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The in silico prediction of cis-acting elements in a genome is an efficient way to quickly obtain 
an overview of the biological processes controlled by a trans-acting factor, and connections 
between regulatory networks. Several regulon prediction web tools are available, designed to 
identify DNA motifs predicted to be bound by transcription factors using position weight 
matrix-based algorithms. In this paper we expose and discuss the conflicting objectives of 
software creators (bioinformaticians) and software users (biologists), who aim for reliable and 
exhaustive prediction outputs, respectively. Software makers, concerned with providing tools 
that minimise the number of false positive hits, often impose a stringent threshold score for a 
sequence to be included in the list of the putative cis-acting sites. This rigidity eventually 
results in the identification of strongly reliable but largely straightforward sites, i.e. those 
associated with genes already anticipated to be targeted by the studied transcription factor. 
Importantly, this biased identification of strongly bound sequences contrasts with the 
biological reality where, in many circumstances, a weak DNA-protein interaction is required 
for the appropriate gene’s expression. We show here a series of transcriptionally controlled 
systems involving weakly bound cis-acting elements that could never have been discovered 
because of the policy of preventing software users from modifying the screening parameters. 
Proposing only trustworthy prediction outputs thus prevents biologists from fully utilising their 
knowledge background and deciding to analyse statistically irrelevant hits that could 
nonetheless be potentially involved in subtle, unexpected, though essential cis-trans 
relationships. 
 

Regulon prediction web tools and threshold score 
apprehension

The physical interaction between regulatory DNA-
binding proteins and their cognate DNA sequences directs the 
spatio-temporal and the elicitor-dependent expression of genes 
whose product is only required either at a certain moment or 
under specific environmental conditions. Bioinformatic programs 
designed to identify the cis-acting elements bound by a 
transcription factor (TF) have been demonstrated to be efficient 
tools in System Biology, able to quickly unveil genes whose 
expression is associated with specific or interconnected 
biological processes. As we have now undeniably entered an era 
of low-cost DNA-sequencing in which  novel and fully annotated 
genomes are deposited in specialised databases on a daily basis, 
the in silico prediction of a TF regulon has become an 
examination ‘reflex’ preliminary to expensive in vivo and in vitro 
genome-wide investigations. The growing popularity of such 
computational work can be inferred from the number of software 
products used for predicting regulons, as well as by the regular 
updates of the latter since they first became publicly accessible. 

Typically, in a supervised motif finding approach1, the software 
user begins the regulon prediction process by creating a position 
weight matrix (PWM) that attempts to best represent the tolerated 
variability of a series of DNA sequences known to be bound by a 
TF2. With minor modifications depending on the algorithm used, 
PWMs are obtained by attributing a score to any nucleotide i at 
position j of an L length sequence, based on its frequency of 
appearance in the TF-binding sites that fed the algorithm. The 
score of an L length sequence is the sum of individual scores of 
each nucleotide composing the sequence. The PWM will then 
serve to scan the full or partial genome sequence in order to 
identify genes neighbouring identical or similar L length DNA 
sequences presumed to fall under the expression control of the 
studied TF. The number of sequences in the regulon prediction 
output list, and thus the ratio between false positive hits and truly 
bound sequences in vivo, will depend on the threshold or cut-off 
score fixed by the software user, where this is allowed by the 
software developer. 
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Software creators aim for reliable prediction outputs 
 

From the standpoint of the software creator (for whom 
the output is the final result, with no further development), the 
legitimacy of a regulon prediction program depends on its ability 
to provide primarily positive hits. The guaranteed robustness and 
accuracy of the predictions is even cited as an argument to tout 
the merits of DNA motif finding software. Software developers’ 
reluctance to endorse any tool not meeting the (purely statistical 
and thus theoretical) reliability criteria results in programs that 
have built-in high threshold scores or P-values, limiting the 
output to the very best matches. However, the score obtained by a 
sequence does not accurately reflect the affinity of a TF for its 
predicted cis sites, but in fact only highlights the similarity of this 
sequence with the training set. Preventing users from defining the 
threshold is a way to prevent the ‘misuse’ of the prediction 
software, and for statisticians misuse means producing an output 
list full of false positive hits. The problem is that this arbitrary 
constraint is only based on probabilistic standards depending 
only on the training set of sequences that have been used to 
generate the PWM instead of being supported by biochemical 
values (see below the paragraph on the ‘historical background’).  
 
Software users aim for exhaustive prediction outputs 
 

In contrast, simply predicting the straightforward, basic 
and expectable binding sites of a TF is not generally the ambition 
of software users, often biologists, who instead aim for an 
exhaustive regulon prediction output, i.e. an output that 
additionally provides non-obvious positive hits. For the biologist, 
a predicted DNA-binding site of a TF (highly reliable or not) 
simply represents a statistical information requiring further 
experimental validation through classical (one gene at a time) or 
high-throughput experimental techniques. Weakly-bound sites of 
a TF most often fall into this ‘non-obvious and unreliable’ 
category although they are just as important as strong binding 
sites in the route of unveiling the molecular mechanisms 
controlling the triggering of a biological process. For instance, in 
many inducible systems key genes are expressed at a basal level 
that allows the organism to possess a sufficient amount of 
proteins to sense the activating signal once it is present in the 
environment. This basal expression level necessary for sensing 
the regulon elicitor is only possible if the targeted DNA sequence 
of a transcriptional repressor has undergone a series of mutations, 
weakening the DNA-TF interaction and thus possibly escaping 
the threshold score fixed by the prediction software. In addition, 
when the expression of a gene is controlled by many different 
TFs, each TF must include its own binding site within a gene’s 
upstream region, which is limited in size. The multiplicity of TFs 
controlling a single gene often signifies that the expression of the 
target gene is elicited by many different environmental signals. 
When several TFs bind neighbouring or overlapping sequences 
this necessarily implies the evolution of non-discriminatory 
mutations, allowing the different binding sites to coexist. 
  

Besides the restrictions imposed by software creators, 
biological and technical causes are also responsible for favouring 
the discovery of the strongest binding sites of a TF. Indeed, 
independently of the algorithm used by the DNA motif search 
software, the prediction output almost entirely depends on the 
training set of sequences used to generate the PWM. This set of 
sequences is in turn dependent on the ‘historical background’ of 
the selected TF (i.e. the earlier investigations that identified the 
cis-acting elements already discovered). In general, DNA 

sequences most strongly bound by the regulatory protein (those 
that best match with the preferred sequence of the TF), are the 
sequences that tend to be identified first. This is in part due to the 
fact that the strongest interactions are technically easier to detect 
than weaker ones, and that the principal target genes of a TF 
(those that requires strict expression control) are often located in 
the neighbouring region of the TF and are also conserved 
between species, which further facilitates their discovery. This 
natural inclination for the cis-acting elements most strongly 
bound by a TF to be discovered first has a strong impact on the 
efficiency of regulon predictions, as the earliest PWMs are biased 
towards the discovery of highly reliable sequences. 
 
Overall, the software user has numerous reasons to not accept the 
threshold or cut-off scores fixed by software developers, 
legitimately concerned with providing outputs with a limited 
number of false positive hits.  
 
Examples of weakly-bound sites not detected by 
web tools that fix restrictive threshold scores 
 

To illustrate that favouring reliable instead of 
exhaustive outputs has little biological meaning we decided to 
demonstrate that a series of weakly bound cis-acting elements of 
a well-studied TF could never have been discovered using the 
threshold scores imposed by some of the most popular regulon 
prediction web tools. The examples chosen originate from our 
investigations into the regulon of the N-acetylglucosamine 
(GlcNAc) utilisation regulator DasR in Streptomyces coelicolor3. 
Chronologically, all first target genes experimentally 
demonstrated to be controlled by DasR were genes that revolve 
around the catabolism of GlcNAc and its polymer chitin3-6 
(Figure 1). As often happens for global or pleiotropic regulators, 
the first sequences that we discovered to be bound by DasR 
(referred to as “dre” for DasR responsive element), were the best 
ones, i.e. those best matching the dre palindromic sequence 
ACTGGTCTAGACCAGT. Indeed, as presented in Table 1, the 
consensus sequences deduced from dres upstream of genes 
involved in chitin and GlcNAc utilisation both exhibited very 
high scores, with respectively one and two mismatches compared 
with the perfect 16-bp palindromic dre. 

Table 1.  
Sequences and scores of DasR responsive elements 

Gene(s) dre Score SD 
Palindromic dre ACTGGTCTAGACCAGT 16.90 na 
GlcNAc genes AgTGGTCTAGACCAcT 13.70* 1.31 
chi genes ACTGGTCTAGACCAaT 12.02* 1.86 
dmdR1 tgcGGTCTgGACCAGT 9.73 na 
redZ AgTGGTtTccACCtca 5.95 na 
actII-4 tgTtGacTAGgCCtGT 2.85 na 
* The presented score is the mean of the scores of the best dres identified 
upstream of chi, and GlcNAc associated genes. na = not applicable. SD = 
standard deviation. Lower case letters indicate nucleotides that differs 
from palindromic dre. 
 

In order to identify genes controlled by DasR beyond 
the predictable GlcNAc and chitin utilisation systems, we created 
in 2007 our own DNA motif screening tool named PREDetector 
(Prokaryotic Regulatory Elements Detector7), motivated (and 
frustrated) by the unavailability of threshold-free regulon 
prediction software products. The threshold score that is most 
often recommended by regulon prediction web tools is the 
weakest score of the sequences used to generate the PWM 
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(hereafter referred to as “TMS”, for threshold based on the PWM 
minimal score). As, in our case, the first 15 experimentally 
validated dres were used to generate the PWM, this primary 
matrix was naturally biased for the identification of highly 
reliable dres. Indeed, at TMS, >90% of chi and GlcNAc-related 

genes happened to possess at least one dre, confirming that the 
highly predictable target genes of DasR (based on their biological 
function) are also the genes with cis-acting sequences that best 
match the palindromic dre sequence (Figure 1 and Table 1).

 

 
 
Figure 1. Scores of dres associated with proteins of the DasR regulon in Streptomyces coelicolor. N-acetylglucosamine (GlcNAc) originates from chitin, 
chitoolichosacharides [(GlcNAc)3-5], and N-N’-diacetylchitobiose [(GlcNAc)2] hydrolysis by the chitinolytic system (proteins in blue). Elements for uptake, 
phosphorylation and catabolism of GlcNAc are highlighted in red. Numbers next to proteins indicate the score obtained by their respective dres using the 
PWM ‘DasR2008’ generated via the PREDetector software7.	  dres used to generate the PWM are highlighted in red. dres found at TMS (cut-off score = 11.36) 
are highlighted in orange. dres found above and below T50%  (cut-off score = 10.32) are highlighted in green, and black colors, respectively. For full description 
of the function of proteins see Liao and Rigali et al.8.  

 
When running PREDetector without threshold score 

restrictions, the program suggested possible dres, though at very 
low scores, upstream of TFs associated with biological processes 
previously unrelated to chitin/GlcNAc catabolism (Figure 2A and 
Table 1). Our particular interest in finding environmental signals 
that could possibly control the triggering of secondary metabolite 
production raised our attention on three predicted dres: (i) a dre 
identified upstream of redZ (dreredZ), a TF that activates 
expression of the pathway-specific activator redD of prodiginines 
production; (ii) the dre predicted upstream of actII-ORF4 
(dreactII-4), the pathway-specific activator of actinorhodin 
production; and (iii) the putative dre upstream of dmdR1 
(dredmdR1), encoding for the repressor of siderophores, 
desferrioxamines and coelichelin biosynthesis. As Figure 2A 
illustrates, dreactII-4, dreredZ, and dredmdR1 fell well below TMS. 
Another type of cut-off score was proposed by Tan et al.9 who 
suggested fixing the threshold score for weak sites at which 
greater than half of all sites are located upstream of transcription 

units (hereafter referred to as “T50%”). This arbitrary threshold is 
based on the naturally strong biased location of cis-acting 
elements in genes’ upstream regions (>90%) rather than within 
genes’ coding sequences. A cut-off of T50% can thus be expected 
to generate an output list containing a large proportion of false 
positive hits. Here again, scores obtained for dredmdR1, dreactII-4, 
dreredZ, are still below T50% (Figure 2A). Even worse, dreactII-4 and 
dreredZ, have scores at which almost all sites are located within 
transcription units and below the threshold of random localisation 
(hereafter referred to as “TRL”). We defined the TRL as suggested 
by Tan et al9 based on the proportion non-coding and coding 
regions in the microorganisms where the DNA motif screening is 
performed. The S. coelicolor genome has ∼11% of non-coding 
regions. Thus, sequences with random localisation, i.e. not biased 
for either coding or non-coding sequences, will occur at scores 
where hits are located ∼11% of the time in non-coding regions 
and ∼89% within transcription units. dreactII-4 and dreredZ have 
scores at which 91 and 89% of all sites are located in 
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transcription units (Figure 2A), clearly indicating that these sites 
belong to the background noise of the DNA motif screening 
process. Notwithstanding these ‘worst case scenario’ statistics 
(scores below TRL), we decided to further investigate these hits 
and the binding of DasR to dreactII-4, dreredZ, and dredmdR1 was 
demonstrated by electromobility gel shift assays10, 11, while the 
repressing activity of DasR on the expression of the latter genes 
was demonstrated by RT-PCR10, 11. In vivo binding of DasR to 
dreactII-4, and dreredZ, was also recently observed through 
Chromatin ImmunoPrecipitation-sequencing. The use of a 
threshold-free regulon prediction software thus allowed, for the 
first time, the identification of complete signalling pathways from 
elicitor sensing to secondary metabolite production in the 
industrially important ‘antibiotic makers’ Streptomyces species12.  
 
To prove that the inability to identify weak sites was due to the 
restrictive screening parameters fixed by software developers, we 
repeated our prediction of the DasR regulon by means of other 
algorithms used by some of the most popular regulon prediction 
web tools. As obtained with the algorithm used in PREDetector 

(Figure 2A), none of the other algorithms allowed to detect 
dreactII-4, dreredZ, and dredmdR1 at TMS or at T50%. dreactII-4 and 
dreredZ are always detected at scores around or below TRL (Figure 
2). The threshold set by default by the DNA motif finding web 
tools (T* or T‡ in Figure 2) is often above T50%. The FIMO13 
(Find Individual Motif Occurrences) software from the MEME 
suite toolkit is the only web tool tested that fixed its default 
output threshold low enough (even below TRL) to detect dreredZ, 
and dredmdR1 (Figure 2C). Importantly, FIMO, likewise 
PREDetector, also allows user to considerably modify the output 
threshold set by default (marked as T‡ in Figure 2A and C). 
Particularly interesting is the comparison of the drastically 
different results obtained by the two algorithms proposed by the 
FITBAR software14. When predictions are performed via the 
entropy-weighted position-specific scoring matrices the threshold 
set by default is below T50% and includes dredmdR1 in the output 
list (Figure 2E), while using the log-odds algorithm results in 
predictions which do not even include the sequences from the 
training set (Figure 2F), as also observed with the threshold set 
by default by the PRODORIC web-tool (Figure 2B). 

 

 
Figure 2. Position of dredmdR1, dreactII-4, and dreredZ according to different arbitrary thresholds and based on scores obtained via different algorithms. A. 
PREDetector (pi based on training set). B. PRODORIC15. C. FIMO13. D. RegPrecise16. E. FITBAR14 (entropy-weighted position-specific scoring matrices). F. 
FITBAR (log-odds). X axis = arbitrary scores given according to the different algorithms. Y axis = percentage of hits in a certain region (intergenic versus 
coding sequences). Red line = % of hits in a certain region according to the score. Blue beanplot = total number of hits according to the score. Circles = 
positions of sequences used to generate the PWM. T* or T‡ = Rigid or flexible thresholds fixed by default by the software, respectively. Numbers between 
brackets = numbers of total hits found before dredmdR1, dreactII-4, and dreredZ and percentage of hits in a certain region at their respective score. Algorithms that 
do not allow free modification of the threshold set by default were re-coded in R17 in order to create a consistent framework for comparison.  
 

Conclusions 
In their sarcastic commentary ‘How Not to Be a 

Bioinformatician’, Manuel Corpas et al. wrote that ‘to blindly 
believe in the predictions given, P-values or statistics’ is one of 
the top ten disastrous practices in the bioinformatics field18. 
Sadly, this is often a common practice among software 
developers, who give priority to the statistical ‘robustness’ of 
their program by suggesting, or even imposing, stringent cut-offs 
whose meaning mistakenly becomes “absolute truth above, 

absolute falsehood below18”. As long as TF-binding sites (TFBS) 
prediction algorithms will mostly focus on sequence similarity - 
which only imperfectly accounts for the multiple and complex 
rules governing TF-TFBS interactions - scoring and associated 
statistics will fail to optimally help software users. We illustrated 
through three examples why the choice between reliable or 
exhaustive DNA motif prediction outputs is a dilemma that has 
no real biological meaning. The discovery of the DasR and 
GlcNAc-mediated control of secondary metabolite production 
had now become a paradigm for actinomycetes developmental 
studies10, 12. These examples should convince software users that 
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many biologically relevant hits are hidden below the arbitrary 
fixed threshold scores and that spending time analysing a long 
output list is often rewarded. We thus encourage software users 
to privilege the utilization of web tools that leave them the 
opportunity to lower the prediction cut-off score set by default, 
which will obviously result in a longer list of putative cis-acting 
sites, full of false positive hits. For large eukaryotic genomes, the 
length of this list and the total number of potential hits may be 
quite large and hence more difficult to go over them in detail to 
prioritise them. However, biologists should not be scared of 
‘making mistakes’, which in this case would be to decide to start 
investigations on a false positive hit. Finding unexpected 
regulatory connections implies taking risks and is time 
consuming. In any case, the study of an in silico predicted cis site 
that is eventually experimentally demonstrated not to occur in 
vivo is not necessarily considered a loss of time as such an 
investigation constitutes a negative control that strengthens the 
credibility of the positive interactions previously identified.  

 
The challenge for bioinformaticians is to provide tools 

that would minimize risks and therefore the main improvements 
of next generation regulon prediction web-tools should aim at 
helping the user in finding which hits are potentially worth to 
investigate in the infinite list of putative candidates. 
Nevertheless, whatever how improved will be the updated 
versions of regulon predicting tools, the decision to start 
investigations on a possible TF-binding site that escapes the 
statistical criteria of reliability must only be the biologist’s own 
decision, based on his/her knowledge, enthusiasm, and curiosity.  
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