the internal evaluation, whichldareate potential biases.

Secondly, external information can be simultangouwsimbined with internal
genealogical and phenotypic data into an internahegic evaluation. Under some
assumptions, it was previously shown that the gitsor based approaches and the
pseudo-records based approaches are equivalemhilarsother type of approaches that
simultaneously combine external information andennél data are the Bayesian
approaches, also previously described. Differerateserved among results are due to
approximations applied according to the consideapgroach. Differences are also
observed regarding their implementations. Bayeseamd pseudo-records based
approaches could be generalized more easily thaarption based approaches. Also,
absorption based approaches and Bayesian approache®t dependent of an explicit
deregression step. However, an advantage of all dineultaneous combinations
approaches is that external information contribtetbie estimation of all effects included
in the internal evaluation. Therefore, contributodue to external information are
propagated to all animals included in the interaghluation and related to animals
associated with external information. Another adaga is that only one process is
needed to combine all available information. A disntage is that internal evaluations
must be performed after the publications of extieimfarmation. Another disadvantage is

that additional internal evaluations which do nategrate external evaluations must be
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performed if, for example, conversion equations tnhesdeveloped.

Finally, for both kinds of approaches and meth@ds$ernal information must be
studied carefully to avoid mainly bias of internaformation and double counting of
contributions due to relationships among extermdmals and due to same records.
Furthermore, conversion equations seem to benstled for most approaches to convert
external information on the scale, units of meas@m® and genetic base of the internal
populations. Approaches based on conversion equsatice thus dependent on them. Few
approaches, like MACE, proposed solutions to tesué through the use of genetic
correlations between external and internal inforomat To our knowledge, most
approaches, like Bayesian or pseudo-records bappdoaches, could use similar
solutions to avoid the use of conversion equatantsto be independent on them.

To conclude, a joint genetic evaluation would befgmred in comparison to
approximated combinations of external informatiowl anternal information or datasets.
However, although high performance computing faesdi are more and more available,
joint evaluations cannot be performed mostly due pwlitical issues. Therefore,
development of approaches and algorithms combiséwgral sources of information are

still needed and must be still studied given alsuasptions and issues described

previously.
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Chapter Ill. C OMPARISON AND IMPROVEMENT OF DIFFERENT
BAYESIAN PROCEDURES TO INTEGRATE EXTERNAL INFORMATIO N

INTO GENETIC EVALUATIONS

The previous Chapter reviewed various approacheds an
algorithms comparing or combining different geneti@luations.
One promising approach is the Bayesian approadhctimbines
simultaneously external information (i.e., estindatbreeding
values and associated reliabilities provided byexiernal genetic
evaluation) with internal phenotypic and genealogiata.
Advantages of Bayesian approaches that were higbligwere
the possible generalization to complex models,a@dance of
explicit deregression steps or the propagation wrferaal
information to all animals. However, while Bayesiapproaches
seem to be promising, Chapter Il also highlighteoins
limitations, such as, e.g., double counting of dbations due to
relationships. Therefore, the aim of this Chaptexswirst to
review two Bayesian approaches that were recentlgygsed and,
second, to enhance the proposed Bayesian approaciaasy
regarding computational burden and double countiofy

contributions due to relationships.

From: Vandenplas, J., and N. Gengler. 2012. Compaon and improvements of
different Bayesian procedures to integrate externalinformation into genetic
evaluations.J. Dairy Sci. 95:1513-1526.
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ABSTRACT

The aim of this research was to compare differeayeBian procedures to
integrate information from outside a given evaloatsystem, hereafter called external
information, and in this context estimated breeduajues (EBV), into this genetic
evaluation, hereafter called internal evaluatiarg & improve the Bayesian procedures
to assess their potential to combine informatioomfr diverse sources. The 2
improvements were based on approximations of pmean and variance. The first
version of modified Bayesian evaluation considdira@mals as animals associated with
external information. For animals that have no ek information (i.e., internal
animals), external information is predicted fronaidable external information. Thereby,
propagation of this external information throughe thvhole pedigree is allowed.
Furthermore, the prediction of external informatifum internal animals allows large
simplifications of the computational burden durisgtup and solving of mixed model
equations. However, double counting among exteanahals (i.e., animals associated
with available external information) is not avoiddalbuble counting concerns multiple
considerations of contributions due to relationshy integration of external EBV for
related external animals and is taken into accdynthe second version of modified
Bayesian evaluation. This version includes thenesion of double counting before
integration of external information. To test thepnmvements, 2 dairy cattle populations
were simulated across 5 generations. Milk prodactar the first lactation for each
female was simulated in both populations. Inteffeahales were randomly mated with
internal males and 50 external males. Results fi feplicates showed that rank
correlations among Bayesian EBV and EBV based @njomt use of external and
internal data were very close to 1 for both exteamal internal animals if all internal and
external animals were associated with externalrin&tion. The respective correlations
for the internal evaluation were equal to 0.54 &@b if no external information was
integrated. If double counting was avoided, mearasef error, expressed as a percentage
of the internal mean squared error, was close to & both external and internal
animals. However, computational demands increasemhwlouble counting was avoided.
Finally, the improved Bayesian procedures haveptitential to be applied for integrating
external EBV, or even genomic breeding values falhg some additional assumptions,
into routine genetic evaluations to evaluate ansmabre reliably.

Key words: Bayesian approach, dairy cow, integration, exidmiarmation
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INTRODUCTION

Theoretical properties of currently used methodsdsess the genetic value of
domestic animals depend on certain conditions. @nthe most important is that all
available information has to be used simultaneotslpbtain unbiased estimates (e.g.,
Henderson, 1984). However, this is often not theecm practice, for many potential
reasons. The most important issue is the unavhilabf raw data (e.g., recorded and
evaluated in another country) or the complexitycomputations that require the use of
multi-step, sequential, or distributed computingttBissues are frequent in modern
breeding, especially in dairy cattle breeding, lbseainternational exchange of genetic
material (e.g., frozen semen and embryos) is exhemwidespread. Until now, basic
genetic evaluations are mostly based on local dptaentially followed by an
international second step, as performed by thernatmnal Bull Service (Interbull,
Uppsala, Sweden) for dairy breed sires. However aitcuracy of local evaluations may
be limited for animals with few local data. Furthnare, the current massive development
of genomic selection exacerbates this issue, becpatentially more different genetic
evaluations may exist, and the need to combineetlsosirces of information increases.
Current methods used in the context of dairy cattée mostly selection index based on
VanRaden (2001) to combine different sources obrmbtion (e.g., Gengler and
VanRaden, 2008).

Another promising class of methods is based on &lagemethods originating
from the work from Klei et al. (1996) in the contet multibreed genetic evaluations for
beef cattle. In this context, Bayesian means tmatptrior distribution of breeding values
is changed according to what is known from an elesource. Later, Quaas and Zhang
(2001) and Legarra et al. (2007) proposed 2 diffeBayesian derivations to incorporate
external information, including external genetieduling evaluations and their associated
accuracies, into the internal evaluation. The iraggn of external information leads to an
improved ranking of animals with external infornaatti(so-called external animals) in the
internal evaluation, which is more similar to tlaaking of a hypothetical joint evaluation
of internal and external animals. Another advantaigtnis integration is that accuracies
of estimated breeding values (EBV) for externah@ais are more reliable compared with
those of the internal evaluation. Furthermore, tmprovement of accuracies and rank
correlations of external animals between the irleamd joint evaluations depends on the

external accuracy of prior information (Quaas ahdrfy, 2001, 2006; Zhang et al., 2002;
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Legarra et al., 2007) but also on several hypothesed in the implementation. For
example, current implementations do not take imcoant the double counting among
external animals. However, an EBV of an animal comb information from its own
records and from records of all relatives througtparents and its offspring (Misztal and
Wiggans, 1988; VanRaden, 2001). Integrated extamiaimation of this animal and a
close relative into the same genetic evaluation fm@aycounted double if this external
information contains both contributions due to tielaships. Furthermore, until now, only
few proposals exist to put these methods in theexomof dairy cattle breeding, whereas
they can be used in many situations and as a waydgrate genomic prediction (e.qg.,
Gengler and Verkenne, 2007).

The first aim of this research was to compare bfie Bayesian approaches for
their potential to combine information from diverseurces and the second aim was to
improve existing Bayesian approaches to integratereal information into genetic
evaluations. Focus was thereby given to the simptibn of the computational burden

and the avoidance of double counting among extemahals.

MATERIALS AND METHODS

THEORETICAL BACKGROUND

Different concepts that will be used in this stadg defined as follows:

(1) Internal data was defined as data used onlyirfarnal evaluations (e.g., milk
records in a given country A).

(2) External data was defined as additional data dicectly used in internal
evaluations (e.g., milk records in another giveantoy B).

(3) Internal information was related to informatiobtained from an evaluation based
only on internal data (e.g., local EBV in country. A

(4) External information was related to informatmistained from an evaluation based
only on external data and free of internal inforiorat(e.g., foreign EBV or
genomic EBV obtained in country B). Finally, allismals were distinguished
between internal and external animals.

(5) An internal animal was an animal associatedh witly internal data and internal
information (e.g., locally used sires in country A)

(6) An external animal was an animal associateth witernal data and information

and also having internal data and information andpeelative to the evaluation of
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internal animals (e.g., foreign sires also usecbuntry A in addition to country B

or genotyped animals from country B relevant tortpuA).

The main reason for the application of Bayesiarcgdares is to obtain solutions
as close as possible to those of a hypotheticat gualuation of all external and internal
animals including their data. This is performedibtegrating external information into
the internal genetic evaluation instead of usinly orternal data. The considered external

information in this context was available exterBEBV and their associated accuracies

obtained from only external datg (). Both will be used to define the prior distriloni
of the internal EBV of the external animals.(). This prior distribution can be defined in

a generic way asp(uE|yE):MVN(p0—Ub,G*) where MVN means multivariate
normal, p, is the vector of external EBV of a joint geneti@kiation of all internal and

external animals based only on external data G™ is the matrix of prediction error

(co)variances of these EB\j is a vector of base differences between externdl a
internal EBV, andU is an incidence matrix relating base differencearimals.

If E and | refer to external and internal evaluasiorespectively, and based on
Legarra et al. (2007), a generic model can be ewiteading to these mixed model

equations (l11.1), representing this multi-trait difteed mixed model:

X‘I RI_l)(l XII RI_:LZI o Igl X‘I RI_lyl
Z, Rl_lxl Z, Rl_lzl +GT G a|= Z, Rl_lyl +Gk_1”0 (|||.1)
0 UGt UGU| b U'G ™,

wherey, is the vector of internal observatiorfs, is the vector of fixed effects) is the
vector of random genetic effects of the external emernal random genetic effectx,
and Z, are the incidence matrices for internal fixed @feand animals, respectively, and

R, is the (co)variances matrix for the internal resiceffects.

GEE+A GEI

Legarra et al. (2007) showed thai™ :{ Gt o } where A is equal to

A=D"-G4 (111.2)
where the matrixD is the matrix of prediction error (co)variances tbe external
information estimated from a genetic evaluationabfexternal animals based only on
external data which did not include relationshipsia®en the internal animals, a;

is the inverse of the additive genetic (co)variameatrix that only accounts for the
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relationships among external animals. It is impurt® note that the matrixGy. is
different from G5, because the latter also includes contributioasmfinternal progeny
of external animals. Differences betweé®f, and G can be illustrated by writing the

inverse ofG in block form:

- -1
G= GEE GEI:|
_GIE Gu
"GEE GEI
= _GIE G||:|
— —GEILE +GEILEGEIG”GIEGEILE _G;EGEG”
L _G”GIEG;E (Gn _GIEGElEGEI)_l

where G is the inverse of the additive genetic (co)var@ntatrix G that accounts for
all the relationships among all external and iraéemimals.

It has also been shown that

D=7 _R:Z +GL (111.3)
and that
. D*
G 1}10:{ O"E} (I11.4)

where p. is a vector of external EBV from a genetic evabrabf all external animals

based only on external data which did not includkationships between the internal

animals (Legarra et al., 2007).

FOUR DIFFERENT IMPLEMENTATIONS

To be used, the generic system of equations (IbftEn needs to be simplified. In
fact, usually only functions of external predictiemor variances (PEV; e.q., reliabilities),

are available for approximatin and G”. Furthermorep, is an unknown vector that

needs to be estimated for some implementationghig study, 4 different Bayesian
implementations using gradually better approximretiof prior mean and prior variance
are compared (Table 1ll-1). The differences wetateel to the animals providing external
information and to the way that the prior mean aadance were defined. The first
implementation, hereafter called Legarra-type Bmyesevaluation (LBE), was the
simplest one from a computational standpoint, dg external PEV were considered to

approximate D. The second implementation, hereafter called Qtgas Bayesian
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evaluation (QBE), included covariances among tr&tgh implementations defined prior
means based on external EBV obtained from the geeedluation of all external animals
based only on external data, which did not incluglationships among internal animals.
The QBE can be computationally simplified as shownthe third implementation,

hereafter called first version of modified Bayesiwaluation (FBE). Finally, the last
implementation, hereafter called second versiomofdlified Bayesian evaluation (SBE),
approximated and used the across-animal covariaheg¢sare not reported in practice

while existing inD.

Table 1lI-1. Main differences concerning the prior mean andara@ among Legarra-
type Bayesian evaluation, Quaas-type Bayesian atraiy first version of modified
Bayesian evaluation, and second version of modBiagesian evaluation

Implementations
Item

LBE QBE FBE SBE
Animals providing external External External External, External,
EBV! Internal Internal
Prior mean
External animals Type External EBY External EBV External EBV External EBV
Origin EEF EEE EEE EEE
. Type - - External EBV External EBV
Internal animals -
Origin - - sf Sl
Prior variance
Type PEV PEE PEC PEC
Origin EEE EEE JEE JEE
Among Among all Among all
Relationships - external external and external and

animals only internal animals internal animals
Double counting among

. - - - Accounted
external animals

'L BE = Bayesian evaluation following Legarra et @007) and using external EBV and prediction error
variances (PEV) associated with external siresiobthfrom the external evaluation. QBE = Bayesian
evaluation following Quaas and Zhang (2006) andgisixternal EBV and PEV associated with external
sires obtained from the external evaluation. FBBayesian evaluation using external EBV and PEV
associated with external sires obtained from theraal evaluation where external EBV for all int@rand
external animals were predicted and used. SBE =e#lay evaluation using external EBV and PEV
associated with external sires obtained from theraal evaluation where external EBV for all int@rand
external animals were predicted and used and thkle@ounting among external animals was avoided.
’External EBV = EBV adjusted for base differencemagexternal and internal information.

SEEE = genetic evaluation of all external animalsdshonly on external data that did not include
relationships among the internal animals.

“S| = selection index.

*PEC = prediction error covariances among traits KBE) and among traits and animals (for SBE).

®JEE = a posteriori joint genetic evaluation ofialernal and external animals based only on extefzia.

LBE
Legarra et al. (2007) proposed a Bayesian impleatient to integrate prior

information into an internal genetic evaluationeTgrior mean of the implementation was
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defined asp. —Ucb. wherep, = E(uE|yE), U. is an incidence matrix relating base

differences to external animals, abg is a vector of base differences among external

and internal EBV for all the external animals. Tiner varianceD was approximated by
a diagonal matrix in which diagonal elements weyeat to PEV associated to every

external evaluation. Furthermore, this approximmabbD implied another approximation
to estimateA . BecauseA = D™ -G¢;, all relationships needed to be ignored, and only
diagonal elements of the matr@_. were used. If nondiagonal elementsGn. were
taken into account, the matri®” could be non-semi-positive definite (Legarra ef al
2007; Gengler and Vanderick, 2008).

From a computational standpoint, the LBE methaodtiser simple to set up as the
matrix D is considered diagonal. Gengler and Vanderick §0€ported that LBE could
be easily integrated into a test-day model forydaattle genetic evaluations with few
modifications of the code of the used programs aith reasonable convergence.
However, the method needs to compute the basedliffes among external and internal
information, which was estimated by Gengler and déxitk (2008) before using the
external information. This strategy avoids the cataponally expensive integrated

estimation of base differences.

QBE

Quaas and Zhang (2006) developed another Bayestedgure to incorporate

external information into a multibreed evaluatidrhey used a prior mean defined as
pe —Ugbe and a prior varianceD approximated byD = Var(ucly.)=PEV({Uc|ye).
Hence, following Quaas and Zhang (2006) and equtib2), the matrixD™ was equal
to D =G +A:(Ag1E O Ggl)+A, where AL was the inverse of the matrix that only

accounts for the relationships among external asimmad A was taken as a block

diagonal variance matrix with one block for eacheexal animal. The different block

diagonals are equal #,G;'A, fori =1, 2, ...,N with N external animals. The matri®,
is a matrix of genetic (co)variances among tragtisgd A, is a diagonal matrix with
elementsﬁ with j = 1, 2, ..., n traits. The element; is equal to the ratio
of REL, /(1— REL; ), where REL; is the reliability associated to the external prpg for

thejth trait ofith external animal.

45



Chapter 111

The QBE implementation estimates the base diffeaermetween external and
internal EBV in a different way to equation (lll. Base differences in QBE are estimated

asb_ =—(U'. D*U.)*U'. D0, -p.) (Zhang et al., 2002; Quaas and Zhang, 2006). If
U is partitioned between external animald.) and internal animalsU,) and by

GEE+A GEI

replacing G by { oE o

} in the mixed model equations (lll.1), it can be

shown (Appendix Ill-1) that estimation &fE by QBE is equivalent to the computation of

A

b using mixed model equations (l1l.1). Except foistdifference, differences between
approximations of LBE and QBE mainly concern thdriraD and the consideration of

the whole (co)variances matri .. .
It is important to note that, from equations (Ijlahd (I1.3), A=Z'_ R.'Z .. For

thejth trait ofith external animal, the diagonal element of therima' . R.'Z.. is equal
to the number of records the animaias for this trait multiplied by the inverse okth

error variance of thigh trait aezj (Mrode, 2005). However, this number of records loan

estimated by the effective number of records, deadarecords equivalent (RE), as
2

o,
RE. :%*5” where ij Is the genetic variance for tljgh trait. Thereby, the diagonal

ij
oy,

2
o,
elements,/o; are equal to/REij* .
o
]

Furthermore, QBE (Table 1ll-1) also needs the cotafen of the inverse of the
relationship matrixA .. that only accounts for the relationships amongmeetl animals,
ALt. The matrix Az could be computed efficiently by first establighidirectly A ..
through an algorithm based on Colleau (2002) foldwby its inversion with optimized
subroutines (Misztal et al., 2009; Aguilar et &011). However, A might be dense,

and its storage, as well as its inversion, might v possible or could take too much

computational burden because the number of exteanahals could be very high.
Furthermore, the direct computation AfL might not be possible using simplified rules,

as relationships among all ancestors without eatdoneeding will be absorbed in this
matrix. Given these differences, QBE is slightlyren@omplicated to implement than
LBE.

46



Comparison and improvement of different Bayesian procedures to integrate external information into genetic evaluations

FBE

The definition of prior mean and variance in QBEs ke shortcoming that, as
noted above, the computation &L is more difficult than the establishment of the
inverse of the relationship matrix among all exéérrand internal animals. The
consideration of all animals has also the effeat the definition of prior mean needs to
include external EBV for all animals. To consideede issues, FBE was developed. The
approximation concerns the terms of the left hadd sf the equation (111.4) instead of

the terms of the right hand side, as is done in BB& QBE. The unknown vectqr, can

be approximated as follows. Lgt, be an unknown vector of external EBV of all the

internal animals of a joint genetic evaluation fiaternal and external animals based

only on external data. Because this evaluatiomig based on external data, and because
I, :[p'E I, ] and p(p,‘pE) = MVN(G,EG;EpE,(G“ )'1), p, can be approximated as

well as p,. Therefore, all internal and external animals@mesidered as having external

information. As detailed in Table IlI-1, this featudistinguishes the 2 implementations
found in the literature (LBE and QBE) and the nemplementations FBE and SBE. In
these 2 implementations, FBE and SBE, the RE assaciwith the predicted breeding
values are set to 0, because the predicted bregdlngs are only based on relationships
and do not bring any additional information. Henbecause all internal and external

: . : G*+A G*
animals are considered as external animal§ ™ :{ GE Gl } and
A=Z_R{Z., G can be simplified ass ™" =G ™ + A, where the diagonal blocks
for the internal animals of the matrix of FBE are equal to zero and the diagonal blocks
for the external animals of the matrixof FBE are equal to the corresponding diagonal
blocks of A used by QBE.

From a computational standpoint, FBE has diffeeghtantages. First, because all
the animals are considered to have external infbomathe inverse of the whole
relationship matrix A is also used in the right hand side of FBE instefdthe
relationship matrixA .t used by QBE to estimat®™. This extension of the relationship
matrix requires an estimation of external breediafyies for the internal animals (e.g.,
using selection index theory). However, this estiomais computationally feasible. The
extension of the external breeding values leadth¢éosetup of only a single inverted
relationships matrix. Second, the integration abpimformation for all animals in FBE
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leads to a hidden advantage for this implementatiRecause all internal animals are
associated with prior information, the predictidntizeir breeding values through FBE is

influenced by the same constant difference that east between external information

and breeding values that have to be estimatedefdrer the equation to estimate genetic
base differences among the different evaluatioms e eliminated from the system of

equations, because this effect becomes confoundbdhe general mean. A proof of this

is given in the Appendix IlI-1. Both advantages alifferences of FBE in comparison to

LBE and QBE allow large simplifications of the comt@tional burden during setup and

solving of mixed model equations, making their again easier with complicated models
and large data sets.

SBE

The knowledge of only the external PEV, or functiaf these, means that the
across-animal covariances are not correctly considby LBE, QBE, and FBE, which
leads to double counting among external animalshigicontext, double counting means
multiple considerations of parts of integrated exaé EBV for related external animals.
In SBE, double counting is taken into account tgfoan additional two-step algorithm
(TSA), for which the aim is to estimate corrected far the external animals independent
from contributions due to relationships. Hence,yothle approximation ofA for the
external animals changes in SBE compared with FRE.the block diagonal oA for
each internal animalis equal to zero as those of the third implementaEBE, while the

block diagonal of A for each external animalis equal toA,G,'A,, where A, is a

diagonal matrix with element RE;ii *O——UZJ , Wherej = 1, 2, ...,n traits, andRE? is a
€

diagonal matrix with diagonal elements equal to ¢y due to own records for thth

trait.

Double counting among external animals can apgeaxternal information - in
this context, external EBV - of an animal and aseleelative are integrated into the same
genetic evaluation. This double counting is dughi fact that external information of
those animals combines contributions due to owrorosc and due to relationships
(Misztal and Wiggans, 1988; VanRaden, 2001). Toicathis double counting, it is
necessary to separate the contributions due tardedoom the contributions due to

relationships in the external information for eactternal animal using TSA, in which the
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2 steps are based on the algorithm Al of Misztdl\Afggans (1988). However, the aim
of the current study was different from that of ka and Wiggans (1988), and some
modifications were necessary. The first modificatcmncerns the fact that the 2 steps of
the TSA include all relationships between extearamals and their ancestors instead of
only the relationships between an animal and itenga. Second, the estimated RE due to
records by the algorithm Al is obtained from a miadevhich all effects are absorbed

into animals’ effects. This leads to lower RE thla corresponding diagonal elements of
the matrixZ' . RZ'Z .. To resolve this problem, an absorption matvixis created from

the RE due to records estimated by the first steped TSA. Therefore, for thgh trait,
the first step of the TSA separates contributions tb records and contributions due to
relationships following the algorithm Al of Misztahd Wiggans (1988). Based on the
contributions due to records, an absorption makfixhas to be developed that is taken
into account by the second step of the TSA to ed8nRE for the external animals
independently from contributions due to relatiopshor correlated traits. The TSA must
be repeated for each trait and is detailed in thpefdix I11-1.

The SBE shares the advantages with FBE explainedealtHowever, as already
explained, an additional advantage is that themakyi all double counting among
external animals is avoided. The disadvantageatttie TSA needs to be implemented,

which may be computationally challenging.

SIMULATED DATA

The 4 different Bayesian methodologies describedvabwere tested using
simulated data. For this purpose, an external amdnternal population were each
simulated from 30 male founders and 120 female dets Each population included
about 1000 animals distributed over 5 generatiéios.each population, the sires were
randomly selected from available males for eacheggion. The maximum number of
males mated in each generation was 25. All femalasting in the pedigree were
randomly mated with the selected males to simdatd new generation. However, these
matings could not be realized if the coefficientreftionship between 2 animals was 0.5
or higher, as well as if the female had already8cdndants. Furthermore, a male could
be mated during at most 2 years.

In regard to the external population, external fiesavere randomly mated only
with external males. In each generation, 60% oérextl male offspring were randomly

culled. In regard to the internal population, intdrfemales were randomly mated with
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internal males and a subset of external males. Juiset included the first 50 sires that
had the most offspring in the external populatibmneach generation, 99% of internal
male offspring were randomly culled.

As the phenotypic trait, milk production for thesti lactation was simulated for
each female in both populations following Van VI€&R94). A nested herd effect within
population was randomly assigned to each recorcerutite condition that each herd
included about 40 females. Phenotypic variancehamdability were assumed to be 3.24
* 10°kg”and 0.25, respectively.

Using the simulated data, the following 7 genetialeations were performed:

(1) The joint evaluation was a regular BLUP evalhrabased on external and internal
pedigree and data. This evaluation was assumeefirence.

(2) The external evaluation was a regular BLUP @atibn based on external pedigree
and data.

(3) The internal evaluation was a regular BLUP e&tbn based on internal pedigree
and data.

Concerning the 4 Bayesian evaluations,

(4) the Legarra-type Bayesian evaluation was a LBHEg external EBV and PEV
associated with external sires, obtained from esleevaluation (2) inside the
internal evaluation, and

(5) the Quaas-type Bayesian evaluation was a QBMgusxternal EBV and PEV
associated with external sires, obtained from esleevaluation (2) inside the
internal evaluation.

(6) The first version of modified Bayesian evaloativas an FBE using external EBV
and PEV associated with external sires inside tiiernal evaluation where
external EBV for all animals (internal and extejnaére predicted and used, and

(7) the second version of modified Bayesian evauatvas an SBE using external
EBV and PEV associated with external sires indmdeinternal evaluation, where
external EBV and PEV for all animals (internal aadernal) were predicted and
used but applying the TSA algorithm to avoid doutdanting.

The simulation was replicated 100 times. For exernd internal animals,
comparisons between the joint evaluation and tlo¢hérs were based on (1) Spearman
rank correlation coefficients (r), (2) mean squagedrs (MSE) expressed as a percentage
of internal MSE, (3) regression coefficients (a)dan (4) coefficients of determination

(R?). All parameters were the average of 100 repliate
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RESULTS AND DISCUSSION

The 100 simulated external and internal populatiockided 1052 animals each
on average. The external information integrated thie internal genetic evaluation for
one external animal corresponded to 10 effectivegldeers on average. This number of
effective daughters may seem low, but it is thedowound of the effective number of
daughters one might expect when a sire is evaldedet genomic prediction. Results for
r, MSE, a, and Rillustrating the prediction of joint breeding vakiare shown in Table
llI-2 for the external animals (i.e., the 50 extdrrsires associated with external
information integrated through a Bayesian evalugti@nd in Table IlI-3 for all the
internal animals (i.e., animals associated withyanternal information). To visualize
effects of the integration of external informati®@BV of the 50 external animals for one

randomly chosen simulation are plotted in Figulrelll

Table 1lI-2. Rank correlations (r) and mean squared errors (M&F)essed as a
percentage of the internal MSE between joint evadnaand an external evaluation, an
internal evaluation, and 4 different Bayesian pduges, regression coefficients (a), and
coefficients of determination @Rof the regression of the joint evaluation on éhether
evaluations

Genetic evaluation r +SD MSE + SD a+SD Rz + SD
Without external
informatiorf
Internal 054 + 0.12 10000 * 2820 0.72 + 0.16350. + 0.13
External 0.78 + 0.08 5506 + 1949 082 + 0.10 0.6# 0.12
With external
informatior?
LBE 096 + 002 11.76 + 632 088 = 0.05 094 <+ 20.0
QBE 099 + 0005 133 + 062 099 %+ 0.02 0.99 =+ 08.0
FBE >0.99 + 0.002 049 <+ 025 1.01 %= 0.01 =>0.99 z00@
SBE >0.99 + 0.001 019 <+ 0.09 1.00 = 0.01 >0.99 000

TAll data are presented for external animals assetito external information integrated through gé&san
evaluation. Reported results are averages andasthdeéviations over 100 replicates.

?Internal = internal genetic evaluation; externaxternal genetic evaluation.

3LBE = Bayesian evaluation following Legarra et @007) and using external EBV and prediction error
variances (PEV) associated with external siresiobthfrom the external evaluation. QBE = Bayesian
evaluation following Quaas and Zhang (2006) andgisixternal EBV and PEV associated with external
sires obtained from the external evaluation. FBBayesian evaluation using external EBV and PEV
associated with external sires obtained from theragl evaluation where external EBV for all intgrand
external animals were predicted and used. SBE =e#lay evaluation using external EBV and PEV
associated with external sires obtained from theraal evaluation where external EBV for all int@rand
external animals were predicted and used and thkblel@ounting among external animals was avoided.

First, concerning the 50 external animals, rankretations between joint
evaluation and the 4 Bayesian implementations aszé at least by 43% to be >0.96.

Therefore, the integration of external informatled to an improved ranking of external
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animals in the internal evaluation (i.e., more famianking compared with the ranking of
the joint evaluation), which was expected, espbclal Legarra et al. (2007) and Quaas
and Zhang (2006). Concerning all the internal aisieven if rank correlations increased
only by 4%, integrationof external information fexternal animals related to the internal
population led to rank internal animals almost taelly to their ranking obtained with
the joint evaluation.

Table Il1I-3. Rank correlations (r) and mean squared errors (M&F)essed as a
percentage of the internal MSE between joint eadnaand an internal evaluation and 4
different Bayesian procedures, and regression icomits (a), and coefficients of
determination (B of the regression of the joint evaluation on éhether evaluatioris

Genetic evaluation r +SD MSE + SD a+SD 248D
Without external
information
Internaf 095 + 0.02 10000 + 3352 09 + 003 091 + 0.03
With external
informatior?
LBE 099 + 0.003 1248 + 6.27 098 + 0.01 0.99 + 010.
QBE >0.99 + 0.000 1.36 + 071 100 += 0.004 >0.99 *001
FBE >0.99 + 0.000 0.79 + 052 100 += 0.003 =>0.99 @&*000
SBE >0.99 + 0.000 0.26 + 0.23 100 + 0.002 >0.99 @000

'All data are presented for internal animals assediao only internal information. Reported resute
averages and standard deviations over 100 repdicate

%Internal = internal genetic evaluation.

3_BE = Bayesian evaluation following Legarra et @007) and using external EBV and prediction error
variances (PEV) associated with external siresiobthfrom the external evaluation. QBE = Bayesian
evaluation following Quaas and Zhang (2006) andqisixternal EBV and PEV associated with external
sires obtained from the external evaluation. FBBayesian evaluation using external EBV and PEV
associated with external sires obtained from theraal evaluation where external EBV for all int@rand
external animals were predicted and used. SBE =e#ay evaluation using external EBV and PEV
associated with external sires obtained from theraal evaluation where external EBV for all int@rand
external animals were predicted and used and thkle@ounting among external animals was avoided.
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Figure IlI-1. Examples from one randomly chosen simulation shgBV of the 50
external animals between joint evaluation and esleand internal evaluations, Legarra-
type Bayesian evaluation (LBE; i.e., a Bayesianlwaton following Legarra et al.
(2007) and using external EBV and prediction ewariances (PEV) associated with
external sires obtained from the external evalmtiQQuaas-type Bayesian evaluation
(QBE; i.e., a Bayesian evaluation following Quaad Zhang (2006) and using external
EBV and PEV associated with external sires obtain@th the external evaluation), first
version of modified Bayesian evaluation (FBE; i&Bayesian evaluation using external
EBV and PEV associated with external sires obtafna the external evaluation where
external EBV for all internal and external animalsre predicted and used), and second
version of modified Bayesian evaluation (SBE; izeBayesian evaluation using external
EBV and PEV associated with external sires obtafinam the external evaluation where
external EBV for all internal and external animaisre predicted and used and the double
counting among external animals was avoided).

Second, according to the 4 estimated paramet®SE, a, and R the integration
of external information for the 50 external animbgd to better predictions of the joint
evaluation through all Bayesian implementationsalb60 external animals as well as for
all internal animals. However, whereas integrate@r@al information was identical for
the 4 Bayesian implementations, significant diffees were found among the 4 Bayesian
procedures concerning prediction accuracy for brgpdalues. Breeding value prediction

compared with the reference method (i.e., the jeugluation) was poorest for the LBE
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method for the 50 external animals as well as fa&r internal animals. This can be
explained by the approximation of the matbixby LBE. It approximates the latter matrix
by a diagonal matrix in which diagonal elements egeaal to PEV, ignoring prediction
error covariances associated with every externaluation. In contrast, the 4 parameters
associated with FBE and SBE showed that integratfaal relationships between the 50
external animals and all the internal animals fog approximation ofD allowed the
propagation of external information through the lghpedigree. Consequently, internal
animals related to their external relatives weredmted better, too. This propagation is
not possible in current methods based on seledtidex theory (VanRaden, 2001;
Gengler and VanRaden, 2008), where informationoimlined on an animal-by-animal
basis. Therefore, FBE and SBE have here a cleaandalye compared with current

methods. Furthermore, integration of all relatiopshallowed us to compute only one

relationship matrixA™ that takes into account all relationships amongrival and

external animals, whereas QBE needs the computafitime matrix AL as well as the

matrix A™*. One can assume that numerically the setting uf ofusing the usual rules

is easier and numerically more stable than comgutiy: for potentially several

thousands of animals.

Third, the 4 parameters showed that the SBE |datdeding values most similar
to those estimated by the joint evaluation for ¢eernal animals. Values ofRa, and r
were close to 1 with only few variation among regles (SD <0.001). Mean squared
error was the lowest of the 4 Bayesian implememnatiand showed that the application
of TSA avoided double counting among external atém@utliers of breeding values for
external animals were limited. For the internahaals, QBE, FBE, and SBE were similar
following the 4 parameters. Nevertheless, MSE \hasléwest for SBE and showed the
importance of the double counting among externahals on internal animals. However,
with regards to r, a, and?Ror the external and the internal animals estichdig FBE,
double counting could be ignored if contributiongedo relationships are low compared
with contributions due to own records. If this @ the case, as for genomic information,
TSA should be applied.

Fourth, no assumption was made about the differeicehe amount of
information between external and internal informati An external animal could get
more information from the internal than from theezral data. Integration of external

information led to better predictions for breedirejues obtained by the joint evaluation.
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Therefore, integration of external information seambe important even if the amount is
low.

Finally, the developed methods could be used iremiht settings. Many
situations exist where local (internal) evaluationsuld benefit from the integration of
external information (e.g., Gengler and Vanderi@d08). Because the developed
methods can be used for multi-trait and other cemphodels, they allow the use of
external information to improve the accuracy of leadons for correlated, but only
locally available traits as fine milk compositioraits, such as free fatty acids, milk
proteins, and other minor constituants (e.g., Ganegt al., 2010). In the context of
genomic selection, integration of external genonmformation into routine genetic
evaluations could be done using the proposed mstladtgr some adaptations (e.g.,

Gengler and Verkenne, 2007). Furthermore, as amyamous reviewer reported, the

matrix G " is very similar to the inverse of the mattik used in the single-step genomic
evaluations and included both pedigree-based oelsttips and differences between
pedigree-based and genomic-based relationshipsiléAget al., 2010; Christensen and
Lund, 2010). In a different setting and after takprecautions to avoid double counting
because of the use of the same data, regular gemeiuation results from a larger
population could also be used as external priorgeine effect discovery studies (e.g.,
Buske et al, 2010) or any other studies requiricgueate estimation of a polygenic effect

jointly with marker, single nucleotide polymorphisnor gene effects.

CONCLUSIONS

According to these results, rankings of animalsewmost similar to those of a
joint evaluation after the integration of all retsiships and the application of the TSA to
avoid double counting among external animals thino&BE. It proved that the TSA
worked well, although the creation of the absorptieatrix M did not take into account
the fixed effects considered in the external ewaunawhich were unknown, but only one
hypothetical unobserved fixed effect. The resudtsdal on our simulation showed that the
Bayesian procedures FBE and QBE also worked welth iPbBE having some
computational advantages. Finally, with some adegits and adjustments, FBE and SBE
could be applied to integrate external informatioto routine genetic evaluations, SBE

having additional advantages but being computaliypnzore demanding.
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APPENDIX IlI-1

EQUIVALENCE OF MIXED MODEL EQUATIONS CONSIDERING THE ESTIMATION OF BASE

DIFFERENCES

Assume that external information is available fasthointernal and external
animals from a joint genetic evaluation of all i@ and external animals based only on

external data and that the vectors of the baserdiites between the internal genetic
evaluation and the joint genetic evaluation gefor the external animals arfs| for the

internal animals. Therefore, the Bayesian mixed eheduations (l1l.1) can be written as

_xll RX, X'\ R"Z e X'\ RZ, 0 0 |
Z R™, ZcR'ZL +GF +A G* (G + A)U, G®U,
Z', R™X, G"* z, Rz, +G" G"U, G"U,

0 UL (G* +A) U.G" U (G +A)U. UG U,

i 0 U, G* U, G" U, G®U, U'lG”Ul_
B, X Ry,
~ ' -1 EE El
Ue ZeR7Y, +(GT +A)p +Gp,

a, (= Z, Ry, +Gp +G'p,

be U (G + A + U G,

_6I_ L U, G p +U, Gy,

where Z . and Z, are the incidence matrices for the external arndrmal animals,
respectively.

BecauseA=D" -G, G* -G"(G")"'G" =0, G* -G*(G")"'G" =G+
and 0,=—-(G")*G"™0G., the development of the fourth equation leads
toU'. D (0, —p.)+U' (G +A)U b, +U.G"U,b, =0, and the development of the
fifth equation leads taJ, b, =—(G" )*G""U b, .

After absorption of the fifth equation, the vectdﬁtE is estimated as
b. =(U'.DU.)*U". D*(u. —0.). Furthermore, it can be shown tedfp, +G"p, =0

and (G + A)u. +G®p, =D 'u. . The equivalent mixed model equations can beawritt
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as.

_xll RI_l)(l X‘I Rl_lzIE XII RI_:LZII O BI
ZeR™, ZgR'Zg+GE +A GH DU, |[0g|_
Z', R™X, G* z', Rz, +G" 0 0,
0 u.D* 0 U'. DU, | b,
I XII I:al_lyl
L R|_1y| + D_lllE

ZIII I:al_lyl

U': D7'pe

ELIMINATION OF BASE DIFFERENCE EQUATIONS IN FBE AND SBE

The derivation is based on the estimatioriiefUb instead of(i andb separately.
The associated mixed model equations can be obtéimeugh a few steps. First, using
some rearrangements, the development accordifg tiir$t, second and third lines of the

Bayesian mixed model equations (lll.1) leads tepeetively:
X', R, B, + X, Rz, (a+Ub)=x, Ri*[y, +Z,Ub) (A3-1)
Z R, B, +(z, Rz, +G" o+ Ub)-G ", =2, R*y, +2,UD) (A3-2)
UGG +Ub)-UG ", =0  (A3-3)
Therefore, solutions foéi + Ub and bcan be obtained by solving jointly (A3-4)
and (A3-5):
X, RX, X ,R‘z 8, 1.[ xRy, +z,Ub)
Z' R, Z' R"Z +G*‘1L +u6} {zg R;l(yI +Z,UbJ+G M, (A3-4)
U'GWUb=UG*(n,-0) (A3-5)

If all the animals contribute to the base diffesichenU represents a summing
matrix andb the vector of weighted average base differencesdes p,and . Given
this, Ub represents a vector of constants added to each zErBNZ,UBrepresents a
vector of constants added to each record. Theretloeefollowing reparameterization can

be usedli’ =0 +Ub.

Furthermore, adding the same constants to eachvi@B¥ot change the rankings,
and rankings will be thereby invariant to the usedstants. The constants added to the
records will also only change estimates of fixdeéast. Those different estimates of fixed

effects will have no effect on animal rankings hessaall animals are affected by the
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same constant. For these reasons, (A3-4) can béteswas follows:
X' RX, X' Rz, B |_ X' Ry,
Z, R|_1X| Z, Rl_lzl +GT | O Z, R|_1y| +G*_lllo
where ﬁ,*represents the new fixed effects computed by igigothe constant in the

records.

TSA

The estimation of RE independent from contribution® do relationships or
correlated traits is performed by the following T;.3Ae TSA must be repeated for each
trait.

The first step of the TSA is solved iteratively akdws:

1) For each animal iHE’i] =RE;,
where H, is a diagonal matrix with RE of each external aimbased on the
external PEV for thgh trait.

2) QiY=Hll.

3) k=1.

4y Pl :(Q[lk] +A*_l/1j)_1,

where A" is the inverse of the relationship matrix thataods for the

2

O-e- .
relationships between external animals and theiestors andi;, = —- for with

o
Yj

ajj and ajj are the error variance and the genetic varianceh@&th trait,
respectively.

5) HY = (diag(diag(P™)))* -14.

6) SK=RI-HLI,

7) If skl is not sufficient small, perform for each animal

a) QI =l +gk,
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b) If any diagonal element iﬁg[lk”] is negative, set it to 0.
c) k=k+1.
d) Repeat from 4).

8) For each animal perform:
a) X, =1if Qi 0.
b) X, =0 if Qkl=0.
9) M=X,-X(XX)*X,
where the matriM is the absorption matrix based on the contribstidue to own

records.

The second step of the TSA is solved iterativelfjolews:

1) For each animadl H[l?i] = RE; .

2) QY =yHPl M HD

3) k=1.

4) Pl = (lekl +ATA, )'1.

5) HI = (diag(diag(P["])))_l -1A.

6) Sl=RHO-RHIK,

7) If skl is not sufficient small, perform for each animal
a) Qi =qll+s.
b) If any diagonal element i@“‘*ﬂ is negative, set it to 0.
¢) QU =yQl e Myt e My M Q.
d) k=k+1.
e) Repeat from 4).

8) If Q[z“l] and Q[z"] are close enough, perform for each animal
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RE], = QLM 2,
where RE’JT is a diagonal matrix with diagonal elements eqodRE only due

to own records for thgh trait.
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Chapter IV. AN INTEGRATION OF EXTERNAL INFORMATION FOR
FOREIGN STALLIONS INTO THE BELGIAN GENETIC EVALUATION

FOR JUMPING HORSES

The previous Chapter proposed a Bayesian procedungegrate
external information into a genetic evaluation d¢desng
computational burden and double counting of coatiims due to
relationships among external animals. However, prgcedure
was tested only on simulated data. Therefore, bpective of this
Chapter was to apply the proposed Bayesian proeedar
integrate external information provided by Franced athe
Netherlands for foreign stallions into the Belgiagenetic

evaluation for show jumping horses.

From: Vandenplas, J., S. Janssens, N. Buys, and 8engler. 2013. An integration of
external information for foreign stallions into the Belgian genetic evaluation for
jumping horses. J. Anim. Breed. Genet. 130:209-217. (Used by permission of the
Journal of Animal Breeding and Genetics)
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SUMMARY

The aim of this study was to test the integratidnexternal information, i.e.
foreign estimated breeding values (EBV) and theo@ated reliabilities (REL), for
stallions into the Belgian genetic evaluation f@mping horses. The Belgian model is a
bivariate repeatability Best Linear Unbiased Prialic animal model only based on
Belgian performances, while Belgian breeders impbarses from neighbouring
countries. Hence, use of external information isdeel as prior to achieve more accurate
EBV. Pedigree and performance data contained 101 B8rses and 712 212
performances, respectively. After conversion to Bledgian trait, external information of
98 French and 67 Dutch stallions was integrated ihé Belgian evaluation. Resulting
Belgian rankings of the foreign stallions were msirailar to foreign rankings according
to the increase of the rank correlations of attlé@%. REL of their EBV were improved
of at least 2% on average. External information padially to totally equivalent to 4
years of contemporary horses’ performances od tinalstallions’ own performances. All
these results showed the interest to integraterredtanformation into the Belgian
evaluation.

Key words: Bayesian approach, external information, integratjumping horses

INTRODUCTION

The Belgian sport horse population is situatechatdrossroads of different sport
horse populations, which leads to a mix of the Baam genes. Artificial insemination
facilitates the use of foreign stallions since 1980s. For these reasons, Belgium seems
to be one of the centres for European sport horseding (Ruhimann et al., 2009a).
Three Belgian studbooks of warmblood horses areolwed, that is the Belgian
Warmblood Horse Studbook (BWP), the Royal Belgigor& Horse Society (sBs) and
the Studbook Zangersheide. For all three, the ingar@nt in the performances in show
jumping is an important breeding objective (Koeeeéal., 2004).

Since 1998, a genetic evaluation for show jumpimgsés is implemented in
Belgium, and as in most other European countries estimated breeding values (EBV)
are based on national information only (Koenen Aidtidge, 2002; Janssens et al.,
2007), whereas the Belgian sport horse populasoalearly linked with other foreign
studbooks. This may lead to a limited reliabilifgHL) of EBV for horses with few

Belgian records and to inappropriate breeders’ adsobf a stallion on the international
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scene. Similar issues exist in other countrieast $iorse breeding is very international.
Based on experiences in dairy cattle breedingwioich ‘Interbull’ (Uppsala, Sweden)

provides sire EBV for dairy cattle from differenbuntries, an international group of
scientists and breeding organizations, called rgtédlion’, was created in 1998 to

achieve reliable breeding values across countoessport horse stallions. Within the
framework of this group, Ruhlmann et gR009b) concluded that an international
evaluation of jumping horses is feasible. Howeveuch an international genetic
evaluation combining all information sources is get available, and one option is to
integrate external information into the local gémetvaluation. Different theoretical

approaches exist to do this. In the case of mekithrgenetic evaluations for beef cattle,
Klei et al. (1996) proposed a Bayesian approachrevagternal information is considered
as prior information for the local evaluation. Twidferent Bayesian derivations were
proposed by Quaas and Zhang (2006) and Legarrh €087). Recently, Vandenplas
and Gengler (2012) proposed some improvementsesetimethods, especially to take
into account the double counting among relatedreateanimals. However, some issues
arise before the implementation of a Bayesian phoez like the independence of the
external evaluations from the internal one or timilarities between the external and
internal evaluated traits (Gengler and Vanderi€8).

The first aim of this study was to apply a Bayesagproach to integrate external
information, i.e., foreign EBV and their associatRBL, for stallions into the Belgian
genetic evaluation of show jumping horses, andsieond aim was to test the model
adequacy and the predictive ability of the apphezthod.

MATERIALS AND METHODS

Performance data on show jumping were provided bg horse riding
organization for national level competitions, theyRl Belgian Federation for Equestrian
Sports (KBRSF), and by the horse riding organizatar recreational level competitions,
the Rural Riding Association (LRV). The availablerformance data (data 1) included
710 212 performances from 44 755 competitive hodiasng the period 19920009.
Performances in show jumping consisted of rankificharses participating in show
jumping competitions converted into normalized scdry a Blom’s approximation
(Janssens et al., 2007). These performances wsreahsidered as two traits in terms of
competition levels, that is the KBRSF level and UtV level. The KBRSF level was
considered as the Belgian breeding goal trait @fexecalled Belgian trait). The pedigree
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file, a combination of pedigree records providedds and BWP, included 101 382
registered horses. The following bivariate repaétalBest Linear Unbiased Prediction
(BLUP) animal model was applied to perform the Baiggenetic evaluation (evaluation
A; Janssens et al. 1997, 2007):

y=XBp+Zu+Zp +e (IvV.1)
wherey was the vector of performancgs, was the vector of fixed effects, was the

vector of random additive genetic effects, was the vector of random permanent

environmental effects and was the vector of residualX and Z were incidence
matrices relating performances to fixed effects tancandom effects, respectively.

Fixed effects were the age of the participatingshpits sex and the show jumping
event organized by the KBRSF or by the LRV in whithparticipated. Variance
components for the random permanent environmemilgenetic effects used for this
study were those estimated by Janssens et al. \18@¥itability was equal to 0.10 for
performances at the KBRSF level (i.e. the Belgrait)tand to 0.11 for performances at
the LRV level. Genetic correlation between these traits was equal to 0.63.

Despite the fact that two traits are evaluated,yohleeding values for
performances in KBRSF level estimated using bottiop@ances in KBRSF level and
LRV level (i.e. EBV estimated by the evaluation @r fthe Belgian trait; EBY) of
stallions approved by BWP and/or sBs are publishe@ standardized scale following
the recommendations of ‘Interstallion’ (Interstafli 2005; Janssens and Buys, 2008).

Reliabilities of EBW based on data | (EBY, REL,; Table 1V-1) were computed

using the equation:

REL =1-PEV/s} (IV.2)
where 0'5 is the genetic variance for the Belgian trait &PV is the prediction error

variance obtained from the diagonal element ofitiverted left hand side of the mixed
model equations (IV.1).

Available external information consisted of extériEBYV (EBVg) and their
associated external REL (RELfor stallions approved by BWP having a published
Belgian index, born after 1978 and originally régied in a Dutch or a French studbook.
External information on 98 French stallions andDaitch stallions was provided by the
Station de Génétique Quantitative et Appliquée tituits National de la Recherche
Agronomique (France) and the Royal Dutch Sport el¢tise Netherlands), respectively.

However, because EBMvere not the same trait and not expressed onatine Scale as
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the Belgian trait, precorrections were needed lkeits integration into the Belgian

genetic evaluation.

Table IV-1. Performed genetic evaluations, estimated breedialges (EBV) and
reliabilities (REL)

Genetic Datasets
evaluation I Il n
A Evaluation Al, EB\4, Evaluation All, EBV4, Evaluation Alll, EBVjy,
REL,, RELy RELan
B Evaluation Bl, EB\4, Evaluation BIl, EB\g, Evaluation BllI, EB\gy,
RELg RELgy RELgu
A = Belgian genetic evaluation; B = Bayesian evétuma
| = complete data; Il = data for which all performeas after 31 December 2005 were assumed to be
missing; Il = data for which all the French andtEh stallions’ own performances were assumed to be
missing.

First, EBVE were converted to the Belgian trait and scaldefyiear 2009 for both
countries. This conversion was performed separd@myDutch and French stallions
following the method detailed by Goddard (1985}t ieagressed previously deregressed
internal EBV on external EBV. The 2 samples tomeate conversion equations for the
Dutch and French stallions included all Dutch &ial (i.e., 47) and French stallions (i.e.,
93) having both an EBY and an EBY, respectively. REL of the converted EBV (REEL
were estimated from all the REIlprovided by France and by the Netherlands follgwin
the method detailed by Goddard (1985) that took adcount the error in estimating the
true regression equation and the variance of tmyested EBV (EBV) about the true
regression equation. External information with a_lREwer than 0.01 was set to missing.
It is noted that genetic correlation coefficientyr traits between Belgium and the
exporting countries were needed for the converfatiowing Goddard (1985). Because
no genetic correlation coefficient was available foe pair Belgium/the Netherlands
(Ruhlmann et al., 2009b), the genetic correlatioefficients for traits were approximated
by the Pearson correlation coefficient between D#EBV: and EB\4 estimated for the
Dutch stallions for the pair Belgium/the Netherlandnd by the Pearson correlation
coefficient between French EB\and EB\4, estimated for the French stallions for the
pair Belgium/France. Second, EBWad to be free from internal information to avoid
double counting between external and internal midron (Gengler and Vanderick,
2008). The literature review of Koenen (2002) aad Veldhuizen (1997) for the Dutch
genetic evaluation and of Tavernier (1991) and RIqd997) for the French genetic

evaluation showed that France and the Netherlamdgrnuse the same phenotypic
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information (i.e., same show jumping competitioras) Belgium for their respective
genetic evaluations for show jumping. Following tlterature, this second condition
seemed to be respected. Third, as external infavmawvas associated with related
stallions, double counting of information amongatetl external stallions could exist.
Therefore, the integration of external informatias performed following the second
version of modified Bayesian evaluation detailed \l3ndenplas and Gengler (2012).
This approach allows simplifications of the compigtaal burden and takes into account
double counting among related animals thanks tce#ttienation of the contributions due
to relationships. These contributions were estithdig a two-step algorithm taken into
account all relationships between the foreignistadl and their ancestors.
The equations system of the Belgian model (IV.18dmating external information

(evaluation B) can be written as:

X'RIX  X'R?Z XR?z P X' Ry
ZR'X ZR'Z+G™ ZR7'Z |i|=|ZRY+Gp, (IV.3)
ZRIX  ZR'Z  ZR'z+P'|p Z'Rly

where R was the residual (co)variance matriR, was the (co)variance matrix for the
permanent environmengy, was the vector of EBVc an@” was the matrix of prediction
error (co)variances of ERY

Because the second version of modified Bayesiatuatian (Vandenplas and
Gengler, 2012) was applied, the inverse®f was equal toG ™ =G ™ + A where the
matrix G is the inverse of the additive genetic (co)varematrix and the matriA
was a block diagonal variance matrix with one blatégonals per horse. For tin

stallions associatied to external information, tliéerent block diagonals were equal to

AG'A, fori =1, ...,N. The matrixG, was the matrix of genetic (co)variances among

2
o,

traits andA, was a diagonal matrix with elements equal /tﬁE”*—uz’ forj =1, 2 traits
O,

where a:j was the error variance of thji trait, ajj was the genetic variance for il

trait, and RE; was equal to the value of records equivalents (REy due to own

records for thgth trait. RE were estimated thanks to the algoritiaking into account
double counting among related animals (Vandenpids@engler, 2012).
To approximate REL of breeding values estimatedheyevaluation B based on

data | for the Belgian trait (EBY: RELg)), the following procedure was applied. First, for
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each stallion that had external information, onguail performance was added to the
performance data and weighted by the value of RIEgandent from contributions due to
relationships. The weight for the real performancethe performance data was equal to
1. An additional level for each fixed effect of tBelgian genetic evaluation was created
and assigned to the virtual performances to enthaethey had no influence on the
genetic evaluation. PEV were estimated by the siger of the left hand side of the
mixed model equations, and Rglwere calculated using the equation (IV.2). All the
genetic evaluations and computations of PEV werdopeed using the BLUPF90
program family (Misztal, 2012) modified to integeagxternal information by taking into
account double counting among related animals.

Descriptive statistics were computed to charaaterimtegrated external
information and its influence on the ranking of tmaerses. With regard to RELREL;
and RE, mean and standard deviations (SD) as welh& number of foreign stallions
associated with a non-zero RELla non-zero RELand non-zero RE were described.
Pearson correlation coefficients between EBWnd EB\ and the coefficients of
determination of the conversion equations for the&cbB and French stallions were also
computed, as well as Spearman rank correlationficmefts among EBY, EBVg, and
EBVE, for all the horses, for the French stallions, ttee Dutch stallions and for the 100
best stallions. This latter group included the M¥t-ranked stallions following the
evaluation Al, born after 1979 and associated &iRREL, equal or higher than 0.75. The
model adequacy was tested by the comparison ofracguand precision of the
evaluations Al and BI through comparisons of mees §MB), mean squared error of
prediction (MSEP) and Pearson correlation coeffitidbetween observed and estimated

performances associated with the Belgian trgif (Tedeschi, 2006). Considering all the

horses, MB and MSEP were expressed as a perceritdige average performance of all
the performances. Considering the 100 best stallithre Dutch and French stallions, MB
and MSEP were expressed as a percentage of thagavererformance of their
performances, respectively.

To test the predictive ability of the applied meatheubsets Il and Ill were created
and evaluations A and B were performed based oseth®o subsets (i.e., evaluations
All, Alll, BIl and Blll). Resulting EBV for the Bejian trait are called EBY, EBV,y,
EBVan, EBVg,, EBVg and EB\g), (Table 1V-1). Subset Il consisted of all perforras

before 31 December 2005 included. All other perfamoes were assumed to be missing
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(i.e., 34.5% of all the performances). It simulatbd predictive ability of the method
routinely applied. Subset Ill consisted of the ctetg data except for all French and
Dutch stallions’ own performances assumed to besimgs (i.e., 0.27% of all the
performances). It simulated the predictive abitifythe method applied for stallions with
no own Belgian performances. REL of ERVY EBVan, EBVg, and EB\s (RELay,
RELan, RELs; and RElgy, respectively) were approximated as describediqusly for
evaluations A and B. Pearson correlation coeffisign) between EBY, and EBV4,
and EB\g, and EB\4;, as well as Pearson correlation coefficieng (metween EBY|
and EBVyy, and EBVs and EB\gy, were estimated. Furthermore, variances of the
differences (VAR) between EBY, and EB\4,, and EB\ and EB\;,, as well as
variances of the differences (VAR between EBY, and EB\, and EB\4 and
EBVgi, were also estimated,,m,, VAR, and VAR, were estimated for all the horses
included in the genetic evaluations, for the 108tstallions and for the French and
Dutch stallions.

Means and SD of REl, RELai, RELay, RELs, RELs; and RElg, were

computed for all horses, for the French stalliomg #or the Dutch stallions.

RESULTS AND DISCUSSION

DESCRIPTIVE STATISTICS

Among the 98 French and 67 Dutch stallions assedtiaith external information,
only 97 French and 54 Dutch stallions had a noon-ZREL.. Furthermore, REL
decreased at least by 57% compared with RHERDble 1V-2). This decrease was expected
because, first, the coefficients of determinatiébrthe conversion equations and, second,
the Pearson correlation coefficients between EB¥nd EB\: in the conversion
equations were low to moderate (Table 1V-2). Povetlial. (1994) surveyed different
countries to determine expressions of RB&sociated with EBMin the context of dairy
cattle. Several countries considered that Ri&ere equal to REL However, because
REL. must be integrated into a genetic evaluationytreances of the sample regression
eguations must be taken into account as it wadleltay Goddard (1985). Therefore,
lower variances of the sample regression equatiand higher coefficients of
determination, that is more accurate conversioraggus, would be desirable to estimate
reliable EBV. (i.e., to obtain higher RE). Restrictions on data used for the comparisons

of genetic evaluations between countries were ftatad to improve the accuracy of
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conversions methods (e.g., Powell and Sieber, 19avyell et al., 1994). However,
owing to the low number of foreign stallions havimgth an EBY, and an EBY¥ (i.e., 93
French stallions and 47 Dutch stallions) and thve dverage reliabilities associated with
EBVa and EB\: most of the recommended restrictions could notréspected.
Furthermore, the use of the Pearson correlatiofficieats between EBY and EB\£ for
the French stallions and for the Dutch stalliomstiean underestimation of REbecause
Calo et al. (1973) showed that genetic correlatioefficients for traits were higher than
the corresponding Pearson correlation coefficiehtss can be confirmed for the pair
Belgium/France for which the genetic correlatiorefficient was previously estimated
between 0.76 and 0.88 (Ruhimann et al., 2009b)ewhe Pearson correlation coefficient
was equal to only 0.71 (Table IV-2). Thereforeyduld be interesting to have estimates
of the genetic correlation coefficients for the smg pair Belgium/the Netherlands
because imprecise estimates of genetic correlabefficients could lead to inexact REL
(Calo et al., 1973; Powell et al., 1994).

Table IV-2. Coefficients of determination @Rof the conversion equations and Pearson
correlation coefficients (r) between internal anxteenal estimated breeding values.
Means and standard deviations (SD) of nonzero maiteeliabilities (REl), non-zero
reliabilities of a converted estimated breedingueallREL) and non-zero record
equivalents free of contributions due to relatiopsh(RE) as well as the number of
foreign stallions (Nb) associated with non-zero REREL.and RE

French stallions Dutch stallions

R’ 0.46 0.28
r 0.71 0.59
REL:

Nb 98 67

Mean 0.59 0.42

SD 0.19 0.18
REL,

Nb 97 54

Mean 0.27 0.07

SD 0.10 0.06
RE

Nb 97 50

Mean 2.75 0.51

SD 1.44 0.52

As shown before, RELand the accuracy of the conversion equations laave
effect on REL, but also on the improvement of the genetic evaloa Indeed, a
simplified system of mixed model equationSS(=r ) integrating external information

(i.e., prior information) can be written as:
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(C+v?)s=r+viy (IV.4)

whereC, r ands are the left hand side, the right hand side aedséttor of solutions of

the mixed model equations, respectivalyjs the vector of mean prior information and

V is the prior variance matrix.
On the one hand, in the case of highly accurate prformation (i.e., in this case,

high REL needed high RELand accurate conversion equations), the valuég afill be

close to zeroV ™" will be large and, therefore, the equations systdnd) will tend to

V7's=V™u and the estimate of to S=pu. On the other hand, in the case of low

accurate prior information, (i.e., in this casay IREL. estimated from low RELand/or

poorly accurate conversion equations), the pritermation is non informative, the value

of V will be large,V ™ will tend to zero and, therefore, the equatiorsteay (1V.4) will

tend to Cs=r and the estimate of to S=C™'r, similarly to a system which do not
integrate prior information. Between these two exte casesS can be considered as a
weighted average of the combination of data anor pnformation (Klei et al., 1996).

With regard to RE (Table IV-2), the number for eatallion was a function of
REL. and of the relationships with other stallions. Tloge humber of RE can be
explained by the low-to-moderate REhut also by the low-to-moderate coefficients of
determination of the conversion equations and Beatsrrelation coefficients between
EBVa and EB\t. Furthermore, 4 Dutch stallions that were higldiated to other ones
were associated with RE equal to 0 after estimatiotontributions due to relationships,
while this was not the case for the French stadlidtience, considering contributions due
to relationships seems necessary to avoid doubleticg of external information.

Concerning the rankings of the horses, the ranketairon between EB) and
EBVg, for all horses (Table 1V-3) showed that the ingigm of external information for
foreign stallions into the Belgian genetic evaloatinfluenced very slightly the ranking
of the whole population. These modifications carekplained by the animal model: all
the relationships between the foreign stallions atietr horses were taken into account.
These relationships caused an effect of foreigormétion on related horses through the
foreign stallions. However, these modifications @&vemall because external information
was integrated only for about 0.2% of the horsemderning the foreign stallions, the
integration of external information led to a chamgéheir rankings according to the rank
correlations between EBVand EBV4 or EBVg, (Table 1V-3). The Belgian ranking of
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the foreign stallions was more similar to the ragkin their country of birth when the
external information was integrated, as expectetlstiown by Quaas and Zhang (2006).
However, because average quantity of French infbomavas higher in terms of RE than
the Dutch information (Table IV-2), the increasetive rank correlation coefficients
between EBY and EB\W, and between EBY¥and EB\g for the French stallions was
higher than the corresponding increase for the Dattes, as according to the theory
(Zhang et al., 2002; Legarra et al., 2007). Finddgcause the Belgian ranking of foreign
horses was more similar to the ranking in theirntguof birth and because 24 foreign
stallions were considered in the group of the 1@8ttstallions, the rank correlation
between EBY, and EB\g, for the best stallions (Table IV-3) showed a clengtheir
ranking of 2%. The reranking was mainly due torégranking of the foreign stallions, but
also due to the reranking of foreign stallionsatiales. The best stallions associated with
external information gained four ranks on averagthe ranking of the 100 best stallions,
and a gain of 23 ranks was the largest rerankin@ floreign best stallion. Integration of
external information also led to a gain of 18 ramés a stallion not associated with

external information but related to several foresgglions.

Table IV-3. Spearman rank correlation coefficients between dinge values (EBV)
estimated by the Belgian genetic evaluation basethe complete data | (EBY and
EBV estimated by a Bayesiamvaluation based on data | (EB)Y Spearman rank
correlation coefficients between ERVand external EBV (EBYM), and Spearman rank
correlation coefficients between EBMand EB\£ for all horses, for the 100 best stallions,
for the French stallions and for the Dutch staliion

Spearman rank correlations

Group of horses Nb EBV, /EBVg EBVa /EBVE EBVeg /EBVE
All horses 101 382 >0.99

Best stallions 100 0.98 -

French stallions 98 0.87 0.69 0.90
Dutch stallions 67 0.95 0.61 0.73

'Bayesian: Belgian genetic evaluation integratingnal information by a Bayesian approach.

MODEL ADEQUACY

Considering all horses, as well as the best stal]ithe comparison of MB, MSEP

and r, did not show a reduction in the level of preas&nd accuracy of the Belgian

model when external information was included beedu8 were close to 0% and MSEP

were equal for the two genetic evaluations. Simialues were also estimated foy,
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associated with the evaluations Al and Bl (Tablet)V

With regard to the French stallions, the bias 82% for the evaluation Al was
reduced when external information was integrateabl@ 1V-4). However, it was not
confirmed by the associated MSEP, and thereby,attequacy of the model for the
French stallions was not improved, but also notigished, by the integration of external
information.

With regard to the Dutch stallions, it seems thaé¢ integration of Dutch
information improved the adequacy of the modeltifi@ir genetic evaluation because MB
and MSEP of the evaluation Bl were slightly lomeart MB and MSEP of the evaluation
Al (Table 1V-4). Furthermorer, , of the evaluation Bl was slightly higher than tree of

the evaluation Al.

Finally, the integration of external informationddnot diminish the adequacy of
the Belgian model for all horses, for the bestlistad and for foreign stallions. However,
owing to the low amount of external information Ifofor about 0.2% of the horses) and
to the low average REl-the model adequacy was not improved or only weé&ki the
Dutch stallions.

Table IV-4. Number of performances (Nb) associated with theiBaltrait for all horses,
the 100 best stallions, the French stallions aedthtch stallions. Mean bias (MB), mean
squared errors of prediction (MSEP) and Pearsomeladion coefficients between
observed and estimated performanacgs )(for the evaluation Aland the evaluation Bl

applying all the performances, performances astatiavith the 100 best stallions,
French performances and Dutch performances foB#igian trait. MB and MSEP are
expressed as a percentage of the average perfananall the performances and
performances associated with the 100 best stallitmes French and Dutch stallions,
respectively

All horses Best stallions French stallions DutElli®ns
Al BI Al Bl Al Bl Al Bl
Nb 350 907 2749 1322 414
MB 2.00e-3 -4.00e-8 0.06 0.06 1.32 1.06 1.49 1.36
MSEP 2.74 2.74 0.67 0.67 2.26 2.26 2.38 2.37
r 0.50 0.50 0.26 0.26 0.36 0.36 0.49 0.50

y:y

'Belgian genetic evaluation based on the completz Ida
Bayesian evaluation based on the complete data I.

PREDICTIVE ABILITY

Considering all horses, the evaluation BIll had milar or slightly worse
predictive ability than the evaluation All accordito f, and VAR, (Table IV-5). This
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low difference between predictive abilities was ested because external information
was integrated into the evaluation for only 165%ign stallions, whereas 44 755 horses
have performances among the 101 382 horses iretligrpe. However, if the evaluations
were based on subset Ill, i.e., if only performanctthe foreign stallions were assumed
to be missing, there was a slight advantage forettsduation B, especially in terms of
VAR,. Furthermore, i close to 1 can be explained by the fact that 6@y % of all the
performances were assigned to missing values isesultl (Table IV-5), hence their

limited overall influence.

Table 1V-5. Pearson correlation coefficients rand variances of differences (VAR
between EBY,"* and EB\4, and EB\4 and EB\4y, and Pearson correlation coefficients
(rm) and variances of differences (VAR between EBY, and EBWy, and EB\4 and
EBVg for all horses, for the 100 best stallions, for #french stallions and the Dutch
stallions

Datasets
Group of horses Genetic evaluation Il 1111
I VAR, (X 103) ] VAR (X 103)
A 0.89 4.49 >0.99 0.10
All horses
B 0.89 4.58 >0.99 0.06
: A 0.80 9.34 0.98 1.18
Best stallions
B 0.82 10.24 0.99 1.02
. A 0.96 3.37 0.89 8.05
French stallions
B 0.99 2.23 0.98 3.48
. A 0.93 7.12 0.95 5.73
Dutch stallions
B 0.95 6.58 0.97 4.31
1EBVij: Estimated breeding values whereefers to the type of the genetic evaluation (Ae= Belgian
genetic evaluation and B = Bayesian evaluation) jareders to the used data (i.e. | = complete data, |
data for which all performances after 31 Decemt#52were assumed to be missing, and Il = data for

which all French and Dutch stallions’ own perforroas were assumed to be missing).

Considering the French stallions,, VAR, r; and VAR, showed that the
predictive ability of breeding values was improvedhen French information was
integrated (Table 1V-5). The high £0.96) between EBM and EB\4 also showed that
performances after 2005 influenced less the gemstaduation of the French stallions
compared with the genetic evaluation for all harsesan be explained by the facts that
the French stallions had few performances afte620@l few relationships with Belgian
horses competing after 2005. Regarding the evalmtbased on the subset I, there
were an increase ofraround 10% and a reduction of VAR 57% for the evaluations

B in comparison with;§ and VAR, of the evaluations A, respectively. Following thes
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results, integrated external information was alneggtivalent to the French stallions’ own
performances. These results suggest that the atiegrof external information could be
very interesting in the case of imported stallidmsving no or few own Belgian

performances (e.g., young imported stallions orfiomed foreign stallions imported

through their semen).

Considering the Dutch stallions, the lowgrand higher VAR compared with the
rn and VAR, respectively, for the evaluations A led to higheluence of performances
recorded after 2005 for their genetic evaluatiompared with their own records (Table
IV-5). The low number of Dutch stallions with penfeances, that is <60% of the Dutch
stallions, can explain this observation. This isoaéxplained by the high, rbetween
EBVa and EBVai (0.95). However, following,r and VAR, (Table IV-5), the predictive
ability was improved when external information wiategrated into the evaluation based
on the subset Ill. Regarding the evaluations basethe subset Il, the increase jnand
the slight improvement in VARalso confirmed the improvement in the predictits@ity

when Dutch information was integrated into the Balggenetic evaluation.

RELIABILITIES

Means and SD of REL were calculated for all theegjerevaluations (Table 1V-6).
All the genetic evaluations had a minimum and aimarm REL equal to 0.00 and 0.99,
respectively. As expected since external infornmati@as only integrated for 165 stallions,
the integration of external information did notlugnce on average the genetic evaluation
for all the horses.

It is noted that the accuracy of the procedureiagpb estimate RE), RELg
and RElg, depended on the accuracy of REAnd therefore on accuracies of the
conversion equations and of the genetic correlatoefficients for traits between
Belgium and the exporting countries. Because theetye correlation coefficient was
unknown for the pair Belgium/the Netherlands, thegre estimated from EBY and
EBVE of the foreign stallions and errors linked withe testimation of RELwere also
introduced into the estimation of REL associatethvidiBVg. Again, these errors show
the need to estimate genetic correlation coeffisidior traits between countries to

perform an unbiased genetic evaluation.
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Table IV-6. Means and standard deviations (SD) of reliabilit@EL)a*, RELay,
RELan, RELg,, RELg;, and RElg for all horses, for the French stallions and foe t
Dutch stallions

Datasets
Group of horses Genetic evaluation I Il 1]
Mean SD Mean SD Mean SD
A 0.21 0.17 0.17 0.16 0.21 0.17
All horses
B 0.21 0.17 0.17 0.16 0.21 0.17
. A 0.58 0.23 0.54 0.24 0.52 0.26
French stallions
B 0.61 0.20 0.58 0.20 0.57 0.21
. A 0.51 0.26 0.46 0.26 0.47 0.27
Dutch stallions
B 0.52 0.25 0.47 0.25 0.49 0.26

1REL”-: Reliabilities of estimated breeding values whierefers to the type of genetic evaluation (i.e. A =
Belgian genetic evaluation and B = Bayesian evaloagndj refers to the used data (i.e. | = complete data,
Il = data for which all performances after 31 Debem2005 were assumed to be missing, and Il =fdata
which all French and Dutch stallions’ own perforroas were assumed to be missing).

Regarding to the Dutch and French stallions, theraye REE, were improved
compared with the average REL Additionally to the influence of the imprecision
because of accuracy of regression equations atiteainknown genetic correlations as
explained previously, the improvement in averagd. REso depended on the range of
REL. and thereby on the range of RELZhang et al. (2002) also concluded that the
amount of improvement depends on REdr a simulation for beef cattle.

For the particular case of the French stalliong thtegration of external
information led to an increase (5%) of the aver@g for the genetic evaluations based
on data | (Table IV-6). Then, the average RElecreased when performances were
assumed to be missing, as it was expected. Thisctied was higher for REd, . The
own performances were more informative for the Ehestallions than the contemporary
horses’ performances recorded after 2005, as alreduberved. Nevertheless, the
integration of French information led to an aver&fe g, and RElg equal or close to
the average RE4. So, external information was on average at legsivalent to the
Belgian performances related to these stallions.

Regarding to the Dutch stallions, average REland REls; confirmed the
higher influence of performances after 2005 foiirtigenetic evaluation compared with
their own performances (Table IV-6). Furthermorgrage REL; and RElg;, compared
with average RE), showed that the integration of Dutch informatioaswnot totally
equivalent to the missing information, despite &swnot insignificant in each case.
Indeed, there was an increase of the average RB&L least 2% when Dutch information

was integrated into the Belgian evaluation.
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CONCLUSION

According to these results, external informatidmttis foreign EBV and their
associated REL, for French and Dutch stallions pasially to totally equivalent to 4
years of contemporary horses’ performances or &r tbwn performances in show
jumping. Its integration did not diminish the adaqy of the Belgian model for all horses,
as well as for foreign stallions. It also improvbeé predictive ability and the accuracy of
EBV for the foreign stallions. The resulting Belgieanking of the foreign stallions was
more similar to their foreign ranking accordingti@ir country of birth, according to the
Spearman rank correlations. All these results skothe interest to integrate external
information into the Belgian genetic evaluation $tilow jumping, especially for imported
stallions having no or few Belgian performancegy.(eyoung imported stallions or
confirmed foreign stallions imported through th&men). However, estimates of genetic
correlations for traits among countries, as wellagsurate conversion equations, are

needed for a more accurate Belgian Bayesian evatuat
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Chapter V. S HORT COMMUNICATION: ALTERATION OF PRIORS

FOR RANDOM EFFECTS IN GAUSSIAN LINEAR MIXED MODELS

Bayesian approaches integrating external informatig.e.,
estimated breeding values and associated reliabilitrovided by
an external genetic evaluation) into an internadege evaluation
were proposed in the previous Chapters and weredbas the
alteration of both the mean and the (co)variancethef prior
multivariate normal distributions of random effeat$é linear
mixed models. However, most software packages availin
animal breeding community do not permit such aliens, and,
thereby, they do not permit the implementation had proposed
Bayesian approaches that integrate external infiioma
Furthermore, source codes of most software are llysua
unavailable, making the implementation of the Ba&yes
approaches proposed in the previous Chapters infg@ss
Therefore, the aim of this Chapter was to proposeethod to
alter both the mean and the (co)variance of ther mhistributions
of random effects of linear mixed models in thenfeavork of
currently available software packages. Based ondatasets, the

method was tested with three software packages.

From: Vandenplas, J., O.F. Christensen, and N. Getg. 2014. Short
communication: Alteration of priors for random effects in Gaussian linear mixed
models.J. Dairy Sci. 97:5880-5884.






Short communication: Alteration of priorsfor random effectsin Gaussian linear mixed models

ABSTRACT

Linear mixed models, for which the prior multivaganormal distributions of
random effects are assumed to have a mean eq@alae commonly used in animal
breeding. However, some statistical analyses (¢@., consideration of a population
under selection in a genomic breeding scheme, phedtiait predictions of lactation
yields, and Bayesian approaches integrating exterftamation into genetic evaluations)
need to alter both the mean and (co)variance ofpit@ distributions and, to our
knowledge, most software packages available inatfimal breeding community do not
permit such alterations. Therefore, the aim of stigly was to propose a method to alter
both the mean and (co)variance of the prior muliata normal distributions of random
effects of linear mixed models while using currgrdiailable software packages. The
proposed method was tested on simulated examptes3adifferent software packages
available in animal breeding. The examples showe gossibility of the proposed
method to alter both the mean and (co)variancéefptrior distributions with currently
available software packages through the use oiktended data file and a user-supplied
(co)variance matrix.

Key words: Prior distribution, Bayesian, linear mixed model

SHORT COMMUNICATION

Currently, Henderson’s mixed models methods andt Besear Unbiased
Prediction (BLUP; Henderson, 1975) are commonlyduseanimal breeding. The typical
linear mixed model is written as follows:

y=Xp+Zu+e (V.1)
wherey is the vector of record$ andu are vectors of fixed and random effects related

to the records through the incidence matridesnd Z , respectively, ane is the vector

of residuals.

: : u 0 . :
It is assumed that the expectations E{e } = {O} and the (co)variance matrices
e

u G O
are Var{e} = {O R} where G is the (co)variance matrix associated withand R is

the (co)variance matrix associated wigh The estimates off; that is, ﬁ and the

predictions ofu; that is, i, can be obtained solving the mixed-model equatienten
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as follows (Henderson, 1950):

XR*X  XR'z |[p|_[XRYy

L o D D I A (V.2)

ZR™X ZR7Z+G™ |0 ZRy

In the case of BLUP, the (co)variance matriGeand R are assumed to be known.
Although u is assumed to have an expectation equd, ® need exists to alter

this expectation in some statistical analyses. Emample, Bayesian approaches
integrating external information (i.e., estimatecdaling values (EBV) and associated

reliabilities obtained from a foreign genetic ealan) into a local genetic evaluation
alter both E[u] andVar[u] (e.g., Gianola and Fernando, 1986; Quaas and Zi200%;
Legarra et al., 2007). For such approach#s] is equal to the foreign EBV anvar|u]
represents the associated matrix of predictiornr dom)variances. Another example is the
consideration of a population under selection geaomic breeding scheme by assuming
E[u] # 0 for the genotyped animals. Indeed, they may havexaectation different from
0 if selection occurred (Vitezica et al., 2011).s&J Schaeffer and Jamrozik (1996)
proposed a multiple-trait procedure for predictiactation yields for dairy cows based on
an alteration ofE[u] with information from groups of cows sharing tlem®e production
characteristics. However, to our knowledge, mo#twese packages currently available
in animal breeding do not permit alterations of extptions of random effects, whereas
they may allow the use of a user supplied covadanatrix. Therefore, the aim of this
study was to propose a method to alter both theaapons and (co)variances of random
effects while using software packages currentlyilalgle in animal breeding. The
development of the proposed method was based oayaskn view of linear mixed

models.

BAYESIAN VIEW OF LINEAR MIXED MODELS

Bayes estimators for linear (mixed) models andrthaations with BLUP were
discussed by several authors (e.g., Lindley andi5m®72; Dempfle, 1977; Gianola and
Fernando, 1986; Sorensen and Gianola, 2002). Frddayesian view, all fixed and
random effects are considered as random. Howdwetetms “fixed” and “random” will
still be used below to differentiage from u, respectively.

For the linear model (V.1), the following prior niuhriate normal (MVN)

distributions are assumed:

[BB]~MVN(b,B),
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wherebis a mean vector anfl is a (co)variance matrix,
lu]~MwN(g,G),
whereg is a mean vector, and
[dR]~MVN(0,R).
Assuming that all the (co)variance matrices arewkmahe joint posterior density ¥
andu can be written as follows:
LIRS el e |

Because this joint posterior distribution is mudtisate normal, its mean equals its mode,

f([i,u

and p and u can be estimated by differentiating the joint pdst distribution with
respect top and u and setting the derivatives equal to zero. Frois, ths shown by
Gianola and Fernando (1986), the following equaisoobtained:
XR?*X+B* XR'z |[p|_[XRly+B™b
[ ZR'X ZRZ +G‘1}L“J _[Z'R'1y+G‘1g} (V-3)
If a noninformative prior is considered f@r (i.e., B™ - 0) and g =0, the system of

equations (V.3) simplifies to traditional mixed-ned@quations (V.2).

ALTERATION OF PRIORS FOR RANDOM EFFECTS

In the following development, it is assumed tigahnd G ™ are known,g # 0 and

a non-informative prior fop is considered. Therefore, the system of equatigr®) (s
written as follows:

XR*X  XR?'zZ | X' Ry

p-1 'p-1 al AT 'p-1 1| (V'4)

ZR'X ZR'z+G™M|0| |ZRYy+Gg
Although most available software packages allowuse of a user-supplied (co)variance
matrix asG, or its inverseG ™, most of them do not allow thaj # 0. Thereby, the

system of equations (V.4), allowing an alteratidrthee default mean, cannot be solved
with current software packages. A way to solve tbmue is to develop a system of

equations equivalent to the system of equationg)(that can be solved by current
software packages. Therefore, below we defing a vector of pseudo-records (i.e.,
records corrected for all other effects thap X, andZ,, 2 incidence matrices relating

pseudo-records tpand u, respectively R, , a residual (co)variance matrix associated to
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the pseudo-records; arG™, a (co)variance matrix associated with conditional on
pseudo-records. Assuming tX, =0, Z,R;'y, =G™g and G =G " +Z,R;'Z,,
the system of equations (V.4) is equivalent to

X RIX + X RX, XR?'Z+X.R:Z, | B|_[XRYy+X.Rily,
{Z'R‘lx +Z R'X, ZR'z+G™ +z'PR,;12JM - [Z'R‘ly +z'PR;,1yJ - (VD)

The system of equations (V.5) can be written usorgact notation as
x*'R*_lx* X*‘R*_lz* ﬁ _ X*'R*_ly*
Z*'R*_lx* Z*‘R*_lz* +G*_l l,] Z*‘R*_ly*

* x * Z * * _1
where X™ = V2 = Yy = Y | andR"™ = R 0_1 :
Xp Zp Ye 0 Rp

Because the equivalent system of equations (V.$}lmsame form as the system
of equations (V.2), it can be solved using cursoftware packages allowing the use of a

user-supplied (co)variance matrix @, or its inverseG ™, and a data file containing
actual recordsy() and extended with pseudo-recorgs ). Therefore,y, andG ™ must

be computed before solving the system of equatidhs) as follows (after some

computational simplifications):

(1) Set up the matriG ™ and the vectog;

(2) Computed =G™g;

(3) Setup the matriZ, which is a diagonal matrix with (iZ, =1 if 6, #0 or (b)

Zp =0if 0, =0, wherei =1, ...,nandn is the number of levels associated with
u,

(4) Compute the (co)variance matriR, as R, =ZP(I DRO)Zp where | is an
identity matrix of sizek equal to the number of records for each trait (for
simplicity assumed to be the same across traits) By is the residual
(co)variance matrix between traits for 1 record,;

(5) Compute the vector of pseudo-recoydsasy, =R.0;

(6) Compute the (co)variance matr@ ™ as G’ =G -R;' where R;' is the
generalized inverse dR ;.

Each pseudo-record y, must be added to the data file. Because each pseud

record can be considered as 1 record correctedlfazffects other tharu, all fixed
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effects are set to O, leading X, =0, except for the effeatr, for which it is equal to the

level associated with the pseudo-record. With #pgroach, the system of equations
(V.5), equivalent to the system of equations (Vedh be solved using current software
packages.

For a univariate analysis, step (4) is not needebithe computations of steps (5)

and (6) can be simplified tgy, =00 andG ™" =G™ —ZP(JZ)_l, respectively, where

e

2
e

o: is the residual variance. For a multivariate asiaglysoftware packages may only

allow the use of a user-supplied matA (e.g., a relationships matrix), or its inverse
A7, instead ofG or G™, suchthaG™ is equal ttG™* =A™ 0G;', whereG;" is the
inverse of a known (co)variance matrix betweertdradBecause no matr A", or A",
can be found such that the compuG™™ is equal tcG™* =A""0G;', a canonical
transformation of the multivariate model must berfgrened (e.g., Quaas, 1984).
Therefore, a vector of transformed observatignsis defined such thag,, =Ty, for the
ith animal { = 1, 2, ...K), with a matrixT satisfyingTR,T =1 and TG ,T =D, where

D is a diagonal matrix, and in addition, a vectotrahsformed prior meang, must be
computed agy;; =Tg, fori =1, 2, ...k For thejth transformed variable, the system of

equations (V.4) can be then written as

[X:J‘Xj ‘X'izi _l:“:lfﬁ}zli ‘ x'inj_l } V.6)
Zi X Z3Zi+Gyy Uy | [ 237 + GOy

where G;; =A™'D}' is the inverse of the (co)variance matrix assediatith u;; and

DJle is the inverse of thgh diagonal element dD .

Because each analysis for ftie transformed variable is a univariate analysis, t

limitation of the use of a user supplied matdx or A™ for a multivariate analysis is

avoided. Thereby, the system of equations (V.6) lwarsolved for eacfth transformed

variable with the system of equations (V.5). Thetoey, and the matriyG ™ specific

to the jth transformed variable (i.ey, and G|") can be computed as described
previously, and a matriA;™ can be found such th& ™ = A7'D}’. Solutions for the

system of equations (V.4) expressed on the origgonale are equal tﬁi :T‘lﬁTi and

G, =T, fori=1,2, ..k
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If a software package does not accept levels ettffdefined as O for a (pseudo-)
record (e.g., DMU; Madsen and Jensen, 2012), soisitof (V.5) can be obtained by
adding a dummy level for those effects to repldee level defined as 0 and then by
writing a regression model where effects includindummy level are each considered as
a regression without intercept nested within thleat$. The associated covariables are
equal to O for the dummy levels; otherwise, theyyequal to 1.

EXAMPLE 1: NUMERICAL EXAMPLE

Consider a sample of 6 animals as designed in Taldle Milk yields (kg) for
animals 2 to 6 are reported (Table V-1). The assumedel was a univariate model with
a fixed herd effect and a random additive gendface The residual and additive genetic
variances were assumed to be 750 000 and 250 ()Gdapectively. The prior mean

vector (@) and the vector of estimated pseudo-recoy, )(are reported in Table V-1.

The varianceG™ was equal taG™ :A‘l(az)_l where A™ is the inverse of the

u

relationship matrix anig? is the additive genetic variance. The estimatetheffixed

herd effect and the predictions of the random éffesre obtained solving the system of
equations (V.4) and (V.5). Solved with the freetwafe package GNU Octave (Eaton et
al., 2011), both systems of equations providedsdmme solutions. These results were

expected because the 2 systems of equations aralkeqd.

Table V-1. Design and solutions for example 1

Animal Sire Dam Herd Milkyields Priormean Pseudoerds Estimated breeding values

1 - - 0 -700 -208.150
2 - - 1 8000 200 500 434.95
3 1 1 5500 200 1000 -80.29
4 1 2 2 6000 200 600 122.73
5 - 2 2 6500 0 -400 109.72
6 3 2 7000 0 -400 3.62

EXAMPLE 2: INTEGRATION OF EXTERNAL INFORMATION BASED ON A BAYESIAN
APPROACH

The example 2 tested the proposed method to ineegraternal information
following the second version of modified Bayesiaralgation (SBE; Vandenplas and
Gengler, 2012). The software packages used forek@nple were ASReml| with the
IBLUP option (release 3.0; Gilmour et al., 2009).WB°F90 (version 1.45; Misztal,

90



Short communication: Alteration of priorsfor random effectsin Gaussian linear mixed models

2013), and DMU4 from the DMU package (version 6ease 5.1; Madsen and Jensen,
2012).

A local sample of animals and a foreign one, batiiuding about 2400 animals
distributed over 6 generations, were simulated daoim 50 male founders and 200
female founders. For both samples, all females waredlomly mated with males
randomly selected from available males to simutagenext generation. The maximum
number of males mated in each generation was 4(aandle could be mated during a
maximum of 2 generations. Furthermore, these maticmuld not be realized if the
coefficient of relationship between 2 animals waghér or equal to 0.5, and if the female
had already 3 progeny. Concerning the foreign seyipteign females were only mated
with foreign males. In each generation, 60% of ifpremale offspring were randomly
culled. Concerning the local sample of animalsaldemales were mated with local
males and a subset of foreign males, includinditee150 sires that had most offspring
in the foreign population. In each generation, S8%ocal male offspring were randomly
culled. Records for milk yield (kg) for the firstdtation were simulated for each female
in both samples (Van Vleck, 1994). A herd effecsted within sample was randomly
assigned to each female under the condition thet dard included about 40 females.
Residual and additive genetic variances were assumde 6 * 16 and 2 * 10 kd?,
respectively.

Simulation of data and a foreign genetic evaluaian, a BLUP evaluation (V.2)
based on foreign pedigree and data) were performigd GNU Octave software.
Integration of external information into the loggnetic evaluation (i.e., an evaluation
based on local pedigree and data) was performéamMoly the SBE. In the context of
SBE, external information included foreign EBV fibre 150 sires and EBV predicted

from the foreign ones for local animals (summarizedg) and associated record

equivalents only due to own records (RE; i.e., @if® numbers of records free of
contributions due to relationships estimated by-step algorithm; Vandenplas and

Gengler, 2012). Because RE are only due to ownrdscdRE for local animals were

equal to zero. The matriG™ associated withg is the matrix of prediction error

(co)variances and was approximated @S :A’l(az)_l+Awhere A is a diagonal

u

matrix with diagonal elements equal 19, = RE; (Uez)_l for theith animal (Vandenplas

and Gengler, 2012). The SBE was also performed wiMU Octave software and

obtained solutions were considered as reference.
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To test the proposed approach with ASReml, BLUPF&@] DMU4, local
pedigree and data files as well as foreign EBVthar 150 sires and predicted EBV for

local animals and associated RE were created.n§eip ofG™, g, Z, andR,, and

1

computations ofd, y, and G were performed with GNU Octave software. Files

containing the user-supplied (co)variance matrixemeritten following specific rules for
each software package and the pseudo-recory, invere added to the data file with

appropriate levels for the different effects.

The system of equations (V.5), based on the exter#a and user-supplied
(co)variance matrix, was solved with ASReml, BLUBF@&nd DMU4. For DMUA4,
solutions were obtained with the equivalent nestsgression model. The system of
equations was solved by direct computation propdsethe 3 software packages used.

Solutions were compared with those estimated wktu@®ctave software, measuring the

sol; —soly,

sol

relative errorsA = where sol;, was the estimate for thigh level of the

effects estimated with GNU Octave amsdl; was the estimate for théh level of the

effects estimated with 1 of the 3 software packagesl (i.e.] = ASReml, BLUPF90, or
DMU4). The A values ranged from 0.00 to 4.96 *36r ASReml, from 0.00 to 9.78 *

108 for BLUPF90, and from 0.00 to 3.83 * fGor DMU4. AverageA were 9.11 * 10
for ASReml, 2.54 * 10° for BLUPF90, and 2.52 * 1&for DMU4. Differences between

A can be explained by the precision considered bystitware packages for integer and
real variables and by the writing format specificas of the software packages for the
solutions.

In conclusion, these 2 examples showed the posggibd alter both mean and
(co)variance of the prior distribution associatethwandom effects for linear mixed
models equations with current software packagesnwaomly available in the animal
breeding community through the use of an extendath dile and a user-supplied

(co)variance matrix.
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Chapter VI. UNIFIED METHOD TO INTEGRATE AND BLEND
SEVERAL, POTENTIALLY RELATED, SOURCES OF INFORMATION

FOR GENETIC EVALUATION

Chapter Ill proposed an algorithm that considengbti® counting
of contributions due to relationships among exteanamals when
their associated external information was integrateto an
internal genetic evaluation. However, as highlighte Chapter II,
external information may be based on data sharetidgxternal
and internal evaluations and double counting otrdmutions due
to records may thus appear. Furthermore, Chaptemldb
highlighted that all proposed Bayesian approacliesiuding
those proposed in Chapter Ill, do not allow thegnation of more
than one source of external information. Thereftr@sed on a
Bayesian approach, a method integrating and blgndin
simultaneously several sources of information iato internal
genetic evaluation while avoiding double countingf o
contributions due to relationships and due to @€ovas proposed
and tested on both simulated and real data inGhapter.

From: Vandenplas, J., F.G. Colinet and N. Gengler2014. Unified method to
integrate and blend several, potentially related, aurces of information for genetic
evaluation. Genet. Sel. Evol. 46:59.
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ABSTRACT

B ACKGROUND

A condition to predict unbiased estimated breedialges by best linear unbiased
prediction is to use simultaneously all availabdéad However, this condition is not often
fully met. For example, in dairy cattle, internag( local) populations lead to evaluations
based only on internal records while widely useeiffn sires have been selected using
internally unavailable external records. In sucbkesainternal genetic evaluations may be
less accurate and biased. Because external re@elsunavailable, methods were
developed to combine external information that samres these records, i.e. external
estimated breeding values and associated reliabijlitvith internal records to improve
accuracy of internal genetic evaluations. Two issaokthese methods concern double
counting of contributions due to relationships @ to records. These issues could be
worse if external information came from severalleaons, at least partially based on
the same records, and combined into a single iateavaluation. Based on a Bayesian
approach, the aim of this research was to develamfeed method to integrate and blend
simultaneously several sources of information iato internal genetic evaluation by

avoiding double counting of contributions due tlatienships and due to records.

RESULTS

This research resulted in equations that integrateblend simultaneously several
sources of information and avoid double countingcantributions due to relationships
and due to records. The performance of the devdl@ogiations was evaluated using
simulated and real datasets. The results showedhbadeveloped equations integrated
and blended several sources of information wedl amgenetic evaluation. The developed
equations also avoided double counting of contidmst due to relationships and due to
records. Furthermore, because all available extemaces of information were correctly
propagated, relatives of external animals benefitech the integrated information and,

therefore, more reliable estimated breeding vale® obtained.

CONCLUSIONS

The proposed unified method integrated and blendederal sources of
information well into a genetic evaluation by aviagl double counting of contributions

due to relationships and due to records. The whifiethod can also be extended to other
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types of situations such as single-step genomienaotti-trait evaluations, combining

information across different traits.

BACKGROUND

Simultaneous use of all available data by Bestaiignbiased Prediction (BLUP)
is a condition to predict unbiased estimated brepdialues (EBV; Henderson, 1984).
However, this condition is not often fully met. Fexample, in dairy cattle, while foreign
bulls are often widely used, e.g., through ar@fiadnsemination, evaluating populations
based only on internal phenotypic data (i.e., mdemrecords) will lead to potentially
biased and less accurate evaluations (Bonaiti asidhBrd, 1995). The reason is that
external phenotypic data used to select thesegiotmills are not available at the internal
level. Multiple across country evaluation (MACEgrformed at an international level by
International Bull Service (Interbull, Uppsala, Siee), allows EBYV, for each population
scale, to be aggregated into a single rankingrtarnational dairy sires. However, this
has no influence on internal evaluations. Thesgessare also relevant in the setting of
current developments of genomic multi-step or srglep prediction methods (e.g.,
Aguilar et al., 2010; Christensen and Lund, 201&nRaden, 2012).

Because external phenotypic data are not avaikbtee internal level, methods
were developed to combine external information, egternal EBV and associated
reliabilities (REL), with internal data to improaecuracy of internal genetic evaluations.
A first type of approaches is based on performangosteriori, an additional step after the
genetic evaluation at the internal level. Theser@gghes combine external and internal
EBV based on selection index theory (e.g., VanRa@&31), based on mixed model
theory (e.g., Taubert et al., 2000) or based oariate evaluations (e.g., Mantysaari and
Strandén, 2010). One of the problems of a posteapproaches is that external
information used for selection will not contributethe estimation of fixed effects at the
internal level, which can create potential biagesecond type of approaches combines
external information simultaneously with internddemotypic data in genetic evaluations
at the internal level. Simultaneous combinationeaternal information and internal
phenotypic data can be carried out using differeathods. However, to our knowledge,
the following two approaches are the most usedst,Fexternal information can be
directly included by converting this informatiortenpseudo-records for fictive daughters
of external animals (e.g., Bonaiti and Boichardd3)9 Similar approaches were proposed

to include external information into internal siegitep genomic evaluations (e.g.,

98



Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation

VanRaden, 2012; iibyl et al., 2013). Second, external informatiom dae directly
included by changing both the mean and (co)variafi¢ke prior distributions of genetic
effects in a Bayesian approach, as mentioned, Xamele, by Gianola and Fernando
(1986). Quaas and Zhang (2001, 2006) and Legamh €2007) proposed two Bayesian
derivations to integrate external information intdernal genetic evaluations in the
context of multi-breed genetic evaluations for bestle. These two derivations consider
external information as priors of internal genddifects. Vandenplas and Gengler (2012)
compared these two derivations and proposed sompvements that concerned mainly
double counting of contributions due to relatiopshamong external animals. Indeed, an
EBV of an animal combines information from its owatords (i.e., contributions due to
own records) and from records of all relatives tigto its parents and its progeny (i.e.,
contributions due to relationships; VanRaden, 20Misztal and Wiggans, 1988).
Therefore, integration of EBV for relatives can sauhe same contributions that are due
to relationships to be counted several times, witigh bias genetic evaluations at the
internal level.

Both types of approaches, i.e., that combine avialanformation a posteriori or
simultaneously, raise another issue if the extemfatrmation results from an evaluation
that combines external and internal records, whsclthat some contributions due to
records will be considered several times when aateinformation is combined with
internal records. Although this is a major issug tmmmon sources of external
information (e.g., MACE information), to our knowlge, only a few studies have
proposed solutions to the double counting of cbaotrons due to records (e.g.,
VanRaden, 2012; Gengler and Vanderick, 2008; VaeRaand Tooker, 2012). The
proposed solutions were developed as an additpmegbrocessing step before integration
of external information. Furthermore, in many sitoias, integration of several sources of
external information into genetic evaluations & thternal level may be needed but this
has not been studied to our knowledge. In suchscakrible counting of contributions
due to records could be worse if external infororatirom several evaluations were, at
least partially, based on the same internal recand/or on the same external records,
and integrated into the same genetic evaluation.

Thus, the aim of this research was to develop &ednmethod to integrate and
blend simultaneously several, potentially relaexternal sources of information into an
internal genetic evaluation based on a Bayesiamoapp. In order to achieve this aim,

methods were developed to avoid double countingootributions due to relationships
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and due to records generated by the integratiosewéral sources of information. This
resulted in modified mixed model equations (MME)atthintegrate and blend
simultaneously several sources of information araidadouble counting of contributions
due to relationships and due to records. The pedace of the developed equations was

evaluated using simulated and real datasets.

METHODS

INTEGRATION OF SEVERAL SOURCES OF EXTERNAL INFORMATION

Assume an internal genetic evaluation (referreditb the subscript § based on

internal data (i.e., a set of phenotypic recorgls;) that provides internal information

(i.,e., EBV and associated REL obtained from thelaton E). Also, assume aith
external genetic evaluation< 1, 2, ...,N, referred to with the subscript)Ehat is based
on theith source of external data (i.e., thth set of phenotypic records not used by

evaluation kg and free of internal data:. ) and that provides thigh source of external

information, i.e., all available external EBV (EBYand associated REL (e.g., EBV and
associated REL obtained from evaluatiarbBsed only on external data Bnd EBV and
associated REL obtained from evaluationb@sed only on external data) En addition
to be free of internal data, it is also assumetighahith source of external data was free
of the otherN-1 sources of external data. These assumptionstéeadchith source of
external information to be free of internal datal anformation, as well as of thd-1
other external data and information.

Two groups of animals, hereafter called externdl iaternal animals, are defined

according to thath source of external information. Therefore, facleith source of
external information, external animals (subscegt with i = 1, 2,...,N ) are defined as

animals that are associated with titis source of external information and for which
internal data and/or information is available oatthhave relationships with animals
involved in the internal evaluation.EAll animals that are not defined as external aism
for theith source of external information are defined asriral animals (subscriph?).
Internal animals are then defined as animals asstiwith only internal information
when considering thegh source of external information. It is noted teaternal animals
may be associated with different sources of extanfarmation and that an animal may

be considered as external for ik source of external information and internal tfoe N-
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1 other sources of external information becaused#@faitions of external and internal
animals depend only on the source of external métion considered. Those definitions
are summarized in Table VI-1. In addition, becapedigree information for animals can
be easily integrated into a genetic evaluationisitassumed that the same complete
pedigree information could be used for all animéds each genetic evaluation.

Concerning the notation of matrices in the follogvsections (e.9.X¢, (»,)), the subscript

Ei refers to theth source of external information and the subsasiphin brackets A, )

refers to théth group of animals.

Table VI-1. Concepts related to the terminology of internal &axternal animals and
information

Pedigree
Datd . 9 :
Internal animals External animals
Internal evaluation Internal - external evaluations
Internal data . ! . ;
Internal informatiof Internal - external information

External evaluation

Bxternal data ) External information

'Data = set of phenotypic records;
?Information = estimated breeding values and astatizliabilities.

The N sources of external information must be integraietw the internal

evaluation . For external animals associated with itthesource of external information,

all EBVg; are summarized by the vector of external EB\E/i,(Ai), and by the prediction

error (co)variance matrixDe , ,- Becausdl ,, could be estimated with an equivalent

external genetic evaluation that includes the ma@kanimals in the pedigree through a
genetic (co)variance matrix extended to all animi@s the ith source of external

GEi(AiOAiO) G
G

G

AN

information, G :|: } the vector of external EBV for all internal and

E (AiAiO) Ei (AiA))

external animals for thith source of external information is estimated as:
_1 ~
0. :|: i(A?)} = l:G E; (APAi)S5 Ei (AiAi)uEi(Ai):| _

a
E

uEi(Ai) uEi(Ai)

A modified set of multi-trait mixed model equatiotigat integrateN sources of

external information, each summarized |ﬁl)éi and its associated prediction error

(co)variance matrdD, for theith source of external information, can be writter{&ee

Additional file 1 for the derivation of the equat]:
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X Eo RE](;XEO X Eg R;,ZEO ﬁE
N 0

Z'e, R;OXEO Z. R;)ZEO +G;) +Z(Dgi1 —G;) GEO
i=1

L : (VI1.1)
X Eq REOyEO

- N
z Eo R;)yEo +Z(DéiluEi )
i=1
where X and Z. are incidence matrices relating records/in to the vector of fixed

effects |§EO and the vector of random additive genetic effeets, respectively,G ;) IS

the inverse of the internal additive genetic (capm@ce matrix associated with the internal

genetic evaluation Ethat includes all internal and external animalsl @ is the
inverse of the residual (co)variance matrix.

For the approximation 01D;i1, it can be shown that [See Additional file 1]:
D =Gg +Z'c RgZ. , where Z. is the incidence matrix relating records it
external data to internal and external animals R; is the residual (co)variance matrix
for the ith source of external information. Thereb Dgil is approximated by
Dgil :G;il +Ag , where A is a block diagonal variance matrix with one blquér
animal (Quaas and Zhang, 2006; Vandenplas and &eml12) andA. =Z_. R Z. .
Each diagonal block cA¢ is equal toAEi(j)RglAEim forj =1, 2, ...,J animals, where
the matrixR, is a matrix of residual (co)variance among traitd theth matrix A (;) is

a diagonal matrix with elemen,/RE;, wherek =1, 2, ...K traits. ElemenRE;, is the

effective number of records, i.e., record equiviefor thejth animal for thekth trait
associated with th&h source (Misztal and Wiggans, 1988; Vandenplad @engler,
2012). Record equivalents express the quantity aoftrbbutions due to relationships
and/or due to records considered for the evaluatioan animal. For internal animals,

RE;, is equal to O because all contributions are onlg tb the relationships among

external and internal animals. For external animiéldouble counting of contributions
1-n2 _ RELy,

> for
he 1- REL;,

due to relationships among them is not taken ictoant, RE;, =

thejth animal for thekth trait associated with thigh source, wherh/? is the heritability

of the kth trait (Misztal and Wiggans, 1988; VanRaden aniggahs, 1991). If double
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counting of contributions due to relationships amaxternal animals is taken into
account, RE; only expresses the amount of contributions duestords and can be
estimated through a two-step algorithm (TSA; Vamplies and Gengler, 2012). The first
step of this TSA determines external animals aasediwith external information that
includes only contributions due to relationshipse Becond step estimates the amount of
contributions due to records (expressed as RE)ekternal animals associated with
information that combines both contributions dueediationships and own records. Note

that the proposed approximation Z'Ei R;ZEi differs from the approximation proposed
by Quaas and Zhang (2006). Indeed, they proposepgmximate each diagonal block of
Ag, by Aq (j)GglAQi ()» Where the matrixG, is a matrix of genetic (co)variance among
traits ancA () is a diagonal matrix with elements:

V3 =[REL;, /(1-REL,,) .

Also, the multi-trait MME (VI1.1) that integratd sources of external information

N N
differ from the usual multi-trait MME only by therlmsZ(D; —G;il) andZ(D;ilﬁEi ):
i=1 i=1
1 -1 1 -1 o 1 -1
X Eo REOXEO X Eo REOZEO } BEO :|:X Eo REOyEo} (VI 2)
1 -1 1 -1 -1 ~ 1 -1 * .
Z'e Re Xey Z'g Re Ze, +Gg, || Ug, Z'e Re Ve,
Furthermore, it was previously assumed that thelevhedigree is available for all

genetic evaluations. The additive genetic (co)vexeéamatrices that include all internal

and external animals are then equal for all genedwaluations (i.e.,

G, =G =G, =...=G_ ). Nevertheless, each internal or external geretatuation
0 1 2 N

could be performed as a single-step genomic evatuge.g., Aguilar et al., 2010;

Christensen and Lund, 2010) without modificationsthe Bayesian derivation [See
Additional file 1] because assumptions on the déifié matricesG. were not limiting.
Such cases would lead ®; # G, . For example, integration of external information

provided by the usual MME into a single-step gerwravaluation would lead to

Gg, #G¢, becauseGg, would include genomic information (Aguilar et ak010;

Christensen and Lund, 2010), unlikg. .
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INTEGRATION OF SEVERAL SOURCES OF EXTERNAL INFORMATION BY AVOIDI NG DOUBLE

COUNTING OF CONTRIBUTIONS DUE TO RECORDS

Assumptions stated in the previous section led @achesource of external
information to be obtained from an external evatuathat was based only on external
data and free of internal data and informationywali as of theN-1 other external data
and information. In practice, this assumption is mecessarily valid because a source of
external information may be obtained from an exdkavaluation based on external data
and/or information and also on internal data anohfmrmation (e.g., EBV and associated
REL obtained in country Ebased on external data Bnd on internal datagk Thus,
double counting of contributions due to recordsMeen internal and external information
must be taken into account, as detailed below.

For theith source of external information, internal infotroa included into
external information (subscript;) | associated with the external animals can be

summarized asi, (., i.e., the vector of internal EBV associated wettternal animals

for which external information included both extarmand internal information, and by
D, (a,) » the prediction error (co)variance matrix ass@datith G, (, ) -

A modified set of multi-trait mixed model equatiotiat integrate several sources
of external information and take double countingatributions due to records between

external and internal information into account, a@nwritten as follows [See Additional
file 2]:

Z RiZ, +Gg +
Z'e, R;)XEO N N
D -G )->.(D' -G}
| ;( Ej Ei) ;( I |i) , (V|3)
I X', ReyYe,
AEO = -1 L -1~ N -1~
_qu ZEOREoyEo+;(DEqui)_Zl:(Dliuli)

where G, is a genetic (co)variance matrix for all animais the internal information

included into the ith source of external information,
0 G Gl (a
a, :{ "(A‘O)} ={ a7 ilain) "(A')} is the vector of internal EBV associated with the
|

ith source of external information that includeseinal information andD,‘i1 is the
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inverse of the prediction error (co)variance masssociated withi, and approximated

as detailed in the previous section.

If the ith source of external information does not incliudernal information for

external animals, the vectér, is undetermined and the matiiX" is equal toG*. This

leads to the system of equations (VI.1).

BLENDING SEVERAL SOURCES OF EXTERNAL INFORMATION BY AVOIDING DOU BLE

COUNTING OF CONTRIBUTIONS DUE TO RECORDS

Equations to blend several sources of externalmmition by avoiding double
counting of contributions due to records amongrivdkand external data/information can

be derived from the system of equations (VI.3) guming thay. has no records (i.e.

thaty. is an empty vector). Then, the equation can b#emras follows:

(G;} +

N

(b -c2)- =Nl by —G,‘})jan =Y bz, )-> [ora, ). (V1.4)

N N
i=1 i i=1 i=1

SIMULATED EXAMPLE

The system of equations (VI.3) was tested using demulated with the software
package GNU Octave (Eaton et al., 2011). The cordkthe simulation was a country
that imports sires from another country to geneth&e next generation of production
animals and potential sires. Populations of theoirtipg country (hereafter called the
internal population) and of the exporting countrgreafter called the external population)
were assumed to belong to the same breed. Eaclatiopuncluded about 1000 animals
distributed over five generations and was simuldiedn 120 female and 30 male
founders. For both populations, milk yield in thestf lactation was simulated for each
female with progeny, following Van Vleck (1994).h&rd effect nested within-population
was randomly assigned to each phenotypic recordoblain enough observations per
level for the herd effect, each herd included asiel0 females. Phenotypic variance and
heritability were assumed to be 3.24 ? @2 and 0.25, respectively.

To simulate the internal and external populatiding,following rules were applied
to generate each new generation. First, from tltersk generation, both females and
males older than one year old were considered agrenr breeding and a male could be
mated during at most two breeding years. Secorfd, &5the available females and 75%

of the available males with the highest true bregdialues were selected for breeding.
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Third, all selected females were randomly matedh whe selected males. The maximum
number of males mated to produce the next genarat@s set to 25. Furthermore, a
mating could be performed only if the additive tiglaship coefficient between male and
female was less than 0.5 and if the female hadiessthree progeny.

The external population was simulated first anditeaithl rules were applied to
this population. For this population, males thateveelected for mating only originated
from the external population and 60% of the extenmale offspring with the lowest true
breeding values were culled in each generation.nThiee internal population was
simulated. For this population, males were select®@dng all available internal males
and a subset of selected external sires. This solbbgxternal sires included the first 50
sires with the highest true breeding values in élxéernal population. Also, 99% of
internal male offspring with the lowest true bregdivalues were culled in each
generation. No female offspring was culled in aithepulation.

Using the simulated data, three genetic evaluatiere performed (Table VI-2):

(&) Ajoint evaluation (EVAL) was performed as a BLUP evaluation using theegyst
of equations (VI.2) and based on external and nialepedigree and data. This
evaluation was assumed to be the reference.

(b) An internal evaluation (EVAL was performed as a BLUP evaluation using the
system of equations (VI.2) and based on interndigpee and data.

(c) An external evaluation (EVAd) was performed as a BLUP evaluation using the

system of equations (VI.2) and based on externdibpee and data.

Table VI-2. Genetic evaluations performed for the simulatedrgxa

Genetic evaluatioris

J E | BE BJ BJ-1
External pedigree X X
Internal pedigree X X X X X
External data X X
Internal data X X X X X

Integrated information (50 external sires)

External EBV and REL X
Joint EBV and REL X X
Internal EBV and REL X

1J = Joint; E = External; | = Internal; BE = Bayesiaxternal; BJ = Bayesian Joint; BJ-1 = BayesiaimtJo

minus Internal.

Three Bayesian evaluations that integrated infaonmgtrovided by EVAE or by
EVAL; for the 50 external sires into EVAlere also performed. Because the external

sires were related, double counting of contribigioie to relationships existed and this
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was taken into account for the three Bayesian awalus through the TSA (Vandenplas

and Gengler, 2012). Double counting of contribuidie to records could also exist with
the integration of information provided by EVAinto EVAL, because EVALand EVAL

were partially based on the same data (i.e., iatedtata). The following three Bayesian

evaluations were performed:

(d)

(e)

A Bayesian evaluation using the system of aqoat(VI.1) and using EBV and
prediction error variances (PEV) obtained from EVWA&ssociated with the 50
external sires that were used inside the interopljation as external information
(EVAL gp).

A Bayesian evaluation using the system of egost(VI.1) and EBV and PEV
obtained from EVAL; associated with the 50 external sires as extanf@imation
(hereafter called joint information) (EVAL). Although EVAL; was based on
external and internal data, double counting of ibutions due to records

between joint and internal information was not takeo account.

(H A Bayesian evaluation integrating joint infortian by using the system of

equations (VI.3) and taking into account doublentmg of contributions due
records among internal and joint information (EVAL. Double counting of
contributions due to records among internal andtjmiformation was taken into
account by using EBV and PEV obtained from EVYAdssociated with the 50
external sires.

The simulation was replicated 100 times. Compasgsbetween EVAL and

EVAL,, EVALge, EVALg; or EVALg;, were performed separately for the 50 external

sires and for the internal animals. Comparisongweased on:

(1)

(2)
®3)
(4)

()

Spearman’s rank correlation coefficients (rE&V obtained from EVAL (EBV,)
with EBV obtained from EVAL(EBV)), EVALge (EBVgg), EVALg; (EBV3,), and
EVALg;. (EBVB,.),

regression coefficients (a) of EB¥n EBVM, EBVgg, EBVg;, and EB\4;., and
coefficients of determination (R?) associatethwthe regressions,

the total amount of RE (RE associated with external information, joint
information and joint information corrected for tmeluded internal information,
and

mean squared errors (MSE) of EB¥BVgg, EBVg; and EB\4;., expressed as a
percentage of MSE obtained for EBWor each replicate, the MSE obtained for

EBV, was reported to a relative value of 100 beforedifferent computations of
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MSE.
Because the TSA was applied before all three Bagesvaluations, RE were
free of contributions due to relationships estirddty the Bayesian evaluations. For an

easier understanding of the results and discus&&n¢an be transformed into daughter

_h2
equivalents (DE) througiDEijk:Lll—hh;DREijk (VanRaden and Wiggans, 1991). All

k

results were the average of the 100 replicates.

WALLOON EXAMPLE

Even if MACE allows the aggregation of EBV for daisires, internal genetic
evaluations for animals not associated with MACIermation (e.g., cows, calves, young
sires) are not influenced by external informationsidered by the MACE for dairy sires
and may be still biased. Therefore, integration MACE information into internal
evaluations, as well as blending of MACE and inaéiinformation, could benefit those
animals. The performance of equation (VI1.4) thanids MACE and internal information
was evaluated in the context of the official Watiagenetic evaluation for Holstein cattle.

The Walloon example used information for milk, famd protein yields for
Holstein cattle provided by the official Walloonrgtic evaluation (Auvray and Gengler,
2002; Croquet et al., 2006). The genetic varianeese those used for the official
Walloon genetic evaluation (Auvray and Gengler, 20&nd were equal to 280 425 kg?
for milk yield, to 522.6 kg? for fat yield and t®2.5 kg? for protein yield. The respective
heritabilities were equal to 0.38, 0.43 and 0.4ie pedigree file was extracted from the
database used for the official Walloon genetic eatadn (EVALy) and covered up to six
known ancestral generations. The extraction wa®peed for a randomly selected group
of 1909 animals (potentially genotyped) born afté08. The selected group included
sires, cows and calves that were used or weretrtog anternal level. After extraction, the
pedigree file contained 16 234 animals.

Internal information included EBV and associated LR&stimated from data
provided by the Walloon Breeding Association (EBWRELy) for the EVALy for milk
production of April 2013 (Auvray and Gengler, 20@20quet et al., 2006). A total of
12 046 animals were associated with an availabl¥¢\izBExternal information included
EBV and REL for 1981 sires provided with the officrelease for the April 2013 MACE
performed by Interbull (EVAlkace, EBVmace, RELuace; Interbull, 2013). It should be
noted that the Walloon Region in Belgium particguain the April 2013 MACE. Internal
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and external information were harmonized betweenWalloon and MACE evaluations
by adjusting scales and mean differences towaslsrilyinal expression of the trait in the
Walloon genetic evaluations. External informatioaswthen considered to be the same
trait as the internal phenotype trait.

Unlike the simulated example, no joint evaluati@sdd on Walloon and external
records was available for both external and infemw@mals. Because EVAlace
aggregated EBV from several national genetic evigog for sires, it was considered as
the reference for the evaluated sires. Walloon MACE information were blended by
using equation (VI.4) for the following four casesith or without consideration of
double counting of contributions due to relatiopshand with or without consideration of
double counting of contributions due to recordsb(@aVI-3). Double counting of
contributions due to relationships was possibleabse all animals associated with
Walloon and/or MACE information were related. Dagilsbunting of contributions due to
records was also possible because MACE informadissociated with the 1981 sires
included contributions provided by EVAL Thus, to test the importance of both double
counting issues, the following four cases were @atald:

(@) Walloon and MACE information were blended withoconsidering double
counting of contributions due to records and dueelationships (EVAkLnn,
EBVasinn, RELsLnN)-

(b) Walloon and MACE information were blended bynsilering only double
counting of contributions due to records (EVAke, EBVgire, RELgre). TO
achieve this goal, the contribution of Walloon imf@tion into MACE information
was determined based on the domestic effective daugequivalents (EDC)
associated with EBWace and RElyace and provided with the official release for
the 2013 Aprii MACE by Interbull. MACE informatiorfree of Walloon
information was reported by a domestic EDC equdl.tA total of 601 sires were
associated with an EDC greater than 0. For thedesB6s, EBV and associated
REL estimated from Walloon data and contributingtite April 2013 MACE
routine-run (EBVWy., RELwc) were considered by EVAdre to take double
counting of contributions due to records into actouDouble counting of
contributions due to relationships was not takéa account for either Walloon or
MACE information.

(c) Walloon and MACE information were blended bylyortonsidering double

counting of contributions due to relationships amail animals (EVAlg R,
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EBVgr, RELgr). The TSA was therefore applied for Walloon and GE&
information. Double counting of contributions dwerécords was not considered.
(d) Walloon and MACE information were blended bynsmlering both double
counting of contributions due to records and duerdfationships (EVAk.,
EBVgL, RELg.). Reliabilities for EB\G.nn, EBVeLre, EBVELR @and EBV. were

computed using the equaticREL=1-PEV /o, where o] is the genetic

variance for the corresponding trait aPEV is the prediction error variance
obtained from the diagonal element of the invelteftl hand side (LHS) of the
equation (V1.4).

Table VI-3. Bayesian evaluations performed for the Walloon gxdam

Bayesian evaluations
BLNN BLRE BLR BL

Available estimated breeding values and reliabiti

Official Walloon evaluation X X X X

Multiple Across Country Evaluation X X X X
Double counting accounted

Records X X

Relationships X X

As explained previously, EVAkace Was considered as the reference for sires
evaluated through EVAkace. Comparisons between EVfyhce and EVALy, EVAL g\,
EVALg re, EVALg R Or EVALg. were performed based on:

(1) Spearman’s rank correlation coefficients (r)EBVuace with EBVw, EBVginn,

EBVgire, EBVELR and EBVG,

(2) MSE of EBMWy, EBVs.nn, EBVeire, EBVBiR, and EVALg, (i.e. mean squared
errors expressed as a percentage of average MEBBE\GY),

(3) regression coefficients (a) and,

(4) Rz of the regressions of EVihce On the five other evaluations (i.e., EMAL

EVALg NN, EVALg Re, EVALg R and EVALg,),

(5) REqtand
(6) average REL.

Comparisons concerned two groups of sires. A fjireup of sires included 1212
sires that were associated with both Walloon andO#Anformationand had daughters
with records in the Walloon region dataset (heerafialled “internally used sires”). A
second group of sires included 631 sires that vessociated with both Walloon and

MACE information but had no daughters with recaordshe Walloon region dataset (i.e.,
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they had only foreign, or external, daughters; akee called “internally unused sires”).
The RE. were free of contributions due to relationshipattivere estimated by the
Bayesian evaluations but could include contribuidiclue to relationships that resulted
from the previous genetic evaluation if the TSA was applied.

The effect of blending MACE and Walloon informatievas also studied for
internal animals that were not associated with MA@#rmation and that were sired by
internally used sires by considering (1) r betw&aALg and EVALw, EVALg\nN,
EVALgre Or EVALgR, (2) REo and (3) average REL. Three groups of internal atsm
were defined depending on their RELThe first group included internal animals that
were associated with a Rigllower than 0.50, the second group included inteananals
that were associated with a Rilbetween 0.50 and 0.75, and the third group incdude
internal animals with a RE{.equal or higher than 0.75.

All blending evaluations were performed using aswar of the BLUPF90
program (Misztal, 2013) modified to implement tlypations (VI.1), (V1.3) and (V1.4).

RESULTS AND DISCUSSION

SIMULATED EXAMPLE

On average, each of the 100 simulated internalexiternal populations included
1048 animals. Results for r, MSE, a and R? for jptexh of EBV; are in Table VI-4 for
the 50 external sires and for the internal animals.

Compared to the rankings of EVAlintegration of external or joint information
for the 50 external sires led to rankings of E¥ALEVALg; or EVALg;., that were more
similar to those of EVAL Rank correlations r increased from 0.57 for EVAd at least
0.95 for EVALg; for the 50 external sires and from 0.93 for EVA& at least 0.98 for
EVALg; for internal animals (Table VI-4). Furthermore, ElSa and R? also showed that
the integration of external or joint informatiorr filve 50 external animals with EVAE,
EVALg; or EVALg,, led to better predictions of EBMor both external and internal
animals (Table VI-4). Therefore, the observatidma internals animals related to the 50
external sires were also better predicted by ESAIEVALg; and EVALg;., compared to
EVAL,, revealed that the external information propagdteth the 50 external sires to

relatives.
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Table VI-4. Average (SD in parentheses) of parameters obtafoedhe simulated
example over 100 replicates

Concerned Genetic >

3 4 4 5
animalg evaluatiof r MSE a R REt
Internal animals

EVAL 0.934 100.00 0.982 0.896 i
: (0.021) (28.621) (0.042) (0.030)
EVAL o >0.999 0.61 0.997 0.999 i
(0.000) (0.58) (0.005) (0.001)
EVAL 0.979 34.26 0.977 0.965 i
BJ (0.005) (7.92) (0.024) (0.008)
EVAL 0.996 6.78 1.021 0.993 i
BJ- (0.001) (3.02) (0.013) (0.002)
External sires
EVAL 0.571 100.00 0.712 0.391 i
: (0.131) (32.31) (0.168) (0.146)
EVAL 0.997 0.35 1.000 0.998 76.3
BE (0.001) (0.22) (0.011) (0.002) (5.1)
EVAL 0.956 17.16 0.821 0.924 141.5
By (0.017) (4.18) (0.039) (0.030) (7.8)
EVAL 0.996 0.60 0.993 0.996 78.7
B (0.002) (0.26) (0.012) (0.002) (5.1)

YInternal animals = animals associated with onlgrinal information; External sires = sires assodiatéh
external information;

’EVAL, = BLUP evaluation based on internal pedigree artd;daVALg: = Bayesian evaluation using
external EBV and PEV associated with the 50 extesitas used in the internal population; EVAL=
Bayesian evaluation using EBV and PEV obtained fthm joint evaluation and associated with the 50
external sires; EVAL;, = Bayesian evaluation using EBV and PEV obtaingdanfthe joint and from
internal evaluations and associated with the 5@ragt sires to avoid double counting among inteamal
joint information; r = rank correlations between ERstimated by EVAL and by EVAL, EVALgg,
EVALg;or EVALg;..

3MSE = mean squared errors expressed as a perceotafe average internal MSE between a joint
evaluation and EVA|,. EVALgg, EVALg; or EVALgy,;

“a = regression coefficient and R2 = coefficientlefermination of the regression of EBV estimatedHgy
joint evaluation on EBV estimated by EVAIEVALgg, EVALg; 0r EVALg;

°RE,; = total amount of record equivalents free of cibnions due to relationships among external
animals.

The RE: associated with EVAg: was equal to 76.3 (which also corresponded to
381.6 DE), while the RE associated with EVAg; was equal to 141.5 (DE = 707.7, Table
VI-4). The higher RE; associated with EVAt; showed that double counting of
contributions due to records was present when jofiormation was integrated. Indeed,
joint information contained both external and intrinformation. The RE associated
with EVALg;, was equal to 78.7 (DE = 393.3, Table VI-4). Whihés latter REy is
slightly higher (i.e., 3.1% on average) than thg,RESsociated with EVAdg, it showed
that double counting was almost avoided when imdeimformation was considered for
the 50 external sires. A total of 96.4% of conttibos due to records of internal
information on average was removed from the jomforimation (Table VI-4). The

remaining 3.6% of contributions due to records mieinal information was double
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counted by the Bayesian evaluations and may résuit the estimation of contributions
due to relationships and/or from the estimatiorcaftributions due to records among
joint and internal information.

Because double counting of contributions due toonsc between joint and
internal information was almost avoided, breedinglugs that were estimated by
EVALg;., for all animals led to better predictions of EBWan EVALg; based on r, MSE,
a and R{Table VI-4). Rank correlations of EBWith EBVg;and EB\4;, increased from
0.979 for EVALg; to 0.996 for EVAlg;., for the internal animals and from 0.956 for
EVALg; to 0.996 for EVAlg;, for the 50 external animals. The MSE decreased on
average from 34.3% for EVAJ; to 6.8% for EVALg;, for the internal animals and from
17.2% for EVALg; to 0.6% for EVAlg;, for the external animals. These results again
showed that integration of external/joint infornoatifor the 50 external sires influenced
the prediction of internal relatives through theogagation of information from the
external sires to relatives. These results show ttiea double counting of contributions
due to records also affected predictions of inteemamals. Furthermore, as expected,
EVALge predicted EBY slightly better than EVAE,., for both external sires and internal
animals, based on the corresponding r, MSE, a ar{dd®le VI-4). The low difference in
accuracy of prediction between EVAL and EVAlg;, could be attributed to the
estimation of contributions due to relationshipd dne to records.

Based on these results, double counting of cortabs due to records was almost
avoided. Thus, the integration of information it@enetic evaluation by avoiding both
contributions due to relationships and due to sg@erformed well for external animals.
Internal animals also benefited of the integratioh information thanks to their

relationships with external animals.

WALLOON EXAMPLE

Of the 12 046 animals associated with availablel&al information for the three
traits, 6232 animals for milk yield, 6209 animaty fat yield, and 6212 animals for
protein yield were associated with information thats based only on contributions due
to relationships, as estimated by the TSA. In temmhsRE, contributions due to
relationships represented from 14.9% for fat yiédd 16.3% for milk yield of the
contributions associated with Walloon informatidfigure VI-1). Among the 1981 sires
associated with MACE information, two sires weresagsated with information that
includes only contributions due to relationships tfte three traits. Both these sires had
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several sons among all the sires associated witBBMWyace, which explains that the

contributions were considered as only due to mahstips. In terms of RE, all

contributions due to relationships represented werae 5.1% of the contributions
associated with MACE information for the three tgaiOf the 601 sires with an ERY,

all sires were associated with information thatluded both contributions due to

relationships and due to records. This latter olagem for the 601 sires was expected
because these 601 sires must have at least 10tdesughth records within 10 herds in

the Walloon region to participate in the MACE e\alan.

100%
80%[—
60%[—
40%|~

20%[~

0%

Walloon Walloon MACE Walloon MACE

All animals Internally used sires Internally unused sires

Figure VI-1. Percentage of contributions due to records andtauwelationships for the
Walloon example. Percentage of contributions duestmrds (blue squares) and due to
relationships (red squares) associated with Wallotormation for all animals, internally
used and unused sires and associated with MACEnaftion for internally used and
unused sires for milk (M), fat yield (F) and protéP) yields.

INTERNALLY USED SIRES

Of the internally used sires, 1212 had Walloon MAICE informationand had
both internal and external daughters with recods. average, each sire had 143.1
internal daughters with records. The average REnged from 0.74 to 0.76 (Table VI-5)
and the average Rlghce Was equal to 0.88 for the three traits. Results,fMSE, a and
R2 for prediction of EBWace by EVALg. are in Table VI-6 for the 1212 sires for milk,
fat and protein yields. For the three traits, blegadf Walloon and MACE information by
taking double counting of contributions due to melsoand due to relationships into
account (i.e., EVAE,) led to a ranking that was more similar to the MA@nking than

to the internal ranking (i.e., EVAL), although these internally used sires sired gelar
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number of cows with records in the Walloon regiBank correlations increased by 0.104
points for milk yield to 0.125 points for fat yield achieve a rank correlation between
EBVwmace and EB\5. that ranged from 0.987 to 0.990 (Table VI-6). TH8E, a and R2
showed that accuracy of predictions of ER¥e by EBWy or by EBVg. increased when
external information was integrated. IntegratiorVACE information also increased the
average REL by 0.14 points for fat yield to 0.16ng® for milk yield (Table VI-5). This
increase of average REL corresponded to an inciaase.5, 51.4, and 50.9 DE per sire
on average for milk, fat and protein yields, respety. Also, the average REL for the
1212 sires was 0.02 points higher than the aveR&gace (Table VI-6). This difference
in average REL, as well as the differences betviEviyace and EB\5. based on MSE,
a and R2 (Table VI-6), can be explained by the taet MACE did not include all
information available for animals in the Walloondimn. Indeed, EBY, of a sire was
included into MACE if it had at least 10 daughteiish records within 10 herds at the
internal level. Therefore, EBY for sires that did not fulfill this requirement menot
considered by MACE, but were taken into accountthy four Bayesian evaluations,
which provided additional information compared t&\GE information. Approximations
based on estimation of contributions due to refeigps and theoretical assumptions of
the model may also explain some of the differermsveen EBWace and EBVs.. For
example, MACE was considered as a national geegatuation. These results indicate
that EVALg,, i.e. a Bayesian evaluation that blended intemf@irmation and external
information and avoided most double counting oftdbations due to records and due to
relationships, was successful in integrating MA@GBimation for internally used sires.

Table VI-5. Average reliabilities (REL; SD in parentheses) asged with Walloon
estimated breeding values for internally used andsad sires

Considered animals Milk yield Fat yield Proteinlglie
Internally used sires 0.74 (0.22) 0.76 (0.21) q22)
Internally unused sires 0.22 (0.10) 0.23 (0.10) 2q@10)

Double counting of contributions due to records dud to relationships were also
not considered (i.e. EVA.nn) Or were considered separately (i.e. EWA: and
EVALgr) to study their influences on prediction of EMMce for internally used sires.
Parameters r, a and R? associated with EAAl, EVALg re and EVALg r for the 1212
sires were similar to the r, a and R2 of EVLalthough a slight advantage was observed

for EVALg,. Therefore, the four blending evaluations leditoilar rankings as MACE
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for the 1212 internally used sires (i.e., rank elations equal to 0.99 on average; Table
VI-6).

Table VI-6. Parameters obtained for the Walloon example foRlgternally used sires

Genetic evaluations 1 > 3 Milk yield 3 2 5

r MSE a R? RE: REL
EVAL w 0.886 100.00 0.87 (0.013) 0.78 21 934.6 0.74 {0.22
EVAL g nn 0.987 11.68 0.993 (0.005) 0.97 55 038.2 0.92 {0.05
EVAL g re 0.989 10.01 0.984 (0.004) 0.98 37 487.1 0.91 {0.05
EVALgr 0.988 10.57 1.004 (0.004) 0.98 52313.0 0.91 {0.06
EVALg. 0.990 8.87 0.995 (0.004) 0.98 341412 0.90 (0.06)

Fat yield

rt MSE? a R23 REq REL®
EVAL 0.862  100.00 0.815 (0.014) 0.74 20016.8 0.76200.2
EVAL ginn 0.983 12.22 0.989 (0.005) 0.97 461446 0.92 {0.05
EVAL g re 0.985 10.69 0.977 (0.005) 0.97 323209 0.92 {0.05
EVALgr 0.985 11.12 1.004 (0.005) 0.97 43 943.6 0.91 {0.06
EVALg. 0.987 9.54 0.991 (0.005) 0.97 29631.1 0.90 (0.06)

Protein yield

rt MSE* a R2° REq REL®
EVAL w 0.882 100.00 0.851 (0.013) 0.79 20 851.6 0.732§0.2
EVAL g .nn 0.985 12.38 0.985 (0.005) 0.97 49 589.7 0.92 {0.05
EVAL g re 0.987 10.79 0.975 (0.004) 0.98 34 372.9 0.91 {0.05
EVALgr 0.986 11.26 0.996 (0.005) 0.98 471895 0.91 {0.06
EVAL . 0.988 9.56 0.986 (0.004) 0.98 314347 0.90 (0.06)

Ir = rank correlation between EVAce and EVALy, EVAL gy, EVAL g re, EVAL g g OF EVALg, .

’MSE = mean squared error expressed as a percaftdgeaverage internal mean squared error.

%a = regression coefficient (SE in parentheses)Réd coefficient of determination of the regressifn
MACE EBV on EBV estimated by EVAl, EVALg nny EVAL g Re, EVAL R OF EVALE, .

“RE, = total amount of record equivalentREL = average reliability (SD in parentheses).

However, double counting can be observed based $8, ME.: and REL (Table
VI-6). With regard to double counting of contritarts due to relationships for the 1212
internally used sires, RE that were free of contrdns due to relationships (i.e. RE that
included only contributions due to records) for ERYe were equal to 30 378
(DE =176 578) for milk yield, 23 927 (DE =150 7j7%for fat yield, and 26 338
(DE = 160 416) for protein yield. These amountsRE free of contributions due to
relationships represented 96.1% of the RE thatritaned to MACE information.
Considering the Walloon information for the 121%esj RE that included only
contributions due to records represented from 9368l Walloon contributions for milk

yield to 94.2% for fat yield. For both Walloon aRtACE information associated with the
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internally used sires and for the three traits (oe milk, fat and protein yields), less than
6.4% of all contributions were attributed to redaships (Figure VI-1). Such low
percentages of contributions due to relationshigsim agreement with selection index
theory (Van Vleck, 1993). While double counting antributions due to relationships
was present for EVAsre (i.e. the blending evaluation that considered otbuble
counting of contributions due to records), the gbotions due to relationships were
small and their double counting had little effect the prediction of EBMace for the
internally used sires, compared to EVALLbased on parameters r and MSE. However, as
expected, an average increase of 1% in iRkl was observed, compared to REL
Thus, the REE re Were, on average, slightly overestimated.

With regard to double counting of contributions dwerecords, based on RE,
Walloon information represented from 64.3% of thetalt information free of
contributions due to relationships associated WAL for milk yield to 67.6% for fat
yield (Table VI-6). Thus, integrated informatioredr of contributions due to relationships
and due to records (i.e. MACE information from whi®Valloon information was
subtracted) represented 32.5% of the total infaonaassociated with EVA4, for fat
yield to 35.8% for milk yield. If double countind contributions due to relationships was
considered only, REk associated with EVAd,r ranged from 43 944 RE for fat yield to
52 313 RE for milk yield, while RE associated with EVA$, ranged from 29 631 RE for
fat yield to 34 141 RE for milk yield. Thus, betwed4 313 and 18 172 RE were
considered twice by EVAd.g. However, double counting of contributions dueeoords
affected the prediction of EBMce for internally used sires only slightly accorditogall
parameters evaluated (Table VI-5). The BElwere overestimated by 1% on average for
the internally used sires, compared to BELFurthermore, no preference was observed
between EVAlg re and EVALg r based on r, MSE, a and R? for the three traitieéd, r
and R? were similar for these two evaluations, &/iEMALg re Was more reliable based
on MSE, but parameter a indicated that EyYALwas more reliable. However, EVALke
had the greatest under- and overestimation oftiraeding values based on parameter a.
Based on these results, it can be stated that elazdainting of contributions due to

relationships and due to records had little eflecEBV for internally used sires.

INTERNALLY UNUSED SIRES

Of the internally unused sires (i.e. that had aternal daughters with records),
631 sires were associated with Walloon and MACBrmftion. Their average REL
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ranged from 0.22 to 0.23 for the three traits (€a¥l-7) and the average Righce was
equal to 0.77. Because they had only external daughWalloon contributions only
included contributions due to relationships andcantributions due to records. Based on
REq: (Table VI-7), Walloon contributions due to recofds all 631 sires were in general
well estimated by the TSA, ranging from 0.79% o Walloon total contributions for
milk yield to 0.80% for protein yield (Figure VI-1The small non-zero percentage could
be attributed to approximations involved in estimgt the contributions due to
relationships and due to records by the TSA, sisctha consideration of an unknown
fixed effect (Vandenplas and Gengler, 2012). Therlge correct estimation of
contributions due to relationships led to simileermge RElace and average REL for
the three traits (Table VI-7). Integration of MAGQi&ormation also increased the average
RELw by at least 0.54 points, resulting in an averag¢dr equal to 0.77 for the three
traits. These results for the 631 internally unusiegls confirmed that MACE information
already contained the main contributions due tati@hships that were expressed in the
Walloon information and that double counting of tdoutions due to relationships was
mostly avoided. Not considering contributions daedlationships (i.e., EVAd.ny and
EVALg re) led to overestimation of average REL by at |&3st(Table VI-7).

Results for r, MSE, a and R? for the predictiorE®Vyace by the four blending
evaluations are in Table VI-7 for the 631 interpalinused sires for the three traits.
Blending of Walloon and MACE information led to siar rankings of the 631 sires for
the four blending evaluations. Rank correlationsveen EB\(1ace and EBV for the four
blending evaluations increased from 0.73 to 0.99fdk yield, from 0.57 to 0.99 for fat
yield and from 0.72 to 0.99 for protein yield. Thesnk correlations indicated that the
blending method was also successful for sires witly external information for all three
traits. These results were confirmed by a decreAddSE by at least 96.9% and by
regression coefficients close to 1.0, with an Riadédo 0.99 for all three traits (Table
VI-7). Because double counting can be only attedutto contributions due to
relationships for the 631 internally unused siE&¢AL g ny and EVALg re led to similar
parameters. This was also observed for EMA&nd EVALg r (Table VI-7). Differences
between these two groups of evaluations were dodgived based on MSE and a (Table
VI-7). These two parameters showed that R for the 631 sires were slightly better
predicted when contributions due to relationshiggenconsidered. However, all these
results showed that contributions due to relatigpgsshad little effect on the prediction of
EBVwmace.
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Table VI-7. Parameters obtained for the Walloon example fori6&tnally unused sires

_ _ Milk yield

Genetic evaluations

rt MSE* a R2®  REq REL®
EVAL 0.725  100.00 0.667 (0.024) 0.56 25 0.22 (0.10)
EVAL g 0.994 3.09 0.953 (0.004) 0.99  4021.7 0.81 (0.05)
EVAL g re 0.994 3.06 0.952 (0.004) 0.99  4021.7 0.81 (0.05)
EVALg R 0.994 2.68 0.978 (0.004) 0.99 31729 0.77 (0.06)
EVAL g, 0.994 2.68 0.977 (0.004) 0.99 31729 0.77 (0.06)

Fat yield

rt MSE? a R23 REq REL®
EVAL 0.571  100.00 0.506 (0.024) 0.40 2.0 0.23 (0.10)
EVAL g 0.992 2.28 0.95 (0.005) 0.99 31725 0.81 (0.05)
EVAL g re 0.992 2.28 0.949 (0.005) 0.99 31725 0.81 (0.05)
EVAL g r 0.992 2.09 0.987 (0.005) 0.99  2499.1 0.77 (0.06)
EVAL g, 0.992 2.08 0.986 (0.005) 0.99  2499.1 0.77 (0.06)

Protein yield

rt MSE* a R2®  REq REL®
EVAL 0.717  100.00 0.684 (0.025) 0.54 2.3 0.22 (0.10)
EVAL g 0.993 2.96 0.952 (0.004) 0.99  3490.3 0.81 (0.05)
EVAL g re 0.993 2.95 0.951 (0.004) 0.99  3490.3 0.81 (0.05)
EVALg R 0.993 2.75 0.978 (0.005) 0.99 2751.0 0.78 (0.06)
EVAL g, 0.993 2.75 0.977 (0.005) 0.99 2751.0 0.77 (0.06)

r = rank correlation between EVAyce and EVALy, EVAL g nn, EVAL gire, EVALg R OF EVALg, .

2MSE = mean squared error expressed as a percaftdgeaverage internal mean squared error.

%a = regression coefficient (SE in parentheses)Réd coefficient of determination of the regressifn
MACE EBV on EBV estimated by EVAl, EVALg Ny EVALE R, EVAL g R OF EVALE, .

*RE, = total amount of record equivalent®EL = average reliability (SD in parentheses).

VanRaden and Tooker (2012) found similar correfegtidbetween EBMace and
combined EBV for sires with only external daught@ns., between 0.991 and 0.994 for
yield traits). Their strategy consisted of compgtiexternal deregressed proofs (DRP)
from EBVuace and including one extra record based on these DRRhted by the
associated DE for the sire. Internal contributiamsMACE information for sires with
internal and external daughters were consideresubyracting the number of internal DE
from the total and by using internal EBV insteadpafent averages from ER)ce to
compute external DRP. Based on Legarra et al. (20B&ngler and Vanderick (2008)
integrated MACE information into the official Watla genetic evaluation for milk
production. External EBV were estimated by selectiodex theory and internal
contributions were considered as in VanRaden am#dro(2012). Thus, while these two

latter approaches and the approach proposed irstilnily consider internal contributions
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to MACE information in a similar manner [See Addital file 2], the main advantage of
the proposed approach is to avoid a pre-procesnggression step or computation of
external EBV.

INTERNAL ANIMALS

The effect of the integration of MACE information predictions was also studied
for internal animals that were not associated WCE information and that were sired
by internally used sires. A total of 3331 interramdimals was considered. If double
counting of contributions due to relationships ahee to records were avoided (i.e.,
EVALg.), integration of MACE information led to an incesaof the REL from 0.32 to
0.42 for milk yield and from 0.31 to 0.42 for fatdaprotein yields for internal animals
that had a RE}k less than 0.50 (Table VI-8). These increases wguivalent to 2.4 DE
for milk yield, 2.3 DE for fat yield and 2.4 DE fgrotein yield. On average, no increase
in REL was observed for internal animals with REgreater than 0.50 (Table VI-9 and
Table VI-10; Figure VI-2). Therefore, integratiof MACE information was mostly
relevant for external animals that were associatghd this information and for internal

animals with a low REly sired by external animals.

Table VI-8. Parameters for internal animals with a Walloonatlity less than 0.50 and
sired by internally used sires

Genetic evaluation

Traits N Parametefs EVALw  EVALgny EVALpre EVALmr  EVALg
r 0.944 0.995 0.995 0.999 1.000
Milk yield 1948  REg 2451 1655.2 1655.2 245.1 245.1
REL 0.32(0.10) 0.57 (0.06) 0.56 (0.06) 0.43 (0.07.42 (0.07)
r 0.923 0.994 0.994 0.999 1.000
Fat yield 1694  REg 102.6 1254.9 1254.9 102.6 102.6
REL 0.31(0.09) 0.56 (0.06) 0.56 (0.06) 0.42 (0.08).42 (0.08)
r 0.938 0.995 0.995 0.999 1.000
Protein yield 1786  RE, 148.4 12435 12435 148.4 148.4

REL 0.31(0.09) 0.56 (0.06) 0.56 (0.06) 0.42 (0.08).42 (0.08)

IN = Number of internal animals.
%r = rank correlation between EVAL and EVALy, EVALgnn, EVALgre OF EVALgr; RE = Total
amount of record equivalents; REL = average rdltgl{iSD in parentheses).
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Table VI-9. Parameters for internal animals with a Walloonatglity between 0.50 and
0.74 and sired by internally used sires

Genetic evaluation

Traits N Parametefs EVALw  EVALmny EVALpre EVALgr  EVALg
r 0.999 >0.999 >0.999 >0.999 1.000
Milk yield 1360  REq 1205.7 2759.1 2759.1 1205.7 1205.7
REL 0.55(0.04) 0.67 (0.02) 0.67 (0.03) 0.55 (0.03).55 (0.03)
r 0.999 >0.999 >0.999 >0.999 1.000
Fat yield 1607  REg 1322.0 3125.6 3125.6 1322.0 1322.0
REL 0.57 (0.04) 0.68 (0.03) 0.68(0.03) 0.57 (0.04).57 (0.04)
r 0.999 >0.999 >0.999 >0.999 1.000
Protein yield 1516  REg 1252.0 2787.7 2787.7 1252.0 1252.0

REL 0.56 (0.04) 0.68 (0.03) 0.68 (0.03) 0.56 (0.04).56 (0.04)
IN = Number of internal animals.
r = rank correlation between EVAL and EVALy, EVALg xn, EVALgre OF EVALg g, REy = Total
amount of record equivalents; REL = average rdltgl{iSD in parentheses).

Table VI-10. Parameters for internal animals with a Walloonatality greater than 0.74
and sired by internally used sires

Genetic evaluation

Traits N' Parameters EVALy,  EVALgow EVALmre EVALgn  EVALp
r 0.998 0.999 1.000 0.999 1.000
Milk yield 23 REg 1326 156.9 156.9 1326 132.6
REL 0.80 (0.04) 0.82(0.03) 0.82(0.03) 0.80 (0.049.80 (0.04)
r 0.999 1.000 >0.999 1.000 1.000
Fat yield 30  REg 158.8 190.6 190.6 158.8 158.8
REL 0.81(0.04) 0.83(0.03) 0.83(0.03) 0.81 (0.04D.81 (0.04)
r 0.999 >0.999 >0.999 1.000 1.000
Proteinyield 29  REg 147.7 174.6 174.6 147.7 147.7
REL 0.80 (0.04) 0.83(0.03) 0.83(0.03) 0.80 (0.04).80 (0.04)

IN = Number of internal animals.
%r = rank correlation between EVAL and EVALy, EVALgnn, EVALg re OF EVALgr; REq = Total
amount of record equivalents; REL = average rdltg{iSD in parentheses).
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Figure VI-2. Reliabilities for internal progeny. Reliabilitiessociated with the Bayesian
evaluation that considers double counting of cbations due to relationships and due to
records (REk.) as a function of reliabilities associated withe tiofficial Walloon
evaluation (REkw) for the 3331 internal animals sired by internaliged sires (i.e.,
having daughters with records in the Walloon Regfonmilk yield.

The effect of double counting was also studiedamparison to EVAE, for the
3331 internal animals that were only associateth Wialloon information and that were
sired by internally used sires. Own contributiong do relationships for internal animals
with RELy less than 0.50 represented from 85.2% of the totaiributions for milk yield
to 91.8% for fat yield (Table VI-8). These percegygs ranged from 55.1% for protein
yield to 57.7% for fat yield for internal animaldtiv RELy between 0.50 and 0.75, and
from 15.4% for protein yield to 16.7% for fat yiefdr internal animals with REkL
greater than 0.75 (Table VI-9, and Table VI-10).séa&ted before, these observations were
as expected based on selection index theory (VaokyI1993), and double counting of
own contributions due to relationships was mostlyspnt for internal animals with low
RELw. However, internal animals were also affected bylde counting of contributions
due to relationships and due to records that aatgoh from their sires (and relatives)
through the contributions due to relationships. lewcounting that originated from their
own contributions and from their sires (and rekesiv could be observed based on a
comparison of REg re, RELg g and RElg. and of r between EBY and EB\g re Or
EBVg.r (Table VI-8, Table VI-9, and Table VI-10). Douldeunting of contributions due
to records that originated from sires of internaih@als had minor effects on the average
RELg r associated with internal animals (at most 1%) ramdings of internal animals (r
> 0.999; Table VI-8, Table VI-9, and Table VI-10).oWever, double counting of
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contributions due to relationships led to an inseeaf average REL by at least 0.14 points
for internal animals with REL less than 0.50 and by at least 0.11 points faariat
animals with REly ranging from 0.50 to 0.74. The increase of avefRgé& was lower
for internal animals with REL greater than 0.75 (>0.02 points; Table VI-8, Ta¥le,
and Table VI-10). Although the average REL and RElgre were (slightly)
overestimated for both evaluations, double countihgontributions due to records and
due to relationships had little effect on the ragkof internal animals compared to the
ranking of EVALg., regardless of the group of internal animals aittconsidered.
Indeed, rank correlations between EVAland EVALg r or EVALg re Were greater than
0.99 (Table VI-8, Table VI-9, and Table VI-10). Alhese results show that double
counting of contributions due to relationships alug to records can be ignored for the
prediction of EBV for internal animals that areesirby external animals. However, all

double counting must be taken into account to eg8rREL accurately.

ON THE IMPLEMENTATION

Considering all groups of animals, i.e., internalbed and unused sires, as well as
internal animals sired by internally used siresr oesults for the Walloon example
suggest that contributions due to relationshipshmignored. Indeed, the different rank
correlations for EVA e (i.e., the Bayesian evaluation that took only dewwmunting of
contributions due to records into account) wereilaimto the rank correlations of
EVALg.. Furthermore, in practice, the TSA could be diffi¢o apply if a high number of
animals is associated with external informationaose it requires the inversion of a,
potentially, dense matrix for each iteration. Hoeeveffects of double counting of
contributions due to relationships should be tedtetbre ignoring it. For example,
overestimation of REL could occur especially faits for which contributions due to
relationships would be at least as significant @strdbutions due to records (e.g., if the
phenotypes are expensive to obtain). FurthermoEd, Bssociated with the modified
MME were estimated based on the inverted LHS. Alfiothis was feasible for the
simulated and Walloon data, this may not be feadibimost cases, and approaches that
estimate REL (e.g., Misztal and Wiggans, 1988; \@hdh and Wiggans, 1991) could be
modified to take into account RE (or DE) associatétl external information.

The Walloon example was considered as an evalustianblends MACE and
Walloon (internal) information in the context offiofal Walloon genetic evaluations for
Holstein cattle. However, the Walloon example clsio &e considered as a particular case
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of an internal evaluation that has no internal datd blends only sources of external
information, i.e., MACE and Walloon information,athare partially based on the same
information, i.e., the Walloon information. Thisseacan be extended to more general
cases for which internal data may exist and exteanenals are associated with at least
two sources of information (e.g.; Bnd B) that are partially based on the same external
records or information. Double counting of extermdbrmation that is shared by the
sources of external information, e.gs, @d E, can be avoided by the proposed approach
thanks to the knowledge and availability of EBV as$ociated REL that are based only
on external information that is shared by the sesirof external information.
Nevertheless, although taking external informatiost is shared by different sources of
external information into consideration seems tgbssible with the proposed approach,
this may be difficult in practice because it reqaithat EBV and associated REL based on

shared external information are known and available

CONCLUSIONS

The proposed unified method integrated and blendederal sources of
information into an internal genetic evaluationaim appropriate manner. The results also
showed that the proposed method was able to awmitle counting of contributions due
to records and due to relationships. Furthermageatbise all available external sources of
information were correctly propagated, relatives esternal animals benefited from
integrated information and, therefore, received en@liable EBV. The unified method
could also be used in the context of single-stapgec evaluations to integrate external
information to indirectly recover a large amount @fternal phenotypic information
(Colinet et al., 2013). While the simulated and M examples were univariate, the
unified method was developed for multi-trait modtat, e.g., allow evaluation of only
internally available traits (e.g., methane emissjdme milk composition traits, such as
fatty acids, milk proteins and other minor compdsgnusing additional external

information from correlated traits (e.g., traitsaated by Interbull).

ADDITIONAL FILES

Additional file 1: Integration of two sources of exernal information into a
genetic evaluation.This file describes a derivation that integrates sources of external
information into a genetic evaluation, based onayeBian view of the mixed models

(Sorensen and Gianola, 2002) and similar to theeBiay derivation of Legarra et al.
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(2007) that integrates one source of external métion into a genetic evaluation.
Additional file 2: Double counting between internaland external information.
This file describes the development to avoid doutmanting of contributions due to

records between internal and external information.
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Chapter VI

ADDITIONAL FILE 1

INTEGRATION OF TWO SOURCES OF EXTERNAL INFORMATION INTO A GE NETIC

EVALUATION

The following Bayesian derivation is similar to tBayesian derivation of Legarra
et al. (2007) that integrates one source of extaniarmation into an internal genetic
evaluation in the context of multi-breed genetialaations for beef cattle.

Assume a set of animals partitioned in four grodpee first group (i.e., internal

animals Afvz) has only records in the internal data sgt (. The second group (i.e.,
external animalsA, ) has records in the external data sgt,, and may have records in
Yg, - The third group (i.e., external animais) has records in the external data sgt,,
and may have records ¥y . The fourth group (i.e., external animafs,) have records
in both y. and y., , and may have also records yn . For the following genetic
evaluations, variance components are assumedittebgcal.

Concerning the notation of matrices in the follogvievelopment (e.g X (4 ),

the subscriptE, refers to theth source of data and the subscript within brackéts)

refers to the'l group of animals, respectively.

Assume a hypothetical joint genetic evaluation @ded by the subscript J) of all
animals @;,, A,, A,, A.,) including both datasety. and y.,. Because it was
assumed thay. andy., were pre-corrected for fixed effects, the modettipaned

among the four groups of animals can be written as:

yEl(Al) 0 2 El(Al) 0 0 Y, (A(l)z) e‘]l(Al)
El(Al,Z) - 0 0 0 z El(Al,Z) Y (Al) + eJl(Al,z)
yEz(Az) 0 0 z Ez(Az) 0 UJ(Az) er(Az)
_y EZ(Al,Z)_ _O 0 0 EZ(Al,Z)_ _uJ (Al,Z)_ _eJZ(Al,z)_

whereu, =lu,\ U u u is the vector of genetic random effects for
J J(A ) J(Al) J(Az) J(Al,Z)

1,2

animalsA?,, A,;, A, and A, , for the evaluation IZ¢ (n,) @aNd Z¢ (, ) are incidence

matrices relating records of¢ () and Yeilar,) 10 Usiay) andu 3ag,) respectively, and

Ze,(n,) and Ze,(n, ,) @€ incidence matrices relating recordsyef, ) and yg [, ,) t0

12
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Us(a,) @nduy(,, ), respectively, ane; ande,, are the vectors of residuals associated
with y. andy., , respectively.

The corresponding mixed model equations (MME) canviitten as:

[ G E’:g,z‘\g,z) G EAg,zAl) G g‘\ g,zAz) G I(EAg,zAl,z) ]
o 0 o 0
' (A A ) " @ Al,z)
G (A 1A?,2) z El(Al REll 1 ZEl(Al) ¥ G (AlAz) z El(Al) REll ZEl(Al,Z) ¥
E E
0 G EAO 1A1) 0 G g'z 1A1,2) ( )
' R A2A1,2 Z +
ng 2‘“?,2) GI(EAOZAl) Z' m ) RI(EAZZAZ)ZE (A + Gg’zzAz) EZ(AZ)) Ez EZ(Al,Z)
2\"%2 2\"2 AA,
G Eo
(A 1,2’“1,2)
. (A1 ZAl) z El(Al,Z) E1 ZEl(Al,z) *
(ang) Lab)RE )t lp12) (r122) lpotra)
G 1712 1\A12 11A1 Z 1.2 Z +G 12 Z R 1712 ya +
Fo G (Al,ZAl) EZ(Al,Z) Ez EZ(AZ) Eo EZ(Al,Z) Ez EZ(Al,Z)
Eo (A110)
G v 112
. B O T
uAJ (A i)2) i R (A 1A1)y
0, E1lA (El | AW
LV = \ A LA
UJ(Az) ( Z) E2(A2 RE22 i yE2 Az) )
1] A 112 A 112
J(AI'Z) _z El(Al,Z) REl yEl(Al 2)+ EZ(Al 2) REZ EZ(Al,Z)_

(equation 1.1)

Gl(ézng(l),z)) Gg:?,zﬁ\l)) GE/;?,ZAZ)) Gg:izAl,z))
Al A1Ay A1h; A2
where G, = GEAO ) GEAO ") GEAO ") GEAO ) is the inverse of the additive
GE02A12 GE02 1 GE02 2 GEOZALZ
Gg)\l,zﬁ\lz) Gglef\l) Gg:l,zﬁ\z) Gg:l,zAl,z)_
R (A 1A1) R (AlAl,Z)
(co)variance matrix including all animals and (El ) (El ) and
R Al,2Al R A1,2Al,2
E; Eq
R(AzAz) R(AzAl,Z)
(iZZA ) (E:A ) are the inverse of the residual (co)variance mmedrassociated with
REzl, 2 REzl, 1,2

e, ande, , respectively.

Assume an internal genetic evaluation (denotechbystbscript g of all animals

(i.e., animalsA?,, A,, A, and A, ,) including onlyye, and using the prior distribution

p(ﬂEo yEl,yEz): MVN (u,G*) (Sorensen and Gianola, 2002) wh&e is the inverse of

the left hand side (LHS) of the equation 1.1 imds the solutions of the equation 1.1.
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The model for the genetic evaluatiopdan be written as:
yE0 = XEOBEO +ZEOUE0 "'eE0 ’
where X andZ. are incidence matrices relating records/in to the vector of fixed

effects Be, and the vector of genetic random effects

0

Ug :[UEO(Aiz) qu(Al) qu(Az) qu(Al,z)] , respectively ande. is the vector of

residuals.

The MME can be written as:

1 -1 ' -1 ~ ' -1

X. Eo REfXEo ' X E_olREoZEo o l}EO = _. X_Elo REOyEO*_l , (equation 1.2)
Z' . ReXe, Z¢RiZe +G (e, | |2, ReYe, *G* 'n

where R;J is the inverse of the residual (co)variance masgociated witle .

However, the evaluation J (equation 1.1), and tbexG * andp, are unknown.
Assume that two genetic evaluations (denoted by dhiescripts E and E,

respectively) for two groups of external animals.(ianimalsA; and A, ,, and animals
A, and A, ,, respectively) which do not include in the gengglinternal animals (i.e.,
animalsA?, and A,, and animalsA;, and A, respectively) are known. The model for
the genetic evaluation;f only external animal$\, and A, , including onlyy, and

which does not include in the genealogy aninm?§ and A, can be written as:

yEl(Al) — ZEl(Al) 0 {UE1(A1) :|+ eEl(Al)
y El(Al,Z) 0 z El(Al,Z) u El(A 1,2) eEl(Al,z)
whereug (, ) andug (, ) are the vectors of genetic random effects for afsm, and

A, for the genetic evaluation, E

The MME can be written as:

7' ( )RI(EAlAl)Z ( )+G*E(A1A1) 7 RI(EA1A12)Z ( )_l_G*E(AlAlZ) B
F1lf ( ' ) ! t ) E1lAy ( . ) E1WAs2 t ) R E1(A1)
z El(Al,Z RIQLZAl z El(Al) *G ElAlZAl z El(Al,z ngl - ZEl(Al 2) *G ElAL2A12 uEl(Ale)
(A A ) ,\
| Fab)E Ve | D*El!ya(ﬂ
A 2A 1|l U
z El(Al’ ) REll " yEl(Al,z) El(Al 2)

(equation 1.3)
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-1

G
where G ' = cilhn) o is the inverse of the
)

El(Al,2Al) GEl(AlZAl,Z
additive genetic (co)variance matrix for the exédmenetic evaluation,;E

Similarly, the MME for the genetic evaluation & only external animal#, and
A,, including onlyy., and which does not include in genealogy anim%\ig and A,

can be written as:

. lp22) hoas) b As) hopss) T -
£ Ez(Az) R(EZ Z)ZEz(Az +GE{ 2 ) z Ez(Az)R(EZ IZ)ZEZ(AM)-'_GEZ : ) !}IEZ(Az)}
' A,ZA *A,ZA . A,ZA, *A,ZA u
z EZ(ALZ REzl i ZEz A) +GE21 vz EolAr, REzl v ZEZ(Al,Z) +GE21 ' EZ(Al,Z)
: (A Az) N
| 2 ()R( k) | D*E{PEZ(AZ)]
! A1 A7 2| Uu
e RE Vel cald

(equation 1.4)

where G and G are the vectors of genetic random effects for aism, and
Ez(A2) EZ(Al,Z) 2

A, for the genetic evaluation 2E and

G*(AZAZ) G*(AZAI'Z) GE (A A ) GE (A ) .
G t= T: | ?: 1= 222 o 20 A1z is the additive genetic
Gt G e Eala ) ol )

= E2
(co)variance matrix for the genetic evaluation E

Therefore,

gt D*E% 1A1) D*E(f 1A1,2) B G*E(f 1A1) G*E(f 1A1,2)
E1 E1 D*(Al,zAl) D* (A1,2A1,2) G*(Al,zAl) G*(A1,2A1,2)

R B B 2 (equation 1.5)
z_ \Rbwlz z_ Rz ! |
— El(Al) I(El ) By Al) E1lAs ;El ) El(Al,Z)
' A1AL ' A12A12
z El(Al,Z)REl ZEl(Al) z El(Al,Z Re, ZEl(Al,Z)
and, similarly,
z | Rb2 z_ Rz
DloGgt= Ez(Az) F2 Ez(Az) Ez(Az) F2 EZ(Al,Z) (equation 1.6).
2 TR R(Al,zAz)Z 7 R(Al,zAl,z)Z
EZ(Al,Z) E2 Eola2) EZ(Al,Z) F2 EZ(Al,Z)

Substituting “unknown” terms of the equation 1.1 their corresponding terms
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from the equations 1.3, 1.4, 1.5 and 1.6, the Mgl étion 1.1) can be written as:

s (:02,2/*‘1’,2) G gAE,zAl) G gAO?,zAz) G gAE,zAl,z) ]
G EA 1A$.z) D*E(A1A1) _ G*EZAlAl) +G £A1A1) G gAlAZ) D, (A A1, 2) _ G*EEA 1A1,2) +G EA 1/‘\1.2)
o 1 1 0 o o
GngzAg,z) GngzAl) D*E(;RZAZ) _G*E(QZAZ) +G£/;2A2) (LzAlz _G*E(i 2A1,2) +G£AO2A1,2)

DE(1 12A12) _G*E(f 1‘2/'\1,2) +

Gngl,zL\i’,z) D*E(fl,zAl)_G*E(fl,zAl) +Gg\)1fl) D*E(;\LZAZ)_G*E(I;MAZ) +G£AO1,2A2)

D* (A 1‘2/'\1,2) _ G*E(: 1‘2/'\1,2) +G EAO 1,2"\1,2)_

L E2
ro 0

UJ(AE,Z) D (A1A1)u + D*CAlAl,z)a

GJ(A ) E1 El(A ) E1 El(Al,Z)

a1 phedy |\ eplbdy

~ ‘](Az) ( ) (E2 ) EZ(A ) EE ) E2(A1,2) ( )
_UJ(AI’Z) DE:\LZAI EilA ) *De _— E1(/‘\1 z) * DEz e L’:IEZ(/‘\z) +D 2 e EZ(AIZ)

(equation 1.7).
By replacing G*™" in the equation 1.2 by the LHS of the equation and
G*™ n by the RHS of the equation 1.7, the following dipres are obtained:

[X'e, REEXe, X'e, RELZe, T
z Eo R_tZEo +
[ ki) cta) clir) gl ]
; o) oot . el b
laA *la,A “la A «
G(A1A?,2) DEll 1 —GEll 1 4 G(AlAz) DE1 P12 _GEl P2l
Ep GEAIA ) Eo GEA Ay 2) .
’ . . A . Be,
Ze Rétho G(A 2Agz) . (AzAl) DE(/;zAz) -G E(/;zAz) + DE(/; ZAlZ) -G E(’; A1 2) CIEO
= = N g; #2) N Ef; 12)
NI
o ko) G “[a 1f1)+ D ( R B P i
GEA 1,2‘*1 2) E1 E2 D*E(Alfl 2) _G*E(A 1,2%,2)
o A A 2 2
GEOI 1) GEO1 2) G(A1,2A12)
L L Eo ]
[ -~ X Eo R%yEo __
0
D*E%r“l)o ( ) + D ( A 1Ay 2) )
— . EqlAL El A2
z Eo R yEo DE(2 )0 2(A )+ D (AZAlZ) ( )
2
( lZAI) ( 1%12) ( le) ( 1,f1,2)"
I _DEl Uel) FPe ™ ey, )P o) " P Yeolna) |

(equation 1.8).
To simplify the system of equations 1.8, two genetvaluations including in
genealogy all animals (i.e., animaks},, A,, A, and A,,) equivalent to the genetic
evaluations and E for the external animals can be performed. Theeefihe following

model of a genetic evaluation of all animals inahgdonly y. can be written as:
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e )|
PEI(AI)HO Ze) O 0 Juem +!6E1(A1)}
Yebd) 12 0 0 Zalud] Yeb) | [k’
REU]
whereu 1(A112) andu 1( 2) are the vectors of estimated random additive geeéects for

animalsA;, andA,.
The corresponding MME can be written as follows:

[ G I(EA?,zA?,z) G gA?,zAl) G gA?,zAz) G gAg,zAl 2)
1 1 1
AlAJ(.),Z ' AlAl) AAL A1Ar ' (AlAl,z) AAr2
Ggl ) z El(Al R'(El ZEl . +G£1 ) Ggl ) z El(Al REl ZEl(AL2 +G£1 )
(A £22) G gA A1) G g; Az) G gi A12)
( mA%) 5 R(EALZAJLZ +G( A GEALZAZ) 2 R(EAMALZ)Z +G( A1)
L El(Al,Z) ! E (Al) 1 El(Al,Z) ! El(A1,2) i
LiEl(Ag,z) (2 R )
uEl(A ) - z El(Al REll 1 yEl(Al) =D={
. = =D 0,
uEl(Az) (AOZA ) o
GEl(Al,Z) z El(Al,Z) B yEl(Al,z)
(equation 1.9)
[ G! (Al A1, 2) G (Ag,zAl) G (A(lJ,zAz) G (A(1J,2A1,2)_
E E E
( ARl 2) G (;lAl) G (;1/\2) G (1A1A1,2)
where G2 = o1 o1 o1 is the additive genetic
(A A1 2) G (A 2A1) G (A zAz) G (A 2“1,2)
Eq E1 Eq
_G E’il,ZAl,Z) G I(:;l,zAl) G E’i‘l,zAz G g‘l A1 2)_

(co)variance matrix taking into account all animals
Similarly, MME for a genetic evaluation of all aras including onlyy., can be

written as:
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c(92%:) () c(A92) G (8s2) |
E, E, E E2
bt gla) cl) o)
G (A zAg,z) G (A 2A1) 7' R (A zAz)Z +G (A 2A2) 7' R (A zAl,z)Z +G (A 2A1,2)
S b ek 0% ) b b "
ALAY A1 A A1 A ArA . Ay, ALAs,
L Ezl N GE21 bz '52(’*1,2)RE21 "z 2) +GE21 vz '52(’\1,2)REZl 12ZEZ(Al,z) +GE21 N i
uEZ(Af,z) ((Z R )
uEz(Al) - z EZ(Al RE; l yE2 Al) =D3({
~ 0 E, Y E,
ek | e
uEz(Alvz) EZ(A12 F2 yEZ(Al,Z)
(equation 1.10).
Ue, s Selbt) | roma .
However, although the vectors ™" and | " |remain unknown in
uEl(Az) uEZ(Al) i
. . uEl(Al) uEZ(Az)
practice, they could be predicted from the knowotwes G and G , €.0.,
El(Al,Z)_ EZ(Al,z)
through the selection index theory, respectively.
Therefore, the MME (1.1) can be written as

[G;) +(D; _G;)J,(Délz -GZ )JQJ :[D;aEl + D;L]EZJ (equation 1.11).

By replacing G*™ in the equation 1.2 by the LHS of the equationl lahd

G*'n by the RHS of the equation 1.11, we obtain:
ZeRiXe, Z¢R&Ze,+G +(D2 -G2)+(D
X Eo RE:;yEO

ZLe, REJ(;yEO + D;uEl + D, Ug,

This development could be extended to more
information.
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ADDITIONAL FILE 2

DOUBLE COUNTING BETWEEN INTERNAL AND EXTERNAL INFORMATION
Assumed. and D¢ =Gg, +Ag (equation 2.1), the vector of known internal

EBV and the inverse of the associated predictioorgco)variance matrix obtained from

the genetic evaluationoBbased on the source Encluding only internal information

whereG;(l) Is the inverse of the additive (co)variance matoixall internal and external
animals in the genetic evaluation &nd A is a block diagonal variance matrix. The

vector (. and the matrixD_! =G.' +A. (equation 2.2) are the vector of known
1 1 1 1

external EBV and the inverse of the associatedigied error (co)variance matrix

obtained from a genetic evaluation based on thecedd including external and internal
information WhereG; is the inverse of the additive (co)variance matoixall internal
and external animals in the genetic evaluatigrilBe vectoil,, and the matri:DEl2 are

the vector of unknown external EBV and the inverdethe associated unknown
prediction error (co)variance matrix obtained frangenetic evaluation,tbased on the
source E including only external information. It is alsosasned that double counting
among animals due to relationships is taken intmaiat.

Therefore, from A and A , the diagonal matrix of RE expressing the amount

of contributions only due to recordRE; and RE. , can be estimated for the two

sources of informationgand g, respectively. Because these RE are free of ¢tioins
due to relationships and due to correlated trats, matrix of RE associated with the

source of information £ RE¢, , can be estimated as follows:
REg, =RE; —-REg (equation 2.3).
It can be also written théAg, = Ag —Ag, (equation 2.4). The unknow D;lz

can be approximated D¢; =G, + A, (equation 2.5) wherG¢, is the inverse of an

unknown additive (co)variance matrix for the extdrsource £ From the equations 2.1,

22 and 25, the equation 24 is equivalent to thequation
De. -Gg, =(Dg, -Gg,)—(Dg, -G¢) (equation 2.5).

Following the equations (VI.1) and assuming thé laicphenotypes iy, it can
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be written:
|62 +D2 -GZ +Di -G |a,, =Dga,, + D0y, (2.6).
Because of the equation 2.5, the equation 2.6 eamritten as follows:
Db, =Dg (g, +Dg 0, .
Thereby,(., can be estimated usiiD. (., =D dc, —Dg 0 (equation 2.7).

Because the source; s free of internal information ¢z it can be integrated into the

internal evaluation through the system of equat{®idl) as follows:
{XIEO REJ(;XEO XIEO REJ(-)ZEO }|:l§EO:| =|: XIEO RE](-)yEO }

Z'Eo R;)xEo ZIEo R;:ZEO +G;> +D; _G; l,]Eo Z Eo R;JyEo + D;zOEz
(equation 2.8).
Due to the equations 2.5 and EDS2 and g, must not be estimated explicitly

and the system of equations 2.8 can be writtenlbsifs:

XIEO RE](-)XEO XIEO RE:(LJZEO BEO
Z. RiXe, ZoRiz. +G2+DF-62)-b2 -2 a.

' -1
- X Eo REOyEO
' -1 -1 -1
Z Eo REOYE0 + DEluEl - DEOUEO

This development can be extended to integrate skwsmurces of external

information.
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Chapter VII. W ALLOON SINGLE-STEP GENOMIC EVALUATION

SYSTEM INTEGRATING LOCAL AND MACE EBV

As reviewed in Chapter I, single-step genomic eaabns
combine internal phenotypic and genealogic datd \gg&nomic
data without considering external information. Ihapter VI, it
has been suggested that the proposed Bayesian daetha be
extended to single-step genomic evaluations. Howetee
inclusion of genomic data in the proposed Bayesiathods was
never tested in the previous Chapters. Therefoasedb on the
Bayesian methods proposed in Chapter VI and basesingle-
step genomic evaluations, the aim of this Chaptes t@ test and
implement a Walloon genomic evaluation for Holsteattle that
combines simultaneously genomic data and all availsvalloon

and external information.

Adapted from: Colinet, F.G,, J. Vandenplas, P. FauxS. Vanderick, R. Renaville, C.
Bertozzi, X. Hubin, and N. Gengler. 2013. Walloonisgle-step genomic evaluation
system integrating local and MACE EBV.Interbull Bull. 47:203-210.
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ABSTRACT

Walloon dairy cattle could be considered as a sisidle population where the
majority of Al bulls are imported from several fae countries. Single-step Genomic
Best Linear Unbiased Prediction (ssGBLUP) metholitsvathe simultaneous use of
genomic, pedigree and phenotypic information armukhreduce potential biases in the
estimation of genomically enhanced breeding va{@BV). Therefore, in the context of
developing a Walloon genomic evaluation systemyas considered as the best option.
However, in opposition to multi-step genomic préidics, ssGBLUP only uses local
phenotypic information and is unable to use diyedthportant other sources of
information coming from abroad, e.g., multiple &s@ountry evaluation (MACE) results
provided by International Bull Service (Interbullppsale, Sweden). Therefore, single-
step Genomic Bayesian Prediction (ssGBayes) was ass@n alternative method for the
Walloon genomic evaluation system. The ssGBayesroapp allows combining
simultaneously all available genotype, pedigreeall@and foreign information in a local
evaluation by considering a correct propagatioexdérnal information avoiding double
counting of contributions due to relationships dneé to records. In the Walloon genomic
evaluation system, local information refers to \&ah estimated breeding values (EBV)
and associated reliabilities (REL) and foreign rniation refers to MACE EBV and
associated REL. Furthermore, the Bayesian apprdechthe advantage to directly
combine EBV and REL without any deregression siéqe ssGBayes method computed
more accurate predictions for all types of animkls. example, for genotyped animals
with low Walloon REL (<0.25) without MACE result®a sired by genotyped bulls with
MACE results, the average increase of REL for thdied traits was 0.39 points of which
0.14 points could be traced to the inclusion of MA@Gformation. For other categories of
genotyped animals, the contribution by MACE infotima was high too. The new
Walloon genomic evaluation system passed the lnlie@EBYV tests for several traits in
July 2013. This approach has the potential to iwmg@rourrent genomic prediction
strategies as it can be used in other settingseathercombination of different sources of
information is required.

Key words: Bayesian integration, MACE, genomic prediction

INTRODUCTION

Simultaneous use of all data by Best Linear UnliaBeediction (BLUP) is a
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condition to predict unbiased estimated breedintues (EBV; Henderson, 1984).
However, this condition is not always fully met. rFexample, small scale local
populations lead to evaluations based only on Idatd while foreign bulls are used (e.g.,
87% of cows in 1st to 3rd parity in 2012 were sibgdartificial insemination (Al) bulls
born outside of Walloon Region of Belgium). Althdughese bulls were strongly
preselected, foreign raw data used to select tsamavailable leading to potential biases
in local evaluations. Local EBV will be also lesscarate because only incomplete data
(i.e., foreign raw data not included) is availalfBEnomic selection could increase these
problems for local genomic evaluations.

Most current genomic evaluation systems are mtéf,srelying heavily on the
use of multiple across country evaluation (MACE¥ules as the primary source of
foreign phenotypic information. However, these iempéntations of genomic prediction
using MACE results mitigated these issues only dwes with high REL which are
introduced during the single nucleotide polymorptss (SNP) prediction equation
estimation step.

Single-step genomic evaluations (ssGBLUP; e.g.laget al., 2010; Christensen
and Lund, 2010) should reduce potential biaselarestimation of genomically enhanced
breeding values (GEBV) by the simultaneous cominabf genomic, pedigree and all
local phenotypic information (VanRaden, 2012), diszause fewer approximations are
made than in multi-step methods. Therefore, in ¢betext of developing a Walloon
genomic evaluation system, ssGBLUP was considesethe best option. However, in
opposition to multi-step genomic prediction, ssGBLUWIses only local phenotypic
information and is unable to use directly other amant sources of information provided,
e.g., by MACE. Nevertheless, the recovery of sunpdrtant sources of information in
the Walloon genomic evaluation system was requitad to the widespread use of
imported Al bulls.

Therefore, in the context of the Walloon genomialeation system, the aim of
this research was to assess the potential of asiayapproach, based on ssGBLUP, to
simultaneously combine all available genotype, giesdi, local and foreign information in
a local genomic evaluation. This approach alsods/deregression steps, allows a correct
propagation of external information and avoids ipldt considerations of contributions

due to relationships and due to records.
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MATERIALS AND METHODS

In this study, local information will refer to locBBV and associated reliabilities
(REL) estimated from all available local data aaceign information will refer to MACE
EBV and associated REL.

Currently, in the Walloon Region of Belgium, gencmevaluations for the
Holstein breed are performed for all traits subaditto MACE. In this study, results are
reported showing the strategy and the results édain the July 2013 run for milk, fat
and protein yields, somatic cell score, longeviig &vo conformational traits (stature and
udder support).

The genomic evaluation system implemented in théodfa Region of Belgium
consisted of several steps. First, a group of ggect animals was defined as those
animals born after the year 1998. Ancestors fosgh&nimals were extracted from the
database used for the official Walloon genetic eatbn and covered up to 6 known
ancestral generations. After extraction, the pedigfile contained 16 234 animals of
which 1909 animals (1378 bulls and 525 cows) wexeotyped. The large majority of
genotyped cows were not from a selected set of ldoéstein animals but were from a
set of Holstein animals representing the Walloomnagslity in the Holstein cattle. A total
of 38 604 SNP markers were selected after editing.

Local information included EBV and associated RBt.dows and bulls estimated
from data provided by the Walloon Breeding Assoara{subscript W; EBY, RELy) for
the official Walloon evaluation of April 2013 (Auay and Gengler, 2002; Croquet et al.,
2006). Table VII-1 shows the number of animals aisged to Walloon information for
which EBWy were available for each studied trait. Foreigoinfation included EBV and
REL for sires provided by the April 2013 MACE evalion performed by Interbull
(subscript M; EBV;, RELy; Table VII-1).

Table VII-1. Used genetic parameters, local and foreign infaonaavailable for the
genomic evaluation for the seven reported traits

Trait Heritability Ge_netic No. of animals No. of genotyped animals
varlance  EBV EBVy  EBVac EBVy EBVy EBVyc
Milk yield 0.38 280425 12046 1981 601 1762 1205 278
Fat yield 0.43 523 12046 1981 601 1762 1205 278
Protein yield 0.41 262 12046 1981 601 1762 1205 278
SCS 0.13 0.2060 12047 1941 575 1762 1167 261
Longevity 0.11 0.0797 11641 1914 520 1758 1155 238
Stature 0.52 1.1984 12671 1922 595 1706 1158 277
Udder support 0.19 0.3212 12226 1911 573 1699 1158 277
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For every trait, contributions of Walloon informai into MACE were determined
based on the domestic effective daughter equival@aDC) associated to ERVand
RELy as reported by Interbull. MACE information free Wfalloon information had
therefore a reported domestic EDC equal to 0. F@anamals and traits with a domestic
EDC different from 0, Walloon EBV and associatedLRi6ntributing to the April 2013
MACE routine-run (subscript Wc; EBM., RELw;) were considered to avoid double
counting of contributions due to records (Table-W)I Information was harmonized
between the local and MACE traits by adjusting escaid mean difference towards the
original expression of the trait in the Walloon gga evaluation computations. As shown
in Table VII-1, numbers of available local and fgre records were slightly different
among the traits.

The Bayesian procedures that integrate multiplecgsuof external information
into genetic evaluations were outlined by Vandesmm@tal. (2014). Also, these authors
outlined that their proposed systems of equatiauddcbe extended to integrate multiple
sources of external information into ssGBLUP (Vamulas et al., 2014). Thereby, their
proposed equation (VI.4) that blends several sauofexternal information by avoiding
double counting of contributions due to records duod to relationships was adapted to
blend Walloon and MACE information into a ssGBLU® fach trait separately. This
method, hereafter called single-step Genomic BayeBrediction (ssGBayes), was used
as an alternative method for the Walloon genomialw@ation system. The equation
associated with ssGBayes that blends genomic, Wakbmd MACE information and that
considers Walloon information contributing to MAQEereafter called ssGBaygs-wc)
can be written as follows:

A -1~

(G - +AW +A|v| _AWc)aW+M—Wc = D_lﬂw + DMuM _D;\:/Lc CIw (V“'l)

C

where G =Hg? is the combined genomic-pedigree based (co)variance méitrig, the
combined genomic-pedigree based relationship matrix (e.g., Agatlaal., 2010;
Christensen and Lund, 201@); is the additive genetic varianc@,, .,,_,,. iS the vector
of Walloon GEBV based on Walloon and MACE infornoati G, is the vector of EBY,,
u, Iis the vector of EBWM, U, is the vector of EBVc, A, (i =W, M and Wc) is a
matrix mimicking least squares part of hypothetiBaUP, andD;* is the inverse of the
prediction error (co)variance matrix af.

The inverse of the combined genomic-pedigree baskadionship matrixd was
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computed using the inverse of the additive pedigetationship matrix and a modified
genomic relationship matrix using a weight equali®5 for raw genomic relationships
and equal to 0.05 for pedigree relationships. Fatrices compatibility, both diagonal and
off-diagonal values were respectively centred anaberage of diagonal and off-diagonal
elements of the subpart of the additive relatigmshatrix among genotyped animals.

Regarding the vector8, for the 3 sources of information (i.e., W, M anad\\Mt
is worth noting that only some animals includedthe pedigree were associated with
known EBV and REL (hereafter called external angnahble VII-1). Therefore, for each
ith source of information, animals not associatetth available EBV were called internal
animals and the vector of EB\{i = W, M and Wc) for all animals included in the
pedigree,i,, was estimated as (Vandenplas et al., 2014):

G = {Gi(lE) CA;EE) l]i(E)}
Uie)

where the subscript | refers to internal animal$ associated with thé&h source of
information, the subscript E refers to external aigrassociated with th¢h source of

information, U, is the vector of EBV for théh source of information associated with

G i(EE) G i(EN)

-1
is the inverse of the pedigree-based
Gi(IE) Gi(ll)

external animals anoG‘l{

(co)variance matrix.

For the 3 sources of information (i.e., W, M and )Wthe matrix D;* was

approximated asD;'=G™"+A, where A, is a diagonal variance matrix with one
diagonal element per animal equal RE; /ae2 forj =1, 2, ...,J animals (Vandenplas et

al., 2014). The element; is the residual variance and the elemB#; is the effective

number of records, so-called record equivalentstte jth animal. Record equivalents
expressed the amount of contributions for an anifMééztal and Wiggans, 1988). It is

worth noting that double counting of contributiodse to relationships among related
animals could exist because both Walloon and MAGfarmation were associated with
related animals. Therefore, the combination of @l and MACE information was

performed by taking into account contributions dwe relationships among related
animals. These contributions were estimated byadi®p algorithm (TSA; Vandenplas

and Gengler, 2012). It takes into account all refethips between animals associated
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with information and their ancestors. Therefore,tfe internal animalsRE; is equal to

0. All contributions for these animals were onlyedw their relationships with external

animals. For the external animaRE; was estimated through TSA and only express the

amount of contributions due to records.

Because a major feature of the Walloon genomicuat@n system is its ability to
use MACE information, in comparison to ssGBLUP, thBuence of the use of this
information was tested. To test this influence, Ba@s was run considering only
Walloon information (ssGBayg$ using the following system of equations:

(G*1+A,)a, =Dy, (VI1.2)
where a,, is the vector of Walloon GEBV only based on Watlaoformation.

Approximation of genomic REL (GREL) for GEBV in gemic evaluation
systems is not always straight forward (Misztall 20 Because the equations (VII.1) and
(VII.2) associated with ssGBaygsi.wc. and ssGBayggs respectively, represented
hypothetical mixed model equations, the computattdnREL was tested using the

standard formula:

GREL=1-PEV /0! (VI1.3)

where ag is the diagonal element d&" and PEV is the prediction error variance

obtained from the diagonal element of the invet&fdhand side of the equations (VII.1)
and (VI1.2), respectively. By using diagonal elettseaf G, the method corrected for
inbreeding estimated using combined pedigree andrge information.

The two ssGBayes were performed using BLUPF90 (tdis2013) modified to
implement equations (VII.1) and (VII.2).

RESULTS AND DISCUSSION

For all traits, among the approximately 12 000 atgrassociated with available
Walloon information, around 1950 bulls were alsalaated by Interbull (Table VII-1).
Walloon information for around one third of thesal$® contributed to the April 2013
MACE routine-run. Table VII-1 also indicates thatl@ast 83% of the 1378 genotyped
bulls and at least 11% of the 16 234 animals incthresidered pedigree file had foreign
information. This large amount of additional infation was incorporated in the genomic
evaluation system and would allow increasing theral accuracy of the produced
GEBW.
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Table VII-2 gives details on the improvement of R&hen estimating (G)EBV
from different sources. First, the improvement tluencluding only genomic information
was considered. For the genotyped bulls with |dvalpée official Walloon EBV (REk <
0.50), the genomic information allowed an subsgdmticrease of between 0.13 and 0.19
points for average REL of these bulls accordinthtostudied traits.

The genomic information also increased average REthe two other categories
of bulls with more accurate Walloon EBV. Indeeck @iverage REL was increased with
0.05-0.06 points for the bulls with RigLbetween 0.50 and 0.75. Even for locally well
proven bulls (i.e., REl > 0.75), the genomic information added 0.01 to therage
REL.

Considering the simultaneous combination of genoamd foreign information
(i.e., ssGBayeg-m-wc), the increases of the averaged REL for eacheofttree mentioned
categories of genotyped bulls (Table VII-2) werghar than those associated with
ssGBayeg. As expected, the highest increase of REL wasrabddor the bulls with the
lowest RElLy. When comparing different traits, the use of ss@Ba.v-wc led to an
increase of average REL between 0.20 points faydeity and 0.41 points for milk yield
compared to ssGBaygs The increase was lower for genotyped bulls witBLR
included in the range [0.50-0.75[ with 0.09 to Od#glitional points of REL. Even for the
already locally well proven bulls (i.e., Rgl> 0.75), ssGBay@s m-wc Still provided more
reliable GEBV than ssGBaygsAdditional points of REL ranged from 0.02 for gmvity
to 0.05 for fat yield (Table VII-2).

Table VII-3 shows the improvements for genotypennas only associated with
EBVy, i.e., without foreign information, and sired bemptyped bulls with MACE
results. These genotyped animals were Walloon cands bulls as well as foreign or
Walloon bulls to be tested. Again, similarly to T@aWII-2, even if ssGBayggallowed an
increase of average REL with 0.16-0.28 additiorah{s, ssGBayes-v-wc led to higher
REL. For most traits, ssGBaygs,.wc provided an average REL higher than 0.50 for
these genotyped animals with a Riincluded in the range ]0.00-0.25].
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The genomic evaluation addressed another categbrgeaotyped animals
including the newborn Walloon bulls (candidate Adrbulls) and recently imported Al
bulls (or with a forecasted importation), both type animals not being yet included in
the routine genetic evaluations. Therefore, thes#ls bhad no available external
information due to their absence in the pedigreedt the last official Walloon genetic
evaluation. These animals were incorporated inggm@omic evaluation system by only
using their available information (i.e., pedigrea genotypes) and information available
for their relatives. If their sires were associawth MACE EBV, REL of their GEBV
were higher than the threshold defined for the ictamed trait to be publishable (Table
VIl-4). For each of the seven studied traits, ss@&Ba.v-wc provided a publishable
GEBYV for more than two thirds of these bulls.

Table VII-4. Average reliabilities (REL; SD in parentheses) agded with GEBVWy+u-
wes for genotyped bulls without external phenotypeoinfation (neither local EBV
neither MACE EBV), sired by genotyped bulls with I@E results for the studied trait

Publication rule:

Trait REL> No. of bulls Averaged REly.+y-we (SD) No. of publishable GEBW.y-wc
Milk yield 0.50 17 0.53 (0.05) 13

Fat yield 0.50 17 0.53 (0.06) 13

Protein yield 0.50 17 0.53 (0.05) 13

SCS 0.45 20 0.54 (0.05) 19

Longevity 0.35 23 0.38 (0.05) 18

Stature 0.50 21 0.54 (0.06) 15

Udder support 0.50 21 0.47 (0.07) 15

! GEBVwsm-we and RElwsw-we from Walloon genomic evaluation using EBVEBVy, and EBVy.

Currently, the system is not yet optimized by ggpmtg additional related
animals with information (e.g., maternal grandsirerothers, half-brothers) in order to
increase the links between these candidate aniavadsthe genotyped animals with
information. An appropriate strategy will be implented to detect the most important
animals to be also genotyped which should incrédaseroportion of publishable GEBV
even further.

The Walloon genomic evaluation system was usedrasdlts tested inside the
GEBYV tests of Interbull. Results passed the testsdveral traits in April and July 2013.
Currently, research is undertaken to optimize thienftion of the modified genomic
relationships matrix. Indeed, several tests shothed the weighting used has a large
influence and that the optimal proportion betweeaw rgenomic and pedigree
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relationships directly reflects the critical padrting of total genetic variance in variances

explained by SNP effects or polynomial residuals.

CONCLUSIONS

The ssGBayes method, through its Bayesian approatdgrated well MACE
results into ssGBLUP and allowed recovering indlyea large amount of phenotypic
information. All available external sources of infaation were correctly propagated
avoiding double counting of contributions due ttatienships and due to own records.
Therefore, the ssGBayes method proved to be a gboite for the Walloon genomic
evaluation system integrating Walloon and MACE EBMditional optimizations are
currently under development by genotyping importsinds and by adapting the correct
partitioning of additive total variance for a givaait in order to increase the number of
traits that pass the Interbull GEBV test. The ssgg&Bamethod used in the Walloon
genomic evaluation system can also be adapted rnwuléi-trait setting allowing the
genomic evaluation of only locally available trafesg., fine milk composition, methane
emissions) using external information from corredhtraits (e.g., traits evaluated by
Interbull).

Finally, the ssGBayes approach has the potentidmfmrove current genomic
prediction strategies as it can be used in othiings (e.g., beef cattle and pigs) where

the combination of different sources of informatismequired.
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Chapter VIII. G ENERAL DISCUSSION

Based on previous research, Chapter Ill to Chapiiepresented
improvements and implementations of Bayesian ajges that
integrate several sources of external informati@o an internal
genetic or single-step genomic evaluation. Althotlgh Bayesian
approaches were developed to integrate externalrniation
correlated to the internal phenotypic traits intomaltivariate
genetic evaluation (e.g., Chapter VI), externabinfation was
always considered to be the same trait as thenmit@henotypic
trait from Chapter Il to Chapter VII. Therefore, this Chapter, a
general discussion was first initiated by invedtiga the
integration of correlated external information irgomultivariate
genetic evaluation. Second, a comparative study ngmihe
different approaches that combine simultaneouslyeraal

information and internal data was detailed.






General discussion

Bayesian approaches that integrate external infbomai.e., estimated breeding
values (EBV) and associated reliabilities (REL}pian internal genetic evaluation were
proposed by several authors (e.g., Quaas and ZB@A§; Legarra et al., 2007). Different
issues were identified and, thereby, improvemendsimplementations of algorithms and
methods, as well as extension of their scope tom&s were proposed in Chapter I
until Chapter VII. This included the reduction aeputational burdens (Chapter Ill), and
the consideration of double counting of contribnsiadue to relationships (Chapter Ill)
and due to records (Chapter VI). In Chapter VI, ified mixed models equations
(MME) were presented to integrate several souréesxternal information into genetic
and genomic evaluations. To our knowledge, suclintagration of several sources of
external information has not been showed by preveuthors in the context of Bayesian
approaches. Also, the proposed improvements aratitigns were tested with real data
in the context of the Belgian genetic evaluationjtonping horses (Chapter IV) and in
the context of the Walloon single-step genomic eatibn system for Holstein cattle
(Chapter VII).

It is worth noting that external information wasvals considered to belong to the
same trait as the considered internal phenotypit from Chapter Il to Chapter VII.
However, the Bayesian approaches were also dewkldpe integrating external
information correlated to the internal phenotypraits (hereafter called correlated
external information) into multivariate genetic maions (e.g., Chapter VI; Quaas and
Zhang, 2006). These Bayesian approaches need aoxapation of the inverse of the
prediction error (co)variance matrix associatechweixternal EBV obtained from external
multivariate MME. An approximation of the inversé ihis matrix was proposed in
Chapter VI. As stated in this Chapter VI, the pregubapproximation is different from the
approximation proposed by Quaas and Zhang (200%9. difference between the two
approximations is linked to the approximation oé fleast squares part of the left hand
side (LHS) of the external multivariate MME thatneeded for the approximation of the
inverse of the prediction error (co)variance matffilxerefore, our approximation (Chapter
V1) and the one presented by Quaas and Zhang (200 tested and compared based
on simulated data. Results are given in the sulesgcgection. Finally, a comparison of
the three types of approaches that combine sinmedtasly internal data and external
information for univariate analyses and multivaigenetic evaluations is presented in

the last section of this Chapter.
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INTEGRATION OF CORRELATED EXTERNAL INFORMATION

Thanks to correlations among different traits, somdeantages of multivariate
genetic evaluations are firstly the prediction d\Efor traits of interest for which
phenotypes could be difficult, or impossible toled internally and, secondly, the
improvement of accuracy of EBV for the differendits, under some conditions (e.g.,
Schaeffer, 1994; Mrode, 2005). Thereby, integrabbexternal information correlated to
the internal phenotypic traits into an internal tivalriate genetic evaluation could be
interesting to solve different issues. Firstly, @ecy of internal evaluations may be still
low for some traits of interest, while accurateeemal evaluations for similar traits or for
correlated traits are routinely performed, potdiytiat an international level (e.g., MACE
evaluations for commonly evaluated traits). Thamfontegration of correlated external
information provided by external evaluations intmaltivariate evaluation could improve
the accuracy of the traits of interest. Secondtyemmal information can be expressed on
other scales or units of measurement, or it caasseciated with different heritabilities
and genetic parameters than the internal traitantdrest. Therefore, like MACE,
integration of correlated external information ablle an optimal approach to evaluate
genetic merits of animals without the use of coswmer equations and without the
dependence of the internal genetic evaluation ésehequations. In the context of the
Bayesian evaluations integrating external inforomatiinto a multivariate genetic
evaluation, two different approximations of thedieaquares part of the LHS of the
external MME, involved in the approximation of theverse of the prediction error
(co)variance matrix associated with external EBWhdfter Ill; Chapter VI), were
proposed. The first approach to approximate thereat least squares part was proposed
by Quaas and Zhang (2006) and used in Chapterntdl @hapter IV. This approach
involves the matrix of additive genetic (co)variaa@mong traits. The second approach
was proposed in Chapter VI and involves the mabfixesidual (co)variances among
traits, instead of the additive genetic (co)varencatrix. Therefore, based on simulated
data, the aim of this study was to test the twgpsed approximations through their use
in a Bayesian approach that combines internal peeignd phenotypes for a trait of
interest with external information, i.e., EBV andERprovided by an external genetic

evaluation for a trait genetically correlated tstinait of interest.

MATERIAL AND METHODS

The context of the simulation was a population whenly females were
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associated with phenotypes. Females were assigndifférent herds. Phenotypes were
observed for two genetically correlated traitswés also assumed that phenotypes were
observed for only one of the two traits in eachdhdiherefore, females were associated
with phenotypes for only one of the two traits dine residual correlation was assumed to
be equal to zero. For pedigree, one hundred repicaere first generated by the QMSim
program (Sargolzaei and Schenkel, 2009). The pdeanfde considered 40 male
founders and 200 female founders to generate 16rggons of animals. The litter size
and the proportion of male progeny were assumdx tb and 50%, respectively. Matings
and selection were random. It was also assumedt@fatof sires and 10% of dams were
replaced in all generations. For each pedigreealiesnvere randomly attributed to one of
the five assumed herds under the assumption tleht leerd included on average 1/5 of
the total amount of females. Phenotypes for the tvads, hereafter called “trait of
interest” and “correlated trait”, were simulated fach female following Van Vieck
(1982). Females attributed to the two first herdsenonly associated with phenotypes
related to the trait of interest and females aiteld to the three last herds were only
associated with phenotypes related to the corcblmgat. Heritabilities of 0.10 and 0.35

were considered for the trait of interest and th&rretated trait, respectively.

Corresponding phenotypic variances were 8009@nd 100u’ whereu? andu? are the
squares of the units of measurement for the tfaimterest {4, ) and the correlated trait

(u. ), respectively. Genetic correlations betweengrég) equal to 0.10, 0.25, 0.50, 0.75,

and 0.90 were considered. As explained previotisé/residual correlation between traits
(r) was assumed to be equal to 0.00 because therenavasvironmental covariance
among the traits as the two traits were not obskerve same animals. Hereatfter,
phenotypic data for the trait of interest and edato the two first herds will be

considered as internal data while phenotypic datahie correlated trait and related to the
three last herds will be considered as external.dBhbe simulation of phenotypes was
replicated for each of the 100 pedigree and forheaft the 5 considered genetic
correlations.

Using simulated data, three conventional genetaluattions and two Bayesian
evaluations were performed for each genetic cdroglaAll evaluations were based on
the same pedigree that includes all animals. (liptJevaluations (EVAL) were
performed as bivariate Best Linear Unbiased Predic{BLUP) evaluations using the

system of equations (VI.2) and based on externdliaternal data. These evaluations
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were assumed to be the reference. (2) Internauattahs (EVAL) were performed as
bivariate BLUP evaluations using the system of &qoa (VI.2) and based only on
internal data. External data was ignored by EVAB) External evaluations (EVAd
were performed as bivariate BLUP evaluations ugiegsystem of equations (VI.2) and
based on external data. Internal data was ignoydeMAL .

Then, two bivariate Bayesian evaluations integoptaxternal information, i.e.,
EBV and associated REL provided by EMAlfor all external sires having daughters with
phenotypes for the correlated trait, were alsogueréd using the following system of

equations, with the same compact notation for eetiuations (e.g., Chapter Ill):

X' R X' R'Z, B| - X' R,
Z\R'X, Z'\Rj'Z, +D¢ a, Z' Ry, +Dg'l;

where | and E refer to EVALand EVALg, respectively, X, and Z, are incidence
matrices relating internal phenotypesyinto the vector of fixed efl‘ectﬁI and the vector
of random additive genetic effecfs, respectively,R* is the inverse of the residual
(co)variance matrix, and;' is the inverse of prediction error (co)variancetninra

associated to the vector of external EB) J.

As explained in the previous Chapters, the vect@xternal EBV for all internal animals

: . : R GGl . :
and external sires is estimated agz{ & EE E(E)} where (g, is the vector of
uE(E)
G G
external EBV for the external sires obtained froMAEE and G :{ ! 'E} is the
El EE

additive genetic (co)variance matrix.
Although the systems of equations related to treBayesian evaluations had the

same compact notation, the difference between ©mthluations concerned the
approximation ofD;', and especially the computation of the approxiomatf the least
squares part of the LHS of EVALi.e., the computation of the block diagonal matai,
needed for the approximation @:', that is D' =G + A . (4) For the Bayesian
evaluation based on the approximation of Quaas Zmhg (2006) (EVAL), block

diagonals ofA , hereafter noted\,, related to external animals are equaAy,G,'A,

fori =1, 2, ...,N external animals where the mati&, is a matrix of additive genetic
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(co)variances between the 2 traits A = JREL, /(1-REL,) 0
0 JREL, /(1-REL,)

with REL; and REL, being REL for theith animal for the first and second trait,

respectively. (5) For the Bayesian evaluation basedhe approximation proposed in

Chapter VI (EVALy), block diagonals ofA, hereafter notedA, , related to external
animals were equal ta,,R;'A,, fori =1, 2, ...,N external animals where the matrix

R, Is a matrix of residual (co)variances between theo traits and

Ay, :l:VF;E” 0 } with RE; and RE, being the record equivalents for tité

animal for the first and second trait, respectivélygr internal animals, associated block
diagonals were equal to O for both EVA&Nd EVALy. It was noted that no phenotype for
the correlated trait was considered by EYAEVALq and EVAL,. Only EVALg and
EVAL ; considered phenotypes for the correlated trait.

Because external sires could be related among th#ouble counting of
contributions due to relationships could exist. Ef@me, contributions due to
relationships were estimated through the two-stigwrishm (TSA; Chapter I1ll) for
external sires. The differeREL,, REL,,, RE;, and RE,, estimated by TSA and used for

the computation ofA were therefore assumed free of contributions dueslationships

among external animals and due to correlations grtraits.

RESULTS AND DISCUSSION

For univariate analyses, computationsAf and A, are equivalent. Following
Chapter Il and Chapter VI, it can be written foeith external animal for a univariate
genetic evaluation:

- REL].I *
1-REL, o

=

(” 2)_1 = (‘7 2)_1 =AuGoAq

_ 1
AyRG'A, =RE, (O'ez) e/ T1_ReEL. Ve
3

DN

wheres’? and s’ are the additive genetic variance and the residgari@nce, respectively.
However, the equality is not observed for multiggei analyses. Indeed, the block

diagonal matrixA,G,'Ay could add unobserved contributions to the elemehtthe

LHS corresponding to thigh external animal because the matriG,' andR;' have not

the same structure. For example, if residual camags are assumed to be equal to zero,
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the block diagonal matriA,G,'Ay would add unobserved contributions to the elements

of the LHS corresponding to thi¢h external animal, especially through the genetic
correlations among traits. Consequences of additionobserved contributions could
lead to overestimated REL and less accurate evahsatFurthermore, zero residual
correlations could be a common situation in thete&xnof integration of correlated
external information into a multivariate geneticakwation because phenotypes used to
compute external information would not be obsergadnternal animals and, therefore,
would not be available for internal evaluationsef@iore, zero residual covariances were
assumed for the data simulations to illustrate ssitdlations and consequences of the

computations ofA, and A,, on the Bayesian evaluations.

Regarding the simulated datasets, the 100 repticatduded each 2240 animals
and all results presented hereafter concern ordy tthit of interest. The following
parameters were explored. Firstly, Spearman’s camielation coefficients (r) of EVAL
with EVAL,, EVALg or EVALy are presented for external sires (i.e., sires rpvi
daughters with records for the correlated traitbl@aVlll-1) and for females having
records for the trait of interest and sired by éx¢ernal sires (hereafter called “female
progeny”; Table VIII-2). Secondly, the average REdmputed from prediction error
variances obtained from the inverse of the LHS ®AE; and EVAL, EVALq and
EVALy (no corrections were performed for inbreeding) aaported for external sires
(Table VlII-1) and for female progeny (Table VII)-ZFinally, mean squared errors (MSE)
expressed as a percentage of average internal MiIS&ternal sires (Table VIII-1) and
for female progeny (Table VIII-2) are also present&he average internal MSE was
expressed on a base of 100. All reported paramefens the averages and the associated
standard deviations of the 100 replicates.

On average, 183.0 (+1.1) sires were associated exitrnal information. Firstly,
whatever the computation o or the consideredy,rthe integration of correlated external
information for external sires led to rankings tladre more similar to the rankings of
EVAL,. For the external sires, r between EVAnd EVAL varied from 0.987 forgr=
0.10 to 0.563 forgr= 0.90. The r of EVALwith EVALg or EVALy increased to at least
0.990 after integrating correlated external infoiora Furthermore, MSE also showed
that the integration of correlated external infotiora led to better predictions of EVAL
for the external sires, leading to MSE lower thah2%6 (+0.61), whatevergr(Table
VIII-1). Secondly, when comparing EVAL and EVAL, for the external sires, no
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difference can be observed between both evaluatiores/erage across the 100 replicates
for ry = 0.10 or § = 0.25. These results could be expected becauses iwell as the
absolute differences betweegp and g were low (Schaeffer, 1984). Differences were
observed only fromgr= 0.50. The r of EVAL with EVALg or EVALy were similar
(>0.990) from g = 0.50 to § = 0.90. Differences of rankings between E\dnd EVALy,
were lower than 0.008 points fog # 0.90. Thereby, differences between E\Aand
EVALy for external sires associated with external infation were mostly observed
through MSE and REL. Regarding REL, REL for EMV\lwere overestimated from
8.98% for g = 0.50 to 76.21% foryr= 0.90 (Table VIII-1). REL for EVAL were
overestimated from 1.80% fog + 0.50 to 2.74% forgr= 0.90 (Table VIII-1). As shown
in Table VIII-1, overestimation of REL for EVAJ.increased with increasing, rand
therefore, with the increase of the absolute diffiees between and g. Overestimation
of REL for EVALy could be attributed to a double counting of cdmitions due to
relationships since the TSA approximated theseewdifft contributions (Chapter llI;
Chapter VI). However, double counting of contribat due to relationships cannot
explain the large overestimation observed for EWALContrariwise, this large

overestimation can be mainly attributed to unobsgmontributions added by the product

AuGy'Ay for eachith external animal. For beef cattle and based owilsited data,

Zhang et al. (2002) studied the effects of integnabf external information related to
three traits into an internal multivariate genetiraluation evaluating the same three traits.
The Bayesian approach was the approach propos€@didgs and Zhang (2006). External
information included sires’ EBV and their assoadlataccuracies for the three traits
obtained from an external multivariate genetic eaibn. Variance components were
assumed to be equal among all evaluations. Unlikesinulations, residual covariances
were not equal to zero because the three traitid dmel observed internally, and also
externally, on the same animals. Nevertheless,ltsesfi this study also showed that
average accuracies associated with the Bayesidnagiem were higher than average
accuracies associated with a joint evaluation basethternal and external data, for the
three traits. Such an overestimation of accurasiesved that additional and unobserved
contributions were integrated into the internal tiwakiate genetic evaluation. In addition
to double counting of contributions due to relasioips that was not taken into account in
the study of Zhang et al. (2002), the differencevieen the residual correlations among

the three traits (in the range between -0.08 afd)(and the genetic correlations (in the
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range between 0.31 and 0.50) could also explaigetloverestimations of accuracies.
Furthermore, regarding MSE obtained in the prestuatly, it can be observed that
additional and unobserved contributions led to ss laccurate, or biased, Bayesian
evaluation with a difference of MSE between EVAand EVALg equal to 0.02% forgr=
0.50 until 2.64% forg= 0.90, although average REL for EVAWwas higher than average
REL for EVALy (Table ViIlI-1).

Table VIII-1. Parameters(SD in parentheses) averaged on 100 replicatebtained
for external sires

Genetic correlationsParameters EVAL; EVAL, EVALq EVALy

r 1.000 (0.000) 0.987 (0.004) >0.999 (0.000) >0.@®0O00)

0.10 REL 0.103 (0.003) 0.100 (0.003) 0.103 (0.003) 0.(maB03)
MSE - 100.00 (17.28) 0.23 (0.05) 0.23 (0.05)

r 1.000 (0.000) 0.927 (0.020) >0.999 (0.000) >0.@®0O00)

0.25 REL 0.117 (0.003) 0.100 (0.003) 0.118 (0.003) 0.4aL803)
MSE - 100.00 (17.09) 0.24 (0.05) 0.24 (0.05)

r 1.000 (0.000) 0.777 (0.053) 0.999 (0.000) 0.920q0)

0.50 REL 0.167 (0.003) 0.100 (0.003) 0.182 (0.003) 0.407003)
MSE - 100.00 (17.17) 0.31 (0.06) 0.29 (0.06)

r 1.000 (0.000) 0.634 (0.079) 0.998 (0.001) 0.920(0)

0.75 REL 0.255 (0.003) 0.100 (0.003) 0.344 (0.004) 0.@6a03)
MSE - 100.00 (17.58) 0.87 (0.19) 0.39 (0.07)

r 1.000 (0.000) 0.563 (0.091) 0.990 (0.003) 0.928(q0)

0.90 REL 0.328 (0.004) 0.100 (0.003) 0.578 (0.005) 0.@8004)
MSE - 100.00 (17.65) 3.12 (0.61) 0.48 (0.09)

r = rank correlation between a joint evaluation V) and an internal evaluation (EVAL a Bayesian
evaluation proposed by Quaas and Zhang (2006; By AL a Bayesian evaluation proposed in Chapter VI
(EVALy); REL = average reliability; MSE = mean squareeexpressed as a percentage of the average
internal mean squared error.

As shown in the previous Chapters for univariatgeBgan evaluations, one of the
advantages of Bayesian approaches is that exterfioanation is propagated to internal
animals through the additive genetic (co)variancatrim G. This advantage is still
observed for multivariate Bayesian evaluationsgddition to the propagation of external
information from one trait to the other one, andcéin be observed through female
progeny of external sires that have records fortthié of interest. On average, external
sires sired 241.15 (x 47.06) daughters across @Berdplicates. For the trait of interest,
results for 100 replicates showed that r of EYAtith EVALg and with EVAL, ranged
from 0.997 for § = 0.10 to 0.892 forygr= 0.90 for female progeny. The rank correlations
of EVAL; with EVAL, ranged from 0.992 to 0.652. These results showatdintegration
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of external correlated information for externaksited to rankings of sires’ progeny more
similar to the rankings of EVAJ. even if g is low. Effects of the integration was also
observed through MSE which decreased of about 66f4r,f= 0.10 to § = 0.90.
Comparisons of r and MSE between EVAland EVAL, showed that unobserved
contributions added by EVA{ led to similar r and MSE. However, these unobskrve
contributions led to higher average REL obtainetfiEVALg compared to average REL
obtained from EVAL, (Table VIII-2).

Table VIII-2. Parameters(SD in parentheses) averaged on 100 replicate®hbiained
for female progeny sired by external sires andravecords for the trait of interest

Genetic correlationsParameters EVAL ; EVAL, EVALq EVAL,

r 1.000 (0.000) 0.992 (0.002) 0.997 (0.001) 0.920q1)

0.10 REL 0.138 (0.002) 0.136 (0.002) 0.137 (0.002) 0.(B@02)
MSE - 100.00 (13.49) 36.48 (5.75) 36.48 (5.75)

r 1.000 (0.000) 0.954 (0.009) 0.983 (0.003) 0.988(3)

0.25 REL 0.144 (0.002) 0.136 (0.002) 0.141 (0.002) 0.(131002)
MSE - 100.00 (13.31) 36.34 (5.77) 36.34 (5.77)

r 1.000 (0.000) 0.844 (0.029) 0.947 (0.010) 0.91610)

0.50 REL 0.169 (0.002) 0.136 (0.002) 0.157 (0.002) 0.xa02)
MSE - 100.00 (13.46) 36.03 (5.88) 36.05 (5.88)

r 1.000 (0.000) 0.721 (0.048) 0.910 (0.017) 0.910%7)

0.75 REL 0.212 (0.002) 0.136 (0.002) 0.197 (0.003) 0.400@02)
MSE - 100.00 (14.31) 35.74 (6.05) 35.65 (6.04)

r 1.000 (0.000) 0.652 (0.057) 0.892 (0.020) 0.82011)

0.90 REL 0.247 (0.003) 0.136 (0.002) 0.255 (0.004) 0.4®m603)
MSE - 100.00 (15.18) 36.46 (6.16) 35.34 (6.10)

I = rank correlation between a joint evaluation &f\) and an internal evaluation (EVAL a Bayesian

evaluation proposed by Quaas and Zhang (2006; YAt a Bayesian evaluation proposed in Chapter VI
(EVALy); REL = average reliability; MSE = mean squareaeexpressed as a percentage of the average
internal mean squared error.

Based on these results, the proposed Bayesianagh@® seem to well integrate
the correlated external information into a multiae genetic evaluation, especially if the

block diagonal matrix was\,, (Chapter VI) instead ofA, (Quaas and Zhang, 2006).

Better predictions of EBV and improvement of RELrev@bserved for external animals
and for their progeny in both approaches. Howewerpetter results obtained for EVAL
in comparison to EVAL, must be confirmed with real data and other apipratons of
A (e.g., Schaeffer, 2001) must be tested. Furtheibis worth noting that different
units of measurement were assumed between the ravs, tas well as different

heritabilies and different variance components. réfuge, like MACE, the proposed
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Bayesian approach allows the combination of diffesources of information associated
to different scales, different heritabilities anariance components, or different units of
measurement. Also, multi-trait Bayesian evaluati@iew to consider genotype by
environment interactions and different trait defons associated with the internal and
external evaluations. This latter characteristicnpes to avoid conversion of external
information (e.g., expressed as indices or stanzeddestimates) to the expression of the
random animal effects considered by the internaluations. For example, in the context
of dairy cattle and for numerous countries, milklgiiis a trait published as an average
yield on 305 days for three lactations while modale test-day models, possibly
considering random regressions for additive geneffects (Gengler and Vanderick,
2008; Liu et al., 2014). In cases of random regoessest-day models, Gengler and
Vanderick (2008) proposed to convert external ieslisvhich express average yields on
305 days for three lactations to (one of) the ramdegression additive genetic effects for
one or several lactations. Alternatively, extermdbrmation can be considered as an
additional trait which has no observed phenotyperivally and which is genetically
correlated to all the random regression additiveetie effects for all lactations, similarly
to the present study. Such a strategy could beidenmesl for integrating MACE
information into single-step genomic evaluations.

Regarding the correlations, it was assumed thauakand genetic variances of
the traits as well as the residual and geneticetations between external information and
internal data were known. However, in practicejarazes and correlations are not known
and must be estimated. Therefore, approaches tmadst variances and correlations
associated with internal data and external infoilonamust be studied and developed.
Also, it is worth noting that, although a diagomakidual (co)variance matrix was
assumed for this simulation, off-diagonal elemenifferent from zero could be
considered, for example, if phenotypes for theedéht traits were observed on the same
internal animals, as shown by Zhang et al. (2002).

CONCLUSIONS

Based on these results, the proposed Bayesian agh@® integrated well
correlated external information into a multivarigienetic evaluation for simulated data,

especially if the block diagonal matrix was, (Chapter VI) instead oA, (Quaas and

Zhang, 2006). Therefore, the proposed multivariBeyesian approaches have the

potential to integrate correlated external informrainto a multivariate genetic evaluation
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allowing for different heritabilities, variance cpanents, units of measurement or models
between external and internal traits. However, athe multivariate Bayesian approaches
seem promising, their implementation could be clifi due to availability or estimation

of correlations between external information arténmal data. Hence, further research on

real data is needed to confirm these first results.

COMPARISON OF APPROACHES THAT COMBINE INTERNAL DATA AND EXTERNAL
INFORMATION

Three types of approaches allow to combine simatiasly internal data and
external information, i.e., EBV and associated REL:

(1) absorption based approaches (e.g., Hender83, ¥an Vleck, 1982; Bolgiano

et al., 1983),

(2) pseudo-records based approaches (e.g., BamaitBoichard, 1995; VanRaden et

al., 2014), and

(3) Bayesian approaches (Chapter Ill, Chapter VI).
These approaches were described in the previoupt€lBaand some similarities among
some of them were already noted (Chapter I1). Tioegethe aim of the present section is
to make pairwise comparisons of the three appr@adbeidentify similarities and
differences among them. As reviewed in Chapterditferent implementations were
proposed for all the three approaches, and frorseththe implementations proposed by
Bolgiano et al. (1983), by VanRaden et al. (2013) m Chapter VI were chosen.

The context of the comparisons is an internal umat@ evaluation integrating one
source of external information associated with ekanimals that have no observations
at the internal level. This assumption concernirgermal animals and internal records
was taken for simplification. Nevertheless, resoltshe comparison would be identical
without this assumption. Such a context can bergbde for example, for a dairy cattle
genetic evaluation for milk production traits thategrates external information for bulls
only (e.g., Bolgiano et al., 1983). Also, all anlmare assumed to be partitioned between
internal animals (I) and external animals (E). Bhgt in this context, a system of
equations for the internal genetic evaluation commg internal data and external
information can be written for the three approachéhl the same compact notation as
follows:
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XX, X\Z, 0 X\Z, ﬁl Xy,

Z X, ZZ +A") A" Z,Z, d, _ Zy, VIILL)
0 AR AFEL+W 0 i 0 | '

ZX, Z,z, 0 Z,Z, +la| B, Zyy,

wherey, is the vector of internal observations associated with the int@nmahbls,p, is
the vector of fixed effectsy, andu. are the vectors of random additive genetic effects
of internal and external animals, respectivety, is the vector of random permanent

environmental effects anel is the vector of residualX, and zZ, are incidence matrices

relating internal observations to fixed effects and to random effectpectesely,

1l IE
A= L’:‘El :‘EE} is the inverse of the relationships matri¥,=(1-r)/h?> and
a:(l—r)/(r —h2) where r and h* are repeatability and heritability, respectivele
matrix ¥ and the vecto® must be defined following the considered approdcét are
the absorption based approach (Bolgiano et al.3)198e pseudo-records based approach

(VanRaden et al., 2014) and the Bayesian apprdaichpter VI).

ABSORPTION BASED APPROACHES AND PSEUDO -RECORDS BASED APPROACHES

Concerning the absorption based approach, themystesquations (VIIl.1) has
the same compact notation as the system of eqsafjnproposed by Bolgiano et al.
(1983). Following their definitions and after sosimplifications, the diagonal element of
the diagonal matrix¥ for theith animal, ¥, , is equal tc¥;, =n * A/A, wheren, is the
number of daughters of thth external animal and which provide equivalenbinfation
with one record per daughter and all in the sanrd-hiear-season. The element of the

vector 0 corresponding to the ith animal, 6, is equal to

0, :(ﬁ))h—z@ﬂni —1)h2)pEi =(n*A/A,+ A)ng, where p. is the vector of external

EBV associated with the external animals (Hender$6m5; Table VIII-3).

Also, the system of equations for univariate aredyéV/Ill.1) can be applied for
the pseudo-records based approach proposed by ¥anRs al. (2014). Following their
definitions and after some simplifications, thegtinal element of the diagonal matMx

for theith external animal is equal tW, = RE, where RE, is the element for thih

animal of the vector of RE associated with extearaimals. The element of the vecr
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for the ith external animal for the pseudo-records basedoapp, 0,, is equal to
0, =RE, * DRP, where DRP, is the element for thé&h animal of the vector of the

deregressed proofs (DRP) associated with extemialads (VanRaden et al., 2014; Table
VIII-3).
Therefore, considering these definitions, the tppraaches are equivalent under

some assumptions. Firstly, the diagonal element® @fre equivalent assuming = DE,
where DE, =RE, * A, /A is the daughter equivalents which are definechasnumber of

daughters of thah external animal which provide equivalent infotioa with one record
per daughter, all daughters having an infinite nendd management group mates and the
other parent with perfect REL (VanRaden and Wiggaf91). Secondly, the elements of

0 are equivalent assuminDRP, =(1+/1/REi)pEi. It is noted that the equivalence

between absorption based approaches and pseuddsdiased approaches, under some
assumptions, was already shown by Bonaiti and Boiclj1995). However, in practice,
differences may appear between results of bothoagpes if the previous assumptions
are not verified (e.g., VanRaden et al., 2014).

Table VIII-3. Non-zero elementsof the matrix¥ and the vecto® for theith external
animal that is not associated with records at thtermal level in the context of a
univariate evaluation, following the absorption édspproach (Bolgiano et al. 1983), the
Bayesian based approach (Chapter VI) and the pseedods based approach (VanRaden
et al. 2014)

Approaches ¥, 0,
Absorption based approach n*A/A (n * A/A, +)|)l15i
N
Bayesian based approach A, 07 (AE“Us + A;E“A)uEi + ZA;E”;LEJ_
L
Pseudo-records based approach RE; RE, * DRP,
1

n = number of daughters of thih external animal and which provide equivalenbinfation with one
record per daughter and all in the same herd-yemses1, A = ratio of residual to genetic varianc A, =
ratio of error to sire variancep. = vector of external estimated breeding valueoaated with the

external animalsA . = diagonal matrix;ae2 = residual varianceA ;E = inverse of the relationships matrix

among external animaldRE = vector of record equivalents associated witremydl animals;DRP =
vector of deregressed proofs associated with eattamimals.

ABSORPTION BASED APPROACHES AND BAYESIAN APPROACHES

In the context defined previously, based on theuraggions specified for the
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Bayesian approach defined in Chapter VI and by iplyihg the system of equations
(IV.3) by the residual varianco?, the system of equations (IV.3) has an equivalent
compact notation than the system of equations (MllThereby, following the definitions
given in Chapter VI and after some simplificatioise diagonal element for théh

animal of the diagonal matri¥’, ¥, , is equal to¥, = AEHOf =RE, for the Bayesian

approach, withA; being a diagonal matrix with a diagonal elememtedachith animal

equal toAg = REi(JGf)_l (Chapter VI). This demonstrated the equivalendevéen the

absorption based approach (Henderson, 1975; Balggaral.,, 1983) and the Bayesian
approach (Chapter VI) for the computation Wf, assumingn, =DE, =RE, * A /A.

Considering the vecto® for the Bayesian approach, after some developmeéhés
element ofo for theith external animal is equal to (Chapter VI; Tabld-3):
N
0,=(RE +AZ Aje +1 Y AZ e (VIIl.2)
j=1,j#i
where AL is the inverse of the relationships matrix amoxigmal animals ang= 1, 2,

..., N refers to thgth external animal different from th#h animal.
N
The term A ZAEIE”HE,- of the equation (VIII.2) counts for the non-zerff-diagonal
j=1j#
elements for theith external animal and, thereby, takes the coniohs due to
relationships of other external animals into actodquivalent vectorsd are then

computed by the absorption based approach and #yesin approach if external

animals are assumed unrelated, i, =1, and ifn, =RE, * A /A.

PSEUDO-RECORDS BASED APPROACHES AND BAYESIAN APPROACHES

From the previous comparisons, it is noted thapeudo-records based approach
(VanRaden et al., 2014) and the Bayesian apprd@icapter VI) estimate equivalently the

matrix ¥ for univariate cases, i.e., for tite external animal¥; = RE; for the pseudo-

records based approach an, :AE“U,E:REi for the Bayesian approach (Table

VIII-3). The equivalence between the two approactssalso be shown for the vector
under some assumptions. Let the vedii®P be the vector including DRP associated
with the external animals and computed following finocedure proposed by Jairath et al.
(1998). To be in agreement with the system of egnat(VIll.1), the procedure for

computing DRP is hereafter extended to an animalainand the phantom group effect is
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ignored (e.g., Calus et al., 2014). Therefore,raftavergence and following the second
equation of the system of equations proposed bwathaet al. (1998) extended to an
animal model, the vectddRP is equal to:

DRP = D;*(D,1m+ (A1 + D, (e —1m)+ A% Ap, ) (VII1.3)

where m is the overall meanD, is a diagonal matrix with elements equal to the RE

associated with the external animals (i®,, = diag(RE)= A.0?) and p, is the vector

of external EBV for internal animals estimated tigb the Jairath‘s procedure.
From the third equation of the system of equatiprgposed by Jairath et al. (1998)
extended to an animal model, it can be shown fhat —(A” )_1A'E (e —1m) and the
equation (VIIL.3) can be simplified aDRP =D;'(D,1m+ (A1 +D, (e —1m)).
Therefore, assumingh=0 and after simplifications, the element of the ved for the
ith external animal is equal to:
N
=L j#i

which demonstrates the equivalence between thedpsegeords based approach and the
Bayesian approach for univariate analyses, undemesassumptions. However,
differences among the results of both approachgsheabserved in practice, especially
by using another procedure for the computation RPOe.g., VanRaden et al., 2014).

Unlike the absorption based approach describetlérptevious subsections, both
the pseudo-records based approach (VanRaden @0al) and the Bayesian approach
(Chapter VI) were extended to multivariate analyséile it was not discussed in
Chapter V, conceptual equivalence between the psembrds based approaches and the

Bayesian approaches for multivariate analyses @arddveloped from Chapter V by
assuming thaR, = A" at the step 4) of the approach computing the pseecbrds and
the user-supplied (co)variance matrix in ChapteF®& general cases, it was originally

proposed in Chapter V to compuk, as R, :ZP(I 0 RO)Zp where | is an identity
matrix of sizek equal to the number of records for each trait &dis the residual

(co)variance matrix between traits for 1 recorde Tdomputation ofR, as R, = A;'

rises that the steps 2) and 5) can be considerexd @ecedure that deregresses EBY,
similarly to Jairath et al. (1998) and SchaeffédQ®), and needed by the pseudo-records
based approach (e.g., VanRaden et al., 2014). Hawav practice, both approaches
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would lead to different results, mainly becauseytlempute differently the block
diagonal matrix¥ . VanRaden et al. (2014) proposed to compute thekbdliagonals of

¥ for theith external animal aAs G, 'A% where A, is a diagonal matrix with a
diagonal element for eagkh trait equal tc RELij/(l— REL”.) and G, is the matrix of

genetic (co)variances among traits. Nevertheletssyas proposed in Chapter VI to

compute the block diagonals ¥ (i.e., the matrixA,, in the previous subsection entitled
“Integration of correlated external information”jor the ith external animal, as

A RA,, where the matri:R, is a matrix of residual (co)variances among traitd
A, is a diagonal matrix with a diagonal element factgth trait equal tcRE; . Because

the approaches proposed by VanRaden et al. (20ilpyn Quaas and Zhang (2006) to
compute¥ are identical, the consequences of the differenmtputations of¥ between
the pseudo-records based approach and the Baygspaoach were already discussed in

the previous subsection entitled “Integration afretated external information”.

CONCLUSIONS

The three approaches that combine simultaneousigrreat information and
internal phenotypic and pedigree data were compdtgdivalences among the three
approaches, especially for univariate analysese wéserved under some assumptions.
These assumptions concern, e.g., the definitionbhefweights associated with external

information (e.g.,n;, DE;, RE,), their consideration by the genetic evaluatiams] the

used deregression steps. However, most of thesenpisns are not fulfilled in practice
and results may differ among the three approackdso, with regard to their
implementation, it is worth noting that the absamptbased approaches could be difficult
to generalize for complex models (Quaas and Zh20Q6), while pseudo-records based
approaches and Bayesian approaches propose eggtamhes to complex models, such
as multivariate models (e.g., Chapter VI; VanRaeéeral., 2014). Also, the pseudo-
records based approach proposed by VanRaden @04K¥) can be easily applied with
software packages available in animal breeding conity However, this approach
requires a deregression step, which is not a trpii@blem (Chapter II), as well as the
explicit computation of external information frekiternal information (VanRaden et al.,
2014) when external information includes intermdbrmation. The Bayesian approaches

proposed in Chapter VI avoid deregression stepsvels as explicit computations of
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external information free of internal informatiddomputational burden is then simplified
and risks of potential computational errors propagathrough the different steps
performed before the evaluations are avoided. Awapter V proposed a method to

perform the Bayesian approaches using currentlijadola software packages.
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Chapter IX. | MPLICATIONS, FUTURE RESEARCH TOPICS AND
GENERAL CONCLUSION

The last Chapter of this thesis presents implioatiof the
research presented in the previous Chapters amtudes four
topics for future research. A general conclusionses this
Chapter.






Implications, future research topics and general conclusion

IMPLICATIONS

Research undertaken during this thesis led to #heeldpment of a Bayesian
approach that integrates several sources of extafoanation into a genetic or a single-
step genomic evaluation. This Bayesian approach bmareasily adapted to complex
models and considers double counting of contrimstidue to relationships and due to
records. Therefore, these results allowed for @hffe advances in genetic and genomic
evaluations.

Another implication of the present thesis is thevad@pment of a genomic
evaluation system for Holstein cattle in the Watld@egion of Belgium. The Walloon
genomic evaluation presents several advanced &saaimd combines simultaneously all
available genotypes, pedigree, Walloon and multgzeoss country evaluation (MACE)
information (i.e., estimated breeding values (EBMY reliabilities (REL) provided by
Walloon evaluations and MACE) for the milk, fat apiebtein yields, as well as for other
traits, like somatic cell score. Contributions ddesed by both Walloon evaluations and
MACE are also considered by the Walloon genomiduaten in order to avoid their
double counting. The development of the Walloonogeic evaluation system allowed the
Walloon Region of Belgium to participate to theeimtational genomic evaluations

performed by International Bull Service (InterbWippsala, Sweden).

FUTURE RESEARCH TOPICS

Several important research topics were identifiadngj this thesis and shall be
explored in the future. These topics address diffeissues:

ON THE ESTIMATION OF CONTRIBUTIONS DUE TO RELATIONSHIPS

An iterative algorithm that estimates the contribmo$ due to relationships
included in the external information (so-called tstep algorithm; TSA) was proposed in
Chapter 1. Several applications on different siated and real data (Chapter Ill, Chapter
IV, Chapter VI and Chapter VII) showed that the Tig&formed well. However, an issue
of the TSA is that each iteration needs the ineersif a matrix that is a function of the
relationship matrix that accounts for the relatlips between external animals and their
ancestors. For the Walloon genomic evaluationsprirdn implementation of the TSA
using the multithreaded Intel® Math Kernel Librgigtel® MKL) allows the estimation
of contributions due to relationships for around®@®D external animals using 12 threads
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and around 50 GB of RAM during less than 5 houraaruster made of 26 computing
nodes, each with two Intel Sandy Bridge 8-coreS2E%0 processors at 2.6 GHz and with
128 GB of RAM. However, such an inversion coulddi¢a a difficult implementation of
the TSA if a higher number of animals is associatéti external information or if an
adequate cluster is not available. Because the BSA fixed point algorithm, an
acceleration procedure could be used to acceldgreteconvergence (Brezinski and
Chehab, 1998) and to avoid some iterations andefibre, also some matrix inversions.
Although tested only on simulated data with theévgafe package GNU Octave (Eaton et
al., 2011), the implementation of the method of beéchal (Brezinski and Chehab, 1998)
in the TSA allowed for a faster convergence. Howeseaech acceleration procedures do
not solve the issue of the matrix inversion whdmngh number of animals are associated
to external information. Therefore, an algorithnattlavoids matrix inversions and that
estimates the diagonal elements of an unknown xndriinvolved in the following
equation should be developed:
c*+D)* =P

where G™ is the inverse of a known positive-definite symmcetmatrix, D is an
unknown diagonal matrix (for the first step of th8A) or an unknown positive-definite
symmetric matrix (for the second step of the TSAJ & is a positive-definite symmetric
matrix for which only the diagonal elements arewno

Finally, pending the development of an algorithriineating the diagonal elements
of D without matrix inversions, the results from theslation in Chapter Il as well as
from the Walloon example in Chapter VI suggest t@itributions due to relationships
could be ignored. However, it was worth noting tldiftects of double counting of

contributions due to relationships should be tebtfdre ignoring them.

ON THE INTEGRATION OF CORRELATED EXTERNAL INFORMATION

A simulation study on the integration of correlatexternal information into a
multivariate genetic evaluation was proposed ingi#raVlll. These first results showed
that the proposed Bayesian approaches integratédcareclated external information,
based on rank correlations, mean squared erroraxardge REL. It was also shown that
the approximation of the least squares part ofl¢gftehand side (LHS) of the external
evaluation proposed by Quaas and Zhang (2006) dedverestimated REL because
unobserved contributions were considered. Howekethese observations were based on
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a simulation study and may be influenced by thefeddht assumptions, as the
consideration of known (co)variances or low averRge . Indeed, residual and genetic
(co)variances among traits are usually unknown @mdriances among EBV increase
from residual to approach genetic covariances as iRétease (VanRaden et al., 2014).
Therefore, studies on real data should be perfotimednfirm these first results and other
approximations of the least squares part of the ldiShe external evaluation (e.g.,
Schaeffer, 2001) should be tested.

ON THE ESTIMATION OF CORRELATIONS BETWEEN EXTERNAL INFORMATION A ND

INTERNAL DATA

One strong assumption was taken in Chapter Villvatiance components were
assumed to be known. In practice, this is usuadlythe case and (co)variances must be
estimated. For linear mixed models that assume ctafiens equal to zero for random
effects, Gibbs sampling (e.g., Sorensen and Giar082) and restricted maximum
likelihood (Patterson and Thompson, 1971) are thmstnpopular methods for the
estimation of variance components. However, curpeagirams do not allow to estimate
of variance components for linear mixed models #ssume expectations different from
zero for random effects. Therefore, approachesldhmideveloped to estimate variance
components for (multivariate) mixed models considgiboth internal data and external
information. Because the equivalence between psemyds based approaches and
Bayesian approaches was shown, at least under assuemptions (Chapter VIII), an
approach could consist of estimating the varianomponents for a mixed model
including external information as weighted pseueoerds. Another approach could
consist of estimating variance components with entrisoftware modified to consider
expectations different form zero and non-convemtigico)variance matrices (e.g., the
sum of (co)variance matrices (e.g., Chapter Illla@br VI) instead of the conventional

genetic (co)variance matrix) associated with ran@dfiects.

ON THE INTEGRATION OF GENOMIC INFORMATION

With the development of genomic selection in mapgcges and the increase of
available SNP data and information derived frons tik@ta source (e.g., direct genomic
values (DGV) and their associated REL) approachdsaggorithms that combine sources
of phenotypic, genealogical and genomic data afutnmation are needed. In this context,

Chapter VII proposed a Bayesian approach, basdtieosingle-step genomic evaluation
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(Aguilar et al., 2010; Christensen and Lund, 2ab0)ombine genomic data with internal

and external information. However, this thesis doespropose approaches to integrate
external genomic information, e.g., DGV and asdedidREL, into an internal genetic

evaluation, while it was previously suggested andied in a Bayesian context (Gengler
and Vanderick, 2008; Hyde et al., 2013). Such sinamay arise in different emerging

situations as, for example, through the wish tegrate externally generated DGV for

novel phenotypes (e.g., dry matter intake, methardejvever, several issues should be
further explored, such as the double counting efgame information used in both the
genetic evaluation and in the estimation of genopnezdiction equations, the scaling of

DGV, or the consideration that DGV follow, or dasst follow, the same distribution as

internal EBV (Mantysaari and Strandén, 2010; Hyal.e 2013).

GENERAL CONCLUSION

The aim of this thesis was to develop algorithmsctimbine phenotypic,
genealogical and genomic data as well as informatiaginating from diverse sources
and to test them on simulated and real data. Adteeview of the various proposed
approaches to combine different sources of infolonatit was chosen to focus on the
Bayesian approaches, based on a Bayesian viewedintar mixed models. Research
presented in this thesis solved different issuesfitally develop equations for
(multivariate) genetic and single-step genomic eatibns that integrate and blend
simultaneously several sources of information ahdt tavoid double counting of
contributions due to relationships and due to msoComputational burden was also
considered during this research. The performancehef developed algorithms and
equations were evaluated using simulated and edakdts. The different results showed
that:

- the developed equations integrated and blendedaesarces of information in a
proper way into a genetic or a single-step genawatuation,

- more reliable EBV were obtained for external ansredter integration of external
information,

- relatives of external animals benefited from intédégd external information, also
leading to more reliable EBV, because all availaleeternal sources of
information were correctly propagated,

- double counting of contributions due to relatiopshand due to records were

(almost) avoided, and
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- correlated external information was properly intggd following the approach
proposed to approximate the prediction error (codwae matrix associated with
multivariate EBV.

The developed equations were applied to develgmargic evaluation system for
Holstein cattle in the Walloon Region of Belgiumathcombines simultaneously all
available genotypes, pedigree, Walloon and MACBErmftion (i.e., EBV and REL
provided by Walloon evaluations and MACE) for theduction traits, as well as for
other traits, like somatic cell scores. Howeverspite of these developments, further
research should be carried out, especially, onetemation of contributions due to
relationships, on the integration of correlatedeaxdl information, on the estimation of
correlations between external information and maérdata, and on the integration of

genomic information, such as DGV.
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LIST OF ABBREVIATIONS

Al
BLUE
BLUP
DE
DGV
DNA
DRP
DYD
EBV
EDC
EGM

FBE
GEBV
GMACE
h2

LBE
LHS
MACE
MB
MCE
MME
MSE
MSEP
MT-MACE
MVN

PA

PC

PEV

PL

PTA

Artificial insemination

Best Linear Unbiased Estimate
Best Linear Unbiased Prediction
Daughter equivalent

Direct genomic value
Deoxyribonucleic acid
Deregressed proof

Daughter yield deviation
Estimated breeding value

Effective daughter contribution

Estimate of genetic merit for animals (e.g., EBV)Yor what they transmit

to their progeny (e.g., PTA)

First version of modified Bayesian evaluation
Genomically enhanced breeding value
Genomic multiple across country evaluation
Heritability

Legarra-type Bayesian evaluation

Left hand side

Multiple across country evaluation

Mean biais

Multiple-country evaluation

Mixed model equations

Mean squared error

Mean squared errors of prediction
Multiple-trait multiple across country evaluation
Multivariate normal

Parent average

Progeny contribution

Prediction error variance

Productive life

Predicted transmitting ability
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List of abbreviations

QBE Quaas-type Bayesian evaluation

RE Records equivalent

le Residual correlation between traits

REL Reliability

rg Genetic correlation between traits

RHS Right hand side

My Pearson correlation coefficient between observedd agstimated
performances

SBE Second version of modified Bayesian evaluation

SD Standard deviation

Sl Selection index

SNP Single nucleotide polymorphism

ssGBayes Single-step Genomic Bayesian Prediction
ssGBLUP  Single-step genomic BLUP
TSA Two-step algorithm
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