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Abstract

With the increasing share of renewable and distributed generation in electri-
cal distribution systems, Active Network Management (ANM) becomes a valuable
option for a distribution system operator to operate his system in a secure and cost-
effective way without relying solely on network reinforcement. ANM strategies are
short-term policies that control the power injected by generators and/or taken off by
loads in order to avoid congestion or voltage issues. While simple ANM strategies
consist in curtailing temporary excess generation, more advanced strategies rather
attempt to move the consumption of loads to anticipated periods of high renewable
generation. However, such advanced strategies imply that the system operator has
to solve large-scale optimal sequential decision-making problems under uncertainty.
The problems are sequential for several reasons. For example, decisions taken at
a given moment constrain the future decisions that can be taken, and decisions
should be communicated to the actors of the system sufficiently in advance to grant
them enough time for implementation. Uncertainty must be explicitly accounted
for because neither demand nor generation can be accurately forecasted. We first
formulate the ANM problem, which in addition to be sequential and uncertain, has
a nonlinear nature stemming from the power flow equations and a discrete nature
arising from the activation of power modulation signals. This ANM problem is then
cast as a stochastic mixed-integer nonlinear program, as well as second-order cone
and linear counterparts, for which we provide quantitative results using state of the
art solvers and perform a sensitivity analysis over the size of the system, the amount
of available flexibility, and the number of scenarios considered in the deterministic
equivalent of the stochastic program. To foster further research on this problem,
we make available at http://www.montefiore.ulg.ac.be/~anm/ three test beds
based on distribution networks of 5, 33, and 77 buses. These test beds contain a
simulator of the distribution system, with stochastic models for the generation and
consumption devices, and callbacks to implement and test various ANM strategies.
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1 Notation

We present here the main elements of notation used throughout the text. Some locally
defined notation may not be covered in this section.

Indices:
d Device connected to a node.

m or n Node of the electrical system.
mn Link of the electrical system between nodes m and n.
t Time period.

Sets:
D Set of electrical devices.
G Subset of D containing distributed generators.
C Subset of D that are electrical loads.
F Subset of C that can be controlled by the DSO.
T Set of time periods.
N Set of nodes of the electrical system.
L Set of links of the electrical system.

S(i)
t Space of state vector s

(i)
t (see the variables below for i ∈

{1, 2, 3}).
S Global state space of the system.
As Feasible action (or control) space in state s ∈ S.
Ad,s Feasible set of actd,t (see variables).
W Set of possible realizations of random processes.

Parameters:

Y
(br)
mn Branch admittance of link (m,n).

Y
(sh)
mn Shunt admittance of link (m,n) on the side of node m.
tmn Transformation ratio of link (m,n) on the side of node m.
Y Nodal admittance matrix.
Yn· nth row of Y .
Ymn Element (m,n) of Y .

Vn and Vn Lower and upper operational limits on voltage magnitude
|Vn|.

Imn Operational limit on current magnitude |Imn|.
tanφd Reactive to active power ratio of device d (assumed constant

for all devices).
Td Duration of a modulation signal sent to a flexible load.
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∆Pd Vector of length Td representing the modulation signal sent
to a flexible load.

Nloads Length of the history of load consumption tracked in the
state.

Nir Length of the history of solar irradiance tracked in the state.
Nv Length of the history of wind speed tracked in the state.
qt Index of a quarter of an hour.

Variables: Note that some variables may have an additional subscript t. Also some
variables are control variables, some represent the state of the system, and the remaining
variables are exogenous stochastic processes.

V Vector of size |N |, node voltages.
Vn Complex voltage at node n, i.e. nth component of V .
I Vector of size |N |, current injected in the nodes.
Ii If i = l, it is the complex current in link l, if i = n, it is the

complex current injected in bus n, i.e. nth component of I.
Si Apparent power injected in bus. If i = d, it is the power

injected by device d. If i = n, it is the total power injected
by all devices connected at node n.

Pi Active power injected in bus. If i = d, it is the power injected
by device d. If i = n, it is the total power injected by all
devices connected at node n.

Qi Reactive power injected in bus. If i = d, it is the power
injected by one device. If i = n, it is the total power injected
by all devices connected at node n.

Smn Apparent power entering branch l = (m,n) from the m side.
Pmn Active power entering branch l = (m,n) from the m side.
Qmn Reactive power entering branch l = (m,n) from the m side.
irt Solar irradiance level at time t.
vt Wind speed at time t.

s
(1)
t Vector representing the state of the devices at time t.

s
(2)
t Vector representing the state of the modulation instructions

sent to controllable devices, at time t.
flext Vector representing the state of the flexible loads at time t,

it is a part of s
(2)
t .

s
(3)
t Part of the state of the system that, at time t, keeps track

of past realizations of the uncertain phenomena.
st Global state of the system at time t.
at Vector of control actions taken at time t.
pt Maximum level of active power injection for period t+1 and

for each of the generators g ∈ G, part of at.
actt Activation indicators of the flexibility services of the loads

d ∈ F , part of at.
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actd,t Component of actt for flexible load d ∈ F .
wt Information on exogenous phenomena available at time t.

Operators and functions:
| · | Magnitude of a complex number or size of a set.
·∗ Complex conjugate.

f : S ×As ×W → S Transition function of the system.
r : S ×As × S → R Reward function.

π : S → As Policy that returns an action for every feasible state.
G(n) Set of generators connected to node n.
C(n) Set of loads connected to node n.
F(n) Set of flexible loads connected to node n.

2 Introduction

In Europe, the 20/20/20 objectives of the European Commission and the consequent
financial incentives established by local governments are currently driving the growth of
electricity generation from renewable energy sources [1]. A substantial part of the invest-
ments is made at the distribution networks (DN) level and consists of the installation
of wind turbines or photovoltaic panels. The significant increase of the number of these
distributed generators (DGs) undermines the fit and forget1 doctrine, which has domi-
nated the planning and the operation of DNs up to now. This doctrine was developed
when the energy was coming from the transmission network (TN) to the consumers,
through the distribution network (DN). With this approach, adequate investments in
network components (i.e., lines, cables, transformers, etc.) are made to avoid congestion
and voltage issues, without requiring continuous monitoring and control of the power
flows or voltages. To that end, network planning is done with respect to a set of critical
scenarios gathering information about production and demand levels, in order to al-
ways ensure sufficient operational margins. Nevertheless, with the rapid growth of DGs,
the preservation of such conservative margins implies significant network reinforcement
costs2, because the net energy flow may be reversed, from the distribution network to
the transmission network, and flows within the distribution network be very different
from the flows historically observed.

In order to host a larger share of distributed generation [2] and avoid potentially
prohibitive reinforcement costs [3], active network management (ANM) strategies have
recently been proposed as alternatives to the fit and forget approach. The principle of
ANM is to address congestion and voltage issues via short-term decision-making policies
[4]. Frequently, ANM schemes maintain the system within operational limits in quasi
real-time by relying on the curtailment of wind or solar generation [5, 6, 7]. Curtailment

1Under this approach, adequate investments in network components (i.e., lines, cables, transformers,
etc.) must be made in order to always avoid congestion and voltage problems.

2Network reinforcement is the process of upgrading the transmission capacity of lines, cables, trans-
formers, and other devices. As distribution systems of interest in this paper are mostly done of under-
ground cables, upgrading them implies a lot of infrastructure work.
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of renewable energy may, however, be very controversial from an environmental point
of view and should probably be considered as a last resort. In that mindset, it is worth
investigating ANM schemes that could also exploit the flexibility of the loads, so as
to decrease the reliance on generation curtailment. Exploiting flexible loads within an
ANM scheme comes with several challenges. One such challenge is that modulating a
flexible load at one instant is often going to influence its modulation range at subsequent
instants. This is because flexible loads (e.g. heat pumps) are often constrained to con-
sume a specific amount of energy over a certain duration. In this context, it is therefore
important for a distribution system operator (DSO) to take decisions by planning oper-
ations over a sufficiently long time horizon [8, 9, 10]. The uncertainty of future power
injections from DGs relying on natural energy sources (wind, sun, etc.), as well as the
uncertainty of the power consumption of the loads, should also be explicitly accounted
for in the ANM strategy. In this work we consider the operation of the medium-voltage
(MV) network of the DSO, i.e. low voltage subnetworks are aggregated, since in general
current DSOs’ dispatching centers only monitor the MV part, and ANM in low voltage
distribution systems is generally performed using distributed algorithms [11].

Many authors have already attempted to provide solutions to these operational plan-
ning problems. Since they rely on different formulations, it is difficult for one author to
rebuild on top of another’s work. However, these formulations can be considered as an
extension of the optimal power flow (OPF) problem [12]. More specifically, they can be
assimilated to sequential decision-making problems where, at each time step, constraints
that are similar to those used for defining an OPF problem are met. Optimal power flow
problems, although non-convex, have been solved for a long time using local nonlinear
optimization methods. Interior-point methods are probably the most widespread class
of methods dedicated to this problem [13]. If the solution they provide has no guarantee
to be globally optimal, then they have been made popular by their convergence speed
and their ability to solve problems of large dimensions fairly efficiently. Convexifications
of the power flow equations have been successful, in particular in [14] where the author
models power flows in a radial distribution system using second-order cone constraints.
Recently, semidefinite programming (SDP) was applied as a convex relaxation to the
OPF problem [15]. The authors report no duality gap on some standard meshed test
systems and randomized versions of these test systems. The zero duality gap property
was thus observed experimentally on standard test systems, and further research resulted
in sufficient conditions. This is the case, for example, if the objective function is con-
vex and monotonically increasing with the active power generation, and if the network
has a radial topology [16, 17]. Another approach aiming at global optimality relies on
Lagrangian relaxation (LR) [18]. The author also describes a spatial branch and bound
(B&B) algorithm to close the gap, should one exist. The ability of both SDP and LR to
decrease the optimality gap within a B&B framework was evaluated in [19]. Although
SDP appeared to be computationally more attractive, it showed that it could be very
challenging to reach a significant gap reduction within reasonable time limits, even for
small test systems. A different approach is considered in [20], where the authors present
a linear approximation of the power flow equations with a focus on distribution networks.
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Multi-period applications related to energy storage are investigated in [21], where the
SDP relaxation of [15] is successfully applied, as their particular application met the
conditions of having no duality gap. The authors of [22] argue that extending [19] to a
multi-period setting yields an SDP too large for current solvers to solve efficiently and
suggest relaxing the time-coupling constraints using LR. However, it ended up being
computationally too expensive to make the B&B approach worthwhile. Many papers
consider the unit commitment problem over an AC network, which is an instance of a
multi-period OPF with discrete variables. For instance in [23], a generalized Benders de-
composition divides the problem into a linear master problem with discrete variables and
nonlinear multi-period sub-problems. Benders cuts are generated from the sub-problems
to tighten the MIP master problem. Finally, [24] focused on trying to solve a problem
that is mathematically close to the one we consider and provides more information on
related research.

A first objective of this work is to facilitate the comparison of solution techniques
that have been developed in the research community. To that end, we first propose a
generic formulation of ANM related decision-making problems. More specifically, we
detail a procedure to state these problems as Markov Decision Processes (MDP), where
the system dynamics describes the evolution of the electrical network and devices, while
the action space encompasses the control actions that are available to the DSO. Af-
terwards, we instantiate this procedure on networks of 5, 33, and 77 buses, and use
the elements of the resulting MDPs to build a simulator of these systems, which is
available at http://www.montefiore.ulg.ac.be/~anm/. As a second contribution, we
provide quantitative results for the resolution of the ANM problem cast as a stochastic
mixed-integer nonlinear program (MINLP), as well as a mixed-integer second-order cone
programming (MISOCP) relaxation and a mixed-integer linear programming (MILP) ap-
proximation, using state of the art open source and commercial solvers. We then perform
a sensitivity analysis over the size of the distribution system, the amount of flexibility
available in the system, and the number of scenarios considered in the deterministic
equivalent of the stochastic program. Finally, a last contribution lies in the features
modeled in this work. Compared to the work of [9] and [10], we explicitly account for
uncertainty, and for discrete variables stemming from the activation of flexibility ser-
vices. Compared to our work, [9] relies only on a continuous nonlinear programming
formulation, and thus does not analyze linear or second order cone programming formu-
lations, but models a storage system, and [10] also models discrete decisions variables,
but they are related to capacitor banks switching and storage system operation modes.
The latter reference also uses MISOCP and MILP formulations.

The rest of this paper is structured as follows. The ANM problem of a DN is
described in Section 3, where the electrical model and the network operation details
are explained, and the operational planning problem is formulated as a Markov decision
process. This formulation is then cast as a stochastic mixed-integer nonlinear program
in Section 4, where a second order cone relaxation and a linear approximation are also
detailed. The test beds built around the different distribution systems are described in
Section 5, and test results are presented in Section 6. Section 7 concludes and presents
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Figure 1: π-model of a link.

possible extensions of this work.

3 Problem Description

3.1 Model of the electrical distribution system

In this paper, we are always considering that the network and all its devices are operating
in alternating current mode. We also make the choice to represent complex numbers in
rectangular coordinates.

The electrical distribution system can be mathematically represented by a graph,
that is a set of nodes, and a set of links connecting nodes. A node is an electrical bus
characterized by a voltage Vn ∈ C. In addition to links connecting a bus to its neighbors,
several devices may be connected to a bus. Devices are either injecting or withdrawing
power. Every link (m,n) ∈ L ⊂ N 2 connects a pair of nodes m,n ∈ N and represents
an overhead line, an underground cable, or a transformer. A link is represented by
its π-model, composed of five complex parameters: two ratios tmn and tnm, a branch

admittance Y
(br)
mn , and two shunt admittances Y

(sh)
mn and Y

(sh)
nm (see Fig. 1), that are

considered fixed in this work, although opportunities to change them dynamically can
exist in practice. More details on the π-model of specific links can be found in [25].

To ensure the proper operation of the devices connected to a bus, the voltage mag-
nitude |Vn| at note n should not deviate too much from its nominal voltage level:

∀n ∈ N : V n ≤ |Vn| ≤ V n . (1)

If Imn ∈ C is the branch current through link (m,n), its magnitude |Imn| should be kept
below a pre-specified limit to prevent excessive heating of conductors and insulating
materials:

∀(m,n) ∈ L : |Imn| ≤ Imn. (2)

In reality, there are several limits depending on the magnitude and duration of the over-
current. In this work we consider only the most conservative limit, since we want to
keep a sufficient margin as we are taking decisions ahead of time with a relatively high
uncertainty. The magnitude of the current Il in link l connecting nodes m and n can be
deduced from the voltage at these nodes by

|Imn| =
∣∣∣(|tmn|2Vm − (t(l)mn)∗t(l)nmVn

)
Y (br)
mn

∣∣∣ , (3)
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where ·∗ denotes the complex conjugate operator.
Before defining the power injections as a function of voltages, it is convenient to

relate the current injected at nodes to the voltage by writing:

I = Y V , (4)

where I = (I1, . . . , I|N |) is the vector of the current injection at nodes, V = (V1, . . . , V|N |)
is the vector of the voltage at nodes, and Y is the |N | × |N | nodal admittance matrix,
which has its elements defined by

Ymn =


−(t

(l)
mn)∗t

(l)
nmY

(br)
mn if m 6= n and ∃(m,n) ∈ L ,∑

(m,k)∈L |tmk|2(Y
(sh)
mn + Y

(br)
mn ) if m = n ,

0 otherwise .

(5)

Regarding the active power Pn and reactive power Qn injected at every node n, they are
related to the node voltages through the power flow equations [26]:

∀n ∈ N : Sn = Pn + jQn = VnI
∗
n = VnY

∗
n·V

∗ , (6)

where Sn is the apparent power injection at bus n and Yn· denotes the nth row of the
nodal admittance matrix. By convention a power injection is positive if it supplies the
network and negative if it takes energy from the network.

In summary, there are four quantities attached to each node n ∈ N that determine
the electrical state of the system: Pn, Qn, and real and imaginary parts of Vn. The
power flow equations (6) provide 2|N | relations. 2|N | variables should thus be fixed
to obtain a solution to this system of equations. In general, Vn is fixed on one side of
the transformer between the MV network and the transmission system, to provide a
reference voltage. At other nodes, the active power injection Pn is known, as well as
either the reactive power Qn or the voltage magnitude |Vn|, depending on the type of
device connected at the node. In this work we consider that we have some control over
the power flows in the system, hence we consider that less than 2|N | variables are fixed
and that we can act on Pn and Qn at some nodes. The system is actually controlled by
acting on the electrical devices attached to these nodes.

Electrical devices can be classified into two distinct subsets, the set C ⊂ D of loads
that withdraw power from the network, and the set G ⊂ D of generators that inject power
into the network. Within each subset, we also distinguish two types of device models.
The first ones represent individual injection and withdrawal points. They can model
certain types of DGs or consumers that are directly connected to the MV grid (e.g.,
wind farms, some companies and factories, etc.). The others model an aggregate set of
devices that are assimilated to a single connection point at the MV grid (e.g., residential
consumers and solar panels). Correspondences between some physical elements and their
device model are illustrated in Fig. 2. At node 3, a set of residential loads and a set
of distributed solar units have been aggregated into a single load model and a single
generator model.
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Figure 2: System model

An active power injection value Pd and a reactive power injection value Qd are
associated with every device d ∈ D, and, denoting the set of devices connected at node
n by D(n) ⊂ D:

∀n ∈ N : Sn = Pn + jQn =
∑

d∈D(n)

(Pd + jQd) . (7)

Every device d has a restricted set Od ⊂ R2 of valid (Pd,Qd) injection points. We assume
that the loads are operating at a constant power factor, i.e. the ratio between reactive
and active powers - denoted as tanφd - remains unchanged:

∀d ∈ C : Od = {(Pd, Qd) ∈ R2 | Qd
Pd

= tanφd} . (8)

For distributed generators, the injections points have to stay within a polyhedron, as
illustrated in Fig. 3. This set is defined by lower and upper bounds on both Pd and Qd,
as well as by two linear constraints that prevent a full flexibility on Qg when Pg is close
to its maximum. These constraints model the limitations of the power converter and/or
of the electric generator [27]. We have:

∀g ∈ G : Og = {(Pd, Qd) ∈ R2 | Pmin,g ≤ Pg ≤ Pmax,g ,
Qmin,g ≤ Qg ≤ Qmax,g ,
Qg ≤ α+

g Pg + β+
g ,

Qg ≤ α−g Pg + β−g } . (9)
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Figure 3: Illustration of a polyhedral set Od defining the P-Q capability area of a dis-
tributed generator g ∈ G.

3.2 Operational planning problem statement

Considering the model of the electrical distribution network presented in Section 3.1,
operational planning is a recurring task performed by the DSO to anticipate the evolution
of the system, that is the impact of the evolution of the injection and the consumption
patterns on the operational limits of the system, and take preventive decisions to stay
within these limits. Among the available decisions in the considered timing of operations,
we consider that acting on the power injected or consumed by a predefined set of devices
is the only type of control the DSO has, as detailed in Section 3.1. We describe the
evolution of the system by a discrete-time process having a time horizon T , the number
of periods used for the operational planning phase. The period duration is 15 minutes,
by analogy with the typical duration of a market period. The power injection and
withdrawal levels are constant within a single period, and we neglect the fast dynamics
of the system, which may be handled by real time controllers [28]. The control actions
in this section are aimed to directly impact these power levels and can introduce time-
coupling effects, depending on the type of device. We now describe two control means
of the system, the modulation of the generation and the modulation of the demand, as
well as one of the possible interaction schemes between the actors of this system.

For each device belonging to the set G ⊂ D of DGs, the DSO can impose a curtailment
instruction, i.e. an upper limit on the generation level of the DG (cf. Fig. 4). This request
can be performed until the time period immediately preceding the one concerned by the
curtailment and it is acquired in exchange for a fee. This fee is used to compensate
the producer for financial loss related to the energy that could not be produced during
modulation periods. We assume that this fee is defined as a per unit compensation for
the energy not produced, with respect to the actual potential that is known after the
market period.
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Figure 4: Curtailment of a distributed generator.

We also consider that the DSO can modify the consumption of some flexible loads,
a subset F of full set of the loads C ⊂ D of the network. An activation fee is associated
with this control mean and flexible loads can be notified of activation until the time
immediately preceding the start of the service. Once the activation is performed at time
t0, the consumption of the flexible load d is modified by a certain value during Td periods.
For each of these modulation periods t ∈ {t0 + 1, ..., t0 +Td}, this value is defined by the
modulation function ∆Pd(t− t0). An example of modulation function and its influence
over the consumption curve are presented in Fig. 5. Loads cannot be modulated in an
arbitrary way. There are constraints to be imposed on the modulation signal, which
are inherited from the flexibility sources of the loads, such as an inner storage capacity
(e.g. electric heater, refrigerator, water pump) or a process that can be scheduled with
some flexibility (e.g., industrial production line, dishwasher, washing machine). In any
case, we will always consider that the modulation signal ∆Pd has to satisfy the following
conditions:

• A downward modulation is followed by an increase of the consumption, and con-
versely.

• The integral of the modulation signal is null in order to ensure that the consump-
tion is only shifted, not modified.

Other approaches that we do not consider in this work exist to control the system,
such as modulating the tariff signal(s), acting on the topology of the network, or using
distributed storage sources. We do not model either the automatic regulation devices
that often exist in distribution systems, such as On Load Tap Changers of transform-
ers which automatically adapt to control the voltage level. This should be the case,
obviously, in a real life application. We will discuss in the conclusion what are the
implications of these non-modeled control possibilities.
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(a) Modulation signal of the consumption (Td = 9).

(b) Impact of the modulation signal over the consumption.

Figure 5: Illustration of flexibility services.

3.3 Optimal sequential decision-making formulation

We now formulate operational planning as an optimal sequential decision-making prob-
lem, that is, we explain how the time, the decision process, and uncertainty are included
to extend the mathematical model described in Section 3.1. The sequential aspect is
induced by the modulation service that is provided by flexible loads. Indeed, if such a
service is activated at time t0 for a flexible load d, the action will influence the system
for the set of periods {t0 + 1, ..., t0 +Td}. In addition to being a sequential problem, it is
also stochastic, because the evolution of the system and the outcome of control actions
are affected by several uncertain factors. These factors include, but are not limited to,
the wind speed, the level of solar irradiance, and the consumption level of the loads.
In this section, we model this problem as a Markov decision process with mixed-integer
sets of states and actions. We thus consider that the transition probabilities of the state
of the system from a period t to a period t + 1 only depend on the state at time t.
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However, this state can encompass several past values of wind speed, solar irradiance,
consumption levels, and any auxiliary modeling variables, in order to obtain a relevant
model. An automatic procedure that determines an adequate number of past values to
track in the state is presented in Section 5. Note that modeling the actual system as
a Markovian system is not restrictive as all properly modeled systems are Markovian
if the state variables capture all the information to model the system from time t and
onwards [29]. Finally, the notion of optimality is defined using a reward function that
associates an immediate reward (or score) to every transition of the system. The better
the cumulated reward over a system trajectory, the better the sequence of control actions
for this trajectory.

3.3.1 System state

The global state space S of the system is decomposed in three subsets:

S = S(1) × S(2) × S(3).

The power injections of the devices are sufficient to obtain the value of the electrical
quantities through equations (6) and (7). These injections are determined from the re-
alization of the exogenous consumption and generation processes at a given time period,
and from the modulation instructions for that period. If the consumption processes
require the representation of the individual consumption of every load, it is possible to
obtain the production of DGs given the power level of their energy source (i.e. the wind
speed or the level of solar irradiance). We thus define a first state set S(1) such that the

vectors s
(1)
t ∈ S(1) are defined by

s
(1)
t = (P1,t, . . . , P|C|,t, irt, vt) ,

where, at time t ∈ T , the irt and vt components represent the level of solar irradiance
and the wind speed, respectively. If, for the sake of simplicity, we consider only solar and
wind generation, other types of generators could easily be integrated by increasing the
dimension of S(1). Note that the reactive power withdrawals of loads are known from

s
(1)
t through equation (8).

The vector s
(2)
t ∈ S(2), defined as

s
(2)
t = (P 1,t, Q̂1,t, . . . , P |G|,t, Q̂|G|,t, f lex1,t, . . . , f lex|F|,t),

contains the upper limits P g,t on the active power injection and the reactive set-points
Q̂g,t of the DGs g ∈ G, as authorized by the DSO, and the indicators flexd,t of the
flexibility service state of the loads d ∈ F :

flexd,t =

{
number of active periods left if service is active

0 if service is inactive .

We denote by s
(3)
t ∈ S(3) the part of the system’s state that, at time t ∈ T , keeps track

of past realizations of the uncertain phenomena (i.e. wind speed, solar irradiance, and

The final publication is available at Springer via http://dx.doi.org/10.1007/s11081-016-9339-9 . 13



consumption levels) and contains the optional auxiliary modeling variables. Its purpose
is to improve the accuracy of the stochastic modeling and to allow the representation of
processes that are required for some reward functions (see Section 3.3.4). The number
of past values can be different for each phenomenon and, we have

s
(3)
t = (P1,t−1, . . . , P1,t−Nloads+1, . . . , P|C|,t−1, . . . , P|C|,t−Nloads+1,

irt−1, . . . , irt−Nir+1, vt−1, . . . , vt−Nv+1,

s
(aux)
1,t , . . . , s

(aux)
Naux,t

)

where Nloads, Nir, Nv ∈ Z+
0 , and Naux ∈ Z+. The value of these parameters has to be

determined when instantiating the presented abstract decision model (see Section 5). A
value of 1 for the three former parameters means that the history of the corresponding
phenomenon consists of s(1) only, while a value of 0 for the latter parameter means that
there is no auxiliary variable. We denote thereafter the vector of the Naux auxiliary

modeling variables by s
(aux)
t .

3.3.2 Control actions

The control means that are available to the DSO to control the system are modeled by
the set As of control actions. This set depends on the state st of the system because
it is not possible to activate the flexibility service of a load if it is already active. The
components of vectors at ∈ As are defined by

at = (pt, q̂t,actt) ,

with pt, q̂t ∈ R|G| such that, for period t + 1 and for each of the generators g ∈ G, pg,t
and q̂g,t indicate the maximum level of active power injection and the desired reactive
set-point, respectively. On the other hand, the vector actt represents the activation
indicators of the flexibility services of the loads d ∈ F , where each component actd,t
belongs to Ad,s, which is defined as

Ad,s =

{
{0, 1} if flexd,t = 0

{0} if flexd,t > 0 ,
(10)

to ensure that a load which is already active is not activated.
By using this representation of the control actions, we consider that a curtailment

or flexibility activation action targeting a period t must always be performed at the
period t − 1, as described in Section 3. We do not consider the possibility to notify
control actions several periods ahead, because it would induce even larger time-coupling
effects, while not improving the extent of control of the DSO since in the interaction
model considered in this paper the cost associated with an action is independent of the
notification delay.
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3.3.3 Transition function

The system evolution from a state st to a state st+1 is described by the transition
function f . The new state st+1 depends, in addition to the preceding state, on the
control actions at and on the realization of the stochastic processes:

f : S ×As ×W → S ,

where W is the set of possible realizations of a random process. The general evolution
of the system is thus governed by relation

st+1 = f(st,at,wt) , (11)

where wt ∈ W represents the exogenous information and follows a probability law pW(·).
We could write equivalently that st+1 ∼ pS(·|st,at), which clearly highlights that the
next state of the system follows a probability distribution that is conditional on the
current state and on the action taken at the corresponding time step. However, we
favor notation of equation (11) as it enables an easier formulation of concepts that are
introduced latter in this paper. We now describe the various elements that constitute
the transition function.

Load consumption The uncertainty about the behavior of consumers inevitably leads
to uncertainty about the power level they draw from the network. However, over a
one-day horizon, some trends can be observed. For example, consumption peaks arise
in the early morning and in the evening for residential consumers, but at levels that
fluctuate from one day to another and among consumers. We model the evolution of the
consumption of each load d ∈ C by

Pd,t+1 = fd(Pd,t, Pd,t−1, . . . , Pd,t−Nloads+1, s
(aux)
t ,wd,t) , (12)

where wd,t ∼ pWd
(·) denotes some components of wt ∼ pW(·). Given the hypothesis of

a constant power factor for the loads, the reactive power consumption can directly be
deduced from Pd,t+1:

Qq,t+1 = tanφd · Pd,t+1 . (13)

Speed and power level of wind generators The uncertainty about the produc-
tion level of wind turbines is inherited from the uncertainty about the wind speed. The
stochastic process that we consider governs the wind speed, which is assumed to be uni-
form across the network. The production level of the wind generators is then obtained by
using a deterministic function that depends on the wind speed realization, this function
is the power curve of the considered generator. We can formulate this phenomenon as:

vt+1 = fv(vt, . . . , vt−Nv+1, s
(aux)
t ,w

(v)
t ) , (14)

Pg,t+1 = ηg(vt+1),∀g ∈ wind generators ⊂ G , (15)

such that w
(v)
t ∼ pW(v)(·) denotes some components of wt ∼ pW(·) and where ηg is the

power curve of generator g. A typical example of power curve ηg(v) is illustrated in
Fig. 6.
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Figure 6: Power curve of a wind generator.

Irradiance and photovoltaic production Like wind generators, the photovoltaic
generators inherit their uncertainty in production level from the uncertainty associated
with their energy source. This source is represented by the level of solar irradiance,
which is the power level of the incident solar energy per square meter. The irradiance
level is the stochastic process that we model, while the production level is obtained by a
deterministic function of the irradiance and of the surface of photovoltaic panels. This
function is simpler than the power curve of wind generators and is defined as

Pg,t = ηg · surfg · irt ,

where ηg is the efficiency factor of the panels, assumed constant and with a typical
value around 15%, while surfg is the surface of the panels in m2 and is specific to each
photovoltaic generator. The irradiance level is denoted by irt and the whole phenomenon
is modeled by the following process:

irt+1 = fir(irt, . . . , irt−Nir+1, s
(aux)
t ,w

(ir)
t ) , (16)

Pg,t+1 = ηg · surfg · irt+1,∀g ∈ solar generators ⊂ G , (17)

such that w
(ir)
t ∼ pW(ir)(·) denotes some components of wt ∼ pW(·).

Auxiliary modeling variables The evolution of auxiliary modeling variables de-
pends on their meaning and must be determined when instantiating the presented ab-

stract decision model. The evolution of each component of s
(aux)
t can be either stochastic

or deterministic and, without loss of generality, we can write:

s
(aux)
t+1 = faux(st,w

(aux)
t ) , (18)

such that w
(aux)
t ∼ pW(aux)(·) denotes some components of wt ∼ pW(·).
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Impact of control actions The stochastic processes that we described govern the

evolution of the state s
(1)
t ∈ S(1) of the consumption of loads (flexibility services ex-

cluded) and of the power level of energy sources of DGs. We now define the evolution of

the components of s
(2)
t ∈ S(2) by integrating the control actions of the DSO. Concerning

the modulation instructions of the generators, we have:

∀g ∈ G : P g,t+1 =

{
pg,t if (pg,t, q̂g,t) ∈ Og ,
max(p,q̂g,t)∈Og

p otherwise ,
(19)

∀g ∈ G : Q̂g,t+1 = q̂g,t , (20)

where max(p,q̂g,t)∈Og
p denotes the maximal active production level that generator g can

sustain with a reactive set-point of q̂g,t. It is used if needed to ensure that the instructed
(P g,t+1, Q̂g,t+1) point is a valid operating point, such a defined by equation (9). As for
the components dedicated to the flexible loads, their evolution is governed by:

∀d ∈ F : flexd,t+1 = max(flexd,t − 1 ; 0) + actd,tTd , (21)

∀d ∈ F : ∆Pd,t+1 =

{
∆Pd(Td − flexd,t+1 + 1) if flexd,t+1 > 0

0 if flexd,t+1 = 0 .
(22)

From vectors s
(1)
t and s

(2)
t , we can determine the active and reactive power injections

at nodes and thus obtain the value of the electrical quantities at nodes n ∈ N and links
(m,n) ∈ L of the network:

Pn,t =
∑

g∈G(n)

min(P g,t;Pg,t) +
∑
d∈C(n)

Pd,t +
∑

d∈F(n)

∆Pd,t , (23)

Qn,t =
∑

g∈G(n)

Q̂g,t +
∑
d∈C(n)

Qd,t +
∑

d∈F(n)

tanφd∆Pd,t , (24)

Pn,t − jQn,t = V ∗n,tYn·Vn,t , (25)

|Imn,t| =
∣∣∣(|tmn|2Vm,t − (t(l)mn)∗t(l)nmVn,t

)
Y (br)
mn

∣∣∣ . (26)

3.3.4 Reward function and goal

In order to evaluate the performance of a policy, we first specify the reward function
r : S ×As×S → R, which associates an instantaneous reward for each transition of the
system from a period t to a period t+ 1:

r(st,at, st+1) =−
∑
g∈G

max{0, Pg,t+1 − P g,t+1

4
}Ccurtg (s

(aux)
t+1 )︸ ︷︷ ︸

curtailment cost of DGs

−
∑
d∈F

actd,tC
flex
d︸ ︷︷ ︸

activation cost
of flexible loads

− Φ(st+1)︸ ︷︷ ︸
penalty function

, (27)
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where Ccurtg (·) is a per-generator function that defines the curtailment price, while

Cflexd (·) defines the activation cost for each flexible load. In this generic definition of
the reward, we allow both functions to depend on the auxiliary state variables so that
it can model arbitrary processes. The function Φ aims at penalizing a policy that leads
the system into an undesirable state (e.g. that violates the operational limits or induces

many losses) and, together with Ccurtg and Cflexd , it must be defined when instantiating
the decision model. Note that equation (27) is such that the higher the operational
costs and the larger the violations of operational limits, the more negative the reward
function.

We can now define the return over T periods, denoted RT , as the weighted sum of
the rewards that are observed over a system trajectory of T periods

RT =
T−1∑
t=0

γtr(st,at, st+1) , (28)

where γ ∈]0; 1[ is the discount factor. Given that γt < 1 for t > 0, the further in time
the transition from period t = 0, the less importance is given to the associated reward.
Because the operation of a DN must always be ensured, it does not seem relevant to
consider returns over a finite number of periods and we introduce the return R as

R = R∞ = lim
T→∞

T−1∑
t=0

γtr(st,at, st+1) , (29)

that corresponds to the weighted sum of the rewards observed over an infinite trajectory
of the system. Given that the costs have finite values, assuming the same for penalties,
and observing that the reward function r is the sum of an infinite number of these costs
and penalties, a constant C exists such that, ∀(st,at, st+1) ∈ S × As × S, we have
|r(st,at, st+1)| < C and thus

|R| < lim
T→∞

C
T−1∑
t=0

γt =
C

1− γ
. (30)

It means that even if the return R is defined as an infinite sum, it converges to a finite
value. One can also observe that, because st+1 = f(st,at,wt), a function ρ : S×A×W →
R exists that aggregates functions f and r such that

ρ(st,at,wt) = r(st,at, f(st,at,wt)) = r(st,at, st+1) , (31)

with wt ∼ pW(·). Let π : S → As be a policy that associates a control action to each
state of the system. We can define, starting from an initial state s0 = s, the expected
return R of the policy π by

Jπ(s) = lim
T→∞

E
wt∼pW (·)
t=0,1,...

{
T−1∑
t=0

γtρ(st, π(st),wt)|s0 = s} . (32)
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We denote by Π the space of all the policies π. For a DSO, addressing the operational
planning problem described in Section 3 is equivalent to determine an optimal policy π∗

among all the elements of Π, i.e. a policy that satisfies the following condition

Jπ
∗
(s) ≥ Jπ(s),∀s ∈ S,∀π ∈ Π . (33)

It is well known that such a policy satisfies the Bellman equation [30], which can be
written

Jπ
∗
(s) = max

a∈As

E
w∼pW (·)

{
ρ(s,a,w) + γJπ

∗
(f(s,a,w))

}
, ∀s ∈ S . (34)

If we only take into account the space of stationary policies (i.e. that selects an action
independently of time t), it is without loss of generality comparing to the space of policies
Π′ : S×T → A because the return to be maximized corresponds to an infinite trajectory
of the system [31].

4 Lookahead optimization model

We now describe a look-ahead algorithm to build a policy based on stochastic pro-
gramming. The principle is, at each time step t ∈ T , to optimize a model Mt of the
system over a finite time horizon Tt = {t, ..., t+ T − 1} and to apply the control action
â∗t = π̂∗Mt

(st) that corresponds to the first stage of the model. This approximate optimal
policy π̂∗Mt

can be formulated as

π̂∗Mt
(st) = arg

at

max
s
t′ ,at′
∀t′∈Tt

E
wt′∼pW (·)

[ t+T−1∑
t′=t

γt
′−tr(st′ ,at′ , f(st′ ,at′ ,wt′))

]
(35)

s.t. st′ = f(st′−1,at′−1,wt′−1) , ∀t′ ∈ Tt\{t} (36)

at′ ∈ Ast′ , ∀t′ ∈ Tt , (37)

where the shorter the horizon T , the higher the approximation error.
The finite lookahead time horizon is not the only source of approximation. First,

there is no exact numerical method to solve (35)-(37) without requiring a discrete ap-
proximation of the continuous stochastic processes [32]. We detail in Section 4.2 how
to build such a discrete approximation. Then, because of the nonlinearity of power-flow
equations on the one hand, and the integer variables that model the activation of flexi-
bility services on the other hand, the resulting mathematical problem is very complex to
solve. For this reason, it is often required either to resort to local optimization techniques
and heuristics, or to use relaxations and approximations of the power-flow equations. In
particular, we describe in Section 4.5 several models of the electrical network of different
complexity and accuracy.
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4.1 Model instantiation

The decision model presented in Section 3.3 is generic on some of its elements. We
now instantiate these elements to obtain a practical model that can be implemented to
perform numerical simulations.

Auxiliary state variable We limit the vector s
(aux)
t to a single auxiliary variable that

indicates the time of the day:

s
(aux)
t = qt , (38)

which takes values in {0, . . . , 95} to identify the quarter of an hour in the day. This
information will be used as an input of the modulation price functions and of the transi-
tion function of both production and consumption processes. The relation that governs
the evolution of qt can be stated as a function faux : {0, . . . , 95} 7→ {0, . . . , 95}, which is
defined as:

qt+1 = faux(qt) = (qt + 1) mod 96 . (39)

Modulation prices For the sake of simplicity, we consider that the curtailment price
functions Ccurtg depend exclusively on qt. The time of the day being deterministic, these
functions are deterministic too and correspond to arrays of 96 price values, which span
a whole day. Concerning the activation costs Cflexd , they are assumed to be constant on
a per-load basis. The values of both the arrays and constants are specified in Section 5
when presenting the test instances.

Penalty function We choose to penalize a policy for violating operational limits and
for the active losses in the network. This is implemented using the following function:

Φ(st+1) = k.
( ∑
n∈N

[max(0, |Vn,t+1| − V n) + max(0, V n − |Vn,t+1|)]

+
∑

(m,n)∈L

max(0, |Imn,t+1| − Imn)
)

+ Closs(qt+1)
∑
n∈N

Pn,t+1

4
, (40)

where |Vn,t+1| (n ∈ N ) and Imn,t+1 ((m,n) ∈ L) are determined from st+1 using equa-
tions (23)-(26), and where k ∈ R+

0 is a typically large constant. The per-unit price
Closs(qt+1) of losses is a deterministic function of the quarter of hour and corresponds
to an array of 96 price values.

Production and consumption processes The instantiated versions of transition
functions (12), (14), and (16), of the stochastic quantities (i.e. the consumption of the
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loads, the wind speed, and the level of solar irradiance) have the following structure:

xt+1 = fx(xt, . . . , xt−Nx+1, qt, w
(x)
t ) , (41)

= µx,t+1 + σx,t+1 · w(x)
t , (42)

with w
(x)
t ∼ pW(x)

(
·|xt − µx,t

σx,t
, . . . ,

xt−Nx − µx,t−Nx+1

σx,t−Nx+1

)
, (43)

where x denotes the considered process, and where µx,t±∆t and σx,t±∆t are shortcuts for
the following per-process functions:

µx,t±∆t = µx

(
(qt ±∆t) mod 96

)
, (44)

σx,t±∆t = σx

(
(qt ±∆t) mod 96

)
. (45)

These functions normalize the processes and remove their diurnal seasonality, and the

conditional distribution of w
(x)
t is then assumed to be stationary. The details of the

conditional density functions are not required for the development of the lookahead
optimization model, we specify in Section 5 a possible procedure to learn these functions
from time series of measurements.

4.2 Discretization of the random process

The random process needs to be discretized over the look-ahead horizon to implement
the policy with a computer program. A prevalent technique is to use a scenario tree [33]
for this purpose. At each time step t ∈ T , the evolution of the stochastic components is
aggregated as a finite set W̃T

t of outcome trajectories of the exogenous variables:

W̃T
t = {(w(k)

t , . . . ,w
(k)
t+T−1)|k = 1, . . . ,W} , (46)

and a probability Pk is associated to each trajectory k ∈ {1, . . . ,W}. If two trajectories i

and j share the same outcomes up to stage o, i.e. if (w
(i)
t′ , . . . ,w

(i)
t′+o) = (w

(j)
t′ , . . . ,w

(j)
t′+o),

they can be interpreted as a single trajectory of probability Pi +Pj up this stage. Fig. 7
provides an example of such a scenario tree, where the nodes represent the outcomes
and the edges correspond to the transition probabilities.

4.3 Mathematical program

The purpose of the first term in the penalty function is to be an incentive to prevent
the policy to bring the system in a state that violates operational limits. This definition
allows to evaluate any kind of policy. In a mathematical programming setting, we
remove this term from the objective function and add operational constraints defined in
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equations (1) and (2) to (35)-(37). The new objective function becomes:

cost(st,at, st+1) =
∑
g∈G

max{0, Pg,t+1 − P g,t+1

4
}Ccurtg (qt+1) +

∑
d∈F

actd,tC
flex
d

+ Closs(qt+1)
∑
n∈N

Pn,t+1

4
. (47)

Taking into account the discretization of the stochastic processes, the objective func-
tion defined in equation (47), and the additional constraints, we can formulate a new
approximate optimal policy π̂∗M̂t

as

π̂∗M̂t
(st) = arg

at

min
s
(k)
t ,...,s

(k)
t+T ,

a
(k)
t ,...,a

(k)
t+T−1,

∀k∈{1,...,W}

W∑
k=1

t+T−1∑
t′=t

[
Pkγt

′−tcost(s
(k)
t′ ,a

(k)
t′ , s

(k)
t′+1)

]
(48)

s.t. ∀t′ ∈ Tt :

a
(i)
t′ = a

(j)
t′ , ∀i, j s.t. (w

(i)
t ,...,w

(i)

t′ )=(w
(j)
t ,...,w

(j)

t′ ) , (49)

∀(k, t′) ∈ {1, . . . ,W} × Tt :

s
(k)
t′+1 = f(s

(k)
t′ ,a

(k)
t′ ,w

(k)
t′ ) , (50)

a
(k)
t′ ∈ As

(k)

t′
, (51)

∀(n, k, t′) ∈ N × {1, . . . ,W} × Tt :

V
(k)
n,t′ ≤ |V

(k)
n,t′ | ≤ V

(k)
n,t′ , (52)

∀(m,n, k, t′) ∈ L × {1, . . . ,W} × Tt :

|Imn,t| ≤ Imn , (53)

where (50) stands for equations (12)-(26), and (51) for equation (10). The model takes
into account that decisions at stage t′ ∈ Tt only depend on exogenous information up

w
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Figure 7: Example of scenario tree with T = 3 and W = 5.

The final publication is available at Springer via http://dx.doi.org/10.1007/s11081-016-9339-9 . 22



to stage t′, i.e. that future unknown data is not used, which is why we integrate the
nonanticipativity constraints [32] to the mathematical program using equation (49).
Problem (48)-(53) is a mixed-integer program (MIP). For a given distribution system,
its complexity depends mainly on the network model chosen to represent power-flow
equations (cf. Section 4.5), and on the number of scenarios representing the uncertainty.

4.4 Detailed model of control actions

Implementing the model of control actions of Section 3.3.2 in a mathematical program is
not straightforward. We now present how it can be implemented in problem (48)-(53).

4.4.1 Generation curtailment

This section focuses on the curtailment decision model. To ease the reading, we focus
on one particular generator and thus omit subscript g. Note first that the active power
injection term of equation (23) that follows a curtailment instruction pt ≥ 0 from stage
t, i.e. min(P t+1;Pt+1), is translated in the mathematical program by

min(P t+1;Pt+1) = Pt+1 − pcurt,t+1 , (54)

where pcurt,t+1 ≥ 0 is the amount of active power curtailment induced by the power limit
instruction. This quantity is easy to determine in a deterministic setting:

P t+1 = pt , (55)

pcurt,t+1 = Pt+1 − P t+1 , (56)

where Pt+1 is the potential active production level at time step t+ 1.
Considering several scenarios leads to a less obvious definition of the amount of

curtailment. Let pt denote the curtailment instruction that, at time t, is shared by

all scenarios j ∈ {1, . . . ,W} such that (. . . ,w
(k)
t−1,w

(k)
t ) = (. . . ,w

(j)
t−1,w

(j)
t ). For one

generator, the maximum power allowed and the curtailed power are defined by the
following set of constraints for each scenario k:

P
(k)
t+1 = pt , (57)

∆p
(k)
t+1 = P

(k)
t+1 − P

(k)
t+1 , (58)

p
(k)
curt,t+1 = max(0,∆p

(k)
t+1) , (59)

where P
(k)
t+1 is the potential active production level in scenario k, and ∆p

(k)
t+1 is an auxiliary

variable that has no physical meaning, since it can be negative when pt is not restrictive

for scenario k (i.e. when pt ≥ P
(k)
t+1). The variable p

(k)
curt,t+1 would be the power curtailed

if scenario k realizes. It contributes linearly to the value of the objective function,
proportional to the curtailment cost and weighted by the probability of scenario k. A
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common relaxation of the max operator of constraint (59) for a variable that tends to
be minimized is

p
(k)
curt,t+1 ≥ ∆p

(k)
t+1 . (60)

However, this holds only if constraint (60) is always tight, which is not always true

in problem (48)-(53). Without preventing p
(k)
curt,t+1 to be greater than ∆p

(k)
t+1, it would

allow to discriminate the curtailment decisions between different scenarios even though
the nonanticipativity constraint (49) is respected. Indeed, the amount of power curtailed

could be increased beyond P
(k)
t+1 − P

(k)
t+1 and it would differ from the set point pt, which

is guaranteeing nonanticipativity by being common for all subsequent scenarios.
From this analysis, we conclude that a continuous implementation of equation (59) is

not possible and we model it using equation (60) and the following additional constraints:

p
(k)
curt,t+1 ≤ ∆p

(k)
t+1 − y

(k)∆P
(k)
t+1 , (61)

p
(k)
curt,t+1 ≤ (1− y(k)

t+1) ∆P
(k)
t+1 , (62)

y
(k)
t+1 ∈ {0, 1} , (63)

where ∆P
(k)
t+1 and ∆P

(k)
t+1 are parameters that indicate the maximal and minimal values

that ∆p
(k)
t+1 can take, respectively. It corresponds to a big M formulation [34] and can

be interpreted as follow:

• if ∆p
(k)
t+1 < 0, constraint (61) is satisfied only if y

(k)
t+1 = 1, and constraint (62) then

forces p
(k)
curt,t+1 = 0 ;

• if ∆p
(k)
t+1 ≥ 0, constraints (60) and (61) can be satisfied simultaneously only if

y
(k)
t+1 = 0 .

Parameters ∆P
(k)
t+1 and ∆P

(k)
t+1 should be chosen such that the continuous relaxation

is as tight as possible. For instance for a wind turbine ∆P
(k)
t+1 = P

(k)
t+1 and ∆P

(k)
t+1 =

P
(k)
t+1 −maxj P

(j)
t+1.

Finally, the curtailment instruction pg,t are recovered from the solution of M̂t upon
the following processing of the solution:

∀g ∈ G : pg,t ←

{
pg,t if ∃k ∈ {1, ...,W} s.t. pg,t < P

(k)
g,t+1 ,

+∞ otherwise ,
(64)

This processing is introduced because, in M̂t, the value of pg,t has no meaning when it
does not induce an actual curtailment for at least one scenario. Therefore, it makes no
sense to interpret these variables as curtailment instructions and equation (64) makes
sure that curtailment actions sent to the system actually corresponds to curtailment
decisions in the optimization model.
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4.4.2 Activation of flexibility services

This section details how the control actions actd,t defined in Section 3.3.2 are computed.
To ease the reading, we focus on one particular device and thus omit subscript d in this
section. The superscript (k) is also dropped and the following equations simply needs to
be repeated for each scenario of the lookahead model, with equation (49) guaranteeing
the nonanticipativity of the model. We first define several auxiliary variables:

• zt ∈ {0, 1} is a binary variable used to model the max operator for state transitions;

• mt ∈ Z+ is a integer variable used for state transitions.

Ignoring the activation signal, the transition rule of the flexible state, i.e.

mt+1 = max(0, f lext − 1) ,

is implemented through the following big M formulation:

mt+1 ≤ flext − 1 + zt (65)

mt+1 ≤ T (1− zt) (66)

mt+1 ≥ flext − 1 . (67)

The influence of the activation signal is then incorporated to the flexible state:

flext+1 = mt+1 + acttT , (68)

while the following constraint prevents a double activation of a flexibility service:

at +
flext
T
≤ 1 . (69)

Finally, the value of the effective modulation signal, defined in equation (22), is imple-
mented as:

∆Pt =
∑

t′:t−t′≤T
at−t′∆P (t− t′) , (70)

where ∆P (·) is the modulation curve of the load, which produces parameters for the
mathematical program.

4.5 Detailed network models

We detail how the network model described in Section 3.1 is precisely instantiated in
the AC non-convex case, then we describe a linearization approach and finally a second
order cone program (SOCP) model. To ease reading we consider only one time step
and omit the subscripts t and the scenario notation, but in reality these equations are
replicated for each time step or node of the scenario tree. In this section, we define

gmn + jbmn = Y (br)
mn
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and
g(sh)
m + jb(sh)

m =
∑

n:(m,n)∈L

Y (sh)
mn .

We also consider arbitrarily that node 1 is a slack bus which sets a reference phase angle
of 0 and a fixed voltage magnitude.

4.5.1 Non-convex AC model

We chose to express relations (6) in rectangular coordinates. Hence we define variables

• en as the real part of Vn

• fn as the imaginary part of Vn

• Pmn as the active power leaving bus m and flowing in link (m,n)

• Qmn as the reactive power leaving bus m and flowing in link (m,n)

• P shuntn as the active power shunted at bus n

• Qshuntn as the reactive power shunted at bus n.

The above powers are defined as

∀(m,n) ∈L :

Pmn = em (gmn(em − en)− bmn(fm − fn)) + fm (bmn(em − en) + gmn(fm − fn)) ,
(71)

Qmn = fm (gmn(em − en)− bmn(fm − fn))− em (bmn(em − en) + gmn(fm − fn)) ,
(72)

∀n ∈N :

P shuntn = g(sh)
n (e2

n + f2
n), (73)

Qshuntn = b(sh)
n (e2

n + f2
n). (74)

Then the voltage operational limits are defined for every node n as

Vn
2 ≤ e2

n + f2
n ≤ Vn

2
, ∀n ∈ N , (75)

and the thermal limits by

I2
mn ≤ I

2
mn, ∀(m,n) ∈ L, (76)

with

I2
mn = I2

real + I2
imag , (77)

Ireal = gmn(em − en)− bmn(fm − fn) , (78)

Iimag = bmn(em − en) + gmn(fm − fn) . (79)
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4.5.2 Linearized model

This model proposed in [20] approximates linearly (71) and (72). Note that this approx-
imation does not include the shunt powers, i.e. P shuntn = Qshuntn = 0, ∀n ∈ N . This
yields

Pmn = gmn(em − en)− bmn(fm − fn), ∀(m,n) ∈ L (80)

Qmn = −bmn(em − en)− gmn(fm − fn), ∀(m,n) ∈ L. (81)

The upper voltage limits and the thermal limits are approximated by a regular poly-
hedron inscribed in the respective circles of the original limits. The lower voltage op-
erational limit is simply modeled as a lower bound on en, which means that we make
the hypothesis that the angles are small. An iterative method could be set up if the
approximated solutions are far from feasible solutions of the AC model. However, this
turned out to be unnecessary as the decisions taken are most of the time very coherent
with those obtained with other models, as illustrated in Section 5. This formulation
does not account for losses.

4.5.3 Convex SOCP model

By introducing variables un ≥ 0, Rmn ≥ 0 and Tmn ∈ R that substitute the expressions

e2
n + f2

n√
2

, emen + fmfn, fmen − emfn,

respectively, constraints (71)-(74) can be rewritten without e and f as

Pmn = gmn
√

2um − gmnRmn − bmnTmn, ∀(m,n) ∈ L (82)

Qmn = −bmn
√

2um + bmnRmn − gmnTmn, ∀(m,n) ∈ L (83)

P shuntn = g(sh)
n

√
2un, ∀n ∈ N (84)

Qshuntn = b(sh)
n

√
2un, ∀n ∈ N . (85)

The additional set of constraints

2umun = R2
mn + T 2

mn, ∀(m,n) ∈ L (86)

are imposed to maintain a relationship between the newly introduced variables. They
are then relaxed to obtain a convex second order cone program:

2umun ≥ R2
mn + T 2

mn, ∀(m,n) ∈ L. (87)

Voltage limits can be easily rewritten as a function of un as

Vn
2 ≤
√

2un ≤ Vn
2
, ∀n ∈ N . (88)

Thermal limits are approximated in the same way as for the non-convex AC model. Note
that as Rmn = Rnm and Tmn = −Tnm, they are in practice replaced by a single variable
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per branch and constraints (82) and (83) are updated accordingly. It is shown in [14]
that this relaxation is tight for radial networks under some conditions on the objective
function. These conditions are not met in our formulation since minimizing curtailment
is equivalent to maximizing the renewable generation. To mitigate this issue, the losses
term in the objective function must be scaled with a coefficient sufficiently large so that
(87) are tight, but not too large so that the original objective function is still guiding
the solution. This tradeoff is further discussed in Section 5.

5 Test instances

We describe below the three test instances of the ANM problem that are used in the
results section. The set of models and parameters that are specific to these instances,
as well as documentation for their usage, are accessible at http://www.montefiore.

ulg.ac.be/~anm/ as Python code. It has been developed to provide a black-box-type
simulator that is quick to set up. The DNs on which these instances are based are a toy
5-bus radial test system, a 33-bus non-radial test system [35], and a 77-bus radial test
system [36]. Table 1 summarizes some relevant data about these instances. The test
systems are also illustrated in Figures 8, 9, and 10. The location of the wind generators,
which we assume to be curtailable, is indicated by a circled W . The 77-bus instance also
includes non-curtailable generators that model residential photovoltaic panels.

case case5 case33 case77

flex level low medium high low medium high low medium high

|N | 5 33 77

|L| 4 37 76

|G| 1 4 6 curtailable (out of 59)

|C| 3 32 53

|F| 1 2 3 11 22 32 11 22 33

max flex (MW) 0.3 0.6 0.9 0.62 1.3 2 1.71 3.41 5.01

∼peak load (MW) 11 9 18

Og ,
∀g ∈ wind turbines

0 ≤ Pg ≤ 20
−5 ≤ Qg ≤ 5

Qg ≤ −0.24Pg + 6.8
Qg ≤ 0.24Pg − 6.8

0 ≤ Pg ≤ 4.5
−1 ≤ Qg ≤ 1

Qg ≤ −0.2Pg + 1.3
Qg ≤ 0.2Pg − 1.3

0 ≤ Pg ≤ 4.5
−1 ≤ Qg ≤ 1

Qg ≤ −0.2Pg + 1.3
Qg ≤ 0.2Pg − 1.3

Table 1: Summary of test instances.

Ext. Grid 1 2 3 4

5
W

Figure 8: 5-bus test system.
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Figure 9: 33-bus test system.

We consider that the per-unit curtailment prices are the same for all the generators.
As described in Section 4.1, this price varies through the day and Figure 11 specifies the
values considered in the test instances. We also use these values for the per-unit cost
of the losses, i.e. Closs(·), while the constant k that appear in equation (40) is set to
104. Concerning flexible loads, three different penetration levels exist for each test case.
For every configuration, about half of the flexible services offer a downward modulation,
followed by an upward rebound effect, and inversely for the other half. The maximal
and cumulated modulation magnitude is reported in Table 1 to illustrate the potential
offered by flexible loads in every configuration. Finally, the duration of the modulation
signals is of 7 time periods for the 5-bus instances, and from 6 to 24 time periods for the
33 and 77-bus instances.

The conditional density functions defined in equation (43) are built using a para-
metric model P(N,n) that relies on a mixture of n Gaussians to represent the probability
distribution p(wt+1|wt, . . . , wt−N+1) of the next outcome of the process, conditionally
to the last N observed outcomes. In particular, the following procedure allows to fit

a model P(N,n) to a set {(w(i)
1 , w

(i)
2 , . . . , w

(i)
L ), i = 1, . . . , I} of time series of normalized

realizations of the process of interest:

1. build a dataset of tuples (w
(i)
t−N+1, . . . , w

(i)
t , w

(i)
t+1),∀(i, t) ∈ {1, . . . , I}×{N, . . . , L−

1};

2. model the joint distribution p(wt−N+1, . . . , wt+1) of the dataset using a mixture
of n Gaussians, by performing a maximum likelihood estimation [37] of the mix-
ture’s parameters (i.e. the weight ηi, mean µi, and covariance matrix Σi of every
Gaussian i ∈ {1, . . . , n});

3. ∀i ∈ {1, . . . , n}, deduce from µi and Σi the functions µ
·|·
i (wt−N+1, . . . , wt) and

σ
·|·
i (wt−N+1, . . . , wt) that define the mean and standard deviation of wt+1, accord-

ing to the ith Gaussian in the mixture and conditional to wt−N+1, . . . , wt [38];
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Figure 10: 77-bus test system.

Table 2: Parameters of the stochastic models used in the implementation of the bench-
mark.

N n

Wind speed (Nv) 1 1
Solar irradiance (Nir) 1 10
Load consumption (Nloads) 2 10

4. produce p(·|wt, . . . , wt−N+1) as the following mixture of conditional Gaussian dis-
tributions:

p(·|wt, . . . , wt−N+1) =

n∑
i=1

ηiN
(
µ
·|·
i (wt−N+1, . . . , wt), σ

·|·
i (wt−N+1, . . . , wt)

)
. (89)

In order to determine an adequate value of the model’s hyper-parameters n and N for
each process, we relied on an Approximate Bayesian Computation (ABC) method [39].
Such an approach consists in sampling trajectories from each model and to compare
them with the original data to estimate its posterior probability among the set Θ of
candidate models [40]. Using Θ = {P(N,m)|n∈{1,...,20},N∈{1,...,3}}, the most likely param-
eters identified by this model choice technique are presented in Table 2. We refer the
interested reader to [41] for more details on the modeling approach.

The datasets that we used are real measurements of the wind speed3 and of the solar
irradiance4. For the residential consumption data, a single stochastic model has been

3http://www.nrel.gov/electricity/transmission/eastern_wind_dataset.html
4http://solargis.info/
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Figure 11: Curtailment prices used in the test instance.

learned from measurements of a Belgian distribution network and it is used for all the
loads of the test instance. However, this model differs among the loads through the use
of a scaling factor. The implementation of the statistical algorithms relies on both SciPy
[42] and Scikit-learn [43], two Python libraries.

6 Numerical results

The goals of this section are to illustrate the operational planning problem and the test
instances, as well as to provide some empirical evaluations of the proposed lookahead
policy for the considered network models and for scenario trees of varying complexity.
In particular, the policy π̂∗M̂t

(st) defined by problem (48)-(53) was applied to every test

instance and penetration level of the flexible loads. The empirical expected return of
the policy, for a given test instance, level of flexibility, network model, and scenario tree
complexity, is determined from 50 runs of 288 time steps (i.e. of 3 days), each run i
corresponding to the following sequence:

1. Initialize the state vector s0 by setting all the flexible loads as inactive and by
sampling stochastic components from the joint distributions learned when building
the test instance.

2. Run a simulation of 288 time steps, where, at every time step, problem (48)-(53)
is implemented as follow:

(a) sample 100 trajectories of the exogenous variables over a lookahead horizon

of length T = 10, i.e. trajectories (w
(j)
t , . . . ,w

(j)
t+9), with j = 1, . . . , 100;

(b) determine the corresponding trajectories of the potential (i.e. not accounting
for modulation instructions) power injections of the devices, as they are fully
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determined by the current state st and by (w
(j)
t , . . . ,w

(j)
t+9);

(c) cluster the 100 trajectories of power injections into W scenarios, using a
hierarchical clustering method and Ward’s distance [44];

(d) build the corresponding clusters of outcome trajectories, i.e.

W̃T
t = {(w̃(k)

t , . . . , w̃
(k)
t+9)|k = 1, . . . ,W} ,

where w̃
(k)
t′ denotes the centroid of cluster k at time t′ ∈ {t, . . . , t + 9}, and

compute the probabilities Pk of the resulting scenarios as

Pk =
number of trajectories in cluster k

100
;

(e) solve problem M̂t with a discount factor γ = 0.99 and over the scenario tree
defined by outcomes of W̃T

t and probabilities (P1, . . . ,PW );

(f) recover the action vector at to apply to the system.

The motivation behind the use of Ward’s method to cluster trajectories is that it is a
minimum variance method, which means that the trajectories of a cluster were selected
because they are close to its centroid, in comparison to trajectories of other clusters.
Consequently, the scenarios used in the optimization model, which are the centroids of
the clusters, differ minimally from the trajectories it summarizes.

The implementation has been done using the Python code mentioned in Section 5
to simulate the system and Pyomo [45] to build the mathematical programs. These
programs were solved by BONMIN [46] in the MINLP case, and by Gurobi in the
MISOCP and MILP cases. At each time step, a budget of 10 minutes is allowed to solve
the mathematical program. If the solver reaches the time limit, the current best solution
is applied to the system if a feasible solution is available, or the whole simulation run
fails if no solution was found. Both solvers stop before the time limit if they reach a
relative optimality gap of 1%. Note that BONMIN performs local optimization and must
be seen as an heuristic method to solve the non-convex MINLPs, as it comes with no
optimality guarantees. In the MISOCP case, the scaling factor of the losses discussed in
Section 4.5.3 was fixed empirically to 3. For every combination of test instance, level of
flexibility, and network model, the same runs were performed with a scenario tree W̃T

t of
one scenario (i.e. the mean of the sampled trajectories) and of three scenarios. A version
of the problem with perfect information, i.e. with a scenario tree consisting of the actual
future trajectory of the exogenous information, was also simulated to obtain a reference
value of performance. The overall simulation was carried on in a high-performance
computing environment with 128 cores. Each run being limited to a single core, such an
infrastructure enabled hundreds of simulations to run in parallel and thus to speed up
computations by the same factor. Ignoring failed simulation runs, more than 1 million
of mathematical programs were solved for a cumulated time budget of approximately
1122 days.

The final publication is available at Springer via http://dx.doi.org/10.1007/s11081-016-9339-9 . 32



The empirical estimations of the expected return reported in the following results
are computed as:

E
s∼p0(·)

{
J π̂
∗
(s)
}
≈ 1

50

50∑
i=1

287∑
t=0

0.99tr
(i)
t , (90)

where r
(i)
t corresponds to the instantaneous reward observed during the nth simulation

run at time step t, and where p0(·) denotes the probability distribution described at step
(1). Tables 3, 4, and 5, summarize the results of the simulation runs for the 5-bus, 33-
bus, and 77-bus test systems, respectively. The first columns identifies the test instance
configuration and the two latter columns report the expected return and the distribution
of solution time. The blue and red bars denote the contributions to the expected return
of the expected costs (including losses) and of the penalties from constraint violations,
respectively. The box plots’ whiskers cover the whole range of the observed solution
times and the red makers indicate the median time.

We can first observe from the simulation results of the 5-bus test system that having
a perfect forecast of the evolution of the system yields significantly better returns than
when decisions are subject to uncertainty. It also shows that considering three possible
future scenarios can significantly improve over an optimization performed on the average
future scenario, to the expense of the solution time. Among the three network models,
the SOCP relaxation is the one that induces the most penalties. These penalties also
appear in the deterministic case, which implies that the relaxation is not always tight.
We also observe that the policy slightly benefits from an increase of the flexibility level of
loads in the deterministic setting but not in the presence of uncertainty. Given the small
size of the 5-bus test system, the solution times are very good for every configuration
with the exception of the MINLPs, for which worst-case solution time already reaches
the time limit for all lookahead models.

The results for the 33-bus test system are quite similar, with the notable exception of
the solution times. Both the SOCP and LP network models still produce mathematical
programs that can be solved within a reasonable time budget. On the other hand, the
time limit is very often reached when solving the MINLPs5. The simulation runs even
failed in the two most complex configurations as the solver could not find any feasible
solution within the time limit. This observation can be extended to the simulation results
of the 77-bus test system, with the difference that, in the 1-scenario configurations, the
mean and median solution times are lower while the worst-case time is even larger. None
of the 3-scenario runs succeeded for the NLP network model and even the SOCP model
produces significantly increased solution times, with worst cases reaching the time limit.

Finally, a part of a 5-bus and low-flexibility simulation run is illustrated in Figures 12,
13, and 14, with a 3-scenarios lookahead model and a NLP, SOCP, and linear network
model, respectively. The dashed lines in the upper-left subplots represent the estimated

5Reported solution time can be larger than the time limit. It happens when the solver is executing
a complex routine for some amount time before being able to check the limit.
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case5
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

0 100 200 300 400 500 600

Table 3: Estimation of expected return and distribution of solver time for the 5-bus test
system.

production in the 3 scenarios of the lookahead model at time step 101 (i.e. when comput-
ing decisions for time step 102 and onwards). The bottom-right subplots represent the
generator’s P-Q operating points for the whole simulation and the red point corresponds
to time step 102. Notable differences can be observed among the network models. At
time step 102, both the NLP and LP approaches show a violation of a thermal con-
straint because of an inadequate scenario tree, but the SOCP model is, on the contrary,
quite conservative. This behavior is likely due to the scaling of the losses term in this
latter model, as suggested by its chart of P-Q set-points. The policy did not explicitly
computed a curtailment of active power but chose an aggressive Q set-point, which led
to a power curtailment due to the P-Q capabilities of the generator. This phenomenon
is observed several times in the reported simulation, in particular at and prior to time
step 102. The NLP and LP models show a similar curtailment pattern, with the latter
inducing more curtailment and an over-satisfaction of the thermal limit. We suspect the
cause to be the non-inclusion of the losses in the LP model, which may also explain why
this approach activates more flexible services than the two other approaches. Another
consequence of not accounting for the losses is that the policy makes little use of the
generator’s reactive capabilities, as shown by the lower-right subplot of Figure 14. In
accordance with results of Tables 3, 4, and 5, the SOCP network model is not always
tight and, around time step 110, shows constraint violations in the lower-left subplot of
Figure 13, while the two other network models keep the system within the operational
limits.
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case33
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

failed

failed

0 200 400 600 800

failed

failed

Table 4: Estimation of expected return and distribution of solver time for the 33-bus
test system.

case75
Lookahead model Netwok model Flex. level Exp. return ( costs,  penalties) Solution time (s)mean

Determinist, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

Mean scenario, T = 10

t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

3 scenarios, T = 10
t

t+10

nlp low
socp low

lin low
nlp medium

socp medium
lin medium
nlp high

socp high
lin high

failed

failed

failed

0 200 400 600 800

failed

failed

failed

Table 5: Estimation of expected return and distribution of solver time for the 77-bus
test system.
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Figure 12: Illustrations of part of a 5-bus and low-flexibility simulation run, with a
3-scenarios lookahead model and a NLP network model.
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Figure 13: Illustrations of part of a 5-bus and low-flexibility simulation run, with a
3-scenarios lookahead model and a SOCP network model.
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Figure 14: Illustrations of part of a 5-bus and low-flexibility simulation run, with a
3-scenarios lookahead model and a linear network model.
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7 Conclusions

Active Network Management is an alternative or a complement to network reinforcement
in case of massive integration of renewable energy in distribution systems in the future.
Mathematically, operational planning, which is the preventive version of active network
management we consider in this paper, is an optimal sequential decision-making problem
under uncertainty. The properties of the operational planning problem that we want to
highlight are the need to optimize over a sufficiently long time horizon, to account for
uncertainty of generation and consumption, and to model the discrete decisions related
to the activation of flexibility services. In an attempt not to restrict ourselves to one
solution method and one research community, we provide a formulation of this problem
as a Markov Decision Process (MDP), which does not call for a particular solution
method. We provide a simulator and several test beds at http://www.montefiore.ulg.
ac.be/~anm/ along with this formulation to foster research in this field, and ease future
comparison of results. Although these benchmarks are not taken from real systems, their
properties are coherent with what system operators could face in real life. We detail one
possible solution method, which is a lookahead optimization model, then cast the MDP as
a sequence of MINLPs, MISOCPs, or MILPs, and provide results on the benchmarks we
created. Results show that state of the art open source local solvers for MINLP can show
good performance on the test instances of limited size, at least when we approximate
the stochastic program with few scenarios. Solving the MISOCPs and MILPs is however
much more tractable, to the expense of the network model accuracy. In particular, the
results of the MILP approximation suggest that it could scale to larger test systems and
scenario trees. On the modeling side, we considered that all buses except the slack bus
are P-Q buses, and that the power factors of the loads are constant while the generators
are flexible as defined by their P-Q capabilities. Possible extensions of this work could
be to consider the control of steerable synchronous generation, and of generators with
time coupling constraints (e.g. combined heat and power generation). As mentioned in
Section 3.2, other approaches exist to control the system, such as modulating the tariff
signal(s), acting on the topology of the network, or using distributed storage sources.
We did not model either the automatic regulation devices that often exist in distribution
systems, such as On Load Tap Changers (OLTCs) of transformers that automatically
adapt to control the voltage level. These automatic regulation devices have been recently
addressed in [10]. We believe that all of these aspects should be considered in a real life
solution. However, computational experiments show that we are at the limit of what
can be achieved with modern computers and standard mathematical programing tools.
Furthermore, including a more detailed representation of the physical system makes
the problem yet more discrete (OLTCs), and more uncertain (for instance, if flexibility
services are not as well characterized as what we have assumed). Our experiments
also show that increasing the number of scenarios, or stages of the stochastic program,
would probably significantly improve the policies. All these observations suggest further
research for tailored approximation or decomposition techniques, for instance techniques
relying on the dynamic programming framework, in particular approximate dynamic
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programming, or simulation methods, such as direct policy search [47] or Monte-Carlo
tree search [48, 49], or other approaches from the robust and stochastic programming
community [50]. Actually the benchmarks that we proposed makes the comparison of
new techniques possible.
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