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ABSTRACT

Many applications require the use of multiple cameras to cover
a large volume. In this paper, we evaluate several pairwise
calibration techniques dedicated to multiple range cameras.
‘We compare the precision of a self-calibration technique based
on the movement in front of the cameras to object based cal-
ibration. While the self-calibration technique is less precise
than its counterparts, it yields a first estimation of the trans-
formation between the cameras and permits to detect when
the cameras become mis-aligned. Therefore, this technique is
useful in a practical situations.

1. INTRODUCTION

Commodity range cameras have recently permitted to develop
new applications by providing dense depth maps at real-time
frame rate (> 15fps). Some computer vision problems can
be solved with such cameras, such as human pose estima-
tion [20], augmented reality, and virtual reality. Indeed, there
is no longer a need to infer 3D information from colorimetric
information.

Any application that operates in large environments re-
quires multiple cameras to work robustly over the whole vol-
ume. Examples of such applications include immersive vir-
tual environment, telepresence set-ups, and gait analysis of
humans over long distances [17].

Range cameras capable of recording at real-time frame
rate operate only for a short distance range. The Microsoft
Kinect can measure depths up to 10 meters but provide a pre-
cision on the order of the centimeter only for depth up to a
few meters [14]. Time-of-flight cameras, such as the PMD
CamCube 2.0, have a physical limit on the maximum depth
that can be measured unambiguously. This limit is usually
well below 10 meters. Therefore, multiple cameras have to
be used to correctly cover areas with a size larger than 10 me-
ters.

To aggregate the information captured from all the cam-
eras, their relative positions need to be estimated. This takes
the form of pairwise rigid body transformations (translation
and rotation between two cameras). The difficulties for esti-
mating this transformation originate from establishing point
correspondences between the images of the cameras. For ro-
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Fig. 1: Human seen by two range cameras. Black dots in im-
age (b) represent the projection of pixels also found in image

(a).

bust correspondences, a calibration object such as a chess-
board is often used. The calibration object also provides Eu-
clidean constraints, which are required for a “metric” calibra-
tion of the cameras.

In this paper, we evaluate several methods for pairwise
calibration of range cameras, including one self-calibration
technique based on movement detection, which can also be
used to detect when the cameras become mis-aligned.

In Section 2, we first review existing calibration techniques
and the characteristics of range cameras. In Section 3, we de-
scribe the pairwise calibration methods used in this paper. In
Section 4, we compare the results of the techniques.

The results presented in Section 4 show that techniques
directly based on the depth values are less precise than a tech-
nique based on the detection of a calibration object in a color
image. However, they permit to obtain a first estimation of the
rigid body transformation and to detect a misalignment of the
cameras by only using the movement observed in the scene.

2. RELATED WORK

2.1. Calibration and self-calibration

The problem of camera calibration has been extensively an-
alyzed for color cameras. Most methods require the use of
a calibration pattern, such as a chessboard [3], and perform
the pairwise calibration as well as the intrinsic calibration of
each individual camera. The calibration object ensures that
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(a) Microsoft Kinect

(b) PMD CamCube 2.0

Fig. 2: Range cameras used in this work.

the correspondences between the images are correct.

More recently, several authors proposed calibration tech-
niques based on a laser pointer [6, 21]. The cameras record
the successive positions of the light to form a virtual calibra-
tion pattern which can be used to perform the pairwise cali-
bration of the cameras. A variation of this technique has al-
ready been used for the calibration of a network of Microsoft
Kinect cameras [1].

Azarbayejani et al. [2] proposed a self-calibration tech-
nique for wide baseline stereo system. It is based on the detec-
tion of the face and the hands of the user in front of the cam-
era. The estimated parameters are thus strongly constrained
by the imposed position of the cameras and the content of the
scene.

For laser range finders, Glas et al. [9] proposed an au-
tomatic self-calibration technique in crowded environment.
They used an elliptical shape model to estimate, track, and
match the positions of the users for each sensor. The field of
view of all sensors are within the same plane, meaning that
there is only a single angle of rotation to estimate.

Kaenchan et al. [13] proposed an iterative technique for
Microsoft Kinect cameras based on an initial guess of the
transformation. The technique uses the limbs’ locations given
by the OpenNI framework for point correspondences. How-
ever, they don’t evaluate the performance of their calibration
procedure.

For cameras close to each other, there exists various tech-
niques dedicated to range data that yield accurate results. The
iterative closest point algorithm [18] estimates the rigid body
transformation by iteratively matching the closest 3D points
together. Kinect Fusion [12] is a nonlinear minimization of
the reprojection error between two depth maps.

Most techniques developed for color cameras use the re-
projection error as the evaluation metric. While this metric
is good for RGB and gray-level images, it isn’t adequate for
sensors measuring geometric information. In this paper, we
evaluate the self-calibration accuracy according to the trans-
lation and angular error between the cameras.

2.2. Range cameras

A range camera records, for each pixel p, the depth Z (p)
of the corresponding element of the scene. If the intrinsic
parameters of the camera (focal length and optical center) are
known, one can convert the point (p, Z (p)) to a 3D real-
world coordinate in a reference frame located at the optical
center of the camera [10]. Thus, these cameras permit a direct
metric reconstruction of the scene.

In this paper, we use two different models of range cam-
eras: the Microsoft Kinect (version 1) and the PMD CamCube
2.0 (see Figure 2). These cameras are based on different ac-
quisition techniques. The Microsoft Kinect uses a structured-
light technique to estimate the depth [8] and the PMD Cam-
Cube 2.0 is a time-of-flight (ToF) camera which estimates the
depth by measuring the phase shift between the transmitted
and received modulated infrared signals [22].

We note that these cameras can have significant noise or
no data at all for some pixels. This happens when not enough
light is reflected back to the sensors. This can be due to bad
reflective properties or a large angle of incidence with the
intercepted surface in the scene. Also, the amount of noise
can be different for each pixel of an image. Several mod-
els have been proposed to characterize this noise. The Mi-
crosoft Kinect has a noise that increases quadratically with
the depth [14], and ToF cameras have a noise that increases
with the inverse of the amplitude of the signal [7].

There can be significant artifacts when using more than
one camera of the same model: the transmitted signals can in-
terfere with each other. Two Microsoft Kinect can fail to mea-
sure depth when their fields of view largely overlap. Schroder
et al. [19] proposed fast rotating discs to create a time divi-
sion multiple access scenario. Butler ef al. [4] reduced the
interference between the cameras by using an electric motor
which make them vibrate. For ToF cameras, the modulation
frequency of the signal can be changed in some cameras. In
this case, there is no problem in using more than one cam-
era. When two cameras use the same modulation frequency,
Castabeda proposed a technique which still permits the use of
several cameras in a wide baseline stereo set-up [5]. In this
paper, we don’t use any such technique. We limit our study to
the pairwise calibration of the cameras.

Here, we assume that the intrinsic parameters of the range
cameras are already calibrated. We note that these parameters
have to be determined only once and that the Microsoft Kinect
camera is factory calibrated. For ToF cameras, there exists
dedicated calibration techniques, e.g. [15].

3. PAIRWISE CALIBRATION TECHNIQUES

The goal of the pairwise calibration is to find the rigid body
transformation that brings points of one camera to the refer-
ence coordinate frame of the second camera,

P? = RPW +¢ (1)



A. Lejeune, D. GROGNA, M. VAN DROOGENBROECK and J. VERLY. Evaluation of pairwise calibration techniques for range cameras

and their ability to detect a misalignment. In International Conference on 3D Imaging (IC3D), Liege, Belgium, December 2014.

(b) Colored plane object
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Fig. 3: Calibration objects used in this work.

where R and t are the rotation matrix and translation vector
of the rigid body transformation, P(!) is a point expressed in
the coordinate frame of the first camera, and P2 is the same
point expressed in the coordinate frame of the second camera.

The rigid body transformation can be computed from two

corresponding 3D point clouds {Pgl), PZ@)} using the Kab-
sch algorithm [16]. This technique minimizes the least-square
loss function

2
Zw,»HP@) _ g™ —tH . )

We use this algorithm, combined to a RANSAC procedure, to
estimate the rigid body transformation.

3.1. Technique 1: chessboard pattern

Our first pairwise calibration technique is the one implemented
in the OpenCV library [3]. This technique is based on gray-
level images and uses a calibration pattern such as a chess-
board (see Figure 3a) to establish point correspondences be-
tween the images. Note that we use the RGB image of the
Microsoft Kinect and the intensity image of the PMD Cam-
Cube 2.0 to detect the corners of the chessboard.

This technique is based on epipolar geometry [10] and
performs a non-linear minimization of the reprojection error
of the detected corners. The final reprojection error is usually
smaller than one pixel.

3.2. Technique 2: plane

The second technique is based on a colored plane (see Fig-
ure 3b). We use both the texture and the depth information to
perform the pairwise calibration. The pixels belonging to the
plane are detected in the color image by a floodfill algorithm
using the color of the plane.

We obtain the 3D point correspondences {Pgl)7 sz) } by
estimating the center of the planes in both images using

Zi A (Pz‘)2 P® (p:)
Zi AL (pi)2

P = : 3)

where Z(*) (p;) is the depth value of the pixel p; for camera
k and P (p;) the 3D point corresponding to the pixel p;.
By weighting each point with its squared depth, we take into
consideration the fact that a larger distance between a pixel
and the camera correspond to a larger surface encompassed
by the pixel in the scene. In other words, the density of the
3D points decreases with their depth.

3.3. Technique 3: movement detection

The third technique is based on movement detection. We
track the objects in movement in the two cameras and estab-
lish the point correspondences from the center of mass of the
observed objects. The processing pipeline used for movement
detection and matching is summarized in Figure 4. We per-
form a background subtraction on the images to retrieve the
various objects in the scene. We model them using a mul-
tivariate normal distribution. We track the objects by using
a similarity measure and their last position. The objects are
matched between the two cameras using a similarity measure.

3.3.1. Background subtraction

For background subtraction, we base our technique on a sim-
ple background model where we record the largest depth seen

at each pixel of the image. The depth background B(Zk) (p) of
camera k at pixel p can be expressed as

B (p) =max (2" (p)) . j<Npa, @

where ZJ(-k) is j-th range image captured by camera ¢ and
Npg is the number of images used to learn the background.
The foreground F'(*) is obtained by simply comparing the
current range image with the background model,

if Z(®) (p) is valid and
|B®) (p) = 2% (p)| > Ao®) (p)
false otherwise,

true
F® (p) =

&)
where o(*) is an image indicating the relative level of noise
at each pixel, A is a parameter of the technique. For the Mi-

crosoft Kinect, we use o) (p) = (Z(k) (p))2 and A inect =

kinect

0.05. For the PMD CamCube 2.0, we use o} (p) = (A™ (p)) -

tof
and A = 70, where A denotes the amplitude image given by

the camera.

There can be noise in the foreground mask, especially
around the edges in the case of the Microsoft Kinect. To re-
move false positive and segment the foreground in its different
part, we use a connected component analysis algorithm on the
foreground mask and the depth. We then reject the smallest
components. Our connected component algorithm is based
on the floodfill algorithm: two neighboring pixels which are
in the foreground mask and whose depth difference is below a
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Fig. 4: Processing pipeline for pairwise calibration based on movement detection.

certain threshold are in the same component. The connected
component analysis also permits to correctly separate two ob-
jects crossing each other.

3.3.2. Modeling and similarity measure

We model an object O; by its center of mass y; and its co-
variance ;. These parameters constitute a multivariate nor-
mal distribution. As a single image is only able to capture
the front side of the object and not its whole volume, the es-
timated parameters will be biased towards the camera. To re-
duce this bias, we compute y; only using the border pixels of
the object. Indeed, for cylinder shaped object, the borders will
be symmetrically distributed around the center of mass. The
center of mass and the covariance are estimated by weighting
pixels according to their local density as in Equation (3).

To track an object within a single camera, we use an esti-
mation of the speed of the object to predict its distribution in
the next image, and we use the Kullback-Leibler divergence
as a similarity measure.

As the position of the objects in the two cameras can be
significantly different, we perform an inter-camera matching
by comparing only the covariance of the objects. The centers
of mass of the objects matched between the two cameras are
used to make a new point correspondence for pairwise cali-
bration.

3.3.3. Misalignment detection

During the operation of the cameras, they can become mis-
aligned. For example, this can happen when the cameras or
their support are bumped into or when they are moved inad-
vertently. Our third calibration technique can then be used as
a basis for misalignment detection.

We constantly add the new detected correspondences while
we remove those which are outdated. Then, we compare
the last ground truth rigid body transformation to the one
estimated using the detected movement. To do so, we use
the translation and angular error between the transformations.
Denoting by (Rar, ter) the transformation between the cam-
eras, and by (R*, t*) the transformation estimated using the
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Fig. 5: Configurations of the cameras for the four tested sce-
narios.

movement, a mis-alginment is detected if
terr = HtGT - t*H >t (6)

or

Repr = ||log (RGp R > 0, (7)

I

where t.,, is the distance between the translations, and R,
the angular error. The angular error is a geodesic distance
between the two rotation matrices [11]. Its value lies between
0 and 7. We discuss the possible value of the thresholds ¢ and
@ in Section 4.

4. EVALUATION

We have tested the techniques for several configurations of
cameras (see Figure 5). Configuration (a) is a usual stereo-
scopic setting with converging cameras; (b) is a close par-
allel stereoscopic setting; in configuration (c), the cameras
face each other; in (d), they are rotated by 90° from each
other. Table 1 presents the results for a configuration with
two Microsoft Kinect cameras, and Table 2 presents the re-
sults when two different cameras are used (a Microsoft Kinect
and a PMD CamCube 2.0 camera). The results were obtained
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| Configuration | (@ [ () [ (© | @ |

Translation error (in meter)
Technique 1 0 0 0 0
Technique 2 | 0.094 | 0.057 | 0.047 | 0.155
Technique 3 | 0.076 | 0.069 | 0.128 | 0.189

Angular error (in degree)

Technique 1 0 0 0 0
Technique 2 2.59 1.34 | 045 5.53
Technique 3 2.49 1.37 1.96 | 3.58

Table 1: Errors obtained with two Microsoft Kinect cameras
compared to a pairwise calibration with a chessboard pattern.

on sequences with duration comprised between one and two
minutes.

With two Microsoft Kinect cameras, techniques 2 and 3
have comparable results. We see that configuration (d) yields
the worse estimation. We believe that this occurs because
the overlap between the fields of vision of the cameras is the
smallest in this scenario.

With different cameras, technique 2 performs better than
technique 3, which leads to larger translation errors. This may
be explained by the fact that the movement extraction algo-
rithm failed more often with the PMD CamCube 2.0, partly
because areas of the scene are located at a depth larger than
the camera unambiguous measurement range, and partly be-
cause the angle of view of this camera is smaller (the objects
weren’t fully contained inside its field of view). It is also
probable that a better background subtraction algorithm and
preprocessing techniques for the PMD CamCube 2.0 camera
would improve the results.

We have attempted to increase the performance of our
technique by using an iterative closest point algorithm after
a first estimation was obtained. However, our attempts didn’t
yield significant improvements. In the case of cameras facing
each other (configuration (c)), the results were always worse.
This can be explained by the lack of corresponding points be-
tween the two cameras.

For misalignment detection, the thresholds on the transla-
tion and angular error should be chosen larger than the errors
reported in Table 1 and 2, according to the configuration of
the cameras.

5. CONCLUSION

In this paper, we have just reviewed several techniques for
pairwise calibration of two range cameras. The common tech-
nique based on a chessboard pattern was compared to a tech-
nique based on a colored plane calibration object and a self-
calibration technique based on movement detection in the scene.
We have shown that the techniques that use the range values
for calibration fail to reach the same level of precision as that

| Configuration | (@ [ () | (© | @ |

Translation error (in meter)
Technique 1 0 0 0 0
Technique 2 | 0.176 | 0.042 | 0.044 | 0.064
Technique 3 0.10 | 0.223 | 0.169 | 0.339

Angular error (in degree)

Technique 1 0 0 0 0
Technique 2 442 | 494 | 0.54 1.61
Technique 3 346 | 2.88 1.95 | 11.28

Table 2: Errors obtained with one Microsoft Kinect and one
PMD CamCube 2.0 compared to a pairwise calibration with
a chessboard pattern.

of the chessboard technique. However, they are able to pro-
vide a good approximation in some cases.

We recommend to use the self-calibration technique that
uses the observed movement only when it is impossible to cal-
ibrate the cameras with a more accurate technique. However,
this technique can be used for misalignment detection and can
provide a temporary calibration when a misalignment is de-
tected.
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