

Enrichment of Central African logged forests with high-value tree species: testing a new approach to regenerating degraded forests

Jean-Louis Doucet, Kasso Dainou, Nils Bourland, Sheila Ward, Patrice Tekam, Gauthier Ligot, Paul Lagoute, Adeline Fayolle

Gembloux Agro-Bio Tech Université de Liège

Context

- Moist forests cover 180,000,000 ha in Central Africa
- 26 % licensed to logging companies (De Wasseige et al., 2012)
- national regulations (e.g. minimum cutting diameters, cutting cylces)
- management plan (e.g. trees inventories, recovery rates)

- Studies on long term recovery show dramatic decrease of trees available for logging
- Mostly for light demanding species, e.g. ayous (obeche, wamba, wamba)

Source: Karsenty & Gourlet-Fleury (2006)

In this context, enrichment of the forests is definitely needed

Objectives

Main objective:

To test a pragmatic enrichment technique of degraded forests with high-value species

Secondary objectives:

- 1. To compare species behavior in the early stage of plantation (<5yrs) in order to identify the best candidate species (growth/survival)
- 2. To search for relationships between traits and performance of the species
- 3. To estimate the cost of mixed-species plantations

Methods

Study site

- Implementation since 2009 in Cameroon
- FMU Pallisco & partners
- 360,000 ha
- Old secondary semi-deciduous forest
- ferralsols
- 1,700 mm

Methods Context **Objectives** Results Discussion

 Selection of the most open forest areas along permanent established roads

• Identification and protection of high-value species and all trees with dbh > 50 cm

• Clear cutting of the understory with machetes by a team of ten workers, felling of some trees (e.g. *Musanga cecropioides*) with a

chain saw

• Selection of several species in a nursery based on their tolerance for the various amount of light penetration throughout the plantation area.

- Plantation done according to the species regeneration guild,
- 25 seedlings of a particular species,
- 3 x 3 m,
- alternation of species to prevent parasitism and predation

How can managing for high value timbers promote biodiversity, and how can managing for biodiversity promote high value timbers?

Schematically

Context

Objectives

Methods

Results

Discussion

Maintenance

Year	N maintenance cuttings		
1	3		
2	2		
3	1		

Afterwards, thinning will be necessary

Studied species

 High-value species : IUCN red list, e.g. CR Mukulungu Autranella congolensis

Studied species

• High-value species : CITES appendix, e.g. Assamela (kokrodua) *Pericopsis elata*

Studied species

• High-value species : NTFP, e.g. Moabi Baillonella toxisperma

Permanent plot design

- 14 plots planted from 2009 to 2012
- Remaining forest canopy cover after plantation: 30 %
- 0.2 to 1 ha
- +- 5000 marked seedlings, 23 different species,
- Annual monitoring (H, d10, dbh, social status) for 2-5 years

Costs and yields of plantation estimated

Results

Growth and mortality

Seedlings alive at the end of the monitoring (n=4621 trees, 17794 observations, 2-5 years)

Variability among species and between plots, linear growth

How can managing for high value timbers promote biodiversity, and how can managing for biodiversity promote high value timbers?

$$D_{is} = a_s + c_s \times Time + \beta_{is} \times Time + \epsilon_{is}$$

Name	Species	Growth. (mm) max (10 %)	C _s Growth (mm)	Growth sd
Ayous / wawa / samba/ obeche /	Triplochiton scleroxylon	65,96	42,90	0,75
Fraké / limba / korina	Terminalia superba	33,50	19,80	0,22
Ofos	Pseudospondias microcarpa	21,74	16,77	1,87
Azobé / Ekki	Lophira alata	18,73	13,64	1,15
Dabéma / Dahoma	Piptadeniastrum africanum	19,41	11,42	1,07
Movingui / Ayan	Distemonanthus benthamianus	21,16	10,46	0,73
		•••	•••	
Sapelli / Sapele / Mahogani	Entandrophragma cylindricum	5,10	1,71	0,48
Iroko / odum	Milicia excelsa	2,83	1,67	1,34

How can managing for high value timbers promote biodiversity, and how can managing for biodiversity promote high value timbers?

Best candidate species (obj. 1):

Ayous : *Triplochiton*

scleroxylon

Fraké : Terminalia

superba

Ofos:

Pseudospondias microcarpa

Azobé : Lophira

alata

Dabéma :

Piptadenistraum africanum

Context

Objectives

Methods

Results

Discussion

Relationships with traits (obj. 2)

Quantitave traits	Range	Growth	Growth max	Mortality
Wood density (g/cm³)	0,33 - 0,88	r = -0,41 (p = 0,057)	r = -0.48 (p = 0,029)	r = -0.08 (p=0,716)
Dbh max (mature) (cm)	0,65 - 3,00	r=0.01 (p = 0.947)	r = 0.02 (p = 0.92)	r = 0.16 (p = 0.472)
Seed length (cm)	0,1 - 5	r = -0.32 (p = 0.168)	r = -0.31 (p = 0.181)	r = 0.05 (p = 0.847)
Leaf area (cm²)	4,4 - 17	r = 0.22 (p = 0.316)	r = 0.18 (p = 0.405)	r = -0.04 (p = 0.84)

How can managing for high value timbers promote biodiversity, and how can managing for biodiversity promote high value timbers?

Qualitative traits	Categories	Growth	Growth max	Mortality
Guild	P, NPLD, NA	p = 0.124	p = 0.242	p = 0.255
Deciduousness	Evergreen, deciduous, NA	p = 0.307	p = 0.444	p = 0.233
Dispersal mode	Animal, Wind, Unassisted	p = 0.901	p = 0.501	p = 0.332

Costs (obj. 3)

- Team of 13 people (includes 2 nurserymen,1 supervisor) plant 10 ha and manage (maintenance, thinning) 60 ha per year.
- Total cost: 5585 EUR (7,038 \$) per ha includes labor, transportation and material.
- Number of mature trees expected per ha: 44
- Total cost estimated of raising a mature tree from seed: 127 EUR (160 \$)

Context

Objectives

Discussion

• Highly promising growth rates for some species (ayous, fraké, ...) but cannot be extrapolated since the growth is not linear over longer period

Methods

Results

- For some species, the morality rate was very high.
 For such species, other regeneration techniques should be recommended.
- By comparison with our previous studies for two of these species (moabi Baillonella toxisperma, iroko Milicia excelsa), enrichment of logging gaps gave better results at lower costs (Doucet et al., 2009; Dainou et al., 2012).

Cost = crucial issue! Total cost for a mature tree = 1m³ of round wood!

But this may be the price to be paid for maintaining the long term productivity and biodiversity of the African moist forests.

