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Abstract 

Along with technical developments, international exchanges of genetic material 

(e.g., frozen semen, embryos) have increased since the 1970s. However, genetic 

evaluations are traditionally based on phenotypic and genealogical data which are 

internally recorded, i.e., within well defined borders. Because imported (i.e., external) 

genetic material is usually strongly selected in their respective populations, internal 

genetic evaluations for external animals could be biased and less accurate if external data 

used for their selection is ignored. Moreover, comparison of internal and external animals 

based on their internal and external estimates of genetic merit is needed to select and 

potentially import the most suitable ones according to the internal breeding goal. 

However, such comparison is usually not possible among internal and external genetic 

evaluations due, e.g., to differences among units of measurement. Thereby, several 

approaches and algorithms have been developed to render internal and external genetic 

evaluations comparable, and to combine or blend phenotypic and genealogical data and 

external information, i.e., estimates of genetic merit and associated reliabilities. 

Furthermore, the recent development of genomic selection also increased needs for 

combining phenotypic, genealogical and genomic data and information. Therefore, the 

aim of this thesis was first to develop innovative algorithms to combine diverse sources of 

phenotypic, genealogical and genomic data and information, and second to test them on 

simulated and real data in order to check their correctness. Based on a Bayesian view of 

the linear mixed models and addressing several issues highlighted by previous studies, 

systems of equations combining simultaneously diverse sources of data and external 

information were developed for (multivariate) genetic and single-step genomic 

evaluations. Double counting of contributions due to relationships and due to records 

were considered as well as computational burden. The performances of the developed 

systems of equations were evaluated using simulated datasets and real datasets originating 

from genetic (genomic) evaluations for Holstein cattle and for show jumping horses. The 

different results showed that the developed equations integrated and blended several 

sources of information in a proper way into a genetic or a single-step genomic evaluation. 



It was also observed that double counting of contributions due to relationships and due to 

records was (almost) avoided. Furthermore, more reliable estimates of genetic merit were 

also obtained for external animals and for their relatives after integration of external 

information. Also, the developed equations can be easily adapted to complex models, 

such as multivariate mixed models. Indeed, it was shown that external information 

correlated to the internal phenotypic traits was properly integrated using the developed 

equations. Finally, research of this thesis led to the development of a genomic evaluation 

system for Holstein cattle in the Walloon Region of Belgium for production traits, as well 

as for other traits, like somatic cell score. Based on the research of this thesis, future 

research topics, e.g., concerning integration of correlated external information and of 

genomic information, were finally presented. 
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Résumé 

Suite aux progrès techniques, les échanges internationaux de matériel génétique 

(par exemple, la semence congelée ou les embryons), ont augmenté depuis les années 

1970. Toutefois, les évaluations génétiques sont traditionnellement basées sur des données 

phénotypiques et généalogiques qui sont enregistrées à un niveau interne, c'est-à-dire dans 

des frontières bien définies. Parce que le matériel génétique importé (appelé ci-après 

externe) est habituellement fortement sélectionné dans leurs populations respectives, les 

évaluations génétiques internes pour les animaux externes pourraient être biaisées et 

moins précises si les données externes utilisées pour leur sélection sont ignorées. En 

outre, la comparaison des animaux internes et externes en fonction des estimations 

internes et externes de leurs valeurs génétiques est nécessaire pour sélectionner et, 

potentiellement, importer les plus appropriés en fonction de l'objectif de reproduction 

interne. Cependant, une telle comparaison n'est généralement pas possible entre les 

évaluations génétiques internes et externes en raison, par exemple, des différences entre 

les unités de mesure utilisées pour mesurer les phénotypes. Ainsi, plusieurs approches et 

algorithmes ont été développés pour rendre comparables des évaluations génétiques 

internes et externes, ou pour combiner des données phénotypiques et généalogiques ainsi 

que de l’information externe, c'est-à-dire les estimations de valeurs génétiques et les 

fiabilités associées. De plus, l'évolution récente de la sélection génomique augmente 

également les besoins de combinaisons de données phénotypiques et généalogiques et 

d’informations génomiques. Par conséquent, l'objectif de cette thèse a été, premièrement, 

de développer des algorithmes innovants pour combiner diverses sources de données et 

d’informations phénotypiques, généalogiques et génomiques et, deuxièmement, de tester 

ces algorithmes sur des données réelles et simulées afin de vérifier leur exactitude. 

Fondée sur une vision bayésienne des modèles mixtes linéaires et reposant sur plusieurs 

questions soulevées par des études précédentes, des systèmes d'équations combinant 

simultanément diverses sources de données et d’informations externes ont été élaborés 

pour des évaluations génétiques et génomiques de type « single-step », potentiellement 

multi-caractères. Les doubles comptages de contributions dus aux liens de parenté entre 



les animaux externes et dus aux données ainsi que la charge de calcul ont été examinés. 

Les performances des systèmes d'équations développés ont été évaluées en utilisant des 

jeux de données simulées et des données réelles provenant des évaluations génétiques 

(génomiques) pour les bovins Holstein et pour les chevaux de saut d'obstacle. Les 

différents résultats ont montré que les équations développées intègrent et combinent 

plusieurs sources d'information d'une manière appropriée pour les évaluations génétiques 

et génomiques de type « single-step ». Il a également été observé que les doubles 

comptages des contributions dus aux liens de parenté entre animaux externes et dus aux 

données étaient (presque) évités. En outre, des estimations plus fiables de valeurs 

génétiques ont également été obtenues pour les animaux externes et pour les animaux qui 

leur sont apparentés après l'intégration de l'information externe. De plus, les équations 

développées peuvent être facilement adaptées à des modèles complexes, tels que les 

modèles mixtes multi-caractères. En effet, il a été montré que l'information externe 

corrélée avec les caractères phénotypiques internes est bien intégrée en utilisant les 

équations développées. Enfin, la recherche de cette thèse a conduit à la mise en place d'un 

système d'évaluation génomique pour bovins Holstein en Région Wallonne (Belgique) 

pour, notamment, les caractères de production. Suite aux recherches menées lors de cette 

thèse, des sujets de recherche futurs, par exemple, concernant l'intégration d’informations 

externes corrélées et d'informations génomiques, ont finalement été présentés. 
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CONTEXT 

One of the major objectives in animal breeding is to estimate the genetic merit of 

animals for traits of interest in order to rank them. Based on these rankings, the best ones 

can be selected and mated to finally generate an improved generation with optimal 

performances regarding these traits of interest. Genetic merits can be estimated through 

different statistical methods, such as selection index (SI; Hazel, 1943), mixed models 

(Henderson, 1984) or Bayesian methods (Gianola and Fernando, 1986). Under some 

assumptions, these statistical methods allow to animal breeders to obtain estimates of 

genetic merit (EGM) either for animals (e.g., estimated breeding values; EBV) or for 

what they transmit to their progeny (e.g., expected progeny differences, predicted 

transmitting abilities). All these methods aim to achieve the highest reliability (REL) for 

the EGM with regards to available data. Nevertheless, whatever method used, the aim is 

the same, i.e., ranking animals to choose the best ones in order to generate improved 

progeny. 

Whereas SI, mixed models and Bayesian methods could give equivalent results 

under some assumptions, the linear mixed models developed by Henderson (e.g., 

Henderson, 1984) are commonly used for genetic evaluations since the 1970s, replacing 

the SI theory popularized by Hazel (Powell and Norman, 2006). Several properties of the 

linear mixed models can explain their widespread use. A first property of linear mixed 

models is to differentiate the effects between “fixed” and “random” effects, following the 

frequentist school. These effects have “Best Linear Unbiased Estimate” (BLUE) and 

“Best Linear Unbiased Prediction” (BLUP) properties, respectively. Other properties of 

linear mixed models are their easy adaptation to non-normally distributed data, their 

potential application in a Bayesian context, or their easy understanding (Robinson, 1991; 

VanRaden, 2001; Powell and Norman, 2006). 

Traditionally, phenotypic and genealogical data are recorded following official 

recording schemes performed on populations within well defined borders (e.g., country 

borders). Based on these data, genetic evaluations are performed for these populations. 

Such genetic evaluations are hereafter called “internal” genetic evaluations because they 

are only based on internal data, i.e., collected within established borders. Internal genetic 

evaluations are characterized by their own scale, units of measurement and/or genetic 

bases. However, since the 1970s, technical developments, like frozen semen or embryos, 

increase exchanges of genetic material worldwide, leading to internationalization of 
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breeding schemes and breeds. Within well defined borders, the internal population might 

have a large proportion of genes from external populations. Such situations are especially 

observed in sport horse (Arnason, 2013) and dairy cattle breeding (Philipsson, 1987). 

Hence, different issues may arise if genetic material is widespread outside borders while 

genetic evaluations are performed within borders. Firstly, because imported (i.e., external) 

genetic material is usually strongly selected, internal EGM for external animals could be 

biased with an internal genetic evaluation if external data used for their selection in 

external populations is ignored (VanRaden, 2012). Nevertheless, although one of the 

major objectives in animal breeding is to internally predict genetic merits of animals with 

the highest REL by using all available data, internal genetic evaluations are usually 

performed using only data collected internally. Several reasons leading to internal genetic 

evaluations that ignore external data are mentioned below. Secondly, selection and 

importation of the most suitable external genetic material according to the internal 

breeding needs and goals require the comparison of animals through their own EGM and 

REL. However, such a comparison is usually not possible between internal and external 

populations due to differences among scales, units of measurement and genetic bases of 

genetic evaluations (Weigel and Rekaya, 2000). 

One way to solve both issues is to use simultaneously all available phenotypic and 

genealogic data, i.e., from all concerned populations, to get unbiased EGM through a joint 

genetic evaluation. Some studies, for example in sport horse breeding (e.g., Furre et al., 

2013) and in dairy cattle breeding (e.g., Banos et al., 1992; Weigel and Rekaya, 2000), 

showed results of joint genetic evaluations. However, usually, joint genetic evaluations 

cannot be performed because data from the different populations are not available in the 

same dataset for several reasons, like political roadblocks, or because data cannot be 

merged due to inconsistencies. Moreover, even if data can be combined in the same 

dataset, joint genetic evaluations could not be performed due to computing or logistical 

problems (Powell and Sieber, 1992). Nevertheless, comparison of genetic material is still 

needed. To make it feasible, instead of performing joint evaluations based on the 

combination of raw data, that are mostly unavailable, genetic merits can be approximated 

by converting or combining the available information, i.e., EGM and associated REL 

obtained for each population. Therefore, different approaches and algorithms converting 

or combining EGM and their associated REL across populations were developed over the 

years to improve accuracies of internal genetic evaluations and to render genetic merits of 

animals comparable across populations in order to select the most appropriate genetic 
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material in a widespread pool of genes. These developed approaches and algorithms were 

mainly derived from SI theory (e.g., VanRaden, 2001), mixed models methodology (e.g., 

Schaeffer, 1985) and Bayesian statistics (e.g., Gianola and Fernando, 1986). 

For a few decades, molecular data at the deoxyribonucleic acid (DNA) level have 

been considered in genetic evaluations as an additional source of data that permits to 

improve genetic progress through both an increase of accuracy of selection and a decrease 

of generation intervals. Selection based on molecular information was first based on 

molecular genetic marker information (e.g., microsatellites) and was called marker-

assisted selection (Fernando and Grossman, 1989). In 2001, Meuwissen et al. (2001) 

proposed to use genome-wide dense marker maps including several thousands of single 

nucleotide polymorphisms (SNP) to estimate genetic merits of animals. This led to the 

recent massive development of the so-called genomic selection in many species. The 

increasing availability of bi-allelic SNP data and the subsequent increasing amount of 

information derived from this data source (i.e., genomic EGM and associated REL) 

highlighted the necessity to develop approaches and algorithms for combining sources of 

phenotypic, genealogical and genomic data and information. 

AIM OF THE THESIS 

The aim of this thesis was to develop innovative algorithms to combine 

phenotypic, genealogical as well as genomic data and information originating from 

diverse sources and to test them on simulated and real data in order to check their 

correctness. 

THESIS OUTLINE 

This thesis is a compilation of published scientific papers proposing algorithms 

that combine different sources of data and information and investigating their use in 

simulated and real contexts. Firstly, a literature review of the different approaches and 

algorithms that render EGM and associated REL comparable or to combine them is 

provided in Chapter II. Then, a detailed comparison of different Bayesian approaches 

integrating external information into genetic evaluations is provided (Chapter III). Based 

on this comparison, some improvements are proposed (Chapter III), mainly to limit 

computational burden and to avoid double counting of contributions due to relationships. 

In Chapter IV, the resulting improved Bayesian approach is implemented in the context of 

the Belgian genetic evaluation for jumping horses. Bayesian approaches require 
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alterations of expectations and of (co)variances for random effects of linear mixed 

models. However, most available software packages based on linear mixed models used 

in animal breeding do not allow for such alterations. Therefore, a method is proposed to 

allow for those alterations while using available software packages (Chapter V). This 

method is based on the use of an extended data file and a user supplied (co)variance 

matrix (Chapter V). In Chapter VI, a unified method integrating and blending several 

sources of information into a genetic evaluation is developed and tested on simulated and 

real data. In addition to integrate and blend several sources of information, the developed 

method allows to take into account double counting of contributions due to records. An 

implementation of this latter method is the Walloon single-step genomic evaluation 

integrating Walloon and multiple across country evaluation (MACE) information, and is 

presented in Chapter VII. Chapter III to Chapter VII show improvements and 

implementations of Bayesian approaches that integrate several sources of external 

information into an internal genetic or single-step genomic evaluation. These 

investigations are performed in a context where internal and external information were 

provided for the same trait, although these approaches were developed to integrate 

correlated external information, i.e., to integrate external information from a certain trait 

correlated to the internal phenotype traits. Therefore, the first part of Chapter VIII 

presented the results of a study which integrates correlated external information into an 

internal multivariate evaluation for a simulated case. A comparative study among the 

different approaches that combine simultaneously external information and internal data 

is then detailed in the second part of Chapter VIII. Finally, implications, future research 

topics and a general conclusion are presented in Chapter IX. 

THESIS FRAMEWORK  

The research of this thesis was initiated in October 2010. The first academic year 

2010-2011 was mainly dedicated to the NovaUdderHealth project financed by the 

Ministry of Agriculture of Walloon Region of Belgium (Service Public de Wallonie, 

Direction générale opérationnelle “Agriculture, Ressources naturelles et Environnement” 

– DGARNE) and to the FP7 European project RobustMilk. Since October 2011, this 

research has been supported by a fellowship (“Research Fellow”) funded by the National 

Fund for Scientific Research (FRS-FNRS, Belgium). 
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Chapter II. S TRATEGIES TO RENDER COMPARABLE AND TO 

COMBINE RESULTS FROM DIFFERENT GENETIC AND GENOMIC 

EVALUATIONS : A REVIEW 

 

 

 

 

Exchange of genetic materials among populations at an 

(inter)national level rapidly increased with the development of 

artificial insemination and frozen embryos, leading to an 

increasing necessity to render comparable or to combine estimates 

of genetic merit (e.g., estimated breeding values) and their 

associated reliabilities provided for the various populations. 

Combination of different sources of information became even 

more crucial with the development of genomic evaluations. 

Therefore, the objective of this Chapter was to review different 

approaches and algorithms developed in order to solve issues 

regarding comparison and combination of several genetic and 

genomic evaluations. 
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INTRODUCTION 

The issue of comparing or combining estimates of genetic merit (EGM) and 

associated reliabilities (REL) arose from the first exchanges of genetic material among 

populations. Populations may be considered at a farm level (e.g., Henderson, 1975) or at a 

country level (e.g., Schaeffer, 1985). Different approaches and algorithms were developed 

to solve this issue and the objective of this Chapter is to review them. All reviewed 

approaches and algorithms were sorted following two strategies. Firstly, EGM and 

associated REL provided for external populations, hereafter called external information, 

can be rendered comparable or combined with internal EGM and associated REL after 

performing internal and external evaluations. These post evaluation approaches were 

described hereafter in the subsection “Post evaluation approaches”. Secondly, external 

information provided for external populations can be combined simultaneously with 

internal phenotypic and genealogic data in internal genetic evaluations performed for 

internal populations. These approaches were described hereafter in the subsection 

“Simultaneous combinations”. Also, it was noted that most of the reviewed approaches 

and algorithms were developed for (multi-breed) genetic evaluations in dairy and beef 

cattle. With the advent of genomic selection, needs to combine genomic information with 

phenotypic and genealogical data and information have appeared, and several previous 

approaches were adapted. Therefore, a subsection is assigned to approaches adapted and 

developed in the context of genomic selection. 

POST EVALUATION APPROACHES  

CONVERSION EQUATIONS 

The oldest and simplest approach to render EGM and associated REL comparable 

across two populations (e.g., from two countries) is the use of a regression-based 

conversion equation which converts EGM from one exporting (i.e. external) population to 

the scale, units of measurement and genetic base of an importing (i.e. internal) population. 

In the context of dairy cattle, the first formula of conversion equations recommended by 

the International Dairy Federation in 1981 (Gravert, 1983) was of the form: 

x1y ba +=  

where y  is the vector of internal EGM, x  is the vector of external EGM, a  is the 

intercept and b  is the slope of the conversion equation. 
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The intercept a  can be considered as the difference in genetic base between the two 

populations. It is valid as long as the genetic bases of the two populations are fixed or are 

moving at the same rate (Philipsson, 1987). If equal REL of EGM are observed in both 

populations (i.e., the same number of observations and the same heritability) and if no 

genotype x environment interaction exists (i.e., genetic correlations between the two 

populations is equal to 1), the slope b  is equal to the ratio of the standard deviations in 

genetic merit as expressed in the two populations (Wilmink et al., 1986; Philipsson, 1987; 

Powell and Sieber, 1992). The slope b  can be considered as the relationships between 

scales and definitions of EGM (e.g., estimated breeding values (EBV) or predicted 

transmitting abilities (PTA)) of the two populations, i.e., as a scaling factor (Powell, 1988; 

Powell and Sieber, 1992). 

However, the previous conditions are usually not fulfilled in practice and several 

approaches (e.g., Goddard, 1985; Philipsson et al., 1986; Wilmink et al., 1986; Powell, 

1988) were proposed to estimate the intercept a  and the slope b . These approaches also 

take into account the REL associated with the EGM from each population. In this context, 

the slope b  also considers genetic correlations among populations that could be lower 

than 1 due to different heritabilities and definitions of traits (Philipsson, 1987). 

Approaches were also proposed to approximate REL associated with converted EGM 

depending on REL associated with external EGM, on genetic correlations among 

populations and on accuracy of conversion equations (Goddard, 1985; Powell et al., 

1994). It is noted that genetic correlations lower than 1 as well as preferential treatments 

are mainly responsible for the non-reciprocity of the conversion equations (Powell et al., 

1994). 

To compare different conversion equations, Philipsson et al. (1986) defined 

desirable properties. Thus, methods should 1) give unbiased estimates of both the 

intercept a  and the slope b , 2) consider the difference in REL from each population, 3) 

allow for the possibility for a genetic correlation less than 1 between the true genetic 

merits in each population, and 4) minimize the variance of differences between converted 

EGM and true values in the external population. Because accuracy of the conversion 

equations is influenced by preferential matings of external animals, by preferential 

treatments for some animals, and by suitability of animals selected for the estimation of a  

and b  (Powell et al., 1994), Wickham and Philipsson (1990a) proposed recommendations 

for the estimation of both the intercept a  and the slope b  in the context of dairy cattle. 
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Following these recommendations, bulls with data selected for the estimation should 1) be 

born within a period of 10 year before the birth year of the youngest selected bull, 2) have 

daughters in at least 20 herds in each population, and 3) be associated with EGM having 

REL equal or higher than 75% in both populations. Furthermore, most recent data should 

be used and, if sufficient number of bulls is available, bulls initially sampled in the 

exporting populations (i.e., according to the gene flow) should be selected for the 

estimation of a  and b . Recommendations for cases with a non-random use of bulls, or a 

correlation between EGM lower than 0.75, or a number of selected bulls lower than 20 or 

a number of common used bulls very low, were also proposed (Wickham and Philipsson, 

1990a). All these recommendations lead to the fact that some internal populations did not 

have enough animals from the external population proven in their own internal 

population. Therefore, conversions of EGM were performed through a third population 

having enough common proven animals with the external and internal populations 

(Wickham and Philipsson, 1990b). 

To summarize, conversion equations are simple, easy to apply and provide results 

for use in internal populations. However, estimations of a  and b  are mostly based on a 

small number of animals being evaluated in the two populations. Also, conversion 

equations can only be applied to render genetic evaluations of two populations 

comparable at a time, mostly for only one direction, and may not be accurate for animals 

with extremely high merit (Banos and Sigurdsson, 1996). Furthermore, relationships 

among animals are not taken into account by the conversion equations and external 

information is not propagated to relatives. Finally, conversion equations do not remove 

the issue of animals associated with more than one EGM within a population. 

WEIGHTED AVERAGES  

Conversion equations do not allow for the consideration of external information 

associated with an animal into its internal evaluation nor for the propagation of this 

external information to its progeny, leading overall to a loss of REL. Hence, other 

approaches and algorithms were developed to combine external and internal information. 

Thereby, in the context of Holstein dairy cattle, Wiggans et al. (1992) proposed an 

approach to combine US and Canadian bull evaluations based on the decomposition of a 

bull’s evaluation between parent averages (PA) and progeny contributions (PC). After 

conversion of Canadian evaluations and PC from the Canadian trait to the US trait by 

using conversion equations, US and Canadian evaluations were combined as a weighted 
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average of either a combined PA or a PA from the US or the Canadian evaluations, 

depending on the availability, and US and Canadian PC adjusted for the bull’s 

contribution. The adjustment of PC for the bull’s contribution was due to the fact that the 

bull’s contribution to PC through PA in the progeny EGM could be important. Because 

combination of PC across countries could change the bull’s evaluation, it should be 

removed before combination. Also, the process was done from the oldest bull to the 

youngest one in order to propagate additional information from the oldest bulls to the 

youngest ones. Estimated REL associated with combined evaluations were a function of 

the sum of daughter equivalents (DE) from parents’ contributions from the combined 

evaluations, and DE from PC for both US and Canadian evaluations. However, because 

the approach considered only bulls, cows’ evaluations provided from the national 

evaluations could disagree with the combined evaluation of their sire. Moreover, the 

approach did not adjust progeny’s evaluations for changes in bulls’ EGM and foreign 

cows were also not considered. 

Derived from the equations of the random genetic effects, Mrode et al. (1996) 

proposed a similar procedure, solving some disadvantages of the Wiggans’ method, to 

combine United Kingdom and converted foreign evaluations. Combinations of 

evaluations for bulls and also for cows were performed as a weighted average of PA, yield 

deviations and PC. Evaluations of progeny were adjusted for changes in evaluations of 

their parents. Because changes in parents’ evaluations affect only PA, only a weighted 

difference between PA from combined evaluations and PA from internal evaluations was 

added to the progeny’s evaluations. Specific rules were defined for progeny with 

unknown parents. Combined REL for bulls, cows and progeny were estimated from the 

decomposition in different contributions of the national and foreign information, 

expressed in DE, similarly to Wiggans et al. (1992). 

To summarize, both methods approximate animal model estimates. In order words, 

both methods took all relationships among animals into account, and this led to an 

increase of REL and eliminated the problem of animals associated with more than one 

EGM within a country. However, both methods did not convert external information and 

conversion equations were still needed. 
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LINEAR MIXED MODELS  

MULTIPLE ACROSS COUNTRY EVALUATION 

In the context of dairy cattle breeding, the first method based on linear mixed 

models to analyze jointly national evaluations from several countries was called multiple-

country evaluation (MCE) and proposed by Schaeffer (1985). This method provided 

international estimates for all bulls in all participating countries. The MCE was based on a 

single-trait model assuming equal heritability across countries, several interactions as 

unimportant (e.g., genotype by environment interactions), a diagonal (co)variance matrix 

for the residual effect and unbiased internal (national) evaluations. The MCE had the 

advantage to use a pedigree relationship matrix across countries increasing connectedness 

among countries resulting in better estimates of international EGM. Furthermore, MCE 

allowed for the simultaneous comparison among a large number of countries (unlike 

conversion equations), based on a large number of daughters per bull in multiple 

countries. MCE also allowed for the prediction of genetic merits on the scale of each 

country (Schaeffer, 1985). Furthermore, compared to conversion equations, all 

information can be used instead of only information related to animals evaluated at least 

in two countries. 

Since some assumptions of MCE were unrealistic (Schaeffer, 1994), Schaeffer 

(1994) proposed the multiple across country evaluation (MACE), which is a multiple-trait 

model for which similar traits in different countries are considered as different traits. In 

addition to the advantages of MCE, MACE overcomes the disadvantages. Indeed, MACE 

allows for different scales, for different units of measurement, for different heritabilities 

and genetic parameters for each country, and for genetic correlations between countries 

lower than one. Genetic correlations less than one account for 1) differences between 

statistical models used for genetic evaluations in several countries and 2) genotype by 

environment interactions. Different rankings of animals in the participating countries can 

be therefore observed (especially due to the consideration of genotype by environment 

interactions) and the degree of difference among the rankings is dependent on the genetic 

correlations among countries (Banos and Sigurdsson, 1996). 

The model proposed by Schaeffer (1994) is a sire-maternal grandsire model and is 

described for a country i as follows: 

iiiiiiii esZQgZcXy +++=  (II.1) 
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where iy  is the vector of observations, ic  is the vector of country of evaluation effect, ig  

is the vector of genetic groups of bull effect, is  is the vector of genetic merits of bull 

effect, ie  is the vector of residuals, and iX , iZ , Q  are incidence matrices. 

The (co)variance matrices of s and e for n countries are, respectively, 
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where 2

ieσ  is the residual variance for country i, iD  is a diagonal matrix with elements 

equal to 1 divided by the number of daughters of a bull, ijs  is the sire (co)variance 

between country i and j, and A  is a sire-maternal grandsire additive relationship matrix. 

The residual (co)variance matrix was assumed to be diagonal although covariances 

among observations within a country are not zero. Covariances among observations and 

among countries equal to zero assume that national evaluations are performed from 

independent data sets. Also, observations used for the model (II.1) should represent 

unregressed measures of progeny performances corrected for several effects (e.g., herd 

effects, genetic merit of mates) in each country. Suggested observations were national 

EGM (Schaeffer, 1994), deregressed proofs (DRP; Rozzi et al., 1990) and daughter yield 

deviations (DYD; Schaeffer, 1994). Comparison of these three estimates as observations 

for the model (II.1) were performed by Sigurdsson and Banos (1995) and these authors 

recommended the use of DRP as observations. For DRP, effective daughter contributions 

(EDC) of bulls were suggested as weighting factor (Fikse and Banos, 2001). 

A major limitation of MACE is that it can combine only one trait for a bull within 

a country because one of the assumptions is that residuals are not correlated among 

countries. However, because more and more evaluations were changed from single-trait to 

multiple-trait, an extension of MACE to considerer multiple traits within a country was 

needed (e.g., Schaeffer et al., 2000). Therefore, Schaeffer (2001) proposed a multiple-trait 

MACE (MT-MACE) allowing multiple traits within a country. Nevertheless, de-

regression steps for multiple-trait evaluations could be difficult, especially because each 

country could have a different number of traits. Furthermore, de-regression steps could 
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not be harmonized among countries if it is performed by each country (Schaeffer, 2001). 

To avoid these difficulties, some studies (e.g., Sullivan and Wilton, 2001; Liu et al., 2004) 

proposed modifications to MT-MACE to simplify its use. 

To summarize, (MT-)MACE has several advantages, like the simultaneous 

comparison among a large number of countries, the use of a pedigree relationship matrix, 

the use of all available information, and the prediction of genetic merits on the scale of 

each country. However, some limitations of (MT-)MACE exist, like de-regression steps 

(Schaeffer, 2001) and the definition of traits following the country borders instead of 

environment differences (e.g., climate, management; Weigel and Rekaya, 2000). 

Furthermore, in the context of dairy cattle, MACE provides international EBV only for 

bulls, leading to potential issues. Indeed, their publications as “official” by a country can 

lead to conflicts if national EBV for the same bulls are much different, and, therefore, 

disagree with EBV associated with close relatives (e.g., progeny, cows, bulls without 

international EBV; Täubert et al., 1999). The consideration of only bulls by MACE is also 

a problem to evaluate without bias females out of a foreign dam as well as females with a 

highly selected foreign sire without national progeny‘s data in comparison to females 

having a local origin (Pedersen et al., 1999). Thereby, although MACE solves issues 

concerning combinations of national EBV for most bulls, a need to propagate and to 

integrate MACE results into national genetic evaluations appeared. 

BLENDING ALGORITHM 

Publications of MACE EBV for some bulls together with national EBV for other 

bulls, cows and young animals could lead to conflicts. Therefore, Täubert et al. (2000) 

proposed an iterative algorithm to combine national and MACE EBV simultaneously for 

all animals. Their algorithm was based on the equations of the part of random effects of 

the mixed model equations (MME): 

( ) ruAD 1 =+ − ˆ λ  

where D  is a diagonal matrix with diagonal elements equal to performances equivalents 

for bulls with MACE EBV, 1A −  is the inverse of the relationships matrix, λ  is the ratio of 

error to genetic variances, û  is the vector of blended EBV, and r  is the right hand side 

(RHS) of the equation. 

To summarize, knowing the RHS for bulls with MACE EBV and for other bulls, 

cows and young animals, the blending algorithm combines iteratively national and 

MACE EBV simultaneously for all animals by weighting MACE EBV through 
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performances equivalents. Täubert et al. (2000) observed that blended EBV of progeny of 

bulls were influenced in the same way as those of their sires and that conflicts were 

solved. 

SELECTION INDEX 

Based on selection index (SI) theory, methods were developed to combine 

different genetic evaluations related to the same trait or to correlated traits. A first SI 

approach was developed by Weigel et al. (1998) to provide an evaluation of the 

productive life (PL) trait in dairy cattle. PL is related to culling data of progeny which are 

extensively available only relatively late in the life of a dairy sire. Also, it has a low 

heritability. Therefore, REL associated with PTA for young bulls are low. Therefore, 

Weigel et al. (1998) developed a SI approach to combine early indirect PL information 

obtained from correlated traits and direct PL information. An indirect PTA for PL (indû ) 

was obtained as follows: 

( ) ( ) MTMTMT uuu ˆ',ˆ 1−= VaruCovu PLind  

where ( )MTu,PLuCov  is the covariance between PTA for PL (PLu ) and the true 

transmitting abilities for correlated traits (MTu ), ( )MTuVar  is the variance of MTu , and 

MTû is the vector of multiple-trait Best Linear Unbiased Prediction (BLUP) predictions of 

correlated traits. 

The reliability of indû  was calculated as follows: 

( ) ( ) ( ) ( ) ( ) ( )PLPLPLind uVaruCovVarVarVaruCovREL /,ˆ', 11
MTMTMTMTMT uuuuu −−= . 

Direct and indirect PL predictions, dirû  and indû  respectively, were then combined in a 

weighted mean where weights were function of REL associated with dirû  and indû . 

Weights also accounted for the lack of independence between direct and indirect 

evaluations because some progeny had both direct and indirect observations. Also, many 

traits correlated with PL may be highly correlated among them. Because high correlations 

could lead instability of indirect predictions, a principal component procedure on a 

correlation matrix was applied to discard redundant traits. 

Later, VanRaden et al. (2000) and VanRaden (2001) proposed another SI approach 

to combine genetic evaluations of the same or correlated traits. It consists of combining 

estimates of Mendelian samplings (MS) from each different genetic evaluation through SI 

and then to add the combined predictions to PA expressed on the desired scale. Therefore, 
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for an animal associated with different predictions, its combined EGM, combû , is equal to: 

( ) ( ) MSMSMS uuu ˆˆ'ˆ,ˆˆ 1−+= VaruCovuu MSPAcomb  (II.2) 

where PAû  is the estimated PA on the scale of interest, ( )MSû,MSuCov  is the covariance 

between the true MS (MSu ) and the vector of predicted MS (MSû ) and ( )MSûVar  is the 

variance of MSû . 

A combination of genetic evaluations can be done for each animal from the oldest 

animal to the youngest animal by updating first PAû  and then by applying the equation 

(II.2) (VanRaden, 2001). Some rules were defined to estimate PAû  if parents were 

unknown, similarly to Mrode et al. (1996). With such an approach, information from 

foreign parents and progeny is propagated to domestic progeny. However, some 

information is still lost because information from foreign progeny does not contribute 

back to the parents of the considered animal. For the reliabilities of combû , they can be 

approximated from the decomposition of additional information between different 

contributions, expressed in DE. 

In a dairy cattle context, the proposed SI approach was used to approximate an 

international evaluation (VanRaden et al., 2000; VanRaden, 2001) as well as to combine 

predictions related to correlated traits (VanRaden, 2001). Regarding the context of 

international evaluations, the SI approach can provide international evaluations for cows, 

which was not the case for MACE. Another advantage compared to MACE is that an 

international relationship matrix is not needed. Results showed that small differences 

were observed between the SI approach and MACE for bulls. Correlations were about 

0.99. However, REL associated with the SI approach was higher because sire and dam 

information was integrated instead of only sire and maternal grandsire information 

(VanRaden, 2001). Regarding the context of multi-trait evaluations, the comparison of the 

approaches proposed by Weigel et al. (1998) and VanRaden (2001) showed that gains in 

REL were higher with the SI approach developed by VanRaden (2001) because the 

VanRaden’s approach included parents, animal and progeny information (VanRaden, 

2001). 

To summarize, the SI approaches are approximate methods combining accurately 

different sources of information related to the same or correlated traits and need lower 

computational needs than other methods based on mixed models, e.g., MACE or a joint 

BLUP evaluation. Also, unlike MACE, estimates are provided for all animals and 
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information provided by cows is considered. However, the SI approaches may not take 

the different effects of selection into account as correctly as a joint evaluation (VanRaden, 

2001). 

SIMULTANEOUS COMBINATIONS  

ABSORPTION OF EQUATIONS  

An approach to combine simultaneously external information and internal 

phenotypic and genealogic data is to integrate external information into a genetic 

evaluation by considering a genetic evaluation using internal and external data and by 

absorbing the equations related to the external data. Based on an algorithm writing 

directly the inverse of a relationship matrix and therefore allowing the use of an animal 

model, the approach based on the absorption of equations (hereafter called absorption 

based approach) was first implicitly proposed by Henderson (1975) in order to 

incorporate artificial insemination (AI) sire evaluations based on records of artificially 

sired daughters in other herds into intraherd predictions, as an alternative to an interherd 

genetic evaluation. The proposed method allowed the comparison of cows across herds 

and accounts for non-random usage of sires (Henderson, 1975; Bolgiano et al., 1983). 

While it does not seem to be a problem nowadays, an interherd genetic evaluation based 

on an animal model for a particular breed in a specific subpopulation was not 

computationally feasible at that time (Bolgiano et al., 1983). Based on external 

information associated with a sire, the approach consisted of adding the value 

( ) ( )24/1 hrn −−  to the diagonal element of the sire’s equation in the left hand side (LHS) 

of the internal MME where n  is the number of effective daughters calculated from the 

sire’s external REL, r  is the repeatability, and 2h  is the heritability of the considered 

trait. The value 
( )

( ) ( )( )uhn
hh

r
ˆ14

4

1 2
22

−+
−

−
, where û  is the sire’s external EBV, was added 

to the element in the RHS corresponding to the sire’s equation in the internal evaluation. 

In the context of milk yields evaluations for dairy cattle, this element is equal to 0 for 

sires with no external information. Later, Quaas (1979) and Van Vleck (1982) proposed 

two different derivations of the method suggested by Henderson (1975). An application 

was also proposed to estimate genetic values for cows within a herd and to compare them 

among different herds for the Dairy Herd Improvement Association herds in the United 

States (Bolgiano et al., 1983). 
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To summarize, the absorption based approach is straightforward to incorporate 

external information of sires into an intraherd genetic evaluation and to propagate this 

information to sires’ progeny in the considered herd. However, although approximations 

were proposed for more complicated cases (Henderson, 1975; Van Vleck, 1982), this 

method is difficult to generalize (Quaas and Zhang, 2006). Furthermore, the approach 

assumes that external information is expressed as deviation from the genetic merit of the 

base population, which could not be a trivial problem (Henderson, 1975). 

PSEUDO-RECORDS 

Bonaiti and Boichard (1995) proposed a method that includes external information 

into an internal genetic evaluation for dairy cattle using a single-trait animal model. This 

method consists of adding a number of virtual daughters for each bull associated with 

external information to the internal phenotypic and pedigree datasets. The second parents 

of the virtual daughters are assumed to be unknown and belonged to a genetic group 

which is related to the a-factor of the conversion equation. Each additional virtual 

daughter is associated with a pseudo-record representing the genetic merit of the bull. 

Pseudo-records could be DYD or DRP derived from external EBV of the bulls (Bonaiti 

and Boichard, 1995). Because external information of related bulls could be included in 

the internal evaluation, double counting of contributions due to relationships could 

appear. Therefore, the number of additional virtual daughters for the ith external animal is 

equivalent to the number of DE computed from external REL of the ith animal subtracted 

by the number of DE associated with its external pedigree index. The subtraction is 

needed to avoid double counting of contributions due relationships. One limitation of this 

method is that pseudo-records are assumed to belong to the same trait as the internal 

phenotypes. Thereby, DYD or EBV must be first converted to the internal unit and scale, 

e.g., with conversion equations, before their inclusion in the internal genetic evaluation. It 

is noted that Bonaiti and Boichard (1995) showed the similarities of their proposed 

pseudo-records based approach with the absorption based approach (Henderson, 1975). It 

is also noted that the effect of external information will never be zero, although the weight 

for external information of an animal decreases when more and more internal data is 

collected (Pedersen et al., 1999). 

Pedersen et al. (1999) applied the pseudo-records based approach proposed by 

Bonaiti and Boichard (1995) in the context of the Danish genetic evaluation for Holsteins, 

Jerseys and Red Danish cattle. External information included MACE EBV and REL, 
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provided by International Bull Service (Interbull, Uppsala, Sweden), for sires and, for 

cows, external EBV and REL provided by the country of origin. Before the inclusion, 

external EBV for cows were converted to the Danish scale. Also, REL were restricted to a 

maximum of 80% for MACE EBV for sires and were assumed to be equal to 30% for 

converted external EBV for external cows. Such restrictions could limit double counting 

of Danish information. The authors concluded that including external information in the 

Danish evaluation led to avoid differences between national and MACE EBV and to the 

possible comparison of females with local or external origins. 

Based on a pseudo-records based approach, VanRaden (2012), VanRaden and 

Tooker (2012) and VanRaden et al. (2014) proposed to include MACE information in an 

internal genetic evaluation by using one pseudo-record for each bull weighted by DE, 

instead of one pseudo-record for each virtual daughter. The pseudo-records were 

expressed as DRP and were estimated using a one-animal-at-a-time deregression method, 

similarly to Bonaiti and Boichard (1995). Because MACE information associated with 

bulls that have internal and external daughters include contributions from both internal 

and external information, VanRaden et al. (2014) proposed to use internal EBV instead of 

PA to compute DRP for those bulls and to subtract internal DE from the total amount of 

DE associated with MACE EBV in order to estimate the amount of external DE. Double 

counting of internal information was therefore avoided. For multiple-trait models, 

VanRaden et al. (2014) proposed to adapt their approach by adding, for each ith external 

animal, the product 0.5
VRi

1
0

0.5
VRi ∆G∆

−  to the ith external animal’s elements of the LHS where 

VRi∆  is a diagonal matrix associated to the ith external animal with a diagonal element for 

the jth trait equal to ( )ijij RELREL −1 , ijREL  is the reliability of ith external animal for 

the jth trait, and 0G  is the genetic (co)variance matrix among traits. The product 

di
0.5
VRi

1
0

0.5
VRi )y∆G(∆ −  is also added to the ith external animal’s elements of the RHS where 

diy  is the vector that includes DRP for each trait for the ith external animal. VanRaden 

and Tooker (2012) tested their approach on US Holstein data and concluded that their 

approach was simple and enough accurate to include external information into national 

evaluations. While this approach showed similarities with the absorption based method 

proposed by Henderson (1975) for univariate analyses, results from these two approaches 

could differ in practice because the computation of DRP and their consideration into the 

MME are different between the two approaches. 
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Another pseudo-records based approach was developed by Tier et al. (1999) to 

integrate external information into BREEDPLAN, a genetic evaluation system for beef 

cattle (www.breedplan.une.edu.au). Similarly to Bonaiti and Boichard (1995), the authors 

added virtual progeny with pseudo-records for animals associated with external 

information. The number of virtual daughters was limited to a maximum in order to allow 

that 1) internal records were reflected in internal EGM and 2) pseudo-records were 

computed from the multiplication between an approximated multi-trait external LHS and 

a vector of external EGM. This approach to compute pseudo-records is similar to 

deregression approaches, such as the one proposed by Calus et al. (2014). Similarly to the 

other pseudo-records based approaches, Tier et al. (1999) observed a correct integration 

of external information into their genetic evaluation system. 

To summarize, different authors proposed to include accurately external 

information in internal genetic evaluations by adding to internal datasets weighted 

pseudo-records associated with animals or with their virtual daughters. The similarities 

between the absorption based approaches and pseudo-records based approaches were 

detailed (Bonaiti and Boichard, 1995). However, because DYD are not usually available, 

a deregression step is needed to estimate DRP. While the deregression approaches used by 

some authors were based on a one-animal-at-a-time deregression method, better 

approaches could be used (VanRaden et al., 2014), which is mostly not a trivial problem, 

as already discussed before. 

BAYESIAN APPROACHES  

Henderson (1984) proposed MME modified to incorporate previous estimates of 

fixed effects, like breed or sex differences, associated with a non-singular (co)variance 

matrix. Later, Gianola and Fernando (1986) derived general MME from the Bayesian 

methodology. Unlike the previous proposed system of equations (Henderson, 1984), the 

derivation of Gianola and Fernando (1986) concerned “fixed” and “random” effects 

because those effects are not distinguished in a Bayesian context. Assuming the following 

prior multivariate normal (MVN) distributions:  

- for the “fixed” effects, [ ]Bβ ~ ( )Bb,MVN , 

where b is a mean vector and B  is a (co)variance matrix,  

- for the “random” effects, [ ]Gu ~ ( )Gg,MVN , 

where g  is a mean vector and G is a (co)variance matrix, and 
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- for the residual effect, [ ]Re ~ ( )R0,MVN , 

where R  is a (co)variance matrix, the developed equations were written as follows 

(Gianola and Fernando, 1986): 
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where y  is the vector of records, β̂  and û  are vectors of estimates of β  and u  related to 

the records through the incidence matrices X  and Z , respectively. 

If a non-informative prior is considered for β  (i.e. 0B 1 →− ) and 0g = , the system of 

equations (II.3) simplifies to traditional Henderson‘s MME (e.g., Dempfle, 1977; 

Henderson, 1984; Gianola and Fernando, 1986; Robinson, 1991). 

A proposed application using the system of equations (II.3) was the updating of β  

and u  estimated from data increasing sequentially over time. A joint analysis of all data 

or an analysis of actual data with prior distributions based on a previous analysis of 

previous data would give the same results if the prior and posterior distributions are in the 

same family (Gianola and Fernando, 1986). A second application was proposed in the 

context described by Henderson (1975), which is the incorporation of AI sire evaluations 

based on records of artificially sired daughters in other herds into intraherd predictions. In 

this case, the vector g  and the matrix G  are partitioned between herd animals, which are 

called internal animals (described by the subscript I) since they are not associated with 

external information, and AI sires, so-called external animals (described by the subscript 

E), leading to 







=

E

I

g

g
g  and 








=

EEEI

IEII

GG

GG
G  where the vector Ig , equal to 0 , is the 

vector of prior means related to internal animals, the vector Eg  is the vector of the 

external animals’ EGM associated with the prediction error (co)variance matrix EEG  and 

the matrices IIG , EIG  and IEG  are functions of the additive relationships between 

internal and external animals. The matrix 1−B  is considered as equal to 0 . Because EEG  

is unknown or could lead to difficulties for the computation of 1G − , EEG  could be taken 

as a diagonal matrix with elements equal to approximates or real values of diagonal 

elements of the inverse needed to solve the system of equations (II.3) (Gianola and 

Fernando, 1986). 

Later, Bayesian approaches were proposed in the context of multi-breed genetic 
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evaluations for beef cattle to combine data with prior literature estimates to estimate 

across-breed genetic values (Klei et al., 1996). In the same context, the Bayesian 

approach was extended to integrate external information associated with animals 

originating from another breed than the main breed considered in the internal multi-breed 

evaluation into this multi-breed genetic evaluation (e.g., Quaas and Zhang, 2001, 2006; 

Legarra et al., 2007). Animals originating from another breed are mostly bulls accurately 

evaluated in their own external system and having few progeny in the internal multi-breed 

genetic evaluation. While Quaas and Zhang (2006) and Legarra et al. (2007) proposed 2 

different Bayesian derivations to integrate external information into internal genetic 

evaluations by considering external information as priors of u , the proposed system of 

equations (II.4) had a similar compact notation to the system of equations (II.3): 
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where b̂  is a vector of genetic base differences among genetic evaluations and Q  is the 

incidence matrix relating the elements of b̂  to the animals. 

Similarly to Gianola and Fernando (1986), the vector g  and the matrix 1G −  were 

partitioned between internal animals and external animals as 







=

E

I

g

g
g  and 






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
=−

EEEI

IEII
1

GG

GG
G . Concerning 1G − , instead to approximate EEG  as a diagonal matrix 

(Gianola and Fernando, 1986) for the computation of 1G − , Quaas and Zhang (2006) and 

Legarra et al. (2007) proposed to directly approximate 1G −  as follows: 
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GG

GG
G  is the inverse of the additive (co)variance matrix and Λ  is a 

matrix that must be approximated. 

Concerning the product gG 1− , Quaas and Zhang (2006) and Legarra et al. (2007) 

computed the product as ( ) 








+
= −

−

E
1
EE*

1

gΛG

0
gG  where -1

EE*G  is the inverse of the additive 

genetic (co)variance matrix that only accounts for the relationships among external 
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animals. The differences between the two Bayesian approaches (Quaas and Zhang, 2006; 

Legarra et al., 2007) concern mainly the calculations of the matrix Λ . Legarra et al. 

(2007) considered the matrix Λ  as a diagonal variance matrix and computed the diagonal 

elements of Λ  as the difference between the diagonal elements of the prediction error 

(co)variance matrix and the diagonal elements of 1EE*G − . Quaas and Zhang (2006) 

considered Λ  as a block diagonal variance matrix with one block per external animal. 

Block diagonals for the ith animal were equal to Qi
1

0Qi ∆G∆
−  where the matrix 0G  is a 

matrix of genetic (co)variances among traits. The matrix Qi∆  is a diagonal matrix with 

elements ijδ  equal to )REL(REL ijij −1 , where ijREL  is the reliability for the jth trait of 

ith external animal. It is noted that the block elements of the matrix Λ  computed by 

Quaas and Zhang (2006) are equivalent to the elements computed by VanRaden et al. 

(2014) and added to the external animal’s elements of the LHS ( i.e., 0.5
VRi

1
0

0.5
VRi ∆G∆

− ). 

Based on Legarra et al. (2007), an application to integrate MACE information for 

Holstein bulls into an internal dairy cattle genetic evaluation was proposed (Gengler and 

Vanderick, 2008). However, some limitations concern the proposed Bayesian approaches. 

Firstly, the proposed approaches did not take into account several double counting of 

contributions, e.g., due to relationships among external animals and due to records. 

Indeed, an EBV of an animal combines information from its own records (i.e., 

contributions due to own records) and from records of all relatives through its parents and 

its progeny (i.e., contributions due to relationships; VanRaden, 2001; Misztal and 

Wiggans, 1988). Therefore, integration of EBV for relatives can lead to counting several 

times the same contributions due to relationships and biases the internal genetic 

evaluation. Double counting of contributions due to records could appear if external 

information resulted from an external evaluation that combined both external and internal 

records. In this case, some contributions due to records would be considered several times 

if external information was combined with internal records. To our knowledge, in the 

context of Bayesian approaches, double counting of contributions due to relationships 

received very little consideration (e.g., Jones and Goddard, 1990). Only Gengler and 

Vanderick (2008) proposed an additional pre-processing step to avoid double counting of 

contributions due to records, despite the fact that this issue could be a major issue for 

common sources of external information (e.g., MACE information). Secondly, the 

proposed Bayesian approaches were developed to take differences among genetic bases 
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into account. However, Legarra et al. (2007) assumed that differences among genetic 

bases were equal to zero to improve software’s performances. Furthermore, in addition to 

be expressed on a different genetic base, external information may be also expressed in 

other scales or units of measurement than the internal ones. For example, in the context of 

dairy cattle, it was noted that EBV are mostly reported as the average of lactation yields 

for three lactations while genetic evaluations are mostly based on test-day models 

(Gengler and Vanderick, 2008). Thereby, approaches must be developed to avoid these 

issues, similarly to other approaches detailed previously. Thirdly, in many situations, 

integration of several sources of external information into an internal genetic evaluation 

may be needed, although, to our knowledge, it has not been studied yet. Fourthly, the 

derivations of Legarra et al. (2007) and Quaas and Zhang (2006) assumed that external 

information came from a similar theoretical genetic evaluation, which is not necessarily 

the case. 

To summarize, Bayesian approaches based on MME were one of the first 

approaches proposed to combine simultaneously external information and internal data. 

Different advantages may be observed as the avoidance of an explicit deregression step or 

the possibility to avoid high computational needs to estimate breeding values from data 

accumulating over time. However, Bayesian approaches integrating external information 

are not commonly used in animal breeding and several issues must be studied. 

Furthermore, most of current software packages available in animal breeding do not 

permit the application of, for example, the system of equations (II.3). 

COMBINATIONS IN GENOMIC SELECTION  

Currently, genomic information provided by panels of several thousands of single 

nucleotide polymorphisms (SNP) can be used following multi-step or single-step 

approaches. The multi-step approaches (e.g., VanRaden et al., 2009) consist of 1) 

estimating SNP effects based on (pseudo-)phenotypic data related to non-candidate 

genotyped animals, 2) calculating estimates of genetic merit (mostly called direct 

genomic values (DGV)) for candidate genotyped animals based on estimates of SNP 

effects and 3) combining genomic information, expressed as DGV, with traditional EBV 

(i.e., EBV estimated only from phenotypic and genealogic data) or with phenotypic and 

genealogical data. Following the traits and their availability, (pseudo-)phenotypic data 

may include traditional phenotypic records, DYD or DRP. The third step is necessary to 

avoid the publication of several EGM per animal and shows the need of approaches and 
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algorithms to combine EGM originating from diverse sources. The single-step approaches 

consist of replacing the traditional pedigree-based relationship matrix used in MME by a 

relationship matrix combining pedigree-based relationships and genomic relationships 

(Aguilar et al., 2010; Christensen and Lund, 2010). However, unlike the multi-step 

approaches allowing for the combination of genomic information with external 

information, single-step approaches do not allow for the integration of external 

information, like traditional MME. Therefore, for both approaches, methods and 

algorithms were developed to combine internal, external and genomic information. Most 

approaches and algorithms were derived from approaches already detailed previously and, 

therefore, will not be detailed extensively. 

For the multi-step approaches, proposed methods concerned the combination of 

DGV with traditional EBV or phenotypic and genealogical data. Regarding the 

combination of DGV and EBV, a first class of approaches is based on SI theory (e.g., 

VanRaden et al., 2009; Harris and Johnson, 2010). The SI approaches are mostly used in a 

dairy cattle context. A second class of approaches combining DGV and EBV is based on 

bivariate (random) models (Mäntysaari and Strandén, 2010). Phenotypic data included 

DYD for conventional phenotypic and genealogic information and DGV as pseudo-

records for genomic information. Heritability associated with DGV was assumed to be 

(close to) 1 and genetic correlation between DYD and DGV was assumed to be equal to 

the square root of the predictive ability of DGV. Regarding the combination of DGV and 

conventional phenotypic and genealogic data, different approaches were proposed. 

Similarly to Bonaiti and Boichard (1995), the first ones consisted of calculating pseudo-

records and associated weights from DGV and associated REL and to include them in the 

conventional dataset considering pseudo-records as own records and from the same trait 

(Ducrocq and Liu, 2009; Liu et al., 2009; Ducrocq and Patry, 2010). Therefore, it was 

assumed that genomic and conventional information had the same genetic variance. A 

second class of approaches consisted of calculating pseudo-records and associated 

weights from DGV and including them in conventional genetic evaluation as a correlated 

trait. Similarly to Mäntysaari and Strandén (2010), DGV were considered as pseudo-

records with a heritability equal or close to 1 by some authors (e.g., Kachman, 2008; 

Johnston et al., 2009; Špehar et al., 2013; Stoop et al., 2013). Contrarily to these authors, 

Stoop et al. (2011) proposed to include pseudo-records derived from DGV with an 

heritability equal to the predictive reliability of the prediction equation and with a genetic 

correlation with the trait of interest equal to 1. A mass-selection model was considered for 



Strategies to render comparable and to combine results from different genetic and genomic evaluations: A review 

 29 

the pseudo-records. Finally, Bayesian approaches were also proposed to integrate DGV 

into conventional evaluations. In the context of dairy cattle, Gengler and Verkenne (2007) 

proposed to consider DGV as prior information for polynomials of order 0 associated 

with random polygenic additive effects (0u ) of a multi-trait multi-lactation test-day 

model. It was assumed that ( ) DGV0 uu =E  and ( ) 000 Gu =Var  where ( ) DGV0 uu =E  is the 

vector of DGV and 00G  is the additive genetic (co)variance matrix associated with 0u . 

Reliabilities associated with DGV were not considered. In the context of beef cattle, DGV 

and associated REL were integrated into a multibreed genetic evaluation following the 

approach proposed by Quaas and Zhang (2006; Hyde et al., 2013). Their results showed 

that this approach can lead to inappropriate scaling of DGV or double counting of 

contributions between DGV and conventional data. 

For the single-step evaluations, approaches concern integration of external 

polygenic information into single-step genomic evaluations, instead of combination or 

integration of genomic information into conventional genetic evaluations. To our 

knowledge, proposed approaches integrating external information into single-step 

genomic evaluations were only pseudo-records based approaches (VanRaden, 2012; 

Přibyl et al., 2013). These approaches were developed to integrate MACE EBV in a dairy 

cattle context by taking into account possible double counting of contributions among 

different sources. Only one pseudo-record and associated weight per animal was derived 

from external information and added to the conventional data. 

At an international level, in the dairy cattle context, possible exchange of 

genotypes and predicted maker/SNP effects could lead to internal genomic evaluations 

dependent from each other while an assumption for MACE is that internal information 

originates from independent datasets. Therefore, a modified MACE, so called genomic 

MACE (GMACE), was developed to avoid this assumption, i.e., to account for non-zero 

residual correlations among genomic predictions across countries. GMACE was also 

extended to an animal model because genomic information associated with cows is 

increasing. GMACE is still under development (Sullivan and VanRaden, 2009; Sullivan 

and Jakobsen, 2014). 

DISCUSSION AND CONCLUSION  

This review highlights different approaches and algorithms that render genetic 

evaluations originating from different sources comparable or that combine these 
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evaluations to a single one. Each approach or algorithm was developed in a particular 

context (e.g., in a dairy cattle context) to solve the same common issue, that is the 

impossibility to run a joint genetic evaluation due to political roadblocks, inconsistencies 

among datasets, computing or logistic problems. It was also worth noting that some 

approaches, like MACE, SI and Bayesian approaches or pseudo-records based 

approaches, were extended to other contexts (e.g., the genomic context). All approaches 

and algorithms were sorted following the way external information was combined.  

Firstly, external information can be combined with internal EGM and REL after 

performing internal evaluations. Advantages of post evaluation combinations are that 1) 

internal evaluations can be performed without being dependent on the publication of 

external information and 2) internal EGM and REL may be used to develop conversion 

equations without running additional evaluations free of external evaluations. In an 

international context, internal information free of external information is also a condition 

to perform unbiased MACE. However, these advantages could also be a disadvantage 

because external information does not contribute to the estimation of fixed and other 

random effects in the internal evaluation, which could create potential biases. 

Secondly, external information can be simultaneously combined with internal 

genealogical and phenotypic data into an internal genetic evaluation. Under some 

assumptions, it was previously shown that the absorption based approaches and the 

pseudo-records based approaches are equivalent. A similar other type of approaches that 

simultaneously combine external information and internal data are the Bayesian 

approaches, also previously described. Differences observed among results are due to 

approximations applied according to the considered approach. Differences are also 

observed regarding their implementations. Bayesian and pseudo-records based 

approaches could be generalized more easily than absorption based approaches. Also, 

absorption based approaches and Bayesian approaches are not dependent of an explicit 

deregression step. However, an advantage of all the simultaneous combinations 

approaches is that external information contributes to the estimation of all effects included 

in the internal evaluation. Therefore, contributions due to external information are 

propagated to all animals included in the internal evaluation and related to animals 

associated with external information. Another advantage is that only one process is 

needed to combine all available information. A disadvantage is that internal evaluations 

must be performed after the publications of external information. Another disadvantage is 

that additional internal evaluations which do not integrate external evaluations must be 
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performed if, for example, conversion equations must be developed.  

Finally, for both kinds of approaches and methods, external information must be 

studied carefully to avoid mainly bias of internal information and double counting of 

contributions due to relationships among external animals and due to same records. 

Furthermore, conversion equations seem to be still needed for most approaches to convert 

external information on the scale, units of measurement and genetic base of the internal 

populations. Approaches based on conversion equations are thus dependent on them. Few 

approaches, like MACE, proposed solutions to this issue through the use of genetic 

correlations between external and internal information. To our knowledge, most 

approaches, like Bayesian or pseudo-records based approaches, could use similar 

solutions to avoid the use of conversion equations and to be independent on them. 

To conclude, a joint genetic evaluation would be preferred in comparison to 

approximated combinations of external information and internal information or datasets. 

However, although high performance computing facilities are more and more available, 

joint evaluations cannot be performed mostly due to political issues. Therefore, 

development of approaches and algorithms combining several sources of information are 

still needed and must be still studied given all assumptions and issues described 

previously. 
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Chapter III. C OMPARISON AND IMPROVEMENT OF DIFFERENT 

BAYESIAN PROCEDURES TO INTEGRATE EXTERNAL INFORMATIO N 

INTO GENETIC EVALUATIONS  

 

 

 

 

The previous Chapter reviewed various approaches and 

algorithms comparing or combining different genetic evaluations. 

One promising approach is the Bayesian approach that combines 

simultaneously external information (i.e., estimated breeding 

values and associated reliabilities provided by an external genetic 

evaluation) with internal phenotypic and genealogic data. 

Advantages of Bayesian approaches that were highlighted were 

the possible generalization to complex models, the avoidance of 

explicit deregression steps or the propagation of external 

information to all animals. However, while Bayesian approaches 

seem to be promising, Chapter II also highlighted some 

limitations, such as, e.g., double counting of contributions due to 

relationships. Therefore, the aim of this Chapter was first to 

review two Bayesian approaches that were recently proposed and, 

second, to enhance the proposed Bayesian approaches, mainly 

regarding computational burden and double counting of 

contributions due to relationships. 

 

 

 

 

From: Vandenplas, J., and N. Gengler. 2012. Comparison and improvements of 

different Bayesian procedures to integrate external information into genetic 

evaluations. J. Dairy Sci. 95:1513–1526. 
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ABSTRACT  

The aim of this research was to compare different Bayesian procedures to 

integrate information from outside a given evaluation system, hereafter called external 

information, and in this context estimated breeding values (EBV), into this genetic 

evaluation, hereafter called internal evaluation, and to improve the Bayesian procedures 

to assess their potential to combine information from diverse sources. The 2 

improvements were based on approximations of prior mean and variance. The first 

version of modified Bayesian evaluation considers all animals as animals associated with 

external information. For animals that have no external information (i.e., internal 

animals), external information is predicted from available external information. Thereby, 

propagation of this external information through the whole pedigree is allowed. 

Furthermore, the prediction of external information for internal animals allows large 

simplifications of the computational burden during setup and solving of mixed model 

equations. However, double counting among external animals (i.e., animals associated 

with available external information) is not avoided. Double counting concerns multiple 

considerations of contributions due to relationships by integration of external EBV for 

related external animals and is taken into account by the second version of modified 

Bayesian evaluation. This version includes the estimation of double counting before 

integration of external information. To test the improvements, 2 dairy cattle populations 

were simulated across 5 generations. Milk production for the first lactation for each 

female was simulated in both populations. Internal females were randomly mated with 

internal males and 50 external males. Results for 100 replicates showed that rank 

correlations among Bayesian EBV and EBV based on the joint use of external and 

internal data were very close to 1 for both external and internal animals if all internal and 

external animals were associated with external information. The respective correlations 

for the internal evaluation were equal to 0.54 and 0.95 if no external information was 

integrated. If double counting was avoided, mean squared error, expressed as a percentage 

of the internal mean squared error, was close to zero for both external and internal 

animals. However, computational demands increased when double counting was avoided. 

Finally, the improved Bayesian procedures have the potential to be applied for integrating 

external EBV, or even genomic breeding values following some additional assumptions, 

into routine genetic evaluations to evaluate animals more reliably. 

Key words: Bayesian approach, dairy cow, integration, external information 
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INTRODUCTION 

Theoretical properties of currently used methods to assess the genetic value of 

domestic animals depend on certain conditions. One of the most important is that all 

available information has to be used simultaneously to obtain unbiased estimates (e.g., 

Henderson, 1984). However, this is often not the case in practice, for many potential 

reasons. The most important issue is the unavailability of raw data (e.g., recorded and 

evaluated in another country) or the complexity of computations that require the use of 

multi-step, sequential, or distributed computing. Both issues are frequent in modern 

breeding, especially in dairy cattle breeding, because international exchange of genetic 

material (e.g., frozen semen and embryos) is extremely widespread. Until now, basic 

genetic evaluations are mostly based on local data, potentially followed by an 

international second step, as performed by the International Bull Service (Interbull, 

Uppsala, Sweden) for dairy breed sires. However, the accuracy of local evaluations may 

be limited for animals with few local data. Furthermore, the current massive development 

of genomic selection exacerbates this issue, because potentially more different genetic 

evaluations may exist, and the need to combine those sources of information increases. 

Current methods used in the context of dairy cattle are mostly selection index based on 

VanRaden (2001) to combine different sources of information (e.g., Gengler and 

VanRaden, 2008). 

Another promising class of methods is based on Bayesian methods originating 

from the work from Klei et al. (1996) in the context of multibreed genetic evaluations for 

beef cattle. In this context, Bayesian means that the prior distribution of breeding values 

is changed according to what is known from an external source. Later, Quaas and Zhang 

(2001) and Legarra et al. (2007) proposed 2 different Bayesian derivations to incorporate 

external information, including external genetic breeding evaluations and their associated 

accuracies, into the internal evaluation. The integration of external information leads to an 

improved ranking of animals with external information (so-called external animals) in the 

internal evaluation, which is more similar to the ranking of a hypothetical joint evaluation 

of internal and external animals. Another advantage of this integration is that accuracies 

of estimated breeding values (EBV) for external animals are more reliable compared with 

those of the internal evaluation. Furthermore, this improvement of accuracies and rank 

correlations of external animals between the internal and joint evaluations depends on the 

external accuracy of prior information (Quaas and Zhang, 2001, 2006; Zhang et al., 2002; 
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Legarra et al., 2007) but also on several hypotheses used in the implementation. For 

example, current implementations do not take into account the double counting among 

external animals. However, an EBV of an animal combines information from its own 

records and from records of all relatives through its parents and its offspring (Misztal and 

Wiggans, 1988; VanRaden, 2001). Integrated external information of this animal and a 

close relative into the same genetic evaluation may be counted double if this external 

information contains both contributions due to relationships. Furthermore, until now, only 

few proposals exist to put these methods in the context of dairy cattle breeding, whereas 

they can be used in many situations and as a way to integrate genomic prediction (e.g., 

Gengler and Verkenne, 2007). 

The first aim of this research was to compare different Bayesian approaches for 

their potential to combine information from diverse sources and the second aim was to 

improve existing Bayesian approaches to integrate external information into genetic 

evaluations. Focus was thereby given to the simplification of the computational burden 

and the avoidance of double counting among external animals. 

MATERIALS AND METHODS  

THEORETICAL BACKGROUND  

Different concepts that will be used in this study are defined as follows: 

(1) Internal data was defined as data used only for internal evaluations (e.g., milk 

records in a given country A). 

(2) External data was defined as additional data not directly used in internal 

evaluations (e.g., milk records in another given country B). 

(3) Internal information was related to information obtained from an evaluation based 

only on internal data (e.g., local EBV in country A). 

(4) External information was related to information obtained from an evaluation based 

only on external data and free of internal information (e.g., foreign EBV or 

genomic EBV obtained in country B). Finally, all animals were distinguished 

between internal and external animals. 

(5) An internal animal was an animal associated with only internal data and internal 

information (e.g., locally used sires in country A). 

(6) An external animal was an animal associated with external data and information 

and also having internal data and information or being relative to the evaluation of 
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internal animals (e.g., foreign sires also used in country A in addition to country B 

or genotyped animals from country B relevant to country A). 

The main reason for the application of Bayesian procedures is to obtain solutions 

as close as possible to those of a hypothetical joint evaluation of all external and internal 

animals including their data. This is performed by integrating external information into 

the internal genetic evaluation instead of using only internal data. The considered external 

information in this context was available external EBV and their associated accuracies 

obtained from only external data (Ey ). Both will be used to define the prior distribution 

of the internal EBV of the external animals (Eu ). This prior distribution can be defined in 

a generic way as )()p( *
0EE GUb,µyu −= MVN  where MVN means multivariate 

normal, 0µ  is the vector of external EBV of a joint genetic evaluation of all internal and 

external animals based only on external data Ey , *G  is the matrix of prediction error 

(co)variances of these EBV, b  is a vector of base differences between external and 

internal EBV, and U  is an incidence matrix relating base differences to animals. 

If E and I refer to external and internal evaluations, respectively, and based on 

Legarra et al. (2007), a generic model can be written leading to these mixed model 

equations (III.1), representing this multi-trait modified mixed model: 
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(III.1) 

where Iy  is the vector of internal observations, Iβ  is the vector of fixed effects, u  is the 

vector of random genetic effects of the external and internal random genetic effects, IX  

and IZ  are the incidence matrices for internal fixed effects and animals, respectively, and 

IR is the (co)variances matrix for the internal residual effects. 

Legarra et al. (2007) showed that 






 +
=−

IIIE

EIEE
1*

GG

GΛG
G  where Λ  is equal to  

1
EE

1 GDΛ −− −=  (III.2) 

where the matrix D  is the matrix of prediction error (co)variances of the external 

information estimated from a genetic evaluation of all external animals based only on 

external data which did not include relationships between the internal animals, and -1EEG  

is the inverse of the additive genetic (co)variance matrix that only accounts for the 
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relationships among external animals. It is important to note that the matrix -1
EEG  is 

different from EEG , because the latter also includes contributions from internal progeny 

of external animals. Differences between-1EEG  and EEG can be illustrated by writing the 

inverse of G  in block form: 
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where 1G −  is the inverse of the additive genetic (co)variance matrix G  that accounts for 

all the relationships among all external and internal animals. 

It has also been shown that  
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where Eµ  is a vector of external EBV from a genetic evaluation of all external animals 

based only on external data which did not include relationships between the internal 

animals (Legarra et al., 2007). 

FOUR DIFFERENT IMPLEMENTATIONS  

To be used, the generic system of equations (III.1) often needs to be simplified. In 

fact, usually only functions of external prediction error variances (PEV; e.g., reliabilities), 

are available for approximating D  and *G . Furthermore, 0µ  is an unknown vector that 

needs to be estimated for some implementations. In this study, 4 different Bayesian 

implementations using gradually better approximations of prior mean and prior variance 

are compared (Table III-1). The differences were related to the animals providing external 

information and to the way that the prior mean and variance were defined. The first 

implementation, hereafter called Legarra-type Bayesian evaluation (LBE), was the 

simplest one from a computational standpoint, as only external PEV were considered to 

approximate D . The second implementation, hereafter called Quaas-type Bayesian 
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evaluation (QBE), included covariances among traits. Both implementations defined prior 

means based on external EBV obtained from the genetic evaluation of all external animals 

based only on external data, which did not include relationships among internal animals. 

The QBE can be computationally simplified as shown in the third implementation, 

hereafter called first version of modified Bayesian evaluation (FBE). Finally, the last 

implementation, hereafter called second version of modified Bayesian evaluation (SBE), 

approximated and used the across-animal covariances that are not reported in practice 

while existing in D . 

 

Table III-1. Main differences concerning the prior mean and variance among Legarra-
type Bayesian evaluation, Quaas-type Bayesian evaluation, first version of modified 
Bayesian evaluation, and second version of modified Bayesian evaluation 

Implementations1 
Item 

LBE QBE FBE SBE 
Animals providing external 
EBV1 

External External 
External, 
Internal 

External, 
Internal 

Prior mean     
Type External EBV2 External EBV External EBV External EBV 

External animals 
Origin EEE3 EEE EEE EEE 
Type - - External EBV External EBV 

Internal animals 
Origin - - SI4 SI 

Prior variance     
Type PEV PEC5 PEC5 PEC5 
Origin EEE EEE JEE6 JEE 

Relationships - 
Among 
external 

animals only 

Among all 
external and 

internal animals 

Among all 
external and 

internal animals 
Double counting among 
external animals 

- - - Accounted 
1LBE = Bayesian evaluation following Legarra et al. (2007) and using external EBV and prediction error 
variances (PEV) associated with external sires obtained from the external evaluation. QBE = Bayesian 
evaluation following Quaas and Zhang (2006) and using external EBV and PEV associated with external 
sires obtained from the external evaluation. FBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used. SBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used and the double counting among external animals was avoided. 
2External EBV = EBV adjusted for base differences among external and internal information. 
3EEE = genetic evaluation of all external animals based only on external data that did not include 
relationships among the internal animals. 
4SI = selection index. 
5PEC = prediction error covariances among traits (for FBE) and among traits and animals (for SBE). 
6JEE = a posteriori joint genetic evaluation of all internal and external animals based only on external data. 
 

LBE 

Legarra et al. (2007) proposed a Bayesian implementation to integrate prior 

information into an internal genetic evaluation. The prior mean of the implementation was 
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defined as EEE bUµ −  where )E( EEE yuµ = , EU  is an incidence matrix relating base 

differences to external animals, and Eb  is a vector of base differences among external 

and internal EBV for all the external animals. The prior variance D  was approximated by 

a diagonal matrix in which diagonal elements were equal to PEV associated to every 

external evaluation. Furthermore, this approximation of D  implied another approximation 

to estimate Λ . Because 1
EE

1 GDΛ −− −= , all relationships needed to be ignored, and only 

diagonal elements of the matrix EEG  were used. If nondiagonal elements in EEG  were 

taken into account, the matrix *G  could be non-semi-positive definite (Legarra et al., 

2007; Gengler and Vanderick, 2008). 

From a computational standpoint, the LBE method is rather simple to set up as the 

matrix D  is considered diagonal. Gengler and Vanderick (2008) reported that LBE could 

be easily integrated into a test-day model for dairy cattle genetic evaluations with few 

modifications of the code of the used programs and with reasonable convergence. 

However, the method needs to compute the base differences among external and internal 

information, which was estimated by Gengler and Vanderick (2008) before using the 

external information. This strategy avoids the computationally expensive integrated 

estimation of base differences. 

QBE 

Quaas and Zhang (2006) developed another Bayesian procedure to incorporate 

external information into a multibreed evaluation. They used a prior mean defined as 

EEE bUµ −  and a prior variance D  approximated by )PEV()Var( EEEE yuyuD =≈ . 

Hence, following Quaas and Zhang (2006) and equation (III.2), the matrix 1D−  was equal 

to ( ) ΛGAΛGD 1
0

1
EE

1
EE

1 +⊗=+= −−−− , where 1
EEA −  was the inverse of the matrix that only 

accounts for the relationships among external animals and Λ  was taken as a block 

diagonal variance matrix with one block for each external animal. The different block 

diagonals are equal to i
1

0i ∆G∆ −  for i = 1, 2, …, N with N external animals. The matrix 0G  

is a matrix of genetic (co)variances among traits, and i∆  is a diagonal matrix with 

elements ijδ  with j = 1, 2, …, n traits. The element ijδ  is equal to the ratio 

of )REL(REL ijij −1 , where ijREL  is the reliability associated to the external proof Eµ  for 

the jth trait of ith external animal. 
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The QBE implementation estimates the base differences between external and 

internal EBV in a different way to equation (III.1). Base differences in QBE are estimated 

as )µu(DU')UD(U'b EE
1

E
1

E
1

EE −−= −−− ˆˆ  (Zhang et al., 2002; Quaas and Zhang, 2006). If 

U  is partitioned between external animals (EU ) and internal animals ( IU ) and by 

replacing 1*G −  by 






 +
IIIE

EIEE

GG

GΛG
 in the mixed model equations (III.1), it can be 

shown (Appendix III-1) that estimation of Eb̂  by QBE is equivalent to the computation of 

b̂  using mixed model equations (III.1). Except for this difference, differences between 

approximations of LBE and QBE mainly concern the matrix D  and the consideration of 

the whole (co)variances matrix EEG . 

It is important to note that, from equations (III.2) and (III.3), E
1

EE ZRZ'Λ −= . For 

the jth trait of ith external animal, the diagonal element of the matrix E
1

EE ZRZ' −  is equal 

to the number of records the animal i has for this trait multiplied by the inverse of the 

error variance of this jth trait 2

jeσ  (Mrode, 2005). However, this number of records can be 

estimated by the effective number of records, so-called records equivalent (RE), as 

ij
u

e

ij *δ
σ

σ

RE
j

j

2

2

=  where 2

juσ  is the genetic variance for the jth trait. Thereby, the diagonal 

elements ijδ  are equal to 
2

2

j

j

e

u

ij
σ

σ

*RE . 

Furthermore, QBE (Table III-1) also needs the computation of the inverse of the 

relationship matrix EEA  that only accounts for the relationships among external animals, 

1
EEA − . The matrix 1

EEA −  could be computed efficiently by first establishing directly EEA  

through an algorithm based on Colleau (2002) followed by its inversion with optimized 

subroutines (Misztal et al., 2009; Aguilar et al., 2011). However, EEA  might be dense, 

and its storage, as well as its inversion, might not be possible or could take too much 

computational burden because the number of external animals could be very high. 

Furthermore, the direct computation of 1EEA −  might not be possible using simplified rules, 

as relationships among all ancestors without external breeding will be absorbed in this 

matrix. Given these differences, QBE is slightly more complicated to implement than 

LBE. 



Comparison and improvement of different Bayesian procedures to integrate external information into genetic evaluations 

 47 

FBE 

The definition of prior mean and variance in QBE has the shortcoming that, as 

noted above, the computation of 1
EEA −  is more difficult than the establishment of the 

inverse of the relationship matrix among all external and internal animals. The 

consideration of all animals has also the effect that the definition of prior mean needs to 

include external EBV for all animals. To consider these issues, FBE was developed. The 

approximation concerns the terms of the left hand side of the equation (III.4) instead of 

the terms of the right hand side, as is done in LBE and QBE. The unknown vector 0µ  can 

be approximated as follows. Let Iµ  be an unknown vector of external EBV of all the 

internal animals of a joint genetic evaluation of all internal and external animals based 

only on external data. Because this evaluation is only based on external data, and because 

[ ]''
I

'
E0 µµµ =  and ( )1II

E
1

EEIEEI )(G,µGGµµ −−= MVN)p( , Iµ  can be approximated as 

well as 0µ . Therefore, all internal and external animals are considered as having external 

information. As detailed in Table III-1, this feature distinguishes the 2 implementations 

found in the literature (LBE and QBE) and the new implementations FBE and SBE. In 

these 2 implementations, FBE and SBE, the RE associated with the predicted breeding 

values are set to 0, because the predicted breeding values are only based on relationships 

and do not bring any additional information. Hence, because all internal and external 

animals are considered as external animals, 






 +
=−

IIIE

EIEE
1*

GG

GΛG
G  and 

E
1

EE ZRZ'Λ −= , 1*G −  can be simplified as ΛGG 11* += −− , where the diagonal blocks 

for the internal animals of the matrix Λ of FBE are equal to zero and the diagonal blocks 

for the external animals of the matrix Λ of FBE are equal to the corresponding diagonal 

blocks of Λ  used by QBE. 

From a computational standpoint, FBE has different advantages. First, because all 

the animals are considered to have external information, the inverse of the whole 

relationship matrix A  is also used in the right hand side of FBE instead of the 

relationship matrix 1
EEA −  used by QBE to estimate 1D− . This extension of the relationship 

matrix requires an estimation of external breeding values for the internal animals (e.g., 

using selection index theory). However, this estimation is computationally feasible. The 

extension of the external breeding values leads to the setup of only a single inverted 

relationships matrix. Second, the integration of prior information for all animals in FBE 
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leads to a hidden advantage for this implementation. Because all internal animals are 

associated with prior information, the prediction of their breeding values through FBE is 

influenced by the same constant difference that may exist between external information 

and breeding values that have to be estimated. Therefore, the equation to estimate genetic 

base differences among the different evaluations can be eliminated from the system of 

equations, because this effect becomes confounded with the general mean. A proof of this 

is given in the Appendix III-1. Both advantages and differences of FBE in comparison to 

LBE and QBE allow large simplifications of the computational burden during setup and 

solving of mixed model equations, making their use again easier with complicated models 

and large data sets. 

SBE 

The knowledge of only the external PEV, or functions of these, means that the 

across-animal covariances are not correctly considered by LBE, QBE, and FBE, which 

leads to double counting among external animals. In this context, double counting means 

multiple considerations of parts of integrated external EBV for related external animals. 

In SBE, double counting is taken into account through an additional two-step algorithm 

(TSA), for which the aim is to estimate corrected RE for the external animals independent 

from contributions due to relationships. Hence, only the approximation of Λ  for the 

external animals changes in SBE compared with FBE. So, the block diagonal of Λ  for 

each internal animal i is equal to zero as those of the third implementation FBE, while the 

block diagonal of Λ  for each external animal i is equal to i
1

0i ∆G∆ − , where i∆  is a 

diagonal matrix with elements 
2

2

*
j

j

ii
e

u

σ
σ

*
jRE , where j = 1, 2, …, n traits, and *

jRE  is a 

diagonal matrix with diagonal elements equal to RE only due to own records for the jth 

trait. 

Double counting among external animals can appear if external information - in 

this context, external EBV - of an animal and a close relative are integrated into the same 

genetic evaluation. This double counting is due to the fact that external information of 

those animals combines contributions due to own records and due to relationships 

(Misztal and Wiggans, 1988; VanRaden, 2001). To avoid this double counting, it is 

necessary to separate the contributions due to records from the contributions due to 

relationships in the external information for each external animal using TSA, in which the 
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2 steps are based on the algorithm A1 of Misztal and Wiggans (1988). However, the aim 

of the current study was different from that of Misztal and Wiggans (1988), and some 

modifications were necessary. The first modification concerns the fact that the 2 steps of 

the TSA include all relationships between external animals and their ancestors instead of 

only the relationships between an animal and its parents. Second, the estimated RE due to 

records by the algorithm A1 is obtained from a model in which all effects are absorbed 

into animals’ effects. This leads to lower RE than the corresponding diagonal elements of 

the matrix E
1

EE ZRZ' − . To resolve this problem, an absorption matrix M  is created from 

the RE due to records estimated by the first step of the TSA. Therefore, for the jth trait, 

the first step of the TSA separates contributions due to records and contributions due to 

relationships following the algorithm A1 of Misztal and Wiggans (1988). Based on the 

contributions due to records, an absorption matrix M  has to be developed that is taken 

into account by the second step of the TSA to estimate RE for the external animals 

independently from contributions due to relationships or correlated traits. The TSA must 

be repeated for each trait and is detailed in the Appendix III-1. 

The SBE shares the advantages with FBE explained above. However, as already 

explained, an additional advantage is that theoretically all double counting among 

external animals is avoided. The disadvantage is that the TSA needs to be implemented, 

which may be computationally challenging. 

SIMULATED DATA  

The 4 different Bayesian methodologies described above were tested using 

simulated data. For this purpose, an external and an internal population were each 

simulated from 30 male founders and 120 female founders. Each population included 

about 1000 animals distributed over 5 generations. For each population, the sires were 

randomly selected from available males for each generation. The maximum number of 

males mated in each generation was 25. All females existing in the pedigree were 

randomly mated with the selected males to simulate each new generation. However, these 

matings could not be realized if the coefficient of relationship between 2 animals was 0.5 

or higher, as well as if the female had already 3 descendants. Furthermore, a male could 

be mated during at most 2 years. 

In regard to the external population, external females were randomly mated only 

with external males. In each generation, 60% of external male offspring were randomly 

culled. In regard to the internal population, internal females were randomly mated with 
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internal males and a subset of external males. This subset included the first 50 sires that 

had the most offspring in the external population. In each generation, 99% of internal 

male offspring were randomly culled. 

As the phenotypic trait, milk production for the first lactation was simulated for 

each female in both populations following Van Vleck (1994). A nested herd effect within 

population was randomly assigned to each record under the condition that each herd 

included about 40 females. Phenotypic variance and heritability were assumed to be 3.24 

* 106
 kg2 and 0.25, respectively. 

Using the simulated data, the following 7 genetic evaluations were performed: 

(1) The joint evaluation was a regular BLUP evaluation based on external and internal 

pedigree and data. This evaluation was assumed the reference.  

(2) The external evaluation was a regular BLUP evaluation based on external pedigree 

and data.  

(3) The internal evaluation was a regular BLUP evaluation based on internal pedigree 

and data.  

Concerning the 4 Bayesian evaluations,  

(4) the Legarra-type Bayesian evaluation was a LBE using external EBV and PEV 

associated with external sires, obtained from external evaluation (2) inside the 

internal evaluation, and  

(5) the Quaas-type Bayesian evaluation was a QBE using external EBV and PEV 

associated with external sires, obtained from external evaluation (2) inside the 

internal evaluation.  

(6) The first version of modified Bayesian evaluation was an FBE using external EBV 

and PEV associated with external sires inside the internal evaluation where 

external EBV for all animals (internal and external) were predicted and used, and  

(7) the second version of modified Bayesian evaluation was an SBE using external 

EBV and PEV associated with external sires inside the internal evaluation, where 

external EBV and PEV for all animals (internal and external) were predicted and 

used but applying the TSA algorithm to avoid double counting. 

The simulation was replicated 100 times. For external and internal animals, 

comparisons between the joint evaluation and the 6 others were based on (1) Spearman 

rank correlation coefficients (r), (2) mean squared errors (MSE) expressed as a percentage 

of internal MSE, (3) regression coefficients (a), and on (4) coefficients of determination 

(R2). All parameters were the average of 100 replicates. 
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RESULTS AND DISCUSSION  

The 100 simulated external and internal populations included 1052 animals each 

on average. The external information integrated into the internal genetic evaluation for 

one external animal corresponded to 10 effective daughters on average. This number of 

effective daughters may seem low, but it is the lower bound of the effective number of 

daughters one might expect when a sire is evaluated from genomic prediction. Results for 

r, MSE, a, and R2 illustrating the prediction of joint breeding values are shown in Table 

III-2 for the external animals (i.e., the 50 external sires associated with external 

information integrated through a Bayesian evaluation), and in Table III-3 for all the 

internal animals (i.e., animals associated with only internal information). To visualize 

effects of the integration of external information, EBV of the 50 external animals for one 

randomly chosen simulation are plotted in Figure III-1. 

 

Table III-2. Rank correlations (r) and mean squared errors (MSE) expressed as a 
percentage of the internal MSE between joint evaluation and an external evaluation, an 
internal evaluation, and 4 different Bayesian procedures, regression coefficients (a), and 
coefficients of determination (R2) of the regression of the joint evaluation on the 6 other 
evaluations1 

Genetic evaluation    r  ± SD MSE ± SD    a ± SD   R² ± SD 
Without external 
information2 

      

 Internal 0.54 ± 0.12 100.00 ± 28.20 0.72 ± 0.16 0.35 ± 0.13 
External 0.78 ± 0.08 55.06 ± 19.49 0.82 ± 0.10 0.64 ± 0.12 

With external 
information3 

       

LBE 0.96 ± 0.02 11.76 ± 6.32 0.88 ± 0.05 0.94 ± 0.02 
QBE 0.99 ± 0.005 1.33 ± 0.62 0.99 ± 0.02 0.99 ± 0.004 
FBE >0.99 ± 0.002 0.49 ± 0.25 1.01 ± 0.01 >0.99 ± 0.002 
SBE >0.99 ± 0.001 0.19 ± 0.09 1.00 ± 0.01 >0.99 ± 0.001 

1All data are presented for external animals associated to external information integrated through a Bayesian 
evaluation. Reported results are averages and standard deviations over 100 replicates. 
2Internal = internal genetic evaluation; external = external genetic evaluation. 
3LBE = Bayesian evaluation following Legarra et al. (2007) and using external EBV and prediction error 
variances (PEV) associated with external sires obtained from the external evaluation. QBE = Bayesian 
evaluation following Quaas and Zhang (2006) and using external EBV and PEV associated with external 
sires obtained from the external evaluation. FBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used. SBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used and the double counting among external animals was avoided. 

 

First, concerning the 50 external animals, rank correlations between joint 

evaluation and the 4 Bayesian implementations increased at least by 43% to be >0.96. 

Therefore, the integration of external information led to an improved ranking of external 
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animals in the internal evaluation (i.e., more similar ranking compared with the ranking of 

the joint evaluation), which was expected, especially by Legarra et al. (2007) and Quaas 

and Zhang (2006). Concerning all the internal animals, even if rank correlations increased 

only by 4%, integrationof external information for external animals related to the internal 

population led to rank internal animals almost identically to their ranking obtained with 

the joint evaluation. 

 

Table III-3. Rank correlations (r) and mean squared errors (MSE) expressed as a 
percentage of the internal MSE between joint evaluation, and an internal evaluation and 4 
different Bayesian procedures, and regression coefficients (a), and coefficients of 
determination (R2) of the regression of the joint evaluation on the 6 other evaluations1 

Genetic evaluation    r  ± SD MSE ± SD  a ± SD   R2 ± SD 
Without external 
information 

       

Internal2 0.95 ± 0.02 100.00 ± 33.52 0.95 ± 0.03 0.91 ± 0.03 
With external 
information3 

          

LBE 0.99 ± 0.003 12.48 ± 6.27 0.98 ± 0.01 0.99 ± 0.01 
QBE >0.99 ± 0.000 1.36 ± 0.71 1.00 ± 0.004 >0.99 ± 0.001 
FBE >0.99 ± 0.000 0.79 ± 0.52 1.00 ± 0.003 >0.99 ± 0.000 
SBE >0.99 ± 0.000 0.26 ± 0.23 1.00 ± 0.002 >0.99 ± 0.000 

1All data are presented for internal animals associated to only internal information. Reported results are 
averages and standard deviations over 100 replicates. 
2Internal = internal genetic evaluation. 
3LBE = Bayesian evaluation following Legarra et al. (2007) and using external EBV and prediction error 
variances (PEV) associated with external sires obtained from the external evaluation. QBE = Bayesian 
evaluation following Quaas and Zhang (2006) and using external EBV and PEV associated with external 
sires obtained from the external evaluation. FBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used. SBE = Bayesian evaluation using external EBV and PEV 
associated with external sires obtained from the external evaluation where external EBV for all internal and 
external animals were predicted and used and the double counting among external animals was avoided. 
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Figure III-1. Examples from one randomly chosen simulation showing EBV of the 50 
external animals between joint evaluation and external and internal evaluations, Legarra-
type Bayesian evaluation (LBE; i.e., a Bayesian evaluation following Legarra et al. 
(2007) and using external EBV and prediction error variances (PEV) associated with 
external sires obtained from the external evaluation), Quaas-type Bayesian evaluation 
(QBE; i.e., a Bayesian evaluation following Quaas and Zhang (2006) and using external 
EBV and PEV associated with external sires obtained from the external evaluation), first 
version of modified Bayesian evaluation (FBE; i.e., a Bayesian evaluation using external 
EBV and PEV associated with external sires obtained from the external evaluation where 
external EBV for all internal and external animals were predicted and used), and second 
version of modified Bayesian evaluation (SBE; i.e., a Bayesian evaluation using external 
EBV and PEV associated with external sires obtained from the external evaluation where 
external EBV for all internal and external animals were predicted and used and the double 
counting among external animals was avoided). 

 

Second, according to the 4 estimated parameters r, MSE, a, and R2, the integration 

of external information for the 50 external animals led to better predictions of the joint 

evaluation through all Bayesian implementations for all 50 external animals as well as for 

all internal animals. However, whereas integrated external information was identical for 

the 4 Bayesian implementations, significant differences were found among the 4 Bayesian 

procedures concerning prediction accuracy for breeding values. Breeding value prediction 

compared with the reference method (i.e., the joint evaluation) was poorest for the LBE 
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method for the 50 external animals as well as for the internal animals. This can be 

explained by the approximation of the matrix D  by LBE. It approximates the latter matrix 

by a diagonal matrix in which diagonal elements are equal to PEV, ignoring prediction 

error covariances associated with every external evaluation. In contrast, the 4 parameters 

associated with FBE and SBE showed that integration of all relationships between the 50 

external animals and all the internal animals for the approximation of D  allowed the 

propagation of external information through the whole pedigree. Consequently, internal 

animals related to their external relatives were predicted better, too. This propagation is 

not possible in current methods based on selection index theory (VanRaden, 2001; 

Gengler and VanRaden, 2008), where information is combined on an animal-by-animal 

basis. Therefore, FBE and SBE have here a clear advantage compared with current 

methods. Furthermore, integration of all relationships allowed us to compute only one 

relationship matrix 1A −  that takes into account all relationships among internal and 

external animals, whereas QBE needs the computation of the matrix 1
EEA −  as well as the 

matrix 1A − . One can assume that numerically the setting up of 1A −  using the usual rules 

is easier and numerically more stable than computing 1
EEA −  for potentially several 

thousands of animals. 

Third, the 4 parameters showed that the SBE led to breeding values most similar 

to those estimated by the joint evaluation for the external animals. Values of R2, a, and r 

were close to 1 with only few variation among replicates (SD <0.001). Mean squared 

error was the lowest of the 4 Bayesian implementations and showed that the application 

of TSA avoided double counting among external animals. Outliers of breeding values for 

external animals were limited. For the internal animals, QBE, FBE, and SBE were similar 

following the 4 parameters. Nevertheless, MSE was the lowest for SBE and showed the 

importance of the double counting among external animals on internal animals. However, 

with regards to r, a, and R2 for the external and the internal animals estimated by FBE, 

double counting could be ignored if contributions due to relationships are low compared 

with contributions due to own records. If this is not the case, as for genomic information, 

TSA should be applied. 

Fourth, no assumption was made about the difference of the amount of 

information between external and internal information. An external animal could get 

more information from the internal than from the external data. Integration of external 

information led to better predictions for breeding values obtained by the joint evaluation. 
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Therefore, integration of external information seems to be important even if the amount is 

low. 

Finally, the developed methods could be used in different settings. Many 

situations exist where local (internal) evaluations would benefit from the integration of 

external information (e.g., Gengler and Vanderick, 2008). Because the developed 

methods can be used for multi-trait and other complex models, they allow the use of 

external information to improve the accuracy of evaluations for correlated, but only 

locally available traits as fine milk composition traits, such as free fatty acids, milk 

proteins, and other minor constituants (e.g., Gengler et al., 2010). In the context of 

genomic selection, integration of external genomic information into routine genetic 

evaluations could be done using the proposed methods after some adaptations (e.g., 

Gengler and Verkenne, 2007). Furthermore, as an anonymous reviewer reported, the 

matrix 1*G −
 is very similar to the inverse of the matrix H  used in the single-step genomic 

evaluations and included both pedigree-based relationships and differences between 

pedigree-based and genomic-based relationships (Aguilar et al., 2010; Christensen and 

Lund, 2010). In a different setting and after taking precautions to avoid double counting 

because of the use of the same data, regular genetic evaluation results from a larger 

population could also be used as external priors in gene effect discovery studies (e.g., 

Buske et al, 2010) or any other studies requiring accurate estimation of a polygenic effect 

jointly with marker, single nucleotide polymorphisms, or gene effects. 

CONCLUSIONS 

According to these results, rankings of animals were most similar to those of a 

joint evaluation after the integration of all relationships and the application of the TSA to 

avoid double counting among external animals through SBE. It proved that the TSA 

worked well, although the creation of the absorption matrix M  did not take into account 

the fixed effects considered in the external evaluation, which were unknown, but only one 

hypothetical unobserved fixed effect. The results based on our simulation showed that the 

Bayesian procedures FBE and QBE also worked well, with FBE having some 

computational advantages. Finally, with some adaptations and adjustments, FBE and SBE 

could be applied to integrate external information into routine genetic evaluations, SBE 

having additional advantages but being computationally more demanding. 
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APPENDIX III-1 

EQUIVALENCE OF MIXED MODEL EQUATIONS CONSIDERING THE ESTIMATION  OF BASE 

DIFFERENCES 

Assume that external information is available for both internal and external 

animals from a joint genetic evaluation of all internal and external animals based only on 

external data and that the vectors of the base differences between the internal genetic 

evaluation and the joint genetic evaluation are Eb̂  for the external animals and Ib̂  for the 

internal animals. Therefore, the Bayesian mixed model equations (III.1) can be written as 
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where IEZ  and IIZ  are the incidence matrices for the external and internal animals, 

respectively. 

Because 1
EE

1 GDΛ −− −= , 0G)(GGG IE1IIIIIE =− − , 1
EE

IE1IIEIEE GG)(GGG −− =−  

and E
IE1II

I uG)(Gu ˆˆ −−= , the development of the fourth equation leads 

to 0bUGUbΛ)U(GU)µu(DU' II
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EEE
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E =+++−− ˆˆ'ˆ , and the development of the 

fifth equation leads to EE
IE1II

II bUG)(GbU ˆˆ −−= . 

After absorption of the fifth equation, the vector Eb̂  is estimated as 
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EE µDµGΛ)µ(G −=++ . The equivalent mixed model equations can be written 
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as: 





















+

=









































+
++

−

−

−−

−

−−

−−

−−−

−−−

E
1

E

I
1

III

E
1

I
1

IIE

I
1

II

E

I

E

I

E
1

E
1

E

II
II

1
III

IE
I

1
III

E
1EIEE

IE
1

IIEI
1

IIE

II
1

IIIE
1

III
1

II

µDU'

yRZ'

µDyRZ'

yRX'

b

u

u

β

UDU'0DU'0

0GZRZ'GXRZ'

UDGΛGZRZ'XRZ'

0ZRX'ZRX'XRX'

ˆ
ˆ

ˆ

ˆ

.

 

ELIMINATION OF BASE DIFFERENCE EQUATIONS IN FBE AND SBE 

The derivation is based on the estimation of bUu ˆˆ + instead of û  and b̂ separately. 

The associated mixed model equations can be obtained through a few steps. First, using 

some rearrangements, the development according to the first, second and third lines of the 

Bayesian mixed model equations (III.1) leads to, respectively: 
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Therefore, solutions for bUu ˆˆ +  and b̂can be obtained by solving jointly (A3-4) 

and (A3-5): 
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( )uµGUbUGU 0
1*1* ˆ'ˆ' −= −−  (A3-5) 

If all the animals contribute to the base differences, then U  represents a summing 

matrix and b̂  the vector of weighted average base differences between 0µ and û . Given 

this, bUˆ  represents a vector of constants added to each EBV and bUZ I
ˆ represents a 

vector of constants added to each record. Therefore, the following reparameterization can 

be used: bUuu ˆˆˆ * += . 

Furthermore, adding the same constants to each EBV will not change the rankings, 

and rankings will be thereby invariant to the used constants. The constants added to the 

records will also only change estimates of fixed effects. Those different estimates of fixed 

effects will have no effect on animal rankings because all animals are affected by the 
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same constant. For these reasons, (A3-4) can be rewritten as follows: 
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where *ˆ
Iβ represents the new fixed effects computed by ignoring the constant in the 

records. 

TSA 

The estimation of RE independent from contributions due to relationships or 

correlated traits is performed by the following TSA; the TSA must be repeated for each 

trait. 

The first step of the TSA is solved iteratively as follows: 

1) For each animal i, [ ]
ijRE

ii
=0

1H , 

where 1H  is a diagonal matrix with RE of each external animal i based on the 

external PEV for the jth trait. 

2) [ ] [ ]0
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1
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3) k=1. 
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1−*A  is the inverse of the relationship matrix that accounts for the 

relationships between external animals and their ancestors and 
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λ =  for with 

2

jeσ  and 2

juσ  are the error variance and the genetic variance for the jth trait, 

respectively. 

5) [ ] [ ]( )( )( ) λIPH kk
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diagdiag . 
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7) If [ ]kS  is not sufficient small, perform for each animal i: 

a) [ ] [ ] [ ]kk
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1 SQQ +=+

iiii . 
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b) If any diagonal element in [ ]1k
1Q +  is negative, set it to 0. 

c) k=k+1. 

d) Repeat from 4). 

8) For each animal i, perform: 

a) 1=iX  if [ ] 0≠k
1Q ii . 

b) 0=iX  if [ ] 0=k
1Q ii . 

9) ( ) X'XX'XXM d
1−−= , 

where the matrix M  is the absorption matrix based on the contributions due to own 

records. 

The second step of the TSA is solved iteratively as follows: 

1) For each animal i, [ ]
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a) [ ] [ ] [ ]kk
2

1k
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iiii . 

b) If any diagonal element in [ ]1kQ +  is negative, set it to 0. 

c) [ ] [ ] [ ]1k
2

111k
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2 QMMM*QQ +−−++ = jjjjijiiiiij *** . 

d) k=k+1. 

e) Repeat from 4). 

8) If [ ]1k
2Q + and [ ]k

2Q  are close enough, perform for each animal i,  
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[ ] 11k
2

*
j M*QRE −+= iiiiii

, 

where *
jRE  is a diagonal matrix with diagonal elements equal to RE only due 

to own records for the jth trait. 



 

 

Chapter IV. A N INTEGRATION OF EXTERNAL INFORMATION FOR 

FOREIGN STALLIONS INTO THE BELGIAN GENETIC EVALUATION 

FOR JUMPING HORSES 

 

 

 

 

The previous Chapter proposed a Bayesian procedure to integrate 

external information into a genetic evaluation considering 

computational burden and double counting of contributions due to 

relationships among external animals. However, this procedure 

was tested only on simulated data. Therefore, the objective of this 

Chapter was to apply the proposed Bayesian procedure to 

integrate external information provided by France and the 

Netherlands for foreign stallions into the Belgian genetic 

evaluation for show jumping horses. 

 

 

 

 

 

 

 

 

 

 

 

From: Vandenplas, J., S. Janssens, N. Buys, and N. Gengler. 2013. An integration of 

external information for foreign stallions into the Belgian genetic evaluation for 

jumping horses. J. Anim. Breed. Genet. 130:209–217. (Used by permission of the 

Journal of Animal Breeding and Genetics) 
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SUMMARY 

The aim of this study was to test the integration of external information, i.e. 

foreign estimated breeding values (EBV) and the associated reliabilities (REL), for 

stallions into the Belgian genetic evaluation for jumping horses. The Belgian model is a 

bivariate repeatability Best Linear Unbiased Prediction animal model only based on 

Belgian performances, while Belgian breeders import horses from neighbouring 

countries. Hence, use of external information is needed as prior to achieve more accurate 

EBV. Pedigree and performance data contained 101 382 horses and 712 212 

performances, respectively. After conversion to the Belgian trait, external information of 

98 French and 67 Dutch stallions was integrated into the Belgian evaluation. Resulting 

Belgian rankings of the foreign stallions were more similar to foreign rankings according 

to the increase of the rank correlations of at least 12%. REL of their EBV were improved 

of at least 2% on average. External information was partially to totally equivalent to 4 

years of contemporary horses’ performances or to all the stallions’ own performances. All 

these results showed the interest to integrate external information into the Belgian 

evaluation. 

Key words: Bayesian approach, external information, integration, jumping horses 

INTRODUCTION 

The Belgian sport horse population is situated at the crossroads of different sport 

horse populations, which leads to a mix of the European genes. Artificial insemination 

facilitates the use of foreign stallions since the 1980s. For these reasons, Belgium seems 

to be one of the centres for European sport horse breeding (Ruhlmann et al., 2009a). 

Three Belgian studbooks of warmblood horses are involved, that is the Belgian 

Warmblood Horse Studbook (BWP), the Royal Belgian Sports Horse Society (sBs) and 

the Studbook Zangersheide. For all three, the improvement in the performances in show 

jumping is an important breeding objective (Koenen et al., 2004). 

Since 1998, a genetic evaluation for show jumping horses is implemented in 

Belgium, and as in most other European countries, the estimated breeding values (EBV) 

are based on national information only (Koenen and Aldridge, 2002; Janssens et al., 

2007), whereas the Belgian sport horse population is clearly linked with other foreign 

studbooks. This may lead to a limited reliability (REL) of EBV for horses with few 

Belgian records and to inappropriate breeders’ choices of a stallion on the international 
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scene. Similar issues exist in other countries as sport horse breeding is very international. 

Based on experiences in dairy cattle breeding, for which ‘Interbull’ (Uppsala, Sweden) 

provides sire EBV for dairy cattle from different countries, an international group of 

scientists and breeding organizations, called ‘Interstallion’, was created in 1998 to 

achieve reliable breeding values across countries for sport horse stallions. Within the 

framework of this group, Ruhlmann et al. (2009b) concluded that an international 

evaluation of jumping horses is feasible. However, such an international genetic 

evaluation combining all information sources is not yet available, and one option is to 

integrate external information into the local genetic evaluation. Different theoretical 

approaches exist to do this. In the case of multibreed genetic evaluations for beef cattle, 

Klei et al. (1996) proposed a Bayesian approach where external information is considered 

as prior information for the local evaluation. Two different Bayesian derivations were 

proposed by Quaas and Zhang (2006) and Legarra et al. (2007). Recently, Vandenplas 

and Gengler (2012) proposed some improvements to these methods, especially to take 

into account the double counting among related external animals. However, some issues 

arise before the implementation of a Bayesian procedure, like the independence of the 

external evaluations from the internal one or the similarities between the external and 

internal evaluated traits (Gengler and Vanderick, 2008). 

The first aim of this study was to apply a Bayesian approach to integrate external 

information, i.e., foreign EBV and their associated REL, for stallions into the Belgian 

genetic evaluation of show jumping horses, and the second aim was to test the model 

adequacy and the predictive ability of the applied method. 

MATERIALS AND METHODS  

Performance data on show jumping were provided by the horse riding 

organization for national level competitions, the Royal Belgian Federation for Equestrian 

Sports (KBRSF), and by the horse riding organization for recreational level competitions, 

the Rural Riding Association (LRV). The available performance data (data I) included 

710 212 performances from 44 755 competitive horses during the period 1991–2009. 

Performances in show jumping consisted of ranking of horses participating in show 

jumping competitions converted into normalized score by a Blom’s approximation 

(Janssens et al., 2007). These performances were also considered as two traits in terms of 

competition levels, that is the KBRSF level and the LRV level. The KBRSF level was 

considered as the Belgian breeding goal trait (hereafter called Belgian trait). The pedigree 
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file, a combination of pedigree records provided by sBs and BWP, included 101 382 

registered horses. The following bivariate repeatability Best Linear Unbiased Prediction 

(BLUP) animal model was applied to perform the Belgian genetic evaluation (evaluation 

A; Janssens et al. 1997, 2007): 

eZpZuXβy +++=  (IV.1) 

where y  was the vector of performances, β  was the vector of fixed effects, u  was the 

vector of random additive genetic effects, p  was the vector of random permanent 

environmental effects and e was the vector of residuals. X  and Z  were incidence 

matrices relating performances to fixed effects and to random effects, respectively. 

Fixed effects were the age of the participating horse, its sex and the show jumping 

event organized by the KBRSF or by the LRV in which it participated. Variance 

components for the random permanent environmental and genetic effects used for this 

study were those estimated by Janssens et al. (1997). Heritability was equal to 0.10 for 

performances at the KBRSF level (i.e. the Belgian trait) and to 0.11 for performances at 

the LRV level. Genetic correlation between these two traits was equal to 0.63. 

Despite the fact that two traits are evaluated, only breeding values for 

performances in KBRSF level estimated using both performances in KBRSF level and 

LRV level (i.e. EBV estimated by the evaluation A for the Belgian trait; EBVA) of 

stallions approved by BWP and/or sBs are published on a standardized scale following 

the recommendations of ‘Interstallion’ (Interstallion, 2005; Janssens and Buys, 2008). 

Reliabilities of EBVA based on data I (EBVAI; RELAI; Table IV-1) were computed 

using the equation: 

21 gPEV/σREL −=  (IV.2) 

where 2
gσ  is the genetic variance for the Belgian trait and PEV  is the prediction error 

variance obtained from the diagonal element of the inverted left hand side of the mixed 

model equations (IV.1). 

Available external information consisted of external EBV (EBVE) and their 

associated external REL (RELE) for stallions approved by BWP having a published 

Belgian index, born after 1978 and originally registered in a Dutch or a French studbook. 

External information on 98 French stallions and 67 Dutch stallions was provided by the 

Station de Génétique Quantitative et Appliquée, Institut National de la Recherche 

Agronomique (France) and the Royal Dutch Sport Horse (the Netherlands), respectively. 

However, because EBVE were not the same trait and not expressed on the same scale as 
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the Belgian trait, precorrections were needed before its integration into the Belgian 

genetic evaluation. 

 

Table IV-1. Performed genetic evaluations, estimated breeding values (EBV) and 
reliabilities (REL) 

 Datasets2  Genetic 
evaluation1 I II III  

A 
Evaluation AI, EBVAI, 

RELAI 
Evaluation AII, EBVAII , 

RELAII  
Evaluation AIII, EBVAIII , 

RELAIII  

B 
Evaluation BI, EBVBI, 

RELBI 
Evaluation BII, EBVBII, 

RELBII 
Evaluation BIII, EBVBIII , 

RELBIII 
1A = Belgian genetic evaluation; B = Bayesian evaluation. 
2I = complete data; II = data for which all performances after 31 December 2005 were assumed to be 
missing; III = data for which all the French and Dutch stallions’ own performances were assumed to be 
missing. 

 

First, EBVE were converted to the Belgian trait and scale of the year 2009 for both 

countries. This conversion was performed separately for Dutch and French stallions 

following the method detailed by Goddard (1985) that regressed previously deregressed 

internal EBV on external EBV. The 2 samples to estimate conversion equations for the 

Dutch and French stallions included all Dutch stallions (i.e., 47) and French stallions (i.e., 

93) having both an EBVAI and an EBVE, respectively. REL of the converted EBV (RELc) 

were estimated from all the RELE provided by France and by the Netherlands following 

the method detailed by Goddard (1985) that took into account the error in estimating the 

true regression equation and the variance of the converted EBV (EBVc) about the true 

regression equation. External information with a RELc lower than 0.01 was set to missing. 

It is noted that genetic correlation coefficients for traits between Belgium and the 

exporting countries were needed for the conversion following Goddard (1985). Because 

no genetic correlation coefficient was available for the pair Belgium/the Netherlands 

(Ruhlmann et al., 2009b), the genetic correlation coefficients for traits were approximated 

by the Pearson correlation coefficient between Dutch EBVE and EBVAI estimated for the 

Dutch stallions for the pair Belgium/the Netherlands and by the Pearson correlation 

coefficient between French EBVE and EBVAI estimated for the French stallions for the 

pair Belgium/France. Second, EBVE had to be free from internal information to avoid 

double counting between external and internal information (Gengler and Vanderick, 

2008). The literature review of Koenen (2002) and van Veldhuizen (1997) for the Dutch 

genetic evaluation and of Tavernier (1991) and Ricard (1997) for the French genetic 

evaluation showed that France and the Netherlands never use the same phenotypic 
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information (i.e., same show jumping competitions) as Belgium for their respective 

genetic evaluations for show jumping. Following the literature, this second condition 

seemed to be respected. Third, as external information was associated with related 

stallions, double counting of information among related external stallions could exist. 

Therefore, the integration of external information was performed following the second 

version of modified Bayesian evaluation detailed by Vandenplas and Gengler (2012). 

This approach allows simplifications of the computational burden and takes into account 

double counting among related animals thanks to the estimation of the contributions due 

to relationships. These contributions were estimated by a two-step algorithm taken into 

account all relationships between the foreign stallions and their ancestors. 

The equations system of the Belgian model (IV.1) integrating external information 

(evaluation B) can be written as: 
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 (IV.3) 

where R  was the residual (co)variance matrix, P  was the (co)variance matrix for the 

permanent environment, 0µ  was the vector of EBVc and *G  was the matrix of prediction 

error (co)variances of EBVc.  

Because the second version of modified Bayesian evaluation (Vandenplas and 

Gengler, 2012) was applied, the inverse of *G  was equal to ΛGG 11* += −− where the 

matrix 1G −  is the inverse of the additive genetic (co)variances matrix and the matrix Λ  

was a block diagonal variance matrix with one block diagonals per horse. For the N 

stallions associatied to external information, the different block diagonals were equal to 

i
1

0i ∆G∆ −  for i = 1, …, N. The matrix 0G  was the matrix of genetic (co)variances among 

traits and i∆  was a diagonal matrix with elements equal to 
2

2

j

j

e

u

ij
σ

σ

*RE  for j = 1, 2 traits 

where 2

jeσ  was the error variance of this jth trait, 2

juσ  was the genetic variance for the jth 

trait, and ijRE  was equal to the value of records equivalents (RE) only due to own 

records for the jth trait. RE were estimated thanks to the algorithm taking into account 

double counting among related animals (Vandenplas and Gengler, 2012). 

To approximate REL of breeding values estimated by the evaluation B based on 

data I for the Belgian trait (EBVBI; RELBI), the following procedure was applied. First, for 
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each stallion that had external information, one virtual performance was added to the 

performance data and weighted by the value of RE independent from contributions due to 

relationships. The weight for the real performances in the performance data was equal to 

1. An additional level for each fixed effect of the Belgian genetic evaluation was created 

and assigned to the virtual performances to ensure that they had no influence on the 

genetic evaluation. PEV were estimated by the inversion of the left hand side of the 

mixed model equations, and RELBI were calculated using the equation (IV.2). All the 

genetic evaluations and computations of PEV were performed using the BLUPF90 

program family (Misztal, 2012) modified to integrate external information by taking into 

account double counting among related animals. 

Descriptive statistics were computed to characterize integrated external 

information and its influence on the ranking of the horses. With regard to RELE, RELc 

and RE, mean and standard deviations (SD) as well as the number of foreign stallions 

associated with a non-zero RELE, a non-zero RELc and non-zero RE were described. 

Pearson correlation coefficients between EBVAI and EBVE and the coefficients of 

determination of the conversion equations for the Dutch and French stallions were also 

computed, as well as Spearman rank correlation coefficients among EBVAI, EBVBI and 

EBVE, for all the horses, for the French stallions, for the Dutch stallions and for the 100 

best stallions. This latter group included the 100 best-ranked stallions following the 

evaluation AI, born after 1979 and associated with a RELAI equal or higher than 0.75. The 

model adequacy was tested by the comparison of accuracy and precision of the 

evaluations AI and BI through comparisons of mean bias (MB), mean squared error of 

prediction (MSEP) and Pearson correlation coefficients between observed and estimated 

performances associated with the Belgian trait (ŷy:r ; Tedeschi, 2006). Considering all the 

horses, MB and MSEP were expressed as a percentage of the average performance of all 

the performances. Considering the 100 best stallions, the Dutch and French stallions, MB 

and MSEP were expressed as a percentage of the average performance of their 

performances, respectively. 

To test the predictive ability of the applied method, subsets II and III were created 

and evaluations A and B were performed based on these two subsets (i.e., evaluations 

AII, AIII, BII and BIII). Resulting EBV for the Belgian trait are called EBVAI, EBVAII , 

EBVAIII , EBVBI, EBVBII and EBVBIII  (Table IV-1). Subset II consisted of all performances 

before 31 December 2005 included. All other performances were assumed to be missing 
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(i.e., 34.5% of all the performances). It simulated the predictive ability of the method 

routinely applied. Subset III consisted of the complete data except for all French and 

Dutch stallions’ own performances assumed to be missing (i.e., 0.27% of all the 

performances). It simulated the predictive ability of the method applied for stallions with 

no own Belgian performances. REL of EBVAII , EBVAIII , EBVBII and EBVBIII  (RELAII , 

RELAIII , RELBII and RELBIII , respectively) were approximated as described previously for 

evaluations A and B. Pearson correlation coefficients (rII) between EBVAI and EBVAII , 

and EBVBI and EBVBII, as well as Pearson correlation coefficients (rIII) between EBVAI 

and EBVAIII , and EBVBI and EBVBIII , were estimated. Furthermore, variances of the 

differences (VARII) between EBVAI and EBVAII , and EBVBI and EBVBII, as well as 

variances of the differences (VARIII) between EBVAI and EBVAIII , and EBVBI and 

EBVBIII , were also estimated. rII, rIII , VARII and VARIII  were estimated for all the horses 

included in the genetic evaluations, for the 100 best stallions and for the French and 

Dutch stallions. 

Means and SD of RELAI, RELAII , RELAIII , RELBI, RELBII and RELBIII  were 

computed for all horses, for the French stallions and for the Dutch stallions. 

RESULTS AND DISCUSSION  

DESCRIPTIVE STATISTICS 

Among the 98 French and 67 Dutch stallions associated with external information, 

only 97 French and 54 Dutch stallions had a non-zero RELc. Furthermore, RELc 

decreased at least by 57% compared with RELE (Table IV-2). This decrease was expected 

because, first, the coefficients of determination of the conversion equations and, second, 

the Pearson correlation coefficients between EBVAI and EBVE in the conversion 

equations were low to moderate (Table IV-2). Powell et al. (1994) surveyed different 

countries to determine expressions of RELc associated with EBVc in the context of dairy 

cattle. Several countries considered that RELc were equal to RELE. However, because 

RELc must be integrated into a genetic evaluation, the variances of the sample regression 

equations must be taken into account as it was detailed by Goddard (1985). Therefore, 

lower variances of the sample regression equations and higher coefficients of 

determination, that is more accurate conversion equations, would be desirable to estimate 

reliable EBVc (i.e., to obtain higher RELc). Restrictions on data used for the comparisons 

of genetic evaluations between countries were formulated to improve the accuracy of 
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conversions methods (e.g., Powell and Sieber, 1992; Powell et al., 1994). However, 

owing to the low number of foreign stallions having both an EBVAI and an EBVE (i.e., 93 

French stallions and 47 Dutch stallions) and the low average reliabilities associated with 

EBVAI and EBVE, most of the recommended restrictions could not be respected. 

Furthermore, the use of the Pearson correlation coefficients between EBVAI and EBVE for 

the French stallions and for the Dutch stallions led to an underestimation of RELc because 

Calo et al. (1973) showed that genetic correlation coefficients for traits were higher than 

the corresponding Pearson correlation coefficients. This can be confirmed for the pair 

Belgium/France for which the genetic correlation coefficient was previously estimated 

between 0.76 and 0.88 (Ruhlmann et al., 2009b), while the Pearson correlation coefficient 

was equal to only 0.71 (Table IV-2). Therefore, it would be interesting to have estimates 

of the genetic correlation coefficients for the missing pair Belgium/the Netherlands 

because imprecise estimates of genetic correlation coefficients could lead to inexact RELc 

(Calo et al., 1973; Powell et al., 1994). 

 

Table IV-2. Coefficients of determination (R2) of the conversion equations and Pearson 
correlation coefficients (r) between internal and external estimated breeding values. 
Means and standard deviations (SD) of nonzero external reliabilities (RELE), non-zero 
reliabilities of a converted estimated breeding value (RELc) and non-zero record 
equivalents free of contributions due to relationships (RE) as well as the number of 
foreign stallions (Nb) associated with non-zero RELE, RELc and RE 

 French stallions Dutch stallions 
R2 0.46 0.28 
r 0.71 0.59 
RELE   
 Nb 98 67 

Mean 0.59 0.42 
SD 0.19 0.18 

RELc   
 Nb 97 54 

Mean 0.27 0.07 
SD 0.10 0.06 

RE   
Nb 97 50 
Mean 2.75 0.51 
SD 1.44 0.52 

 

As shown before, RELE and the accuracy of the conversion equations have an 

effect on RELc, but also on the improvement of the genetic evaluation. Indeed, a 

simplified system of mixed model equations ( rCs = ) integrating external information 

(i.e., prior information) can be written as: 
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( ) µVrsVC 11 −− +=+   (IV.4) 

where C , r  and s are the left hand side, the right hand side and the vector of solutions of 

the mixed model equations, respectively, µ  is the vector of mean prior information and 

V  is the prior variance matrix. 

On the one hand, in the case of highly accurate prior information (i.e., in this case, 

high RELc needed high RELE and accurate conversion equations), the value of V  will be 

close to zero, 1V −  will be large and, therefore, the equations system (IV.4) will tend to 

µVsV 11 −− =  and the estimate of s to µs ≈ˆ . On the other hand, in the case of low 

accurate prior information, (i.e., in this case, low RELc estimated from low RELE and/or 

poorly accurate conversion equations), the prior information is non informative, the value 

of V  will be large, 1V −  will tend to zero and, therefore, the equations system (IV.4) will 

tend to rCs =  and the estimate of s to rCs 1−≈ˆ , similarly to a system which do not 

integrate prior information. Between these two extreme cases, ŝ can be considered as a 

weighted average of the combination of data and prior information (Klei et al., 1996). 

With regard to RE (Table IV-2), the number for each stallion was a function of 

RELc and of the relationships with other stallions. The low number of RE can be 

explained by the low-to-moderate RELc but also by the low-to-moderate coefficients of 

determination of the conversion equations and Pearson correlation coefficients between 

EBVAI and EBVE. Furthermore, 4 Dutch stallions that were highly related to other ones 

were associated with RE equal to 0 after estimation of contributions due to relationships, 

while this was not the case for the French stallions. Hence, considering contributions due 

to relationships seems necessary to avoid double counting of external information. 

Concerning the rankings of the horses, the rank correlation between EBVAI and 

EBVBI for all horses (Table IV-3) showed that the integration of external information for 

foreign stallions into the Belgian genetic evaluation influenced very slightly the ranking 

of the whole population. These modifications can be explained by the animal model: all 

the relationships between the foreign stallions and other horses were taken into account. 

These relationships caused an effect of foreign information on related horses through the 

foreign stallions. However, these modifications were small because external information 

was integrated only for about 0.2% of the horses. Concerning the foreign stallions, the 

integration of external information led to a change of their rankings according to the rank 

correlations between EBVE and EBVAI or EBVBI (Table IV-3). The Belgian ranking of 
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the foreign stallions was more similar to the ranking in their country of birth when the 

external information was integrated, as expected and shown by Quaas and Zhang (2006). 

However, because average quantity of French information was higher in terms of RE than 

the Dutch information (Table IV-2), the increase in the rank correlation coefficients 

between EBVE and EBVAI and between EBVE and EBVBI for the French stallions was 

higher than the corresponding increase for the Dutch ones, as according to the theory 

(Zhang et al., 2002; Legarra et al., 2007). Finally, because the Belgian ranking of foreign 

horses was more similar to the ranking in their country of birth and because 24 foreign 

stallions were considered in the group of the 100 best stallions, the rank correlation 

between EBVAI and EBVBI for the best stallions (Table IV-3) showed a change in their 

ranking of 2%. The reranking was mainly due to the reranking of the foreign stallions, but 

also due to the reranking of foreign stallions’ relatives. The best stallions associated with 

external information gained four ranks on average in the ranking of the 100 best stallions, 

and a gain of 23 ranks was the largest reranking for a foreign best stallion. Integration of 

external information also led to a gain of 18 ranks for a stallion not associated with 

external information but related to several foreign stallions. 

 

Table IV-3. Spearman rank correlation coefficients between breeding values (EBV) 
estimated by the Belgian genetic evaluation based on the complete data I (EBVAI) and 
EBV estimated by a Bayesian1 evaluation based on data I (EBVBI), Spearman rank 
correlation coefficients between EBVAI and external EBV (EBVE), and Spearman rank 
correlation coefficients between EBVBI and EBVE for all horses, for the 100 best stallions, 
for the French stallions and for the Dutch stallions 

Spearman rank correlations 
Group of horses Nb 

EBVAI /EBVBI EBVAI /EBVE EBVBI /EBVE 

All horses 101 382 >0.99 - - 

Best stallions 100 0.98 - - 
French stallions 98 0.87 0.69 0.90 
Dutch stallions 67 0.95 0.61 0.73 
1Bayesian: Belgian genetic evaluation integrating external information by a Bayesian approach. 
 

MODEL ADEQUACY  

Considering all horses, as well as the best stallions, the comparison of MB, MSEP 

and ŷ:yr  did not show a reduction in the level of precision and accuracy of the Belgian 

model when external information was included because MB were close to 0% and MSEP 

were equal for the two genetic evaluations. Similar values were also estimated for ŷ:yr  
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associated with the evaluations AI and BI (Table IV-4). 

With regard to the French stallions, the bias of 1.32% for the evaluation AI was 

reduced when external information was integrated (Table IV-4). However, it was not 

confirmed by the associated MSEP, and thereby, the adequacy of the model for the 

French stallions was not improved, but also not diminished, by the integration of external 

information. 

With regard to the Dutch stallions, it seems that the integration of Dutch 

information improved the adequacy of the model for their genetic evaluation because MB 

and MSEP of the evaluation BI were slightly lower than MB and MSEP of the evaluation 

AI (Table IV-4). Furthermore, ŷ:yr  of the evaluation BI was slightly higher than the one of 

the evaluation AI. 

Finally, the integration of external information did not diminish the adequacy of 

the Belgian model for all horses, for the best stallions and for foreign stallions. However, 

owing to the low amount of external information (only for about 0.2% of the horses) and 

to the low average RELE, the model adequacy was not improved or only weakly for the 

Dutch stallions. 

 

Table IV-4. Number of performances (Nb) associated with the Belgian trait for all horses, 
the 100 best stallions, the French stallions and the Dutch stallions. Mean bias (MB), mean 
squared errors of prediction (MSEP) and Pearson correlation coefficients between 
observed and estimated performances (ŷ:yr ) for the evaluation AI1 and the evaluation BI2 

applying all the performances, performances associated with the 100 best stallions, 
French performances and Dutch performances for the Belgian trait. MB and MSEP are 
expressed as a percentage of the average performance of all the performances and 
performances associated with the 100 best stallions, the French and Dutch stallions, 
respectively 

 All horses Best stallions French stallions Dutch stallions 
 AI BI AI BI AI BI AI BI  
Nb 350 907 2749 1322 414 
MB 2.00e-3 -4.00e-8 0.06 0.06 1.32 1.06 1.49 1.36 
MSEP 2.74 2.74 0.67 0.67 2.26 2.26 2.38 2.37 

ŷ:yr  0.50 0.50 0.26 0.26 0.36 0.36 0.49 0.50 
1Belgian genetic evaluation based on the complete data I. 
2Bayesian evaluation based on the complete data I. 

 

PREDICTIVE ABILITY  

Considering all horses, the evaluation BII had a similar or slightly worse 

predictive ability than the evaluation AII according to rII and VARII (Table IV-5). This 
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low difference between predictive abilities was expected because external information 

was integrated into the evaluation for only 165 foreign stallions, whereas 44 755 horses 

have performances among the 101 382 horses in the pedigree. However, if the evaluations 

were based on subset III, i.e., if only performances of the foreign stallions were assumed 

to be missing, there was a slight advantage for the evaluation B, especially in terms of 

VAR II. Furthermore, rIII  close to 1 can be explained by the fact that only 0.27% of all the 

performances were assigned to missing values in subset III (Table IV-5), hence their 

limited overall influence. 

 

Table IV-5. Pearson correlation coefficients (rII) and variances of differences (VARII) 
between EBVAI

1 and EBVAII , and EBVBI and EBVBII, and Pearson correlation coefficients 
(rIII) and variances of differences (VARIII) between EBVAI and EBVAIII , and EBVBI and 
EBVBIII  for all horses, for the 100 best stallions, for the French stallions and the Dutch 
stallions 

Datasets 
I-II I-III  Group of horses Genetic evaluation 

rII VARII (x 10-3) rIII  VARIII  (x 10-3) 
A 0.89 4.49 >0.99 0.10 

All horses 
B 0.89 4.58 >0.99 0.06 
A 0.80 9.34 0.98 1.18 

Best stallions 
B 0.82 10.24 0.99 1.02 
A 0.96 3.37 0.89 8.05 

French stallions 
B 0.99 2.23 0.98 3.48 
A 0.93 7.12 0.95 5.73 

Dutch stallions 
B 0.95 6.58 0.97 4.31 

1EBVij: Estimated breeding values where i refers to the type of the genetic evaluation (i.e. A = Belgian 
genetic evaluation and B = Bayesian evaluation) and j refers to the used data (i.e. I = complete data, II = 
data for which all performances after 31 December 2005 were assumed to be missing, and III = data for 
which all French and Dutch stallions’ own performances were assumed to be missing). 

 

Considering the French stallions, rII, VARII, rIII  and VARIII  showed that the 

predictive ability of breeding values was improved when French information was 

integrated (Table IV-5). The high rII (0.96) between EBVAI and EBVAII  also showed that 

performances after 2005 influenced less the genetic evaluation of the French stallions 

compared with the genetic evaluation for all horses. It can be explained by the facts that 

the French stallions had few performances after 2005 and few relationships with Belgian 

horses competing after 2005. Regarding the evaluations based on the subset III, there 

were an increase of rIII  around 10% and a reduction of VARIII  of 57% for the evaluations 

B in comparison with rIII  and VARIII  of the evaluations A, respectively. Following these 
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results, integrated external information was almost equivalent to the French stallions’ own 

performances. These results suggest that the integration of external information could be 

very interesting in the case of imported stallions having no or few own Belgian 

performances (e.g., young imported stallions or confirmed foreign stallions imported 

through their semen). 

Considering the Dutch stallions, the lower rII and higher VARII compared with the 

rIII  and VARIII , respectively, for the evaluations A led to higher influence of performances 

recorded after 2005 for their genetic evaluation compared with their own records (Table 

IV-5). The low number of Dutch stallions with performances, that is <60% of the Dutch 

stallions, can explain this observation. This is also explained by the high rIII  between 

EBVAI and EBVAIII  (0.95). However, following rIII  and VARIII  (Table IV-5), the predictive 

ability was improved when external information was integrated into the evaluation based 

on the subset III. Regarding the evaluations based on the subset II, the increase in rII and 

the slight improvement in VARII also confirmed the improvement in the predictive ability 

when Dutch information was integrated into the Belgian genetic evaluation. 

RELIABILITIES  

Means and SD of REL were calculated for all the genetic evaluations (Table IV-6). 

All the genetic evaluations had a minimum and a maximum REL equal to 0.00 and 0.99, 

respectively. As expected since external information was only integrated for 165 stallions, 

the integration of external information did not influence on average the genetic evaluation 

for all the horses. 

It is noted that the accuracy of the procedure applied to estimate RELBI, RELBII 

and RELBIII  depended on the accuracy of RELc and therefore on accuracies of the 

conversion equations and of the genetic correlation coefficients for traits between 

Belgium and the exporting countries. Because the genetic correlation coefficient was 

unknown for the pair Belgium/the Netherlands, they were estimated from EBVAI and 

EBVE of the foreign stallions and errors linked with the estimation of RELc were also 

introduced into the estimation of REL associated with EBVB. Again, these errors show 

the need to estimate genetic correlation coefficients for traits between countries to 

perform an unbiased genetic evaluation. 
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Table IV-6. Means and standard deviations (SD) of reliabilities (REL)AI
1, RELAII , 

RELAIII , RELBI, RELBII and RELBIII  for all horses, for the French stallions and for the 
Dutch stallions 

 Datasets  

I II III  Group of horses Genetic evaluation 

Mean SD Mean SD Mean SD 
A 0.21 0.17 0.17 0.16 0.21 0.17 

All horses 
B 0.21 0.17 0.17 0.16 0.21 0.17 
A 0.58 0.23 0.54 0.24 0.52 0.26 

French stallions 
B 0.61 0.20 0.58 0.20 0.57 0.21 
A 0.51 0.26 0.46 0.26 0.47 0.27 

Dutch stallions 
B 0.52 0.25 0.47 0.25 0.49 0.26 

1RELij: Reliabilities of estimated breeding values where i refers to the type of genetic evaluation (i.e. A = 
Belgian genetic evaluation and B = Bayesian evaluation) and j refers to the used data (i.e. I = complete data, 
II = data for which all performances after 31 December 2005 were assumed to be missing, and III = data for 
which all French and Dutch stallions’ own performances were assumed to be missing). 

 

Regarding to the Dutch and French stallions, the average RELBI were improved 

compared with the average RELAI. Additionally to the influence of the imprecision 

because of accuracy of regression equations and of the unknown genetic correlations as 

explained previously, the improvement in average REL also depended on the range of 

RELc and thereby on the range of RELE. Zhang et al. (2002) also concluded that the 

amount of improvement depends on RELE for a simulation for beef cattle. 

For the particular case of the French stallions, the integration of external 

information led to an increase (5%) of the average REL for the genetic evaluations based 

on data I (Table IV-6). Then, the average RELA decreased when performances were 

assumed to be missing, as it was expected. This reduction was higher for RELAIII . The 

own performances were more informative for the French stallions than the contemporary 

horses’ performances recorded after 2005, as already observed. Nevertheless, the 

integration of French information led to an average RELBII and RELBIII  equal or close to 

the average RELAI. So, external information was on average at least equivalent to the 

Belgian performances related to these stallions. 

Regarding to the Dutch stallions, average RELAII  and RELAIII  confirmed the 

higher influence of performances after 2005 for their genetic evaluation compared with 

their own performances (Table IV-6). Furthermore, average RELBII and RELBIII  compared 

with average RELAI showed that the integration of Dutch information was not totally 

equivalent to the missing information, despite it was not insignificant in each case. 

Indeed, there was an increase of the average REL of at least 2% when Dutch information 

was integrated into the Belgian evaluation. 
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CONCLUSION 

According to these results, external information, that is foreign EBV and their 

associated REL, for French and Dutch stallions was partially to totally equivalent to 4 

years of contemporary horses’ performances or to their own performances in show 

jumping. Its integration did not diminish the adequacy of the Belgian model for all horses, 

as well as for foreign stallions. It also improved the predictive ability and the accuracy of 

EBV for the foreign stallions. The resulting Belgian ranking of the foreign stallions was 

more similar to their foreign ranking according to their country of birth, according to the 

Spearman rank correlations. All these results showed the interest to integrate external 

information into the Belgian genetic evaluation for show jumping, especially for imported 

stallions having no or few Belgian performances (e.g., young imported stallions or 

confirmed foreign stallions imported through their semen). However, estimates of genetic 

correlations for traits among countries, as well as accurate conversion equations, are 

needed for a more accurate Belgian Bayesian evaluation. 
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Chapter V. S HORT COMMUNICATION: ALTERATION OF PRIORS 

FOR RANDOM EFFECTS IN GAUSSIAN LINEAR MIXED MODELS  

 

 

 

 

Bayesian approaches integrating external information (i.e., 

estimated breeding values and associated reliabilities provided by 

an external genetic evaluation) into an internal genetic evaluation 

were proposed in the previous Chapters and were based on the 

alteration of both the mean and the (co)variance of the prior 

multivariate normal distributions of random effects of linear 

mixed models. However, most software packages available in 

animal breeding community do not permit such alterations, and, 

thereby, they do not permit the implementation of the proposed 

Bayesian approaches that integrate external information. 

Furthermore, source codes of most software are usually 

unavailable, making the implementation of the Bayesian 

approaches proposed in the previous Chapters impossible. 

Therefore, the aim of this Chapter was to propose a method to 

alter both the mean and the (co)variance of the prior distributions 

of random effects of linear mixed models in the framework of 

currently available software packages. Based on two datasets, the 

method was tested with three software packages. 

 

 

 

 

 

From: Vandenplas, J., O.F. Christensen, and N. Gengler. 2014. Short 

communication: Alteration of priors for random effects in Gaussian linear mixed 

models. J. Dairy Sci. 97:5880-5884. 
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ABSTRACT  

Linear mixed models, for which the prior multivariate normal distributions of 

random effects are assumed to have a mean equal to 0, are commonly used in animal 

breeding. However, some statistical analyses (e.g., the consideration of a population 

under selection in a genomic breeding scheme, multiple-trait predictions of lactation 

yields, and Bayesian approaches integrating external information into genetic evaluations) 

need to alter both the mean and (co)variance of the prior distributions and, to our 

knowledge, most software packages available in the animal breeding community do not 

permit such alterations. Therefore, the aim of this study was to propose a method to alter 

both the mean and (co)variance of the prior multivariate normal distributions of random 

effects of linear mixed models while using currently available software packages. The 

proposed method was tested on simulated examples with 3 different software packages 

available in animal breeding. The examples showed the possibility of the proposed 

method to alter both the mean and (co)variance of the prior distributions with currently 

available software packages through the use of an extended data file and a user-supplied 

(co)variance matrix. 

Key words: Prior distribution, Bayesian, linear mixed model 

SHORT COMMUNICATION 

Currently, Henderson’s mixed models methods and Best Linear Unbiased 

Prediction (BLUP; Henderson, 1975) are commonly used in animal breeding. The typical 

linear mixed model is written as follows: 

eZuXβy ++=  (V.1) 

where y  is the vector of records, β  and u  are vectors of fixed and random effects related 

to the records through the incidence matrices X  and Z , respectively, and e is the vector 

of residuals.  
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
=




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

0

0

e

u
E  and the (co)variance matrices 
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




=









R0

0G

e

u
Var  where G  is the (co)variance matrix associated with u  and R  is 

the (co)variance matrix associated with e. The estimates of β ; that is, β̂ , and the 

predictions of u ; that is, û , can be obtained solving the mixed-model equations written 
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as follows (Henderson, 1950): 
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. (V.2) 

In the case of BLUP, the (co)variance matrices G  and R  are assumed to be known. 

Although u  is assumed to have an expectation equal to 0, a need exists to alter 

this expectation in some statistical analyses. For example, Bayesian approaches 

integrating external information (i.e., estimated breeding values (EBV) and associated 

reliabilities obtained from a foreign genetic evaluation) into a local genetic evaluation 

alter both [ ]uE  and [ ]uVar  (e.g., Gianola and Fernando, 1986; Quaas and Zhang, 2006; 

Legarra et al., 2007). For such approaches, [ ]uE  is equal to the foreign EBV and [ ]uVar  

represents the associated matrix of prediction error (co)variances. Another example is the 

consideration of a population under selection in a genomic breeding scheme by assuming 

[ ] 0u ≠E  for the genotyped animals. Indeed, they may have an expectation different from 

0 if selection occurred (Vitezica et al., 2011). Also, Schaeffer and Jamrozik (1996) 

proposed a multiple-trait procedure for predicting lactation yields for dairy cows based on 

an alteration of [ ]uE  with information from groups of cows sharing the same production 

characteristics. However, to our knowledge, most software packages currently available 

in animal breeding do not permit alterations of expectations of random effects, whereas 

they may allow the use of a user supplied covariance matrix. Therefore, the aim of this 

study was to propose a method to alter both the expectations and (co)variances of random 

effects while using software packages currently available in animal breeding. The 

development of the proposed method was based on a Bayesian view of linear mixed 

models. 

BAYESIAN VIEW OF LINEAR MIXED MODELS  

Bayes estimators for linear (mixed) models and their relations with BLUP were 

discussed by several authors (e.g., Lindley and Smith, 1972; Dempfle, 1977; Gianola and 

Fernando, 1986; Sorensen and Gianola, 2002). From a Bayesian view, all fixed and 

random effects are considered as random. However, the terms “fixed” and “random” will 

still be used below to differentiate β  from u , respectively. 

For the linear model (V.1), the following prior multivariate normal (MVN) 

distributions are assumed: 

[ ]Bβ ~ ( )Bb,MVN , 



Short communication: Alteration of priors for random effects in Gaussian linear mixed models 

 87 

where b is a mean vector and B  is a (co)variance matrix, 

[ ]Gu ~ ( )Gg,MVN , 

whereg  is a mean vector, and  

[ ]Re ~ ( )R0,MVN . 

Assuming that all the (co)variance matrices are known, the joint posterior density of β  

and u  can be written as follows: 

( ) ( ) ( ) ( ) ( )
( ) ( ) 


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

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−−+
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−
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guGgu

bβBbβZuXβyRZuXβy
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1'1'

2

1
expf . 

Because this joint posterior distribution is multivariate normal, its mean equals its mode, 

and β  and u  can be estimated by differentiating the joint posterior distribution with 

respect to β  and u  and setting the derivatives equal to zero. From this, as shown by 

Gianola and Fernando (1986), the following equation is obtained: 
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ˆ

ˆ
. (V.3) 

If a noninformative prior is considered for β  (i.e., 0B 1 →− ) and 0g = , the system of 

equations (V.3) simplifies to traditional mixed-model equations (V.2). 

ALTERATION OF PRIORS FOR RANDOM EFFECTS  

In the following development, it is assumed that g  and 1G −  are known, 0g ≠  and 

a non-informative prior for β  is considered. Therefore, the system of equations (V.3) is 

written as follows: 
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. (V.4) 

Although most available software packages allow the use of a user-supplied (co)variance 

matrix as G , or its inverse 1G − , most of them do not allow that 0g ≠ . Thereby, the 

system of equations (V.4), allowing an alteration of the default mean, cannot be solved 

with current software packages. A way to solve this issue is to develop a system of 

equations equivalent to the system of equations (V.4) that can be solved by current 

software packages. Therefore, below we define Py , a vector of pseudo-records (i.e., 

records corrected for all other effects than u ); PX  and PZ , 2 incidence matrices relating 

pseudo-records to β and u , respectively; PR , a residual (co)variance matrix associated to 
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the pseudo-records; and *G , a (co)variance matrix associated with u  conditional on 

pseudo-records. Assuming that 0X p = , gGyRZ 1
P

1
P

'
P

−− =  and P
1

P
'
P

1*1 ZRZGG −−− += , 

the system of equations (V.4) is equivalent to 
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The system of equations (V.5) can be written using compact notation as 
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Because the equivalent system of equations (V.5) has the same form as the system 

of equations (V.2), it can be solved using current software packages allowing the use of a 

user-supplied (co)variance matrix as *G , or its inverse 1*G − , and a data file containing 

actual records (y ) and extended with pseudo-records (Py ). Therefore, Py  and 1*G −  must 

be computed before solving the system of equations (V.5) as follows (after some 

computational simplifications): 

(1) Set up the matrix 1G −  and the vector g ; 

(2) Compute gGθ 1−= ; 

(3) Set up the matrix PZ  which is a diagonal matrix with (a) 1=
iiPZ  if 0≠iθ  or (b) 

0=
iiPZ  if 0=iθ , where i = 1, …, n and n  is the number of levels associated with 

u ; 

(4) Compute the (co)variance matrix PR  as ( ) p0PP ZRIZR ⊗=  where I  is an 

identity matrix of size k  equal to the number of records for each trait (for 

simplicity assumed to be the same across traits) and 0R  is the residual 

(co)variance matrix between traits for 1 record; 

(5) Compute the vector of pseudo-records Py  as θRy PP = ; 

(6) Compute the (co)variance matrix 1*G −  as 1
P

11* RGG −−− −=  where 1
PR −  is the 

generalized inverse of PR . 

Each pseudo-record in Py  must be added to the data file. Because each pseudo-

record can be considered as 1 record corrected for all effects other than u , all fixed 
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effects are set to 0, leading to 0X p = , except for the effect u , for which it is equal to the 

level associated with the pseudo-record. With this approach, the system of equations 

(V.5), equivalent to the system of equations (V.4), can be solved using current software 

packages. 

For a univariate analysis, step (4) is not needed and the computations of steps (5) 

and (6) can be simplified to 2
eσθy P =  and ( ) 12* −−− −= eσP

11 ZGG , respectively, where 

2
eσ  is the residual variance. For a multivariate analysis, software packages may only 

allow the use of a user-supplied matrix A  (e.g., a relationships matrix), or its inverse 

1A − , instead of G  or 1G − , such that 1G −  is equal to 1
0

11 GAG −−− ⊗= , where 1
0G −  is the 

inverse of a known (co)variance matrix between traits. Because no matrix *A , or 1*A − , 

can be found such that the computed 1*G −  is equal to 1
0

1*1* GAG −−− ⊗= , a canonical 

transformation of the multivariate model must be performed (e.g., Quaas, 1984). 

Therefore, a vector of transformed observations Ty  is defined such that ii TyyT =  for the 

ith animal (i = 1, 2, ..., k), with a matrix T  satisfying ITTR '
0 =  and DTTG '

0 = , where 

D  is a diagonal matrix, and in addition, a vector of transformed prior means Tg  must be 

computed as ii TggT =  for i = 1, 2, ..., k. For the jth transformed variable, the system of 

equations (V.4) can be then written as 
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, (V.6) 

where 111
T DAG −−− = jjj  is the inverse of the (co)variance matrix associated with jTu  and 

1D−
jj  is the inverse of the jth diagonal element of D . 

Because each analysis for the jth transformed variable is a univariate analysis, the 

limitation of the use of a user supplied matrix A  or 1A −  for a multivariate analysis is 

avoided. Thereby, the system of equations (V.6) can be solved for each jth transformed 

variable with the system of equations (V.5). The vector Py  and the matrix 1*G −  specific 

to the jth transformed variable (i.e., jPy  and 1*G −
j ) can be computed as described 

previously, and a matrix 1*
jA −  can be found such that 11*1* DAG −−− = jjjj . Solutions for the 

system of equations (V.4) expressed on the original scale are equal to ii T
1
βTβ ˆˆ −=  and 

ii T
1uTu ˆˆ −=  for i = 1, 2, ..., k. 
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If a software package does not accept levels of effects defined as 0 for a (pseudo-) 

record (e.g., DMU; Madsen and Jensen, 2012), solutions of (V.5) can be obtained by 

adding a dummy level for those effects to replace the level defined as 0 and then by 

writing a regression model where effects including a dummy level are each considered as 

a regression without intercept nested within the effects. The associated covariables are 

equal to 0 for the dummy levels; otherwise, they are equal to 1. 

EXAMPLE 1: NUMERICAL EXAMPLE  

Consider a sample of 6 animals as designed in Table V-1. Milk yields (kg) for 

animals 2 to 6 are reported (Table V-1). The assumed model was a univariate model with 

a fixed herd effect and a random additive genetic effect. The residual and additive genetic 

variances were assumed to be 750 000 and 250 000 kg2, respectively. The prior mean 

vector (g ) and the vector of estimated pseudo-records (Py ) are reported in Table V-1. 

The variance 1G −  was equal to ( ) 12 −−− = uσ11 AG  where 1A −  is the inverse of the 

relationship matrix and 2
uσ  is the additive genetic variance. The estimates of the fixed 

herd effect and the predictions of the random effect were obtained solving the system of 

equations (V.4) and (V.5). Solved with the free software package GNU Octave (Eaton et 

al., 2011), both systems of equations provided the same solutions. These results were 

expected because the 2 systems of equations are equivalent. 

 

Table V-1. Design and solutions for example 1 

Animal Sire Dam Herd Milk yields Prior mean Pseudo-records Estimated breeding values 
1 - - - - 0 -700 -208.150 
2 - - 1 8000 200 500 434.95 
3 1 - 1 5500 200 1000 -80.29 
4 1 2 2 6000 200 600 122.73 
5 - 2 2 6500 0 -400 109.72 
6 - 3 2 7000 0 -400 3.62 

 

EXAMPLE 2: INTEGRATION OF EXTERNAL INFORMATION BASED ON A BAYESIAN 

APPROACH  

The example 2 tested the proposed method to integrate external information 

following the second version of modified Bayesian evaluation (SBE; Vandenplas and 

Gengler, 2012). The software packages used for this example were ASReml with the 

!BLUP option (release 3.0; Gilmour et al., 2009), BLUPF90 (version 1.45; Misztal, 
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2013), and DMU4 from the DMU package (version 6, release 5.1; Madsen and Jensen, 

2012). 

A local sample of animals and a foreign one, both including about 2400 animals 

distributed over 6 generations, were simulated each from 50 male founders and 200 

female founders. For both samples, all females were randomly mated with males 

randomly selected from available males to simulate the next generation. The maximum 

number of males mated in each generation was 40 and a male could be mated during a 

maximum of 2 generations. Furthermore, these matings could not be realized if the 

coefficient of relationship between 2 animals was higher or equal to 0.5, and if the female 

had already 3 progeny. Concerning the foreign sample, foreign females were only mated 

with foreign males. In each generation, 60% of foreign male offspring were randomly 

culled. Concerning the local sample of animals, local females were mated with local 

males and a subset of foreign males, including the first 150 sires that had most offspring 

in the foreign population. In each generation, 99% of local male offspring were randomly 

culled. Records for milk yield (kg) for the first lactation were simulated for each female 

in both samples (Van Vleck, 1994). A herd effect nested within sample was randomly 

assigned to each female under the condition that each herd included about 40 females. 

Residual and additive genetic variances were assumed to be 6 * 104 and 2 * 104 kg2, 

respectively. 

Simulation of data and a foreign genetic evaluation (i.e., a BLUP evaluation (V.2) 

based on foreign pedigree and data) were performed with GNU Octave software. 

Integration of external information into the local genetic evaluation (i.e., an evaluation 

based on local pedigree and data) was performed following the SBE. In the context of 

SBE, external information included foreign EBV for the 150 sires and EBV predicted 

from the foreign ones for local animals (summarized in g ) and associated record 

equivalents only due to own records (RE; i.e., effective numbers of records free of 

contributions due to relationships estimated by a 2-step algorithm; Vandenplas and 

Gengler, 2012). Because RE are only due to own records, RE for local animals were 

equal to zero. The matrix 1G −  associated with g  is the matrix of prediction error 

(co)variances and was approximated as ( ) ΛAG 11 += −−− 12
uσ where Λ  is a diagonal 

matrix with diagonal elements equal to ( ) 12 −= eiii σREΛ  for the ith animal (Vandenplas 

and Gengler, 2012). The SBE was also performed with GNU Octave software and 

obtained solutions were considered as reference. 
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To test the proposed approach with ASReml, BLUPF90, and DMU4, local 

pedigree and data files as well as foreign EBV for the 150 sires and predicted EBV for 

local animals and associated RE were created. Setting up of 1G − , g , PZ  and PR , and 

computations of θ , Py  and 1G −*  were performed with GNU Octave software. Files 

containing the user-supplied (co)variance matrix were written following specific rules for 

each software package and the pseudo-records in Py  were added to the data file with 

appropriate levels for the different effects. 

The system of equations (V.5), based on the extended data and user-supplied 

(co)variance matrix, was solved with ASReml, BLUPF90, and DMU4. For DMU4, 

solutions were obtained with the equivalent nested regression model. The system of 

equations was solved by direct computation proposed by the 3 software packages used. 

Solutions were compared with those estimated with GNU Octave software, measuring the 

relative errors 
Oj

Ojij

sol

solsol −
=∆  where Ojsol  was the estimate for the jth level of the 

effects estimated with GNU Octave and ijsol  was the estimate for the jth level of the 

effects estimated with 1 of the 3 software packages used (i.e., i = ASReml, BLUPF90, or 

DMU4). The ∆  values ranged from 0.00 to 4.96 * 10−6 for ASReml, from 0.00 to 9.78 * 

10−8 for BLUPF90, and from 0.00 to 3.83 * 10−4 for DMU4. Average ∆  were 9.11 * 10−7 

for ASReml, 2.54 * 10−10 for BLUPF90, and 2.52 * 10−6 for DMU4. Differences between 

∆  can be explained by the precision considered by the software packages for integer and 

real variables and by the writing format specifications of the software packages for the 

solutions. 

In conclusion, these 2 examples showed the possibility to alter both mean and 

(co)variance of the prior distribution associated with random effects for linear mixed 

models equations with current software packages commonly available in the animal 

breeding community through the use of an extended data file and a user-supplied 

(co)variance matrix. 
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Chapter VI.  UNIFIED METHOD TO INTEGRATE AND BLEND 

SEVERAL , POTENTIALLY RELATED , SOURCES OF INFORMATION 

FOR GENETIC EVALUATION  

 

 

 

 

Chapter III proposed an algorithm that considers double counting 

of contributions due to relationships among external animals when 

their associated external information was integrated into an 

internal genetic evaluation. However, as highlighted in Chapter II, 

external information may be based on data shared by the external 

and internal evaluations and double counting of contributions due 

to records may thus appear. Furthermore, Chapter II also 

highlighted that all proposed Bayesian approaches, including 

those proposed in Chapter III, do not allow the integration of more 

than one source of external information. Therefore, based on a 

Bayesian approach, a method integrating and blending 

simultaneously several sources of information into an internal 

genetic evaluation while avoiding double counting of 

contributions due to relationships and due to records was proposed 

and tested on both simulated and real data in this Chapter. 

 

 

 

 

 

 

From: Vandenplas, J., F.G. Colinet and N. Gengler. 2014. Unified method to 

integrate and blend several, potentially related, sources of information for genetic 

evaluation. Genet. Sel. Evol. 46:59. 





Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation 

 97 

ABSTRACT  

BACKGROUND  

A condition to predict unbiased estimated breeding values by best linear unbiased 

prediction is to use simultaneously all available data. However, this condition is not often 

fully met. For example, in dairy cattle, internal (i.e. local) populations lead to evaluations 

based only on internal records while widely used foreign sires have been selected using 

internally unavailable external records. In such cases, internal genetic evaluations may be 

less accurate and biased. Because external records are unavailable, methods were 

developed to combine external information that summarizes these records, i.e. external 

estimated breeding values and associated reliabilities, with internal records to improve 

accuracy of internal genetic evaluations. Two issues of these methods concern double 

counting of contributions due to relationships and due to records. These issues could be 

worse if external information came from several evaluations, at least partially based on 

the same records, and combined into a single internal evaluation. Based on a Bayesian 

approach, the aim of this research was to develop a unified method to integrate and blend 

simultaneously several sources of information into an internal genetic evaluation by 

avoiding double counting of contributions due to relationships and due to records. 

RESULTS 

This research resulted in equations that integrate and blend simultaneously several 

sources of information and avoid double counting of contributions due to relationships 

and due to records. The performance of the developed equations was evaluated using 

simulated and real datasets. The results showed that the developed equations integrated 

and blended several sources of information well into a genetic evaluation. The developed 

equations also avoided double counting of contributions due to relationships and due to 

records. Furthermore, because all available external sources of information were correctly 

propagated, relatives of external animals benefited from the integrated information and, 

therefore, more reliable estimated breeding values were obtained. 

CONCLUSIONS 

The proposed unified method integrated and blended several sources of 

information well into a genetic evaluation by avoiding double counting of contributions 

due to relationships and due to records. The unified method can also be extended to other 
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types of situations such as single-step genomic or multi-trait evaluations, combining 

information across different traits. 

BACKGROUND  

Simultaneous use of all available data by Best Linear Unbiased Prediction (BLUP) 

is a condition to predict unbiased estimated breeding values (EBV; Henderson, 1984). 

However, this condition is not often fully met. For example, in dairy cattle, while foreign 

bulls are often widely used, e.g., through artificial insemination, evaluating populations 

based only on internal phenotypic data (i.e., internal records) will lead to potentially 

biased and less accurate evaluations (Bonaiti and Boichard, 1995). The reason is that 

external phenotypic data used to select these foreign bulls are not available at the internal 

level. Multiple across country evaluation (MACE), performed at an international level by 

International Bull Service (Interbull, Uppsala, Sweden), allows EBV, for each population 

scale, to be aggregated into a single ranking for international dairy sires. However, this 

has no influence on internal evaluations. These issues are also relevant in the setting of 

current developments of genomic multi-step or single-step prediction methods (e.g., 

Aguilar et al., 2010; Christensen and Lund, 2010; VanRaden, 2012). 

Because external phenotypic data are not available at the internal level, methods 

were developed to combine external information, i.e. external EBV and associated 

reliabilities (REL), with internal data to improve accuracy of internal genetic evaluations. 

A first type of approaches is based on performing, a posteriori, an additional step after the 

genetic evaluation at the internal level. These approaches combine external and internal 

EBV based on selection index theory (e.g., VanRaden, 2001), based on mixed model 

theory (e.g., Täubert et al., 2000) or based on bivariate evaluations (e.g., Mäntysaari and 

Strandén, 2010). One of the problems of a posteriori approaches is that external 

information used for selection will not contribute to the estimation of fixed effects at the 

internal level, which can create potential biases. A second type of approaches combines 

external information simultaneously with internal phenotypic data in genetic evaluations 

at the internal level. Simultaneous combination of external information and internal 

phenotypic data can be carried out using different methods. However, to our knowledge, 

the following two approaches are the most used. First, external information can be 

directly included by converting this information into pseudo-records for fictive daughters 

of external animals (e.g., Bonaiti and Boichard, 1995). Similar approaches were proposed 

to include external information into internal single-step genomic evaluations (e.g., 
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VanRaden, 2012; Přibyl et al., 2013). Second, external information can be directly 

included by changing both the mean and (co)variance of the prior distributions of genetic 

effects in a Bayesian approach, as mentioned, for example, by Gianola and Fernando 

(1986). Quaas and Zhang (2001, 2006) and Legarra et al. (2007) proposed two Bayesian 

derivations to integrate external information into internal genetic evaluations in the 

context of multi-breed genetic evaluations for beef cattle. These two derivations consider 

external information as priors of internal genetic effects. Vandenplas and Gengler (2012) 

compared these two derivations and proposed some improvements that concerned mainly 

double counting of contributions due to relationships among external animals. Indeed, an 

EBV of an animal combines information from its own records (i.e., contributions due to 

own records) and from records of all relatives through its parents and its progeny (i.e., 

contributions due to relationships; VanRaden, 2001; Misztal and Wiggans, 1988). 

Therefore, integration of EBV for relatives can cause the same contributions that are due 

to relationships to be counted several times, which can bias genetic evaluations at the 

internal level. 

Both types of approaches, i.e., that combine available information a posteriori or 

simultaneously, raise another issue if the external information results from an evaluation 

that combines external and internal records, which is that some contributions due to 

records will be considered several times when external information is combined with 

internal records. Although this is a major issue for common sources of external 

information (e.g., MACE information), to our knowledge, only a few studies have 

proposed solutions to the double counting of contributions due to records (e.g., 

VanRaden, 2012; Gengler and Vanderick, 2008; VanRaden and Tooker, 2012). The 

proposed solutions were developed as an additional pre-processing step before integration 

of external information. Furthermore, in many situations, integration of several sources of 

external information into genetic evaluations at the internal level may be needed but this 

has not been studied to our knowledge. In such cases, double counting of contributions 

due to records could be worse if external information from several evaluations were, at 

least partially, based on the same internal records, and/or on the same external records, 

and integrated into the same genetic evaluation. 

Thus, the aim of this research was to develop a unified method to integrate and 

blend simultaneously several, potentially related, external sources of information into an 

internal genetic evaluation based on a Bayesian approach. In order to achieve this aim, 

methods were developed to avoid double counting of contributions due to relationships 
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and due to records generated by the integration of several sources of information. This 

resulted in modified mixed model equations (MME) that integrate and blend 

simultaneously several sources of information and avoid double counting of contributions 

due to relationships and due to records. The performance of the developed equations was 

evaluated using simulated and real datasets. 

METHODS 

INTEGRATION OF SEVERAL SOURCES OF EXTERNAL INFORMATION  

Assume an internal genetic evaluation (referred to with the subscript E0) based on 

internal data (i.e., a set of phenotypic records: 
0Ey ) that provides internal information 

(i.e., EBV and associated REL obtained from the evaluation E0). Also, assume an ith 

external genetic evaluation (i = 1, 2, ..., N, referred to with the subscript Ei) that is based 

on the ith source of external data (i.e., the ith set of phenotypic records not used by 

evaluation E0 and free of internal data: 
iEy ) and that provides the ith source of external 

information, i.e., all available external EBV (EBVEi) and associated REL (e.g., EBV and 

associated REL obtained from evaluation E1 based only on external data E1, and EBV and 

associated REL obtained from evaluation E2 based only on external data E2). In addition 

to be free of internal data, it is also assumed that each ith source of external data was free 

of the other N-1 sources of external data. These assumptions lead to each ith source of 

external information to be free of internal data and information, as well as of the N-1 

other external data and information. 

Two groups of animals, hereafter called external and internal animals, are defined 

according to the ith source of external information. Therefore, for each ith source of 

external information, external animals (subscript iA  with i = 1, 2,…, N ) are defined as 

animals that are associated with this ith source of external information and for which 

internal data and/or information is available or that have relationships with animals 

involved in the internal evaluation E0. All animals that are not defined as external animals 

for the ith source of external information are defined as internal animals (subscript 0iA ). 

Internal animals are then defined as animals associated with only internal information 

when considering the ith source of external information. It is noted that external animals 

may be associated with different sources of external information and that an animal may 

be considered as external for the ith source of external information and internal for the N-
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1 other sources of external information because the definitions of external and internal 

animals depend only on the source of external information considered. Those definitions 

are summarized in Table VI-1. In addition, because pedigree information for animals can 

be easily integrated into a genetic evaluation, it is assumed that the same complete 

pedigree information could be used for all animals for each genetic evaluation. 

Concerning the notation of matrices in the following sections (e.g., ( )li AEX ), the subscript 

Ei refers to the ith source of external information and the subscript within brackets ( lA ) 

refers to the lth group of animals. 

 

Table VI-1. Concepts related to the terminology of internal and external animals and 
information 

Pedigree 
Data1 

Internal animals External animals 

Internal data 
Internal evaluation 

Internal information2 
Internal - external evaluations 
Internal - external information 

External data - 
External evaluation 
External information 

1Data = set of phenotypic records;  
2Information = estimated breeding values and associated reliabilities. 

 

The N sources of external information must be integrated into the internal 

evaluation E0. For external animals associated with the ith source of external information, 

all EBVEi are summarized by the vector of external EBV, )(AE ii
û , and by the prediction 

error (co)variance matrix, )(AE ii
D . Because )(AE ii

û  could be estimated with an equivalent 

external genetic evaluation that includes the internal animals in the pedigree through a 

genetic (co)variance matrix extended to all animals for the ith source of external 

information, ( ) ( )
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A modified set of multi-trait mixed model equations that integrate N sources of 

external information, each summarized by 
iEû  and its associated prediction error 

(co)variance matrix 
iED  for the ith source of external information, can be written as [See 

Additional file 1 for the derivation of the equations]: 
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where 
0EX  and 

0EZ  are incidence matrices relating records in 
0Ey  to the vector of fixed 

effects 
0Eβ̂  and the vector of random additive genetic effects 

0Eû , respectively, 1
E0

G −  is 

the inverse of the internal additive genetic (co)variance matrix associated with the internal 

genetic evaluation E0 that includes all internal and external animals and 1
E0

R −  is the 

inverse of the residual (co)variance matrix. 

For the approximation of 1
Ei

D− , it can be shown that [See Additional file 1]: 

iiiii E
1

EE
1

E
1

E ZRZ'+G=D −−− , where 
iEZ  is the incidence matrix relating records of ith 

external data to internal and external animals and 1
Ei

R −  is the residual (co)variance matrix 

for the ith source of external information. Thereby, 1
Ei

D−  is approximated by 

iii E
1

E
1

E Λ+G=D −− , where 
iEΛ  is a block diagonal variance matrix with one block per 

animal (Quaas and Zhang, 2006; Vandenplas and Gengler, 2012) and 
iiii E

1
E

'
EE ZRZΛ

−≈ . 

Each diagonal block of 
iEΛ  is equal to ( ) ( )jE

1
0jE ii
∆R∆

−  for j = 1, 2, …, J animals, where 

the matrix 0R  is a matrix of residual (co)variance among traits and the jth matrix ( )jE i
∆  is 

a diagonal matrix with elements ijkRE  where k = 1, 2, ..., K traits. Element ijkRE  is the 

effective number of records, i.e., record equivalents, for the jth animal for the kth trait 

associated with the ith source (Misztal and Wiggans, 1988; Vandenplas and Gengler, 

2012). Record equivalents express the quantity of contributions due to relationships 

and/or due to records considered for the evaluation of an animal. For internal animals, 

ijkRE  is equal to 0 because all contributions are only due to the relationships among 

external and internal animals. For external animals, if double counting of contributions 

due to relationships among them is not taken into account, 
ijk

ijk

k

k
ijk REL

REL

h

h
=RE

−
∗−

1

1
2

2

 for 

the jth animal for the kth trait associated with the ith source, where 2kh  is the heritability 

of the kth trait (Misztal and Wiggans, 1988; VanRaden and Wiggans, 1991). If double 
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counting of contributions due to relationships among external animals is taken into 

account, ijkRE  only expresses the amount of contributions due to records and can be 

estimated through a two-step algorithm (TSA; Vandenplas and Gengler, 2012). The first 

step of this TSA determines external animals associated with external information that 

includes only contributions due to relationships. The second step estimates the amount of 

contributions due to records (expressed as RE) for external animals associated with 

information that combines both contributions due to relationships and own records. Note 

that the proposed approximation of 
iii E

1
E

'
E ZRZ − differs from the approximation proposed 

by Quaas and Zhang (2006). Indeed, they proposed to approximate each diagonal block of 

iEΛ by ( ) ( )jQi
1

0jQi ∆G∆
− , where the matrix 0G  is a matrix of genetic (co)variance among 

traits and ( )jQi∆  is a diagonal matrix with elements: 

)REL(RELδ ijkijkijk −= 1 . 

Also, the multi-trait MME (VI.1) that integrate N sources of external information 

differ from the usual multi-trait MME only by the terms ( )∑ −− −
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Furthermore, it was previously assumed that the whole pedigree is available for all 

genetic evaluations. The additive genetic (co)variance matrices that include all internal 

and external animals are then equal for all genetic evaluations (i.e., 

N210 EEEE G...GGG ==== ). Nevertheless, each internal or external genetic evaluation 

could be performed as a single-step genomic evaluation (e.g., Aguilar et al., 2010; 

Christensen and Lund, 2010) without modifications to the Bayesian derivation [See 

Additional file 1] because assumptions on the different matrices 
iEG  were not limiting. 

Such cases would lead to 
i0 EE GG ≠ . For example, integration of external information 

provided by the usual MME into a single-step genomic evaluation would lead to 

i0 EE GG ≠ because 
0EG  would include genomic information (Aguilar et al., 2010; 

Christensen and Lund, 2010), unlike 
iEG . 
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INTEGRATION OF SEVERAL SOURCES OF EXTERNAL INFORMATION BY AVOIDI NG DOUBLE 

COUNTING OF CONTRIBUTIONS DUE TO RECORDS 

Assumptions stated in the previous section led to each source of external 

information to be obtained from an external evaluation that was based only on external 

data and free of internal data and information, as well as of the N-1 other external data 

and information. In practice, this assumption is not necessarily valid because a source of 

external information may be obtained from an external evaluation based on external data 

and/or information and also on internal data and/or information (e.g., EBV and associated 

REL obtained in country E1 based on external data E1 and on internal data E0). Thus, 

double counting of contributions due to records between internal and external information 

must be taken into account, as detailed below. 

For the ith source of external information, internal information included into 

external information (subscript Ii) associated with the external animals can be 

summarized as ( )ii AIû , i.e., the vector of internal EBV associated with external animals 

for which external information included both external and internal information, and by 

( )ii AID , the prediction error (co)variance matrix associated with ( )ii AIû . 

A modified set of multi-trait mixed model equations that integrate several sources 

of external information and take double counting of contributions due to records between 

external and internal information into account, can be written as follows [See Additional 

file 2]: 
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where 
iIG  is a genetic (co)variance matrix for all animals for the internal information 

included into the ith source of external information, 
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ˆ  is the vector of internal EBV associated with the 

ith source of external information that includes internal information and 1
I i

D−  is the 
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inverse of the prediction error (co)variance matrix associated with 
iIû  and approximated 

as detailed in the previous section. 

If the ith source of external information does not include internal information for 

external animals, the vector 
iIû  is undetermined and the matrix 1I i

D−  is equal to 1
I i

G − . This 

leads to the system of equations (VI.1). 

BLENDING SEVERAL SOURCES OF EXTERNAL INFORMATION BY AVOIDING DOU BLE 

COUNTING OF CONTRIBUTIONS DUE TO RECORDS 

Equations to blend several sources of external information by avoiding double 

counting of contributions due to records among internal and external data/information can 

be derived from the system of equations (VI.3) by assuming that 
0Ey  has no records (i.e. 

that 
0Ey  is an empty vector). Then, the equation can be written as follows: 
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SIMULATED EXAMPLE  

The system of equations (VI.3) was tested using data simulated with the software 

package GNU Octave (Eaton et al., 2011). The context of the simulation was a country 

that imports sires from another country to generate the next generation of production 

animals and potential sires. Populations of the importing country (hereafter called the 

internal population) and of the exporting country (hereafter called the external population) 

were assumed to belong to the same breed. Each population included about 1000 animals 

distributed over five generations and was simulated from 120 female and 30 male 

founders. For both populations, milk yield in the first lactation was simulated for each 

female with progeny, following Van Vleck (1994). A herd effect nested within-population 

was randomly assigned to each phenotypic record. To obtain enough observations per 

level for the herd effect, each herd included at least 40 females. Phenotypic variance and 

heritability were assumed to be 3.24 * 106 kg² and 0.25, respectively. 

To simulate the internal and external populations, the following rules were applied 

to generate each new generation. First, from the second generation, both females and 

males older than one year old were considered as mature for breeding and a male could be 

mated during at most two breeding years. Second, 95% of the available females and 75% 

of the available males with the highest true breeding values were selected for breeding. 
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Third, all selected females were randomly mated with the selected males. The maximum 

number of males mated to produce the next generation was set to 25. Furthermore, a 

mating could be performed only if the additive relationship coefficient between male and 

female was less than 0.5 and if the female had less than three progeny. 

The external population was simulated first and additional rules were applied to 

this population. For this population, males that were selected for mating only originated 

from the external population and 60% of the external male offspring with the lowest true 

breeding values were culled in each generation. Then, the internal population was 

simulated. For this population, males were selected among all available internal males 

and a subset of selected external sires. This subset of external sires included the first 50 

sires with the highest true breeding values in the external population. Also, 99% of 

internal male offspring with the lowest true breeding values were culled in each 

generation. No female offspring was culled in either population. 

Using the simulated data, three genetic evaluations were performed (Table VI-2): 

(a) A joint evaluation (EVALJ) was performed as a BLUP evaluation using the system 

of equations (VI.2) and based on external and internal pedigree and data. This 

evaluation was assumed to be the reference. 

(b) An internal evaluation (EVALI) was performed as a BLUP evaluation using the 

system of equations (VI.2) and based on internal pedigree and data. 

(c) An external evaluation (EVALE) was performed as a BLUP evaluation using the 

system of equations (VI.2) and based on external pedigree and data. 

 

Table VI-2. Genetic evaluations performed for the simulated example 

 Genetic evaluations1 
 J E I BE BJ BJ-I 
External pedigree X X     
Internal pedigree X  X X X X 
External data X X     
Internal data X  X X X X 
Integrated information (50 external sires)      

External EBV and REL   X   
Joint EBV and REL    X X 
Internal EBV and REL     X 

1J = Joint; E = External; I = Internal; BE = Bayesian External; BJ = Bayesian Joint; BJ-I = Bayesian Joint 
minus Internal. 
 

Three Bayesian evaluations that integrated information provided by EVALE or by 

EVALJ for the 50 external sires into EVALI were also performed. Because the external 

sires were related, double counting of contributions due to relationships existed and this 
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was taken into account for the three Bayesian evaluations through the TSA (Vandenplas 

and Gengler, 2012). Double counting of contributions due to records could also exist with 

the integration of information provided by EVALJ into EVALI because EVALJ and EVALI 

were partially based on the same data (i.e., internal data). The following three Bayesian 

evaluations were performed: 

(d) A Bayesian evaluation using the system of equations (VI.1) and using EBV and 

prediction error variances (PEV) obtained from EVALE associated with the 50 

external sires that were used inside the internal population as external information 

(EVALBE). 

(e) A Bayesian evaluation using the system of equations (VI.1) and EBV and PEV 

obtained from EVALJ associated with the 50 external sires as external information 

(hereafter called joint information) (EVALBJ). Although EVALJ was based on 

external and internal data, double counting of contributions due to records 

between joint and internal information was not taken into account. 

(f) A Bayesian evaluation integrating joint information by using the system of 

equations (VI.3) and taking into account double counting of contributions due 

records among internal and joint information (EVALBJ-I). Double counting of 

contributions due to records among internal and joint information was taken into 

account by using EBV and PEV obtained from EVALI associated with the 50 

external sires. 

The simulation was replicated 100 times. Comparisons between EVALJ and 

EVAL I, EVALBE, EVALBJ, or EVALBJ-I were performed separately for the 50 external 

sires and for the internal animals. Comparisons were based on:  

(1) Spearman’s rank correlation coefficients (r) of EBV obtained from EVALJ (EBVJ) 

with EBV obtained from EVALI (EBVI), EVALBE (EBVBE), EVALBJ (EBVBJ), and 

EVALBJ-I (EBVBJ-I), 

(2) regression coefficients (a) of EBVJ on EBVI, EBVBE, EBVBJ, and EBVBJ-I, and 

(3) coefficients of determination (R²) associated with the regressions, 

(4) the total amount of RE (REtot) associated with external information, joint 

information and joint information corrected for the included internal information, 

and 

(5) mean squared errors (MSE) of EBVI, EBVBE, EBVBJ, and EBVBJ-I, expressed as a 

percentage of MSE obtained for EBVI. For each replicate, the MSE obtained for 

EBVI was reported to a relative value of 100 before the different computations of 
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MSE. 

Because the TSA was applied before all three Bayesian evaluations, REtot were 

free of contributions due to relationships estimated by the Bayesian evaluations. For an 

easier understanding of the results and discussion, RE can be transformed into daughter 

equivalents (DE) through ijk
k

k
ijk RE

h

h
=DE ∗

−
−

2

2

1

4
 (VanRaden and Wiggans, 1991). All 

results were the average of the 100 replicates. 

WALLOON EXAMPLE  

Even if MACE allows the aggregation of EBV for dairy sires, internal genetic 

evaluations for animals not associated with MACE information (e.g., cows, calves, young 

sires) are not influenced by external information considered by the MACE for dairy sires 

and may be still biased. Therefore, integration of MACE information into internal 

evaluations, as well as blending of MACE and internal information, could benefit those 

animals. The performance of equation (VI.4) that blends MACE and internal information 

was evaluated in the context of the official Walloon genetic evaluation for Holstein cattle. 

The Walloon example used information for milk, fat and protein yields for 

Holstein cattle provided by the official Walloon genetic evaluation (Auvray and Gengler, 

2002; Croquet et al., 2006). The genetic variances were those used for the official 

Walloon genetic evaluation (Auvray and Gengler, 2002) and were equal to 280 425 kg² 

for milk yield, to 522.6 kg² for fat yield and to 261.5 kg² for protein yield. The respective 

heritabilities were equal to 0.38, 0.43 and 0.41. The pedigree file was extracted from the 

database used for the official Walloon genetic evaluation (EVALW) and covered up to six 

known ancestral generations. The extraction was performed for a randomly selected group 

of 1909 animals (potentially genotyped) born after 1998. The selected group included 

sires, cows and calves that were used or were not at the internal level. After extraction, the 

pedigree file contained 16 234 animals. 

Internal information included EBV and associated REL estimated from data 

provided by the Walloon Breeding Association (EBVW, RELW) for the EVALW for milk 

production of April 2013 (Auvray and Gengler, 2002; Croquet et al., 2006). A total of 

12 046 animals were associated with an available EBVW. External information included 

EBV and REL for 1981 sires provided with the official release for the April 2013 MACE 

performed by Interbull (EVALMACE, EBVMACE, RELMACE; Interbull, 2013). It should be 

noted that the Walloon Region in Belgium participated in the April 2013 MACE. Internal 
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and external information were harmonized between the Walloon and MACE evaluations 

by adjusting scales and mean differences towards the original expression of the trait in the 

Walloon genetic evaluations. External information was then considered to be the same 

trait as the internal phenotype trait. 

Unlike the simulated example, no joint evaluation based on Walloon and external 

records was available for both external and internal animals. Because EVALMACE 

aggregated EBV from several national genetic evaluations for sires, it was considered as 

the reference for the evaluated sires. Walloon and MACE information were blended by 

using equation (VI.4) for the following four cases: with or without consideration of 

double counting of contributions due to relationships and with or without consideration of 

double counting of contributions due to records (Table VI-3). Double counting of 

contributions due to relationships was possible because all animals associated with 

Walloon and/or MACE information were related. Double counting of contributions due to 

records was also possible because MACE information associated with the 1981 sires 

included contributions provided by EVALW. Thus, to test the importance of both double 

counting issues, the following four cases were evaluated: 

(a) Walloon and MACE information were blended without considering double 

counting of contributions due to records and due to relationships (EVALBLNN, 

EBVBLNN, RELBLNN). 

(b) Walloon and MACE information were blended by considering only double 

counting of contributions due to records (EVALBLRE, EBVBLRE, RELBLRE). To 

achieve this goal, the contribution of Walloon information into MACE information 

was determined based on the domestic effective daughter equivalents (EDC) 

associated with EBVMACE and RELMACE and provided with the official release for 

the 2013 April MACE by Interbull. MACE information free of Walloon 

information was reported by a domestic EDC equal to 0. A total of 601 sires were 

associated with an EDC greater than 0. For these 601 sires, EBV and associated 

REL estimated from Walloon data and contributing to the April 2013 MACE 

routine-run (EBVWc, RELWc) were considered by EVALBLRE to take double 

counting of contributions due to records into account. Double counting of 

contributions due to relationships was not taken into account for either Walloon or 

MACE information. 

(c) Walloon and MACE information were blended by only considering double 

counting of contributions due to relationships among all animals (EVALBLR, 
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EBVBLR, RELBLR). The TSA was therefore applied for Walloon and MACE 

information. Double counting of contributions due to records was not considered. 

(d) Walloon and MACE information were blended by considering both double 

counting of contributions due to records and due to relationships (EVALBL, 

EBVBL, RELBL). Reliabilities for EBVBLNN, EBVBLRE, EBVBLR and EBVBL were 

computed using the equation 2/1 gσPEV=REL − , where 2
gσ  is the genetic 

variance for the corresponding trait and PEV  is the prediction error variance 

obtained from the diagonal element of the inverted left hand side (LHS) of the 

equation (VI.4). 

 

Table VI-3. Bayesian evaluations performed for the Walloon example 

 Bayesian evaluations 
 BLNN BLRE BLR BL 
Available estimated breeding values and reliabilities     

Official Walloon evaluation X X X X 
Multiple Across Country Evaluation X X X X 

Double counting accounted     
Records  X  X 
Relationships   X X 

 

As explained previously, EVALMACE was considered as the reference for sires 

evaluated through EVALMACE. Comparisons between EVALMACE and EVALW, EVALBLNN, 

EVALBLRE, EVALBLR or EVALBL were performed based on: 

(1) Spearman’s rank correlation coefficients (r) of EBVMACE with EBVW, EBVBLNN, 

EBVBLRE, EBVBLR and EBVBL, 

(2) MSE of EBVW, EBVBLNN, EBVBLRE, EBVBLR, and EVALBL (i.e. mean squared 

errors expressed as a percentage of average MSE of EBVW), 

(3) regression coefficients (a) and, 

(4) R² of the regressions of EVALMACE on the five other evaluations (i.e., EVALW, 

EVALBLNN, EVALBLRE, EVALBLR and EVALBL), 

(5) REtot and  

(6) average REL. 

Comparisons concerned two groups of sires. A first group of sires included 1212 

sires that were associated with both Walloon and MACE information and had daughters 

with records in the Walloon region dataset (hereafter called “internally used sires”). A 

second group of sires included 631 sires that were associated with both Walloon and 

MACE information but had no daughters with records in the Walloon region dataset (i.e., 
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they had only foreign, or external, daughters; hereafter called “internally unused sires”). 

The REtot were free of contributions due to relationships that were estimated by the 

Bayesian evaluations but could include contributions due to relationships that resulted 

from the previous genetic evaluation if the TSA was not applied. 

The effect of blending MACE and Walloon information was also studied for 

internal animals that were not associated with MACE information and that were sired by 

internally used sires by considering (1) r between EVALBL and EVALW, EVALBLNN, 

EVALBLRE or EVALBLR, (2) REtot and (3) average REL. Three groups of internal animals 

were defined depending on their RELW. The first group included internal animals that 

were associated with a RELW lower than 0.50, the second group included internal animals 

that were associated with a RELW between 0.50 and 0.75, and the third group included 

internal animals with a RELW equal or higher than 0.75. 

All blending evaluations were performed using a version of the BLUPF90 

program (Misztal, 2013) modified to implement the equations (VI.1), (VI.3) and (VI.4). 

RESULTS AND DISCUSSION  

SIMULATED EXAMPLE  

On average, each of the 100 simulated internal and external populations included 

1048 animals. Results for r, MSE, a and R² for prediction of EBVJ are in Table VI-4 for 

the 50 external sires and for the internal animals. 

Compared to the rankings of EVALI, integration of external or joint information 

for the 50 external sires led to rankings of EVALBE, EVALBJ or EVALBJ-I that were more 

similar to those of EVALJ. Rank correlations r increased from 0.57 for EVALI to at least 

0.95 for EVALBJ for the 50 external sires and from 0.93 for EVALI to at least 0.98 for 

EVALBJ for internal animals (Table VI-4). Furthermore, MSE, a and R² also showed that 

the integration of external or joint information for the 50 external animals with EVALBE, 

EVALBJ or EVALBJ-I led to better predictions of EBVJ for both external and internal 

animals (Table VI-4). Therefore, the observations that internals animals related to the 50 

external sires were also better predicted by EVALBE, EVALBJ and EVALBJ-I, compared to 

EVAL I, revealed that the external information propagated from the 50 external sires to 

relatives. 
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Table VI-4. Average (SD in parentheses) of parameters obtained for the simulated 
example over 100 replicates 

Concerned 
animals1 

Genetic 
evaluation2 

r2 MSE3 a4 R² 4 REtot
5 

Internal animals  

 EVAL I 
0.934 

(0.021) 
100.00 

(28.621) 
0.982 

(0.042) 
0.896 

(0.030) 
- 

 EVALBE 
>0.999 
(0.000) 

0.61 
(0.58) 

0.997  
(0.005) 

0.999 
(0.001) 

- 

 EVALBJ 
0.979 

(0.005) 
34.26 
(7.92) 

0.977 
(0.024) 

0.965 
(0.008) 

- 

 EVALBJ-I 
0.996 

(0.001) 
6.78 

(3.02) 
1.021 

(0.013) 
0.993 

(0.002) 
- 

External sires   

 EVAL I 
0.571 

(0.131) 
100.00 
(32.31) 

0.712 
(0.168) 

0.391 
(0.146) 

- 

 EVALBE 
0.997 

(0.001) 
0.35 

(0.22) 
1.000 

(0.011) 
0.998 

(0.002) 
76.3 
(5.1) 

 EVALBJ 
0.956 

(0.017) 
17.16 
(4.18) 

0.821 
(0.039) 

0.924 
(0.030) 

141.5 
(7.8) 

 EVALBJ-I 
0.996 

(0.002) 
0.60 

(0.26) 
0.993 

(0.012) 
0.996 

(0.002) 
78.7 
(5.1) 

1Internal animals = animals associated with only internal information; External sires = sires associated with 
external information; 
2EVAL I = BLUP evaluation based on internal pedigree and data; EVALBE = Bayesian evaluation using 
external EBV and PEV associated with the 50 external sires used in the internal population; EVALBJ = 
Bayesian evaluation using EBV and PEV obtained from the joint evaluation and associated with the 50 
external sires; EVALBJ-I = Bayesian evaluation using EBV and PEV obtained from the joint and from 
internal evaluations and associated with the 50 external sires to avoid double counting among internal and 
joint information; r = rank correlations between EBV estimated by EVALJ and by EVALI, EVALBE, 
EVALBJ or EVALBJ-I; 
3MSE = mean squared errors expressed as a percentage of the average internal MSE between a joint 
evaluation and EVALI, EVALBE, EVALBJ or EVALBJ-I; 
4a = regression coefficient and R² = coefficient of determination of the regression of EBV estimated by the 
joint evaluation on EBV estimated by EVALI, EVALBE, EVALBJ or EVALBJ-I; 
5REtot = total amount of record equivalents free of contributions due to relationships among external 
animals. 

 

The REtot associated with EVALBE was equal to 76.3 (which also corresponded to 

381.6 DE), while the REtot associated with EVALBJ was equal to 141.5 (DE = 707.7, Table 

VI-4). The higher REtot associated with EVALBJ showed that double counting of 

contributions due to records was present when joint information was integrated. Indeed, 

joint information contained both external and internal information. The REtot associated 

with EVALBJ-I was equal to 78.7 (DE = 393.3, Table VI-4). While this latter REtot is 

slightly higher (i.e., 3.1% on average) than the REtot associated with EVALBE, it showed 

that double counting was almost avoided when internal information was considered for 

the 50 external sires. A total of 96.4% of contributions due to records of internal 

information on average was removed from the joint information (Table VI-4). The 

remaining 3.6% of contributions due to records of internal information was double 
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counted by the Bayesian evaluations and may result from the estimation of contributions 

due to relationships and/or from the estimation of contributions due to records among 

joint and internal information. 

Because double counting of contributions due to records between joint and 

internal information was almost avoided, breeding values that were estimated by  

EVALBJ-I for all animals led to better predictions of EBVJ than EVALBJ, based on r, MSE, 

a and R² (Table VI-4). Rank correlations of EBVJ with EBVBJ and EBVBJ-I increased from 

0.979 for EVALBJ to 0.996 for EVALBJ-I for the internal animals and from 0.956 for 

EVALBJ to 0.996 for EVALBJ-I for the 50 external animals. The MSE decreased on 

average from 34.3% for EVALBJ to 6.8% for EVALBJ-I for the internal animals and from 

17.2% for EVALBJ to 0.6% for EVALBJ-I for the external animals. These results again 

showed that integration of external/joint information for the 50 external sires influenced 

the prediction of internal relatives through the propagation of information from the 

external sires to relatives. These results show that the double counting of contributions 

due to records also affected predictions of internal animals. Furthermore, as expected, 

EVALBE predicted EBVJ slightly better than EVALBJ-I for both external sires and internal 

animals, based on the corresponding r, MSE, a and R² (Table VI-4). The low difference in 

accuracy of prediction between EVALBE and EVALBJ-I could be attributed to the 

estimation of contributions due to relationships and due to records. 

Based on these results, double counting of contributions due to records was almost 

avoided. Thus, the integration of information into a genetic evaluation by avoiding both 

contributions due to relationships and due to records performed well for external animals. 

Internal animals also benefited of the integration of information thanks to their 

relationships with external animals. 

WALLOON EXAMPLE  

Of the 12 046 animals associated with available Walloon information for the three 

traits, 6232 animals for milk yield, 6209 animals for fat yield, and 6212 animals for 

protein yield were associated with information that was based only on contributions due 

to relationships, as estimated by the TSA. In terms of RE, contributions due to 

relationships represented from 14.9% for fat yield to 16.3% for milk yield of the 

contributions associated with Walloon information (Figure VI-1). Among the 1981 sires 

associated with MACE information, two sires were associated with information that 

includes only contributions due to relationships for the three traits. Both these sires had 
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several sons among all the sires associated with an EBVMACE, which explains that the 

contributions were considered as only due to relationships. In terms of RE, all 

contributions due to relationships represented on average 5.1% of the contributions 

associated with MACE information for the three traits. Of the 601 sires with an EBVWc, 

all sires were associated with information that included both contributions due to 

relationships and due to records. This latter observation for the 601 sires was expected 

because these 601 sires must have at least 10 daughters with records within 10 herds in 

the Walloon region to participate in the MACE evaluation. 

 

 

Figure VI-1. Percentage of contributions due to records and due to relationships for the 
Walloon example. Percentage of contributions due to records (blue squares) and due to 
relationships (red squares) associated with Walloon information for all animals, internally 
used and unused sires and associated with MACE information for internally used and 
unused sires for milk (M), fat yield (F) and protein (P) yields. 

INTERNALLY USED SIRES 

Of the internally used sires, 1212 had Walloon and MACE information and had 

both internal and external daughters with records. On average, each sire had 143.1 

internal daughters with records. The average RELW ranged from 0.74 to 0.76 (Table VI-5) 

and the average RELMACE was equal to 0.88 for the three traits. Results for r, MSE, a and 

R² for prediction of EBVMACE by EVALBL are in Table VI-6 for the 1212 sires for milk, 

fat and protein yields. For the three traits, blending of Walloon and MACE information by 

taking double counting of contributions due to records and due to relationships into 

account (i.e., EVALBL) led to a ranking that was more similar to the MACE ranking than 

to the internal ranking (i.e., EVALW), although these internally used sires sired a large 
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number of cows with records in the Walloon region. Rank correlations increased by 0.104 

points for milk yield to 0.125 points for fat yield to achieve a rank correlation between 

EBVMACE and EBVBL that ranged from 0.987 to 0.990 (Table VI-6). The MSE, a and R² 

showed that accuracy of predictions of EBVMACE by EBVW or by EBVBL increased when 

external information was integrated. Integration of MACE information also increased the 

average REL by 0.14 points for fat yield to 0.16 points for milk yield (Table VI-5). This 

increase of average REL corresponded to an increase of 57.5, 51.4, and 50.9 DE per sire 

on average for milk, fat and protein yields, respectively. Also, the average RELBL for the 

1212 sires was 0.02 points higher than the average RELMACE (Table VI-6). This difference 

in average REL, as well as the differences between EBVMACE and EBVBL based on MSE, 

a and R² (Table VI-6), can be explained by the fact that MACE did not include all 

information available for animals in the Walloon Region. Indeed, EBVW of a sire was 

included into MACE if it had at least 10 daughters with records within 10 herds at the 

internal level. Therefore, EBVW for sires that did not fulfill this requirement were not 

considered by MACE, but were taken into account by the four Bayesian evaluations, 

which provided additional information compared to MACE information. Approximations 

based on estimation of contributions due to relationships and theoretical assumptions of 

the model may also explain some of the differences between EBVMACE and EBVBL. For 

example, MACE was considered as a national genetic evaluation. These results indicate 

that EVALBL, i.e. a Bayesian evaluation that blended internal information and external 

information and avoided most double counting of contributions due to records and due to 

relationships, was successful in integrating MACE information for internally used sires. 

 

Table VI-5. Average reliabilities (REL; SD in parentheses) associated with Walloon 
estimated breeding values for internally used and unused sires 

Considered animals Milk yield Fat yield Protein yield 
Internally used sires 0.74 (0.22) 0.76 (0.21) 0.75 (0.22) 
Internally unused sires 0.22 (0.10) 0.23 (0.10) 0.22 (0.10) 

 

Double counting of contributions due to records and due to relationships were also 

not considered (i.e. EVALBLNN) or were considered separately (i.e. EVALBLRE and 

EVALBLR) to study their influences on prediction of EVALMACE for internally used sires. 

Parameters r, a and R² associated with EVALBLNN, EVALBLRE and EVALBLR for the 1212 

sires were similar to the r, a and R² of EVALBL, although a slight advantage was observed 

for EVALBL. Therefore, the four blending evaluations led to similar rankings as MACE 
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for the 1212 internally used sires (i.e., rank correlations equal to 0.99 on average; Table 

VI-6). 

Table VI-6. Parameters obtained for the Walloon example for 1212 internally used sires 

Milk yield 
Genetic evaluations 

r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.886 100.00 0.87 (0.013) 0.78 21 934.6 0.74 (0.22) 

EVALBLNN 0.987 11.68 0.993 (0.005) 0.97 55 038.2 0.92 (0.05) 

EVALBLRE 0.989 10.01 0.984 (0.004) 0.98 37 487.1 0.91 (0.05) 

EVALBLR 0.988 10.57 1.004 (0.004) 0.98 52 313.0 0.91 (0.06) 

EVALBL 0.990 8.87 0.995 (0.004) 0.98 34 141.2 0.90 (0.06) 

 Fat yield 

 r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.862 100.00 0.815 (0.014) 0.74 20 016.8 0.76 (0.22) 

EVALBLNN 0.983 12.22 0.989 (0.005) 0.97 46 144.6 0.92 (0.05) 

EVALBLRE 0.985 10.69 0.977 (0.005) 0.97 32 320.9 0.92 (0.05) 

EVALBLR 0.985 11.12 1.004 (0.005) 0.97 43 943.6 0.91 (0.06) 

EVALBL 0.987 9.54 0.991 (0.005) 0.97 29 631.1 0.90 (0.06) 

 Protein yield 

 r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.882 100.00 0.851 (0.013) 0.79 20 851.6 0.75 (0.22) 

EVALBLNN 0.985 12.38 0.985 (0.005) 0.97 49 589.7 0.92 (0.05) 

EVALBLRE 0.987 10.79 0.975 (0.004) 0.98 34 372.9 0.91 (0.05) 

EVALBLR 0.986 11.26 0.996 (0.005) 0.98 47 189.5 0.91 (0.06) 

EVALBL 0.988 9.56 0.986 (0.004) 0.98 31 434.7 0.90 (0.06) 

1r = rank correlation between EVALMACE and EVALW, EVALBLNN, EVALBLRE, EVALBLR or EVALBL. 
2MSE = mean squared error expressed as a percentage of the average internal mean squared error. 
3a = regression coefficient (SE in parentheses) and R² = coefficient of determination of the regression of 
MACE EBV on EBV estimated by EVALW, EVALBLNN, EVALBLRE, EVALBLR or EVALBL. 
4REtot = total amount of record equivalents; 5REL = average reliability (SD in parentheses). 

 

However, double counting can be observed based on MSE, REtot and REL (Table 

VI-6). With regard to double counting of contributions due to relationships for the 1212 

internally used sires, RE that were free of contributions due to relationships (i.e. RE that 

included only contributions due to records) for EBVMACE were equal to 30 378 

(DE = 176 578) for milk yield, 23 927 (DE = 150 772) for fat yield, and 26 338 

(DE = 160 416) for protein yield. These amounts of RE free of contributions due to 

relationships represented 96.1% of the RE that contributed to MACE information. 

Considering the Walloon information for the 1212 sires, RE that included only 

contributions due to records represented from 93.6% of all Walloon contributions for milk 

yield to 94.2% for fat yield. For both Walloon and MACE information associated with the 



Unified method to integrate and blend several, potentially related, sources of information for genetic evaluation 

 117 

internally used sires and for the three traits (i.e. for milk, fat and protein yields), less than 

6.4% of all contributions were attributed to relationships (Figure VI-1). Such low 

percentages of contributions due to relationships are in agreement with selection index 

theory (Van Vleck, 1993). While double counting of contributions due to relationships 

was present for EVALBLRE (i.e. the blending evaluation that considered only double 

counting of contributions due to records), the contributions due to relationships were 

small and their double counting had little effect on the prediction of EBVMACE for the 

internally used sires, compared to EVALBL, based on parameters r and MSE. However, as 

expected, an average increase of 1% in RELBLRE was observed, compared to RELBL. 

Thus, the RELBLRE were, on average, slightly overestimated. 

With regard to double counting of contributions due to records, based on RE, 

Walloon information represented from 64.3% of the total information free of 

contributions due to relationships associated with EVALBL for milk yield to 67.6% for fat 

yield (Table VI-6). Thus, integrated information free of contributions due to relationships 

and due to records (i.e. MACE information from which Walloon information was 

subtracted) represented 32.5% of the total information associated with EVALBL for fat 

yield to 35.8% for milk yield. If double counting of contributions due to relationships was 

considered only, REtot associated with EVALBLR ranged from 43 944 RE for fat yield to 

52 313 RE for milk yield, while REtot associated with EVALBL ranged from 29 631 RE for 

fat yield to 34 141 RE for milk yield. Thus, between 14 313 and 18 172 RE were 

considered twice by EVALBLR. However, double counting of contributions due to records 

affected the prediction of EBVMACE for internally used sires only slightly according to all 

parameters evaluated (Table VI-5). The RELBLR were overestimated by 1% on average for 

the internally used sires, compared to RELBL. Furthermore, no preference was observed 

between EVALBLRE and EVALBLR based on r, MSE, a and R² for the three traits. Indeed, r 

and R² were similar for these two evaluations, while EVALBLRE was more reliable based 

on MSE, but parameter a indicated that EVALBLR was more reliable. However, EVALBLRE 

had the greatest under- and overestimation of true breeding values based on parameter a. 

Based on these results, it can be stated that double counting of contributions due to 

relationships and due to records had little effect on EBV for internally used sires. 

INTERNALLY UNUSED SIRES 

Of the internally unused sires (i.e. that had only external daughters with records), 

631 sires were associated with Walloon and MACE information. Their average RELW 
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ranged from 0.22 to 0.23 for the three traits (Table VI-7) and the average RELMACE was 

equal to 0.77. Because they had only external daughters, Walloon contributions only 

included contributions due to relationships and no contributions due to records. Based on 

REtot (Table VI-7), Walloon contributions due to records for all 631 sires were in general 

well estimated by the TSA, ranging from 0.79% of the Walloon total contributions for 

milk yield to 0.80% for protein yield (Figure VI-1). The small non-zero percentage could 

be attributed to approximations involved in estimating the contributions due to 

relationships and due to records by the TSA, such as the consideration of an unknown 

fixed effect (Vandenplas and Gengler, 2012). The nearly correct estimation of 

contributions due to relationships led to similar average RELMACE and average RELBL for 

the three traits (Table VI-7). Integration of MACE information also increased the average 

RELW by at least 0.54 points, resulting in an average RELBL equal to 0.77 for the three 

traits. These results for the 631 internally unused sires confirmed that MACE information 

already contained the main contributions due to relationships that were expressed in the 

Walloon information and that double counting of contributions due to relationships was 

mostly avoided. Not considering contributions due to relationships (i.e., EVALBLNN and 

EVALBLRE) led to overestimation of average REL by at least 3% (Table VI-7). 

Results for r, MSE, a and R² for the prediction of EBVMACE by the four blending 

evaluations are in Table VI-7 for the 631 internally unused sires for the three traits. 

Blending of Walloon and MACE information led to similar rankings of the 631 sires for 

the four blending evaluations. Rank correlations between EBVMACE and EBV for the four 

blending evaluations increased from 0.73 to 0.99 for milk yield, from 0.57 to 0.99 for fat 

yield and from 0.72 to 0.99 for protein yield. These rank correlations indicated that the 

blending method was also successful for sires with only external information for all three 

traits. These results were confirmed by a decrease of MSE by at least 96.9% and by 

regression coefficients close to 1.0, with an R² equal to 0.99 for all three traits (Table 

VI-7). Because double counting can be only attributed to contributions due to 

relationships for the 631 internally unused sires, EVALBLNN and EVALBLRE led to similar 

parameters. This was also observed for EVALBL and EVALBLR (Table VI-7). Differences 

between these two groups of evaluations were only observed based on MSE and a (Table 

VI-7). These two parameters showed that EBVMACE for the 631 sires were slightly better 

predicted when contributions due to relationships were considered. However, all these 

results showed that contributions due to relationships had little effect on the prediction of 

EBVMACE. 
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Table VI-7. Parameters obtained for the Walloon example for 631 internally unused sires 

Milk yield 
Genetic evaluations 

r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.725 100.00 0.667 (0.024) 0.56 2.5 0.22 (0.10) 

EVALBLNN 0.994 3.09 0.953 (0.004) 0.99 4021.7 0.81 (0.05) 

EVALBLRE 0.994 3.06 0.952 (0.004) 0.99 4021.7 0.81 (0.05) 

EVALBLR 0.994 2.68 0.978 (0.004) 0.99 3172.9 0.77 (0.06) 

EVALBL 0.994 2.68 0.977 (0.004) 0.99 3172.9 0.77 (0.06) 

 Fat yield 

 r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.571 100.00 0.506 (0.024) 0.40 2.0 0.23 (0.10) 

EVALBLNN 0.992 2.28 0.95 (0.005) 0.99 3172.5 0.81 (0.05) 

EVALBLRE 0.992 2.28 0.949 (0.005) 0.99 3172.5 0.81 (0.05) 

EVALBLR 0.992 2.09 0.987 (0.005) 0.99 2499.1 0.77 (0.06) 

EVALBL 0.992 2.08 0.986 (0.005) 0.99 2499.1 0.77 (0.06) 

 Protein yield 

 r1 MSE2 a3 R² 3 REtot
4 REL5 

EVALW 0.717 100.00 0.684 (0.025) 0.54 2.3 0.22 (0.10) 

EVALBLNN 0.993 2.96 0.952 (0.004) 0.99 3490.3 0.81 (0.05) 

EVALBLRE 0.993 2.95 0.951 (0.004) 0.99 3490.3 0.81 (0.05) 

EVALBLR 0.993 2.75 0.978 (0.005) 0.99 2751.0 0.78 (0.06) 

EVALBL 0.993 2.75 0.977 (0.005) 0.99 2751.0 0.77 (0.06) 
1r = rank correlation between EVALMACE and EVALW, EVALBLNN, EVALBLRE, EVALBLR or EVALBL. 
2MSE = mean squared error expressed as a percentage of the average internal mean squared error. 
3a = regression coefficient (SE in parentheses) and R² = coefficient of determination of the regression of 
MACE EBV on EBV estimated by EVALW, EVALBLNN, EVALBLRE, EVALBLR or EVALBL. 
4REtot = total amount of record equivalents; 5REL = average reliability (SD in parentheses). 

 

VanRaden and Tooker (2012) found similar correlations between EBVMACE and 

combined EBV for sires with only external daughters (i.e., between 0.991 and 0.994 for 

yield traits). Their strategy consisted of computing external deregressed proofs (DRP) 

from EBVMACE and including one extra record based on these DRP, weighted by the 

associated DE for the sire. Internal contributions in MACE information for sires with 

internal and external daughters were considered by subtracting the number of internal DE 

from the total and by using internal EBV instead of parent averages from EBVMACE to 

compute external DRP. Based on Legarra et al. (2007), Gengler and Vanderick (2008) 

integrated MACE information into the official Walloon genetic evaluation for milk 

production. External EBV were estimated by selection index theory and internal 

contributions were considered as in VanRaden and Tooker (2012). Thus, while these two 

latter approaches and the approach proposed in this study consider internal contributions 
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to MACE information in a similar manner [See Additional file 2], the main advantage of 

the proposed approach is to avoid a pre-processing deregression step or computation of 

external EBV. 

INTERNAL ANIMALS 

The effect of the integration of MACE information on predictions was also studied 

for internal animals that were not associated with MACE information and that were sired 

by internally used sires. A total of 3331 internal animals was considered. If double 

counting of contributions due to relationships and due to records were avoided (i.e., 

EVALBL), integration of MACE information led to an increase of the REL from 0.32 to 

0.42 for milk yield and from 0.31 to 0.42 for fat and protein yields for internal animals 

that had a RELW less than 0.50 (Table VI-8). These increases were equivalent to 2.4 DE 

for milk yield, 2.3 DE for fat yield and 2.4 DE for protein yield. On average, no increase 

in REL was observed for internal animals with RELW greater than 0.50 (Table VI-9 and 

Table VI-10; Figure VI-2). Therefore, integration of MACE information was mostly 

relevant for external animals that were associated with this information and for internal 

animals with a low RELW sired by external animals. 

 

Table VI-8. Parameters for internal animals with a Walloon reliability less than 0.50 and 
sired by internally used sires 

Genetic evaluation 
Traits N1 Parameters2 

EVALW EVALBLNN EVALBLRE EVALBLR EVALBL 
r 0.944 0.995 0.995 0.999 1.000 

REtot 245.1 1655.2 1655.2 245.1 245.1 Milk yield 1948 
REL 0.32 (0.10) 0.57 (0.06) 0.56 (0.06) 0.43 (0.07) 0.42 (0.07) 

r 0.923 0.994 0.994 0.999 1.000 
REtot 102.6 1254.9 1254.9 102.6 102.6 Fat yield 1694 
REL 0.31 (0.09) 0.56 (0.06) 0.56 (0.06) 0.42 (0.08) 0.42 (0.08) 

r 0.938 0.995 0.995 0.999 1.000 
REtot 148.4 1243.5 1243.5 148.4 148.4 Protein yield 1786 
REL 0.31 (0.09) 0.56 (0.06) 0.56 (0.06) 0.42 (0.08) 0.42 (0.08) 

1N = Number of internal animals. 
2r = rank correlation between EVALBL and EVALW, EVALBLNN, EVALBLRE or EVALBLR; REtot = Total 
amount of record equivalents; REL = average reliability (SD in parentheses). 
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Table VI-9. Parameters for internal animals with a Walloon reliability between 0.50 and 
0.74 and sired by internally used sires 

Genetic evaluation 
Traits N1 Parameters2 

EVALW EVALBLNN EVALBLRE EVALBLR EVALBL 
r 0.999 >0.999 >0.999 >0.999 1.000 

REtot 1205.7 2759.1 2759.1 1205.7 1205.7 Milk yield 1360 
REL 0.55 (0.04) 0.67 (0.02) 0.67 (0.03) 0.55 (0.03) 0.55 (0.03) 

r 0.999 >0.999 >0.999 >0.999 1.000 
REtot 1322.0 3125.6 3125.6 1322.0 1322.0 Fat yield 1607 
REL 0.57 (0.04) 0.68 (0.03) 0.68 (0.03) 0.57 (0.04) 0.57 (0.04) 

r 0.999 >0.999 >0.999 >0.999 1.000 
REtot 1252.0 2787.7 2787.7 1252.0 1252.0 Protein yield 1516 
REL 0.56 (0.04) 0.68 (0.03) 0.68 (0.03) 0.56 (0.04) 0.56 (0.04) 

1N = Number of internal animals. 
2r = rank correlation between EVALBL and EVALW, EVALBLNN, EVALBLRE or EVALBLR; REtot = Total 
amount of record equivalents; REL = average reliability (SD in parentheses). 

 

 

 

 

Table VI-10. Parameters for internal animals with a Walloon reliability greater than 0.74 
and sired by internally used sires 

Genetic evaluation 
Traits N1 Parameters2 

EVALW EVALBLNN EVALBLRE EVALBLR EVALBL 
r 0.998 0.999 1.000 0.999 1.000 

REtot 132.6 156.9 156.9 132.6 132.6 Milk yield 23 
REL 0.80 (0.04) 0.82 (0.03) 0.82 (0.03) 0.80 (0.04) 0.80 (0.04) 

r 0.999 1.000 >0.999 1.000 1.000 
REtot 158.8 190.6 190.6 158.8 158.8 Fat yield 30 
REL 0.81 (0.04) 0.83 (0.03) 0.83 (0.03) 0.81 (0.04) 0.81 (0.04) 

r 0.999 >0.999 >0.999 1.000 1.000 
REtot 147.7 174.6 174.6 147.7 147.7 Protein yield 29 
REL 0.80 (0.04) 0.83 (0.03) 0.83 (0.03) 0.80 (0.04) 0.80 (0.04) 

1N = Number of internal animals. 
2r = rank correlation between EVALBL and EVALW, EVALBLNN, EVALBLRE or EVALBLR; REtot = Total 
amount of record equivalents; REL = average reliability (SD in parentheses). 
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Figure VI-2. Reliabilities for internal progeny. Reliabilities associated with the Bayesian 
evaluation that considers double counting of contributions due to relationships and due to 
records (RELBL) as a function of reliabilities associated with the official Walloon 
evaluation (RELRW) for the 3331 internal animals sired by internally used sires (i.e., 
having daughters with records in the Walloon Region) for milk yield. 

 

The effect of double counting was also studied in comparison to EVALBL for the 

3331 internal animals that were only associated with Walloon information and that were 

sired by internally used sires. Own contributions due to relationships for internal animals 

with RELW less than 0.50 represented from 85.2% of the total contributions for milk yield 

to 91.8% for fat yield (Table VI-8). These percentages ranged from 55.1% for protein 

yield to 57.7% for fat yield for internal animals with RELW between 0.50 and 0.75, and 

from 15.4% for protein yield to 16.7% for fat yield for internal animals with RELW 

greater than 0.75 (Table VI-9, and Table VI-10). As stated before, these observations were 

as expected based on selection index theory (Van Vleck, 1993), and double counting of 

own contributions due to relationships was mostly present for internal animals with low 

RELW. However, internal animals were also affected by double counting of contributions 

due to relationships and due to records that originated from their sires (and relatives) 

through the contributions due to relationships. Double counting that originated from their 

own contributions and from their sires (and relatives) could be observed based on a 

comparison of RELBLRE, RELBLR and RELBL and of r between EBVBL and EBVBLRE or 

EBVBLR (Table VI-8, Table VI-9, and Table VI-10). Double counting of contributions due 

to records that originated from sires of internal animals had minor effects on the average 

RELBLR associated with internal animals (at most 1%) and rankings of internal animals (r 

≥ 0.999; Table VI-8, Table VI-9, and Table VI-10). However, double counting of 
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contributions due to relationships led to an increase of average REL by at least 0.14 points 

for internal animals with RELW less than 0.50 and by at least 0.11 points for internal 

animals with RELW ranging from 0.50 to 0.74. The increase of average REL was lower 

for internal animals with RELW greater than 0.75 (>0.02 points; Table VI-8, Table VI-9, 

and Table VI-10). Although the average RELBLR and RELBLRE were (slightly) 

overestimated for both evaluations, double counting of contributions due to records and 

due to relationships had little effect on the ranking of internal animals compared to the 

ranking of EVALBL, regardless of the group of internal animals or trait considered. 

Indeed, rank correlations between EVALBL and EVALBLR or EVALBLRE were greater than 

0.99 (Table VI-8, Table VI-9, and Table VI-10). All these results show that double 

counting of contributions due to relationships and due to records can be ignored for the 

prediction of EBV for internal animals that are sired by external animals. However, all 

double counting must be taken into account to estimate REL accurately. 

ON THE IMPLEMENTATION 

Considering all groups of animals, i.e., internally used and unused sires, as well as 

internal animals sired by internally used sires, our results for the Walloon example 

suggest that contributions due to relationships can be ignored. Indeed, the different rank 

correlations for EVALBLRE (i.e., the Bayesian evaluation that took only double counting of 

contributions due to records into account) were similar to the rank correlations of 

EVALBL. Furthermore, in practice, the TSA could be difficult to apply if a high number of 

animals is associated with external information because it requires the inversion of a, 

potentially, dense matrix for each iteration. However, effects of double counting of 

contributions due to relationships should be tested before ignoring it. For example, 

overestimation of REL could occur especially for traits for which contributions due to 

relationships would be at least as significant as contributions due to records (e.g., if the 

phenotypes are expensive to obtain). Furthermore, REL associated with the modified 

MME were estimated based on the inverted LHS. Although this was feasible for the 

simulated and Walloon data, this may not be feasible in most cases, and approaches that 

estimate REL (e.g., Misztal and Wiggans, 1988; VanRaden and Wiggans, 1991) could be 

modified to take into account RE (or DE) associated with external information. 

The Walloon example was considered as an evaluation that blends MACE and 

Walloon (internal) information in the context of official Walloon genetic evaluations for 

Holstein cattle. However, the Walloon example can also be considered as a particular case 
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of an internal evaluation that has no internal data and blends only sources of external 

information, i.e., MACE and Walloon information, that are partially based on the same 

information, i.e., the Walloon information. This case can be extended to more general 

cases for which internal data may exist and external animals are associated with at least 

two sources of information (e.g., E1 and E2) that are partially based on the same external 

records or information. Double counting of external information that is shared by the 

sources of external information, e.g., E1 and E2, can be avoided by the proposed approach 

thanks to the knowledge and availability of EBV and associated REL that are based only 

on external information that is shared by the sources of external information. 

Nevertheless, although taking external information that is shared by different sources of 

external information into consideration seems to be possible with the proposed approach, 

this may be difficult in practice because it requires that EBV and associated REL based on 

shared external information are known and available. 

CONCLUSIONS 

The proposed unified method integrated and blended several sources of 

information into an internal genetic evaluation in an appropriate manner. The results also 

showed that the proposed method was able to avoid double counting of contributions due 

to records and due to relationships. Furthermore, because all available external sources of 

information were correctly propagated, relatives of external animals benefited from 

integrated information and, therefore, received more reliable EBV. The unified method 

could also be used in the context of single-step genomic evaluations to integrate external 

information to indirectly recover a large amount of external phenotypic information 

(Colinet et al., 2013). While the simulated and Walloon examples were univariate, the 

unified method was developed for multi-trait models that, e.g., allow evaluation of only 

internally available traits (e.g., methane emissions, fine milk composition traits, such as 

fatty acids, milk proteins and other minor components), using additional external 

information from correlated traits (e.g., traits evaluated by Interbull). 

ADDITIONAL FILES  

Additional file 1: Integration of two sources of external information into a 

genetic evaluation. This file describes a derivation that integrates two sources of external 

information into a genetic evaluation, based on a Bayesian view of the mixed models 

(Sorensen and Gianola, 2002) and similar to the Bayesian derivation of Legarra et al. 
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(2007) that integrates one source of external information into a genetic evaluation. 

Additional file 2: Double counting between internal and external information. 

This file describes the development to avoid double counting of contributions due to 

records between internal and external information. 
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ADDITIONAL FILE 1 

INTEGRATION OF TWO SOURCES OF EXTERNAL INFORMATION INTO A GE NETIC 

EVALUATION  

The following Bayesian derivation is similar to the Bayesian derivation of Legarra 

et al. (2007) that integrates one source of external information into an internal genetic 

evaluation in the context of multi-breed genetic evaluations for beef cattle. 

Assume a set of animals partitioned in four groups. The first group (i.e., internal 

animals 0
1,2A ) has only records in the internal data set (

0Ey ). The second group (i.e., 

external animals 1A ) has records in the external data set, 
1Ey , and may have records in 

0Ey . The third group (i.e., external animals 2A ) has records in the external data set, 
2Ey , 

and may have records in 
0Ey . The fourth group (i.e., external animals 1,2A ) have records 

in both 
1Ey  and 

2Ey , and may have also records in 
0Ey . For the following genetic 

evaluations, variance components are assumed to be identical. 

Concerning the notation of matrices in the following development (e.g., ( )li AEX ), 

the subscript iE  refers to the ith source of data and the subscript within brackets ( lA ) 

refers to the lth group of animals, respectively. 

Assume a hypothetical joint genetic evaluation (denoted by the subscript J) of all 

animals ( 0
1,2A , 1A , 2A , 1,2A ) including both datasets 

1Ey  and 
2Ey . Because it was 

assumed that 
1Ey  and 

2Ey  were pre-corrected for fixed effects, the model partitioned 

among the four groups of animals can be written as: 
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=  is the vector of genetic random effects for 

animals 0
1,2A , 1A , 2A  and 1,2A  for the evaluation J, ( )1A1EZ  and ( )1,2A1EZ  are incidence 

matrices relating records of ( )1A1Ey  and ( )1,2A1Ey  to ( )1AJu  and ( )1,2AJu , respectively, and 

( )2A2EZ  and ( )1,2A2EZ  are incidence matrices relating records of ( )2A2Ey  and ( )1,2A2Ey  to 
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( )2AJu  and ( )1,2AJu , respectively, and 
1Je  and 

2Je  are the vectors of residuals associated 

with 
1Ey  and 

2Ey , respectively. 

The corresponding mixed model equations (MME) can be written as: 
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 are the inverse of the residual (co)variance matrices associated with 

1Je  and 
2Je , respectively. 

Assume an internal genetic evaluation (denoted by the subscript E0) of all animals 

(i.e., animals 0
1,2A , 1A , 2A  and 1,2A ) including only 

0Ey  and using the prior distribution 

( ) ( )*Gµy,yu
2E1EE0

,=ˆp MVN  (Sorensen and Gianola, 2002) where *G  is the inverse of 

the left hand side (LHS) of the equation 1.1 and µ  is the solutions of the equation 1.1. 
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The model for the genetic evaluation E0 can be written as: 

000000 EEEEEE euZβXy ++= , 

where 
0EX  and 

0EZ  are incidence matrices relating records in 
0Ey  to the vector of fixed 

effects 
0Eβ  and the vector of genetic random effects 
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, (equation 1.2) 

where 1
E0

R −  is the inverse of the residual (co)variance matrix associated with 
0Ee . 

However, the evaluation J (equation 1.1), and therefore *G  and µ , are unknown. 

Assume that two genetic evaluations (denoted by the subscripts E1 and E2, 

respectively) for two groups of external animals (i.e., animals 1A  and 1,2A , and animals 

2A  and 1,2A , respectively) which do not include in the genealogy internal animals (i.e., 

animals 0
1,2A  and 2A , and animals 0

1,2A  and 1A , respectively) are known. The model for 

the genetic evaluation E1 of only external animals 1A  and 1,2A  including only 
1Ey  and 

which does not include in the genealogy animals 0
1,2A  and 2A  can be written as: 
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where ( )1A1Eu  and ( ),21A1Eu  are the vectors of genetic random effects for animals 1A  and 

1,2A  for the genetic evaluation E1. 

The MME can be written as: 
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(equation 1.3) 
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where 
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additive genetic (co)variance matrix for the external genetic evaluation E1. 

Similarly, the MME for the genetic evaluation E2 of only external animals 2A  and 

1,2A  including only 
2Ey  and which does not include in genealogy animals 0
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can be written as: 
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(equation 1.4) 

where ( )2A2Eû  and ( ),21A2Eû  are the vectors of genetic random effects for animals 2A  and 

1,2A  for the genetic evaluation E2, and 
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  (equation 1.5) 

and, similarly,  
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Substituting “unknown” terms of the equation 1.1 by their corresponding terms 
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from the equations 1.3, 1.4, 1.5 and 1.6, the MME (equation 1.1) can be written as: 
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          (equation 1.7). 

By replacing 1−*G  in the equation 1.2 by the LHS of the equation 1.7 and 

µ*G 1−  by the RHS of the equation 1.7, the following equations are obtained: 
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          (equation 1.8). 

To simplify the system of equations 1.8, two genetic evaluations including in 

genealogy all animals (i.e., animals 01,2A , 1A , 2A  and 1,2A ) equivalent to the genetic 

evaluations E1 and E2 for the external animals can be performed. Therefore, the following 

model of a genetic evaluation of all animals including only 
1Ey  can be written as: 
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where ( )0
1,21 AE

u  and ( )21 AE
u  are the vectors of estimated random additive genetic effects for 

animals 
0
1,2A  and 2A . 

The corresponding MME can be written as follows: 
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G  is the additive genetic 

(co)variance matrix taking into account all animals. 

Similarly, MME for a genetic evaluation of all animals including only 
2Ey  can be 

written as: 
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through the selection index theory, respectively.  

Therefore, the MME (1.1) can be written as 
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This development could be extended to more than two sources of external 

information. 
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ADDITIONAL FILE 2 

DOUBLE COUNTING BETWEEN INTERNAL AND EXTERNAL INFORMATION  

Assume 
0Eû  and 

000 E
1

E
1

E Λ+G=D −− (equation 2.1), the vector of known internal 

EBV and the inverse of the associated prediction error (co)variance matrix obtained from 

the genetic evaluation E0 based on the source E0 including only internal information 

where 1
E0

G −  is the inverse of the additive (co)variance matrix for all internal and external 

animals in the genetic evaluation E0 and 
0EΛ is a block diagonal variance matrix. The 

vector 
1Eû  and the matrix 

111 E
1

E
1

E Λ+G=D −−  (equation 2.2) are the vector of known 

external EBV and the inverse of the associated prediction error (co)variance matrix 

obtained from a genetic evaluation based on the source E1 including external and internal 

information where 1
E1

G −  is the inverse of the additive (co)variance matrix for all internal 

and external animals in the genetic evaluation E1. The vector 
2Eû  and the matrix 1

E2
D−  are 

the vector of unknown external EBV and the inverse of the associated unknown 

prediction error (co)variance matrix obtained from a genetic evaluation E2 based on the 

source E2 including only external information. It is also assumed that double counting 

among animals due to relationships is taken into account. 

Therefore, from 
0EΛ  and 

1EΛ , the diagonal matrix of RE expressing the amount 

of contributions only due to records, 
0ERE and 

1ERE , can be estimated for the two 

sources of information E0 and E1, respectively. Because these RE are free of contributions 

due to relationships and due to correlated traits, the matrix of RE associated with the 

source of information E2, 2ERE , can be estimated as follows: 

012 EEE RERE=RE −  (equation 2.3). 

It can be also written that 
012 EEE ΛΛ=Λ −  (equation 2.4). The unknown 1

E2
D−  

can be approximated as 
222 E

1
E

1
E Λ+G=D −−  (equation 2.5) where 1

E2
G −  is the inverse of an 

unknown additive (co)variance matrix for the external source E2. From the equations 2.1, 

2.2 and 2.5, the equation 2.4 is equivalent to the equation 

)G(D)G(D=GD 1
E

1
E

1
E

1
E

1
E

1
E 001122

−−−−−− −−−−  (equation 2.5). 

Following the equations (VI.1) and assuming the lack of phenotypes in 
0Ey , it can 
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be written: 
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Because of the equation 2.5, the equation 2.6 can be written as follows: 
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Thereby, 
2Eû  can be estimated using 
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Because the source E2 is free of internal information E0, it can be integrated into the 

internal evaluation through the system of equations (VI.1) as follows: 
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(equation 2.8). 

Due to the equations 2.5 and 2.7, 1E2
D−  and 

2Eû  must not be estimated explicitly 

and the system of equations 2.8 can be written as follows: 
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This development can be extended to integrate several sources of external 

information. 

 



 

 

Chapter VII. W ALLOON SINGLE -STEP GENOMIC EVALUATION 

SYSTEM INTEGRATING LOCAL AND MACE EBV 

 

 

 

 

As reviewed in Chapter II, single-step genomic evaluations 

combine internal phenotypic and genealogic data with genomic 

data without considering external information. In Chapter VI, it 

has been suggested that the proposed Bayesian methods can be 

extended to single-step genomic evaluations. However, the 

inclusion of genomic data in the proposed Bayesian methods was 

never tested in the previous Chapters. Therefore, based on the 

Bayesian methods proposed in Chapter VI and based on single-

step genomic evaluations, the aim of this Chapter was to test and 

implement a Walloon genomic evaluation for Holstein cattle that 

combines simultaneously genomic data and all available Walloon 

and external information. 

 

 

 

 

 

 

 

 

 

 

 

Adapted from: Colinet, F.G., J. Vandenplas, P. Faux, S. Vanderick, R. Renaville, C. 

Bertozzi, X. Hubin, and N. Gengler. 2013. Walloon single-step genomic evaluation 

system integrating local and MACE EBV. Interbull Bull. 47:203–210. 
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ABSTRACT  

Walloon dairy cattle could be considered as a small scale population where the 

majority of AI bulls are imported from several foreign countries. Single-step Genomic 

Best Linear Unbiased Prediction (ssGBLUP) methods allow the simultaneous use of 

genomic, pedigree and phenotypic information and should reduce potential biases in the 

estimation of genomically enhanced breeding values (GEBV). Therefore, in the context of 

developing a Walloon genomic evaluation system, it was considered as the best option. 

However, in opposition to multi-step genomic predictions, ssGBLUP only uses local 

phenotypic information and is unable to use directly important other sources of 

information coming from abroad, e.g., multiple across country evaluation (MACE) results 

provided by International Bull Service (Interbull, Uppsale, Sweden). Therefore, single-

step Genomic Bayesian Prediction (ssGBayes) was used as an alternative method for the 

Walloon genomic evaluation system. The ssGBayes approach allows combining 

simultaneously all available genotype, pedigree, local and foreign information in a local 

evaluation by considering a correct propagation of external information avoiding double 

counting of contributions due to relationships and due to records. In the Walloon genomic 

evaluation system, local information refers to Walloon estimated breeding values (EBV) 

and associated reliabilities (REL) and foreign information refers to MACE EBV and 

associated REL. Furthermore, the Bayesian approach has the advantage to directly 

combine EBV and REL without any deregression step. The ssGBayes method computed 

more accurate predictions for all types of animals. For example, for genotyped animals 

with low Walloon REL (<0.25) without MACE results and sired by genotyped bulls with 

MACE results, the average increase of REL for the studied traits was 0.39 points of which 

0.14 points could be traced to the inclusion of MACE information. For other categories of 

genotyped animals, the contribution by MACE information was high too. The new 

Walloon genomic evaluation system passed the Interbull GEBV tests for several traits in 

July 2013. This approach has the potential to improve current genomic prediction 

strategies as it can be used in other settings where the combination of different sources of 

information is required. 

Key words: Bayesian integration, MACE, genomic prediction 

INTRODUCTION 

Simultaneous use of all data by Best Linear Unbiased Prediction (BLUP) is a 
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condition to predict unbiased estimated breeding values (EBV; Henderson, 1984). 

However, this condition is not always fully met. For example, small scale local 

populations lead to evaluations based only on local data while foreign bulls are used (e.g., 

87% of cows in 1st to 3rd parity in 2012 were sired by artificial insemination (AI) bulls 

born outside of Walloon Region of Belgium). Although these bulls were strongly 

preselected, foreign raw data used to select them is unavailable leading to potential biases 

in local evaluations. Local EBV will be also less accurate because only incomplete data 

(i.e., foreign raw data not included) is available. Genomic selection could increase these 

problems for local genomic evaluations. 

Most current genomic evaluation systems are multi-step, relying heavily on the 

use of multiple across country evaluation (MACE) results as the primary source of 

foreign phenotypic information. However, these implementations of genomic prediction 

using MACE results mitigated these issues only for sires with high REL which are 

introduced during the single nucleotide polymorphisms (SNP) prediction equation 

estimation step. 

Single-step genomic evaluations (ssGBLUP; e.g., Aguilar et al., 2010; Christensen 

and Lund, 2010) should reduce potential biases in the estimation of genomically enhanced 

breeding values (GEBV) by the simultaneous combination of genomic, pedigree and all 

local phenotypic information (VanRaden, 2012), also because fewer approximations are 

made than in multi-step methods. Therefore, in the context of developing a Walloon 

genomic evaluation system, ssGBLUP was considered as the best option. However, in 

opposition to multi-step genomic prediction, ssGBLUP uses only local phenotypic 

information and is unable to use directly other important sources of information provided, 

e.g., by MACE. Nevertheless, the recovery of such important sources of information in 

the Walloon genomic evaluation system was required due to the widespread use of 

imported AI bulls. 

Therefore, in the context of the Walloon genomic evaluation system, the aim of 

this research was to assess the potential of a Bayesian approach, based on ssGBLUP, to 

simultaneously combine all available genotype, pedigree, local and foreign information in 

a local genomic evaluation. This approach also avoids deregression steps, allows a correct 

propagation of external information and avoids multiple considerations of contributions 

due to relationships and due to records. 
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MATERIALS AND METHODS  

In this study, local information will refer to local EBV and associated reliabilities 

(REL) estimated from all available local data and foreign information will refer to MACE 

EBV and associated REL. 

Currently, in the Walloon Region of Belgium, genomic evaluations for the 

Holstein breed are performed for all traits submitted to MACE. In this study, results are 

reported showing the strategy and the results obtained in the July 2013 run for milk, fat 

and protein yields, somatic cell score, longevity and two conformational traits (stature and 

udder support). 

The genomic evaluation system implemented in the Walloon Region of Belgium 

consisted of several steps. First, a group of genotyped animals was defined as those 

animals born after the year 1998. Ancestors for these animals were extracted from the 

database used for the official Walloon genetic evaluation and covered up to 6 known 

ancestral generations. After extraction, the pedigree file contained 16 234 animals of 

which 1909 animals (1378 bulls and 525 cows) were genotyped. The large majority of 

genotyped cows were not from a selected set of local Holstein animals but were from a 

set of Holstein animals representing the Walloon variability in the Holstein cattle. A total 

of 38 604 SNP markers were selected after editing. 

Local information included EBV and associated REL for cows and bulls estimated 

from data provided by the Walloon Breeding Association (subscript W; EBVW, RELW) for 

the official Walloon evaluation of April 2013 (Auvray and Gengler, 2002; Croquet et al., 

2006). Table VII-1 shows the number of animals associated to Walloon information for 

which EBVW were available for each studied trait. Foreign information included EBV and 

REL for sires provided by the April 2013 MACE evaluation performed by Interbull 

(subscript M; EBVM, RELM; Table VII-1). 

 

Table VII-1. Used genetic parameters, local and foreign information available for the 
genomic evaluation for the seven reported traits 

No. of animals  No. of genotyped animals 
Trait Heritability 

Genetic 
variance EBVW EBVM EBVWC  EBVW EBVM EBVWC 

Milk yield  0.38 280 425 12 046 1981 601  1762 1205 278 
Fat yield 0.43 523 12 046 1981 601  1762 1205 278 
Protein yield 0.41 262 12 046 1981 601  1762 1205 278 
SCS 0.13 0.2060 12 047 1941 575  1762 1167 261 
Longevity 0.11 0.0797 11 641 1914 520  1758 1155 238 
Stature 0.52 1.1984 12 671 1922 595  1706 1158 277 
Udder support 0.19 0.3212 12 226 1911 573  1699 1158 277 



Chapter VII 

 142 

For every trait, contributions of Walloon information into MACE were determined 

based on the domestic effective daughter equivalents (EDC) associated to EBVM and 

RELM as reported by Interbull. MACE information free of Walloon information had 

therefore a reported domestic EDC equal to 0. For all animals and traits with a domestic 

EDC different from 0, Walloon EBV and associated REL contributing to the April 2013 

MACE routine-run (subscript Wc; EBVWc, RELWc) were considered to avoid double 

counting of contributions due to records (Table VII-1). Information was harmonized 

between the local and MACE traits by adjusting scale and mean difference towards the 

original expression of the trait in the Walloon genetic evaluation computations. As shown 

in Table VII-1, numbers of available local and foreign records were slightly different 

among the traits. 

The Bayesian procedures that integrate multiple sources of external information 

into genetic evaluations were outlined by Vandenplas et al. (2014). Also, these authors 

outlined that their proposed systems of equations could be extended to integrate multiple 

sources of external information into ssGBLUP (Vandenplas et al., 2014). Thereby, their 

proposed equation (VI.4) that blends several sources of external information by avoiding 

double counting of contributions due to records and due to relationships was adapted to 

blend Walloon and MACE information into a ssGBLUP for each trait separately. This 

method, hereafter called single-step Genomic Bayesian Prediction (ssGBayes), was used 

as an alternative method for the Walloon genomic evaluation system. The equation 

associated with ssGBayes that blends genomic, Walloon and MACE information and that 

considers Walloon information contributing to MACE (hereafter called ssGBayesW+M-Wc) 

can be written as follows: 

( )  Wc
1

WcM
1

MW
1

WWcMWWcMW
1 * u DuDuDa ΛΛΛG ˆˆˆˆ −−−

−+
− −+=−++  (VII.1) 

where 2
aσHG * =  is the combined genomic-pedigree based (co)variance matrix, H  is the 

combined genomic-pedigree based relationship matrix (e.g., Aguilar et al., 2010; 

Christensen and Lund, 2010), 2aσ  is the additive genetic variance, WcMWa −+ˆ  is the vector 

of Walloon GEBV based on Walloon and MACE information, Wû  is the vector of EBVW, 

Mû  is the vector of EBVM,  ˆ Wcu is the vector of EBVWc, iΛ  (i = W, M and Wc) is a 

matrix mimicking least squares part of hypothetical BLUP, and 1
iD−  is the inverse of the 

prediction error (co)variance matrix of iû . 

The inverse of the combined genomic-pedigree based relationship matrix H was 
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computed using the inverse of the additive pedigree relationship matrix and a modified 

genomic relationship matrix using a weight equal to 0.95 for raw genomic relationships 

and equal to 0.05 for pedigree relationships. For matrices compatibility, both diagonal and 

off-diagonal values were respectively centred on the average of diagonal and off-diagonal 

elements of the subpart of the additive relationship matrix among genotyped animals. 

Regarding the vectors iû  for the 3 sources of information (i.e., W, M and Wc), it 

is worth noting that only some animals included in the pedigree were associated with 

known EBV and REL (hereafter called external animals; Table VII-1). Therefore, for each 

ith source of information, animals not associated with available EBV were called internal 

animals and the vector of EBVi (i = W, M and Wc) for all animals included in the 

pedigree, iû , was estimated as (Vandenplas et al., 2014): 












=

−

i(E)

i(E)
1

i(EE)i(IE)
i u

u G G
u

ˆ

ˆ
ˆ  

where the subscript I refers to internal animals not associated with the ith source of 

information, the subscript E refers to external animals associated with the ith source of 

information, i(E)û  is the vector of EBV for the ith source of information associated with 

external animals and 

1

i(II)i(IE)

i(EI)i(EE)1

GG

GG
G

−

−








=  is the inverse of the pedigree-based 

(co)variance matrix. 

For the 3 sources of information (i.e., W, M and Wc), the matrix 1
iD−  was 

approximated as i
11

i ΛGD += −−  where iΛ  is a diagonal variance matrix with one 

diagonal element per animal equal to 2
eij σRE  for j = 1, 2, …, J animals (Vandenplas et 

al., 2014). The element 2eσ  is the residual variance and the element ijRE  is the effective 

number of records, so-called record equivalents, for the jth animal. Record equivalents 

expressed the amount of contributions for an animal (Misztal and Wiggans, 1988). It is 

worth noting that double counting of contributions due to relationships among related 

animals could exist because both Walloon and MACE information were associated with 

related animals. Therefore, the combination of Walloon and MACE information was 

performed by taking into account contributions due to relationships among related 

animals. These contributions were estimated by a two-step algorithm (TSA; Vandenplas 

and Gengler, 2012). It takes into account all relationships between animals associated 
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with information and their ancestors. Therefore, for the internal animals, ijRE  is equal to 

0. All contributions for these animals were only due to their relationships with external 

animals. For the external animals, ijRE  was estimated through TSA and only express the 

amount of contributions due to records. 

Because a major feature of the Walloon genomic evaluation system is its ability to 

use MACE information, in comparison to ssGBLUP, the influence of the use of this 

information was tested. To test this influence, ssGBayes was run considering only 

Walloon information (ssGBayesW) using the following system of equations: 

( ) W
1

WWW
1 uDa ΛG ˆˆ* −− =+  (VII.2) 

where Wa ˆ  is the vector of Walloon GEBV only based on Walloon information. 

Approximation of genomic REL (GREL) for GEBV in genomic evaluation 

systems is not always straight forward (Misztal, 2013). Because the equations (VII.1) and 

(VII.2) associated with ssGBayesW+M-Wc and ssGBayesW, respectively, represented 

hypothetical mixed model equations, the computation of REL was tested using the 

standard formula: 

2/1 gσPEVGREL −=  (VII.3) 

where 2
gσ  is the diagonal element of *G  and PEV  is the prediction error variance 

obtained from the diagonal element of the inverted left hand side of the equations (VII.1) 

and (VII.2), respectively. By using diagonal elements of *G , the method corrected for 

inbreeding estimated using combined pedigree and genomic information. 

The two ssGBayes were performed using BLUPF90 (Misztal, 2013) modified to 

implement equations (VII.1) and (VII.2). 

RESULTS AND DISCUSSION  

For all traits, among the approximately 12 000 animals associated with available 

Walloon information, around 1950 bulls were also evaluated by Interbull (Table VII-1). 

Walloon information for around one third of these bulls contributed to the April 2013 

MACE routine-run. Table VII-1 also indicates that at least 83% of the 1378 genotyped 

bulls and at least 11% of the 16 234 animals in the considered pedigree file had foreign 

information. This large amount of additional information was incorporated in the genomic 

evaluation system and would allow increasing the overall accuracy of the produced 

GEBV. 
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Table VII-2 gives details on the improvement of REL when estimating (G)EBV 

from different sources. First, the improvement due to including only genomic information 

was considered. For the genotyped bulls with low reliable official Walloon EBV (RELW < 

0.50), the genomic information allowed an substantial increase of between 0.13 and 0.19 

points for average REL of these bulls according to the studied traits. 

The genomic information also increased average REL for the two other categories 

of bulls with more accurate Walloon EBV. Indeed, the average REL was increased with 

0.05-0.06 points for the bulls with RELW between 0.50 and 0.75. Even for locally well 

proven bulls (i.e., RELW ≥ 0.75), the genomic information added 0.01 to the average 

REL. 

Considering the simultaneous combination of genomic and foreign information 

(i.e., ssGBayesW+M-Wc), the increases of the averaged REL for each of the three mentioned 

categories of genotyped bulls (Table VII-2) were higher than those associated with 

ssGBayesW. As expected, the highest increase of REL was observed for the bulls with the 

lowest RELW. When comparing different traits, the use of ssGBayesW+M-Wc led to an 

increase of average REL between 0.20 points for longevity and 0.41 points for milk yield 

compared to ssGBayesW. The increase was lower for genotyped bulls with RELW 

included in the range [0.50-0.75[ with 0.09 to 0.22 additional points of REL. Even for the 

already locally well proven bulls (i.e., RELW ≥ 0.75), ssGBayesW+M-Wc still provided more 

reliable GEBV than ssGBayesW. Additional points of REL ranged from 0.02 for longevity 

to 0.05 for fat yield (Table VII-2). 

Table VII-3 shows the improvements for genotyped animals only associated with 

EBVW, i.e., without foreign information, and sired by genotyped bulls with MACE 

results. These genotyped animals were Walloon cows and bulls as well as foreign or 

Walloon bulls to be tested. Again, similarly to Table VII-2, even if ssGBayesW allowed an 

increase of average REL with 0.16-0.28 additional points, ssGBayesW+M-Wc led to higher 

REL. For most traits, ssGBayesW+M-Wc provided an average REL higher than 0.50 for 

these genotyped animals with a RELW included in the range ]0.00-0.25[. 



Chapter VII 

 146 

 

G
R

E
L W

+
M

-W
c3  

0
.9

4
 

(0
.0

4)
 

0
.9

4
 

(0
.0

4)
 

0
.9

4
 

(0
.0

4)
 

0
.9

6
 

(0
.0

4)
 

0
.8

9
 

(0
.0

4)
 

0
.9

6
 

(0
.0

4)
 

0
.9

5
 

(0
.0

4)
 

G
R

E
L W

2  

0
.9

1
 

(0
.0

6)
 

0
.9

1
 

(0
.0

6)
 

0
.9

1
 

(0
.0

6)
 

0
.9

1
 

(0
.0

6)
 

0
.8

7
 

(0
.0

6)
 

0
.9

2
 

(0
.0

6)
 

0
.9

2
 

(0
.0

7)
 

R
E

L W
1  

0
.9

0
 

(0
.0

7)
 

0
.9

0
 

(0
.0

7)
 

0
.9

0
 

(0
.0

7)
 

0
.9

0
 

(0
.0

7)
 

0
.8

6
 

(0
.0

6)
 

0
.9

1
 

(0
.0

7)
 

0
.9

1
 

(0
.0

8)
 

[0
.7

5 
–

 0
.9

9
] 

N
 

3
9

0
 

4
1

2
 

4
0

4
 

3
3

7
 

1
4

9
 

4
0

8
 

2
8

6
 

G
R

E
L W

+
M

-W
c3  

0
.8

7
 

(0
.0

5)
 

0
.8

7
 

(0
.0

4)
 

0
.8

7
 

(0
.0

4)
 

0
.9

0
 

(0
.0

8)
 

0
.7

5
 

(0
.0

7)
 

0
.9

1
 

(0
.0

6)
 

0
.8

4
 

(0
.0

8)
 

G
R

E
L W

2  

0
.6

9
 

(0
.0

6)
 

0
.6

9
 

(0
.0

5)
 

0
.6

9
 

(0
.0

6)
 

0
.6

8
 

(0
.0

6)
 

0
.6

6
 

(0
.0

7)
 

0
.6

9
 

(0
.0

5)
 

0
.6

8
 

(0
.0

6)
 

R
E

L W
1  

0
.6

3
 

(0
.0

7)
 

0
.6

3
 

(0
.0

7)
 

0
.6

3
 

(0
.0

7)
 

0
.6

3
 

(0
.0

7)
 

0
.6

1
 

(0
.0

8)
 

0
.6

3
 

(0
.0

7)
 

0
.6

3
 

(0
.0

7)
 

[0
.5

0 
–

 0
.7

5
[ 

N
 

1
7

3
 

1
5

8
 

1
6

2
 

1
8

6
 

1
4

6
 

1
4

1
 

1
8

9
 

G
R

E
L W

+
M

-W
c3  

0
.8

0
 

(0
.0

9)
 

0
.8

0
 

(0
.0

9)
 

0
.8

0
 

(0
.0

9)
 

0
.8

4
 

(0
.1

2)
 

0
.5

1
 

(0
.0

9)
 

0
.8

2
 

(0
.1

3)
 

0
.7

1
 

(0
.1

4)
 

G
R

E
L W

2  

0
.4

4
 

(0
.0

9)
 

0
.4

5
 

(0
.0

9)
 

0
.4

4
 

(0
.0

9)
 

0
.4

3
 

(0
.0

9)
 

0
.3

6
 

(0
.0

9)
 

0
.4

6
 

(0
.0

8)
 

0
.4

3
 

(0
.0

8)
 

R
E

L W
1  

0
.2

5
 

(0
.1

2)
 

0
.2

6
 

(0
.1

2)
 

0
.2

6
 

(0
.1

2)
 

0
.2

5
 

(0
.1

2)
 

0
.2

3
 

(0
.1

2)
 

0
.2

8
 

(0
.1

0)
 

0
.2

8
 

(0
.1

0)
 

R
E

L W
 

]0
.0

0 
- 

0
.5

0
[ 

N
 

6
4

7
 

6
4

2
 

6
4

4
 

6
8

2
 

8
8

9
 

6
3

2
 

6
9

9
 

Ta
bl

e 
V

II-
2.

 A
ve

ra
ge

 r
e

lia
bi

lit
ie

s 
(R

E
L;

 S
D

 i
n 

pa
re

nt
he

se
s)

 a
ss

o
ci

at
ed

 t
o 

E
B

V W
, 

G
E

B
V W

 a
nd

 G
E

B
V W

+
M

-W
c 

fo
r 

ge
no

ty
pe

d 
bu

lls
 

fo
r 

th
e 

se
ve

n 
st

ud
ie

d 
tr

ai
ts 

T
ra

it 

M
ilk

 
yi

el
d

 

F
at

 
yi

el
d

 

P
ro

te
in

 
yi

el
d

 

S
C

S
 

L
o

n
g

ev
ity

 

S
ta

tu
re

 

U
d

d
er

 
su

p
p

o
rt

 

1 R
E

L
 o

b
ta

in
ed

 f
ro

m
 W

al
lo

o
n

 p
o

ly
g

en
ic

 e
va

lu
at

io
n.

 
2 R

E
L

 o
b

ta
in

ed
 f

ro
m

 W
al

lo
o

n
 g

en
o

m
ic

 e
va

lu
at

io
n

 u
si

n
g

 
o

n
ly

 E
B

V
W

 (
eq

. 
(V

II
.1

) 
an

d
 (

V
II.

3
))

. 
3 R

E
L

 o
b

ta
in

ed
 f

ro
m

 W
al

lo
o

n
 g

en
o

m
ic

 e
va

lu
at

io
n

 u
si

n
g

 
E

B
V

W
, 

E
B

V
M

 a
n

d
 E

B
V W

c 
(e

q
. 

(V
II

.2
) 

an
d

 (
V

II.
3

))
. 



Walloon single-step genomic evaluation system integrating local and MACE EBV 

 147 

 

G
R

E
L W

+
M

-W
c3  

0
.6

4
 

(0
.0

2)
 

0
.6

5
 

(0
.0

2)
 

0
.6

5
 

(0
.0

2)
 

0
.6

6
 

(0
.0

5)
 

--
- 

(-
--

) 

0
.7

6
 

(0
.0

3)
 

0
.6

4
 

(0
.0

3)
 

G
R

E
L W

2  

0
.6

1
 

(0
.0

2)
 

0
.6

2
 

(0
.0

2)
 

0
.6

1
 

(0
.0

2)
 

0
.6

1
 

(0
.0

6)
 

--
- 

(-
--

) 

0
.7

4
 

(0
.0

3)
 

0
.6

0
 

(0
.0

3)
 

R
E

L W
1  

0
.5

2
 

(0
.0

2)
 

0
.5

4
 

(0
.0

3)
 

0
.5

3
 

(0
.0

2)
 

0
.5

3
 

(0
.0

7)
 

--
- 

(-
--

) 

0
.7

0
 

(0
.0

4)
 

0
.5

3
 

(0
.0

3)
 

[0
.5

0 
–

 0
.7

5
[ 

N
 

1
0

1
 

1
4

7
 

1
3

3
 

3
0

 

0
 

1
2

0
 

7
3

 

G
R

E
L W

+
M

-W
c3  

0
.6

0
 

(0
.0

3)
 

0
.6

0
 

(0
.0

4)
 

0
.6

0
 

(0
.0

3)
 

0
.6

1
 

(0
.0

3)
 

0
.4

4
 

(0
.0

3)
 

0
.5

9
 

(0
.0

3)
 

0
.5

6
 

(0
.0

4)
 

G
R

E
L W

2  

0
.5

4
 

(0
.0

5)
 

0
.5

4
 

(0
.0

5)
 

0
.5

4
 

(0
.0

5)
 

0
.5

3
 

(0
.0

4)
 

0
.4

0
 

(0
.0

4)
 

0
.5

1
 

(0
.0

5)
 

0
.5

0
 

(0
.0

5)
 

R
E

L W
1  

0
.4

3
 

(0
.0

7)
 

0
.4

1
 

(0
.0

8)
 

0
.4

2
 

(0
.0

8)
 

0
.4

3
 

(0
.0

6)
 

0
.3

1
 

(0
.0

4)
 

0
.3

6
 

(0
.0

6)
 

0
.3

8
 

(0
.0

7)
 

[0
.2

5 
–

 0
.5

0
[ 

N
 

1
2

3
 

7
7

 

9
1

 

1
9

4
 

1
6

5
 

1
1

4
 

1
5

8
 

G
R

E
L W

+
M

-W
c3  

0
.5

2
 

(0
.0

4)
 

0
.5

3
 

(0
.0

4)
 

0
.5

3
 

(0
.0

4)
 

0
.5

4
 

(0
.0

4)
 

0
.3

8
 

(0
.0

4)
 

0
.5

3
 

(0
.0

5)
 

0
.4

8
 

(0
.0

6)
 

G
R

E
L W

2  

0
.3

8
 

(0
.0

8)
 

0
.3

9
 

(0
.0

8)
 

0
.3

9
 

(0
.0

8)
 

0
.3

6
 

(0
.0

8)
 

0
.3

0
 

(0
.0

6)
 

0
.3

6
 

(0
.1

0)
 

0
.3

4
 

(0
.0

9)
 

R
E

L W
1  

0
.1

1
 

(0
.1

0)
 

0
.1

1
 

(0
.1

0)
 

0
.1

1
 

(0
.1

0)
 

0
.1

1
 

(0
.1

0)
 

0
.1

4
 

(0
.0

8)
 

0
.0

8
 

(0
.0

9)
 

0
.1

1
 

(0
.0

9)
 

R
E

L W
 

]0
.0

0 
–

 0
.2

5
[ 

N
 

4
3

 

4
3

 

4
3

 

5
2

 

1
1

7
 

4
6

 

6
5

 

Ta
bl

e 
V

II-
3.

 A
ve

ra
ge

 r
el

ia
bi

lit
ie

s 
(R

E
L;

 S
D

 in
 p

ar
en

th
es

es
) 

as
so

ci
at

ed
 to

 E
B

V W
, G

E
B

V W
 a

nd
 G

E
B

V W
+

M
 fo

r 
ge

no
ty

pe
d 

an
im

al
s 

w
ith

ou
t M

A
C

E
 r

es
ul

ts
 a

nd
 s

ire
d 

by
 g

en
ot

yp
ed

 b
u

lls
 w

ith
 M

A
C

E
 r

es
ul

t f
or

 th
e 

st
ud

ie
d 

tr
ai

ts 

T
ra

it 

M
ilk

 
yi

el
d

 

F
at

 
yi

el
d

 

P
ro

te
in

 
yi

el
d

 

S
C

S
 

L
o

n
g

ev
ity

 

S
ta

tu
re

 

U
d

d
er

 
su

p
p

o
rt

 

1  R
E

L
 o

b
ta

in
ed

 fr
o

m
 W

al
lo

o
n 

p
o

ly
g

en
ic

 e
va

lu
at

io
n

. 
2  R

E
L

 o
b

ta
in

ed
 fr

o
m

 W
al

lo
o

n 
g

en
o

m
ic

 e
va

lu
at

io
n

 u
si

n
g

 o
n

ly
 E

B
V W

 (
eq

. 
(V

II
.1

) 
an

d
 (

V
II.

3
))

. 
3  R

E
L 

o
b

ta
in

ed
 fr

o
m

 W
al

lo
o

n
 g

en
o

m
ic

 e
va

lu
at

io
n

 u
si

n
g

 E
B

V
W

, 
E

B
V

M
 a

n
d

 E
B

V W
c 

(e
q

. 
(V

II
.2

) 
an

d
 (

V
II.

3
))

. 

 



Chapter VII 

 148 

The genomic evaluation addressed another category of genotyped animals 

including the newborn Walloon bulls (candidate for AI bulls) and recently imported AI 

bulls (or with a forecasted importation), both types of animals not being yet included in 

the routine genetic evaluations. Therefore, these bulls had no available external 

information due to their absence in the pedigree file at the last official Walloon genetic 

evaluation. These animals were incorporated in the genomic evaluation system by only 

using their available information (i.e., pedigree and genotypes) and information available 

for their relatives. If their sires were associated with MACE EBV, REL of their GEBV 

were higher than the threshold defined for the considered trait to be publishable (Table 

VII-4). For each of the seven studied traits, ssGBayesW+M-Wc provided a publishable 

GEBV for more than two thirds of these bulls. 

 

Table VII-4. Average reliabilities (REL; SD in parentheses) associated with GEBVW+M-

Wc
1 for genotyped bulls without external phenotype information (neither local EBV 

neither MACE EBV), sired by genotyped bulls with MACE results for the studied trait 

Trait 
Publication rule: 

REL ≥ 
No. of bulls Averaged RELW+M-Wc (SD) No. of publishable GEBVW+M-Wc 

Milk yield 0.50 17 0.53 (0.05) 13 

Fat yield 0.50 17 0.53 (0.06) 13 

Protein yield 0.50 17 0.53 (0.05) 13 
SCS 0.45 20 0.54 (0.05) 19 

Longevity 0.35 23 0.38 (0.05) 18 

Stature 0.50 21 0.54 (0.06) 15 

Udder support 0.50 21 0.47 (0.07) 15 
1 GEBVW+M-Wc and RELW+M-Wc from Walloon genomic evaluation using EBVW, EBVM and EBVWc 

 

Currently, the system is not yet optimized by genotyping additional related 

animals with information (e.g., maternal grand-sires, brothers, half-brothers) in order to 

increase the links between these candidate animals and the genotyped animals with 

information. An appropriate strategy will be implemented to detect the most important 

animals to be also genotyped which should increase the proportion of publishable GEBV 

even further. 

The Walloon genomic evaluation system was used and results tested inside the 

GEBV tests of Interbull. Results passed the tests for several traits in April and July 2013. 

Currently, research is undertaken to optimize the formation of the modified genomic 

relationships matrix. Indeed, several tests showed that the weighting used has a large 

influence and that the optimal proportion between raw genomic and pedigree 
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relationships directly reflects the critical partitioning of total genetic variance in variances 

explained by SNP effects or polynomial residuals. 

CONCLUSIONS 

The ssGBayes method, through its Bayesian approach, integrated well MACE 

results into ssGBLUP and allowed recovering indirectly a large amount of phenotypic 

information. All available external sources of information were correctly propagated 

avoiding double counting of contributions due to relationships and due to own records. 

Therefore, the ssGBayes method proved to be a good choice for the Walloon genomic 

evaluation system integrating Walloon and MACE EBV. Additional optimizations are 

currently under development by genotyping important sires and by adapting the correct 

partitioning of additive total variance for a given trait in order to increase the number of 

traits that pass the Interbull GEBV test. The ssGBayes method used in the Walloon 

genomic evaluation system can also be adapted to a multi-trait setting allowing the 

genomic evaluation of only locally available traits (e.g., fine milk composition, methane 

emissions) using external information from correlated traits (e.g., traits evaluated by 

Interbull). 

Finally, the ssGBayes approach has the potential to improve current genomic 

prediction strategies as it can be used in other settings (e.g., beef cattle and pigs) where 

the combination of different sources of information is required. 
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Chapter VIII. G ENERAL DISCUSSION  

 

 

 

 

Based on previous research, Chapter III to Chapter VII presented 

improvements and implementations of Bayesian approaches that 

integrate several sources of external information into an internal 

genetic or single-step genomic evaluation. Although the Bayesian 

approaches were developed to integrate external information 

correlated to the internal phenotypic traits into a multivariate 

genetic evaluation (e.g., Chapter VI), external information was 

always considered to be the same trait as the internal phenotypic 

trait from Chapter III to Chapter VII. Therefore, in this Chapter, a 

general discussion was first initiated by investigating the 

integration of correlated external information into a multivariate 

genetic evaluation. Second, a comparative study among the 

different approaches that combine simultaneously external 

information and internal data was detailed. 
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Bayesian approaches that integrate external information, i.e., estimated breeding 

values (EBV) and associated reliabilities (REL), into an internal genetic evaluation were 

proposed by several authors (e.g., Quaas and Zhang, 2006; Legarra et al., 2007). Different 

issues were identified and, thereby, improvements and implementations of algorithms and 

methods, as well as extension of their scope to genomics were proposed in Chapter III 

until Chapter VII. This included the reduction of computational burdens (Chapter III), and 

the consideration of double counting of contributions due to relationships (Chapter III) 

and due to records (Chapter VI). In Chapter VI, modified mixed models equations 

(MME) were presented to integrate several sources of external information into genetic 

and genomic evaluations. To our knowledge, such an integration of several sources of 

external information has not been showed by previous authors in the context of Bayesian 

approaches. Also, the proposed improvements and algorithms were tested with real data 

in the context of the Belgian genetic evaluation for jumping horses (Chapter IV) and in 

the context of the Walloon single-step genomic evaluation system for Holstein cattle 

(Chapter VII). 

It is worth noting that external information was always considered to belong to the 

same trait as the considered internal phenotypic trait from Chapter III to Chapter VII. 

However, the Bayesian approaches were also developed for integrating external 

information correlated to the internal phenotypic traits (hereafter called correlated 

external information) into multivariate genetic evaluations (e.g., Chapter VI; Quaas and 

Zhang, 2006). These Bayesian approaches need an approximation of the inverse of the 

prediction error (co)variance matrix associated with external EBV obtained from external 

multivariate MME. An approximation of the inverse of this matrix was proposed in 

Chapter VI. As stated in this Chapter VI, the proposed approximation is different from the 

approximation proposed by Quaas and Zhang (2006). The difference between the two 

approximations is linked to the approximation of the least squares part of the left hand 

side (LHS) of the external multivariate MME that is needed for the approximation of the 

inverse of the prediction error (co)variance matrix. Therefore, our approximation (Chapter 

VI) and the one presented by Quaas and Zhang (2006) were tested and compared based 

on simulated data. Results are given in the subsequent section. Finally, a comparison of 

the three types of approaches that combine simultaneously internal data and external 

information for univariate analyses and multivariate genetic evaluations is presented in 

the last section of this Chapter. 
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INTEGRATION OF CORRELATED EXTERNAL INFORMATION  

Thanks to correlations among different traits, some advantages of multivariate 

genetic evaluations are firstly the prediction of EBV for traits of interest for which 

phenotypes could be difficult, or impossible to collect internally and, secondly, the 

improvement of accuracy of EBV for the different traits, under some conditions (e.g., 

Schaeffer, 1994; Mrode, 2005). Thereby, integration of external information correlated to 

the internal phenotypic traits into an internal multivariate genetic evaluation could be 

interesting to solve different issues. Firstly, accuracy of internal evaluations may be still 

low for some traits of interest, while accurate external evaluations for similar traits or for 

correlated traits are routinely performed, potentially at an international level (e.g., MACE 

evaluations for commonly evaluated traits). Therefore, integration of correlated external 

information provided by external evaluations into a multivariate evaluation could improve 

the accuracy of the traits of interest. Secondly, external information can be expressed on 

other scales or units of measurement, or it can be associated with different heritabilities 

and genetic parameters than the internal traits of interest. Therefore, like MACE, 

integration of correlated external information could be an optimal approach to evaluate 

genetic merits of animals without the use of conversion equations and without the 

dependence of the internal genetic evaluation to these equations. In the context of the 

Bayesian evaluations integrating external information into a multivariate genetic 

evaluation, two different approximations of the least squares part of the LHS of the 

external MME, involved in the approximation of the inverse of the prediction error 

(co)variance matrix associated with external EBV (Chapter III; Chapter VI), were 

proposed. The first approach to approximate the external least squares part was proposed 

by Quaas and Zhang (2006) and used in Chapter III and Chapter IV. This approach 

involves the matrix of additive genetic (co)variances among traits. The second approach 

was proposed in Chapter VI and involves the matrix of residual (co)variances among 

traits, instead of the additive genetic (co)variance matrix. Therefore, based on simulated 

data, the aim of this study was to test the two proposed approximations through their use 

in a Bayesian approach that combines internal pedigree and phenotypes for a trait of 

interest with external information, i.e., EBV and REL provided by an external genetic 

evaluation for a trait genetically correlated to this trait of interest. 

MATERIAL AND METHODS  

The context of the simulation was a population where only females were 
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associated with phenotypes. Females were assigned to different herds. Phenotypes were 

observed for two genetically correlated traits. It was also assumed that phenotypes were 

observed for only one of the two traits in each herd. Therefore, females were associated 

with phenotypes for only one of the two traits and the residual correlation was assumed to 

be equal to zero. For pedigree, one hundred replicates were first generated by the QMSim 

program (Sargolzaei and Schenkel, 2009). The parameter file considered 40 male 

founders and 200 female founders to generate 10 generations of animals. The litter size 

and the proportion of male progeny were assumed to be 1 and 50%, respectively. Matings 

and selection were random. It was also assumed that 40% of sires and 10% of dams were 

replaced in all generations. For each pedigree, females were randomly attributed to one of 

the five assumed herds under the assumption that each herd included on average 1/5 of 

the total amount of females. Phenotypes for the two traits, hereafter called “trait of 

interest” and “correlated trait”, were simulated for each female following Van Vleck 

(1982). Females attributed to the two first herds were only associated with phenotypes 

related to the trait of interest and females attributed to the three last herds were only 

associated with phenotypes related to the correlated trait. Heritabilities of 0.10 and 0.35 

were considered for the trait of interest and the correlated trait, respectively. 

Corresponding phenotypic variances were 80000 2
tu  and 100 2

cu  where 2
tu  and 2

cu  are the 

squares of the units of measurement for the trait of interest ( tu ) and the correlated trait 

( cu ), respectively. Genetic correlations between traits (rg) equal to 0.10, 0.25, 0.50, 0.75, 

and 0.90 were considered. As explained previously, the residual correlation between traits 

(re) was assumed to be equal to 0.00 because there was no environmental covariance 

among the traits as the two traits were not observed on same animals. Hereafter, 

phenotypic data for the trait of interest and related to the two first herds will be 

considered as internal data while phenotypic data for the correlated trait and related to the 

three last herds will be considered as external data. The simulation of phenotypes was 

replicated for each of the 100 pedigree and for each of the 5 considered genetic 

correlations. 

Using simulated data, three conventional genetic evaluations and two Bayesian 

evaluations were performed for each genetic correlation. All evaluations were based on 

the same pedigree that includes all animals. (1) Joint evaluations (EVALJ) were 

performed as bivariate Best Linear Unbiased Prediction (BLUP) evaluations using the 

system of equations (VI.2) and based on external and internal data. These evaluations 
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were assumed to be the reference. (2) Internal evaluations (EVALI) were performed as 

bivariate BLUP evaluations using the system of equations (VI.2) and based only on 

internal data. External data was ignored by EVALI. (3) External evaluations (EVALE) 

were performed as bivariate BLUP evaluations using the system of equations (VI.2) and 

based on external data. Internal data was ignored by EVALE. 

Then, two bivariate Bayesian evaluations integrating external information, i.e., 

EBV and associated REL provided by EVALE, for all external sires having daughters with 

phenotypes for the correlated trait, were also performed using the following system of 

equations, with the same compact notation for both evaluations (e.g., Chapter III): 
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where I and E refer to EVALI and EVALE, respectively, IX  and IZ  are incidence 

matrices relating internal phenotypes in Iy  to the vector of fixed effects Iβ̂  and the vector 

of random additive genetic effects Iû , respectively, 1
IR −  is the inverse of the residual 

(co)variance matrix, and 1
ED−  is the inverse of prediction error (co)variance matrix 

associated to the vector of external EBV (Eû ). 

As explained in the previous Chapters, the vector of external EBV for all internal animals 

and external sires is estimated as ( )
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ˆ  where ( )EEû  is the vector of 

external EBV for the external sires obtained from EVAL E and 
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GG
G  is the 

additive genetic (co)variance matrix. 

Although the systems of equations related to the two Bayesian evaluations had the 

same compact notation, the difference between both evaluations concerned the 

approximation of 1
ED− , and especially the computation of the approximation of the least 

squares part of the LHS of EVALE, i.e., the computation of the block diagonal matrix Λ , 

needed for the approximation of 1
ED− , that is ΛGD 11

E += −− . (4) For the Bayesian 

evaluation based on the approximation of Quaas and Zhang (2006) (EVALQ), block 

diagonals of Λ , hereafter noted QΛ , related to external animals are equal to Qi
1

0Qi ∆G∆
−  

for i = 1, 2, …, N external animals where the matrix 0G  is a matrix of additive genetic 
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(co)variances between the 2 traits and 
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with iREL1  and iREL2  being REL for the ith animal for the first and second trait, 

respectively. (5) For the Bayesian evaluation based on the approximation proposed in 

Chapter VI (EVALV), block diagonals of Λ , hereafter noted VΛ , related to external 

animals were equal to Vi
1

0Vi ∆R∆
−  for i = 1, 2, …, N external animals where the matrix 

0R  is a matrix of residual (co)variances between the two traits and 
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Vi∆  with iRE1  and iRE2  being the record equivalents for the ith 

animal for the first and second trait, respectively. For internal animals, associated block 

diagonals were equal to 0 for both EVALQ and EVALV. It was noted that no phenotype for 

the correlated trait was considered by EVALI, EVALQ and EVALV. Only EVALE and 

EVALJ considered phenotypes for the correlated trait. 

Because external sires could be related among them, double counting of 

contributions due to relationships could exist. Therefore, contributions due to 

relationships were estimated through the two-step algorithm (TSA; Chapter III) for 

external sires. The different iREL1 , iREL2 , iRE1  and iRE2  estimated by TSA and used for 

the computation of Λ  were therefore assumed free of contributions due to relationships 

among external animals and due to correlations among traits. 

RESULTS AND DISCUSSION  

For univariate analyses, computations of QΛ  and VΛ  are equivalent. Following 

Chapter III and Chapter VI, it can be written for the ith external animal for a univariate 

genetic evaluation: 
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where 2
aσ  and 2

eσ  are the additive genetic variance and the residual variance, respectively. 

However, the equality is not observed for multivariate analyses. Indeed, the block 

diagonal matrix Qi
1

0Qi ∆G∆
−  could add unobserved contributions to the elements of the 

LHS corresponding to the ith external animal because the matrices 1
0G −  and 1

0R −  have not 

the same structure. For example, if residual covariances are assumed to be equal to zero, 
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the block diagonal matrix Qi
1

0Qi ∆G∆
−  would add unobserved contributions to the elements 

of the LHS corresponding to the ith external animal, especially through the genetic 

correlations among traits. Consequences of additional unobserved contributions could 

lead to overestimated REL and less accurate evaluations. Furthermore, zero residual 

correlations could be a common situation in the context of integration of correlated 

external information into a multivariate genetic evaluation because phenotypes used to 

compute external information would not be observed on internal animals and, therefore, 

would not be available for internal evaluations. Therefore, zero residual covariances were 

assumed for the data simulations to illustrate such situations and consequences of the 

computations of QΛ  and VΛ  on the Bayesian evaluations. 

Regarding the simulated datasets, the 100 replicates included each 2240 animals 

and all results presented hereafter concern only the trait of interest. The following 

parameters were explored. Firstly, Spearman’s rank correlation coefficients (r) of EVALJ 

with EVAL I, EVALQ or EVALV are presented for external sires (i.e., sires having 

daughters with records for the correlated trait; Table VIII-1) and for females having 

records for the trait of interest and sired by the external sires (hereafter called “female 

progeny”; Table VIII-2). Secondly, the average REL computed from prediction error 

variances obtained from the inverse of the LHS of EVAL J and EVALI, EVALQ and 

EVALV (no corrections were performed for inbreeding) are reported for external sires 

(Table VIII-1) and for female progeny (Table VIII-2). Finally, mean squared errors (MSE) 

expressed as a percentage of average internal MSE for external sires (Table VIII-1) and 

for female progeny (Table VIII-2) are also presented. The average internal MSE was 

expressed on a base of 100. All reported parameters were the averages and the associated 

standard deviations of the 100 replicates. 

On average, 183.0 (±1.1) sires were associated with external information. Firstly, 

whatever the computation of Λ  or the considered rg, the integration of correlated external 

information for external sires led to rankings that were more similar to the rankings of 

EVALJ. For the external sires, r between EVALJ and EVALI varied from 0.987 for rg = 

0.10 to 0.563 for rg = 0.90. The r of EVALJ with EVALQ or EVALV increased to at least 

0.990 after integrating correlated external information. Furthermore, MSE also showed 

that the integration of correlated external information led to better predictions of EVALJ 

for the external sires, leading to MSE lower than 3.12% (±0.61), whatever rg (Table 

VIII-1). Secondly, when comparing EVALQ and EVALV for the external sires, no 
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difference can be observed between both evaluations on average across the 100 replicates 

for rg = 0.10 or rg = 0.25. These results could be expected because rg, as well as the 

absolute differences between rg and re, were low (Schaeffer, 1984). Differences were 

observed only from rg = 0.50. The r of EVALJ with EVALQ or EVALV were similar 

(≥0.990) from rg = 0.50 to rg = 0.90. Differences of rankings between EVALQ and EVALV 

were lower than 0.008 points for rg = 0.90. Thereby, differences between EVALQ and 

EVALV for external sires associated with external information were mostly observed 

through MSE and REL. Regarding REL, REL for EVALQ were overestimated from 

8.98% for rg = 0.50 to 76.21% for rg = 0.90 (Table VIII-1). REL for EVALV were 

overestimated from 1.80% for rg = 0.50 to 2.74% for rg = 0.90 (Table VIII-1). As shown 

in Table VIII-1, overestimation of REL for EVALQ increased with increasing rg, and 

therefore, with the increase of the absolute differences between rg and re. Overestimation 

of REL for EVALV could be attributed to a double counting of contributions due to 

relationships since the TSA approximated these different contributions (Chapter III; 

Chapter VI). However, double counting of contributions due to relationships cannot 

explain the large overestimation observed for EVALQ. Contrariwise, this large 

overestimation can be mainly attributed to unobserved contributions added by the product 

Qi
1

0Qi ∆G∆
−  for each ith external animal. For beef cattle and based on simulated data, 

Zhang et al. (2002) studied the effects of integration of external information related to 

three traits into an internal multivariate genetic evaluation evaluating the same three traits. 

The Bayesian approach was the approach proposed by Quaas and Zhang (2006). External 

information included sires’ EBV and their associated accuracies for the three traits 

obtained from an external multivariate genetic evaluation. Variance components were 

assumed to be equal among all evaluations. Unlike our simulations, residual covariances 

were not equal to zero because the three traits could be observed internally, and also 

externally, on the same animals. Nevertheless, results of this study also showed that 

average accuracies associated with the Bayesian evaluation were higher than average 

accuracies associated with a joint evaluation based on internal and external data, for the 

three traits. Such an overestimation of accuracies showed that additional and unobserved 

contributions were integrated into the internal multivariate genetic evaluation. In addition 

to double counting of contributions due to relationships that was not taken into account in 

the study of Zhang et al. (2002), the difference between the residual correlations among 

the three traits (in the range between -0.08 and 0.23) and the genetic correlations (in the 
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range between 0.31 and 0.50) could also explain these overestimations of accuracies. 

Furthermore, regarding MSE obtained in the present study, it can be observed that 

additional and unobserved contributions led to a less accurate, or biased, Bayesian 

evaluation with a difference of MSE between EVALV and EVALQ equal to 0.02% for rg = 

0.50 until 2.64% for rg = 0.90, although average REL for EVALQ was higher than average 

REL for EVALV (Table VIII-1). 

 

Table VIII-1. Parameters1 (SD in parentheses) averaged on 100 replicates and obtained 
for external sires 

Genetic correlations Parameters EVAL J EVAL I EVALQ EVALV 

r 1.000 (0.000) 0.987 (0.004) >0.999 (0.000) >0.999 (0.000) 

REL 0.103 (0.003) 0.100 (0.003) 0.103 (0.003) 0.103 (0.003) 0.10 

MSE - 100.00 (17.28) 0.23 (0.05) 0.23 (0.05) 

r 1.000 (0.000) 0.927 (0.020) >0.999 (0.000) >0.999 (0.000) 

REL 0.117 (0.003) 0.100 (0.003) 0.118 (0.003) 0.118 (0.003) 0.25 

MSE - 100.00 (17.09) 0.24 (0.05) 0.24 (0.05) 

r 1.000 (0.000) 0.777 (0.053) 0.999 (0.000) 0.999 (0.000) 

REL 0.167 (0.003) 0.100 (0.003) 0.182 (0.003) 0.170 (0.003) 0.50 

MSE - 100.00 (17.17) 0.31 (0.06) 0.29 (0.06) 

r 1.000 (0.000) 0.634 (0.079) 0.998 (0.001) 0.999 (0.000) 

REL 0.255 (0.003) 0.100 (0.003) 0.344 (0.004) 0.262 (0.003) 0.75 

MSE - 100.00 (17.58) 0.87 (0.19) 0.39 (0.07) 

r 1.000 (0.000) 0.563 (0.091) 0.990 (0.003) 0.998 (0.000) 

REL 0.328 (0.004) 0.100 (0.003) 0.578 (0.005) 0.337 (0.004) 0.90 

MSE - 100.00 (17.65) 3.12 (0.61) 0.48 (0.09) 
1r = rank correlation between a joint evaluation (EVAL J) and an internal evaluation (EVALI), a Bayesian 
evaluation proposed by Quaas and Zhang (2006; EVALQ) or a Bayesian evaluation proposed in Chapter VI 
(EVALV); REL = average reliability; MSE = mean squared error expressed as a percentage of the average 
internal mean squared error. 

 

As shown in the previous Chapters for univariate Bayesian evaluations, one of the 

advantages of Bayesian approaches is that external information is propagated to internal 

animals through the additive genetic (co)variance matrix G . This advantage is still 

observed for multivariate Bayesian evaluations, in addition to the propagation of external 

information from one trait to the other one, and it can be observed through female 

progeny of external sires that have records for the trait of interest. On average, external 

sires sired 241.15 (± 47.06) daughters across the 100 replicates. For the trait of interest, 

results for 100 replicates showed that r of EVALJ with EVALQ and with EVALV ranged 

from 0.997 for rg = 0.10 to 0.892 for rg = 0.90 for female progeny. The rank correlations 

of EVALJ with EVALI ranged from 0.992 to 0.652. These results showed that integration 
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of external correlated information for external sires led to rankings of sires’ progeny more 

similar to the rankings of EVALJ, even if rg is low. Effects of the integration was also 

observed through MSE which decreased of about 65% for rg = 0.10 to rg = 0.90. 

Comparisons of r and MSE between EVALQ and EVALV showed that unobserved 

contributions added by EVALQ led to similar r and MSE. However, these unobserved 

contributions led to higher average REL obtained from EVALQ compared to average REL 

obtained from EVALV (Table VIII-2). 

 

Table VIII-2. Parameters1 (SD in parentheses) averaged on 100 replicates and obtained 
for female progeny sired by external sires and having records for the trait of interest 

Genetic correlations Parameters EVAL J EVAL I EVALQ EVALV 

r 1.000 (0.000) 0.992 (0.002) 0.997 (0.001) 0.997 (0.001) 

REL 0.138 (0.002) 0.136 (0.002) 0.137 (0.002) 0.137 (0.002) 0.10 

MSE - 100.00 (13.49) 36.48 (5.75) 36.48 (5.75) 

r 1.000 (0.000) 0.954 (0.009) 0.983 (0.003) 0.983 (0.003) 

REL 0.144 (0.002) 0.136 (0.002) 0.141 (0.002) 0.141 (0.002) 0.25 

MSE - 100.00 (13.31) 36.34 (5.77) 36.34 (5.77) 

r 1.000 (0.000) 0.844 (0.029) 0.947 (0.010) 0.946 (0.010) 

REL 0.169 (0.002) 0.136 (0.002) 0.157 (0.002) 0.154 (0.002) 0.50 

MSE - 100.00 (13.46) 36.03 (5.88) 36.05 (5.88) 

r 1.000 (0.000) 0.721 (0.048) 0.910 (0.017) 0.910 (0.017) 

REL 0.212 (0.002) 0.136 (0.002) 0.197 (0.003) 0.177 (0.002) 0.75 

MSE - 100.00 (14.31) 35.74 (6.05) 35.65 (6.04) 

r 1.000 (0.000) 0.652 (0.057) 0.892 (0.020) 0.892 (0.021) 

REL 0.247 (0.003) 0.136 (0.002) 0.255 (0.004) 0.195 (0.003) 0.90 

MSE - 100.00 (15.18) 36.46 (6.16) 35.34 (6.10) 
1r = rank correlation between a joint evaluation (EVAL J) and an internal evaluation (EVALI), a Bayesian 
evaluation proposed by Quaas and Zhang (2006; EVALQ) or a Bayesian evaluation proposed in Chapter VI 
(EVALV); REL = average reliability; MSE = mean squared error expressed as a percentage of the average 
internal mean squared error. 

 

Based on these results, the proposed Bayesian approaches seem to well integrate 

the correlated external information into a multivariate genetic evaluation, especially if the 

block diagonal matrix was VΛ  (Chapter VI) instead of QΛ  (Quaas and Zhang, 2006). 

Better predictions of EBV and improvement of REL were observed for external animals 

and for their progeny in both approaches. However, the better results obtained for EVALV, 

in comparison to EVALQ, must be confirmed with real data and other approximations of 

Λ  (e.g., Schaeffer, 2001) must be tested. Furthermore, it is worth noting that different 

units of measurement were assumed between the two traits, as well as different 

heritabilies and different variance components. Therefore, like MACE, the proposed 
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Bayesian approach allows the combination of different sources of information associated 

to different scales, different heritabilities and variance components, or different units of 

measurement. Also, multi-trait Bayesian evaluations allow to consider genotype by 

environment interactions and different trait definitions associated with the internal and 

external evaluations. This latter characteristic permits to avoid conversion of external 

information (e.g., expressed as indices or standardized estimates) to the expression of the 

random animal effects considered by the internal evaluations. For example, in the context 

of dairy cattle and for numerous countries, milk yield is a trait published as an average 

yield on 305 days for three lactations while models are test-day models, possibly 

considering random regressions for additive genetic effects (Gengler and Vanderick, 

2008; Liu et al., 2014). In cases of random regression test-day models, Gengler and 

Vanderick (2008) proposed to convert external indices which express average yields on 

305 days for three lactations to (one of) the random regression additive genetic effects for 

one or several lactations. Alternatively, external information can be considered as an 

additional trait which has no observed phenotype internally and which is genetically 

correlated to all the random regression additive genetic effects for all lactations, similarly 

to the present study. Such a strategy could be considered for integrating MACE 

information into single-step genomic evaluations. 

Regarding the correlations, it was assumed that residual and genetic variances of 

the traits as well as the residual and genetic correlations between external information and 

internal data were known. However, in practice, variances and correlations are not known 

and must be estimated. Therefore, approaches to estimate variances and correlations 

associated with internal data and external information must be studied and developed. 

Also, it is worth noting that, although a diagonal residual (co)variance matrix was 

assumed for this simulation, off-diagonal elements different from zero could be 

considered, for example, if phenotypes for the different traits were observed on the same 

internal animals, as shown by Zhang et al. (2002). 

CONCLUSIONS 

Based on these results, the proposed Bayesian approaches integrated well 

correlated external information into a multivariate genetic evaluation for simulated data, 

especially if the block diagonal matrix was VΛ  (Chapter VI) instead of QΛ  (Quaas and 

Zhang, 2006). Therefore, the proposed multivariate Bayesian approaches have the 

potential to integrate correlated external information into a multivariate genetic evaluation 
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allowing for different heritabilities, variance components, units of measurement or models 

between external and internal traits. However, while the multivariate Bayesian approaches 

seem promising, their implementation could be difficult due to availability or estimation 

of correlations between external information and internal data. Hence, further research on 

real data is needed to confirm these first results. 

COMPARISON OF APPROACHES THAT COMBINE INTERNAL DATA AND EXTERNAL 

INFORMATION 

Three types of approaches allow to combine simultaneously internal data and 

external information, i.e., EBV and associated REL:  

(1) absorption based approaches (e.g., Henderson, 1975; Van Vleck, 1982; Bolgiano 

et al., 1983),  

(2) pseudo-records based approaches (e.g., Bonaiti and Boichard, 1995; VanRaden et 

al., 2014), and 

(3) Bayesian approaches (Chapter III, Chapter VI). 

These approaches were described in the previous Chapters and some similarities among 

some of them were already noted (Chapter II). Therefore, the aim of the present section is 

to make pairwise comparisons of the three approaches to identify similarities and 

differences among them. As reviewed in Chapter II, different implementations were 

proposed for all the three approaches, and from those, the implementations proposed by 

Bolgiano et al. (1983), by VanRaden et al. (2014) and in Chapter VI were chosen. 

The context of the comparisons is an internal univariate evaluation integrating one 

source of external information associated with external animals that have no observations 

at the internal level. This assumption concerning external animals and internal records 

was taken for simplification. Nevertheless, results of the comparison would be identical 

without this assumption. Such a context can be observed, for example, for a dairy cattle 

genetic evaluation for milk production traits that integrates external information for bulls 

only (e.g., Bolgiano et al., 1983). Also, all animals are assumed to be partitioned between 

internal animals (I) and external animals (E). Thereby, in this context, a system of 

equations for the internal genetic evaluation combining internal data and external 

information can be written for the three approaches with the same compact notation as 

follows: 
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where Iy  is the vector of internal observations associated with the internal animals, Iβ  is 

the vector of fixed effects, Iu  and Eu  are the vectors of random additive genetic effects 

of internal and external animals, respectively, Ip  is the vector of random permanent 

environmental effects and e is the vector of residuals. IX  and IZ  are incidence matrices 

relating internal observations to fixed effects and to random effects, respectively, 









=−

EEEI

IEII

AA

AA
A 1  is the inverse of the relationships matrix, ( ) 21 hr−=λ  and 

( ) ( )21 hrr −−=α  where r  and 2h  are repeatability and heritability, respectively. The 

matrix Ψ  and the vector θ  must be defined following the considered approach, that are 

the absorption based approach (Bolgiano et al., 1983), the pseudo-records based approach 

(VanRaden et al., 2014) and the Bayesian approach (Chapter VI). 

ABSORPTION BASED APPROACHES AND PSEUDO -RECORDS BASED APPROACHES  

Concerning the absorption based approach, the system of equations (VIII.1) has 

the same compact notation as the system of equations [2] proposed by Bolgiano et al. 

(1983). Following their definitions and after some simplifications, the diagonal element of 

the diagonal matrix Ψ  for the ith animal, iiΨ , is equal to siii n λλ*=Ψ  where in  is the 

number of daughters of the ith external animal and which provide equivalent information 

with one record per daughter and all in the same herd-year-season. The element of the 

vector θ  corresponding to the ith animal, iθ , is equal to 

( )
( ) ( )( ) ( )

ii siii nhn
hh

r
EE µµθ λλλ +=−+

−
−= *14

4

1 2
22

 where Eµ  is the vector of external 

EBV associated with the external animals (Henderson, 1975; Table VIII-3). 

Also, the system of equations for univariate analyses (VIII.1) can be applied for 

the pseudo-records based approach proposed by VanRaden et al. (2014). Following their 

definitions and after some simplifications, the diagonal element of the diagonal matrix Ψ  

for the ith external animal is equal to iii REΨ =  where iRE  is the element for the ith 

animal of the vector of RE associated with external animals. The element of the vector θ  
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for the ith external animal for the pseudo-records based approach, iθ , is equal to 

iii DRPREθ *=  where iDRP  is the element for the ith animal of the vector of the 

deregressed proofs (DRP) associated with external animals (VanRaden et al., 2014; Table 

VIII-3). 

Therefore, considering these definitions, the two approaches are equivalent under 

some assumptions. Firstly, the diagonal elements of Ψ  are equivalent assuming ii DEn =  

where λλsii REDE *=  is the daughter equivalents which are defined as the number of 

daughters of the ith external animal which provide equivalent information with one record 

per daughter, all daughters having an infinite number of management group mates and the 

other parent with perfect REL (VanRaden and Wiggans, 1991). Secondly, the elements of 

θ  are equivalent assuming ( )
iii EµREDRP λ+= 1 . It is noted that the equivalence 

between absorption based approaches and pseudo-records based approaches, under some 

assumptions, was already shown by Bonaiti and Boichard (1995). However, in practice, 

differences may appear between results of both approaches if the previous assumptions 

are not verified (e.g., VanRaden et al., 2014). 

 

Table VIII-3. Non-zero elements1 of the matrix Ψ  and the vector θ  for the ith external 
animal that is not associated with records at the internal level in the context of a 
univariate evaluation, following the absorption based approach (Bolgiano et al. 1983), the 
Bayesian based approach (Chapter VI) and the pseudo-records based approach (VanRaden 
et al. 2014) 

Approaches iiΨ  
iθ  

Absorption based approach sin λλ*  ( )
isin Eµλλλ +*  

Bayesian based approach 2
eii

σEΛ  ( ) ∑
≠=

−− ++
N

ijj
e jijiiiii

,1

2
E

1
EEE

1
EEE µAµAΛ λλσ  

Pseudo-records based approach iRE  ii DRPRE *  

1
in  = number of daughters of the ith external animal and which provide equivalent information with one 

record per daughter and all in the same herd-year-season; λ  = ratio of residual to genetic variance ; 
sλ  = 

ratio of error to sire variance; Eµ  = vector of external estimated breeding values associated with the 

external animals; EΛ  = diagonal matrix; 2
eσ  = residual variance; 1

EEA −  = inverse of the relationships matrix 

among external animals; RE  = vector of record equivalents associated with external animals; DRP  = 
vector of deregressed proofs associated with external animals. 

 

ABSORPTION BASED APPROACHES AND BAYESIAN APPROACHES  

In the context defined previously, based on the assumptions specified for the 
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Bayesian approach defined in Chapter VI and by multiplying the system of equations 

(IV.3) by the residual variance 2
eσ , the system of equations (IV.3) has an equivalent 

compact notation than the system of equations (VIII.1). Thereby, following the definitions 

given in Chapter VI and after some simplifications, the diagonal element for the ith 

animal of the diagonal matrix Ψ , iiΨ , is equal to ieii ii
REΛΨ E == 2σ  for the Bayesian 

approach, with EΛ  being a diagonal matrix with a diagonal element for each ith animal 

equal to ( ) 12 −= eiii
σREΛE  (Chapter VI). This demonstrated the equivalence between the 

absorption based approach (Henderson, 1975; Bolgiano et al., 1983) and the Bayesian 

approach (Chapter VI) for the computation of Ψ , assuming λλsiii DEn *RE== . 

Considering the vector θ  for the Bayesian approach, after some developments, the 

element of θ  for the ith external animal is equal to (Chapter VI; Table VIII-3): 

( ) ∑
≠=

−− ++=
N

ijj
ii jijiii

,1
E

1
EEE

1
EE µAµAREθ λλ  (VIII.2) 

where 1
EEA −  is the inverse of the relationships matrix among external animals and j = 1, 2, 

…, N refers to the jth external animal different from the ith animal. 

The term ∑
≠=

−
N

ijj
jij

,1
E

1
EE µAλ  of the equation (VIII.2) counts for the non-zero off-diagonal 

elements for the ith external animal and, thereby, takes the contributions due to 

relationships of other external animals into account. Equivalent vectors θ  are then 

computed by the absorption based approach and the Bayesian approach if external 

animals are assumed unrelated, i.e., IA EE = , and if λλsiin *RE= . 

PSEUDO-RECORDS BASED APPROACHES AND BAYESIAN APPROACHES  

From the previous comparisons, it is noted that the pseudo-records based approach 

(VanRaden et al., 2014) and the Bayesian approach (Chapter VI) estimate equivalently the 

matrix Ψ  for univariate cases, i.e., for the ith external animal, iii REΨ =  for the pseudo-

records based approach and ieii ii
REΛΨ E == 2σ  for the Bayesian approach (Table 

VIII-3). The equivalence between the two approaches can also be shown for the vector θ  

under some assumptions. Let the vector DRP  be the vector including DRP associated 

with the external animals and computed following the procedure proposed by Jairath et al. 

(1998). To be in agreement with the system of equations (VIII.1), the procedure for 

computing DRP is hereafter extended to an animal model and the phantom group effect is 
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ignored (e.g., Calus et al., 2014). Therefore, after convergence and following the second 

equation of the system of equations proposed by Jairath et al. (1998) extended to an 

animal model, the vector DRP  is equal to: 

( )( )( )I
EI

Ed
EE

d
1

d µA1µDA1DDDRP λλ +−++= − mm  (VIII.3) 

where m  is the overall mean, dD  is a diagonal matrix with elements equal to the RE 

associated with the external animals (i.e., ( ) 2
ediag σEd ΛRED == ) and Iµ  is the vector 

of external EBV for internal animals estimated through the Jairath‘s procedure. 

From the third equation of the system of equations proposed by Jairath et al. (1998) 

extended to an animal model, it can be shown that ( ) ( )m1µAAµ E
IE1II

I −−= −
 and the 

equation (VIII.3) can be simplified as ( )( )( )mm 1µDA1DDDRP Ed
1

EEd
1

d −++= −− λ . 

Therefore, assuming 0=m  and after simplifications, the element of the vector θ  for the 

ith external animal is equal to: 

( ) ∑
≠=

−− ++==
N

ijj
iiii jijiii

,1

* E
1

EEE
1

EE µAµAREDRPREθ λλ , 

which demonstrates the equivalence between the pseudo-records based approach and the 

Bayesian approach for univariate analyses, under some assumptions. However, 

differences among the results of both approaches may be observed in practice, especially 

by using another procedure for the computation of DRP (e.g., VanRaden et al., 2014). 

Unlike the absorption based approach described in the previous subsections, both 

the pseudo-records based approach (VanRaden et al., 2014) and the Bayesian approach 

(Chapter VI) were extended to multivariate analyses. While it was not discussed in 

Chapter V, conceptual equivalence between the pseudo-records based approaches and the 

Bayesian approaches for multivariate analyses can be developed from Chapter V by 

assuming that 1
EP ΛR −=  at the step 4) of the approach computing the pseudo-records and 

the user-supplied (co)variance matrix in Chapter V. For general cases, it was originally 

proposed in Chapter V to compute PR  as ( ) p0PP ZRIZR ⊗=  where I  is an identity 

matrix of size k  equal to the number of records for each trait and 0R  is the residual 

(co)variance matrix between traits for 1 record. The computation of PR  as 1
EP ΛR −=  

rises that the steps 2) and 5) can be considered as a procedure that deregresses EBV, 

similarly to Jairath et al. (1998) and Schaeffer (2001), and needed by the pseudo-records 

based approach (e.g., VanRaden et al., 2014). However, in practice, both approaches 
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would lead to different results, mainly because they compute differently the block 

diagonal matrix Ψ . VanRaden et al. (2014) proposed to compute the block diagonals of 

Ψ  for the ith external animal as 0.5
VRi

1
0

0.5
VRi ∆G∆

−  where VR∆  is a diagonal matrix with a 

diagonal element for each jth trait equal to ( )ijij RELREL −1  and 0G  is the matrix of 

genetic (co)variances among traits. Nevertheless, it was proposed in Chapter VI to 

compute the block diagonals of Ψ  (i.e., the matrix VΛ  in the previous subsection entitled 

“Integration of correlated external information”), for the ith external animal, as 

Vi
1

0Vi ∆R∆
− , where the matrix 0R  is a matrix of residual (co)variances among traits and 

V∆  is a diagonal matrix with a diagonal element for each jth trait equal to ijRE . Because 

the approaches proposed by VanRaden et al. (2014) and by Quaas and Zhang (2006) to 

compute Ψ  are identical, the consequences of the different computations of Ψ  between 

the pseudo-records based approach and the Bayesian approach were already discussed in 

the previous subsection entitled “Integration of correlated external information”. 

CONCLUSIONS 

The three approaches that combine simultaneously external information and 

internal phenotypic and pedigree data were compared. Equivalences among the three 

approaches, especially for univariate analyses, were observed under some assumptions. 

These assumptions concern, e.g., the definitions of the weights associated with external 

information (e.g., in , iDE , iRE ), their consideration by the genetic evaluations, and the 

used deregression steps. However, most of these assumptions are not fulfilled in practice 

and results may differ among the three approaches. Also, with regard to their 

implementation, it is worth noting that the absorption based approaches could be difficult 

to generalize for complex models (Quaas and Zhang, 2006), while pseudo-records based 

approaches and Bayesian approaches propose easy adaptations to complex models, such 

as multivariate models (e.g., Chapter VI; VanRaden et al., 2014). Also, the pseudo-

records based approach proposed by VanRaden et al. (2014) can be easily applied with 

software packages available in animal breeding community. However, this approach 

requires a deregression step, which is not a trivial problem (Chapter II), as well as the 

explicit computation of external information free of internal information (VanRaden et al., 

2014) when external information includes internal information. The Bayesian approaches 

proposed in Chapter VI avoid deregression steps as well as explicit computations of 
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external information free of internal information. Computational burden is then simplified 

and risks of potential computational errors propagated through the different steps 

performed before the evaluations are avoided. Also, Chapter V proposed a method to 

perform the Bayesian approaches using currently available software packages. 
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Chapter IX. I MPLICATIONS , FUTURE RESEARCH TOPICS AND 

GENERAL CONCLUSION  

 

 

 

 

The last Chapter of this thesis presents implications of the 

research presented in the previous Chapters and introduces four 

topics for future research. A general conclusion closes this 

Chapter. 
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IMPLICATIONS  

Research undertaken during this thesis led to the development of a Bayesian 

approach that integrates several sources of external information into a genetic or a single-

step genomic evaluation. This Bayesian approach can be easily adapted to complex 

models and considers double counting of contributions due to relationships and due to 

records. Therefore, these results allowed for different advances in genetic and genomic 

evaluations. 

Another implication of the present thesis is the development of a genomic 

evaluation system for Holstein cattle in the Walloon Region of Belgium. The Walloon 

genomic evaluation presents several advanced features and combines simultaneously all 

available genotypes, pedigree, Walloon and multiple across country evaluation (MACE) 

information (i.e., estimated breeding values (EBV) and reliabilities (REL) provided by 

Walloon evaluations and MACE) for the milk, fat and protein yields, as well as for other 

traits, like somatic cell score. Contributions considered by both Walloon evaluations and 

MACE are also considered by the Walloon genomic evaluation in order to avoid their 

double counting. The development of the Walloon genomic evaluation system allowed the 

Walloon Region of Belgium to participate to the international genomic evaluations 

performed by International Bull Service (Interbull, Uppsala, Sweden). 

FUTURE RESEARCH TOPICS 

Several important research topics were identified during this thesis and shall be 

explored in the future. These topics address different issues: 

ON THE ESTIMATION OF CONTRIBUTIONS DUE TO RELATIONSHIPS  

An iterative algorithm that estimates the contributions due to relationships 

included in the external information (so-called two-step algorithm; TSA) was proposed in 

Chapter III. Several applications on different simulated and real data (Chapter III, Chapter 

IV, Chapter VI and Chapter VII) showed that the TSA performed well. However, an issue 

of the TSA is that each iteration needs the inversion of a matrix that is a function of the 

relationship matrix that accounts for the relationships between external animals and their 

ancestors. For the Walloon genomic evaluations, a Fortran implementation of the TSA 

using the multithreaded Intel® Math Kernel Library (Intel® MKL) allows the estimation 

of contributions due to relationships for around 21 000 external animals using 12 threads 
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and around 50 GB of RAM during less than 5 hours on a cluster made of 26 computing 

nodes, each with two Intel Sandy Bridge 8-cores E5-2670 processors at 2.6 GHz and with 

128 GB of RAM. However, such an inversion could lead to a difficult implementation of 

the TSA if a higher number of animals is associated with external information or if an 

adequate cluster is not available. Because the TSA is a fixed point algorithm, an 

acceleration procedure could be used to accelerate the convergence (Brezinski and 

Chehab, 1998) and to avoid some iterations and, therefore, also some matrix inversions. 

Although tested only on simulated data with the software package GNU Octave (Eaton et 

al., 2011), the implementation of the method of Lemaréchal (Brezinski and Chehab, 1998) 

in the TSA allowed for a faster convergence. However, such acceleration procedures do 

not solve the issue of the matrix inversion when a high number of animals are associated 

to external information. Therefore, an algorithm that avoids matrix inversions and that 

estimates the diagonal elements of an unknown matrix D  involved in the following 

equation should be developed: 

( ) PDG
11 =+ −−  

where 1G −  is the inverse of a known positive-definite symmetric matrix, D  is an 

unknown diagonal matrix (for the first step of the TSA) or an unknown positive-definite 

symmetric matrix (for the second step of the TSA) and P  is a positive-definite symmetric 

matrix for which only the diagonal elements are known. 

Finally, pending the development of an algorithm estimating the diagonal elements 

of D  without matrix inversions, the results from the simulation in Chapter III as well as 

from the Walloon example in Chapter VI suggest that contributions due to relationships 

could be ignored. However, it was worth noting that effects of double counting of 

contributions due to relationships should be tested before ignoring them.  

ON THE INTEGRATION OF CORRELATED EXTERNAL INFORMATION  

A simulation study on the integration of correlated external information into a 

multivariate genetic evaluation was proposed in Chapter VIII. These first results showed 

that the proposed Bayesian approaches integrated well correlated external information, 

based on rank correlations, mean squared errors and average REL. It was also shown that 

the approximation of the least squares part of the left hand side (LHS) of the external 

evaluation proposed by Quaas and Zhang (2006) led to overestimated REL because 

unobserved contributions were considered. However, all these observations were based on 
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a simulation study and may be influenced by the different assumptions, as the 

consideration of known (co)variances or low average REL. Indeed, residual and genetic 

(co)variances among traits are usually unknown and covariances among EBV increase 

from residual to approach genetic covariances as REL increase (VanRaden et al., 2014). 

Therefore, studies on real data should be performed to confirm these first results and other 

approximations of the least squares part of the LHS of the external evaluation (e.g., 

Schaeffer, 2001) should be tested. 

ON THE ESTIMATION OF CORRELATIONS BETWEEN EXTERNAL INFORMATION A ND 

INTERNAL DATA  

One strong assumption was taken in Chapter VIII: all variance components were 

assumed to be known. In practice, this is usually not the case and (co)variances must be 

estimated. For linear mixed models that assume expectations equal to zero for random 

effects, Gibbs sampling (e.g., Sorensen and Gianola, 2002) and restricted maximum 

likelihood (Patterson and Thompson, 1971) are the most popular methods for the 

estimation of variance components. However, current programs do not allow to estimate 

of variance components for linear mixed models that assume expectations different from 

zero for random effects. Therefore, approaches should be developed to estimate variance 

components for (multivariate) mixed models considering both internal data and external 

information. Because the equivalence between pseudo-records based approaches and 

Bayesian approaches was shown, at least under some assumptions (Chapter VIII), an 

approach could consist of estimating the variance components for a mixed model 

including external information as weighted pseudo-records. Another approach could 

consist of estimating variance components with current software modified to consider 

expectations different form zero and non-conventional (co)variance matrices (e.g., the 

sum of (co)variance matrices (e.g., Chapter III, Chapter VI) instead of the conventional 

genetic (co)variance matrix) associated with random effects. 

ON THE INTEGRATION OF GENOMIC INFORMATION  

With the development of genomic selection in many species and the increase of 

available SNP data and information derived from this data source (e.g., direct genomic 

values (DGV) and their associated REL) approaches and algorithms that combine sources 

of phenotypic, genealogical and genomic data and information are needed. In this context, 

Chapter VII proposed a Bayesian approach, based on the single-step genomic evaluation 
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(Aguilar et al., 2010; Christensen and Lund, 2010) to combine genomic data with internal 

and external information. However, this thesis does not propose approaches to integrate 

external genomic information, e.g., DGV and associated REL, into an internal genetic 

evaluation, while it was previously suggested and studied in a Bayesian context (Gengler 

and Vanderick, 2008; Hyde et al., 2013). Such situation may arise in different emerging 

situations as, for example, through the wish to integrate externally generated DGV for 

novel phenotypes (e.g., dry matter intake, methane). However, several issues should be 

further explored, such as the double counting of the same information used in both the 

genetic evaluation and in the estimation of genomic prediction equations, the scaling of 

DGV, or the consideration that DGV follow, or does not follow, the same distribution as 

internal EBV (Mäntysaari and Strandén, 2010; Hyde et al., 2013). 

GENERAL CONCLUSION  

The aim of this thesis was to develop algorithms to combine phenotypic, 

genealogical and genomic data as well as information originating from diverse sources 

and to test them on simulated and real data. After a review of the various proposed 

approaches to combine different sources of information, it was chosen to focus on the 

Bayesian approaches, based on a Bayesian view of the linear mixed models. Research 

presented in this thesis solved different issues to finally develop equations for 

(multivariate) genetic and single-step genomic evaluations that integrate and blend 

simultaneously several sources of information and that avoid double counting of 

contributions due to relationships and due to records. Computational burden was also 

considered during this research. The performance of the developed algorithms and 

equations were evaluated using simulated and real datasets. The different results showed 

that: 

- the developed equations integrated and blended several sources of information in a 

proper way into a genetic or a single-step genomic evaluation, 

- more reliable EBV were obtained for external animals after integration of external 

information, 

- relatives of external animals benefited from integrated external information, also 

leading to more reliable EBV, because all available external sources of 

information were correctly propagated, 

- double counting of contributions due to relationships and due to records were 

(almost) avoided, and 
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- correlated external information was properly integrated following the approach 

proposed to approximate the prediction error (co)variance matrix associated with 

multivariate EBV. 

The developed equations were applied to develop a genomic evaluation system for 

Holstein cattle in the Walloon Region of Belgium that combines simultaneously all 

available genotypes, pedigree, Walloon and MACE information (i.e., EBV and REL 

provided by Walloon evaluations and MACE) for the production traits, as well as for 

other traits, like somatic cell scores. However, in spite of these developments, further 

research should be carried out, especially, on the estimation of contributions due to 

relationships, on the integration of correlated external information, on the estimation of 

correlations between external information and internal data, and on the integration of 

genomic information, such as DGV. 
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