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Like in the case of drugs, gambling hijacks reward circuits in a brain which is not prepared 
to receive such intense stimulation. Dopamine is normally released in response to reward 
and uncertainty in order to allow animals to stay alive in their environment – where 
rewards are relatively unpredictable. In this case, behavior is regulated by environmental 
feedbacks, leading animals to persevere or to give up. In contrast, drugs provide a direct, 
intense pharmacological stimulation of the dopamine system that operates independently 
of environmental feedbacks, and hence causes “motivational runaways”. With respect to 
gambling, the confined environment experienced by gamblers favors the emergence of 
excitatory conditioned cues, so that positive feedbacks take over negative feedbacks. Although 
drugs and gambling may act differently, their abnormal activation of reward circuitry 
generates an underestimation of negative consequences and promotes the development of 
addictive/compulsive behavior. In Parkinson’s and Huntington’s disease, dopamine-related 
therapies may disrupt these feedbacks on dopamine signalling, potentially leading to various 
addictions, including pathological gambling. The goal of this Research Topic is to further 
our understanding of the neurobiological mechanisms underlying the development of 
pathological gambling. This eBook contains a cross-disciplinary collection of research and 
review articles, ranging in scope from animal behavioral models to human imaging studies.
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Although pathological gambling (PG) is a prevalent disease, its
neurobiological and psychological underpinnings are not well
characterized. As legal gambling increases in prominence in a
growing number of casinos as well as on the internet, the potential
for a rise in PG diagnoses warrants investigation of the disor-
der. The recent reclassification of PG as a behavioral addiction in
the DSM-5 raises the possibility that similar cognitive and moti-
vational phenotypes may underlie both gambling and substance
use disorders. Indeed, in this Research Topic, Zack et al. (2014)
tested the hypothesis that exposure to reward unpredictability
can recruit brain dopamine (DA) systems in a similar way to
chronic exposure to drugs of abuse (see also Singer et al., 2012).
Over the years a variety of models have proposed that alterations
in DA signaling may mediate the transition from drug use to
dependence; similarly, the hypothesis that aberrant DA responses
may influence the transition from recreational, to problematic,
and finally PG has only recently begun to be tested. The collec-
tion of articles in this Research Topic highlights the complexity
of PG and posits several theories of how dopaminergic signal-
ing may contribute to behavioral maladaptations that contribute
to PG.

In this Research Topic, Paglieri et al. (2014) report a growing
incidence of PG with a lack of effective treatments. As described
by Goudriaan et al. (2014) (this Research Topic), PG is thought to
result from “diminished cognitive control over the urge to engage
in addictive behaviors” that manifests in the inability to control
desire to gamble despite negative consequences. PG is charac-
terized by several cognitive dysfunctions, including increased
impulsivity and cognitive interference. Similar to drug addic-
tions, gambling behavior is powerfully modulated by exposure to
gambling-related conditioned stimuli. In this Research Topic both
Anselme and Robinson (2013) as well as Linnet (2014) describe
the supporting role of gambling-related cues in this behavioral
addiction. Anselme and Robinson (2013) present a series of find-
ings suggesting that surprising non-rewards enhance incentive
salience attribution to conditioned cues in conditioning proce-
dures as well as during gambling episodes. They discuss a possible
evolutionary origin of this counterintuitive process. Linnet (2014)
reviews the contribution of DA signaling to incentive salience
and reward prediction. Noting the research demonstrating brain
activation during gambling tasks despite the possibility of a loss,

he suggests a role for DA dysfunction in reward “wanting” and
anticipation.

Ventral striatal activation is thought to be critical for the
attribution of incentive salience to reward-related cues. In this
Research Topic, Lawrence and Brooks (2014) found that healthy
individuals who are more likely to display disinhibitory personal-
ity traits, such as financial extravagance and irresponsibility, show
increased capacity for ventral striatal DA synthesis. Thus it is pos-
sible that individual variation in DA signaling due to genetics or
environmental factors may influence PG. Porchet et al. (2013)
(this Research Topic) also investigated whether physiological and
cognitive responses observed during the performance of gambling
tasks could be altered in recreational gamblers with pharma-
cological manipulations. As the commentary from Zack (2013)
suggests, the Porchet et al. (2013) results may reflect important
differences in neurobiological function between recreational and
pathological gamblers. This hypothesis, along with the results
of Lawrence and Brooks (2014) demonstrating increased DA
capacity in individuals thought to be more prone to gambling,
illustrates the complexity of PG as a disease and the need to sam-
ple different populations with different techniques and behavioral
tasks.

Two papers in this Research Topic suggest a role for cortisol
in modulating incentive motivation in the ventral striatum. Li
et al. (2014) demonstrate an imbalanced sensitivity to monetary
vs. non-monetary incentives in the ventral striatum of patho-
logical gamblers. They show that cortisol levels in PG positively
correlate with ventral striatal responses to monetary cues. van den
Bos et al. (2013) provide further evidence for the importance of
cortisol by highlighting the strong positive correlation observed
in men between salivary cortisol levels and risk-taking measures.
This was a significant contrast to the weak negative correlation
seen in women. Their findings highlight important gender differ-
ences in how stress hormones affect risky-decision making, and
by extension, the role of stress in gambling.

In this Research Topic, Clark and Dagher (2014) provide a
review of the literature investigating the relationship between DA
agonists and impulse control disorders in Parkinson’s patients,
and how this relates to potential gains and losses within a
decision-making framework. They provide the beginnings of a
hypothetical model of how DA agonist treatments affect value
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and risk assessments. While a variety of research suggests that
dopaminergic treatments for Parkinson’s disease may affect PG,
few have probed whether individuals with Huntington’s dis-
ease (HD) display gambling-related phenotypes. Kalkhoven et al.
(2014) (this Research Topic) show that HD patients exhibit symp-
toms of behavioral disinhibition similar to those observed in
PG. However, HD patients do not typically develop problem
gambling. Based on neurobehavioral evidence, these authors sug-
gest why HD patients are unlikely to start gambling but have a
higher chance of developing PG if they encounter a situation that
promotes such behavior.

The investigation of neural mechanisms underlying PG is cur-
rently at an early stage. As emphasized by Potenza (2013) in this
Research Topic, while previous research and the present find-
ings suggest that DA may underlie gambling-related behaviors,
other neurotransmitters and signaling pathways may also play
vital roles in the emergence of the disease. Individual variation in
PG populations (e.g., differing levels of impulsivity, compulsivity,
decision making, and DA pathology) has produced discrepan-
cies in the PG literature, warranting a systematic approach to
investigating the disease in the future. Paglieri et al. (2014) also
suggest the need for greater methodological integration of animal
studies (rodents and primates) to better understand the mecha-
nisms underlying PG. In particular, Tedford et al. (2014) note in
this Research Topic that gambling activity involves costs/benefits
decision-making and that intracranial self-stimulation provides
experimental advantages over traditional reinforcement meth-
ods used to model PG in animals. Finally, Paglieri et al. (2014)
suggest that computational modeling, already used to account
for other psychiatric diseases, might be applied to PG as well.
Taken together, this collection of articles suggests novel avenues
for future research of PG to improve treatment options for the
disease.
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Addiction is considered to be a brain disease caused by chronic exposure to drugs.
Sensitization of brain dopamine (DA) systems partly mediates this effect. Pathological
gambling (PG) is considered to be a behavioral addiction. Therefore, PG may be caused by
chronic exposure to gambling. Identifying a gambling-induced sensitization of DA systems
would support this possibility. Gambling rewards evoke DA release. One episode of slot
machine play shifts the DA response from reward delivery to onset of cues (spinning
reels) for reward, in line with temporal difference learning principles. Thus, conditioned
stimuli (CS) play a key role in DA responses to gambling. In primates, DA response to
a CS is strongest when reward probability is 50%. Under this schedule the CS elicits
an expectancy of reward but provides no information about whether it will occur on
a given trial. During gambling, a 50% schedule should elicit maximal DA release. This
closely matches reward frequency (46%) on a commercial slot machine. DA release can
contribute to sensitization, especially for amphetamine. Chronic exposure to a CS that
predicts reward 50% of the time could mimic this effect. We tested this hypothesis in
three studies with rats. Animals received 15 × 45-min exposures to a CS that predicted
reward with a probability of 0, 25, 50, 75, or 100%. The CS was a light; the reward was a
10% sucrose solution. After training, rats received a sensitizing regimen of five separate
doses (1 mg/kg) of d-amphetamine. Lastly they received a 0.5 or 1 mg/kg amphetamine
challenge prior to a 90-min locomotor activity test. In all three studies the 50% group
displayed greater activity than the other groups in response to both challenge doses. Effect
sizes were modest but consistent, as reflected by a significant group × rank association
(φ = 0.986, p = 0.025). Chronic exposure to a gambling-like schedule of reward predictive
stimuli can promote sensitization to amphetamine much like exposure to amphetamine
itself.

Keywords: pathological gambling, sensitization, amphetamine, dopamine, uncertainty

INTRODUCTION
Addiction has been characterized as a brain disease caused
by chronic exposure to drugs of abuse (Leshner, 1997).
Neuroplasticity is thought to mediate the effects of such exposure
(Nestler, 2001). Sensitization of brain dopamine (DA) systems is
a form of neuroplasticity implicated in hyper-reactivity to con-
ditioned stimuli (CS) for drugs, and compulsive drug seeking
(Robinson and Berridge, 2001). Sensitization has been opera-
tionally defined by increased DA release in response to a CS
for reward and by increased locomotor response to pharma-
cological DA challenge (Robinson and Berridge, 1993; Pierce
and Kalivas, 1997; Vanderschuren and Kalivas, 2000). Although
sensitization is only one of many brain changes linked with addic-
tion (cf. Robbins and Everitt, 1999; Koob and Le Moal, 2008),
changes in presynaptic dopamine release have been suggested
to represent common neuroadaptations involved in addiction-
based drug-seeking (e.g., relapse), in that drugs that induce

locomotor sensitization to opiate (e.g., morphine) or stimu-
lant challenge (e.g., amphetamine), also cause reinstatement
of extinguished operant responses for heroin or cocaine self-
administration—an animal model of relapse (Vanderschuren
et al., 1999). Evidence that incentive sensitization (increased value
of drug reward) is most pronounced after initial exposure to
addictive drugs further suggests that sensitization may be involved
in the early stages of addiction as well (Vanderschuren and Pierce,
2010).

Pathological gambling (PG) has been described as a behavioral
addiction and recently reclassified to the same category as sub-
stance dependence disorders in the 5th edition of the Diagnostic
and Statistical Manual of Mental Disorders (Frascella et al., 2010;
A.P.A., 2013). This implies that PG may be caused by chronic
exposure to gambling-like activity, that common mechanisms
may mediate the effects of gambling and drug exposure (Zack and
Poulos, 2009; Leeman and Potenza, 2012); and that sensitization
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of brain DA pathways may be one important element of this
process.

Clinical evidence indirectly supports this possibility: Using
positron emission tomography (PET) Boileau and colleagues
found that male PG subjects exhibit significantly greater striatal
DA release in response to amphetamine (0.4 mg/kg) than healthy
male controls (Boileau et al., 2013). Overall group differences
were significant in the associative and somatosensory striatum.
In the limbic striatum, which includes the nucleus accumbens,
the groups did not differ. However, in PG subjects, DA release
in the limbic striatum correlated directly with the severity of
PG symptoms. These findings are consistent with sensitization of
brain DA pathways in PG, but also suggest some important dif-
ferences with human substance dependent individuals and with
the classic animal model of amphetamine sensitization. Unlike
PG subjects and animals exposed to low doses of amphetamine
(cf. Robinson et al., 1982), humans with substance dependence
consistently exhibit decreased DA release to a stimulant challenge
(Volkow et al., 1997; Martinez et al., 2007), and evidence from
animals suggests that this may reflect deficits in DA function dur-
ing the initial stages of abstinence following binge patterns of
substance abuse (Mateo et al., 2005). In studies where stimulant
sensitization is demonstrated in animals, enhanced DA release is
usually observed in the limbic striatum rather than the dorsal
(associative, somatosensory) striatum (Vezina, 2004). However,
cue-induced (i.e., conditioned) drug-seeking in animals repeat-
edly exposed to cocaine has been linked with enhanced DA release
in the dorsal striatum, a result thought to indicate a more habitual
form of motivated behavior (Ito et al., 2002). Thus, the over-
all elevation in DA release in dorsal regions in PG subjects may
be related to habit-based (inflexible, routinized) reward seeking
involving “a progression from ventral to more dorsal domains of
the striatum” (Everitt and Robbins, 2005, p. 1481), whereas the
severity-dependent DA release in limbic striatum in these subjects
may correspond more closely to incentive sensitization as typi-
cally modeled in animals. The PET findings cannot reveal whether
DA hyper-reactivity was a pre-existing feature of these PG sub-
jects, a consequence of gambling exposure, or a result of some
other process entirely. To address this question, it is necessary
to demonstrate induction of sensitization by chronic gambling
exposure in subjects that are normal prior to exposure. This raises
questions as to what features of gambling are most likely to induce
sensitization.

Skinner noted that the variable schedule of reinforcement
was fundamental to gambling’s allure (or at least its persistence)
(Skinner, 1953). Betting behavior in a slot machine game con-
forms well to the basic principles of instrumental conditioning,
as reflected by a prospective correlation between monetary payoff
and bet size on consecutive spins (Tremblay et al., 2011). Thus,
variable ratio operant responding appears to provide an externally
valid model of slot machine gambling.

Recent research with animals provides strong initial sup-
port for a causal effect of gambling exposure on sensitization.
Singer and colleagues examined the effects of 55 1–h daily ses-
sions of fixed (FR20) or variable (VR20) saccharin reinforcement
in an operant lever-press paradigm on subsequent locomotor
response to low dose (0.5 mg/kg) amphetamine in healthy male

(Sprague Dawley) rats (Singer et al., 2012). They hypothesized
that, if gambling leads to sensitization, rats exposed to the vari-
able schedule, which mimics gambling, should exhibit greater
response to amphetamine than rats exposed to the fixed schedule.
As predicted, the VR20 group displayed 50% greater locomo-
tor response to amphetamine than the FR20 group. In contrast,
the groups displayed equivalent locomotion following a saline
injection. These findings confirm that chronic exposure to vari-
able reinforcement is sufficient to induce hyper-reactivity to a
DA challenge in healthy animals randomized to the respective
schedules.

A number of questions arise from this result: First, to what
extent does the perceived contingency—or lack thereof—between
the operant response and its outcome mediate these effects?
In learning terms, does this effect involve a “response-outcome
expectancy,” or might a similar effect be seen in the absence of
an operant response, i.e., “a stimulus-outcome expectancy” in a
Pavlovian paradigm (cf. Bolles, 1972)? Second, does the degree of
contingency between the antecedent event (response or stimulus)
and its outcome influence the degree of sensitization?

The second question concerns the role of uncertainty in
sensitization. For example, do games whose outcome is truly
random—completely unpredictable—have greater potential to
induce sensitization than games where the odds of winning are
clearly defined but not random, even if the absolute rate of reward
is low? The present research addressed these questions.

The experimental design was informed by a seminal study on
reward expectancy and DA neuron response in monkeys (Fiorillo
et al., 2003). The animals in that study received a juice reward
(US) under 0, 25, 50, 75, or 100% variable ratio schedules. The
schedules were designated by 1 of 4 different CS (icons). The
0% schedule delivered reward as often as the 100% schedule, but
omitted the CS. Firing rate of DA neurons during the interval
between CS onset and US delivery or omission was the key depen-
dent measure. The study found that DA response increased as a
function of the uncertainty of reward delivery. Thus, under the
100% schedule the CS evoked little activity, under the 25 and 75%
schedules, the CS evoked moderate and similar levels of activ-
ity, and under the 50% schedule the CS evoked maximal activity.
In each case, firing rate escalated over the course of the CS-US
interval, i.e., as the expectancy approached fruition.

These findings indicate that DA activity not only varies with
whether or not reward is certain (Fixed Ratio) or uncertain
(Variable Ratio), but also varies in inverse proportion to the
amount of information about reward delivery conveyed by the
CS. In the 100% condition, the CS evokes the reward expectancy
and also perfectly predicts its delivery. In the 25 and 75% condi-
tions, the CS evokes the expectancy and predicts reward delivery
three out of four times. In the 50% condition the CS evokes the
expectancy but provides no information about reward delivery
beyond chance alone. Based on their findings, Fiorillo et al. con-
cluded: “This uncertainty-induced increase in dopamine could
contribute to the rewarding properties of gambling” (p. 1901).

The effects of 50% variable reward in a single session should
not change over the course of multiple sessions because the like-
lihood of reward remains entirely unpredictable on every trial.
Thus, when considering the conditions that would maximize
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chronic activation of DA neurons over repeated episodes of gam-
bling the 50% schedule should engender the most enduring as
well as the most robust effect. This is noteworthy given that the
long run rate of reward (payoff > 0) observed over thousands of
spins on a commercial slot machine was 45.8% (Tremblay et al.,
2011). Thus, 50% variable reward appears to accurately reflect the
payoff schedule administered by actual gambling devices.

The present study used the same conditioning schedules as
Fiorillo et al. in a chronic exposure, between-groups’ design with
rats. Animals underwent ∼3 weeks of daily conditioning ses-
sions, where a CS (light) was paired with a US (small amount
of sucrose). After the training phase, animals rested prior to
assessment of sensitization indexed by locomotor response to
amphetamine. Based on the literature, it was predicted that rats
exposed to different reward schedules would not differ in their
drug free locomotor behavior but would exhibit significantly dif-
ferent levels of locomotion following amphetamine, with the 50%
group displaying a greater locomotor response to the drug relative
to the other groups over the course of doses, a pattern that would
be expected if the 50% animals had been previously exposed to
additional doses of amphetamine itself (i.e., cross-sensitization).

EXPERIMENT 1
MATERIALS AND METHODS
Subjects
Four groups (n = 8/group) of adult (300–350 g) male Sprague-
Dawley rats (Charles River, St. Constant, Quebec, Canada) were
housed individually in clear polycarbonate boxes (20 × 43 ×
22 cm) under a reverse 12:12 light-dark cycle. They received
ad libitum access to food and water, and daily handling by an
experimenter for 2 weeks prior to the study. Each group was con-
ditioned under one of four variable reward schedules: 0, 25, 50, or
100%. The 75% group was omitted in this initial study, as Fiorillo
et al. (2003) found equivalent post-CS DA release under 25 and
75% reward schedules, such that both conditions led to greater
DA release than did the 100% CS-US condition, but less than the
50% condition.

Apparatus
Access to sucrose presentations and to the CS was provided indi-
vidually in operant conditioning boxes (33 × 31 × 29 cm). Each
box was equipped with a reinforcer magazine, located on the front
wall. A light in the top of the magazine served as the CS. A motor-
ized, solenoid-controlled liquid dipper could be elevated to the
floor of the magazine. Events in the box were controlled by Med
Associates equipment and software, using an in-house program
written in MED-PC. Locomotor testing was conducted individu-
ally in Plexiglas cages (27 × 48 × 20 cm). Each cage was equipped
with a monitoring system consisting of six photo-beam cells to
detect horizontal movement.

Procedure
Training. The study was conducted in compliance with the ethical
guidelines set out by the Canadian Council on Animal Care. Rats
were food-restricted to 90% of their body weight for the dura-
tion of the study and housed individually. Each rat received 15
days of sucrose reward training (10% water solution at 0.06 ml

per reward): 5 consecutive days × 3 weeks, with weekends off.
Animals were maintained on standard chow before and after the
training phase; sucrose exposure was restricted to the fifteen ∼40-
min training sessions. Each daily session consisted of 15 stimulus
presentations (a light; CS), each separated by an inter-trial inter-
val of 120 s. The light was located in the top panel of the magazine,
and remained on for 25 s, with sucrose made available during
the last 5 s. In the case of group 0 the sucrose dipper was raised
every 140 s (for 5 s) but the stimulus light was not illuminated.
This equated the interval between presentations of the dipper in
group 0 and the other groups (120 + 25 s). Each treatment ses-
sion lasted ∼40 min. On average, group 25 received sucrose once
for every four CS presentations; group 50 received sucrose once
for every two CS presentations, and group 100 received sucrose
after every CS presentation.

Testing. Two weeks after the last sucrose access (or “condi-
tioning”) session, the locomotor response to d-amphetamine
(AMPH; i.p.) was assessed. Rats were given three 2-h sessions
to habituate to the locomotor boxes, followed by six AMPH test
sessions. AMPH test days occurred at 1-wk intervals. On test
days, rats were given 30 min to habituate to boxes then received
a single 0.5 mg/kg dose of AMPH followed, on separate weekly
sessions, by five 1.0 mg/kg doses (one dose per day) on test days
1 through 5. Post-AMPH locomotion was assessed for 90 min on
each session.

Data analytic approach
Statistical analyses were conducted with SPSS (v. 16 and v. 21;
SPSS Inc., Chicago IL). Immediate behavioral response to the CS
was assessed in terms of nose pokes into the aperture where the
sucrose was dispensed. The mean number of nose pokes during
this interval (5 s per trial) was then compared to the mean number
of nose pokes for the same duration (5 s) averaged over the time
when the CS was absent. Group × Session ANOVAs of nose-pokes
with CS present and absent tracked the acquisition of discrimina-
tive responding to the cue and indiscriminate nose poke responses
under the different schedules over the course of the 15 sucrose
training sessions.

Effects of treatment on locomotor responses were assessed
with Group × Session ANOVAs for the drug-free habituation
phase (three sessions), pre-sensitization 0.5 mg/kg AMPH chal-
lenge (one session), and during the five-session 1 mg/kg AMPH
sensitization regimen, when groups were expected to differ in
response to repeated doses of AMPH. Group × Session ANOVAs
also assessed drug-free locomotor responses during the 30-min
pre-injection habituation phase from each AMPH test session.
Planned comparisons assessed the difference in mean perfor-
mance for group 50 vs. group 0 (no expectancy control) and
group 100 (no uncertainty control), by means of t-tests (Howell,
1992), using the MS error and df error terms for the relevant effect
(i.e., group or group × session interaction) from the ANOVA
(Winer, 1971). Polynomial trend analyses tested the profile of
changes over the course of sessions.

To determine if approach responses in the presence and
absence of the CS during the 15 sucrose training sessions
contributed to variation in locomotor response to AMPH, or

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 36 | 9

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Zack et al. Gambling-like schedule and sensitization

mediated group differences in AMPH response, follow-up anal-
yses of covariance (ANCOVAs) were performed on the AMPH
locomotor data, including total nose pokes (sum for 15 sessions)
when the CS was absent as the covariate. A significant effect of
the covariate would indicate that drug-free approach responses
moderated (influenced the strength of) the effects of group or
session. A decline in the significance of the effects of group or
session in the presence of a significant covariate would indicate
that approach responses mediated (accounted for) the effects of
group or session. A decline in the significance of group or session
effects in the absence of a significant covariate effect would sim-
ply reflect a loss of statistical power due to the reallocation of df
from the error term to the covariate, and would not have bearing
on the interpretation of the effects of group or session.

RESULTS
Nose pokes during sucrose conditioning sessions
CS present. Figure 1A shows the mean nose pokes for groups
25, 50, and 100 while the CS was present on the 15 sucrose
conditioning sessions (nose pokes were not coded for group 0,
which received no CS). A 3 Group × 15 Session ANOVA yielded
significant main effects of Group, F(2, 21) = 5.63, p = 0.011,
and Session, F(14, 294) = 14.00, p < 0.001, along with a signifi-
cant Group × Session interaction, F(28, 294) = 2.93, p < 0.001.
Figure 1A indicates that the main effect of Session reflected an
increase in nose pokes across sessions in all three groups, and the
main effect of Group reflected generally higher overall scores in
group 100 vs. group 25 with intermediate scores in group 50.
A significant Group × Session interaction for the cubic trend,
F(2, 21) = 4.42, p = 0.030, indicated a rapid rise, dip, and leveling
off in nose pokes over sessions in group 100, as against a linear
increase over sessions in group 50, and a shallower linear increase
over sessions in group 25.

CS absent. Figure 1B shows the mean nose pokes for all four
groups for an equivalent duration (5 s × 15 trials) averaged over
the time when the CS was absent. A 4 Group × 15 Session
ANOVA yielded significant main effects of Group, F(3, 28) = 7.06,
p = 0.001, and Session F(14, 392) = 2.84, p < 0.001, along with
a significant Group × Session interaction, F(42, 392) = 3.93,
p < 0.001. A significant Group × Session interaction for the
quadratic trend, F(3, 28) = 3.91, p = 0.019, along with no inter-
action for the cubic trend, F(3, 28) < 0.93, p > 0.44, reflected an
“inverted-U” profile of nose pokes over sessions in group 0, as
against a generally stable profile over sessions in the other groups.

Habituation to locomotor chambers
A 4 Group × 3 Session ANOVA yielded a main effect of
Session, F(2, 56) = 5.67, p = 0.006, and no other significant
effects, F(3, 28) < 1.60, p > 0.21. Mean (SE) beam breaks per 2 h
in the locomotor boxes were 1681 (123) on session 1, 1525 (140)
on session 2, and 1269 (96) on session 3. Planned comparisons
found no significant differences between group 50 and group 0 or
group 100 on the first or final habituation session, t(84) < 1.69,
p > 0.05. Thus, in the absence of AMPH, repeated exposure to the
test boxes was associated with a consistent decline in spontaneous
locomotor activity in the four groups (i.e., Session effect), and

FIGURE 1 | Mean (SE) approach responses (nose pokes) on 15 sucrose

training sessions in groups of Sprague Dawley rats (n = 8/group)

exposed to sucrose reward (10% solution) delivered under 0, 25, 50, or

100% variable schedules. The conditioned stimulus was a light (120 s).
Group 0 received the same number of rewards as group 100 in the absence
of conditioned stimuli. (A) Scores when CS was present (5 s × 15 trials).
(B) Scores when CS was absent (average for 5 × 15 s while light was off).

no differential response as a function of sucrose training schedule
(no interaction).

Test sessions
Effects of pre-sensitization 0.5 mg/kg AMPH challenge.
Pre-injection locomotion. A 4 Group one-way ANOVA of locomo-
tor response during the 30-min pre-injection habituation phase
yielded no significant effects, F(3, 28) < 1.05, p > 0.38. Planned
comparisons found no significant difference between group 50
and group 0 or group 100, t(32) < 0.87, p > 0.40. Therefore, base-
line differences in pre-injection locomotion did not account for
group differences in locomotor response to AMPH. Mean (SE)
beam breaks for the sample were 559 (77).
Post-injection locomotion vs. final drug-free habituation session. A
4 Group × 2 Session ANOVA compared the groups’ locomotor
responses on the final habituation session, and immediately after
the pre-sensitization 0.5 mg/kg AMPH challenge. Scores for the
habituation session (120 min) were scaled to correspond with the

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 36 | 10

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Zack et al. Gambling-like schedule and sensitization

duration of the AMPH test session (90 min) (raw habituation
score × 90/120). The analysis yielded a significant main effect
of Session, F(1, 28) = 34.16, p < 0.001, and no other significant
effects, F(3, 28) < 2.26, p > 0.10. The Session effect reflected an
increase in mean (SE) beam breaks in response to the dose, from
952 (72) to 1859 (151). Planned comparisons found no signifi-
cant differences between group 50 and group 0 or group 100 in
response to the dose, t(56) < 1.72, p > 0.10. However, the rank
order of beam break scores (M; SE) aligned with the hypothesis:
group 50 (2205; 264) > group 0 (2025; 203) > group 100 (1909;
407) > group 25 (1296; 299).

Effects of 1 mg/kg AMPH.
Pre-injection locomotion. A 4 Group × 5 Session ANOVA of
locomotor response during the 30-min pre-injection habituation
phase on 1 mg/kg AMPH test sessions yielded a main effect of
Session, F(4, 112) = 43.64, p < 0.0001, and no other significant
effects, F(3, 28) < 0.97, p > 0.42. Planned comparisons found no
significant difference between group 50 and group 0 or group 100
on the first or final test session, t(140) < 0.84, p > 0.30. Therefore,
baseline differences in locomotion did not account for group dif-
ferences in locomotor response to AMPH. Mean (SE) beam break
scores for the pre-dose habituation phase on sessions 1–5 were:
454 (30), 809 (53), 760 (36), 505 (35), 756 (39).

Post-injection locomotion. Figure 2 shows the effects of five injec-
tions of 1 mg/kg AMPH (one per week) on locomotor activity
scores in the four groups. A 4 Group × 5 Session ANOVA
yielded a main effect of Session, F(4, 112) = 8.21, p < 0.001, a
marginal main effect of Group, F(2, 45) = 3.28, p = 0.085, and no
significant interaction, F(12, 122) < 0.77, p > 0.68.

Planned comparisons revealed that group 50 scores dif-
fered significantly from group 0, t(14) = 2.19, p = 0.037, and
group 100, t(14) = 2.36, p = 0.025 [and differed marginally from
group 25, t(14) = 2.03, p = 0.051]. Thus, in group 50, locomo-
tor response to 1 mg/kg AMPH reliably exceeded that of the
other three groups across all five test sessions. Polynomial trend
analysis detected a significant quadratic trend across sessions,
F(1, 28) = 32.47, p < 0.0001, and no other significant trends,
F(1, 28) < 1.78, p > 0.19. Figure 2 shows that this result reflected
an “inverted U” pattern across sessions.

Control for variation in nose poke responding during sucrose
training
The follow-up ANCOVA of locomotor responses to 1 mg/kg
AMPH, with nose pokes (CS present) as the covariate, in the three
groups that received the CS, yielded a marginal main effect of
Group, F(2, 20) = 3.07, p = 0.069, and no significant covariate-
related effects, F(4, 80) < 0.05, p > 0.85. Thus, cued approach
responding during training did not explain significant variation
in the locomotor response to 1 mg/kg AMPH in groups 25, 50,
or 100.

The follow-up ANCOVA of locomotor responses to 1 mg/kg
AMPH, with nose pokes (CS absent) as a covariate, yielded
a significant effect of the covariate, F(1, 27) = 6.17, p = 0.020,
a significant main effect of Group, F(3, 27) = 4.13, p = 0.016,
a marginal Session × Covariate interaction, p = 0.080, and no

FIGURE 2 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) to 1 mg/kg d-amphetamine (i.p.) on 5

weekly sessions in groups of Sprague Dawley rats (n = 8/group)

previously exposed to 15 daily conditioning sessions with sucrose

reward (10% solution) delivered under 0, 25, 50, or 100% variable

schedules. The conditioned stimulus was a light (120 s). Group 0 received
the same number of rewards as group 100 in the absence of conditioned
stimuli. ∗p < 0.05 for mean difference between group 50 and group 0 as
well as group 100, based on planned comparisons.

other significant effects, F(4, 108) < 1.48, p > 0.21. Thus, un-cued
(indiscriminate) approach responding during training explained
significant variation in locomotor response to 1 mg/kg AMPH.
However, this variation was non-overlapping with group-related
variance, because inclusion of the covariate in the analysis
increased rather than decreased the significance of the group
effect.

DISCUSSION
The nose poke data while the CS was present show that
groups acquired the association between CS and sucrose deliv-
ery as reflected by an increase in cued responses over train-
ing sessions. The profile of responding over sessions while the
CS was present suggested that 100 and 50% CS-US sched-
ules were equally effective in eliciting approach, whereas the
25% schedule elicited a more modest increase in cue-induced
approach. The nose poke data while the CS was absent suggest
that groups that received any of the three CS-sucrose train-
ing schedules (group 25, 50, 100) rapidly learned to reduce
their nose pokes in the absence of the CS, whereas animals
in group 0, which received no CS, only learned to decrease
their approach behavior to a limited degree after extensive
training.

The habituation data show that the groups did not differ
prior to AMPH and that repeated exposure to the test boxes
was associated with decreased drug-free locomotor response.
Therefore, between-group differences and increased responding
over repeated doses of AMPH cannot be attributed to pre-existing
differences in locomotor behavior.

Results of the pre-sensitization challenge with 0.5 mg/kg
AMPH confirmed that the drug increased locomotor activity
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relative to the final drug-free habituation day. In line with the
hypothesis, group 50 ranked higher than groups 0 or 100 (as well
as group 25) in terms of mean response to the dose, although the
mean differences between groups were not significant.

For the sensitization sessions, the between-groups’ planned
comparisons showed that prior exposure to 50% conditioned
sucrose reward led to a significant increase in locomotor response
to a 1.0 mg/kg dose of amphetamine relative to the other three
schedules. This effect was evident from the first dose and did not
change appreciably over repeated doses. The trend analysis indi-
cated a biphasic response (for the full sample) to repeated doses
of AMPH, increasing up to the third dose and decreasing there-
after. The results of the follow-up ANCOVA with nose-pokes (CS
absent) as the covariate confirmed that differences in the four
groups’ locomotor responses to 1 mg/kg AMPH were not medi-
ated by un-cued approach responding during the sucrose training
sessions.

The group effect during the sensitization sessions is consis-
tent with our hypothesis. The bi-phasic session effect is not
consistent with the expected continued escalation in locomotor
responses with repeated AMPH doses. This may be related to
the dosing interval. To address this issue, a procedure (alternate
daily doses) shown to induce consistent escalation in locomotor
response to 1.0 mg/kg doses of AMPH (i.e., behavioral sensitiza-
tion) should be employed. The impact of a sensitizing regimen
of AMPH on subsequent response to a second 0.5 mg/kg chal-
lenge would further support the generality of this effect. Inclusion
of a saline challenge prior to AMPH would determine the role
of expectancy or injection-related (e.g., stress) effects on the
locomotor response to AMPH. Inclusion of a 75% conditioned
sucrose group would help to clarify the role of reward uncertainty
vs. reward infrequency on the pattern of responses for groups 50
and group 25. In addition, to permit assessment (by ANCOVA)
of the contribution of drug-free cued approach responses to loco-
motion under AMPH (using nose pokes with CS present as the
covariate), nose pokes were also coded for group 0 during the
interval when the CS was present in the other four groups (i.e.,
so that nose pokes from all five groups—including group 0 which
received no CS—could be included in the analysis of covari-
ance with CS present as the covariate). These refinements were
incorporated in experiment 2.

EXPERIMENT 2
MATERIALS AND METHODS
The methodology of experiment 2 was similar to that of exper-
iment 1 but revised to better approximate a regimen found
to reliably induce AMPH sensitization (Fletcher et al., 2005).
Changes were as follows: (a) The 75% CS-sucrose group (n = 8)
was included; (b) During sucrose training, rats (except for group
0) received 20 CS (light) presentations (as opposed to 15 in exper-
iment 1); (c) CS presentations were each separated by an average
inter-trial interval of 90 s; range: 30–180 s (vs. 120 s in experi-
ment 1), which offset the increase in training trials to equate the
duration of each training session to that of experiment 1; (d) the
duration of each of the three habituation sessions was decreased
from 120 to 90 min to correspond with the duration of the test
sessions; (e) A saline (i.p., 1 ml/kg) challenge (90 min) was added

(post-sucrose training day 8), to assess the locomotor effects of
injection per se (e.g., expectation, stress); (f) The 1 mg/kg sensi-
tization sessions were held on alternate weekdays (post-training
days 12–21) rather than at weekly intervals as in experiment
1; (g) Along with the pre-sensitization 0.5 mg/kg AMPH chal-
lenge (post-training day 9) a second post-sensitization 0.5 mg/kg
AMPH challenge was added (post-sucrose training day 28), to
test the generality of the sensitization effect across doses; (h) nose
pokes while CS was present were coded for all groups (includ-
ing group 0); (i) nose pokes while CS was absent were recorded
specifically from the 5-s interval immediately prior to the onset of
the CS to index premature approach responding.

RESULTS
Nose pokes during sucrose conditioning sessions
A 5 Group × 15 Session × 2 Phase (CS present, CS absent)
ANOVA of nose pokes yielded significant main effects of Group,
F(4, 19) = 2.89, p = 0.050, Session F(14, 266) = 2.28, p = 0.006,
and Phase, F(1, 19) = 14.72, p = 0.001, as well as a significant
three-way interaction, F(56, 266) = 1.38, p = 0.050. Panels (A,B)
of Figure 3 plot the groups’ mean nose poke scores for the CS
present and CS absent phases, respectively. Comparison of the
two panels reveals that the main effect of Phase reflected more
overall nose poke responses when the CS was present vs. absent.
Therefore, cued responses occurred significantly more often than
did premature un-cued responses. The main effects of Group and
Session were not readily interpreted due to the higher order inter-
action. This latter result reflected a convergence of scores for the
five groups at a relatively stable low level across sessions when the
CS was absent (Figure 3B), together with a divergence of scores
into high (group 75, group 100), intermediate (group 50), and
low (group 0, group 25) levels of nose poke responding over ses-
sions when the CS was present (Figure 3A). Of the lower order
polynomial trends (linear, quadratic, cubic) only the three-way
interaction for the linear trend approached significance, F(4, 19) =
2.32, p = 0.094, reflecting the generally monotonic increase in
nose pokes over sessions in group 75 and relatively more rapid
stabilization at high, intermediate, and low levels of responding
in the other groups when the CS was present.

Habituation to locomotor boxes
A 5 Group × 3 Session ANOVA of drug-free locomotor responses
yielded a significant main effect of Session, F(2, 70) = 60.01, p <

0.0001, and no other significant effects, F(4, 35) < 0.70, p > 0.60.
Planned comparisons of group 50 with group 0 and with group
100 on the first and final habituation sessions yielded no sig-
nificant effects, t’s < 0.84, p > 0.40. Therefore, mean drug-free
locomotor response in the key groups did not differ prior to test-
ing. Mean (SE) number of beam breaks per 90 min were 2162
(118) on session 1, 1470 (116) on session 2, and 1250 (98) on
session 3.

Test sessions
Saline. A 5 Group × 2 Session ANOVA compared locomo-
tor response on the final habituation session and saline chal-
lenge session. The ANOVA yielded a main effect of Session,
F(1, 35) = 62.46, p < 0.0001, and no other significant effects,
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FIGURE 3 | Mean (SE) approach responses (nose pokes) on 15 sucrose

training sessions in groups of Sprague Dawley rats (n = 8/group)

exposed to sucrose reward (10% solution) delivered under 0, 25, 50, 75,

or 100% variable schedules. The conditioned stimulus was a light (120 s).
Group 0 received the same number of rewards as group 100 in the absence
of conditioned stimuli. (A) Scores when CS was present (5 s × 20 trials).
(B) Scores when CS was absent (average for 5 × 20 s while light was off).

F(4, 35) < 0.65, p > 0.64. Figure 4 plots the group means and
shows that the Session effect reflected an overall decrease in loco-
motor response from the final drug-free habituation session to
the saline session, which did not vary by group. Thus, the decline
in locomotor response seen over the three habituations sessions
continued on the fourth drug-free exposure to the test boxes.

Effects of 0.5 mg/kg AMPH.
Pre-injection locomotion. A 5 Group × 2 Session ANOVA of pre-
injection locomotion (30-min) on the pre- and post-sensitization
0.5 mg/kg AMPH test days yielded a significant main effect of
Session, F(1, 35) = 13.39, p = 0.001, and no other significant
effects, F(4, 35) < 1.79, p > 0.15. Planned comparisons found no
significant differences between group 50 and group 0 or group
100 on the first session, t(70) < 1.00, p > 0.30. However, on the
second (post-sensitization) session group 50 (1203; 121) dis-
played significantly more pre-injection beam breaks (M; SE) than

FIGURE 4 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) on the last of 3 drug-free habituation

sessions and on a subsequent session after saline injection (i.p.,

1 ml/kg) in groups of Sprague Dawley rats (n = 8/group) previously

exposed to 15 daily conditioning sessions with sucrose reward (10%

solution) delivered under 0, 25, 50, 75, or 100% variable schedules. The
conditioned stimulus was a light (120 s). Group 0 received the same
number of rewards as group 100 in the absence of conditioned stimuli.

did group 100 (756; 103), t(70) = 5.11, p < 0.001, but did not dif-
fer from group 0 (1126; 211), t(7) < 0.88, p > 0.40. Therefore,
baseline differences in locomotion did not account for group
differences in locomotor response to the first 0.5 mg/kg dose of
AMPH but may have contributed to differences between group
50 and group 100 in locomotor response to the second 0.5 mg/kg
dose of AMPH. Mean (SE) beam breaks for the pre-injection
phase on the first and second 0.5 mg/kg AMPH test sessions were
757 (41) and 974 (59).

Post-injection locomotion. A 5 Group × 2 Session ANOVA of
locomotor response to 0.5 mg/kg AMPH before and after the
5-dose sensitizing regimen yielded a main effect of Session,
F(1, 35) = 76.05, p < 0.0001, and no other significant effects,
F(4, 35) < 1.10, p > 0.37. Figure 5 shows the mean scores for each
group and session.

The figure shows that the Session effect involved a signifi-
cant increase in overall mean (SE) beam breaks per 90 min from
0.5 mg/kg dose 1, 3674 (216) to 0.5 mg/kg dose 2, 6123 (275).
The lack of interaction or group effect suggested that sensitization
to AMPH did not vary reliably across groups. Despite the lack
of significant group-related effects in the ANOVA, inspection of
the figure reveals that group 50 displayed the greatest response to
both the first and second 0.5 mg/kg doses. Planned comparisons
of response to the first 0.5 mg/kg dose revealed no significant dif-
ference between group 50 and group 0 or group 100, t’s(35) <

0.48, p > 0.50. However, in response to the second (post-
sensitization) 0.5 mg/kg dose, group 50 displayed significantly
greater locomotion than group 0, t(35) = 2.00, p < 0.05, as well
as group 100, t(35) = 3.29, p < 0.01.

In light of the significant group difference in pre-injection
locomotion on the second 0.5 mg/kg AMPH session reported
above, a follow-up 5 Group × 2 Session ANCOVA of locomotor
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FIGURE 5 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) to 0.5 mg/kg d-amphetamine on

separate sessions before and after a 5-session sensitizing regimen of

d-amphetamine (1.0 mg/kg; i.p. per session) in groups of Sprague

Dawley rats (n = 8/group) previously exposed to 15 daily conditioning

sessions with sucrose reward (10% solution) delivered under 0, 25, 50,

75, or 100% variable schedules. The conditioned stimulus was a light
(120 s). Group 0 received the same number of rewards as group 100 in the
absence of conditioned stimuli. ∗p < 0.05 for mean difference between
group 50 and group 0 as well as group 100, based on planned comparisons.

response to 0.5 mg/kg AMPH was conducted, controlling for pre-
injection locomotion on the second session. This analysis yielded
a significant effect of the covariate, F(1, 34) = 8.65, p = 0.006, a
main effect of Session F(1, 34) = 10.83, p = 0.002, and no other
significant effects, F(4, 34) < 0.85, p > 0.50. Importantly, planned
comparisons based on the MS error and df error from the
ANCOVA confirmed that mean locomotor response to the sec-
ond 0.5 mg/kg dose of AMPH remained significantly greater in
group 50 than group 100, t(34) = 3.09, p < 0.01, and group 0,
t(34) = 1.88, p < 0.05 (one-tailed), when pre-injection variation
from session 2 was controlled. Thus, group 50 displayed signifi-
cantly greater post-sensitization locomotor response to 0.5 mg/kg
AMPH than did group 100 or group 0, and these group differ-
ences were not mediated by pre-injection locomotion on test days.

Effects of 1.0 mg/kg AMPH.
Pre-injection locomotion. A 5 Group × 5 Session ANOVA of
30-min pre-injection scores for the 1 mg/kg AMPH sensitiza-
tion sessions yielded a main effect of Session, F(4, 140) = 16.70,
p < 0.0001, and no other significant effects, F(4, 35) < 0.94, p >

0.45. Planned comparisons found no significant difference in pre-
injection locomotion between group 50 and group 0 or group
100 on the first session, t(175) < 1.66, p > 0.10. However, on the
final session, group 50 (1167; 140) displayed significantly more
beam breaks (M; SE) than did group 100 (1000; 99), t(175) = 2.35,
p < 0.05, but did not differ from group 0 (1085, 120), t(175) <

1.16, p > 0.20. Therefore, differences in pre-injection locomotion
contributed to differences between groups 50 and 100 in locomo-
tor response to the final 1 mg/kg AMPH dose. Mean (SE) overall
beam breaks for the sample during the pre-injection phase for

Sessions 1 through 5 were: 810 (46), 784 (52), 760 (53), 726 (46),
1009 (51).

Post-injection locomotion. A 5 Group × 5 Session ANOVA of
responses to 1 mg/kg AMPH yielded a significant main effect of
Session, F(4, 140) = 6.72, p < 0.001, a marginal Group × Session
interaction, F(16, 140) = 1.57, p = 0.085, and no main effect
of Group, F(4, 35) < 0.44, p > 0.77. Polynomial trend analyses
revealed a significant linear trend, F(1, 35) = 9.19, p = 0.005, and
cubic trend, F(1, 35) = 21.63, p < 0.001, over sessions 1 through
5. Figure 6 shows the mean locomotor scores for each group and
session.

The figure shows that the Session effect reflected a significant
increase in overall mean (SE) beam breaks for the full sample
from session 1, 4624 (213) to session 5, 5736 (272), confirm-
ing the emergence of sensitization to AMPH. The cubic trend
denoted relative maxima on sessions 1, 3, and 5, with dips on ses-
sions 2 and 4, particularly for groups 0 and 50. The figure also
reveals that, despite the lack of significant interaction, group 25
displayed progressively greater locomotor response over sessions
and differed considerably from the other groups on sessions 4
and 5 (9 and 22% greater respectively, than next highest group).
Planned comparisons found that group 50 did not differ signifi-
cantly from groups 0 or 100, t(175) < 0.89, p > 0.40 on the first
or final 1 mg/kg AMPH test session.

Control for variation in nose poke responding during sucrose
training
Two 5 Group × 2 Session ANCOVAs of locomotor response
to 0.5 mg/kg AMPH before and after the sensitization regi-
men, including total nose pokes during sucrose training with
CS present and with CS absent as separate covariates, found no
significant effects for either covariate, F(1, 18) < 1.03, p > 0.31.
Therefore, approach responding during training did not mediate
group differences in response to 0.5 mg/kg AMPH.

Two 5 Group × 5 Session ANCOVAs of locomotor response
to 1 mg/kg during the sensitization sessions with total nose pokes
(CS present, CS absent) as separate covariates yielded no signifi-
cant effects of the covariate while the CS was present, F(4, 104) <

1.04, p > 0.38, and a marginal main effect of the covariate while
the CS was absent, F(1, 18) = 3.32, p = 0.085.

DISCUSSION
The results of this study did not consistently support the hypoth-
esis that group 50 would demonstrate higher locomotor response
over sessions compared to the other groups. The 1 mg/kg AMPH
data confirmed the emergence of sensitization with the alternate-
day dosing regimen. The pattern across groups indicated a trend
for greater sensitization during the latter sessions in group 25,
with no such evidence for group 50. In contrast, the 0.5 mg/kg
dose results indicated a trend for greater sensitization in group
50, while at the same time confirming a significant overall
increase in locomotor response across groups to the second vs.
the first 0.5 mg/kg AMPH dose. The null effect of saline injec-
tion confirmed that expectancy or injection-related stress did not
contribute to the AMPH effects.

The nose poke data again revealed an overall increase in
approach responding over the course of training sessions when
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FIGURE 6 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) to 1 mg/kg d-amphetamine (i.p.) on 5

weekly sessions in groups of Sprague Dawley rats (n = 8/ group)

previously exposed to 15 daily conditioning sessions with sucrose

reward (10% solution) delivered under 0, 25, 50, 75, or 100% variable

schedules. The conditioned stimulus was a light (120 s). Group 0 received
the same number of rewards as group 100 in the absence of conditioned
stimuli.

the CS was present, with no corresponding increase when the
CS was absent. Therefore, the animals appeared to acquire the
association between the CS and the prospect of sucrose reward.
Group differences in the frequency of nose pokes when the CS was
present conformed roughly to the frequency of reward delivery
under the respective schedules, with groups 75 and 100 displaying
the most nose pokes, group 50 displaying intermediate numbers
of nose pokes, and groups 0 and 25 displaying the fewest nose
pokes. These results suggest that the CS came to control approach
responding in a manner consistent with the overall probability
of reward. Although speculative, one possible explanation for the
lower nose poke rates with CS present in group 50 in experiment 2
vs. experiment 1 may be the shortening of the inter-trial interval,
as longer inter-trial intervals (experiment 1) appear to encour-
age impulsive tendencies and this is associated with increased
turnover of DA in anterior cingulate, prelimbic and infralimbic
cortices (Dalley et al., 2002). Therefore, the 30% reduction in
inter-trial interval in experiment 2 (and 3) may have altered cor-
tical DA levels and promoted more selective (i.e., guided by the
relative frequency of reward) vs. impulsive (not guided by reward
frequency) approach responding in group 50 during training
trials in experiment 2 as compared with experiment 1.

The lack of significant covariate-related effects for nose pokes
in the CS present condition in the ANCOVAs indicates that
approach responding during sucrose training did not mediate
the effects of the different CS-sucrose schedules on responses to
AMPH. The marginally significant effect of the covariate for the
CS absent condition in the ANCOVA of locomotor responses
to 1 mg/kg AMPH suggests that the tendency toward prema-
ture drug-free responding explained some of the variability in
locomotor effects of AMPH during the sensitization sessions.

Together, the evidence suggests that the effects of condition-
ing history may be more discernible with 0.5 AMPH than with

1 mg/kg AMPH, and that a protocol that generates sensitization
in the absence of any other manipulation may obscure or ren-
der redundant the effects of a putative sensitization-promoting
behavioral manipulation (i.e., chronic variable reward).

Behavioral sensitization to AMPH is a robust effect in the
laboratory. However, outside the laboratory, only a minority of
individuals who gamble chronically escalate to pathological lev-
els. Although risk for sensitization is related to risk for addiction
(or drug seeking), especially for psychostimulants (Vezina, 2004;
Flagel et al., 2008), many factors aside from sensitization risk
may predispose one to addiction (e.g., Verdejo-Garcia et al., 2008;
Conversano et al., 2012; Volkow et al., 2012). Nevertheless, trait
factors that confer vulnerability to sensitization may interact with
conditioning history to accentuate the effects of unpredictable
reward (i.e., 50% CS-US schedule) on DA system reactivity. To
investigate this possibility, experiment 3 employed the same pro-
cedure as experiment 2 but used Lewis strain instead of Sprague
Dawley strain rats.

Sprague Dawley rats display intermediate levels of DA trans-
porters, with lower levels than Wistar strain rats (Zamudio et al.,
2005), but higher levels than Wistar-Kyoto rats (a “depressive”-
like strain) in the nucleus accumbens, amygdala, ventral tegmen-
tal area and substantia nigra (Jiao et al., 2003). This profile may
render Sprague Dawley rats only moderately sensitive to envi-
ronmental or pharmacological manipulations of DA function.
In contrast, Lewis rats exhibit low levels of DA transporters as
well as D2 and D3 DA receptors in the nucleus accumbens and
dorsal striatum compared to other strains (e.g., F344) (Flores
et al., 1998). These morphological differences may contribute to
Lewis rats’ differential response to DA manipulations. Lewis rats
also exhibit a range of accentuated responses to experimental
drug manipulations compared to other strains (e.g., F344). Most
importantly, Lewis rats display greater sensitization to metham-
phetamine, characterized by low response to initial doses but
higher response to later doses (Camp et al., 1994). Lewis rats
also exhibit greater locomotor sensitization to a range of doses
of cocaine (Kosten et al., 1994; Haile et al., 2001). Based on
this pattern of effects, we surmised that Lewis rats would enable
us to investigate whether susceptibility to sensitization amplifies
the effects of conditioning schedule on subsequent response to
AMPH.

EXPERIMENT 3
MATERIALS AND METHODS
The methodology was the same as in experiment 2, aside from
the use of Lewis rats (200–225 g on arrival, Charles River, Quebec,
Canada).

RESULTS
Nose pokes during sucrose conditioning sessions
A 5 Group × 15 Session × 2 Phase (CS present, CS absent)
ANOVA of nose pokes yielded significant main effects of Group,
F(4, 34) = 6.12, p = 0.001, Session, F(14, 476) = 3.42, p < 0.001,
and Phase, F(1, 34) = 20.83, p < 0.001, as well as a significant
three-way interaction, F(56, 476) = 1.56, p = 0.008. Panels (A,B)
of Figure 7 plot the groups’ mean nose poke scores for the
CS present and CS absent phases, respectively. Comparison of
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FIGURE 7 | Mean (SE) approach responses (nose pokes) on 15

sucrose training sessions in groups of Lewis rats (n = 8/group)

exposed to sucrose reward (10% solution) delivered under 0, 25, 50,

75, or 100% variable schedules. The conditioned stimulus was a light
(120 s). Group 0 received the same number of rewards as group 100 in
the absence of conditioned stimuli. (A) Scores when CS was present
(5 s × 20 trials). (B) Scores when CS was absent (average for 5 × 20 s
while light was off).

the two panels reveals that the main effect of Phase reflected
more overall nose poke responses when the CS was present vs.
absent. Therefore, cued responses occurred significantly more
often than did pre-mature responses. The main effects of Group
and Session were not readily interpreted due to the higher order
interaction. The three-way interaction reflected a convergence of
scores for the five groups at a relatively stable low level across
sessions when the CS was absent [Panel (B)], together with a
divergence of scores when the CS was present into relatively dis-
crete profiles for each group that paralleled their rank order of
reward frequency: from highest (group 100) to lowest (group 25)
[Panel (A)]. Only the linear trend for the interaction was signifi-
cant, F(4, 34) = 4.03, p = 0.009, reflecting the generally consistent
increase in nose pokes over sessions in group 100 when the CS
was present as against the relatively inconsistent profile of increase
in nose pokes across sessions in the other groups during this
phase.

FIGURE 8 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) on the last of 3 drug-free habituation

sessions and on a subsequent session after saline injection (i.p.,

1 ml/kg) in groups of Lewis rats (n = 8/group) previously exposed to

15 daily conditioning sessions with sucrose reward (10% solution)

delivered under 0, 25, 50, 75, or 100% variable schedules. The
conditioned stimulus was a light (120 s). Group 0 received the same
number of rewards as group 100 in the absence of conditioned stimuli.

Habituation to locomotor boxes
A 5 Group × 3 Session ANOVA yielded a main effect of Session,
F(2, 70) = 23.07, p < 0.0001, and no other significant effects,
F(8, 70) < 1.47, p > 0.18. A curvilinear pattern of mean (SE)
locomotor scores emerged from session 1, 1076 (74), through
session 2, 644 (48), to session 3, 762 (59). Planned compar-
isons of group 50 with group 0 and with group 100 on the first
and final habituation sessions revealed significantly fewer beam
breaks in group 50 (M = 911; SE = 109) vs. group 0 (M = 1103;
SE = 176) on habituation session 1, t(105) = 2.02, p < 0.05, but
no difference between group 50 and group 100 (M = 1066;
SE = 150), t(105) < 1.20, p > 0.20, on this session. Group 50 did
not differ significantly from either group 0 or group 100 on
the final habituation session, t(105) < 0.93, p > 0.30. Therefore,
mean drug-free locomotor response in the key groups did not
differ consistently prior to testing.

Test sessions
Saline. A 5 Group × 2 Session ANOVA of locomotor responses
on the final habituation session and the saline test session
yielded a significant main effect of Session, F(1, 35) = 50.12,
p < 0.0001, and no other significant effects, F(4, 35) < 0.57,
p > 0.68. Figure 8 shows the group mean scores for the two ses-
sions and indicates that the Session effect reflected a significant
decline from habituation to saline test. Thus, receipt of the injec-
tion per se (e.g., expectancy, stress) did not enhance locomotor
responding.

Effects of 0.5 mg/kg AMPH.
Pre-injection locomotion. A 5 Group × 2 Session ANOVA of
pre-injection locomotion yielded a significant main effect of
Session, F(1, 35) = 15.04, p < 0.001, and no other significant
effects, F(4, 35) < 1.19, p > 0.33. Planned comparisons found no
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significant difference between group 50 and group 0 or group
100 on either test session, t(70) < 0.99, p > 0.30. Therefore, base-
line differences in pre-injection locomotion did not account for
group differences in locomotor response to 0.5 mg/kg AMPH.
Mean (SE) beam breaks for the pre-injection phase for the first
and second (post-sensitization) 0.5 mg/kg sessions were 325 (25)
and 473 (36).

Post-injection locomotion. A 5 Group × 2 Session ANOVA of
locomotor response to 0.5 mg/kg doses delivered before and
after chronic 1 mg/kg AMPH yielded a main effect of Session,
F(1, 34) = 87.44, p < 0.0001, and no other significant effects,
F(4, 34) < 0.94, p > 0.45. Figure 9 plots the mean locomotor
scores for each group and session and shows that the Session
effect reflected an increased overall response to the second
0.5 mg/kg dose, consistent with sensitization. The figure also
shows that the groups performed very similarly on session 1,
but that group 50 displayed more locomotor activity than the
other groups on session 2. Planned comparisons in response
to the first 0.5 mg/kg dose revealed no significant differences
between group 50 and group 0 or group 100, t(35) < 1.28,
p > 0.20. However, group 50 displayed significantly greater
locomotor response to the second 0.5 mg/kg dose than did
group 0, t(35) = 4.32, p < 0.001, or group 100, t(35) = 2.24,
p < 0.05.

Effects of 1 mg/kg AMPH.
Pre-injection locomotion. A 5 Group × 5 Session ANOVA of 30-
min pre-injection scores for the sensitization sessions yielded a
main effect of Session, F(4, 140) = 4.10, p = 0.004, and no other
significant effects, F(4, 35) = 1.25, p > 0.31. Planned compar-
isons found that beam breaks during the pre-injection phase

FIGURE 9 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) to 0.5 mg/kg d-amphetamine on

separate sessions before and after a 5-session sensitizing regimen of

d-amphetamine (1.0 mg/kg; i.p. per session) in groups of Lewis rats

(n = 8/group) previously exposed to 15 daily conditioning sessions

with sucrose reward (10% solution) delivered under 0, 25, 50, 75, or

100% variable schedules. The conditioned stimulus was a light (120 s).
Group 0 received the same number of rewards as group 100 in the absence
of conditioned stimuli. ∗p < 0.05 for mean difference between group 50
and group 0 as well as group 100, based on planned comparisons.

(M; SE) were significantly lower in group 50 (395; 62) than in
group 100 (508; 62), t(175) = 2.58, p < 0.01, but not group 0,
t(175) < 1.83, p > 0.10, on 1 mg/kg AMPH session 1. On the final
1 mg/kg AMPH session, planned comparisons also found that
pre-injection locomotion in group 50 (378; 60) was significantly
lower than in group 100 (650; 75), t(175) = 6.17, p < 0.001, but
not in group 0, t(175)<1.84, p > 0.10. As the direction of these
group differences (control group = group 50) was opposite to the
hypothesized pattern, group differences in post-injection loco-
motion that align with the hypothesis cannot be attributed to
pre-injection baseline differences. Mean (SE) overall beam breaks
during the pre-injection phase for Sessions 1 through 5 were: 442
(34), 452 (32), 542 (40), 411 (26), 504 (37).
Post-injection locomotion. A 5 Group × 5 Sessions ANOVA of
responses to the 1 mg/kg doses yielded a significant main effect
of Session, F(4, 140) = 6.15, p < 0.001, and no other signifi-
cant effects, F(4, 35) < 0.57, p > 0.68. Polynomial trend analyses
revealed a significant linear trend, F(1, 35) = 9.34, p = 0.004, and
cubic trend, F(1, 35) = 5.08, p = 0.031, the latter result denot-
ing relative maxima on sessions 3 and 5. Figure 10 plots these
scores and shows that, despite the lack of significant interaction in
the ANOVA, group 50 exhibited substantially greater locomotion
than the other four groups in response to the final 1 mg/kg dose.
Accordingly, planned comparisons revealed significantly greater
mean scores on session 5 in group 50 than in all other groups,
t(35) > 3.68, p < 0.001.

Control for variation in nose poke responding during sucrose
training
Two 5 Group × 2 Session ANCOVAs of locomotor response
to 0.5 mg/kg AMPH before and after the sensitization regimen,
including total nose pokes during sucrose training with CS

FIGURE 10 | Mean (SE) locomotor response (number of beam breaks in

an electronic array per 90 min) to 1 mg/kg d-amphetamine (i.p.) on 5

weekly sessions in groups of Lewis rats (n = 8/group) previously

exposed to 15 daily conditioning sessions with sucrose reward (10%

solution) delivered under 0, 25, 50, 75, or 100% variable schedules. The
conditioned stimulus was a light (120 s). Group 0 received the same
number of rewards as group 100 in the absence of conditioned stimuli.
∗p < 0.05 for mean difference between group 50 and group 0 as well as
group 100, based on planned comparisons.
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present and with CS absent as separate covariates, found no sig-
nificant effects for either covariate, F(1, 32) < 0.44 p > 0.51. Two
5 Group × 5 Session ANCOVAs of locomotor response to 1 mg/kg
AMPH during the sensitization sessions with total nose pokes
(CS present, CS absent) as separate covariates yielded no signif-
icant effects of the covariate while the CS was present or absent,
F(1, 33) < 0.14, p > 0.71. Therefore, drug-free approach respond-
ing did not account for group differences in locomotor responses
to either dose of AMPH.

DISCUSSION
Sensitization developed to the effects of repeated 1.0 mg/kg
amphetamine. The habituation and saline data confirm that this
effect was not due to pre-existing differences, expectancy, or
stress-related responses to the injection. The ANCOVAs with
nose pokes confirm that these effects were not due to drug-free
approach behavior. The nose poke data themselves indicated that
the groups acquired the association between the CS and prospect
of sucrose reward. The groups’ rank level of nose-poke respond-
ing at the end of training matched the overall frequency of reward
under the different schedules from highest (group 100) to lowest
(group 0), as it did in experiment 2. The relatively lower overall
mean nose poke levels in this experiment compared to experi-
ments 1 and 2 may reflect more selective approach responding to
cues for reward in Lewis rats (Kosten et al., 2007).

The 0.5 mg/kg dose data showed that initial locomotor
response to AMPH in Lewis rats (Figure 9) was somewhat
suppressed compared to Sprague Dawley rats (experiment 2;
Figure 5), but the within-group increase in response to the second
dose in Lewis rats was considerable (nearly double the response
to the first 0.5 mg/kg dose) following the 5-session AMPH reg-
imen Most notably, group 50 displayed a greater locomotor
response than all groups except group 25 to the second (i.e.,
post-sensitization) 0.5 mg/kg AMPH dose and a greater locomo-
tor response than all other groups, including group 25, to the final
1 mg/kg AMPH dose (final sensitization session).

Summary analysis of group rankings across experiments
To determine the reliability of group differences in sensitization, a
non-parametric analysis assessed the contingency between group
and rank of mean locomotor response to the second (post-
chronic AMPH) 0.5 mg/kg dose and the final 1.0 mg/kg dose of
AMPH from the 3 experiments. The analysis yielded a signifi-
cant effect, ϕ = 0.986, p = 0.025, reflecting the fact that group
50 ranked first in all but one of the comparisons. The superior
rank of group 50 compared to all other groups in response to
the second (post-chronic AMPH) 0.5 mg/kg dose is depicted in
Figure 5 (experiment 2) and Figure 9 (experiment 3). The supe-
rior rank of group 50 relative to other groups in response to the
final 1.0 mg/kg dose is depicted in Figure 2 (experiment 1) and
Figure 10 (experiment 3). The only exception to this pattern was
the response to the final 1.0 mg/kg dose in Sprague-Dawley rats
in experiment 2.

GENERAL DISCUSSION
The present series of experiments tested the hypothesis that
chronic exposure to a gambling-like schedule of reward can

sensitize brain DA pathways much like chronic exposure to drugs
of abuse. Evidence for such an effect would suggest that neuro-
plasticity, of the same kind thought to contribute to drug addic-
tion, can be induced by chronic exposure to unpredictable reward
schedules. In line with the literature on drug addiction, locomotor
response to 0.5 and 1.0 mg/kg doses of AMPH indexed DA system
reactivity, with greater locomotion in response to later doses oper-
ationally defining sensitization (cf. Robinson and Berridge, 1993;
Pierce and Kalivas, 1997; Vanderschuren and Kalivas, 2000).

Overall, the results are in line with our hypothesis. However,
they also indicate considerable variability in experimental effects
due to procedural factors. The effects of conditioning schedule
were modest but consistent, with group 50 demonstrating greater
response than the other four groups to both doses following the
five dose-regimen. Although overall F-values for group-related
effects in the variance analyses were often non-significant, key
group differences were confirmed with pairwise planned compar-
isons. In this regard it should be noted that, “Current thinking,
however, is that overall significance [for F in the ANOVA] is not
necessary. First of all, the hypotheses tested by the overall test and
a multiple-comparison test are quite different, with quite differ-
ent levels of power. For example, the overall F actually distributes
differences among groups across the number of degrees of free-
dom for groups. This has the effect of diluting the overall F in the
situation where several group means are equal to each other but
different from some other mean” (Howell, 1992, p. 338). This is
the precisely the situation that applied in the present experiments,
where group 50 was expected to differ from group 0 and group
100 controls but no difference between these control groups was
predicted for group 25 or group 75.

The nose poke data confirmed that, in every experiment, the
animals acquired the association between the CS and the prospect
of sucrose reward. The correspondence between nose poke fre-
quency for the different groups and overall frequency of reward
under their respective training schedules suggests that the aver-
age rate of sucrose reward guided drug-free approach responding.
However, the lack of mediating effect of nose pokes on group-
related locomotor responses to AMPH in the ANCOVAs indicated
that separate processes underlie the two behaviors.

In some cases, the effect of conditioning schedule was evident
in response to the first AMPH dose; in other cases it only emerged
after repeated doses. Group differences in locomotor response
to the first AMPH dose suggest that exposure to gambling-like
reward schedules is sufficient by itself to induce sensitization.
Group differences in locomotion following multiple AMPH doses
indicate a more subtle effect that could be characterized as “sus-
ceptibility,” which only manifests when combined with ongoing
exposure to the primary sensitizing agent (i.e., amphetamine).

Differences in the pattern of response across experiments sug-
gest that a longer interval between training and initial AMPH
challenge may maximize the opportunity to detect the inherent
sensitizing effect of the conditioning treatment. This in turn sug-
gests that effects of conditioned reward exposure may incubate
over time, a phenomenon also seen with stimulant sensitization
(Grimm et al., 2006). The pattern of response to the two doses
of amphetamine suggests that the 0.5 mg/kg dose may be more
effective in revealing the effects of conditioning history. This in
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turn suggests that conditioning effects under the current training
protocol are somewhat subtle and may be camouflaged by ceiling
effects under doses of AMPH and conditions that generate de novo
sensitization.

In experiment 3, the biphasic pattern of response to the
0.5 mg/kg doses and progressive emergence of superiority in
group 50 is consistent with the expected profile for Lewis rats in
response to methamphetamine (Camp et al., 1994). This lends
support to the validity of the present findings and suggests overlap
between the factors that moderate vulnerability to psychostimu-
lant sensitization and to gambling-like schedules of reward.

Across experiments, the post-sensitization locomotor response
of group 50 generally exceeded that of the other groups under dif-
ferent doses of amphetamine and in different strains of animals.
However, the high within-group variability and modest between-
group effect sizes indicate a role for other factors in DA system
reactivity to amphetamine following exposure to varying sched-
ules of conditioned sucrose reward. Although responses of DA
neurons to reward signals may provide a coarse model of gam-
bling (Fiorillo et al., 2003), like all models, there is a loss of
information for the sake of parsimony—i.e., to demonstrate a key
process. As a result, the pattern of effects across CS-US condi-
tions in the original Fiorillo et al. study does not fully generalize
to locomotor response to amphetamine. Further refinements of
the model are called for to fully capture the aspects of gambling
that impact on DA system function.

Taken together, the results of this series of experiments pro-
vide provisional support for the hypothesis that chronic exposure
to gambling-like schedules of reward enhances the reactivity of
the brain DA system to psychostimulant challenge. As such, they
extend the findings of Singer et al. (2012) who demonstrated
that, relative to a fixed schedule, prior exposure to a variable
reinforcement schedule in an operant paradigm enhances sub-
sequent locomotor response to amphetamine. More specifically,
the present findings point to uncertainty of reward delivery as
the critical factor underlying the effects of variable reward. The
magnitude of effects in the operant paradigm was substantially
greater than the effects found in the present experiments. This
may reflect greater chronic exposure to the gambling-like activity
(55 vs. 15 days); it may reflect the effects of requiring an operant
response to elicit the reward (i.e., a role for agency) rather than
passive exposure, as in the present study. Increasing the duration
of training in the present paradigm would help to resolve these
questions.

The validity of variable reward and reinforcement schedules as
models of gambling cannot be gleaned from these experiments.
Future research that examines the impact of conditioning history
on risk-taking behavior in rodent gambling tasks could address
this issue. Similarly, the correspondence between the behavioral
sensitization found here and the elevated striatal DA response to
amphetamine recently found in pathological gamblers must await
further investigation (Boileau et al., 2013). Micro-dialysis could
address this question, and the prediction based on the human
data would be that greater DA release in the group 50 “gambling
phenotype” would be most clearly observed in the dorsal (sen-
sorimotor) striatum rather than the ventral (limbic) striatum.
Validation of 50% variable CS + reward exposure in these other

paradigms would support its utility as a bona fide experimental
model of PG.

Whereas some forms of gambling clearly entail an instrumen-
tal response (e.g., slot machines), in other forms of gambling
(e.g., lottery) the link between the action (purchasing the ticket,
i.e., placing the bet), the cues for reward (i.e., lottery numbers)
and the reward itself (the winning number and monetary pay-
off) is much more diffuse. Nevertheless, activation of DA during
the CS-US interval may well occur. This may explain why, when
the “winning number” is announced, attention is riveted as each
individual lottery ball drops in succession to compose the specific
sequence of digits in the winning number. Although the probabil-
ity of a specific digit occurring is mathematically defined, the out-
come for each individual lottery ball is binary—hit (matches the
player’s number) or miss (does not match the player’s number)—
and the outcome on any given trial is unknown. Such a scenario
may better characterize the experience of group 50 in the present
experiments, where reward was provided non-contingently but
also unpredictably and the CS merely indicated the potential for
reward without revealing whether it would occur on a given trial.
Slot machines are more strongly linked with PG than are lot-
tery tickets (Cox et al., 2000; Bakken et al., 2009), indicating an
important role for instrumental factors (and immediacy) in the
rewarding aspects of gambling for this population (Loba et al.,
2001). Nonetheless, the Pavlovian process modeled in the present
experiments (CS + uncertain reward) appears to be a necessary if
not sufficient element of the gambling experience.

Along with the lack of a clear instrumental requirement, a
number of other design features may have contributed to the rel-
atively modest and variable pattern of experimental effects. The
groups differed in overall sucrose exposure as well as the contin-
gency between CS and sucrose reward. Although this may have
contributed to inter-group variability, it cannot readily explain
why animals with the greatest sucrose exposure (group 100)
displayed less sensitization than group 50. In addition, group
0 received no stimulus before sucrose exposure on every trial.
Although this precluded a cue-induced expectation of reward, it
did not control for the presence of a stimulus before reward deliv-
ery, which existed in all other groups. To address this issue, future
research should include a condition where animals receive reward
on every trial following random exposure to a neutral stimulus
(i.e., whose presence does not signal the potential for reward).

Another design limitation is the potential emergence of
adjunctive behavior that could influence the effects of train-
ing schedule. In the face of uncertainty, animals may develop
superstitious behaviors designed to enhance perceived control
and reduce uncertainty-induced DA activation (cf. Harris et al.,
2013). It is therefore possible that uncontrolled aspects of the
experimental design enabled the animals to offset the effects of
conditioning schedule. Such an effect could contribute to the rel-
atively modest and variable response to amphetamine in group
50 following CS + sucrose training. Future research should record
spontaneous behavior, aside from nose pokes, during training ses-
sions to test this possibility, and control for it statistically should it
emerge. Because such behavior would be expected to counteract
or dampen the effects of schedule-induced uncertainty, locomo-
tor response to amphetamine in group 50 should be enhanced
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when it is controlled (procedurally or statistically). Therefore, the
present (uncontrolled) design provides a conservative test of the
effects of 50% CS + reward on amphetamine sensitization.

In terms of external validity, the use of male rats also limits
the generalizability of the results. The lack of a clear “punish-
ment” condition also differs from gambling, where large mone-
tary losses are common and exert important motivational effects
(Nieuwenhuis et al., 2005; Singh and Khan, 2012). The ability to
accumulate reward is also absent from the present paradigm and
cumulative winnings in a slot machine game have been found
to interact with DA manipulations in humans (Tremblay et al.,
2011; Smart et al., 2013). Similarly, the opportunity for a jackpot
is an important difference between the present model and actual
gambling.

Despite these limitations, the present results suggest that 50%
variable CS + reward can engage DA pathways implicated in the
reinforcing effects of gambling (Fiorillo et al., 2003; Anselme,
2013). Cross-sensitization of response to AMPH following this
gambling-like schedule is consistent with a pivotal role for DA
in gambling and psychostimulant drug effects (Zack and Poulos,
2009), and extends earlier studies on cross-priming of motiva-
tion to gamble by AMPH in pathological gamblers (Zack and
Poulos, 2004). The present results also indirectly suggest that
modest doses of AMPH, which do not cause supra-physiological
DA release, may better model brain activity in response to inter-
mittent reward signals (i.e., during gambling) than exposure to
high (i.e., binge-like) doses of stimulant drugs (cf. Vanderschuren
and Pierce, 2010). Direct support for this correspondence could
be derived by assessing DA release in response to the 50%
variable CS-US schedule and different doses of AMPH using
microdialysis.

From an experimental standpoint, the present Pavlovian
model and the previous operant model of variable reinforcement
both appear to engender a phenotype resembling the human
pathological gambler. As such, they provide a valuable comple-
ment to rodent gambling tasks which model gambling behavior
(as a dependent measure) but have, until now, only employed
healthy animals, the equivalent of human social gamblers. Based
on the literature, the animals chronically exposed to variable
reward may well differ in these tasks, particularly in response
to DA-ergic drugs. Combining the rat gambling phenotype with
gambling tasks may permit systematic development of medica-
tions for the treatment of PG, which might not be fully accom-
plished with healthy animals alone. Further refinements in the
experimental design and training regimen, as described above,
should improve the correspondence between animals trained in
this paradigm and actual pathological gamblers.

From the clinical-sociological standpoint, the finding that
exposure to 50% variable CS + reward, which closely matches
the reward schedule on a commercial slot machine (Tremblay
et al., 2011), changes the brain DA system in reliable and endur-
ing ways suggests that, in some cases, gambling activity, like drugs
of abuse, may be a “pathogen” capable of causing addiction.
However, the modest effect size and high variability in response
to 50% CS + reward suggest that, like drugs of abuse, the ten-
dency for gambling-like reward schedules to promote addiction
will depend greatly on the pre-existing risk profile of the gambler.

Nevertheless, to spare high risk individuals exposure to potential
adverse gambling-related effects, it seems reasonable that poli-
cies applied to deter use and minimize harm from drugs of abuse
could be extended to gambling as well.

ACKNOWLEDGMENTS
This research was funded by grants from The Natural Sciences
and Engineering Research Council of Canada to Paul J. Fletcher.
We sincerely thank Ms. Djurdja Djordjevic for preparing the
figures.

REFERENCES
Anselme, P. (2013). Dopamine, motivation, and the evolutionary signif-

icance of gambling-like behaviour. Behav. Brain Res. 256, 1–4. doi:
10.1016/j.bbr.2013.07.039

A.P.A. (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th Edn.
Arlington, VA: American Psychiatric Publishing.

Bakken, I. J., Gotestam, K. G., Grawe, R. W., Wenzel, H. G., and Oren, A. (2009).
Gambling behavior and gambling problems in Norway 2007. Scand. J. Psychol.
50, 333–339. doi: 10.1111/j.1467-9450.2009.00713.x

Boileau, I., Payer, D., Chugani, B., Lobo, D. S., Houle, S., Wilson, A. A., et al. (2013).
In vivo evidence for greater amphetamine-induced dopamine release in patho-
logical gambling: a positron emission tomography study with [C]-(+)-PHNO.
Mol. Psychiatry doi: 10.1038/mp.2013.163. [Epub ahead of print].

Bolles, R. C. (1972). Reinforcement, expectancy, and learning. Psychol. Rev. 79,
394–409. doi: 10.1037/h0033120

Camp, D. M., Browman, K. E., and Robinson, T. E. (1994). The effects of metham-
phetamine and cocaine on motor behavior and extracellular dopamine in the
ventral striatum of Lewis versus Fischer 344 rats. Brain Res. 668, 180–193. doi:
10.1016/0006-8993(94)90523-1

Conversano, C., Marazziti, D., Carmassi, C., Baldini, S., Barnabei, G., and
Dell’Osso, L. (2012). Pathological gambling: a systematic review of biochemi-
cal, neuroimaging, and neuropsychological findings. Harv. Rev. Psychiatry 20,
130–148. doi: 10.3109/10673229.2012.694318

Cox, B. J., Kwong, J., Michaud, V., and Enns, M. W. (2000). Problem and prob-
able pathological gambling: considerations from a community survey. Can. J.
Psychiatry 45, 548–553.

Dalley, J. W., Theobald, D. E., Eagle, D. M., Passetti, F., and Robbins, T. W.
(2002). Deficits in impulse control associated with tonically-elevated seroton-
ergic function in rat prefrontal cortex. Neuropsychopharmacology 26, 716–728.
doi: 10.1016/S0893-133X(01)00412-2

Everitt, B. J., and Robbins, T. W. (2005). Neural systems of reinforcement for drug
addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481–1489.
doi: 10.1038/nn1579

Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward
probability and uncertainty by dopamine neurons. Science 299, 1898–1902. doi:
10.1126/science.1077349

Flagel, S. B., Watson, S. J., Akil, H., and Robinson, T. E. (2008). Individual
differences in the attribution of incentive salience to a reward-related
cue: influence on cocaine sensitization. Behav. Brain Res. 186, 48–56. doi:
10.1016/j.bbr.2007.07.022

Fletcher, P. J., Tenn, C. C., Rizos, Z., Lovic, V., and Kapur, S. (2005). Sensitization
to amphetamine, but not PCP, impairs attentional set shifting: reversal by a D1
receptor agonist injected into the medial prefrontal cortex. Psychopharmacology
(Berl.) 183, 190–200. doi: 10.1007/s00213-005-0157-6

Flores, G., Wood, G. K., Barbeau, D., Quirion, R., and Srivastava, L. K., (1998).
Lewis and Fischer rats: a comparison of dopamine transporter and receptors
levels. Brain Res. 814, 34–40. doi: 10.1016/S0006-8993(98)01011-7

Frascella, J., Potenza, M. N., Brown, L. L., and Childress, A. R. (2010). Shared
brain vulnerabilities open the way for nonsubstance addictions: carving addic-
tion at a new joint? Ann. N.Y. Acad. Sci. 1187, 294–315. doi: 10.1111/j.1749-
6632.2009.05420.x

Grimm, J. W., Buse, C., Manaois, M., Osincup, D., Fyall, A., and Wells,
B. (2006). Time-dependent dissociation of cocaine dose-response effects
on sucrose craving and locomotion. Behav. Pharmacol. 17, 143–149. doi:
10.1097/01.fbp.0000190686.23103.f8

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 36 | 20

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Zack et al. Gambling-like schedule and sensitization

Haile, C. N., Hiroi, N., Nestler, E. J., and Kosten, T. A. (2001). Differential
behavioral responses to cocaine are associated with dynamics of mesolimbic
dopamine proteins in Lewis and Fischer 344 rats. Synapse 41, 179–190. doi:
10.1002/syn.1073

Harris, J. A., Andrew, B. J., and Kwok, D. W. (2013). Magazine approach during a
signal for food depends on Pavlovian, not instrumental, conditioning. J. Exp.
Psychol. Anim. Behav. Process. 39, 107–116. doi: 10.1037/a0031315

Howell, D. C. (1992). Statistical Methods for Psychology. Boston, MA: Duxbury.
Ito, R., Dalley, J. W., Robbins, T. W., and Everitt, B. J. (2002). Dopamine release

in the dorsal striatum during cocaine-seeking behavior under the control of a
drug-associated cue. J. Neurosci. 22, 6247–6253.

Jiao, X., Pare, W. P., and Tejani-Butt, S. (2003). Strain differences in the distribution
of dopamine transporter sites in rat brain. Prog. Neuropsychopharmacol. Biol.
Psychiatry 27, 913–919. doi: 10.1016/S0278-5846(03)00150-7

Koob, G. F., and Le Moal, M. (2008). Review. Neurobiological mechanisms for
opponent motivational processes in addiction. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 363, 3113–3123. doi: 10.1098/rstb.2008.0094

Kosten, T. A., Miserendino, M. J., Chi, S., and Nestler, E. J. (1994). Fischer and
Lewis rat strains show differential cocaine effects in conditioned place prefer-
ence and behavioral sensitization but not in locomotor activity or conditioned
taste aversion. J. Pharmacol. Exp. Ther. 269, 137–144.

Kosten, T. A., Zhang, X. Y., and Haile, C. N. (2007). Strain differences in mainte-
nance of cocaine self-administration and their relationship to novelty activity
responses. Behav. Neurosci. 121, 380–388. doi: 10.1037/0735-7044.121.2.380

Leeman, R. F., and Potenza, M. N. (2012). Similarities and differences between
pathological gambling and substance use disorders: a focus on impulsivity and
compulsivity. Psychopharmacology (Berl.) 219, 469–490. doi: 10.1007/s00213-
011-2550-7

Leshner, A. I. (1997). Addiction is a brain disease, and it matters. Science 278, 45–47.
doi: 10.1126/science.278.5335.45

Loba, P., Stewart, S. H., Klein, R. M., and Blackburn, J. R. (2001). Manipulations
of the features of standard video lottery terminal (VLT) games: effects in
pathological and non-pathological gamblers. J. Gambl. Stud. 17, 297–320. doi:
10.1023/A:1013639729908

Martinez, D., Narendran, R., Foltin, R. W., Slifstein, M., Hwang, D. R., Broft, A.,
et al. (2007). Amphetamine-induced dopamine release: markedly blunted in
cocaine dependence and predictive of the choice to self-administer cocaine. Am.
J. Psychiatry 164, 622–629. doi: 10.1176/appi.ajp.164.4.622

Mateo, Y., Lack, C. M., Morgan, D., Roberts, D. C., and Jones, S. R. (2005).
Reduced dopamine terminal function and insensitivity to cocaine following
cocaine binge self-administration and deprivation. Neuropsychopharmacology
30, 1455–1463. doi: 10.1038/sj.npp.1300687

Nestler, E. J. (2001). Molecular basis of long-term plasticity underlying addiction.
Nat. Rev. Neurosci. 2, 119–128. doi: 10.1038/35053570

Nieuwenhuis, S., Heslenfeld, D. J., von Geusau, N. J., Mars, R. B., Holroyd,
C. B., and Yeung, N. (2005). Activity in human reward-sensitive brain
areas is strongly context dependent. Neuroimage 25, 1302–1309. doi:
10.1016/j.neuroimage.2004.12.043

Pierce, R. C., and Kalivas, P. W. (1997). A circuitry model of the expression
of behavioral sensitization to amphetamine-like psychostimulants. Brain Res.
Brain Res. Rev. 25, 192. doi: 10.1016/S0165-0173(97)00021-0

Robbins, T. W., and Everitt, B. J. (1999). Drug addiction: bad habits add up. Nature
398, 567–570. doi: 10.1038/19208

Robinson, T. E., Becker, J. B., and Presty, S. K. (1982). Long-term facilitation of
amphetamine-induced rotational behavior and striatal dopamine release pro-
duced by a single exposure to amphetamine: sex differences. Brain Res. 253,
231–241. doi: 10.1016/0006-8993(82)90690-4

Robinson, T. E., and Berridge, K. C. (1993). The neural basis of drug craving:
an incentive-sensitization theory of addiction. Brain Res. Brain Res. Rev. 18,
247–291. doi: 10.1016/0165-0173(93)90013-P

Robinson, T. E., and Berridge, K. C. (2001). Incentive-sensitization and addiction.
Addiction 96, 103–114. doi: 10.1046/j.1360-0443.2001.9611038.x

Singer, B. F., Scott-Railton, J., and Vezina, P. (2012). Unpredictable saccharin rein-
forcement enhances locomotor responding to amphetamine. Behav. Brain Res.
226, 340–344. doi: 10.1016/j.bbr.2011.09.003

Singh, V., and Khan, A. (2012). Decision making in the reward and punishment
variants of the iowa gambling task: evidence of “foresight” or “framing”? Front.
Neurosci. 6:107. doi: 10.3389/fnins.2012.00107

Skinner, B. F. (1953). Science and Human Behavior. New York, NY: Free Press.
Smart, K., Desmond, R. C., Poulos, C. X., and Zack, M. (2013). Modafinil

increases reward salience in a slot machine game in low and high
impulsivity pathological gamblers. Neuropharmacology 73, 66–74. doi:
10.1016/j.neuropharm.2013.05.015

Tremblay, A. M., Desmond, R. C., Poulos, C. X., and Zack, M. (2011). Haloperidol
modifies instrumental aspects of slot machine gambling in pathological gam-
blers and healthy controls. Addict. Biol. 16, 467–484. doi: 10.1111/j.1369-
1600.2010.00208.x

Vanderschuren, L. J., and Kalivas, P. W. (2000). Alterations in dopaminergic and
glutamatergic transmission in the induction and expression of behavioral sensi-
tization: a critical review of preclinical studies. Psychopharmacology (Berl.) 151,
99–120. doi: 10.1007/s002130000493

Vanderschuren, L. J., and Pierce, R. C. (2010). Sensitization processes in drug
addiction. Curr. Top. Behav. Neurosci. 3, 179–195. doi: 10.1007/7854_2009_21

Vanderschuren, L. J., Schoffelmeer, A. N., Mulder, A. H., and De Vries,
T. J. (1999). Dopaminergic mechanisms mediating the long-term expres-
sion of locomotor sensitization following pre-exposure to morphine or
amphetamine. Psychopharmacology (Berl.) 143, 244–253. doi: 10.1007/
s002130050943

Verdejo-Garcia, A., Lawrence, A. J., and Clark, L. (2008). Impulsivity as a vulner-
ability marker for substance-use disorders: review of findings from high-risk
research, problem gamblers and genetic association studies. Neurosci. Biobehav.
Rev. 32, 777–810. doi: 10.1016/j.neubiorev.2007.11.003

Vezina, P. (2004). Sensitization of midbrain dopamine neuron reactivity and the
self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev.
27, 827–839. doi: 10.1016/j.neubiorev.2003.11.001

Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Gatley, S. J., Hitzemann, R., et al.
(1997). Decreased striatal dopaminergic responsiveness in detoxified cocaine-
dependent subjects. Nature 386, 830–833. doi: 10.1038/386830a0

Volkow, N. D., Wang, G. J., Fowler, J. S., and Tomasi, D., (2012). Addiction cir-
cuitry in the human brain. Annu. Rev. Pharmacol. Toxicol. 52, 321–336. doi:
10.1146/annurev-pharmtox-010611-134625

Winer, B. (ed.). (1971). Statistical Principles in Experimental Design. New York, NY:
McGraw-Hill.

Zack, M., and Poulos, C. X. (2004). Amphetamine primes motivation to
gamble and gambling-related semantic networks in problem gamblers.
Neuropsychopharmacology 29, 195–207. doi: 10.1038/sj.npp.1300333

Zack, M., and Poulos, C. X. (2009). Parallel roles for dopamine in pathological
gambling and psychostimulant addiction. Curr. Drug Abuse Rev. 2, 11–25. doi:
10.2174/1874473710902010011

Zamudio, S., Fregoso, T., Miranda, A., De La Cruz, F., and Flores, G. (2005).
Strain differences of dopamine receptor levels and dopamine related behav-
iors in rats. Brain Res. Bull. 65, 339–347. doi: 10.1016/j.brainresbull.2005.01.009

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 01 November 2013; accepted: 23 January 2014; published online: 11
February 2014.
Citation: Zack M, Featherstone RE, Mathewson S and Fletcher PJ (2014) Chronic
exposure to a gambling-like schedule of reward predictive stimuli can promote sen-
sitization to amphetamine in rats. Front. Behav. Neurosci. 8:36. doi: 10.3389/fnbeh.
2014.00036
This article was submitted to the journal Frontiers in Behavioral Neuroscience.
Copyright © 2014 Zack, Featherstone, Mathewson and Fletcher. This is an open-
access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Behavioral Neuroscience www.frontiersin.org February 2014 | Volume 8 | Article 36 | 21

http://dx.doi.org/10.3389/fnbeh.2014.00036
http://dx.doi.org/10.3389/fnbeh.2014.00036
http://dx.doi.org/10.3389/fnbeh.2014.00036
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


BEHAVIORAL NEUROSCIENCE
REVIEW ARTICLE

published: 11 February 2014
doi: 10.3389/fnbeh.2014.00033

Nonhuman gamblers: lessons from rodents, primates,
and robots
Fabio Paglieri 1*, Elsa Addessi1, Francesca De Petrillo2, Giovanni Laviola3, Marco Mirolli1, Domenico Parisi1,
Giancarlo Petrosino1, Marialba Ventricelli2, Francesca Zoratto3,4 and Walter Adriani3*
1 Goal-Oriented Agents Lab (GOAL), Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR), Rome, Italy
2 Department of Environmental Biology, University of Rome “La Sapienza”, Rome, Italy
3 Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
4 Bambino Gesù Children’s Hospital IRCCS, Rome, Italy

Edited by:
Patrick Anselme, University of Liège,
Belgium

Reviewed by:
Francesca Cirulli, Istituto Superiore di
Sanità, Italy
Alicia Izquierdo, University of
California, Los Angeles, USA

*Correspondence:
Fabio Paglieri, Istituto di Scienze e
Tecnologie della Cognizione, Consiglio
Nazionale delle Ricerche (ISTC-CNR),
Goal-Oriented Agents Lab (GOAL), Via
S. Martino della Battaglia 44, 00185
Rome, Italy
e-mail: fabio.paglieri@istc.cnr.it
Walter Adriani, Department of Cell
Biology and Neurosciences, Istituto
Superiore di Sanità, Viale Regina Elena
299, 00185 Rome, Italy
e-mail: walter.adriani@iss.it

The search for neuronal and psychological underpinnings of pathological gambling in
humans would benefit from investigating related phenomena also outside of our species.
In this paper, we present a survey of studies in three widely different populations of
agents, namely rodents, non-human primates, and robots. Each of these populations
offers valuable and complementary insights on the topic, as the literature demonstrates.
In addition, we highlight the deep and complex connections between relevant results
across these different areas of research (i.e., cognitive and computational neuroscience,
neuroethology, cognitive primatology, neuropsychiatry, evolutionary robotics), to make the
case for a greater degree of methodological integration in future studies on pathological
gambling.

Keywords: pathological gambling, risk sensitivity, uncertain reward, animal models, nonhuman primates,
neurocomputational models, evolutionary models

INTRODUCTION
Gambling can be defined as betting money, or other equivalent
goods, upon the future outcome of an event which presents
a high degree of uncertainty, with a view to winning a prize.
Winning is mainly (or exclusively) due to chance and not much
(or not at all) to individual abilities. While betting may represent
a recreational activity for the majority of people, it may become
a serious behavioral disorder for others (Petry et al., 2005).
The rapid worldwide growth of legalised gaming opportunities
(Wilber and Potenza, 2006; McCormack et al., 2012; Donati et al.,
2013), including the increasing possibility of online gambling
through the Internet, has raised concerns over the impact of
exaggerated gambling and its detrimental consequences on pub-
lic health (Shaffer and Korn, 2002; Carragher and McWilliams,
2011). Thus, due to the increasing number of affected peo-
ple, pathological gambling represents a growing concern for
society.

In fact, this behavior is clinically characterized as a pathology:
in DSM-IV-TR (American Psychiatric Association, 2000), it was
described as a persistent, recurrent and maladaptive behavior,
which disrupts personal, family, professional or vocational pur-
suits (Potenza, 2001). The personal and social consequences of
this disorder often include job loss, family problems and divorce,
financial and legal problems, and criminal behavior (Lowengrub
et al., 2006). Pathological gambling affects 0.2–5.3% of adults in

western socities (Bastiani et al., 2013) and is highly comorbid
with a range of other psychiatric disorders such as attention-
deficit/hyperactivity disorder (ADHD; and other impulse-control
disorders, obsessive-compulsive disorders; Hollander et al., 2005)
and with substance abuse (Petry et al., 2005; Hodgins et al.,
2011). Some pathological features of gambling are similar to
those of drug addiction, such as the need to gamble increasing
amounts of money (escalation) in order to achieve the desired
excitement or “rush” (tolerance), the irritability that accompa-
nies the abstention from the activity (withdrawal), the failure
of attempts to control or stop the behavior (loss of control).
Notably, whilst pathological gambling has been classified until
recently (in DSM-III and DSM-IV) among the “Impulse-Control
Disorders Not Elsewhere Classified”, it has been turned into
a “no substance addiction” in DSM-V (American Psychiatric
Association, 2013), that is a “behavioral addiction”. Pathologi-
cal gambling is also associated with increased suicidal ideation
and attempts compared to the general population: approxi-
mately one out of five pathological gamblers attempts suicide
(Volberg, 2002). Such rates among pathological gamblers are
higher than for any other addictive disorder. Thus, gambling
represents a public concern being both a social and a psychiatric
issue.

Far from being an adult concern, gambling is becoming
a serious behavioral problem also among adolescents
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(Cunningham-Williams and Cottler, 2001; Dickson et al.,
2002), whose involvement has increased substantially over the
past 20 years (Huang and Boyer, 2007). Epidemiological studies
show that the prevalence of pathological gambling is 2–4 times
higher among adolescents than among adults, with 3.5–8.0%
of adolescents meeting the criteria for such pathology (Felsher
et al., 2004; Ellenbogen et al., 2007; Hodgins et al., 2011; Caillon
et al., 2012). Adolescence and young adulthood may be periods
of especially heightened vulnerability for the development of
gambling disorders, which are therefore receiving increasing
attention by clinicians and preclinical researchers (Jazaeri and
Habil, 2012; Zoratto et al., 2013).

The etiology of pathological gambling is multi-factorial; both
genetic (e.g., a polymorphism in the serotonin transporter gene;
Ibanez et al., 2003) and socio-environmental (e.g., Donati et al.,
2013; Potenza, 2013) risk-factors have been identified. Moreover,
cognitive models of gambling argue that irrational beliefs and
erroneous perceptions may play a key role (Reid, 1986; Clark,
2010). Indeed, some authors argue that expectancies of winning,
illusions of control, and subsequent entrapment do contribute
to the development and the maintenance of gambling patterns
(Joukhador et al., 2003). Psycho-genetic studies have revealed
that, among genes involved in altered serotonergic and dopamin-
ergic neurotransmission, the most significant for pathological
gambling are serotonin transporter (SERT; Ibanez et al., 2003;
Reuter et al., 2005) and dopamine transporter (DAT; Comings
et al., 2001).

Methods for treating pathological gambling include vari-
ous counselling-based approaches and pharmacological therapy,
although there are no drugs which have been officially approved
for the specific treatment of pathological gambling by the U.S.
Food and Drug Administration (FDA). Therefore, in pathological
gamblers, drugs are mainly prescribed for the treatment of the
comorbid conditions and not for the pathology itself (Hollander
et al., 2005). Pathological gamblers respond well to treatment
with selective serotonin reuptake inhibitors (SSRIs, particularly
paroxetine; Kim et al., 2002), mood stabilizers, and opioid antag-
onists (such as nalmefene), commonly used in the treatment of
alcoholism (see for a review Lowengrub et al., 2006).

In view of the growing incidence of pathological gambling,
its severe mental and social consequences, and the still prelim-
inary nature of its treatment, it is urgent to mobilize various
approaches and methods to further deepen our understanding
of the neuronal and psychological underpinnings of this condi-
tion. Indeed, the present Research Topic constitutes an impor-
tant and timely initiative towards that end. The contribution
we offer in this review concerns how evidence obtained on
nonhuman subjects is crucial to investigate pathological gam-
bling in humans. In particular, we make the case for studying
three widely different populations of agents: rodents (Section
Rodents as an Animal Model of Gambling Behavior), nonhu-
man primates (Section Risky Choices in Nonhuman Primates:
Implications for Human Pathological Gambling), and robots
(Section Risk Attitudes, Environmental Uncertainty and Addic-
tive Behavior: Perspectives From Computational Neuroscience
and Evolutionary Robotics). While each of these populations
offer valuable insights on the topic, their true worth is revealed

only by looking at how they relate to each other. Hence we
will review the literature across all these areas of research (i.e.,
cognitive and computational neuroscience, neuroethology, cog-
nitive primatology, neuropsychiatry, evolutionary robotics), with
the aim of suggesting the need for greater methodological inte-
gration in future studies on laboratory modeling of pathological
gambling.

RODENTS AS AN ANIMAL MODEL OF GAMBLING BEHAVIOR
In the field of behavioral neuroscience, animal models enable
the investigation of brain-behavior relations under controlled
conditions (e.g., standardized housing and testing), with the aim
of gaining insight into normal and abnormal human behav-
ior and its underlying neural, psychobiological and neuro-
endocrinological processes (van der Staay, 2006). In particular,
they are particularly suitable for the dissection of precise mech-
anisms involved in decision-making processes, for the analysis of
inter-individual differences with a tight control of environmental
and genetic conditions, and for follow-up studies (de Visser et al.,
2011). As we shall see in what follows, these considerations do
apply also to the study of gambling behavior, and especially to the
use of rodents (mostly rats) as an animal model for risk proneness
(e.g., Adriani et al., 2009, 2010).

ASSESSMENT OF GAMBLING PRONENESS: CLINICAL AND
PRECLINICAL APPROACHES
In humans, Probability Discounting can be studied by means of
either questionnaires or operant paradigms. The “South Oaks
Gambling Screen” (for adults Lesieur and Blume, 1987; for
adolescents Wiebe et al., 2000), the “Gambling Attitudes and
Beliefs Survey” (Strong et al., 2004) and the “Canadian Problem
Gambling Index” (Young and Wohl, 2011) are some examples
of personality tests and reports, widely used in the framework
of clinical psychology and experimental research. In these pro-
tocols, gamblers are characterized with scores that represent
their averaged behavior over periods of weeks, months or years
whilst the time spans that most naturally correspond to the
expression of gambling behavior are those of seconds, minutes
or hours. The main limitation of these traditional methods
regards therefore the lack of an appropriate temporal dimension
(van den Bos et al., 2013). By contrast, controlled experimen-
tal or clinical paradigms such as the “Iowa Gambling Task”
(IGT; Bechara et al., 1994), the “Balloon Analogue Risk Task”
(Lejuez et al., 2002) and the “Probability Discounting Task”
(e.g., Scheres et al., 2006; Shead and Hodgins, 2009) allow to
overcome the above mentioned limitation regarding the temporal
dimension. However, as extensively discussed in van den Bos
et al. (2013), they are characterized by a second limitation, i.e.,
the lack of appropriate context due to the artificial conditions
of a laboratory environment. It should also be noted that these
paradigms can be performed with either real rewards over limited
time intervals (e.g., minutes, hours) or with questions about
hypothetical ones (e.g., huge amounts of money) over months
or years.

Due to the complexity of human studies, preclinical investi-
gations in laboratory animal models are necessary for a deeper
understanding of pathological gambling. Specifically, it is relevant
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to exploit preclinical models for (i) the symptoms; (ii) their
neurobiological determinants; and (iii) their possible modulation
by pharmacological manipulation. Specifically, these studies are
crucial as they allow the dissection of processes and factors
associated with normal and pathological gambling in a controlled
way (de Visser et al., 2011; Winstanley et al., 2011; Koot et al.,
2012). Furthermore, animal models have added value from a
translational perspective because it is possible to use approaches
that are virtually impossible with humans, as in the case of in vivo
transgenic approaches that allow to directly reach and modulate
expression of target genes in relevant brain areas (Adriani et al.,
2010).

Many operant paradigms have been developed to study toler-
ance to uncertainty and/or gambling proneness in animal models
(Mobini et al., 2000; Cardinal and Howes, 2005; Adriani et al.,
2006; Wilhelm and Mitchell, 2008; Winstanley et al., 2011).
Specifically, by exploiting uncertainty of reward delivery, these
tasks allow to probe individual (in)tolerance to frustration, linked
to missing an anticipated reward (i.e., the “loss”). The “IGT”
involves the choice between a low probability of a large reward
vs. a high probability of a small food reward (van den Bos et al.,
2006). The “Probabilistic-Delivery Task” (PDT; which belongs to
the broader category of Probability Discounting) is based on a
choice between either a certain, small amount of food reward
or larger amounts delivered (or not) depending on a given (and
progressively decreasing) probability (Adriani and Laviola, 2006;
Adriani et al., 2006). The “Risky Decision-Making Task” (RDT)
implies the choice between a small, “safe” food reward or a
larger food reward associated with the risk of punishment (e.g.,
footshock; Simon et al., 2009). The “rodent Slot Machine Task”
(rSMT) allows to evaluate if the experimental subject discrimi-
nates a complete signal (e.g., three lights turned on, indicative of
win) from a nearly complete one (e.g., two lights out of three,
indicative of loss): by means of this task, it has been recently
demonstrated that rats are susceptible to putative-win signals
in non-winning trials (Winstanley et al., 2011; Cocker et al.,
2013). Such a phenomenon might resemble the so-called “near-
miss effect”, one of the cognitive distortion regarding gambling
outcomes that is thought to confer vulnerability to pathological
gambling (Reid, 1986; Clark, 2010; see also Section Normative
(Algorithmic) Models).

Notably, the “IGT” and the “Probability Discounting Task”
are widely used in experimental or clinical research on humans.
Obviously, when performed on animals, these paradigms involve
real, ethologically relevant rewards over limited time intervals.
Symbolic reward (as money in humans) or time intervals longer
than few hours cannot be used. Moreover, to be effective, the
contrast between alternative rewards (e.g., small vs. large one)
can not be as marked as it would be desired to mimic 1000-fold
prizes as in humans. In these tasks, in which a moderate food
restriction is usually applied to increase subjects’ motivation to
work for food delivery, the rewards’ magnitude shall be accurately
calibrated in order to (i) allow animals to eat enough food; (ii)
prevent them from being fully satiated; and (iii) enable them
to discriminate between rewards. The first aspect is especially
relevant in “closed” (compared to “open”) economies, in which
subjects have to obtain all their daily meal from the operant

panels and no extra food is given at the end of each exper-
imental session (Timberlake and Peden, 1987; Zoratto et al.,
2012). The second one is necessary to avoid a potential recovery
from the consequences of the food loss (occurring because of
the probabilistic delivery). The last one can be crucial for the
establishment of basal preference in developing rats (Zoratto
et al., 2013). We have recently shown that high contrast between
rewards (one pellet vs. five pellets instead of two pellets vs. six
pellets) and high probability initially associated, during training,
with the large reward (66% instead of 50%) are essential to
shorten the overall testing period: namely, much less sessions are
required for the development of baseline large-reward preference
(which is otherwise slow in young animals). This is of paramount
importance to overcome the developmental constraint associated
with the short duration of the adolescent phase (Laviola et al.,
2003).

These operant-behavior tasks imply a series of discrete
decisions between two reward alternatives (Adriani et al.,
2012a). In terms of automatization, the experimental appa-
ratus requires two alternative operanda (e.g., levers or nose-
poking holes, where the animal can express its choice), and
computer-controlled delivery of reinforcers (e.g., food or liquids)
that differ in size and actual probability of delivery (uncer-
tainty). Other important features of the task are inherent to
the trial/session schedule. For instance, the total number of
choice opportunities (i.e., trials) given to the subject may be
fixed (i.e., the session ends after the last trial) and indepen-
dent of total time needed to complete the task. Alternatively,
the total duration of the experimental session may be fixed
(minutes, hours) and thus independent of the total number of
trials actually completed within such time-window (Koot et al.,
2012).

The protocols reviewed above probe animals for the bal-
ance between “innate, sub-cortical” drives and “evolved, cor-
tical” processes (Adriani and Laviola, 2009). In other words,
these operant tasks allow to evaluate a cognitive ability, i.e.,
to inhibit sub-cortical drives and to express a more controlled
response. Self-control is known to require intact serotonergic
function (Wogar et al., 1993; Harrison et al., 1997; Puumala and
Sirvio, 1998; Dalley et al., 2002), especially within the prefrontal
cortex (McClure et al., 2004; Ridderinkhof et al., 2004) and
its cortico-striatal projections (Cardinal et al., 2004; Christakou
et al., 2004).

THE PROBABILISTIC-DELIVERY TASK (PDT)
The “PDT” (Mobini et al., 2000; Adriani and Laviola, 2006)
involves a larger but probabilistic reinforcer which is randomly
withheld by the feeding device, and delivered only occasionally
so that experimental subjects face a “loss”. The progressively
accumulating “losses” over time clearly have consequences for
the sake of long-term payoff. Such a task also provides infor-
mation reflecting the ability to cope with non-regularly deliv-
ered, randomly missing reinforcement. We have shown recently
that laboratory rodents are not only tolerant to this random
delivery, but are also sub-optimally attracted by this probabilistic
uncertainty (Adriani and Laviola, 2006, 2009). Indeed, if the very
frequent food-delivery omission is masked by the same cue (e.g.,
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a light flash) normally accompanying occasional food delivery,
this cue may turn out to act as a secondary reinforcer. As such,
like in second-order schedules, this conditioned stimulus may
sustain continued responding for the large/uncertain reward, even
though this implies a decreased overall foraging in the long
term. Gambling proneness may thus be sustained by the cue-
induced secondary reward, which renovates in the subject the
expectation for an eventual delivery of binge reward (Adriani and
Laviola, 2006, 2009). Translated to human subjects, this would
suggest that it is the thrill—associated with whatever physical
stimuli accompanies both successful and unsuccessful gambling
experiences—that sustain a motivation to gamble, in spite of
abysmal odds and past (mostly negative) experience: looking
at the ball madly spinning on the roulette and waiting for the
crucial card to be turned, with a mix of hope for success and
fear of loss, become rewarding in themselves, and it is in view
of these (certain) rewards that people start enjoying gambling
activities. Until the individual can keep under control the desire,
these activities have nothing wrong in themselves. However, in
vulnerable individuals, eventually a loss of control over these
activities may intervene: pathological gamblers keep on gam-
bling as this compulsive “urge” becomes a strong habit, not
differently from other kinds of addictions (van den Bos et al.,
2013).

Methodological remarks on the probabilistic-delivery task (PDT)
A theoretical framework has been recently formulated to interpret
the performance of laboratory rats in this kind of two-choice
tasks (Adriani and Laviola, 2006). Specifically, a landmark in the
PDT protocol is the “indifference” point: i.e., the specific level
of uncertainty at which the animals can choose either option
freely with no effect on the overall economic convenience. As
an example, if the ratio between large and small reward size is
five-fold then the indifference point is at “p” = 20%. Therefore,
once the “indifference” point is established, the range of “p”
values providing worthy information is easily recognized at “p”
values beyond the indifference point (i.e., 20% > “p” > 0%),
when economical benefit (i.e., maximization of payoff) is attained
unequivocally by choosing repeatedly the small-reward option.
Thus, to maximize the payoff, subjects should be flexible enough
to abandon their innate large-reward preference. As optimal
performance in terms of benefit takes the form of a choice-shift
towards small reward, this requires a self-control effort in order
to overcome the “innate drive” that justifies its attractiveness
(Adriani et al., 2006). By contrast, a sustained preference for large
reward denotes “temptation by risk”.

In this kind of two-choice tasks, details of the schedule
can be calibrated appropriately (Adriani and Laviola, 2009),
so that one alternative option leads to “optimal” benefit (i.e.,
the raw convenience in terms of quantitative foraging or any
other measurable revenue), while the other alternative provides
an “affective” benefit, with a more emotional outcome (i.e.,
better feeling and/or avoidance of adverse mood). In brief,
to run a protocol providing useful information, any “inner
drive” of interest (e.g., gambling proneness) shall push animals
into a choice that necessarily leads to a sub-optimal outcome.
Self-control is then defined as the ability to effect an optimal

response (Stephens and Anderson, 2001) by directing choices
onto the opposite operandum (nose-poking hole or lever to
press). The protocol must never load both instances (i.e., the
inner drive and the optimal payoff) on the same operan-
dum because it would be impossible to discriminate whether
any preference for that operandum is due to payoff-detecting
processes (“economical efficiency”) or to the “inner drive”
itself.

Probabilistic-delivery task (PDT) at very low probability levels
Many factors can act together to push animals towards a sub-
optimal preference for a large reward, even though this is deliv-
ered quite rarely. One factor is insensitivity to risk, whereby the
subjects are unable (i) to figure the uncertainty in the outcome
(usually, they should anticipate the notion that reward is not for
sure, which acts as a source of aversion immediately before choice)
or (ii) to perceive the punishment of “losses” (represented by
the occurrence of a randomly and frequently omitted delivery of
reward).

Another factor is habit-induced rigidity, under which the
subject seems to behave according to a well consolidated strategy.
Such form of inflexibility may be due to a failure of negative
reinforcement, namely to a lack of adaptation and feedback-
reaction to the aversion (for an anticipated “unsure” prize) and/or
to the punishment (due to an actually “omitted” prize) just
described.

A third factor is temptation to gamble, whereby the moti-
vational impact of the reward magnitude (“bingeing”) seems to
monopolize the subject’s attention over any other reward feature.
It is also possible that risk of punishment under conditions of
uncertainty becomes attractive as a secondary conditioned fea-
ture, and this because the “binge” reward (eventually delivered)
may well be generating an overwhelming peak of positive rein-
forcement. The latter could extend a secondary rewarding prop-
erty to all cues and surrounding stimuli that predict uncertain
features. Whatever of these factors is prevalent in the PDT and in
similar tasks, the sub-optimal preference for big, rarefied reward
is taken as an index of “gambling proneness” (namely, the innate
attraction for a “rare but binge” event).

“RISK OF LOSING” vs. “FAILING TO WIN”
A crucial component of human gambling is the “risk of los-
ing”, that is, “the resources staked on a favorable outcome are
lost when a wager is unsuccessful” (Zeeb et al., 2009). This is
distinct from “failing to win”, that is, the absence of any addi-
tional gain, causing a “frustration” but only compared to one’s
expectation.

Most paradigms of risky decision-making (Mobini et al., 2000;
Cardinal and Howes, 2005; Adriani and Laviola, 2006; van den
Bos et al., 2006) deal exclusively with “failing to win”: i.e., com-
plete omission of reward delivery, or delivery of an unpalatable
reward. Thus, there is frustration of an expectation but no risk of
“negative payoff ”, i.e., of finishing the session at a disadvantage
compared with the start. In other words, every case of unsuccess
is an “unlucky event” but not necessarily a “risk”. Therefore, while
the attraction for uncertain reward may resemble the features
of a “gambling proneness”, it is not necessarily fitting with the
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construct of “risk proneness” (on this point, see Anselme, 2012).
Therefore, it should be noted that “uncertainty” and “risk” are
not synonymous:1 indeed, the PDT and similar tasks do offer
stochastic “unsuccess” which is even a “punishment”, but not
necessarily a “risk” which would need a construct implying a
potential for overtly adverse consequences (e.g., footshock).

Recently, however, choice behavior has been also studied in a
setting where a greater reward was associated with the probability
of an overtly adverse event (i.e., the “risk”), represented by a
foot shock (Simon et al., 2009). This can represent a promising
methodological refinements of paradigms tailored for gambling
proneness, although its ethical implications (especially when deal-
ing with non-human primates) should be carefully evaluated.

Another attempt to deal with this issue is represented by
the “Rat gambling task” (rGT; Zeeb et al., 2009). In this task,
subjects have a limited amount of time to maximize the number
of pellets earned, and loss is signaled by punishing timeouts
during which reward cannot be obtained. On each trial, animals
can choose from four options, each associated with a different
number of sugar pellets; each subject then receives either the
associated reward or a punishing timeout. Larger reward options
are associated with a higher chance of longer timeouts, resulting in
less reward earned overall per session. To maximize their earnings,
rats must learn to avoid these risky options.

THE ECOLOGICAL VALIDITY OF ANIMAL MODELS OF HUMAN
(PATHOLOGICAL) GAMBLING
Classically, the performance of laboratory animals on tasks
tailored for gambling proneness is investigated by placing the
animals (in most cases laboratory rodents, primarily rats) individ-
ually in operant chambers for a short daily session (Evenden and
Ryan, 1996, 1999; Mobini et al., 2000, 2002; Adriani et al., 2009).
Thus, differences across laboratories in working environments
and in human interventions (e.g., handling and transport to a
novel testing room) may compromise the reliability and repro-
ducibility of behavioral data (Crabbe et al., 1999; Wahlsten et al.,
2003).

Therefore, for the ecological validity of animal models of
human (pathological) gambling, it is critical to address some
crucial issues (van den Bos et al., 2013). Firstly, confounding
factors such as stress due to handling, facing a new environment
and social isolation should be avoided (e.g., de Visser et al., 2006;
Spruijt and de Visser, 2006; Koot et al., 2009, 2012; Zoratto
et al., 2013). Secondly, the level of tasks’ automation should
be increased, since the involvement of the experimenter during
testing procedures (and for scoring behavior) may be difficult
to standardize: indeed, results may often strongly vary between
laboratories (Crabbe et al., 1999; Chesler et al., 2002). Thirdly,

1Another common way of distinguishing between risk and uncertainty is in
terms of how measurable the odds are: Knight (1921) proposed to consider as
“risky” those choices were the odds are measurable and known to the subject,
whereas the term “uncertainty” should be reserved for probabilistic outcomes
with unknown odds. While this distinction has become canonical in behav-
ioral economics (e.g., Camerer and Weber, 1992; Tversky and Kahneman,
1992), its application to animal studies is highly problematic, due to obvious
difficulties in establishing how much the odds are known (that is, precisely
understood and quantitatively assessed) by experimental subjects.

tasks incorporating a social component should be used, to assess
the impact of social factors on gambling proneness. It is well
known, indeed, that the social environment in humans may have
an undeniable effect on the development and maintenance of
pathological gambling. Finally, innovative tasks should be devel-
oped that allow the investigation of normal time-budget (and its
potential disruptions) devoted to social interaction, foraging, and
other activities. This aspect, which is yet unexplored in animal
models, would be highly relevant. The goal is to identify altered
time budget possibly analogous to the disruption of personal, pro-
fessional or financial life, widely reported in human pathological
gamblers (DSM-IV-TR, American Psychiatric Association, 2000;
Potenza, 2001).

To address the issues mentioned above, different automated
social home-cage systems have recently been developed for per-
manent monitoring of subjects’ operant-choices and spontaneous
(social and non-social) behavior (e.g., Adriani et al., 2012b). For
instance, the Home-Cage Operant Panels (HOPs, PRS Italia) are
new low-cost computer-controlled operant panels (Koot et al.,
2009), which can be placed inside the home-cage, enabling
rodents to operate it 24 h/day. Operant-choice tasks are par-
ticularly interesting to be run during adolescence (Adriani and
Laviola, 2003; Adriani et al., 2004), but social deprivation during
this ontogenetic period may produce changes in reward sensitivity
(Van den Berg et al., 1999), as well as psychotic-like symptoms
(Leussis and Andersen, 2008). To solve this problem, Zoratto
et al. (2013) recently developed a considerable methodological
improvement that allow testing adolescent rats in the home-cage
with a task tailored for gambling proneness, while socially living
and within the limited span of this developmental phase.

RISKY CHOICES IN NONHUMAN PRIMATES: IMPLICATIONS
FOR HUMAN PATHOLOGICAL GAMBLING
Laboratory studies in nonhuman primates can inform the
research on human pathological gambling in at least four three
ways. First, the behavioral tasks employed in laboratory rodents
(see The Probabilistic-Delivery Task (PDT)) may be implemented
in non-human primates for studying the psychobiological bases
and evolutionary roots of human gambling behavior. Second, the
comparison of risk preferences between phylogenetically closely
related nonhuman primate species with different ecologies can
shed light on the selective pressures that shaped decision-making
under risk in the course of the evolution. Third, the study of
how nonhuman primates make decisions under risk may provide
important information on the contextual and social factors deter-
mining the occurrence of similar risky choices in humans. Fourth,
since nonhuman primates are our closest relatives, but are not
constrained by the socio-cultural system of beliefs and attitudes
that characterizes humans, their study may allow to assess whether
biases in the making of decisions under risk emerged before the
human lineage diverged from the other primates, or whether
they are a more recent—and possibly culturally determined—
acquisition.

As noted above (see The Ecological Validity of Animal Models
of Human (Pathological) Gambling), in studies with nonhuman
primates, the term “risk” is typically understood as the frustration
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of a positive expectation (failure to receive a reward), rather than
as the occurrence of a negative event (a loss of valuable resources,
or the infliction of physical damage). This happens since the
second type of “risk” cannot be implemented in nonhuman pri-
mate experiments, mostly due to ethical considerations. However,
it is clear that nonhuman primates are exposed, in their own
environment, also to “true” risks of the second type (e.g., pre-
dation). Note that, in humans, the risks involved in pathological
gambling include the loss of job, family, social reputation; in
a laboratory model, the appropriate meaning of “risk” should
encompass therefore the possibility of overtly adverse outcomes as
consequence of “high stakes”. In any case, a comparative approach
has much to offer to our understanding of human attitudes
towards such “high stakes risks”, once appropriate methodologies
for studying them will be developed.

THE PROBABILISTIC-DELIVERY TASK (PDT) IN THE COMMON
MARMOSET
The behavioral tasks mentioned in Section Rodents as an Ani-
mal Model of Gambling Behavior, used to focus on particular
gambling-related aspects, are classically performed in laboratory
rodents, primarily rats. However, the implementation of these
tasks in species other than rats (that is, non-human primates)
may be relevant for studying the psychobiological bases and
evolutionary roots of human gambling behavior. Moreover, very
little is known about the possibility to run such tasks by means of
automated operant panels. This possibility is especially relevant
in sight of increasing the ecological validity of these models
(see above). The HOPs, originally developed for rodents, have
been recently adapted to small non-human primates like the
common marmoset (Callithrix jacchus; Adriani et al., 2013). In
such a recent experiment, whereby the operandum was adapted
for example into hand-poking holes, we showed that HOPs can be
reliably exploited to model operant-choice behavior in a delayed-
reward setting. The aim of future studies will be to evaluate
marmosets as possible models for gambling behavior, using a PDT
and drawing a comparison with rats.

THE “ECOLOGICAL RATIONALITY” OF RISK PREFERENCES
According to normative economic models, mainly formulated in
mathematical terms, rational decision makers should be indiffer-
ence when choosing between a safe option and a risky option
leading on average to the same payoff (e.g., von Neumann and
Morgenstern, 1947). In practical terms, this means that a rational
decision maker has no reason to prefer either option when offered
choice between e.g., a certain, small reward vs. an uncertain,
larger one whose size is five-fold and whose probability of delivery
is at “p” = 20% (i.e., at the indifference point). However, both
human and nonhuman animals are not similar to such “rational”
entity, as their instinct will guide their choice towards some kind
of a preference: they are generally risk-averse for gains (e.g.,
Kahneman and Tversky, 1979; Kacelnik and Bateson, 1996), with
the notable exception of nonhuman primates, for which the pic-
ture is more complicated (Stevens, 2010). To explain this pattern
of behavior, it has been proposed that risk-related preferences
could reflect the environments in which species evolved and,
in particular, their feeding ecology (Heilbronner et al., 2008),

leading to “ecologically rational” decisions (Gigerenzer and Todd,
1999). In order to test the above ecological hypothesis, risk pref-
erences were compared in phylogenetically closely related primate
species employing two main paradigms.

In the most simple paradigm, the subject is given a series of
choices between two options: the “safe” option yields a reward
that is constant in amount, whereas the “risky” option yields a
reward that varies probabilistically around the mean, with the
two options leading on average to the same payoff. Individuals’
attitude towards risk is inferred on the basis of their prefer-
ence for the safe option (indicating risk aversion), for the risky
option (indicating risk seeking) or for neither option (indicating
risk neutrality) (Kacelnik and Bateson, 1996, 1997). Bonobos
(Pan paniscus) and chimpanzees (Pan troglodytes), two closely
related species that evolved behavioral differences possibly as a
result of their different ecologies (Wrangham and Pilbeam, 2001),
received an experimental schedule whereby they were offered
choices between two different upside-down bowls, covering the
safe option (always four food items) and the risky option (either
one or seven food items with equal probability; Heilbronner
et al., 2008). The two species differed markedly in their risk
preferences: chimpanzees were risk-seeking, whereas bonobos
were risk-averse. Their feeding ecology offers a plausible expla-
nation for this difference: bonobos feed mainly on terrestrial
herbaceous vegetation, an abundant and reliable food source,
whereas chimpanzees feed primarily on fruit, a more variable food
source (Wrangham and Peterson, 1996). Thus, since chimpanzees
often rely on more unpredictable food sources than bonobos, this
evolutive force may have shaped their behavioral regulations so
that to render them tolerant to, if not attracted from, a reward
uncertainty. As such, an ecological feature may have led them to
be more risk-seeking than their sister species (Heilbronner et al.,
2008; Stevens, 2010).

A methodologically similar study conducted on individuals
belonging to different lemur species (Lemur catta, Eulemur mon-
goz, Varecia rubra) showed that, as bonobos, lemurs were clearly
risk-averse (MacLean et al., 2012). Subjects were required to
choose between two images on a touch-screen, associated to a safe
option and to a risky option, respectively. The safe option always
led to one food item, whereas the payoff of the risky option varied
across two experiments. In a first experiment, the risky option
corresponded either to two food items or to zero food items with
equal probability (leading to an average payoff of one food item,
as the risky option). In a second experiment, the payoff of the
risky option was gradually increased across trials up to 7.5 times
the safe option. In the first experiment, lemurs strongly preferred
the safe option; in the second experiment, half of the subjects
switched to risk seeking only when the potential payoff of the
uncertain option was at least five times higher than that of the safe
option. These results are somewhat puzzling if compared to the
findings obtained by Heilbronner et al. (2008) in chimpanzees.
However, it can be hypothesized that animals living in a relatively
productive environment compared to lemurs, like chimpanzees,
can exploit also risky resources, and thus evolve a risk-seeking
attitude, without incurring in the danger of starvation. In con-
trast, for animals living in very harsh environments, like lemurs
(that have also evolved several anatomical and behavioral traits
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as adaptations to their unpredictable habitats; Wright, 1999),
risk proneness is not advantageous in the long term and is
better to rely on low-quality, yet stable resources (Caraco, 1981;
McNamara, 1996).

In a more complex paradigm, Haun et al. (2011) investigated
whether, when choosing between a safe and a risky option, the
four nonhuman great ape species (Pan paniscus, Pan troglodytes,
Gorilla gorilla, and Pongo abelii) make decisions based on the
expected value, defined as the probability of receiving the reward
multiplied by the amount of the reward. In each trial, sub-
jects choose between a safe option, consisting in a small food
item hidden under a yellow cover positioned to the right of
the subject, and a risky option, consisting in a large food item
put in one of four brown bowls placed in a row in front of
the subject and hidden under a blue cover. The probability of
receiving the reward was manipulated by increasing the number
of blue cups covering the four brown bowls (varying from P =
100%, when one blue cup covered the brown bowl containing
the risky option, to P = 25%, when four blue cups covered
all the brown bowls), whereas the relative value of the risky
option was increased by decreasing the size of the small food
item. Overall, apes preferred the risky option, although their
preferences were influenced by the expected value. In fact, sub-
jects chose the safe option more often when (i) the safe reward
increased in size compared to the risky reward, and (ii) the
probability to receive the risky reward decreased. As for species
differences, chimpanzees were more risk-seeking than bonobos
(as in Heilbronner et al., 2008) also when tested in this more
complex paradigm, and orang-utans, whose feeding ecology is
somewhat similar to that of chimpanzees (Knott, 1999), were also
risk-seeking.

Interestingly, similar differences in risk preferences have been
observed in human small-scale societies, possibly as an effect of
cultural differences and environmental conditions (Kuznar, 2001;
Henrich and McElreath, 2002) that deserves further investigation.

CONTEXTUAL AND SOCIAL FACTORS AFFECTING RISK PREFERENCES
IN NONHUMAN PRIMATES
Several neurophysiological studies in nonhuman primates have
employed risk preference tasks to understand whether single neu-
rons track the subjective value rather than the objective value of a
chosen option (McCoy and Platt, 2005; O’Neill and Schultz, 2010;
So and Stuphorn, 2010; but see Yamada et al., 2013). In a first
study, McCoy and Platt (2005) tested rhesus macaques (Macaca
mulatta) in a visual gambling task and measured the activity of
single neurons in the posterior cingulate cortex. Macaques were
presented with choices between visual targets offering on average
the same reward but differing in reward uncertainty. They had
to choose whether directing their gaze to a safe target (offering a
150 ms access to fruit juice) or to a risky target (randomly offering
either a shorter or longer than 150 ms access to juice, resulting on
average in 150 ms access). Overall, monkeys strongly preferred
the risky target and its selection increased with the degree of
risk, regardless of the internal state of the subjects. Also neuronal
activity increased with increasing variance in payoff of the risky
option, mirroring the macaques’ risk proneness observed at the
behavioral level. Interestingly, macaques continued to prefer the

risky option even when the probability of receiving the larger
outcome was reduced from 50 to 30% and thus its payoff was
smaller than that of the safe option.

In the above study, rhesus macaques were consistently risk-
seeking and the same pattern was observed also in subsequent
studies carried out by the same Authors and in other neuro-
physiological laboratories (Hayden et al., 2008b, 2010; Long et al.,
2009; Watson et al., 2009; O’Neill and Schultz, 2010; So and
Stuphorn, 2010; Heilbronner et al., 2011; but see Yamada et al.,
2013). Interestingly, macaques’ choices are not explained by non-
linear utility functions (as proposed by Lee, 2005) since they
preferred an uncertain option, in which the delivery of the larger
payoff was unpredictable, to an alternating option, in which the
delivery of the larger payoff was predictably alternating across
trials (Hayden et al., 2008a). Thus, borrowing the distinction
between uncertainty and risk favored in the field of behavioral
economics (Knight, 1921; Camerer and Weber, 1992; Tversky and
Kahneman, 1992), macaques are not only risk prone, but also
uncertainty-seeking.

However, not in all conditions do rhesus macaques exhibit
a preference for risky options. In fact, when another macaque
sample was tested in a risk preference task under different condi-
tions, their behavior ranged from risk aversion to risk neutrality,
but none of them was risk-seeking (Behar, 1961). Thus, although
rhesus macaques’ ecology may suggest a general predisposition for
risk proneness (Goldstein and Richard, 1989; Richard et al., 1989),
Heilbronner and Hayden (2013) proposed that macaques’ risk
preferences are driven by some features of the task design typically
used in neurophysiological studies, such as (i) the small stakes
involved in these experiments (typically 0.1–0.3 ml of juice); (ii)
the large amount of trials (the same decision problem is typically
presented hundreds or thousands of times to the same subject);
and (iii) the short intertrial intervals (ITIs).

At least for the latter point, an experiment showed that this
might be the case. Whereas in McCoy and Platt (2005), where
macaques were risk-seeking, the average ITI was 3 s, in other
nonhuman animal studies, where individuals were risk-averse
(reviewed in Kacelnik and Bateson, 1996), the ITI was much
longer (usually 30 s). Thus, Hayden and Platt (2007) presented
rhesus macaques with a novel version of the visual gambling task
in which the variance of the risky option was kept constant and the
ITI varied from 1 s to 90 s. They found interestingly that, as the
ITI increased, macaques’ preference for the risky option decreased
and monkeys turned to risk neutrality at 90 s ITI. To explain
this pattern, Hayden and Platt (2007) hypothesized that macaques
interpreted the risky option as a certain reward available at a
future time and, since the higher payoff may occur on the next
trial, the subjective expected utility of the risky option depends
on the length of the ITI. Interestingly, when humans were tested
with a paradigm as similar as possible to that usually employed
with macaques, they were more risk-seeking than in typical one-
shot gambling experiments employing questionnaires (Hayden
and Platt, 2009).

However, the above factors cannot explain the risk-seeking
behavior observed in chimpanzees and orangutans (Heilbronner
et al., 2008; Haun et al., 2011), where the stakes involved where
comparatively high, the number of trials lower, and the ITIs
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longer than in the macaque studies. Although the results on
chimpanzees appears to be very robust and have been replicated
with larger samples (Rosati and Hare, 2012, 2013), it cannot
generally be excluded that the different risk preferences obtained
in the nonhuman primate studies reviewed so far were due to
individual differences. In fact, in rhesus macaques, risk sensitivity
appears to be partly determined by the serotonergic system:
serotonin depletion increases risk proneness (Long et al., 2009),
a finding consistent with recent rodent data (Koot et al., 2012).
Similarly, the length polymorphisms of the serotonin transporter
gene promotor (known as 5-HTTLPR, the serotonin-transporter-
linked polymorphic region) is crucial as well (Watson et al., 2009),
in relation to interspecific and intraspecific behavioral variability.
Wendland and colleagues (2006) found, in macaque species, that
the 5-HTTLPR was responsible for interspecific behavioral vari-
ability. In contrast, Chakraborty et al. (2010) proposed that this
particular polymorphism had a role in intraspecific variability,
which in turn may account for the greater ecological success of
5-HTTLPR polymorphic species. An example of its consequences
in the wild is represented by the presumed selective emigration
of rhesus macaques over the Himalyan Mountains into China in
the early history of the species (Champoux et al., 1997; Heinz
et al., 1998). According to Belsky et al. (2009), this particu-
lar polymorphism may confer an advantage when dealing with
novel, possibly hostile environments. Relative to Indian-derived
monkeys, Chinese-hybrid macaques with higher prevalence of
the long repeat allele of the 5-HTTLPR show predispositions
to aggressive and risk-taking behaviors, as well as lower levels
of serotonin as indicated via its metabolite (Champoux et al.,
1997; Heinz et al., 1998). Nonetheless, although feeding ecology
and inter-individual differences are likely to influence risk pref-
erences, the findings obtained in rhesus macaques underline the
importance of carefully controlling all task and environmental
parameters when comparing risk preferences among different
species.

Finally, as observed in humans (Bault et al., 2008; Ermer
et al., 2008; Hill and Buss, 2010), another important factor
affecting nonhuman primates’ risk preferences seems to be the
social context in which the individuals make decisions. To our
knowledge, there is only one study evaluating this aspect in
nonhuman primates (Rosati and Hare, 2012). Chimpanzees and
bonobos were presented with choices between a safe option,
yielding an intermediately preferred food item, and a risky option,
yielding either a low-preferred or a high-preferred food item, in
a competitive context and in a play context. In both contexts
an experimenter interacted with the subject before the presen-
tation of the decision-making task: in the competitive context,
the experimenter first offered the subject a food item and then,
when the subject attempted to take it, immediately pulled it
out of the subject’s reach; in the play context, the experimenter
tickled or chased the subject. Apes’ behavior in each condition
was compared with a neutral context, in which the experimenter
was present but not interacting with the subject. All subjects
chose the risky option more in the competitive than in the
neutral context, whereas the play context did not increase risk
proneness. Probably, an eco-ethological explanation is very likely
given that feeding competition and consequent loss of resources

is a potential problem for all group-living species. In this frame it
can be proposed that, in the competitive context, the salience and
attractiveness of the larger option would be increased notwith-
standing its uncertainty.

THE EVOLUTIONARY ORIGINS OF BIASES IN DECISIONS UNDER RISK
When making choices between risky options, humans show the
so-called “reflection effect”, i.e., the tendency to evaluate gambles
in relation to an arbitrary reference point. The same individual
can decide differently, being risk-seeking when some options are
framed as losses and risk-averse when the same, identical options
are framed as gains (Kahneman and Tversky, 1979; Tversky and
Kahneman, 1981).

Nonhuman animals apparently share with humans the reflec-
tion effect and other behavioral biases (e.g., Waite, 2001; Marsh
and Kacelnik, 2002; Shafir et al., 2002). This can be either because
of an early emergence of economic biases during evolution, or
because of convergent evolution. Only the study of nonhuman
primates, our closest relatives, can allow to disentangle the topic
and select one between these two hypotheses. To this aim, in
recent years a series of studies investigated decision-making under
risk in capuchin monkeys (Sapajus spp., formerly Cebus apella2)
that, despite 35 million year of independent evolution, show many
striking analogies with humans in terms of encephalization index,
ontogeny, lifespan, and various cognitive traits (Fragaszy et al.,
2004).

In a first study (Chen et al., 2006), capuchins were tested
in a token exchange task, in which they were provided with
a starting budget of 12 tokens that could be exchanged with
one of two experimenters, as they preferred. Preliminary exper-
iments demonstrated that capuchins can behave rationally in
this framework: when the two experimenters provided the same
amount of two equally preferred different food types, capuchins
exchanged a similar amount of tokens with each of them; however,
when one experimenter doubled the amount of food provided in
exchange for one token or showed two food items and delivered
either one or two pieces with the same probability, capuchins
reliably shifted their preference towards her, showing that they
were able to maximize their payoff. In the main experiment,
capuchins were presented with choices between experimenters
providing a risky “trade” of either one or two food items with
equal probability, but the amount of food initially displayed to
the subject was different: one experimenter showed one food
item and added a “gain” of one additional food item in half
of the trials, whereas the other experimenter showed two food
items and subtracted a “loss” of one food item in half of the
trials. Although the two experimenters provided on average

2Recent molecular analysis has revealed that capuchin monkeys, formerly
identified as the single genus Cebus, are two genera, with the robust (tufted)
forms (including libidinosus, xanthosternos, apella and several other species)
now recognized as the genus Sapajus, and the gracile forms retained as the
genus Cebus (Lynch Alfaro et al., 2012). The nomenclature for Sapajus is regis-
tered with ZooBank (urn:lsid:zoobank.org:act:3AAFD645-6B09-4C88-B243-
652316B55918). Animals identified as Cebus apella in laboratory colonies
outside of South America may be any combination of the several species (e.g.,
C. apella, C. libidinosus, C. nigritus) recognized as separate species since 2001
(Groves, 2001; Fragaszy et al., 2004), but previously considered C. apella.
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the same payoff, capuchins preferred to exchange their tokens
with the first experimenter, although—according to a rational
perspective—they should have been indifferent between the two
options. These results demonstrate that, as in humans, they
chose on the basis of an arbitrary reference point (namely, the
initial food amount shown by the two experimenters), therefore
preferring the experimenter which was framing the “trade” as a
gain.

In a subsequent study (Lakshminarayanan et al., 2011),
capuchins were tested with a similar paradigm, presenting them
choices between a risky option and a safe option yielding the
same average payoff (of two food items) but in two conditions: (i)
Losses: both experimenters initially displayed three food items, but
the first experimenter always delivered two food items, whereas
the second experimenter delivered either one or three food items
with equal probability; and (ii) Gains: both experimenters initially
displayed one food item, but the first experimenter always deliv-
ered two food items, whereas the second experimenter delivered
either one or three food items with equal probability. Overall,
capuchins showed a clear-cut evidence of the “reflection effect”
since they were risk-seeking when options were framed as losses,
and risk averse (although to a lesser extent) when options were
framed as gains. Again, decisions appear to be made by subjects
relative to their initial reference point.

In sum, the above findings suggest that humans and capuchin
monkeys share the reflection effect, as is reported with other
behavioral biases (Chen et al., 2006; Lakshminarayanan et al.,
2008). However, a very recent “up-linkage” replication of
Lakshminarayanan et al. (2011), in which adult humans were
tested with exactly the same procedure employed with capuchin
monkeys, failed to find a reflection effect (Silberberg et al., 2013).
Nonetheless, it should be noted that such a replication may have
had a low ecological validity for cognitively sophisticated adult
humans, especially because of the repeated interactions with the
experimenters, which the participants may have found boring or
embarrassing. Future studies should investigate biases in decisions
under risk in closely-related non-human primate species with
different ecologies (Clutton-Brock and Harvey, 1979; Rosati and
Stevens, 2009; Rosati and Hare, 2012) in order to understand
whether these behavioral patterns are maladaptive, suboptimal,
or instead “ecologically rational” (Todd and Gigerenzer, 2000).

RISK ATTITUDES, ENVIRONMENTAL UNCERTAINTY AND
ADDICTIVE BEHAVIOR: PERSPECTIVES FROM
COMPUTATIONAL NEUROSCIENCE AND EVOLUTIONARY
ROBOTICS
Computational models are a new way of doing science which can
be very useful for theorizing about extremely complex systems
like vertebrate organisms and their brains. The usefulness of
computational models comes largely from two factors: (i) they
express hypotheses in a formal, precise, and unambiguous way,
so that from those hypotheses a number of detailed predictions
can be unequivocally derived which can then be tested through
empirical experimentation; (ii) they allow for a degree of direct
manipulation on all relevant variables which is unparallelled by
naturalistic methods.

The vast majority of computational models deal with the nor-
mal functioning of the brain and normal cognitive phenomena,
but since the 1990s a number of models have been proposed
that address psychiatric and neurological disorders, and recently
these models have been raising increasing interest, so that sev-
eral scholars started to discuss the prospects, challenges, and
limitations of computational psychiatry (Maia and Frank, 2011;
Montague et al., 2012; Huys, 2013). There are many ways in which
computational models may help research on decision-making
in general and pathological gambling more in particular. Here,
we will focus on three different kinds of models: (1) normative
(algorithmic) models; (2) neural models; and (3) evolutionary
robotics models.

NORMATIVE (ALGORITHMIC) MODELS
A first class of relevant models is what we can call “normative”
or “algorithmic” models. These models derive from the computa-
tional reinforcement learning literature (Sutton and Barto, 1998)
and are normative because they are based on machine learning
algorithms, which prescribe how an agent should behave in order
to maximize its payoff with future rewards. They became famous
in the mid 1990s when it was discovered that the dynamics of
dopamine, which is highly involved in motivation and learning
(Wise, 2004; Schultz, 2006; Berridge, 2007), as well as in drug
addiction, could be modeled by the reward prediction error signal
postulated in Temporal Difference (TD) reinforcement learning
(Barto, 1995; Schultz et al., 1997). The reward prediction error
of TD learning is a signal that quantifies “surprise”, that is, the
difference between expected and actual rewards, and it is used
in reinforcement learning models as the learning signal that
drives action learning. In a nutshell, the theory holds that an
agent continually evaluates the current states (situations) with
respect to the reward that it expects to achieve in those states.
If it gets more reward than expected, then a prediction error
signal is generated that is used to update both its prediction and
its action policy, that is the way the animal selects its actions.
The idea is that the probability to select an action again, in a
given context, is increased if that action leads to more rewards
than expected and is decreased if it leads to less reward than
expected. Dopamine behaves just as the reward prediction error:
its release is triggered by unexpected rewards or unexpected
stimuli that predict reward but it is not released when the reward
is perfectly predictable and it is inhibited (a deep in dopamine
levels occurs) when an expected reward is omitted. This has led
to conclude with the hypothesis that dopamine plays the same
function of the reward prediction error, within phenomena of
reinforcement. Phasic dopamine release would have the role of
making the agent learn (1) the value (“saliency”) of the stim-
uli and (2) which are the actions (“strategies”) to be deployed
in each circumstance in order to maximize future rewards. In
mammals, these two roles are attributed to mesolimbic vs. nigros-
triatal dopamine pathways, respectively. This theory has guided
an enormous amount of empirical research and has received so
much empirical support that it is now an important tenet of
contemporary neuroscience, and it has become one of the most
successful examples of using computational models in the behav-
ioral and brain sciences (e.g., Montague et al., 2004; Ungless,
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2004; Wise, 2004; Sugrue et al., 2005; Graybiel, 2008; Glimcher,
2011).

What is most interesting for our purposes is that the reward
prediction error hypothesis for dopamine has not only been
used to predict and explain behavioral and brain dynamics in
normal conditions, but also to explain pathological phenomena.
In particular, normative algorithmic models have been used to
interpret brain imaging data related to various mental pathologies
like schizophrenia and depression-related anhedonia (Smith et al.,
2007; Kumar et al., 2008; Murray et al., 2008; Huys et al., 2013).

Moreover, a seminal work by David Redish (2004) used a
TD model to explain drug addiction. In particular, the model
explained addiction as the consequence of the pharmacological
effect that certain drugs of abuse, like amphetamines, cocaine
or nicotine, may have on forebrain dopamine circuits. Indeed,
these drugs are known to increase dopamine levels upon acute
administration. According to Redish’s model, the addictive effect
of these drugs is associated to specific consequences, due to
the dopamine elevation produced by the drug. With natural
rewards, a phasic release of dopamine is present only when
the reward is not predicted, unexpected. In this perspective,
the normal process of reinforcement, produced by any reward,
can be cancelled out by accurate predictions. On the con-
trary, the model postulates that drugs of abuse generate also a
pharmacologically-induced dopamine release, a term that cannot
be compensated by predictions. Since, in this way, the dopamine
prediction error never disappears, as if drug-related pleasure is
always “unexpected”, the subjective values of the drug related
internal states will keep on increasing indefinitely, and the actions
that lead to the drug consumption keep on being reinforced,
hence becoming a strong habit and thus ultimately resulting
in the development of addiction. This model explains several
aspects of addiction including, for example, the fact that both
drugs and natural rewards are sensitive to effort-related cost,
but the reward provided by drugs is much less sensitive than
that given by natural rewards. However, one of the key predic-
tions of the theory has been falsified by subsequent research.
In particular, the theory predicted that drugs should prevent
blocking, i.e., the phenomenon for which a stimulus that pre-
dicts a reward, if paired with a new stimulus before presenting
the reward, prevents the second stimulus to be conditioned as
it stops the learning-inducing dopamine prediction error from
occurring. If a drug always produced a dopamine prediction error,
as postulated by Redish’s model, then the conditioning of the
second stimulus should occur, but it does not (Panlilio et al.,
2007).

Building on this computational interpretation of drug addic-
tion, Redish et al. (2007) proposed a model that provides a
possible explanation of pathological gambling. This model adds
to the basic TD prediction error model, which learns the values
of states and actions, a second “situation recognition” system
that learns to categorize the states. In particular, this system
learns to categorize as different states all those situations in
which, after having received high rewards, those rewards are
not present anymore. Noteworthy, this addition was done to
accommodate in the TD framework basic reinforcement learn-
ing phenomena related to the extinction of behaviors and their

renewal. However, it provides also an explanation of gambling.
Indeed, many pathological gamblers became addict after hav-
ing experienced an unlikely sequence of wins or a single very
high win (Custer, 1984; but see Kassinove and Schare, 2001,
for empirically founded doubts on the strength of this big win
effect). The model assumes that, when the gambler experiences
such a huge success (or the feeling to have almost succeeded,
the so called “near miss” effect; Kassinove and Schare, 2001), he
forms a very strong and unrealistic expectation that he can win
again (or finally; on the similarity in neural processing of wins
and near misses, see Chase and Clark, 2010; Winstanley et al.,
2011). When the gambler starts to loose, instead of unlearning
and cancelling this (false) expectation, by negative reinforcement,
his situation recognition system starts to create new “associative”
states, namely looking for cues that are supposed to distinguish
the winning situation against the loosing ones. Hence, according
to this model, pathological gambling results from a misclassifi-
cation of the situation, with the irrational belief that there are
contingencies in which the gambler can win as different from
those where he looses. This explanation can account also for
two related phenomena: (1) the “hindsight bias” effect, where
gamblers analyze their losses and (post-hoc) identify which are the
cues that differed from the situation when they won, as well as (2)
the “illusion of control” phenomenon, in which they believe that
they can control an otherwise random situation by identifying
and following the right cues that, in their mind, distinguish
winning from losing situations (Custer, 1984; Wagenaar, 1988).
The most common superstitions of pathological gamblers are
thus accounted for.

One limitation of this model is that it tries to explain patho-
logical gambling as a unitary phenomenon with a unique cause,
while it is likely that there might be several different causes
that underlie this complex behavior, both in the same individual
and across different individuals. For example, many pathological
gamblers keep on gambling even if they report knowing that they
will loose, something that is in contrast with the model (but
see the results on cue-induced secondary rewards in rodents and
their potential implications for human gambling, discussed in
Section Assessment of Gambling Proneness: Clinical and Preclin-
ical Approaches). However, the most important limit of this kind
of normative, algorithmic models is that they provide abstract
explanations on what computations may go awry in pathological
conditions, but they do not explain which are the actual brain
mechanisms that may underlie these phenomena: hence the range
of phenomena that they can account for and predict is limited. In
order to investigate the details of the brain processes that are the
basis of the phenomena of study, we need models that simulate
those details. This is the province of neural models.

NEURAL MODELS
Neural models explain a cognitive phenomenon by simulating
(with a variable degree of abstraction) neurons and their con-
nections, and making the simulated neural network reproduce
the phenomenon. The first models of this kind were called
“connectionist” models (McClelland and Rumelhart, 1989): they
included very simple neural networks, which were supposed
to perform computations in a brain-like manner, but whose
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structure was not meant to replicate the structure of real brains.
More recently, much more biologically realistic models have been
developed in computational neuroscience. In these models, dif-
ferent groups of nodes are meant to represent neurons belonging
to different parts of the brain, and the connections between the
different groups correspond to the connections between those
brain areas. The architecture and functioning of the model are
thus based on the anatomy and physiology of the same brain
areas that are known to be relevant for the phenomenon under
study. If the model is able to reproduce the phenomenon, this
would give us a detailed explanation on what brain mechanisms
may be responsible for it. The plausibility of such an explana-
tion rests on two foundations: (i) how many anatomical and
physiological constrains are considered, and how much they are
respected; and (ii) how many different phenomena the model
is able to account for. Furthermore, the model can be used
to derive a number of predictions that can then be tested in
humans as well as animal models, through further empirical
experiments.

To the best of our knowledge, no neural models have been
developed so far to explain pathological gambling, although there
is evidence of a role of midbrain dopamine in the coding of
reward uncertainty (Fiorillo et al., 2003), thus suggesting an
influence of the dopaminergic system on risk-taking behavior.
On the other hand, several models, both connectionist (e.g.,
Cohen and Servan-Schreiber, 1992; Cohen et al., 1996; Braver
et al., 1999) and biologically detailed ones (Frank et al., 2004,
2007a,b,c; Gutkin et al., 2006; Waltz et al., 2007; Rolls et al., 2008;
Ahmed et al., 2009; Maia and Frank, 2011), have been developed
to describe neurological and psychiatric pathologies, including
schizophrenia, Parkinson, Tourette’s syndrome, ADHD, and drug
addiction. Briefly reviewing these existing models can provide
useful suggestions on how to apply the same methods to the
investigation of pathological gambling.

Most of these models deal with the dopaminergic system
and its interactions with the basal-ganglia-thalamo-cortical cir-
cuits that implement action selection. A notable example is the
work of Frank and colleagues on modeling several aspects of
Parkinson disease (e.g., Frank et al., 2004, 2007a; Moustafa et al.,
2008). Parkinson disease is known to depend on the degener-
ation of nigro-striatal dopamine cells. This work is based on
a detailed model of the basal ganglia-thalamo-cortical circuit
that is assumed to implement action selection and reinforcement
learning (e.g., Frank et al., 2001). The main idea behind the model
is that two sub-systems, a Go and a no-Go system, are present
in the basal ganglia, which together implement action selection.
In particular, neurons in the basal ganglia are supposed to allow
the release of actions in the cortex by selectively disinhibiting
a certain action (through the Go system) while inhibiting the
others (through the no-Go system). Furthermore, a third struc-
ture of the basal ganglia (the subthalamic nucleus) is supposed
to dynamically exert a global inhibitory role and to modulate
the threshold at which actions are selected depending on the
level of cortical conflict. Importantly, neurons belonging to the
different systems have different dopamine receptors distributions,
with Go neurons having receptors which make dopamine excite
the neuron and no-Go neurons that have receptors which make

dopamine inhibit the neuron. Through such a model, Frank
and colleagues have been able to reproduce and explain a num-
ber of detailed behavioral and neural data, and to predict new
data that have been empirically verified, such as the effects of
dopaminergic medication and of deep brain stimulation of the
subthalamic nucleus (a procedure that is known to improve
motor symptoms) on different cognitive tasks in Parkinson
patients (Frank et al., 2007a), and why medication can lead
those patients to develop pathological gambling (Dodd et al.,
2005).

In order to explain other facets of this complex behavior and
its neural basis, many more details should be added to these
models. For example, pathological gambling is known to be
associated with dysfunction not only of dopamine, but also of
other neuromodulators like serotonin (e.g., Nordin and Eklundh,
1999) and noradrenaline (e.g., Meyer et al., 2004). For this reason,
the role of these two neuromodulators should be modeled in
future research, possibly by incorporating findings from other
computational models that deal with the interactions between
these neuro-modulators and dopamine (e.g., Daw et al., 2002).
Furthermore, beyond the anomalies in the basal-ganglia and in
associated fronto-cortical areas, recent evidence suggests that also
deficits in amygdala functioning may be responsible for gambling
behavior by significantly reducing loss aversion (De Martino
et al., 2010). For this reason, modeling pathological gambling may
require modeling the interactions between the amygdala and the
basal-ganglia, as done in recent neuro-robotic models of the role
of amygdala in conditioning (Mannella et al., 2007, 2008, 2010;
Mirolli et al., 2010).

Finally, also factors related to intrinsic motivations (i.e., moti-
vations related to novelty, surprise, and competence acquisition:
Ryan and Deci, 2000; Baldassarre and Mirolli, 2013) may play a
role in pathological gambling. For example, Parkinson patients
that develop pathological gambling are distinguished from those
that do not in tests that measure impulsivity and novelty seeking
(Voon et al., 2007). Recent computational models assume that
intrinsic motivations work by hijacking the neural brain systems
that underlie also extrinsic motivations, and in particular the
dopaminergic system and the action selection system in the basal-
ganglia (e.g., Kakade and Dayan, 2002; Mirolli et al., 2013). Some
of these models are detailed neural models very similar to the
ones discussed above on dopamine in Parkinson, including basal-
ganglia-thalamo-cortical circuits, the dopaminergic system, and
other relevant areas (e.g., Baldassarre et al., 2013; Fiore et al.,
2014). Merging the two kinds of models may be a promising
way to further understand the brain mechanisms underlying
pathological gambling.

EVOLUTIONARY ROBOTICS MODELS
Evolutionary robotics provide a valuable platform to test evolu-
tionary hypotheses on the ecological pressures behind the emer-
gence of specific behaviors and traits. Such hypotheses, like those
already discussed in Sections Rodents as an Animal Model of
Gambling Behavior and Risky Choices in Nonhuman Primates:
Implications for Human Pathological Gambling with respect to
risk attitudes, are often plausible, but also hard to verify directly.
They rely on key assumptions about the environment in which
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the evolution of a given species occurred, and yet it is typically
hard to observe with precision the effects of a given ecological
variable (e.g., dangers of predation) on the behavior under study
(e.g., risk proneness/aversion). Moreover, these assumptions refer
to ancestral environments, not present-day ecologies: while there
are methods to acquire data on living conditions in ancestral times
(e.g., through paleobiology and primate archeology; Haslam et al.,
2009), they are bound to deliver incomplete information at best,
in spite of substantial research efforts. Recent work has demon-
strated the viability and fruitfulness of computational methods,
e.g., experimental evolutionary robotics: the basic idea is to let
populations of simulated robots evolve under specific ecolog-
ical pressures, and then observe their behavior with the aim
of drawing implications for the understanding of processes in
natural organisms faced by similar, uncertainty-based tasks (Da
Rold et al., 2011; Saglimbeni and Parisi, 2011). This approach
allows to observe how several forms of risk introduced in the
evolutionary environment affect choice behavior, both in ecology
and in experimental settings.

Moreover, robots are controlled by simple neural networks,
whose evolution and effects on behavior can be studied with
extreme precision and flexibility: not only recording their activ-
ity during behavior, but also “lesioning” a well-adapted neural
network and observing the impact on risk-related choices, hence
drawing new insights into pathological gambling. These are all key
advantages of computational evolutionary models, as opposed
to purely mathematical and game-theoretical approaches, for
putting forward hypotheses regarding the evolution of cer-
tain aspects of risk attitudes in uncertain environments (e.g.,
McNamara et al., 2013). While mathematical and theoretical
models certainly provide valuable contributions to breach the
gap between laboratory studies and ecological observations, they
lack the opportunities for direct manipulation and experimental
observation granted instead by robotics platforms, be they purely
simulated or physically implemented.

To the best of our knowledge, no evolutionary (computa-
tional) model of pathological gambling have yet been proposed.
However, there are several interesting simulations on how risk
attitudes in general might have evolved: some of these works have
already important implications for our understanding of gam-
bling behavior, and points towards promising research directions.
For instance, Niv et al. (2002) used evolutionary computation
techniques to evolve near-optimal neuronal learning rules in
a simple neural network model of reinforcement learning in
bumblebees foraging for nectar. This resulted in a replication of
two well-documented choice strategies in these animals: risk aver-
sion and probability matching. Moreover, risk aversion evolved
even in a completely risk-less environment. These results sug-
gest that risk-aversion may be a direct consequence of near-
optimal reinforcement learning, with no need to assume further
evolutionary constraints, such as the existence of a nonlin-
ear subjective utility function for rewards. Their results were
also demonstrated in real-world situations, using experiments
in a Kephera wheeled robot, and they dovetail nicely with the
evidence on the role of the reward prediction error in determining
various choice behaviors (see Section Normative (Algorithmic)
Models).

Other models do not explicitly focus on any particular species,
but rather try to address general issues pertaining the evolu-
tion of risk attitudes. Arbilly et al. (2011) used agent-based
evolutionary simulations to investigate an important connection
between environmental features, risk-aversion, and the evolution
of social learning. They started from the observation that, in
environments with significant risks associated to higher value
rewards (e.g., an ecology in which the most valuable food is rare
and difficult to obtain), the possibility of acquiring such rewards
is most likely to require a certain number of failed attempts,
before success is achieved. In these circumstances, risk-aversion
would lead to neglect such rewards, even if doing so may be
sub-optimal in the long run (Real, 1991). However, Arbilly and
colleagues noted that this situation also create an important (and
often overlooked) evolutionary advantage to social learning over
individual learning, since social learners can by-pass the problem
of risk aversion by learning where to forage from individuals
that have already found food. The results of their evolutionary
simulations, which combined a producer–scrounger game with
explicit individual and social learning rules for associating dif-
ferent food patch types with experienced reward, confirmed the
key role of social learning in similar situations, as an antidote
to the adverse effects of risk-aversion in this type of environ-
ment. Incidentally, this also provides an explanation to why many
species, humans included, continue to rely heavily on social
learning even when it produces disastrous effects, e.g., in escape
panic scenarios (Helbing et al., 2000). And it also illustrates
how this reliance on social learning can be used to produce
“contagious gambling”: this is precisely what happens when con-
artists and casinos employ confederates who (falsely) win huge
sums, in order to lure unsuspecting potential gamblers into the
game.

While the number of computational evolutionary models
of risk attitudes is still too limited to permit any universal
conclusions on the evolution of this complex suite of behav-
iors, some important methodological implications stand out,
and are worth noticing. This methodology has in fact both
advantages and limitations, but what matters is that they tend
to be complementary to those exhibited by naturalistic meth-
ods. Thus, integrating evolutionary simulations with naturalis-
tic studies has the potential for huge scientific payoffs. With
respect to experimental evolutionary robotics (Da Rold et al.,
2011; Saglimbeni and Parisi, 2011), advantages of this method
include the following ones. First, full observability means that
robots’ behavior can be observed in extreme detail both “in
the wild” (i.e., in the ecological setting where robots evolve),
and “in the lab” (i.e., under specific test conditions). Second,
there is full control, meaning that all variables can be easily and
precisely manipulated, regarding both ecology and test condi-
tions, including the possibility of “counterfactual experiments”
(that is, studying how ecological pressures for which no natural
correlate is known might affect behavior). Third, there is neu-
rocomputational transparency, in that also the internal dynam-
ics of the robots’ control system (e.g., a neural network) are
precisely measured (which is not entirely the case for natural,
alive organisms). Fourth, individual differences emerge, since
robots differ in how they cope with their ecology and in their
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level of proficiency (also, opening the way to the study of arti-
ficial pathologies). Interestingly, non-deterministic responses are
present, since evolutionary robots are typically responding in a
non-deterministic way, with respect to external stimuli, facili-
tating comparison with natural, alive organisms (who also do
not react always in the same way to identical inputs from the
environment). Finally, a potential exists for embodied implemen-
tation, since simulated robots are based on simulators of real
physical platforms, thus allowing easy implementation in real-
world scenarios.

In contrast, the method is mostly vulnerable to the follow-
ing problems and limitations. First, abstraction, since both the
ecology and the artificial laboratory are much simpler than most
natural counterparts (and the same is true for the structure of
the robot’s body and its control system). Second, there is much
arbitrariness, since a huge variety of parameters needs to be set
by the experimenter, concerning both the ecology, the robot’s
structure, and the test conditions (and these are likely to have
some impact on the resulting behavior). Last, there is need
to start small; however, given the number of variables directly
controlled by the experimenter and the amount of data obtained,
a scalar approach is unavoidable (to understand the results).
As mentioned, however, most of these drawbacks can be easily
overcome, by allying computational evolutionary models with
naturalistic studies (see Sections Risky Choices in Nonhuman Pri-
mates: Implications for Human Pathological Gambling and Risk
Attitudes, Environmental Uncertainty and Addictive Behavior:
Perspectives from Computational Neuroscience and Evolutionary
Robotics).

CONCLUSIONS
In this review, we first discussed how the development of
refined operant protocols, to reproduce and to evaluate the gam-
bling proneness phenotype in animal models, is fundamental
to increase our understanding of the neurobiological determi-
nants underlying the etiology of pathological gambling and/or
to develop new treatment strategies. Then, we surveyed the role
of comparative studies on choice behavior in other species, in
particular in nonhuman primates, for informing us on the evolu-
tionary origins and cognitive underpinnings of human attitudes
towards risk and uncertainty. Finally, we summarized various
ways in which computational models can be of assistance in
the study of gambling behaviors: while results in this area are
still preliminary, we were able to point out several substantial
indications originated from combining naturalistic observations
and artificial modeling.

Reviewing such diverse studies together is meant to impact
on the methodology of future gambling research: while look-
ing at each of these three rich areas of research in isolation
is certainly useful, the potential emerging benefits are only
compounded by integrating all these methods together. What
one learns from an animal model (about the neurobiological
underpinnings of pathological gambling) should immediately
be verified via computational techniques, and the further
predictions generated by that computational model should be
tested empirically in natural, alive organisms. Similarly, any
evolutionary hypothesis on what adaptive pressures shaped risk

attitudes, and generated (possibly as a by-product) gambling
behavior, should be verified via computational evolutionary mod-
els, which in turn should be informed by naturalistic data coming
from ethological studies. Only by bringing to the table both
human and nonhuman gamblers, we shall understand what
makes us so vulnerable to such a self-destructive behavioral
pattern.
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In problem gamblers, diminished cognitive control and increased impulsivity is present
compared to healthy controls. Moreover, impulsivity has been found to be a vulnerability
marker for the development of pathological gambling (PG) and problem gambling (PrG) and
to be a predictor of relapse. In this review, the most recent findings on functioning of the
brain circuitry relating to impulsivity and cognitive control in PG and PrG are discussed.
Diminished functioning of several prefrontal areas and of the anterior cingulate cortex
(ACC) indicate that cognitive-control related brain circuitry functions are diminished in PG
and PrG compared to healthy controls. From the available cue reactivity studies on PG and
PrG, increased responsiveness towards gambling stimuli in fronto-striatal reward circuitry
and brain areas related to attentional processing is present compared to healthy controls.
At this point it is unresolved whether PG is associated with hyper- or hypo-activity in the
reward circuitry in response to monetary cues. More research is needed to elucidate
the complex interactions for reward responsivity in different stages of gambling and
across different types of reward. Conflicting findings from basic neuroscience studies are
integrated in the context of recent neurobiological addiction models. Neuroscience studies
on the interface between cognitive control and motivational processing are discussed in
light of current addiction theories.

Clinical implications: We suggest that innovation in PG therapy should focus on
improvement of dysfunctional cognitive control and/or motivational functions. The
implementation of novel treatment methods like neuromodulation, cognitive training and
pharmacological interventions as add-on therapies to standard treatment in PG and PrG,
in combination with the study of their effects on brain-behavior mechanisms could prove
an important clinical step forward towards personalizing and improving treatment results
in PG.

Keywords: pathological gambling, disordered gambling, reward sensitivity, impulsivity, cue reactivity, response
inhibition, review, addictive behaviors

GAMBLING, COGNITIVE CONTROL, AND IMPULSIVITY: ON
GAMBLING AND THE CONCEPT OF SELF-CONTROL
Pathological gambling (PG) has a relatively stable prevalence in
western countries, with estimations ranging from 1.4% (lifetime
prevalence) in the USA, to 2% in Canada (Welte et al., 2002;
Cox et al., 2005). Prevalence rates are comparable and relatively
stable between countries and across survey instruments (Stucki
and Rihs-Middel, 2007), with a cumulative rate around 3% for
PG and problem gambling (PrG) together.

Diminished cognitive control over the urge to engage in
addictive behaviors is a central characteristic of PG. It is central
to the phenomenology of PG as defined in several of the diagnostic
criteria of PG (e.g., unsuccessful efforts to control, cut back,
or stop gambling). Defined from a neurocognitive perspective,
the overarching notion of cognitive control can be defined as

the ability to control one’s actions. Cognitive control can be
divided in several (sub) processes such as the ability to inhibit
automatic responses (referred to as response inhibition, measured
by tasks like the stop signal task) and the ability to ignore irrele-
vant interfering information (referred to as cognitive interference
measured by tasks such as the Stroop task). In terms of the
verbal representation of cognitive control, the term “impulsivity”
is used regularly, to indicate a tendency to act on a whim, to
display behavior that is characterized by little or no forethought,
reflection, or consideration of the consequences (Daruna and
Barnes, 1993). Impulsivity is a multi-faceted construct that often
is deconstructed into the concept of “impulsive action”, charac-
terized by diminished motor inhibition and “impulsive choice”,
represented by a propensity to favor immediate rewards over
delayed, larger, or more beneficial rewards in decision-making

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 141 | 40

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/editorialboard
http://www.frontiersin.org/Behavioral_Neuroscience/about
http://www.frontiersin.org/Journal/10.3389/fnbeh.2014.00141/abstract
http://www.frontiersin.org/Journal/10.3389/fnbeh.2014.00141/abstract
http://community.frontiersin.org/people/u/75524
http://community.frontiersin.org/people/u/45197
http://community.frontiersin.org/people/u/130152
mailto:agoudriaan@gmail.com
http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Goudriaan et al. Getting a grip on problem gambling

processes (Lane et al., 2003; Reynolds, 2006; Reynolds et al.,
2006; Broos et al., 2012). Impaired response inhibition is thought
to predispose for impulsive behavior, and diminished cognitive
control has been implicated as an endophenotypic vulnerability
marker for addictive disorders in recent years.

Numerous self-report and neurocognitive studies in PG indi-
cate increased impulsivity on measures such as the Barratt Impul-
siveness Scale, or Eysenck’s and Impulsiveness Questionnaire
(Eysenck et al., 1985) and diminished cognitive control as evi-
denced in diminished response inhibition, cognitive interference,
and delay discounting tasks (for reviews see: Goudriaan et al.,
2004; Verdejo-Garcia et al., 2008; van Holst et al., 2010a,b).
Clinically, the diminished control over one’s own behavior could
lead to a higher vulnerability to develop PrG or PG, since for
instance a diminished control to inhibit responses (response
inhibition) could be associated with a more fast progression into
PrG due to the diminished ability to stop gambling when one’s
money runs out. Similarly, a diminished cognitive interference
ability could lead to a diminished ability to ignore cues for
gambling in the environment. For example, experiencing high
cognitive interference could lead to a higher responsivity towards
gambling advertisements, which could lead to a higher likelihood
of engaging in gambling, whereas diminished cognitive control
could result in diminished ability to stop gambling despite high
losses.

Several reviews have already been published with a focus on
cognitive control or impulsivity studies in PG (van Holst et al.,
2010a,b; Conversano et al., 2012; Leeman and Potenza, 2012).
This review therefore focuses on more recent neurocognitive and
neuroimaging studies that have been published in PG and PrG.
Specifically, this review also focuses on neuroimaging studies
of motivational aspects (e.g., cue reactivity), cognitive functions
(e.g., impulsivity), and on neuroimaging studies addressing the
interaction between cognitive and motivational processes.

Whereas a clear definition of PG is present, fulfillment of the
(usually latest version of the) DSM diagnostic criteria for PG,
there is no clear definition for PrG. Usually, PrG refers to a less
severe form of PG, or is used when no clinical diagnosis can be
determined, due to the administration of questionnaires instead
of structured clinical interviews. Some studies define PrG by a
score of 5 or higher on the South Oaks Gambling Screen (SOGS)
or by a score of 3 or higher on a short version of the SOGS (Slutske
et al., 2005). In other studies gamblers who are in treatment for
problematic gambling, and fulfill up to four criteria of the PG
criteria, are defined as problem gamblers (Scherrer et al., 2005), or
the entire studied group is defined as “problem gamblers” when
not all of the participants who are in treatment fulfill five or more
of the PG criteria (e.g., de Ruiter et al., 2012). In this review
therefore, PrG is used, when no information is given on DSM
diagnosis of PG, but when questionnaire data indicate that PrG
is present.

As concluded in Conversano et al. (2012), several studies
indicate diminished cognitive control in PG as evidenced in stop-
signal tasks, Go-NoGo tasks, and also in Stroop task performance.
Ledgerwood et al. (2012) however assessed response inhibition
with a Stroop and stop signal task, and reported no differences
between pathological gamblers and controls on these tasks, but

differences were present in planning tasks (Tower of London) and
in cognitive flexibility (Wisconsin Card Sorting Test). As the sam-
ple included both community-recruited pathological gamblers
(not in treatment) and treatment-seeking pathological gamblers,
differences with other studies may be related to a less severe
cognitive profile in non-treatment seeking pathological gamblers.
Indeed, in another study by the same group lower impulsivity
scores (Barratt impulsivity Scale), lower past-year illegal behav-
iors, lower depression and dysthymic disorders, and lower pre-
occupation with gambling were present in community-recruited
pathological gamblers vs. pathological gamblers in treatment
(Knezevic and Ledgerwood, 2012).

Despite the number of neuropsychological studies indicating
diminished cognitive control, the number of neuroimaging stud-
ies focusing on the neural mechanisms underlying diminished
cognitive control is very limited and therefore all neuroimag-
ing studies on cognitive control are discussed here. In a study
by Potenza et al. a Stroop task was administered in an fMRI
study in 14 pathological gamblers and 13 healthy controls (HCs)
(Potenza et al., 2003a). Diminished BOLD responsivity in the
left ventromedial PFC and in the superior OFC was reported
in pathological gamblers compared to HCs, despite a lack of
behavioral differences. This lack of behavioral differences may
have been related to the modified version of the Stroop that was
used: silent naming of the colors of the letters and behavioral
performance measured by self-report of the participants after
performing the Stroop task. In a recent study by de Ruiter et al.
(2012), diminished neural responsivity after failed inhibitions
was found in the anterior cingulate cortex (ACC) in 17 problem
gamblers compared to 17 HCs. Of note, reduced activity was
also observed following successful inhibitions in similar regions
(right dorso-medial PFC bordering on ACC) HCs. In this study—
similar to the study by Potenza et al.—no behavioral differences
were found for the PrG group compared to the HCs, which may
be related to power issues due to the smaller sample sizes of fMRI
studies in PrG and PG compared to neuropsychological studies.
Both these fMRI studies on cognitive control in PG and PrG
show that diminished functioning of several prefrontal areas and
of the ACC indicate that cognitive-control related brain circuitry
functions are diminished in PG and PrG compared to HCs. These
results implicate that diminished frontal functions may contribute
to the pathophysiology of PG and PrG, in which diminished
control over gambling behavior is central.

Another line of studies shows that impulsivity also plays an
important role as vulnerability factor for the development of
PrG. Several longitudinal studies in adolescents and adults from
a research group from Montreal in Canada show that level of
impulsivity is a predictor of both gambling and of PrG (Vitaro
et al., 1997, 1999; Wanner et al., 2009; Dussault et al., 2011).
Specifically, increasing impulsivity levels were associated with
higher levels of PrG (Vitaro et al., 1997). In one of the more
recent studies, a positive predictive link between impulsivity at
age 14 and depressive symptoms and gambling problems at age
17 was present (Dussault et al., 2011). In another study using two
male community samples, behavioral disinhibition and deviant
peers were related to PrG, but also to substance use and delin-
quency, indicating similar risk factors for vulnerability to several
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externalizing problem behaviors (Wanner et al., 2009). These
studies focused on adolescents and the predictive role of impulsiv-
ity for PrG; very recently two large-scale longitudinal birth cohort
studies, investigated the role of impulsivity in early childhood
and PrG during adulthood. In one of these studies (Shenassa
et al., 2012), psychologists rated impulsive and shy/depressed
behaviors at age 7, and related this to life-time self-reported PrG
as adults, in a follow-up. Whereas impulsive behavior at age 7
predicted PrG, shy/depressed behavior did not predict PrG in
adulthood, in this US based cohort of 958 offspring from the
Collaborative Perinatal Project. In a large birth cohort study from
Dunedin, New Zealand, temperament was assessed at age 3, and
disordered gambling was assessed in this cohort when aged 21
and 32. Remarkably, children with (behaviorally and emotionally)
undercontrolled temperament when aged 3 years, were more than
twice as likely to evidence disordered gambling in adulthood,
compared to children who were well-adjusted at age 3. This
relationship was even stronger in boys compared to girls (Slutske
et al., 2012). Several other studies show that impulsivity is also a
vulnerability marker for engaging in gambling (Pagani et al., 2009;
Vitaro and Wanner, 2011).

In conclusion, from this line of studies, there is strong evi-
dence that impulsivity and diminished behavioral control play an
important promoting role from the engagement in gambling to
the development and persistence of at-risk gambling and PrG.

Given this crucial role of cognitive control in promoting
gambling and PrG, evidenced from the birth cohort studies,
neurocognitive studies, more neuroimaging studies in PrG and
PG should focus on cognitive control, in order to illucidate what
neurophysiological mechanisms may underly diminished cogni-
tive control in problematic gambling. Thus, studying interactions
between (novel) psychological, pharmacological, or neuromodu-
lation interventions in PG, and their effect on the neurocircuitry
of cognitive control in PG, is a very relevant venue for future
neuroimaging and clinical intervention studies in PG (detailed in
the Discussion section).

RIGHT ON CUE? CUE-REACTIVITY STUDIES IN PROBLEM
GAMBLING
Compared to the small number of neuroimaging studies on
cognitive control or impulsivity in PG and PrG, the topic of
the neural mechanisms of cue-reactivity in PG and PrG is rela-
tively well-studied. Five neuroimaging studies on cue-reactivity
in PG and PrG (Potenza et al., 2003b; Crockford et al., 2005;
Goudriaan et al., 2010; Miedl et al., 2010; Wölfling et al., 2011)
and several studies focusing on cue reactivity relating to subjective
craving and/or peripheral physiological responses in PrGs are
present (Freidenberg et al., 2002; Kushner et al., 2007; Sodano
and Wulfert, 2010). For the purpose of this review, we focus on
the neuroimaging findings.

Of the five neuroimaging studies in PG and PrG related to cue
reactivity, the first (Potenza et al., 2003b) used a cue reactivity
paradigm consisting of videos designed to evoke emotional and
motivational antecedents to gambling. In these videos, actors
mimicked emotional situations (e.g., happy, sad), after which
the actor described driving to or walking through a casino and
experiencing the feeling of gambling. In this study, timeframes in

which the participants experienced craving were analyzed for 10
pathological gamblers compared to eleven HCs. In all cases, this
was before actual gambling cues were present and in response to
the actors’ descriptions of the emotional situation (i.e., gambling
scenarios). Less activation in the cingulate gyrus, (orbito) frontal
cortex (OFC), caudate, basal ganglia, and thalamic areas was
present in the 10 pathological gamblers compared to the 11 HCs.
In another study using gambling-related videos to elicit cue-
reactivity, 10 pathological gamblers and 10 HCs were compared
on brain responsivity to these gambling-related videos compared
to watching nature-related videos (Crockford et al., 2005). Higher
activation in dorsal prefrontal areas, inferior frontal areas, the
parahippocampal areas, and occipital lobe was found in patho-
logical gamblers compared to HCs. In a subsequent fMRI cue-
reactivity study, Goudriaan et al. (2010) found elevated activity of
similar regions when comparing 17 pathological gamblers vs. 17
HCs using gambling-related and gambling unrelated photos. In
this last study, a positive relationship was found between subjec-
tive craving for gambling in pathological gamblers and activity of
the frontal and parahippocampal regions when viewing gambling
pictures vs. neutral pictures. In an EEG study by Wölfling et al.
(2011), 15 pathological gamblers were compared to 15 HCs
on EEG responsivity to gambling pictures compared to neutral,
positive and negative emotional pictures. Compared to HCs,
pathological gamblers showed significantly larger late positive
potentials (LPPs) induced by gambling stimuli when compared to
neutral stimuli, but displayed comparable LPPs towards negative
and positive emotional pictures. In contrast, in HCs there was a
larger response towards positive and negative stimuli compared
to both neutral and gambling stimuli. Higher LPPs were present
in the parietal, central, and frontal electrodes in PGs compared to
HCs, interpreted as a higher overall psychophysiological respon-
sivity towards gambling stimuli in pathological gamblers.

Finally, in an fMRI study comparing brain responsivity
towards high-risk vs. low-risk gambling situations in 12 problem
gamblers vs. 12 HCs, problem gamblers showed an increased
BOLD response in thalamic, inferior frontal, and superior tem-
poral regions during high-risk trials, whereas a signal decrease
in these regions during low-risk trials was present. The oppo-
site pattern was observed in the non-problem gamblers (Miedl
et al., 2010). The authors argue that this frontal-parietal activa-
tion pattern during high-risk trials compared to low-risk trials
in problem gamblers reflects a cue-induced addiction memory
network, triggered by gambling-related cues. The findings of
this study implicate that high-risk wagers may be attractive to
problem gamblers, eliciting cue-reactivity and craving, whereas
low-risk wagers, representing a high chance to win a smaller
amount of money may elicit higher reward expectations in non-
problem gamblers. A possible interpretation of the diminished
responsiveness to low-risk wagers in the problem gamblers, may
be that this is due to a diminished reward sensitivity due to a
blunted brain response to low-risk monetary rewards.

When summarizing the neuroimaging studies on cue-
reactivity in PG and PrG, a convergent picture emerges regarding
the studies that employ gambling pictures or gambling movies—
in which actual gambling scenes are included. In these studies,
increased responsiveness in fronto-striatal reward circuitry and
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brain areas related to attentional processing towards gambling
stimuli is present in pathological gamblers/problem gamblers
compared to HCs (Crockford et al., 2005; Goudriaan et al.,
2010; Miedl et al., 2010; Wölfling et al., 2011). In contrast, in
the one study employing stress-provoking situations, followed by
verbal descriptions of wanting to engage in gambling, diminished
responsiveness in fronto-striatal circuitry was found (Potenza
et al., 2003b). These findings imply that cue-reactivity elicited
by gambling stimuli engages reward- and motivation related
circuitry thus potentially enhancing the chance of engaging in
gambling. On the other hand, negative mood states induced by
stressful situations may induce a relatively diminished activity in
the same reward- and motivation related circuitry in pathological
gamblers, which in turn may elicit craving for gambling, in order
to relieve this depletion in reward experience (or anhedonia).
The one finding of diminished fronto-striatal reactivity (Potenza
et al., 2003b) relates to the “allostatic” negative emotional state
(e.g., dysphoria, anxiety, irritability) reflecting a motivational
withdrawal syndrome state as hypothesized by Koob and Le Moal
and as recently integrated in a review by Koob and Volkow
(2010). The remainder of the neuroimging findings in response
to gambling cues relate to the preoccupation and anticipation of
engaging in addictive behavior, characterized by craving. Thus,
both increased responsivity in the brain’s reward system to gam-
bling cues as well as decreased responsivity of the reward system
to stress-provoking cues in anticipation of gambling could lead
to craving and (relapse in) gambling. This combination is also
consistent with a behavioral study by Kushner et al. (2007), in
which diminished cue reactivity was reported after negative mood
induction.

Together, these cue-reactivity studies and addiction theories
indicate that an important area to investigate in PG and PrG is
the link between positive mood states and negative mood states/
stress reactivity, and both craving for gambling and gambling
behavior. From the studies comparing gambling stimuli to neutral
stimuli, increased frontal-striatal reactivity relating to increased
cue-reactivity is evident. However, the role of the amygdala and
negative emotional mood states (i.e., as a “motivational with-
drawal syndrome”) in inducing craving and relapse in PG and PrG
should receive additional research attention.

The “withdrawal/negative affect” part of the addiction cycle,
which consists of re-engagement in addictive behaviors due to
withdrawal effects or negative affect, in order to diminish with-
drawal and/or negative affect (Koob and Volkow, 2010) can be
linked to the emotionally vulnerable problem gambler, one of the
three subtypes of problem gamblers, as proposed by Blaszczynski
and Nower (2002) and characterized by stress reactivity and
negative mood as a pathway to PrG (Blaszczynski and Nower,
2002). The “preoccupation/anticipation” part of the addiction
cycle, which is characterized by enhanced attention and cue-
reacitivity towards addiction-relevant cues, links to the “antiso-
cial, impulsivist” subgroup of problem gamblers as defined by
Blaszczynski and Nower (2002). They describe the latter subgroup
of problem gamblers as characterized by higher impulsivity, and
clinical impulsive behaviors such as ADHD and substance abuse,
which promote and fasten processes of classical and operant
conditioning in developing PrG (Blaszczynski and Nower, 2002).

So far, these three subtypes of pathological gamblers have hardly
been studied empirically: Ledgerwood and Petry investigated
these three gambling subtypes within a group of 229 patholog-
ical gamblers, which were based on self-report questionnaires.
Although the subtypes differed on PrG severity, subtyping did
not predict a differential treatment response. Several behavioral
studies indicate differences between problem gamblers and HCs
in stress reactivity. For instance, in a recent study (Steinberg et al.,
2011), uncontrollable noise (stress induction) led to diminished
craving for gambling in problem gamblers, whereas it increased
craving for alcohol use in problem gamblers, alcohol use disor-
dered participants and HCs. This finding, although in a small
sample (12 participants in each clinical group), indicates that
differential changes in craving for different addictive behaviors
may result from stress (here: gambling vs. alcohol use). In a self-
report study (Elman et al., 2010) the only measure positively
related to gambling urges in problem gamblers was a daily stress
inventory, indicating a positive relation between stress and craving
for gambling. Interestingly, in a recent pilot-study with a phar-
macological challenge with yohimbine, significant left amygdala
activation in response to yohimbine across all four PG subjects
was observed, whereas this effect was not present in the five
HCs, suggesting pharmacologically induced stress sensitization
in the brain of pathological gamblers. Thus, studies focusing
on the relation between stress reactivity and gambling cues,
gambling urges, and gambling behavior are needed, in order
to elucidate the etiology of both the withdrawal/negative affect
(stress reactivity) and the motivation/anticipation (cue reactivity)
part of the addiction cycle in PG and PrG. Based on the results
of these behavioral and physiological studies, and the negative
finding from the one study focusing on the three subtypes of
pathological gamblers (Ledgerwood and Petry, 2010), it is clear
that more (neuro)biological research is needed into subtyping of
PG. It may well be that one problem gambler subtype is iden-
tified for whom gambling urges emerge through negative affect
(with amygdala circuit abnormalities as a neural mechanism)
and another problem gambler subtype where gambling urges
emerge through gambling cues (with a hyperactive orbitofronto-
striatal circuitry as underlying neural mechanism). This subtyp-
ing of pathological gamblers based on endophenotype (negative
affect/stress reactivity vs. positive affect/gambling cue reactivity)
could then be compared to the three subtypes as defined by Nower
and Blaszczynski (2010): behaviorally conditioned, emotionally
vulnerable and antisocial-impulsive.

Although a minimal number of neuroscience studies on stress
reactivity in PG and PrG exist, a related issue is the presence of
either increased or decreased reward sensitivity in neuroimaging
studies in PG and PrG, and these studies will be discussed next.

EXCESSIVE OR DIMINISHED REWARD SENSITIVITY IN
PROBLEM GAMBLING: IS IT ALL IN THE GAME OR ALL IN
THE MONEY?
A popular hypothesis of addiction is that substance dependent
persons suffer from a reward deficiency syndrome, which makes
them pursue strong reinforcers (i.e., drugs) to overcome this
deficiency (Comings and Blum, 2000). The first fMRI studies in
PG focusing on reward processing have reported results consistent
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with such decreased reward sensitivity. For example, in response
to monetary gains compared to monetary losses pathological
gamblers showed blunted activation of the ventral striatum and
ventral prefrontal cortex (Reuter et al., 2005). Similarly attenuated
activation of ventral prefrontal cortices was present in with a
cognitive switching paradigm where problem gamblers could win
or lose money dependent on their performance (de Ruiter et al.,
2009).

Recently, more detailed studies investigating different phases
of reward processing have been conducted. Using a modified
monetary incentive delay (MID) task (Knutson et al., 2000)
in which subjects have to make speeded responses to acquire
points/money or to prevent losing points/money, pathological
gamblers showed attenuated ventral striatal responses during
reward anticipation as well as in response to monetary wins
(Balodis et al., 2012; Choi et al., 2012). Whereas results from these
two studies are consistent with the reward deficiency hypothesis,
other fMRI studies have found increased responses in anticipation
of reward or after receiving rewards in fronto-striatal reward
related brain areas.

For instance, using a probabilistic choice game to model antic-
ipatory processing, pathological gamblers showed greater dorsal
striatum activity during anticipation of large rewards compared to
small rewards (van Holst et al., 2012c). In addition, pathological
gamblers compared to controls showed higher activity in the
dorsal striatum and OFC for gain-related expected value. Hyper-
reactivity after receiving monetary rewards in high risk bets was
also found in the medial frontal cortex with an ERP study using
a black jack task (Hewig et al., 2010). In a fMRI study by Miedl
et al. (2012) subjective value coding for delay discounting and
probability discounting in pathological gamblers and HCs was
investigated. The subjective value for each task was computed
for each participant individually and correlated with brain activ-
ity in the ventral striatum. Compared to controls, pathological
gamblers showed a greater subjective value representation in the
ventral striatum on a delay discounting task, but a reduced sub-
jective value representation during the probabilistic discounting
task. This indicates that pathological gamblers evaluate values and
probabilities differently than controls. These results suggest that
abnormal choice behavior with regard to future delayed rewards
in problem gamblers could be related to different value coding.

At this point it is unresolved whether PG is associated with
hyper- or hypo-activity in the reward circuitry in response
to monetary cues, a similar issue that consists in the sub-
stance dependence literature (Hommer et al., 2011). Several
methodological issues could explain the hyper- or hypo-activity
findings in the reward circuitry found in the above mentioned
studies. For example, in the MID task subjects have to respond
as quickly as possible to a target to obtain a reward whereas in the
task used by van Holst et al. (2012c) subjects have no influence
on their wins or losses. This difference in control over the task
outcomes could have influenced the striatal responses during the
task. Furthermore, the graphic designs of the two studies also
differed markedly; the MID task used in the study by Balodis
et al. (2012) used non-monetary abstract pictograms, the task
by van Holst et al. (2012c) featured familiar playing cards and
Euro coins and bills. These gambling associated cues may elicit

cue reactivity responses leading to hyperresponsivity in the striatal
regions (see for a discussion: Leyton and Vezina, 2012; van Holst
et al., 2012c,d). This hypothesis regarding diminished reactivity
of the striatum in the absence of addiction relevant cues, and an
overactivity of the striatum in the presence of addiction relevant
cues was recently reviewed in depth by Leyton and Vezina (2013).

The reward deficiency hypothesis of addiction has received
considerable support from PET studies measuring dopamine
functioning, consistently showing lower dopamine D2/D3 recep-
tor binding potential in drug dependent subjects (Martinez et al.,
2004, 2005, 2011; Volkow et al., 2004, 2008; Lee et al., 2009).
Whether this D2/D3 receptor binding potential underlies PG
is still unclear because PET techniques have only recently been
utilized in PG. Currently, no significant differences in baseline
DA binding in pathological gamblers compared to HCs seems
to be present (Linnet et al., 2010; Joutsa et al., 2012; Boileau
et al., 2013) but other studies indicate a positive correlations
between DA binding and gambling severity and impulsivity
(Clark et al., 2012; Boileau et al., 2013). In addition, A PET
study measuring DA activity during the Iowa gambling task
found that DA release in pathological gamblers was related to
excitement (Linnet et al., 2011a) and poor performance (Linnet
et al., 2011b). Overall these results do suggest a role for abnormal
DA binding in PG but not to the same extent as that found
in drug addiction in which clear diminished binding potentials
are consistently reported (Clark and Limbrick-Oldfield, 2013).
Missing from the literature are studies measuring more stable
baseline DA synthesis capacity: existing studies have only focused
on aspects related to highly state dependent DA D 2/3 receptor
availability. Studies measuring DA synthesis capacity could test
the hypothesis of a higher DA synthesis capacity in PG and PrG.
Higher DA synthesis could lead to higher dopaminergic reac-
tivity when confronted with addiction related cues (e.g., games,
money, risk). Furthermore, PG studies directly manipulating DA
and measuring fMRI BOLD responses during reward processing
could provide important information about the causal role of
DA in PG.

An alternative hypothesis, next to the reward deficiency
hypothesis for PG and PrG is that, similar to substance use dis-
orders (SUDs; Robinson and Berridge, 2001, 2008), pathological
gamblers and problem gamblers suffer from an enhanced incen-
tive salience for gambling related cues. This enhanced incentive
salience for gambling cues could be so strong that it overrides
incentive salience of alternative sources of reward, leading to an
imbalance in incentive motivation. To test whether pathological
gamblers would suffer from an overall reward deficiency or from
an imbalance in incentive salience, Sescousse et al. (2013) com-
pared neural responses to both financial gains and to primary
rewards (erotic pictures) in pathological gamblers and HCs. In
line with the latter hypothesis, hypo-reactivity was observed for
the erotic cues, in contrast with normal-reactivity to the financial
rewards, indicating an imbalanced incentive salience attribution
in PG. Taken all the above studies together, at this point it seems
most likely that pathological gamblers are not suffering from a
reward deficiency in general but that pathological gamblers have a
different appraisal of gambling related stimuli, presumably caused
by enhanced incentive salience of gambling related stimuli.

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 141 | 44

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Goudriaan et al. Getting a grip on problem gambling

Recently fMRI studies have focused on specific gambling
related cognitive biases. This is important because problem
gamblers often display a number of cognitive biases regard-
ing gambling games (Toneatto et al., 1997; Toneatto, 1999;
Clark, 2010; Goodie and Fortune, 2013). For example, gam-
blers are known to falsely believe that they can influence out-
come probabilities of games (“illusion of control”) (Langer,
1975). Various intrinsic features of games of chance promote
these biases (Griffiths, 1993), as for example “near-miss” events
(Kassinove and Schare, 2001). These near-wins or near-miss
outcomes (which are actually losses) occur when two reels of
a slot machine display the same symbol and the third wheel
displays that symbol immediate above or below the pay-off
line. A study investigating near-miss effects in problem gam-
blers found that brain responses during near-miss outcomes
(compared to full-miss outcomes) activated similar brain reward
regions such as the striatum and insular cortex as during
win outcomes (Chase and Clark, 2010). Habib and Dixon
(2010) found that near-miss outcomes lead to more win-like
brain responses in pathological gamblers, whereas HCs acti-
vated brain regions associated with losses to a larger extent.
These studies contribute to a better understanding of the
addictiveness of gambling games and its underlying neuronal
mechanism.

CAN ENHANCED SALIENCE FOR GAMBLING RELATED
STIMULI LEAD TO LOSS OF CONTROL OVER BEHAVIOR?
An influential and empirically grounded neurobiological model
for substance dependence, the Impaired Response Inhibition and
Salience Attribution (I-RISA) model, postulates that repeated
drug use triggers a series of adaptations in neuronal circuits
involved in memory, motivation, and cognitive control (Volkow
et al., 2003). If an individual has used drugs, memories of these
events are stored as associations between the stimulus and the
elicited positive (pleasant) or negative (aversive) experiences,
facilitated by dopaminergic activation caused by the drug of
abuse. This results in an enhanced (and long-lasting) salience
for the drug and its associated cues at the expense of decreased
salience for natural reinforcers (Volkow et al., 2003). In addition,
the I-RISA model assumes loss of control (disinhibition) over
drugs due to enhanced salience and pre-existing deficiencies (as
discussed in part 1 of the review), which renders individuals
suffering from addictive disorders vulnerable to relapse into
addictive behavior.

In addictive disorders including PG, there is evidence that
both affective and motivational systems are more sensitive to
addiction relevant material. For example, studies have shown that
addiction related cues attract more attention than other salient
stimuli, a phenomenon known as “attentional bias” (McCusker
and Gettings, 1997; Boyer and Dickerson, 2003; Field and Cox,
2008). As discussed in the “cue reactivity” section of this review,
in problem gamblers, enhanced brain responsiveness towards
gambling related cues (“cue reactivity”) has also been found in
brain areas related to motivational processing and cognitive con-
trol (amygdala, basal ganglia, ventrolateral prefrontal cortex and
dorsolateral prefrontal cortex; Crockford et al., 2005; Goudriaan
et al., 2010).

As discussed in the first section of this review, PG is associated
with impaired cognitive control. However how cognitive control
interacts with motivational processes is still subject of investi-
gation. Just recently, studies have started to test the interaction
between cognitive control and salience attribution in PG. In one
of our recent studies, we employed a modified Go/NoGo task
by including affective stimulus blocks (gambling, positive and
negative), in addition to the standard affectively neutral block in
problem gamblers and HCs (van Holst et al., 2012b). Subjects
were requested to respond or withhold a response to specific
types of pictures with a different emotional loading, allowing
the investigation of the interaction between motor inhibition and
salience attribution. Whereas we found no behavioral differences
on neutral response inhibition trials, problem gamblers compared
to controls showed greater dorsolateral prefrontal and ACC activ-
ity. In contrast, during gamble and positive pictures problem
gamblers made less response inhibition errors than controls and
showed reduced activation of the dorsolateral prefrontal and
ACC. This study indicated that pathological gamblers rely on
compensatory brain activity to achieve similar performance dur-
ing neutral response inhibition. However, in a gambling-related
or positive context response inhibition appears to be facilitated,
as indicated by lower brain activity and fewer response inhibition
errors in pathological gamblers. Data from this Go/NoGo study
was further analyzed to test the effect of affective stimuli on
functional connectivity patterns during the task (van Holst et al.,
2012a). As expected, adequate response inhibition was related
to functional connectivity within the sub-regions of the dorsal
executive system as well as on functional connectivity between the
dorsal executive and the ventral affective system in both HCs and
problem gamblers. Compared to HCs, problem gamblers showed
a stronger positive correlation between the dorsal executive system
and task accuracy during inhibition in the gambling condition.
These findings suggest that increased accuracy in pathological
gamblers during the gambling condition was associated with
increased connectivity with the dorsal executive system (van Holst
et al., 2012a). It seems likely that DA function plays an important
role in these findings. Salient stimuli enhance DA transmission
in the mesolimbic system (Siessmeier et al., 2006; Kienast et al.,
2008) and DA is known to modulate prefrontal cortex functioning
(Robbins and Arnsten, 2009). Indeed, in humans, DA transmis-
sion has an effect on functional connectivity within the corti-
costriatal thalamic loops (Honey et al., 2003; Cole et al., 2013).
More research is needed to further clarify the interaction between
motivation, DA and cognitive control in PG. In the earlier men-
tioned review by Leyton and Vezina (2013), a model is proposed
that integrates the influence of these opposite striatal responses
on the expression of addictive behaviors. Central to his model is
the idea that low striatal activity leads to an inability to sustain
focussed goal-directed behavior, whereas in the presence of high
striatal activity (when drug cues are present) a sustained focus and
drive to obtain rewards is present. The findings reviewed above
(van Holst et al., 2012a,b) fit this model well: better performance
was present in problem gamblers in the positive and gambling
conditions, and more functional connectivity was found with the
dorsal executive system in problem gamblers in the gambling con-
dition. This could be an indication of normalization in probleml
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gamblers of the underactive striatal system, in the presence of
salient motivational cues in the positive and gambling Go/NoGo
conditions.

It is clinically relevant to further investigate whether increased
activity in the reward system indeed has the effect of transiently
restoring prefrontal cortex functioning in problem gamblers. This
could be tested by pharmacological challenges or by enhancing
activity in the reward system more locally, for example by using
real time-fMRI neurofeedback (deCharms, 2008) or Transcranial
Magnetic Stimulation (TMS; Feil and Zangen, 2010). However,
we suggest that enhanced salience to rewarding stimuli could
also lead to impaired task performance. For example, when too
much attention is allocated to salient stimuli, this can result in
attenuated executive control recourses (Pessoa, 2008). Enhanced
reward seeking behavior and enhanced responsiveness to poten-
tial rewards could therefore be an important concept in under-
standing why especially on tasks with contingencies gamblers
show diminished cognitive performance (Brand et al., 2005;
Goudriaan et al., 2005, 2006; Labudda et al., 2007; Tanabe et al.,
2007; de Ruiter et al., 2009).

SUMMARY NEUROIMAGING FINDINGS: SELF-CONTROL,
CUE-REACTIVITY, REWARD SENSITIVITY AT DIFFERENT
STAGES OF GAMBLING, AND THE INTERACTION BETWEEN
SELF-CONTROL AND MOTIVATIONAL URGE
When trying to reach an overarching conclusion with regard
to the studies reviewed, it is clear that for some topics, consis-
tent findings have been established over the years. For instance,
the notion of increased impulsivity in PG and PrG is firmly
established and the first neuroimaging studies show that this
heightened impulsivity is accompanied by diminished prefrontal
and ACC functioning. It is clear that the field of cognitive
functions in PG needs more neuroimaging studies to investigate
what cognitive functions are most affected. Neuroimaging cue-
reactivity studies indicate that when gambling cues are present,
the motivational system of the brain is overactive in PG and
PrG, as evidenced in higher parahippocampal, amygdala, basal
ganglia, and OFC activation. With regard to either enhanced
neural reward sensitivity or diminished reward sensitivity, the
first studies seem to indicate that whereas enhanced activation of
the brain’s reward circuitry is present in anticipation of winning
or in experiencing risky gamble situations, diminished reward
responsiveness is present in this same circuitry after winning
and/or losing money. Finally, the interaction of cue-reactivity
and cognitive control suggests that the activation of the cognitive
control system in problem gamblers may be enhanced by acti-
vating the motivational circuit. However, this finding is in need
of replication, and the role of DA in facilitating or diminishing
cognitive control in PG deserves further study.

CLINICAL IMPLICATIONS
Cognitive behavioral therapy (CBT) for problem gamblers
focuses on behavioral and cognitive interventions to curb the
motivational lure of gambling behavior and has been shown to
be effective in the treatment of PG (Petry, 2006; Petry et al.,
2006), although relapse is still high, ranging around 50–60%

in treatment studies, with rates of continuous abstinence for
a year as low as 6% (Hodgins et al., 2005; Hodgins and el
Guebaly, 2010). Thus, there is still room for major improvement
in treatment results for PG/PrG. CBT focuses on enhancement of
cognitive control over gambling, and a change in the behavior of
engagement in gambling due to encountering gambling cues or
experiencing craving. Specific techniques used in CBT for PG and
PrG include learning coping strategies, applying stimulus control
strategies, and handling high risk situations by implementing
behavioral strategies, for instance on emergency cards. Thus,
in CBT for PG and PrG, a substantial part of the intervention
depends on engagement of executive functions by implementing
behavior and emotion regulation strategies. In other psychi-
atric disorders, neuroimaging studies have shown that differences
in pre-treatment brain functioning can predict CBT treatment
effects. For instance, better frontal-striatal brain functions during
a response inhibition task resulted in better response to CBT in
post traumatic stress disorder (Falconer et al., 2013). Increased
activity at baseline in the ventromedial PFC as well as valence
effects in emotional tasks (e.g., social threat tasks) in the (ante-
rior) temporal lobe, ACC and DLPFC promote treatment success
in major depressive disorder (Ritchey et al., 2011) and in social
anxiety disorder (Klumpp et al., 2013). These findings not only
suggest that brain functions may be important new biomarkers
for indicating the chance for treatment success with CBT, but
also point to the potential value of new interventions targeting
neurobiological vulnerabilities of PG and PrG. By studying brain
functions that are biomarkers for CBT success in PG and subse-
quently improving these brain functions by neuromodulation or
pharmacological interventions, treatment results for PG and PrG
may improve.

Several interventions targeted at neurobiological vulnerabili-
ties of PG and PrG are promising and may result in additional
treatment effects by interacting and improving the functions that
are a prerequisite for CBT success. Recently, neuromodulation
interventions have gained interest in addiction research. Specif-
ically, neurostimulation methods such as repeated Transcranial
Magnetic Stimulation (rTMS) and transcranial Direct Current
Stimulation (tDCS) were evaluated in a meta-analysis (Jansen
et al., 2013). From this meta-analysis, a medium-effect size was
found for neurostimulation with either rTMS or tDCS to reduce
craving for substances or high-palatable food. In a study with
multiple sessions of rTMS in 48 heavy smokers, 10 daily sessions
of active rTMS over the DLPFC resulted in diminished cigarette
consumption and nicotine dependence, compared to a control
condition of sham rTMS (Amiaz et al., 2009). Related to neu-
rostimulation, EEG neurofeedback in SUDs has recently gained
renewed interest, with some pilot studies showing positive results
of EEG neurofeedback training in cocaine dependence (Horrell
et al., 2010) and opiate dependence (Dehghani-Arani et al., 2013).
Thus, interventions with neurostimulation or neurofeedback in
PG and PrG are warranted as well, to investigate whether neu-
rostimulation interventions also hold promise in this behavioral
addiction.

As a potential non-pharmacological intervention, changes in
the motivational system in PG could be targeted by “attentional
retraining” (MacLeod et al., 2002; Wiers et al., 2006). During
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attentional retraining patients are trained to reverse their atten-
tional bias by performing computer tasks, thus aiming to reduce
cue reactivity and to change habitual behaviors. A related inter-
vention is retraining of automatic action tendencies, in which
approach behavior towards addiction related stimuli is retrained
to avoidance behavior (Wiers et al., 2006, 2010; Schoenmakers
et al., 2007). In alcohol use disorders, results from the suggested
interventions are promising (Wiers et al., 2006, 2010). However,
these interventions have not yet been tested in PG and long-term
effects of attentional and action tendency retraining are not yet
available and need to be assessed in future research.

PHARMACOLOGICAL INTERVENTIONS
In addition to the potential of neurostimulation, neurofeedback
and attentional retraining interventions, a number of promising
pharmacological interventions for the treatment of PG have been
reported (for a review see van den Brink, 2012). Neurobiological
findings indicate a pivotal role of the mesolimbic pathway, com-
prising the ventral striatum, and ventromedial prefrontal cortex
(VMPFC) in PG. Because the VMPFC is a structure that mainly
depends on DA projections that communicate with limbic struc-
tures to integrate information, dysfunctional DA transmission
could be the underlying deficit causing the VMPFC dysfunctions
in PG. However, numerous other neurotransmitter systems are
probably also engaged and may interact during the processing of
positive and negative feedback. For example, opiates are known to
increase DA release in the reward pathway, and the opiate antago-
nists naltrexone and nalmefene, which are known to decrease DA
release, have been found to reduce reward sensitivity and probably
increase punishment sensitivity as well (Petrovic et al., 2008).
Moreover, treatment with opiate antagonists has been shown to be
effective in PG and to diminish gambling urges (Kim and Grant,
2001; Kim et al., 2001; Modesto-Lowe and Van Kirk, 2002; Grant
et al., 2008a,b, 2010b).

Whereas in substance addictions, drugs and drug-associated
stimuli may elicit DA release in the ventral striatum and reinforce
drug intake during the acquisition of a substance use disorder,
chronic drug intake is associated with neuroadaptation of glu-
tamatergic neurotransmission in the ventral and dorsal stria-
tum and limbic cortex (McFarland et al., 2003). In addition,
cue exposure has been found to depend on projections of glu-
tamatergic neurons from the prefrontal cortex to the nucleus
accumbens (LaLumiere and Kalivas, 2008). Blocking the release
of glutamate has prevented drug seeking behavior in animals as
well as in human substance dependent persons (Krupitsky et al.,
2007; Mann et al., 2008; Rösner et al., 2008). Therefore, the first
promising results from pilot studies with N-acetyl cysteine (Grant
et al., 2007) and memantine (Grant et al., 2010a), which modulate
the glutamate system, warrant larger studies that investigate the
effects of these glutamate regulating compounds in the treatment
of PG.

Besides the focus on improving cognitive functions and dimin-
ishing craving by neuromodulation or pharmacological tech-
niques, recently, interest in the influence of protective factors has
grown. For instance, low impulsivity and active coping skills have
been linked to a more positive outcome for SUDs. Thus, not only
a focus on risk factors, but also on the role of protective factors

and environmental variables that promote them may foster our
understanding of the brain-behavior relationships and the path-
ways in developing and recovering from PG and PrG. A potential
application of a focus on both risk and protective factors may
be to monitor cognitive-motivational and brain functions during
treatment, investigate which functions spontaneously normalize,
and which functions need additions from novel interventions
such as cognitive training, neuromodulation, or pharmacological
interventions.

CONCLUSIONS
PG and PrG are clearly associated with cognitive and motivational
differences in neuropsychological and brain functioning. Specif-
ically, higher impulsivity and impaired executive functioning is
present, which is associated with diminished functioning of the
cognitive control circuitry in the brain, such as the ACC and
dorsolateral prefrontal cortex. In addition, motivational functions
are affected, which are associated with differential functioning in
medial frontal areas and in the thalamo-striatal circuitry, linking
to the frontal cortex. More research is needed to investigate the
interaction between cognitive and motivational functions, as the
combination of gambling cues in cognitive tasks sometimes also
improves cognitive functions. Investigating the efficacy of novel
interventions that target these neurobiological mechanisms, such
as neuromodulation, cognitive training, and pharmacological
interventions, is needed in order to investigate its potential to
improve treatment outcome. In addition, research focusing on
protective factors and the spontaneous recovery of risk factors
could indicate which mechanisms to target in order to improve
the course of PG.
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It is commonly believed that monetary
gain is the cause of gambling behavior in
humans. Mesolimbic dopamine (DA), the
chief neuromediator of incentive motiva-
tion, is indeed released to a larger extent
in pathological gamblers (PG) than in
healthy controls (HC) during gambling
episodes (Linnet et al., 2011; Joutsa et al.,
2012), as in other forms of compulsive and
addictive behavior. However, recent find-
ings indicate that the interaction between
DA and reward is not so straightforward
(Blum et al., 2012; Linnet et al., 2012). In
PG and HC, DA release seems to reflect the
unpredictability of reward delivery rather
than reward per se. This suggests that the
motivation to gamble is strongly (though
not entirely) determined by the inability
to predict reward occurrence. Here we dis-
cuss several views of the role of DA in
gambling, and attempt to provide an evo-
lutionary framework to explain its role in
uncertainty.

TRADITIONAL VIEW: MONEY DRIVES
GAMBLING
Common sense suggests that if gambling
at casinos is attractive for many people, it
is because it offers an opportunity to win
money (Dow Schüll, 2012). Of course, a
“big win” is rare, but the random com-
ponent behind most games and the pub-
licizing of big winners lets people believe
that the chance of winning a lot is not so
unlikely. In this traditional view, money
is a gambler’s primary motivation, and
randomness in games allows the gambler
to hope that the gains will overcome the
losses.

This view is compatible with the evi-
dence that DA released in the nucleus

accumbens, a mesolimbic region in the
brain, magnifies the attractiveness of
rewards and conditioned cues (Berridge,
2007). Mesolimbic DA transforms neu-
tral cues into conditioned cues when they
come to reliably predict reward deliv-
ery (Melis and Argiolas, 1995; Peciña
et al., 2003; Flagel et al., 2011). Money
is certainly a strong conditioned cue,
which has been associated with abundance
and power in all human civilizations.
As with other reward sources, money is
known to enhance mesolimbic DA lev-
els in the human striatum during gam-
bling episodes, suggesting that money is
what motivates gamblers (Koepp et al.,
1998; Zald et al., 2004; Zink et al., 2004;
Pessiglione et al., 2007). For example,
Joutsa et al. (2012) showed that DA is
released in the ventral striatum during
instances of high- but not low-reward, in
both PG and HC, and that the severity of
symptoms in PG is associated with larger
DA responses.

THE ATTRACTIVENESS OF LOSSES
Although the traditional view is in agree-
ment with neuroscientific data, it fails to
explain why people often describe gam-
bling as a pleasant activity rather than
as an opportunity to gain money. During
gambling episodes, PG report euphoric
feelings comparable to those experienced
by drug users (van Holst et al., 2010),
and the more PG lose money, the more
they tend to persevere in this activity—
a phenomenon referred to as loss-chasing
(Campbell-Meiklejohn et al., 2008). Such
results are hardly compatible with the tra-
ditional view. Animal and human studies
indicate that the role of DA in reward is,

at least in gambling, more complex than
initially believed (Linnet, 2013).

Determining the exact timing of sub-
jective feelings or how losses spur on a
gambler’s desire to play during gambling
episodes is difficult because different emo-
tions and cognitions constantly overlap.
Nevertheless, Linnet et al. (2010) were
able to measure mesolimbic DA release
in PG and HC winning or losing money.
Unexpectedly, they found no difference in
dopaminergic responses between PG and
HC who won money. Dopamine release in
the ventral striatum, however, was more
pronounced for the losses in PG rela-
tive to HC. Given the motivational impact
of mesolimbic DA, Linnet and colleagues
argue that this effect could explain loss-
chasing in PG. In addition, they point
out that “PG are not hyperdopaminergic
per se, but have increased DA susceptibil-
ity toward certain types of decisions and
behavior” (p. 331). This finding that DA
release is higher in PG losing money than
in PG winning money is consistent with
the evidence that “near misses” enhance
the motivation to gamble and recruit the
brain reward circuit more than “big wins”
(Kassinove and Schare, 2001; Clark et al.,
2009; Chase and Clark, 2010). Possibly
related to this phenomenon is the evidence
that, compared with gains, the amount of
monetary losses has limited effect on the
extent to which probabilistic (and delayed)
losses are discounted in humans (Estle
et al., 2006). This suggests that a lower
probability (and a longer delay) reduces
a gambler’s motivation less when losses
rather than gains are involved. In contrast,
the big win hypothesis suggests that patho-
logical gambling develops in individuals
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that initially experienced large monetary
gains, but the attempts to demonstrate
this effect on persistence of gambling
have failed (Kassinove and Schare, 2001;
Weatherly et al., 2004). Current evidence
therefore suggests that losses contribute to
motivate gambling more than gains.

THE ATTRACTIVENESS OF REWARD
UNCERTAINTY
One of the main underlying factors to the
phenomenon of loss-chasing may relate
to the importance of reward uncertainty.
Studies have shown that reward uncer-
tainty rather than reward per se, will
magnify mesolimbic DA, both in mon-
keys (Fiorillo et al., 2003; de Lafuente
and Romo, 2011) and healthy human
participants (Preuschoff et al., 2006). In
PG, accumbens DA is maximal during
a gambling task when the probability of
winning and losing money is identical—
a 50% chance for a two-outcome event
representing maximal uncertainty (Linnet
et al., 2012). Although non-dopaminergic
neurons might also be involved in the
coding of reward uncertainty (Monosov
and Hikosaka, 2013), these results based
on electrophysiological and neuroimaging
techniques indicate that DA is crucial for
the coding of reward uncertainty. This sug-
gestion is corroborated by a large number
of behavioral studies, showing that mam-
mals and birds respond more vigorously
to conditioned cues predicting uncertain
rewards (Collins et al., 1983; Anselme
et al., 2013; Robinson et al., under review)
and tend to prefer an uncertain food
option over a certain food option in dual-
choice tasks (Kacelnik and Bateson, 1996;
Adriani and Laviola, 2006), sometimes
despite a lower reward rate (Forkman,
1991; Gipson et al., 2009). According to
Greg Costikyan, an award-winning game
designer, games cannot hold our inter-
est in the absence of uncertainty—which
can take many forms, occurring in the
outcome, the game’s path, analytical com-
plexity, perception, and so on (Costikyan,
2013). Discussing the game of Tic-Tac-Toe,
Costikyan (p. 10) notes that this game
is dull for anyone beyond a certain age
because its solution is trivial. The reason
why children play this game with enjoy-
ment is that they do not understand that
the game has an optimal strategy; for chil-
dren, the game of Tic-Tac-Toe produces an

uncertain outcome. A predictable game is
dull, just like a detective novel for which
the identity of the murderer is known in
advance. Based on this assumption, Zack
and Poulos (2009) note that several pay-
off schedules (slot machines, roulette, and
dice game of craps) have a probability of
winning close to 50%, so that they are
expected to elicit maximal DA release and,
therefore, reinforce the act of gambling.

The evidence that uncertainty itself
appears to be a source of motivation is
visible in the growing trend of patholog-
ical gambling that involves extended play
at video poker or slot machines (Dow
Schüll, 2012). Individuals are playing to
play rather than to win, and monetary
wins are conceived as the opportunity to
extend the duration of play, rather than the
game’s main objective. In addition, game
programmers have uncovered a profitable
trend toward larger and larger number
of bets per round of a given game (in
Australia, >100 bets on a given roll), with
smaller and smaller amounts (going as low
as one cent), giving rise to a “losses dis-
guised as wins” effect, where players win
less than they wagered (Dixon et al., 2010).
It is almost as if players were drawn to plac-
ing bets or trying to uncover the algorithm
that determines the wins and losses (this is
often reported in players, see Dow Schüll,
2012). Recently, we have shown in adult
rats that an initial exposure (8 days) to
conditioned cues predicting highly uncer-
tain rewards sensitizes responding to those
cues in the long term (for at least 20
days) despite a gradual reduction in the
level of uncertainty (Robinson et al., under
review). No behavioral sensitization was
apparent following a later exposure to high
uncertainty (rewards were provided with
certainty during the first 8 days). This
result is compatible with other findings
showing that persistent gambling behav-
ior is more likely to occur in individuals
that experience unpredictable environ-
ments and gambling situations early in
life (Scherrer et al., 2007; Braverman and
Shaffer, 2012).

A POSSIBLE EVOLUTIONARY ORIGIN
OF GAMBLING BEHAVIOR
Since wins are rare and often small during
gambling episodes, it is unlikely that they
are sufficient to motivate people to perse-
vere in the task. The fact that losses can

motivate gambling more than gains is also
difficult to understand. So, why do people
gamble? Pathological gambling is certainly
maladaptive behavior, but the attractive-
ness of uncertain rewards is so widespread
in the animal kingdom that this ten-
dency should have an adaptive origin. Here
we suggest a hypothesis—referred to as
the compensatory hypothesis—developed
by one of the authors, that describes
gambling-like behavior in an evolutionary
framework (Anselme, 2013).

In nature, animals are subject to a
lack of cognitive control in many circum-
stances; they are often unable to predict
what is going to happen. This essen-
tially occurs for two reasons. First, the
distribution of natural resources is ran-
dom, so that a large number of responses
must be produced before finding vital
resources. Second, the reliability of con-
ditioned cues is often imperfect—e.g., for
some species, fruit-trees may act as con-
ditioned cues because of their associa-
tion with reward (the presence of fruits),
but this association is unreliable since
fruit-trees have no fruits for most of the
year. Given this lack of cognitive con-
trol about objects and events, it can be
argued that if reward uncertainty were
not a source of motivation, most behav-
iors would extinguish because of the high
failure rate (and energy loss) experienced
by animals. The compensatory hypothesis
suggests that, when a significant object or
event’s predictability is low, motivational
processes are recruited to compensate for
the inability to make correct predictions;
motivation would act as a mechanism to
delay extinction (Anselme, 2013). In other
words, allowing an animal to persevere
in a task is only possible if its behavior
is motivated by the lack of predictability
(i.e., uncertainty) rather than by reward
itself. The compensatory hypothesis could
explain why losses are so important
in motivating human gamblers: without
the opportunity of receiving no reward,
gains become predictable and hence most
games become dull (Costikyan, 2013).
In addition, this hypothesis provides an
interpretation to the evidence that, like
physiological deprivations (Nader et al.,
1997), psychosocial deprivations such as a
lack of maternal care enhance mesolim-
bic DA release and, correlatively, incen-
tive motivation to seek food (Lomanowska
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et al., 2011). Psychosocial deprivations
also seem to be a cause of gambling-like
behavior in both pigeons and humans
(van Holst et al., 2010; Pattison et al.,
2013). In fact, all forms of depriva-
tion result from the inability to predict
how to find/obtain appropriate stimuli—
whether food, social relationships, oppor-
tunities to work and play, etc. In most
cases, this inability is a consequence of
environmental poverty. On account of
this, poor environments resemble unpre-
dictable environments and the compen-
satory hypothesis suggests that, in both
cases, a higher motivation is recruited to
persevere in the laborious task of finding
resources.

Assuming that this interpretation is
correct, gambling behavior in humans
could be phylogenetically inherited from
older mammalian species whose mem-
bers motivated by reward uncertainty had
a better chance of survival in complex,
dynamic environments. Pathological gam-
bling might be the exaggeration of a nat-
ural tendency exploited by casinos and
games of chance. Of course, uncertainty-
driven motivation is no longer required
to survive within most western cultures.
However, gambling might be hijacking an
evolutionary system designed to resolve
uncertainty by spurring pulses of moti-
vation, despite or because of repeated
losses. How could pathological gambling
be addressed? We think that this psy-
chopathology should certainly be treated
on a case-by-case basis, depending on the
vulnerability of each PG. For example,
favoring enrichment of a PG’s daily envi-
ronment by varying leisure activities and
social relations may reduce his desire to
seek a surplus of stimulation. At a societal
level, one approach allowing to address
pathological gambling might be that gam-
blers at casinos can win more often than
they lose but only very small gains (sim-
ilar to the wagered amounts) in order to
render gambling persistence less attractive.
More thorough investigations are needed
to identify the parameters underpinning
the addictive power of games and to pro-
mote the development of games which do
not exploit our phylogenetic vulnerability.
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behavior, which leads to clinically significant impairment or distress. The disorder is
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NEUROBIOLOGICAL UNDERPINNINGS OF REWARD
ANTICIPATION AND OUTCOME EVALUATION IN GAMBLING
DISORDER
Gambling disorder is characterized by persistent and recurrent
maladaptive gambling behavior, which leads to clinically signif-
icant impairment or distress (American Psychiatric Association
[DSM 5], 2013). Gambling disorder was recently reclassified
from “pathological gambling” (an impulse control disorder) to
a “behavioral addiction” under the substance use classification,
which emphasizes the association between gambling disorder and
other types of addiction.

Gambling disorder is associated with dysfunctions in the
dopamine system. The dopamine system is sensitive to behavioral
stimulation related to monetary reward, particularly in the ventral
striatum (Koepp et al., 1998; Delgado et al., 2000; Breiter et al.,
2001; de la Fuente-Fernández et al., 2002; Zald et al., 2004).
Dopaminergic dysfunctions in the ventral striatum are linked to
gambling disorder (Reuter et al., 2005; Abler et al., 2006; Linnet
et al., 2010, 2011a,b, 2012; van Holst et al., 2012; Linnet, 2013).

The dopamine system codes reward anticipation and outcome
evaluation. Reward anticipation refers to dopaminergic activation
prior to reward, while outcome evaluation refers to dopaminer-
gic activation after the reward. This article reviews evidence on
dopaminergic dysfunctions in reward anticipation and outcome
evaluation in gambling disorder from two vantage points: a model
of reward prediction and reward prediction error by Schultz et al.
(Fiorillo et al., 2003; Schultz, 2006; Tobler et al., 2007; Schultz
et al., 2008), and a model of “wanting” and “linking” by Robinson

and Berridge (Robinson and Berridge, 1993, 2000, 2003, 2008;
Berridge and Aldridge, 2008; Berridge et al., 2009). It is suggested
that gambling disorder may provide a “model disorder” of addic-
tion for the two approaches, which is not confounded by ingestion
of exogenous substances.

The ventral striatum and the nucleus accumbens (NAcc) play
a central role in both models, which is consistent with findings
of dopamine dysfunctions in the ventral striatum in gambling
disorder. Therefore, this review focuses on the ventral striatum
in relation to gambling disorder. Other relevant areas include the
prefrontal cortex (e.g., orbitofrontal cortex) and other areas of the
basal ganglia (e.g., the putamen, nucleus or caudate).

REWARD PREDICTION AND REWARD PREDICTION ERROR
Reward prediction refers to the anticipation of reward, while
reward prediction error refers to the outcome evaluation. Reward
prediction and reward prediction error are associated with the
learning of reward properties of stimuli. According to Wolfram
Schultz (2006), reward prediction and reward prediction error
derive from Kamin’s blocking rule (Kamin, 1969), which suggests
that a reward that is fully predicted does not contribute to
learning. A stimulus that can be entirely predicted contains no
new information, and the reward prediction error rate is therefore
zero. Rescola and Wagner described the so-called Rescola-Wagner
learning rule (Rescola and Wagner, 1972), which states that learn-
ing slows progressively as the reinforcer becomes more predicted.

In random binary outcome conditions, e.g., reward vs. no-
reward, the expected value (EV) is the average value that can be
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expected from a given stimulus, which is a linear function of
reward probability. In contrast, uncertainty, which can be defined
as the variance (σ 2) of a probability distribution (Schultz et al.,
2008), is the mean squared deviation from the EV, which is an
inverse U-shaped function. Midbrain and striatal dopamine cod-
ing of EV and uncertainty follow linear and quadratic functions
of reward prediction similar to their mathematical expressions
(Fiorillo et al., 2003; Preuschoff et al., 2006; Schultz, 2006). The
dopamine system also codes deviations in outcome from the
reward prediction, i.e., reward prediction error: “. . .dopamine
neurons emit a positive signal (activation) when an appetitive
event is better than predicted, no signal (no change in activity)
when an appetitive event occurs as predicted, and a negative
signal (decreased activity) when an appetitive event is worse than
predicted. . .[and] dopamine neurons show bidirectional coding
of reward prediction errors, following the equation Dopamine
response = Reward occurred−Reward predicted” (Schultz, 2006,
pp. 99–100).

Fiorillo et al. (2003) investigated dopamine activation in
reward prediction and reward prediction error in relation to EV
and uncertainty (i.e., variance in outcome). In the study, two
monkeys were exposed to stimuli with varying reward probabil-
ities (P = 0, P = 0.25, P = 0.5, P = 0.75 and P = 1.0). The rate
of anticipatory licking and the activation of dopamine neurons
in the ventral midbrain (area A8, A9 and A10) were recorded.
Dopaminergic coding of reward prediction was measured as a
phasic signal immediately after stimulus presentation, while cod-
ing of reward prediction error was measured as a phasic signal
immediately after the outcome of the stimulus (reward or no
reward). Dopaminergic coding of uncertainty was measured as a
sustained signal from stimulus presentation to outcome.

The authors reported three main results. First, the reward
probabilities of stimuli were correlated with the anticipatory
licking rate and the anticipatory phasic dopamine response. This
suggests that the reward probability reinforced the dopaminergic
activation and the behavioral response. Second, the sustained
dopamine response toward uncertainty followed the properties
of variance, i.e., it was largest toward stimuli with 50% reward
probability (P = 0.5), smaller toward stimuli with P = 0.75 and P =
0.25, and smallest toward stimuli with P = 1.0 and P = 0.0. Third,
rewarded stimuli with lower reward probability had a larger
phasic dopamine response following the reward, which suggests
a larger positive reward prediction error signal; rewarded stimuli
with higher reward probability had a smaller phasic dopamine
response following the reward, which suggests a smaller reward
prediction error signal.

Neurobiological studies of gambling in humans support the
evidence of reward prediction and reward prediction error. Abler
et al. (2006) used functional magnetic resonance imaging (fMRI)
to investigate reward prediction and reward prediction error in
an incentive task where participants were shown five figures
associated with different reward probabilities (P = 0.0, P = 0.25,
P = 0.50, P = 0.75, and P = 1.0). The results showed a significant
anticipatory blood oxygen level dependent (BOLD) activation
in the NAcc, which was proportional to the reward probability.
Furthermore, there was a significant interaction between outcome
and BOLD activation in the NAcc, where the BOLD activation

was higher when low probability stimuli were rewarded, and lower
when high probability stimuli were rewarded.

Preuschoff et al. (2006) used a card guessing task to investi-
gate the relationship between risk and uncertainty in relation to
anticipated reward. The task consisted of 10 cards ranging from
1 to 10, where two cards were drawn in succession. Before the
drawing of the second card participants had to guess whether
the first card would be higher or lower than the second card.
The results showed that reward probability was linearly associated
with immediate BOLD activation: higher reward probability was
associated with a higher immediate anticipatory BOLD signal,
and lower reward probability was associated with a lower imme-
diate anticipatory BOLD signal. In contrast, uncertainty showed
an inverse U-shaped relation with late BOLD activation: the
highest anticipatory BOLD signals were seen around maximum
uncertainty (P = 0.5) and the lowest anticipatory BOLD signals
were seen around maximum certainty (P = 1.0 and P = 0.0).

Neurobiological studies support the notion of dopaminergic
dysfunctions of reward anticipation in gambling disorder. van
Holst et al. (2012) compared 15 gambling disorder sufferers with
16 healthy controls in a fMRI study investigating reward anticipa-
tion in a card guessing task. Gambling disorder sufferers showed
a significant increase in BOLD activation in the bilateral ventral
striatum and in the left orbitofrontal cortex toward gain-related
EV. This suggests an increased BOLD activation toward reward
anticipation. No differences in BOLD activation were found
toward outcome evaluation. Linnet et al. (2012) compared 18
gambling disorder sufferers and 16 healthy controls in a positron
emission tomography (PET) study using the Iowa Gambling Task
(IGT). Dopamine release in the striatum of gambling disorder
sufferers showed a significant inverted U-curve with the prob-
ability of advantageous IGT performance. Gambling disorder
sufferers with maximum uncertainty of outcome (P = 0.5) had
a larger dopamine release than individuals with IGT performance
closer to certain gains (P = 1.0) or certain losses (P = 0.0). This
is consistent with the notion of dopaminergic coding of uncer-
tainty. No interaction was found between dopamine release and
uncertainty among healthy control subjects, which could suggest
a stronger reinforcement of gambling behavior among gambling
disorder sufferers. Therefore, in gambling disorder dopaminergic
anticipation of reward and uncertainty might represent a dys-
functional reward anticipation, which reinforces the gambling
behavior despite losses.

In outcome evaluation the evidence suggests a blunted
dopamine response in gambling disorder sufferers. Reuter et al.
(2005) compared 12 gambling disorder sufferers with 12 healthy
controls in a card guessing task. Gambling disorder sufferers
showed a significantly lower BOLD response in the ventral stria-
tum toward winning compared with healthy controls. Further-
more, gambling disorder sufferers showed a significant negative
correlation between the BOLD activation and severity in gam-
bling symptoms, which suggests a blunted outcome evaluation in
gambling disorder.

One of the limitations of the reward prediction and reward
prediction error model is that it is not a theory of addiction or
gambling disorder, per se. In other words, while the increased
dopaminergic activation toward uncertainty might be a central
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mechanism in the reinforcement of gambling behavior, it does
not explain why some individuals become addicted to gambling,
while others do not. In contrast, the incentive-sensitization model
suggests that addictive behavior is associated with a combination
of dopaminergic reinforcement and changes to the dopamine
system (sensitization) following repeated drug exposure.

INCENTIVE-SENSITIZATION MODEL OF “WANTING” AND “LIKING”
Terry E. Robinson and Kent C. Berridge (Robinson and Berridge,
1993, 2000, 2003, 2008; Berridge and Aldridge, 2008; Berridge
et al., 2009) have proposed an incentive-sensitization model,
which distinguishes pleasure (“liking”) from incentive salience
(“wanting”) in addiction. “Wanting” is associated with antic-
ipation of reward, while “liking” is associated with outcome
evaluation.

The incentive-sensitization model focuses on the dopamine
system as a core neurobiological basis of addiction. The ventral
striatum and its main component the NAcc are associated with
addiction. Changes in the dopamine system associated with drug
exposure render the brain circuits hypersensitive or “sensitized”
to drugs or drug cues. Sensitization from repeated drug exposure
may also occur at the level of psychomotor or locomotor activity.
Sensitization is linked with increased incentive salience, which is
the cognitive process associated with drug seeking and drug taking
behavior. Incentive salience (“wanting”) refers to a motivational
state, which can be conscious or unconscious, goal-oriented or
non goal-oriented, and pleasurable or non-pleasurable:

“The quotation marks around the term “wanting” serve as
caveat to acknowledge that incentive salience means something
different from the ordinary common language sense of the word
wanting. For one thing, “wanting” in the incentive salience sense
need not have a conscious goal or declarative target. . . . Incentive
salience is separable from beliefs and declarative goals that consti-
tute cognitive aspects of “wanting”” (Berridge and Aldridge, 2008,
pp. 8–9).

Incentive salience (“wanting”) increases after repeated expo-
sure to drugs and drug cues, while pleasure (“liking”) remains the
same or decreases over time. The incentive-sensitization model
of “wanting” and “liking” offers an explanation for the apparent
paradox that individuals with substance use disorder have an
increased desire for drugs despite getting less pleasure from taking
them. Incentive “hotspots” have been identified in the NAcc: acti-
vation in the medial NAcc shell is distinctly associated with “lik-
ing”, while activation throughout the NAcc (particularly around
the ventral pallidum) is associated with “wanting” (Berridge et al.,
2009).

Incentive sensitization defines the relationship between incen-
tive salience and sensitization. Incentive salience must be coupled
with sensitization to account for addictive behavior: an increase
in dopamine binding does not define incentive sensitization,
but an increase in dopamine binding in relation to particular
drug cues does; locomotor activity does not indicate incentive
sensitization, but running around to get drugs does; psychomo-
tor preoccupation does not indicate incentive sensitization, but
an obsession with taking drugs does. Therefore, simple rein-
forcement of behavior is insufficient to account for addictive
behavior.

“The central idea is that addictive drugs enduringly alter NAcc-
related brain systems that mediate a basic incentive-motivational
function, the attribution of incentive salience. As a consequence,
these neural circuits may become enduringly hypersensitive (or
“sensitized”) to specific drug effects and to drug-associated stim-
uli (via activation by S-S associations). The drug-induced brain
change is called neural sensitization. We proposed that this leads
psychologically to excessive attribution of incentive salience to
drug-related representations, causing pathological “wanting” to
take drugs” (Robinson and Berridge, 2003, p. 36).

Berridge and Aldridge (2008) provide an example of the
incentive-sensitization approach to research in addiction. In this
approach, animals are trained under two conditions: first, the ani-
mals are conditioned to work (press a lever) for rewards (e.g., food
pellets), and must persist working to earn rewards. In a separate
training session the animals receive rewards without having to
work for them, where each reward is associated with an auditory
tone cue for 10–30 s, which is the conditioned stimulus (CS+).
After training, the animals are tested in an extinction paradigm
where “wanting” is measured as the number of lever presses the
animal is willing to perform without receiving a reward. Since
the animals receive no rewards, the “wanting” is not confounded
by consumption of reward. The key of the paradigm is to test
changes in behavior when the conditioned auditory stimulus
is introduced during different drug induced states. In a series
of studies, Wyvell and Berridge (2000, 2001) showed that rats
injected with amphetamine microinjections in the NAcc shell had
significantly more lever presses when the conditioned auditory
stimulus was introduced compared to rats injected with saline
microinjections. In a related experiment, Wyvell and Berridge
(2000, 2001) found that the measures of liking (facial reaction
to receiving a sugar reward) did not differ whether the animals
received saline or amphetamine microinjections. These findings
suggest that amphetamine is associated with an increased cue-
triggered “wanting”, but not with increased pleasure (“liking”)
from receiving the reward.

The incentive-sensitization model’s suggestions of increased
“wanting” and decreased “liking” in addiction are consistent with
the findings from the gambling disorder literature of increased
dopamine activation to anticipated reward (Fiorillo et al., 2003;
Abler et al., 2006; Preuschoff et al., 2006; Linnet et al., 2011a,
2012) and blunted dopamine activation to outcome of reward
(Reuter et al., 2005). These findings suggest that dopaminer-
gic dysfunctions toward anticipated rewards, rather than actual
rewards, reinforce gambling behavior among gambling disorder
sufferers. The sensitization of the dopamine system toward antic-
ipated rewards rather than incurred rewards can explain why
gambling disorder sufferers continue gambling despite losses, and
might play a central role in the formation of erroneous percep-
tions about the likelihood of winning from gambling (Benhsain
et al., 2004).

One of the limitations of the incentive-sensitization model is
that individuals with substance use disorder have lower dopamine
release and lower dopamine receptor availability despite having
increased incentive-sensitization:

“However, it must be acknowledged that the current literature
contains conflicting results about brain dopamine changes in
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addicts. For example, it has been reported that detoxified cocaine
addicts actually show a decrease in evoked dopamine release
rather than the sensitized increase described above. . . . Another
finding in humans that seems inconsistent with sensitization is
that cocaine addicts are reported to have low levels of striatal
dopamine D2 receptors even after long abstinence. . . . This sug-
gests a hypodopaminergic state rather than a sensitized state”
(Robinson and Berridge, 2008, p. 3140).

While lower binding potentials are reported in substance use
disorders, there is no evidence of decreased binding potentials
in the gambling disorder literature (Linnet, 2013). Therefore,
gambling disorder might serve as a “model” disorder for the
incentive-sensitization model, as gambling is not confounded by
the ingestion of exogenous substances.

IMPLICATIONS OF REWARD ANTICIPATION AND OUTCOME
EVALUATION IN GAMBLING DISORDER
The models by Schultz et al. and Robinson and Berridge provide
important insights on the study on gambling disorder. The reward
prediction and reward prediction error model by Schultz et al.
offers an explanation for the behavioral reinforcement of reward
anticipation in addiction, while the incentive-sensitization model
by Robinson and Berridge explains the mechanisms of “wanting”
and “liking” in addiction. At the same time, gambling disorder
may serve as a “model” disorder in addressing certain aspects of
the two models.

First, the lower levels of binding potentials reported in sub-
stance use disorder are not seen in gambling disorder (Linnet
et al., 2010, 2011a,b, 2012; Clark et al., 2012; Boileau et al.,
2013). This might suggest that incentive sensitization can occur
independently of baseline dopamine binding in support of the
incentive-sensitization model.

Second, while the studies by Fiorillo et al. (2003) and
Preuschoff et al. (2006) support the notion of sustained antici-
patory dopamine activation toward uncertainty, more research is
needed to determine whether or not this mechanism is associated
with dopaminergic dysfunctions in gambling disorder.

Third, the gambling disorder literature suggests increased
brain activation toward reward anticipation and blunted acti-
vation toward outcome evaluation. This is consistent with the
incentive-sensitization model’s suggestion of increased “want-
ing” but decreased “liking” in addiction and the notion of
sustained anticipatory dopamine activation in reward predic-
tion. Dopaminergic dysfunction in reward anticipation might
constitute a common mechanism of addiction, because it
occurs in the absence of reward. Therefore, reward anticipa-
tion may have a similar (dys)function, whether the reward
is food, drugs or gambling. Further studies should address
reward anticipation and outcome evaluation in gambling
disorder.
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Pathological gambling, alongside addictive and antisocial disorders, forms part of a
broad psychopathological spectrum of externalizing disorders, which share an underlying
genetic vulnerability. The shared externalizing propensity is a highly heritable, continuously
varying trait. Disinhibitory personality traits such as impulsivity and novelty seeking
(NS) function as indicators of this broad shared externalizing tendency, which may
reflect, at the neurobiological level, variation in the reactivity of dopaminergic (DAergic)
brain reward systems centered on the ventral striatum (VS). Here, we examined
whether individual differences in ventral striatal dopamine (DA) synthesis capacity were
associated with individual variation in disinhibitory personality traits. Twelve healthy
male volunteers underwent 6-[18F]Fluoro-L-DOPA (FDOPA) positron emission tomography
(PET) scanning to measure striatal DA synthesis capacity, and completed a measure
of disinhibited personality (NS). We found that levels of ventral, but not dorsal,
striatal DA synthesis capacity were significantly correlated with inter-individual variation
in disinhibitory personality traits, particularly a propensity for financial extravagance
and irresponsibility. Our results are consistent with preclinical models of behavioral
disinhibition and addiction proneness, and provide novel insights into the neurobiology of
personality based vulnerability to pathological gambling and other externalizing disorders.

Keywords: addiction, dopamine, externalizing, impulsivity, positron emission tomography, pathological gambling,
reward, ventral striatum

INTRODUCTION
Patterns of systematic co-occurrence (“comorbidity”) between
substance misuse and antisocial disorders are best accounted
for by a model positing a shared underlying genetic vulnera-
bility, known as externalizing (Krueger et al., 2002, 2007). This
broad externalizing vulnerability is a highly heritable, continu-
ously varying dimension of risk (Krueger et al., 2007). Patho-
logical gambling [now called gambling disorder] systematically
co-occurs with both substance misuse and antisocial disorders
(Kessler et al., 2008; Oleski et al., 2011) and this co-variation
likewise reflects a shared genetic vulnerability (Slutske et al., 2001,
2013; Blanco et al., 2012). Thus, pathological gambling can be
considered one variant of an externalizing spectrum of disorders.

The broad personality trait of disinhibition reflects individ-
ual differences in the tendency to behave in a disinhibited vs.
controlled fashion (Dindo et al., 2009). Disinhibitory personality
traits are strongly linked with externalizing disorders (Ruiz et al.,
2008), including pathological gambling (MacLaren et al., 2011).
Importantly, a shared genetic diathesis underlies the associations
between trait disinhibition and externalizing disorders (Krueger
et al., 2002; Hicks et al., 2011).

Furthermore, prospective studies suggest that trait
disinhibition, measured early in life, predates and predicts
the emergence of externalizing pathology, including pathological

gambling (Elkins et al., 2006; Slutske et al., 2012) and mediates
the co-variation between externalizing disorders (Ruiz et al.,
2008). Thus the antecedent trait of disinhibition provides
the temperamental core of the externalizing disorders, and
disinhibitory personality traits such as impulsivity and sensation
seeking function as indicators of the general externalizing
propensity (Krueger et al., 2002, 2007).

The genetic liability to externalizing may be related, at
the neurobiological level, to brain mechanisms underpinning
sensitivity to reward (Iacono et al., 2008). Brain dopamine
(DA) systems have long been hypothesized to underlie individ-
ual variation in reward sensitivity. According to Gray (1987),
individual differences in trait impulsivity reflect individual vari-
ation in the reactivity of a neural “behavioral activation sys-
tem” (BAS), centred on the ventral striatum (VS) and its
dopaminergic (DAergic) irrigation, which is triggered by cues for
reward. Likewise, in Cloninger’s (1986) model of temperament,
novelty-seeking (NS) tendencies reflect genetically determined
variation in reward-seeking behaviors, mediated by DAergic
modulation of the BAS. When activated, the BAS functions
as an impulsive “go” motivational system, and variation in
BAS reactivity is potentially a potent source of inter-individual
variation in behavioral disinhibition (Newman and Wallace,
1993).
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Recent research highlights that genetic variation in DA synthe-
sis pathways may play a key role in the etiology of externalizing
liability. DA synthesis occurs within DA neurons. Tyrosine is
transported into the cell via amino acid carriers in the blood-
brain barrier and cell membranes. Once in the intracellular space
it is hydroxylated to L-3,4-dihydroxiphenylalanine (L-DOPA) by
tyrosine hydroxylase (TH). L-DOPA is then decarboxylated by
aromatic L-amino acid decarboxylase (AADC) (also called dopa
decarboxylase, DDC) to DA (Elsworth and Roth, 2009). In an
important study, Derringer et al. (2010) found that a combination
of multiple common variants (single nucleotide polymorphisms,
SNPs) in the DDC gene predicted individual variation in sen-
sation seeking traits, suggesting that genetic variation in DA
synthesis contributes to the broad externalizing liability, of which
sensation seeking functions as one indicator (Krueger et al., 2007).

Positron Emission Tomography (PET) can be used to study
the activity of AADC in pre-synaptic DA terminals in the liv-
ing brain. The PET tracer 6-[18F]fluoro-L-DOPA (FDOPA), a
radioactive analog of L-DOPA, the precursor of DA, is taken up
by pre-synaptic DAergic neurons and is metabolized by AADC to
18F-DA, which is trapped and stored within vesicles in the nerve
terminals (Kumakura and Cumming, 2009). FDOPA uptake,
quantified as the influx constant Ki, can be used as a measure
of AADC activity and vesicular storage capacity (Brown et al.,
1999). High values for FDOPA Ki are observed in areas of dense
DA nerve terminal innervation, such as the striatum (Kumakura
and Cumming, 2009).

Consistent with the notion that externalizing propensity
reflects, neuro-biologically, inter-individual variation in DAergic
modulation of the BAS, we recently found, in a group of Parkin-
son’s disease patients, that individual differences in ventral striatal
FDOPA Ki values were related to individual differences in dis-
inhibitory personality traits, particularly a propensity for finan-
cial extravagance (Lawrence et al., 2013). The patients in that
study, were however, being treated with DA agonist medication,
which could potentially have influenced levels of both striatal
DA synthesis (Rowlett et al., 1993) and behavioral disinhibition
(Lawrence et al., 2003). Thus, it is important to ascertain whether
the relationship between ventral striatal DA synthesis capacity
and disinhibitory personality traits holds in a sample of healthy,
medication-free individuals. Based on our previous findings, we
predicted that increased FDOPA uptake in ventral, but not dorsal,
striatum would be related to increased levels of trait disinhi-
bition, in particular propensities for financial extravagance and
irresponsibility.

MATERIALS AND METHODS
PARTICIPANTS
Twelve right-handed healthy male volunteers (mean age 38 years,
SD ± 7 years, range 29–49 years) participated, all with a nor-
mal neurological history and examination. A trained psychiatrist
assessed participants and current and past psychiatric morbidity,
including alcohol or drug dependency, was excluded by rou-
tine psychiatric interview and the General Health Questionnaire
(Jackson, 2006) with a cut-off of 5 points or fewer.

The study was limited to men as there are gender differences
in the prevalence and clinical presentation of gambling disorder

and its relation to the externalizing spectrum (Blanco et al., 2006;
Oleski et al., 2011) and in DA synthesis capacity (Laakso et al.,
2002). Additionally, fMRI studies suggest a stronger relationship
between ventral striatal activity to reward cues and impulsivity in
men than women (Lahey et al., 2012).

Permission to undertake the study was granted by the Ham-
mersmith Hospitals Research Ethics Committee and all partici-
pants gave written informed consent following a full explanation
of the procedure. The Administration of Radioactive Substances
Advisory Committee (ARSAC) of the UK approved radioisotope
use.

PERSONALITY TRAIT MEASUREMENT
Our measure of trait behavioral disinhibition was based on
NS from Cloninger’s Tri-dimensional Personality Questionnaire
(TPQ; Cloninger, 1987). The version of the TPQ used here
was a 100-item, self-administered, true-false instrument. The
questionnaire is scored so that higher scores reflect greater NS
tendencies.

As originally constructed (Cloninger, 1987) TPQ-NS com-
prised four narrow facet-level scales: Exploratory Excitability vs.
Stoic Rigidity (NS1), Impulsiveness vs. Reflection (NS2), Extrav-
agance vs. Reserve (NS3), and Disorderliness vs. Regimentation
(NS4). When Ando et al. (2004), however, examined the genetic
and environmental factor structure of NS, factor analysis of the
genetic inter-correlations yielded factors that did not fully resem-
ble the phenotypic structure of NS as proposed by Cloninger
(1987). NS was revised (r-NS) to consist of Impulsiveness vs.
Reflection (NS2), Extravagance vs. Reserve (NS3) and Disorderli-
ness vs. Regimentation (NS4), excluding Exploratory Excitability
vs. Stoic Rigidity (NS1). Further, Flory and Manuck (2009),
using factor analysis in a large normative sample of adults, found
Impulsiveness vs. Reflection (NS2) and Extravagance vs. Reserve
(NS3) to have high loadings on a “disinhibition” factor, along
with the Barratt Impulsiveness Scale (BIS), whereas Exploratory
Excitability vs. Stoic Rigidity (NS1) and Disorderliness vs. Regi-
mentation (NS4) loaded on a distinct “Experience seeking” factor.

Hence, in the current study, we focused on those r-NS facets
most strongly linked to trait disinhibition: Impulsiveness (vs.
Reflection) (NS2) (8 items) and Extravagance (vs. Reserve) (NS3)
(7 items). Sample items include “I often follow my instincts,
hunches, or intuition without thinking through all the details”
(Impulsivity, NS2) and “I often spend money until I run out of cash
or get into debt from using too much credit” (Extravagance, NS3).

In addition to NS, we also measured Harm Avoidance (HA)
traits using the TPQ. We calculated a total HA score based on
the sum of the four individual HA facet-level scales, as Ando
et al. (2004) confirmed Cloninger’s (1987) claim that the sub-
scales used to define HA share a common genetic basis. Accord-
ing to Cloninger (1986), although NS and HA are genetically
independent traits, at the phenotypic level high levels of HA
should inhibit the expression of NS tendencies, since activation
of the HA system results in a “reflexive” or “reactive” form of
behavioral inhibition (Carver, 2008)—dampening the expression
of appetitive approach behavior and NS, given cues of potential
punishment (Newman and Wallace, 1993; Nikolova and Hariri,
2012). Indeed, meta-analysis reveals a consistent strong negative

Frontiers in Behavioral Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 86 | 62

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Lawrence and Brooks Dopamine and behavioral disinhibition

correlation between NS and HA (Miettunen et al., 2008; here the
relation between HA and NS3 for example was r = −0.44), a
relationship that is environmentally (i.e., through experience) and
not genetically mediated (Ando et al., 2002). Hence, we controlled
for the influence of HA when examining the relation between
striatal FDOPA Ki values and NS traits.

POSITRON EMISSION TOMOGRAPHY (PET) SCANNING PROTOCOL
Participants were pre-treated with 150 mg carbidopa and 400 mg
entacapone 1 h prior to radioisotope administration (to block
peripheral metabolism of FDOPA and so enhance specific signal
detection) and underwent three-dimensional FDOPA PET using
an ECAT EXACT HR++ (CTI/Siemens 966) camera, which covers
an axial field of view of 23.4 cm and provides 95 transaxial planes.
The tomograph has a spatial resolution of 4.8 + 0.2 mm FWHM
(transaxial, 1 cm off axis) and 5.6 mm + 0.5 mm (axial, on axis)
after image reconstruction (Spinks et al., 2000). A transmission
scan, which corrects for attenuation of emitted radiation by skull
and tissues, was acquired using a single rotating photon point
source of 150 MBq of 137Cs. 30 s after the start of the emission
scan, 110 (range 102–135) MBq of FDOPA in 10 ml normal
saline was infused intravenously over 30 s. Three-dimensional
sinograms of emission data were then acquired over 90 min as
26 time frames. Participants were placed in the scanner with
the orbito-meatel line parallel to the transaxial plane of the
tomograph. Head position was monitored via laser crosshairs and
video camera.

IMAGE QUANTIFICATION
Parametric images of specific FDOPA influx constants (Ki maps)
were created at a voxel level for the whole brain using linear
graphical analysis (Patlak and Blasberg, 1985) of time activity
curves with an occipital cortex (Brown et al., 1979) non-specific
reference input function. Qualitative summated ADD images
created from the dynamic FDOPA time series by integrating all
26 frames of the dynamic image were also produced and then
transformed into standard stereotaxic (Montreal Neurological
Institute, MNI) space using an FDOPA template created in-
house from a healthy volunteer database. These ADD images
contain both tracer delivery and specific uptake information and
provide adequate anatomical detail to allow them to be stereo-
taxically normalized into standard MNI space. Subsequently,
the Ki maps were individually normalized to MNI stereotaxic
space by applying the transformation parameters defined dur-
ing the normalization of their respective ADD images. This
spatial transformation of parametric images made it possible
to perform a region of interest (ROI) analysis as described
below.

REGION OF INTEREST (ROI) ANALYSIS
Standard ROI object maps sampling the ventral and dorsal stria-
tum were defined on the MNI single-subject ROI in stereotaxic
space. For our striatal ROIs, the volume was subdivided as fol-
lows: all planes containing striatal structures below the ante-
rior commissure-posterior commissure plane were operationally
defined as the ventral striatum (VS) ROI, and all planes above the
anterior commissure-posterior commissure plane containing stri-
atal structures formed the dorsal striatum (DS) ROI. The standard

object map was applied to the transformed Ki maps and values of
FDOPA Ki (units: ml · g−1 · min−1) were obtained for the two
striatal ROIs for each individual (McGowan et al., 2004). When
performing our ROI analysis a manual correction for head move-
ment was applied as previously described (Whone et al., 2003).

STATISTICAL ANALYSIS
We used Pearson partial correlations to examine the relationships
between striatal FDOPA K i values and disinhibitory NS traits,
controlling for relevant nuisance variables (Spector and Brannick,
2011). Statistical significance was set at a Bonferroni-corrected
P < 0.0125 (i.e., 0.05/4).

RESULTS
Mean ± SD scores in our sample for NS2 (Impulsivity) and NS3
(Extravagance) were 3.5 ± 2.5 and 4.3 ± 1.1, respectively. These
results are comparable to those obtained in a normative sample of
106 UK men (mean age 31, SD ± 11.5) by Otter et al. (1995) (NS2
mean 3.1, SD ± 2.2; NS3 mean 3.8, SD ± 2.0). HA scores (HA
mean 8.1, SD ± 4.7) were somewhat lower than those reported by
Otter et al. (HA mean 10.7 ± 6.2), perhaps reflecting self-selection
bias in individuals who volunteer for PET scanning (Oswald et al.,
2013).

Mean ±SD FDOPA Ki values for the VS and DS ROIs were
0.0131 ± 0.001 and 0.0125 ± 0.002 ml · g−1 · min−1 respectively.

Since, in adults, NS shows a significant decrease with increas-
ing age (Otter et al., 1995), we controlled for the effects of age
when examining the relationship between striatal FDOPA Ki and
disinhibitory NS traits (Impulsivity and Extravagance). Further-
more, for the reasons outlined above, we additionally controlled
for HA scores.

When controlling for the influence of age and HA there was a
significant relationship between VS FDOPA Ki and NS3 (Extrav-
agance) (r = 0.78, bootstrap 95% CI 0.52–0.98, P = 0.008), but
not between VS FDOPA Ki and NS2 (Impulsivity) (r = 0.44, P =
0.2). There were no significant relations between DS FDOPA Ki

and either NS3 (r = 0.28, P = 0.40) or NS2 (r = 0.003, P = 0.99)
when controlling for age and HA (see Figure 1). Examination of
Figure 1 suggests that one individual data point may be an outlier.
When this data point was removed, however, the relationship
between VS FDOPA Ki and NS3, controlling for age and HA,
remained significant (r = 0.71, bootstrap 95% CI 0.51–0.92, P =
0.014). We found identical results when using a Spearman partial
correlation (Schemper, 1991).

DISCUSSION
Consistent with our hypothesis, we found that, controlling for
the effects of age and HA, variation in trait disinhibition was
associated with levels of striatal DA synthesis capacity. Individuals
with greater levels of trait disinhibition, in particular, tendencies
to financial irresponsibility and extravagance, had greater DA
synthesis capacity, as indexed by FDOPA Ki values, in the ventral
but not dorsal striatum.

We (Lawrence et al., 2013) recently found that individual
differences in behavioral disinhibition (using the same personality
trait measure as used here) were similarly related to individual

Frontiers in Behavioral Neuroscience www.frontiersin.org March 2014 | Volume 8 | Article 86 | 63

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Lawrence and Brooks Dopamine and behavioral disinhibition

FIGURE 1 | Plot showing the partial correlation between ventral
striatal dopamine synthesis capacity (FDOPA Ki ), and disinhibitory
personality traits (NS3, Extravagance vs. reserve) controlling for age
and Harm Avoidance.

differences in ventral striatal DA synthesis capacity in individ-
uals with Parkinson’s disease. Those, individuals, were however,
being treated with DA agonist medication, which could poten-
tially have influenced both striatal DA synthesis (Rowlett et al.,
1993) and externalizing behaviors, including pathological gam-
bling (Weintraub et al., 2006). The current results importantly
extend our earlier findings to healthy, non-medicated individuals,
showing a relationship between disinhibitory traits and ventral
striatal DA synthesis capacity in the absence of potential DAergic
drug-induced effects. Taken together with the finding that genetic
variation in DDC activity predicts disinhibitory sensation seeking
tendencies in healthy individuals (Derringer et al., 2010), our
results suggest that the link between behavioral disinhibition and
ventral striatal DA synthesis capacity is likely to be, to a significant
extent, genetically mediated. At the same time, we acknowl-
edge that there are substantial (potentially shared) environmental
influences on ventral striatal DA synthesis capacity (Stokes et al.,
2013), behavioral disinhibition (Lomanowska et al., 2011) and
externalizing (Hicks et al., 2013).

As in our earlier study of Parkinson’s disease, here we found
that only the r-NS facet-level scale NS3 (Extravagance vs. Reserve)
was related to ventral striatal DA synthesis capacity. There was
no significant relation with the NS2 subscale (Impulsivity vs.
Reflection). The reasons for this are unclear. It is notable, however,
that, of the NS facet-level scales, NS3 shows the strongest relation
to both pathological gambling (Kim and Grant, 2001; Nordin and
Nylander, 2007) and substance abuse (Etter et al., 2003). It may
be that, of the disinhibitory NS facets, NS3 most closely indexes
those traits (irresponsibility, problematic impulsivity) that lie at
the core of the broad externalizing factor (Krueger et al., 2007).

Consistent with the proposal that externalizing vulnerability
reflects, at least in part, individual differences in reward sensi-
tivity (Iacono et al., 2008); the influence of variation in ventral
striatal DA synthesis capacity on externalizing propensity likely

reflects DA’s role in one particular aspect of reward processing,
namely the attribution of incentive salience (Berridge, 2012).
Incentive salience is a motivational component of reward, one that
transforms sensory information about rewards and reward cues
into attractive, “wanted” incentives, motivating pursuit (Berridge,
2012). Notably, Flagel et al. (2010) found in rats that incentive
salience attribution and behavioral disinhibition are genetically
influenced, correlated traits. Available data suggest that animals
prone to attribute incentive salience to reward cues have a more
active DA system than those who do not (Flagel et al., 2010).
In humans, VS FDOPA Ki values have been found to positively
correlate with BOLD-fMRI activity to reward cues in limbic
brain regions linked to incentive salience attribution (Siessmeier
et al., 2006), and limbic BOLD-fMRI responses to reward cues
are correlated with both disinhibitory personality traits (Beaver
et al., 2006; Buckholtz et al., 2010) and externalizing symp-
tomatology (Bjork et al., 2010). One possibility is that indi-
viduals high on externalizing risk show exaggerated phasic DA
release to reward cues, resulting from a larger releasable pool of
DA generated by increased DA synthesis capacity (Bello et al.,
2011; Anzalone et al., 2012), triggering excessive attribution of
incentive salience to environmental cues and their associated
rewards, leading to behavioral disinhibition (Flagel et al., 2010;
Lovic et al., 2011) (but see Huys et al., 2014 for an alternative
proposal).

At first glance, our findings seem inconsistent with an earlier
study of detoxified alcoholics, which found no differences in
ventral striatal DA synthesis capacity relative to a healthy control
group (Heinz et al., 2005). Alcohol misuse, however, is multiply
determined, and influenced to a greater extent by factors unique
to alcohol, than by the general tendency to externalizing (Krueger
et al., 2007). Further, it is possible that chronic alcohol use may
produce potentially neurotoxic effects on DA neurons (Gilman
et al., 1998), obscuring any pre-morbid trait influence on DA
synthesis capacity.

It is important to note that FDOPA is not a specific ligand
for DA neurons but rather is metabolized by all neurons that
contain AADC (Brown et al., 1999). Hence, it is a marker for all
tissues that take up and store monoamines, including serotonin
(5-hydroxytryptamine, 5-HT) as well as DA neurons (Hashemi
et al., 2012). 5-HT has been implicated in various aspects of
impulsivity (Carver et al., 2008; Cools et al., 2008). Notably, Jupp
et al. (2013) however, failed to find a relationship between levels of
trait impulsivity (defined by premature responding on a 5-choice
serial reaction time task) and levels of accumbens 5-HT in rats. It
is likely, therefore, that individual differences in trait disinhibition
are primarily related to individual differences in ventral striatal
DA synthesis capacity.

In conclusion, we have found that personality based vulnera-
bility to externalizing problems, including pathological gambling,
is related to relatively increased DA synthesis capacity in the
ventral, but not dorsal, striatum in a sample of healthy men. Our
results are consistent with preclinical models of behavioral dis-
inhibition and addiction proneness, and may prove informative
in understanding the neurobiological and psychological mech-
anisms underlying personality risk for phenotypically diverse
forms of disinhibitory psychopathology.
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Gambling is characterized by cognitive distortions in the processing of chance and skill
that are exacerbated in pathological gambling. Opioid and dopamine dysregulation is
implicated in pathological gambling, but it is unclear whether these neurotransmitters
modulate gambling distortions. The objective of the current study was to assess the
effects of the opioid receptor antagonist naltrexone and the dopamine D2 receptor
antagonist haloperidol on gambling behavior. Male recreational gamblers (n = 62) were
assigned to receive single oral doses of naltrexone 50 mg, haloperidol 2 mg or placebo,
in a parallel-groups design. At 2.5 h post-dosing, participants completed a slot machine
task to elicit monetary wins, “near-misses,” and a manipulation of personal choice, and
a roulette game to elicit two biases in sequential processing, the gambler’s fallacy and
the hot hand belief. Psychophysiological responses (electrodermal activity and heart rate)
were taken during the slot machine task, and plasma prolactin increase was assessed.
The tasks successfully induced the gambling effects of interest. Some of these effects
differed across treatment groups, although the direction of effect was not in line with
our predictions. Differences were driven by the naltrexone group, which displayed a
greater physiological response to wins, and marginally higher confidence ratings on
winning streaks. Prolactin levels increased in the naltrexone group, but did not differ
between haloperidol and placebo, implying that naltrexone but not haloperidol may
have been functionally active at these doses. Our results support opioid modulation of
cognition during gambling-like tasks, but did not support the more specific hypothesis that
naltrexone may act to ameliorate cognitive distortions.

Keywords: naltrexone, haloperidol, pathological gambling, addiction, reward, motivation, decision-making,

psychophysiology

INTRODUCTION
Gambling is a widespread form of recreational risk-taking that
becomes excessive and pathological in a subset of the popula-
tion (around 1%; Wardle et al., 2010). Pathological gambling
is increasingly viewed as a “behavioral addiction” and has been
reclassified within the Addictions category in the DSM-5 (Petry
et al., 2013). Recent work on pathological gambling has studied
its underlying neurobiological basis, highlighting the similarities
with substance use disorders (Potenza, 2008) and focusing on
the neuroimaging of reward-based tasks (Limbrick-Oldfield et al.,
2013) and changes in neurotransmitter function (Leeman and
Potenza, 2012). A distinct cognitive approach to gambling has
emphasized the role of erroneous thinking styles (“cognitive dis-
tortions”) during gambling (Ladouceur and Walker, 1996; Clark,
2010): gamblers experience a variety of biases and erroneous
thoughts during play, pertaining in particular to their perceived
level of skill in controlling the outcomes (“the illusion of control”;

Langer, 1975) and their tendency to detect patterns in ran-
dom sequences (“the Gambler’s Fallacy”; Oskarsson et al., 2009).
While the gambling cognitions are apparent in non-problem
gamblers and student populations, the overall level of distorted
thinking is elevated in people with gambling problems (Miller
and Currie, 2008; Emond and Marmurek, 2010; Michalczuk
et al., 2011) and these cognitions can be targeted effectively by
cognitive-behavioral therapies (Fortune and Goodie, 2012). The
neurobiological mechanisms that underlie these gambling-related
distortions have received minimal attention to date, and the aim
of the present study was to examine their pharmacological basis,
looking at dopamine and opioid receptor manipulations, in a
sample of mild recreational gamblers.

The opioid system is the target of growing interest in patho-
logical gambling, primarily on the basis of clinical trials showing
significant benefits of the opioid receptor antagonists naltrexone
and nalmefene on gambling symptom severity and self-reported
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craving (Kim et al., 2001; Grant et al., 2006, 2008). These medica-
tions are well established in the clinical management of opiate and
alcohol dependence (O’Brien, 2005). Preclinical evidence indi-
cates that opioid receptors are distributed widely in the mesolim-
bic system, and can modulate dopamine transmission (Spanagel
et al., 1992). Endogenous opioids are implicated particularly in
hedonic aspects of reward processing (Pecina et al., 2006; Barbano
and Cador, 2007). Of relevance to gambling behavior, a phar-
macological fMRI study of the μ-opioid antagonist naloxone
found attenuated reward-related responses in the ventral stria-
tum, and enhanced loss-related activity in the medial prefrontal
cortex, on a wheel of fortune task in healthy volunteers (Petrovic
et al., 2008). Thus, the treatment effect in pathological gambling
may be mediated by a dual action of enhancing aversive process-
ing and attenuating positive processing of gambling outcomes.
The present study employed the opioid receptor antagonist nal-
trexone, which is a competitive antagonist at μ- and κ-opioid
receptors, and to a lesser extent at δ-opioid receptors (Kreek,
1996). We used a 50 mg single dose that is widely used in other
cognitive studies in healthy volunteers (Katzen-Perez et al., 2001;
Mitchell et al., 2007; Boettiger et al., 2009).

Dopamine dysregulation has also been indicated in prob-
lem gambling, based on genetic data (Lobo and Kennedy, 2009)
and studies measuring peripheral markers (Bergh et al., 1997;
Meyer et al., 2004), as well as the provocative syndrome in
Parkinson’s Disease where medications acting at the dopamine
D2/D3-receptor are linked to the emergence of disordered gam-
bling as a side-effect (Voon et al., 2009; Djamshidian et al.,
2011). Dynamic PET studies with the dopamine D2/D3 radio-
tracer [11C]raclopride have confirmed that monetary reinforce-
ment induces dopamine release in healthy volunteers performing
gambling-like tasks (Zald et al., 2004; Martin-Soelch et al., 2011),
and the magnitude of dopamine release is elevated in at least
a subset of patients with pathological gambling (Steeves et al.,
2009; Linnet et al., 2011; Joutsa et al., 2012). In addition, acute
administration of the dopamine stimulant amphetamine, and
the D2-receptor antagonist haloperidol, were both seen to mod-
ulate gambling tendencies in pathological gamblers (Zack and
Poulos, 2004, 2007). In the present study, we sought to manip-
ulate dopamine transmission with haloperidol, a first genera-
tion antipsychotic with high D2 binding affinity in the striatum
(Kapur et al., 1996; Xiberas et al., 2001). We selected a low (2 mg)
dose of haloperidol that we expected to act preferentially on the
presynaptic D2 auto-receptors to increase dopamine transmission
(Frank and O’Reilly, 2006).

We examined a number of gambling variables that can be
elicited with laboratory tasks. We used a slot machine task that
delivered unpredictable monetary wins as well as “near-miss”
outcomes: non-wins that are spatially proximal to a jackpot
win (Reid, 1986). Relative to “full-misses,” near-misses are rated
as unpleasant but increase motivations to continue gambling,
despite their objective non-win status (see also Kassinove and
Schare, 2001). Previous neuroimaging of this task showed that
near-misses recruited overlapping brain circuitry to the win out-
comes, including the ventral striatum and insula, in both healthy
volunteers and regular gamblers (Clark et al., 2009; Chase and
Clark, 2010). In the present study, we measured the subjective

response to these wins and near-misses with trial-by-trial ratings.
We also recorded psychophysiological activity following these
outcomes using electrodermal activity (EDA) and heart rate (HR)
recording, which have established sensitivity to gambling out-
comes (Dixon et al., 2011; Lole et al., 2012; Studer and Clark,
2011; Clark et al., 2012a). In addition, the slot machine task
measures one example of illusory control, the effect of personal
choice, by comparing the expectancies of winning under con-
ditions where the participant either chose, or was not able to
choose, the “play icon.” Subjects rate their expectancy of winning
as higher on participant-chosen trials (Clark et al., 2009, 2012a),
and fMRI signals to monetary wins are enhanced under this
choice manipulation (Coricelli et al., 2005; Studer et al., 2012).

We also administered a second task, based upon roulette,
which involved binary predictions of red or black outcomes and
a subsequent confidence rating (Ayton and Fischer, 2004). The
Gambler’s Fallacy is observed as the reduced choice of one color
(e.g., red) after a “run” of consecutive outcomes of that color
(e.g., four successive reds). In addition, participant’s confidence
ratings are sensitive to their prediction accuracy, with “streaks”
of consecutive correct guesses (i.e., wins) increasing self-reported
confidence, and incorrect predictions (i.e., a losing streak) leading
to decreased confidence. These are known as “hot hand” effects
(Gilovich et al., 1985; Ayton and Fischer, 2004). Past neuroimag-
ing studies found modulation of caudate, insula and medial
prefrontal cortex activity by streaks of wins and losses in binary
choice games (Elliott et al., 2000; Akitsuki et al., 2003).

As a preliminary investigation, we examined the effects of
haloperidol and naltrexone on these gambling variables in a
group of healthy male volunteers, who reported recreational gam-
bling involvement. There is evidence that both gambling-related
cognitive distortions, and problem gambling symptom severity,
exist on a continuum, such that recreational gamblers are con-
sidered at some degree of risk for later problematic gambling
(Toce-Gerstein et al., 2003; Raylu and Oei, 2004). Rates of gam-
bling involvement and the prevalence of pathological gambling
are typically higher in males (Bland et al., 1993; Shaffer et al.,
1999).

The overarching hypothesis was that the gambling cogni-
tions under scrutiny would be modulated by the dopamine
and opioid-based treatments. Given preclinical evidence that μ-
opioid blockade exerts a downstream effect on dopamine trans-
mission (Spanagel et al., 1992), we were further interested in the
overlap between the cognitive variables affected by naltrexone
and haloperidol. Previous work afforded a number of more spe-
cific predictions. First, there are some indications that dopamine
may modulate near-miss effects and illusory control, specifi-
cally. Using a rodent version of a slot machine, amphetamine
and the dopamine D2 agonist quinpirole increased erroneous
lever presses on a game with near-misses (2 of 3 identical sym-
bols) (Winstanley et al., 2011). Dopamine is also implicated
in perceptions of control (Declerck et al., 2006; Redgrave and
Gurney, 2006); for example, levodopa increased the sense of
agency (“action-effect binding”) on a timing task in patients with
Parkinson’s Disease (Moore et al., 2010). As such, we predicted
that the low dose of haloperidol would potentiate subjective
and physiological responses to win and near-miss outcomes, and
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enhance the influence of personal choice, on the slot machine
task. Second, drawing on Petrovic et al. (2008), we predicted
that the naltrexone group would show attenuated responses to
winning outcomes, coupled with enhanced negative processing
(affect following near-misses) on the two tasks. Given the lack
of past work to guide predictions about neurotransmitter effects
on the Roulette task, these data were analyzed in an exploratory
manner.

METHODS
PARTICIPANTS
Male participants (n = 62) were recruited through the University
and community advertisements. Participants were aged 18–49
years, and reported past year gambling involvement and at least
5 lifetime gambling experiences. Exclusion criteria (confirmed
through telephone interview): a score = 8 (indicative of probable
pathological gambling) on the Problem Gambling Severity Index
(Ferris and Wynne, 2001), significant neurological or physical ill-
ness, current or past mental health problems, including substance
use and heavy smoking (>10 cigarettes/day). The study was
approved by the Cambridgeshire 4 Research Ethics Committee
(10/H0305/79). All participants gave written informed consent
and were paid £35 for their participation (plus a task-related
bonus of £6).

STUDY DESIGN
The study was a double-blind, parallel-groups, placebo-
controlled design, involving a single session at a clinical research
facility. Subjects were randomly allocated to the three treat-
ment groups: 2 mg haloperidol, 50 mg naltrexone or placebo
(microcritalline cellulose) hidden in identical gelatine capsules.
Upon arrival, a urine sample was taken to confirm absence of
recent opiate use, and participants completed trait question-
naires assessing impulsivity (UPPS-P; Cyders et al., 2007) and
susceptibility to gambling biases (Gambling Related Cognition
Scale; Raylu and Oei, 2004). Participants also completed the elec-
tronic Mini International Neuropsychiatric Interview (eMINI)
(Sheehan et al., 1998) for further investigation of current and
lifetime psychiatric disorders. Mental health problems were
detected in 17 participants; 7 subjects in the placebo group (alco-
hol dependence n = 4, obsessive-compulsive disorder n = 1,
hypomanic episode n = 1, bulimia nervosa n = 1), 7 subjects
in the haloperidol group (alcohol dependence n = 1, alcohol
abuse n = 2, obsessive-compulsive disorder n = 2, cocaine abuse
n = 1, generalized anxiety disorder n = 1); and 3 subjects in
the naltrexone group (alcohol dependence n = 1, hypomanic
episode n = 1, major depressive episode n = 1). The proportion
of participants meeting eMINI diagnoses did not differ across
the three treatment groups (χ2 = 2.77, p = 0.25). Given that
participants had disclosed no past or current mental health
problems in the telephone interviews, we cannot rule out the
possibility that the eMINI detections were false positives.

Following dosing, participants rested for 2.5 h to allow drug
absorption. This timing was based upon pharmacokinetic data
showing that haloperidol reaches maximal plasma concentrations
after 3 h (plasma half-life: 24 h) (Darby et al., 1995), whereas
naltrexone reaches maximal plasma concentration after 45 min

with a plasma half-life of 4 h (Crabtree, 1984; Meyer et al., 1984).
After this rest period, volunteers completed the Slot Machine Task
(Clark et al., 2009) with concurrent psychophysiological moni-
toring of HR and EDA, followed by the Roulette Task (Ayton and
Fischer, 2004). Blood samples were taken pre-dosing (T1) and at
the start of the testing period (T2, +2.5 h) to measure serum pro-
lactin levels as a marker of dopaminergic tone (Ben-Jonathan and
Hnasko, 2001). Blood pressure (BP) and HR were measured with
a wrist cuff, and mood was measured with Visual Analogue Scales
(Bond and Lader, 1974), at T1, T2, and on completion of testing
(T3, +4 h). VAS data were unavailable for a single subject.

PROLACTIN ANALYSIS
Blood samples (4.7 ml) were centrifuged at 4000 rpm for 5 min
at room temperature to obtain serum and then distributed into
two aliquots of about 1.5 ml. The samples were frozen at −80◦C
until analysis. Prolactin levels were analyzed by the National
Institute for Health Research Cambridge Biomedical Research
Center Core Biochemistry Assay Laboratory, Addenbrooke’s hos-
pital, and were tested with immunofluorometric assay (ADVIA
Centaur prolactin assay, Siemens). Results are reported in mU/L.
Prolactin samples were unavailable or contaminated by macro-
prolactin in two subjects.

TASKS
Slot machine task
Participants completed 60 trials (following 4 practice trials) on a
simplified two-reel slot machine task, described in detail in Clark
et al. (2009) (see Figure 1). Psychophysiological signals (EDA
and HR) were monitored during the task using a Biopac MP36
(see below). The screen background color (white or black) des-
ignated two choice conditions: either participant-chosen trials,
in which the participant selected the “play icon” on the left reel
by scrolling the reel up or down, and computer-chosen trials,

FIGURE 1 | The slot machine task displayed two reels, with the same

six icons on each reel. Each trial involved a fixed £0.15 p wager. After a
selection phase in which either the computer or the participant chose one
of the icons on the left reel as the “play icon,” the right reel spun for a
variable anticipation phase. The right reel decelerated and came to a
standstill. If the right reel stopped on the chosen play icon, i.e., the reels
were aligned on the central payline, the subject won £1. If the right reel
stopped on a different icon (5/6 trials), the participant lost their wager. In the
analysis of these non-wins, we distinguished near-misses (with the play
icon either side of the payline) and full-misses (with the play icon more than
one position from the payline).
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in which the play icon was selected automatically. Following
icon selection, the right reel spun and decelerated (mean spin
time: 4.2 s) to deliver a win (£1), near-miss, or full-miss out-
come (outcome duration 6 s). Current earnings were displayed
in the inter-trial interval (duration 5 s), with an initial endow-
ment of £5. The outcomes and choice condition (participant-
chosen, computer-chosen) occurred in a fixed pseudo-random
sequence such that wins occurred on 1/6, and near-misses on
1/3 trials. As a consequence of the fixed sequence, all partic-
ipants completed the task with £6, which they received as a
bonus.

On each trial, three Likert ratings were taken: following icon
selection, “How do you rate your chances of winning?” (0
to +100), and following the outcome, “How pleased are you with
the result?” (−100 to +100) and “How much do you want to
continue to play?” (0 to +100).

Roulette task
This binary choice task was modified from Ayton and Fischer
(2004). The roulette wheel displayed an equal number of red and
blue segments (see Figure 2), and on each trial, the participant
first guessed red or blue, and then gave a confidence rating on 21-
point scale. A history bar during the color choice presented the 10
previous outcomes, to minimize working memory demands that
may be independently affected by the drug treatments.

Following the color choice and confidence rating, the wheel
spun for 800–1200 ms, and the outcome was presented (e.g.,
“Blue: you win”). Participants received £0.10 for correct guesses,
with no reinforcement (i.e., losses) for incorrect guesses.
Participants completed 3 practice trials, followed by a total of
90 trials, using a pre-specified color sequence in order to deliver
runs of 1–5 consecutive outcomes of the same color. This fixed
sequence had an equal probability of either color, and a prob-
ability of alternation of 0.48 (see Oskarsson et al., 2009 for
derivation). We refer to consecutive outcomes of the same color
as “outcome runs” (i.e., blue, red, red, red is an outcome run
of length 3), and consecutive correct or incorrect predictions as
“feedback streaks.” Two dependent variables were derived: (1) the
probability of choosing either color as a function of the outcome

run of that color, indicative of the Gambler’s Fallacy, (2) the con-
fidence rating as a function of feedback streak, indicative of the
Hot Hand Beliefs.

PSYCHOPHYSIOLOGICAL MEASUREMENT
During the slot machine task, electrodermal activity (EDA) and
HR calculated from electrocardiogram (ECG) were recorded via a
BIOPAC MP36 unit (BIOPAC Systems Ltd, Goleta, CA, USA), fol-
lowing methods previously (Clark et al., 2012a,b). The BIOPAC
unit, sampling at 1000 Hz, was connected to the stimulus deliv-
ery computer and to a second recording computer running
AcqKnowledge 4.1 software. Task events were marked on the
psychophysiological trace via a parallel port connection. EDA
was recorded through fingertip electrodes attached to the index
and middle fingers of the non-dominant hand. Heart rate was
recorded using ECG electrode patches applied to the right wrist
and left ankle. The psychophysiological data were extracted using
in-house scripts developed in Microsoft Visual Basic (v6.0): activ-
ity on the slot machine task was modeled to the time of outcome
delivery, using change from baseline scores calculated from the
mean activity in the final 2 s of reel spin. Mean EDA was extracted
in 6 × 2 s bins from the onset of the outcome phase. An EDA sum-
mary measure was calculated from the maximum change from
baseline value in bins 2–4 (i.e., 2–8 s post-outcome), given the
typical time-course for EDA changes (Dawson et al., 2000). HR
responses were calculated using the median HR in 12 × 0.5 s bins
from the onset of the outcome phase. Two HR summary measures
isolated the initial HR deceleration component (the minimum
value in bins 1–6, i.e., 0–3 s post-outcome, minus the baseline)
and the subsequent HR acceleration component (the maximum
in bins 7–12, i.e., 3–6 s post-outcome, minus the deceleration
minima) (Hodes et al., 1985; Bradley, 2000).

STATISTICAL ANALYSIS
Statistical analysis was performed in SPSS version 19.0.
Demographic and trait variables were compared across groups
using One-Way ANOVA. Fisher’s least significant difference test
was used for post-hoc comparisons, as is appropriate for 3-group
designs (Cardinal and Aitken, 2006). Mood scales, cardiovascular

FIGURE 2 | The roulette task presented a color choice (red or

blue) on each trial, followed by a confidence rating. The
roulette wheel then spun, and the outcome and feedback were

presented. A history bar across the top of the screen indicated
the last ten outcomes, to alleviate any working memory
requirements.
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measures, and prolactin levels were assessed with mixed-model
ANOVAs including Timepoint as a within-subjects factor.

On the slot machine task, the subjective ratings and psy-
chophysiology summary measures were analyzed with mixed-
model ANOVA, with Outcome (wins, near-misses, full-misses)
and Choice (participant-chosen, computer-chosen) as within-
subjects factors, and Treatment (3 levels: haloperidol, naltrexone,
placebo) as a between-subjects factors. Data from the roulette task
were analyzed using two mixed-model ANOVAs, with Treatment
(3 levels: placebo, haloperidol, naltrexone) as the between-
subjects factor. For analysis of color predictions, Outcome Run
length was the within-subjects factor. For the analysis of confi-
dence ratings, Feedback Streak length and Outcome (winning,
losing) were within-subjects factors. Simple main effects analysis
of the roulette task data compared shorter runs/streaks (1–2 suc-
cessive events) against longer runs/streaks (4–5 successive events).
As the feedback streaks were not pre-specified, some subjects did
not experience any longer streaks. For participants missing only
streaks of length five, we imputed their streak length 4 value for
their missing value (this is a conservative approach that under-
estimates any effect of the longer streaks). Three participants
were excluded who did not experience streaks longer than three
events. In addition, one further participant was excluded who
did not vary either his color choice or confidence ratings across
the task.

As the primary aim of this study was to compare the effects
of haloperidol and naltrexone relative to the placebo condition,
rather than the direct comparison of the two active treatments,
the omnibus 3-group model was decomposed using two planned
comparisons of the haloperidol group vs. placebo, and the nal-
trexone group vs. placebo. For all analyses, the Greenhouse-
Geisser correction was applied when sphericity assumptions were
violated, and the Huynh-Feldt correction was reported when the
Greenhouse-Geisser estimate was greater than 0.75 (Cardinal and
Aitken, 2006). All tests were thresholded at p < 0.05 two-tailed.

RESULTS
The three treatment groups did not differ significantly in age,
years of education, trait gambling distortions, or impulsivity (see
Table 1). The overall level of problem gambling was low on the
PGSI (mean 1.5; SD 1.73; range 0–7; a score = 8 is indicative of
probable pathological gambling), but GRCS scores were in range

Table 1 | Participant characteristics and demographic details.

Placebo Haloperidol Naltrexone Test statistic

(N = 20) (N = 21) (N = 21)

Age (years) 27.2 (8.0) 26.6 (7.1) 27.1 (8.3) F(2, 61) = 0.04, NS

Education 17.4 (3.1) 16.3 (3.1) 16.7 (2.3) F(2, 61) = 0.68, NS

PGSI 1.6 (1.7) 1.6 (1.8) 1.3 (1.8) F(2, 61) = 0.17, NS

GRCS 47.7 (21.2) 53.4 (15.1) 58.0 (18.1) F(2, 61) = 1.64, NS

UPPS-P 137.8 (17.8) 128.3 (23.4) 129.2 (14.6) F(2, 61) = 1.57, NS

The values are reported in means and standard deviations; PGSI, problem

gambling severity index (range 0–27); GRCS, gambling-related cognitions scale

(range 23–161), UPPS-P Impulsivity Scale (range 59–236). NS, not significant.

of previous data in recreational gamblers (Raylu and Oei, 2004;
Billieux et al., 2012).

PROLACTIN LEVELS
For plasma prolactin levels, there was a significant Treatment ×
Time interaction [F(2, 57) = 4.09, p = 0.022, η2

p = 0.13]. The

main effects of Treatment [F(2, 57) = 2.42, p = 0.098, η2
p = 0.08]

and Time [F(1, 57) = 3.44, p = 0.069, η2
p = 0.06] approached

significance. Analysis of change scores (T2 minus T1) indi-
cated prolactin increase in the naltrexone group compared to
placebo [t(38) = −2.78, p = 0.008], consistent with downstream
dopaminergic blockade by naltrexone. The haloperidol group did
not differ significantly from placebo (p > 0.1) (see Figure 3).

MOOD AND CARDIOVASCULAR MEASURES
On the subjective mood ratings, there were no differences
between treatment groups (i.e., the Treatment × Time interaction
term) for Alertness [F(4, 116) = 1.06, NS], Happiness [F(4, 116) =
1.70, NS] or Calmness [F(4, 116) = 0.09, NS]. Main effects of Time
were observed on Alertness [F(2, 116) = 23.10, p < 0.001, η2

p =
0.29] and Happiness [F(2, 116) = 7.26, p = 0.001, η2

p = 0.11],
reflecting a general decrease over time across all groups.

On the cardiovascular measures, there were no differences
between treatment groups (i.e., Treatment × Time interac-
tions) on HR [F(4, 116) = 1.07, NS], systolic BP [F(3.3, 96.2) =
1.76, NS] or diastolic BP [F(4, 116) = 1.65, NS]. Systolic BP
and HR decreased over time across all groups [main effect of
Time: F(1.7, 96.2) = 3.92, p < 0.030, η2

p = 0.06; F(2, 116) = 45.49,

p < 0.001, η2
p = 0.44, respectively].

SLOT MACHINE TASK
Subjective effects of wins and near-misses
On the ratings of “pleased with outcome,” the omnibus ANOVA
revealed a significant main effect of Outcome [F(1.0, 59.0) =
189.66, p < 0.001, η2

p = 0.77], such that participants were more
pleased after wins compared to near-misses [t(59) = 13.15, p <

0.001] and full-misses [t(59) = 13.40, p < 0.001] (see Table 2).
Near misses were more pleasant than full misses [t(59) = 2.19,

FIGURE 3 | Prolactin levels (mU/L) at T1 (baseline) and T2 (start of

testing period). Naltrexone significantly increased prolactin levels. Error
bars indicate standard errors of the means.
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p = 0.033]. An Outcome × Choice interaction was observed
[F(1.5, 84.0) = 4.32, p = 0.026, η2

p = 0.07], such that for near-
misses and full-misses, participant-chosen outcomes were signif-
icantly less pleasant than computer-selected outcomes [t(59) =
2.32, p = 0.024; t(59) = 2.84, p = 0.006; respectively], whereas
for wins, pleasantness ratings did not differ by choice condition
[t(59) = 1.46, p = 0.149]. An Outcome × Treatment interaction
was observed [F(2.1, 59.0) = 4.15, p = 0.020, η2

p = 0.13], driven
by an effect of haloperidol [haloperidol model: F(1.0, 39.1) =
6.56, p = 0.014, η2

p = 0.15; naltrexone model: F(1.0, 38.6) = 0.85,
NS]. The haloperidol group rated higher pleasure after wins
[t(38) = −2.20, p = 0.034] and greater unpleasantness after non-
wins [near-misses: t(38) = 2.16, p = 0.038; full-misses: t35.7 =
2.36, p = 0.024] compared to the placebo group (see Table 2).
Thus, on a subjective rating, haloperidol appeared to potenti-
ate both the positive affect to winning as well as negative affect
following non-winning outcomes.

On the rating of “continue to play,” the omnibus ANOVA
revealed a significant main effect of Outcome [F(1.2, 67.0) = 45.5,
p < 0.001, η2

p = 0.44], reflecting higher ratings after wins com-
pared to non-wins [near-misses: t(59) = 6.60, p < 0.001; full-
misses: t(59) = 7.53, p < 0.001]. There was an Outcome × Choice
interaction [F(2, 114) = 13.5, p < 0.001, η2

p = 0.19]: the desire
to play was higher after participant-chosen near-misses, com-
pared to computer-chosen near-misses [t(59) = 5.00, p < 0.001],
and participant-chosen full-misses [t(59) = 4.78, p < 0.001], as
previously observed on this task (Clark et al., 2009, 2012a,b).
There was also an Outcome × Choice × Treatment interaction
[F(4, 114) = 3.39, p = 0.012, η2

p = 0.11], driven by an effect of

naltrexone [F(2, 74) = 3.57, p = 0.033, η2
p = 0.09] [haloperidol

model: F(2, 76) = 0.42, NS]. In the placebo group, the participant-
chosen near-misses were rated as more motivating than

Table 2 | Subjective ratings on the slot machine task.

Placebo Haloperidol Naltrexone

“CHANCES OF WINNING?”

Participant 38.8 (19.2) 46.0 (17.9) 40.9 (16.8)

Computer 32.7 (16.7) 36.7 (15.2) 36.5 (15.2)

“PLEASED WITH RESULT?”

Win, participant 32.0 (31.3) 56.6 (30.7) 49.9 (27.1)

Win, computer 34.1 (26.3) 51.2 (35.5) 43.4 (25.8)

Near-miss, participant −28.8 (21.2) −49.9 (27.7) −28.4 (19.7)

Near-miss, computer −29.2 (23.9) −42.9 (28.4) −24.9 (17.6)

Full-miss, participant −27.8 (20.1) −47.2 (28.7) −26.1 (18.9)

Full-miss, computer −26.4 (19.3) −42.6 (27.9) −21.8 (16.6)

“CONTINUE TO PLAY?”

Win, participant 51.8 (24.6) 60.1 (23.1) 62.3 (13.5)

Win, computer 52.2 (24.4) 62.5 (20.6) 59.2 (12.7)

Near-miss, participant 45.2 (21.3) 56.3 (19.8) 53.6 (12.1)

Near-miss, computer 40.5 (24.7) 51.4 (21.3) 52.2 (11.1)

Full-miss, participant 42.2 (23.1) 51.1 (22.9) 52.3 (12.0)

Full-miss, computer 44.3 (21.9) 53.3 (21.4) 53.5 (11.4)

Values are reported as mean (SD), separated by the participant-chosen condition

and the computer-chosen condition.

either computer-chosen near-misses [t(18) = 3.27, p < 0.001] or
participant-chosen full-misses [t(18) = 3.66, p < 0.001]. These
differences were not observed in the naltrexone group (all ps >

0.1) and the calculated difference score between participant-
chosen and computer-chosen near-misses was marginally higher
in the placebo group than in the naltrexone group [t(37) = 1.80,
p = 0.08]. Thus, naltrexone had a modest effect of attenuating the
motivational ratings after self-selected near-misses (see Figure 4).

Psychophysiological responses to wins and near-misses
For EDA max, there were significant main effects of Outcome
[F(1.4, 77.4) = 24.8, p < 0.001, η2

p = 0.31] and Choice [F(1, 56) =
28.0, p < 0.001, η2

p = 0.33]. Across all groups, participants expe-
rienced higher EDA responses after wins compared to non-wins
[near-misses: t(58) = 5.42, p < 0.001; full-misses: t(58) = 5.14,
p < 0.001]. There was a marginal increase in EDA after near-
misses in comparison to full-misses [t(58) = 1.98, p = 0.053].
Participants showed higher EDA on participant-chosen outcomes
compared to computer-chosen outcomes [wins: t(58) = 2.06, p =
0.044; near-misses: t(58) = 4.32, p < 0.001; full-misses: t(58) =
2.72, p = 0.009]. There was a significant Outcome × Treatment
interaction [F(2.8, 77.4) = 3.52, p = 0.022, η2

p = 0.11], which was
driven by the naltrexone group [F(1.4, 51.9) = 5.09, p = 0.018,
η2

p = 0.12] [haloperidol model: F(1.3, 46.0) = 0.15, NS]. The EDA
change to wins relative to full-misses was greater in the naltrexone
group than the placebo group [t(37) = −2.47, p = 0.018], as well
as marginally higher for the near-miss vs. full-miss change score
[t(37) = −1.80, p = 0.081] (see Figure 5A). Thus, naltrexone
increased the physiological responsiveness to wins in comparison
to full-misses (Table 3).

FIGURE 4 | Motivational ratings on the slot machine task showed an

outcome (near-miss, full-miss) by control (participant-chosen,

computer-chosen) interaction, whereby participant-chosen

near-misses increased motivation to continue relative to the

computer-chosen near-misses, in the placebo group (and haloperidol

group), and this was attenuated in the naltrexone group. Error bars
indicate standard error of the mean. ∗p < 0.08.
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FIGURE 5 | Psychophysiological responses on the slot machine task: (A)

Naltrexone significantly increased post-outcome EDA following wins

compared to both non-win outcomes (collapsing across choice

conditions). (B) The naltrexone group displayed marginally elevated
post-outcomeHRdeceleration followingwinscompared tonon-wins (collapsing
across choice conditions). Error bars indicate standard error of the mean.

Table 3 | Psychophysiological responses to outcomes on the slot

machine task (change scores from baseline).

Placebo Haloperidol Naltrexone

EDA MAX

Win, participant 0.30 (0.23) 0.20 (0.17) 0.42 (0.42)

Win, computer 0.23 (0.22) 0.18 (0.21) 0.36 (0.44)

Near-miss, participant 0.22 (0.19) 0.13 (0.14) 0.25 (0.30)

Near-miss, computer 0.15 (0.18) 0.07 (0.12) 0.17 (0.30)

Full-miss, participant 0.21 (0.17) 0.10 (0.11) 0.16 (0.21)

Full-miss, computer 0.16 (0.13) 0.7 (0.10) 0.11 (0.15)

HR DECELERATION

Win, participant −2.4 (1.8) −3.6 (2.2) −4.7 (3.0)

Win, computer −3.4 (2.9) −3.4 (2.0) −4.4 (4.7)

Near-miss, participant −3.0 (1.9) −3.6 (1.6) −3.9 (2.6)

Near-miss, computer −2.8 (2.0) −3.7 (1.4) −3.8 (3.6)

Full-miss, participant −2.7 (1.4) −2.9 (1.0) −3.2 (2.1)

Full-miss, computer −3.0 (2.0) −2.8 (1.3) −3.3 (2.5)

HR ACCELERATION

Win, participant 5.8 (3.6) 6.1 (3.2) 7.3 (4.8)

Win, computer 5.0 (2.9) 5.6 (3.4) 6.2 (5.2)

Near-miss, participant 6.1 (2.7) 6.5 (2.9) 7.1 (5.1)

Near-miss, computer 5.8 (2.3) 6.9 (3.5) 7.5 (5.4)

Full-miss, participant 5.7 (2.4) 6.1 (3.3) 6.4 (5.0)

Full-miss, computer 4.9 (1.8) 5.3 (2.5) 5.7 (4.1)

Values are reported as mean (SD), separated by participant-chosen condition

and the computer-chosen condition. EDA, electrodermal activity, in µS, where

the Max refers to the maximum value across bin 2–4 (i.e., 2–8 s post-outcome)

minus the pre-trial baseline. HR, heart rate, in beats per minute, where the

Deceleration value refers to the minimum value in bins 1–6 (i.e., 0–3 s post-

outcome) minus the baseline; and the subsequent HR acceleration component

refers to the maximum in bins 7–12 (i.e., 3–6 s post-outcome) minus the

deceleration minima.

On HR deceleration, there was a main effect of Outcome
[F(2, 106) = 6.44, p = 0.002, η2

p = 0.11], with greater HR decel-
erations after wins and near-misses in comparison to full-
misses [t(55) = −3.23, p = 0.002; t(55) = −3.03, p = 0.004;
respectively]. A trend Outcome × Treatment interaction was

observed [F(4, 106) = 2.11, p = 0.085, η2
p = 0.074], driven by

an effect of naltrexone [F(2, 70) = 2.86, p = 0.064, η2
p = 0.08]

[haloperidol model: F(2, 68) = 1.64, NS]. The HR deceleration to
wins relative to full-misses was greater in the naltrexone group
than the placebo group [t(35) = 2.17, p = 0.03] (see Figure 5B),
similar to the EDA effect. For HR acceleration, there was a sig-
nificant effect of Outcome [F(1.8, 93.4) = 8.12, p = 0.001, η2

p =
0.13], reflecting higher HR acceleration after near-misses relative
to wins [t(55) = 2.45, p = 0.018] and full-misses [t(55) = 4.99,
p < 0.001]. There was also a main effect of Choice [F(1, 53) =
4.17, p = 0.046, η2

p = 0.07], indicating higher HR acceleration
for participant-chosen outcomes compared to computer-chosen
outcomes [wins: t(55) = 2.02, p = 0.048; full-misses: t(55) = 2.89,
p = 0.006]. The HR acceleration effects did not interact with
Treatment group.

Subjective effects of personal choice (the illusion of control)
On the ratings of “chances of winning,” participants reported a
greater expectancy of winning when they chose the play icon,
compared to the computer-chosen condition [F(1, 57) = 44.59,
p < 0.001, η2

p = 0.44]. This effect did not vary across treatment
groups [Treatment × Choice: F(2, 57) = 2.19, NS; Treatment:
F(2, 57) = 0.59, NS] (see Table 2).

ROULETTE TASK
Gambler’s fallacy
The analysis of color choice yielded a main effect of Run Length
[F(1, 55) = 7.84, p = 0.007, η2

p = 0.13], reflecting decreased
choice of choosing either color after a longer run of that color
(M = 43.1, SD = 23.6) compared to a short run (M = 50.9,
SD = 9.5). This represents a typical Gambler’s fallacy pattern.
Treatment group did not moderate this effect [Run Length ×
Treatment: F(2, 55) = 1.07, NS; Treatment: F(2, 55) = 0.74, NS].

Hot hand belief
Analysis of confidence ratings as a function of feedback streak
showed a weak effect of Outcome [F(1, 55) = 3.34, p = 0.073,
η2

p = 0.06], whereby confidence was higher after correct predic-
tions compared to incorrect predictions, in line with the hot hand
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belief. The Streak Length × Outcome × Treatment interaction
approached significance [F(2, 55) = 2.51, p = 0.091, η2

p = 0.08].
This effect was driven by the naltrexone group, in which a sig-
nificant 3-way interaction [F(1, 35) = 5.41, p = 0.026, η2

p = 0.13]
and a trend Outcome × Treatment interaction [F(1, 35) =
3.81, p = 0.059, η2

p = 0.10] were observed [haloperidol model:
F(1, 37) = 2.37, NS]. Analysing winning and losing streaks sepa-
rately in the naltrexone model, the Streak Length × Treatment
interaction approached significance for wins [F(1, 35) = 3.43, p =
0.073, η2

p = 0.09], but not for losses [F(1, 35) = 1.91, NS], such
that the naltrexone group showed a greater increase in confidence
on longer winning streaks, compared to placebo (see Figure 6).

DISCUSSION
In this study, we assessed the effects of the opioid antagonist nal-
trexone and the dopamine D2-receptor antagonist haloperidol on
two gambling tasks in male recreational gamblers. A slot machine
task was used to deliver near-miss outcomes, elicit perceptions of
control, and to measure physiological responses to winning out-
comes. A roulette task was used to study the impact of outcome
runs and feedback streaks on choice behavior and confidence rat-
ings, respectively. Collapsing across the three treatment groups,
both tasks were reasonably successful at inducing these gambling
phenomena. On the slot machine task, the jackpot wins were
rated as pleasurable and increased the motivation to play, and
the winning outcomes were also associated with increased EDA
and HR deceleration, relative to the non-wins. Comparing near-
misses to full-misses, we confirmed our previous results on this
task, that motivation ratings were higher after near-misses, and
this effect depended on personal choice over the gamble (Clark
et al., 2009, 2012a). The perceived chances of winning were also
higher on participant-chosen trials than computer-chosen trials,
consistent with an illusion of control. Near-misses were associ-
ated with increased EDA and rebound HR acceleration, as we have

FIGURE 6 | Confidence ratings on the roulette task as a function of

winning streak length show a marginal difference between the

naltrexone and placebo groups. Error bars indicate standard error of the
mean.

described previously (Clark et al., 2012a, 2013). On the roulette
task, there was an expected Gambler’s Fallacy effect, such that the
choice of either color decreased after long runs of that color (i.e.,
negative recency) (replicating Ayton and Fischer, 2004). There
was also a weaker effect of increased confidence after wins com-
pared to losses, consistent with the “Hot Hand” belief (Ayton and
Fischer, 2004).

In terms of the pharmacological effects, several differences
were observed between the treatment groups, although generally,
these were not in line with our predictions. The three groups
were demographically matched and did not differ significantly
on impulsivity, a relevant personality trait, or level of gam-
bling involvement (PGSI) or trait gambling cognitions (GRCS).
Prolactin levels increased in the naltrexone-treated group, but did
not differ significantly between the haloperidol group and the
placebo group. This implies that the single low dose of naltrex-
one (50 mg) was functionally active, but that the 2 mg haloperidol
dose may not have been. Indeed, on the two gambling tasks,
the majority of the detected group differences were between
the naltrexone and placebo groups: the naltrexone group had a
greater physiological response to winning outcomes on the slot
machine task, in terms of EDA (significant) and HR decelera-
tion (marginally significant). On the roulette task, the naltrexone
group showed marginally higher confidence ratings after win-
ning streaks compared to the placebo group, indicating a possible
enhancement of the hot hand effect. At the same time, the moti-
vational effect of the near-misses on participant-chosen trials
was significantly attenuated in the naltrexone group. By con-
trast, in the haloperidol group, the only observed effect was a
greater disparity in pleasantness ratings between the win and non-
win outcomes (i.e., a treatment by outcome interaction). Neither
group showed differences in the effect of personal control on the
slot machine task, or the Gambler’s Fallacy on the roulette task.

EFFECTS OF NALTREXONE ON GAMBLING BEHAVIOR
Based upon the reported clinical efficacy of naltrexone in the
treatment of pathological gambling (Kim et al., 2001; Grant
et al., 2006, 2008), our overarching hypothesis for the naltrex-
one group was that cognitive effects characteristic of excessive
gambling would be ameliorated by naltrexone. In addition, we
predicted that these participants would show blunted responses
to wins (c.f. Petrovic et al., 2008). Our data indicated that nal-
trexone did modulate the responsivity to wins, but in the opposite
direction to that predicted: the naltrexone group displayed higher
EDA following wins, and this hyper-reactivity was substantiated
by a trend effect for HR deceleration. Prima facie, these results
are difficult to reconcile with the substantial literature report-
ing that opioid blockade reduces reward processing in laboratory
models (Drewnowski et al., 1995; Zhu et al., 2011; Langleben
et al., 2012a), and reduces cravings and drug self-administration
in groups with substance use disorders (Davidson et al., 1999;
Drobes et al., 2004; Myrick et al., 2008; Langleben et al., 2012b;
Miranda et al., 2013).

A number of methodological differences may be pertinent
here, and may be useful to inform the design of future experi-
ments. A key point is that our participants were recreational gam-
blers with modest levels of gambling involvement; it is possible
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that pathological gamblers may show a qualitatively different
response to opioid blockade. Our decision to use recreational
gamblers was based on several factors: the ease of recruitment
to achieve sufficient group sizes, ethical considerations about
the use of gambling simulations in individuals with disordered
gambling, and evidence that gambling severity is dimensional
(Toce-Gerstein et al., 2003). However, within the context of sub-
stance addictions (namely alcohol dependence), the response to
naltrexone is known to vary as a function of genetics (the OPRM1
polymorphism) (Ray and Hutchison, 2007) and family history of
alcoholism (Krishnan-Sarin et al., 2007). Family history of alco-
holism is also a predictor of a positive treatment response to
naltrexone in pathological gamblers (Grant et al., 2008). In the
study by Krishnan-Sarin et al. (2007), while naltrexone acted to
decrease drinks consumed in a laboratory test in heavy drinkers
with a family history of alcoholism, naltrexone actually increased
drinking in those who were family history negative, similar to the
effects observed here. The authors speculated that this effect may
have been linked to individual difference in kappa-opioid action,
which increase alcohol consumption in a rodent model (Mitchell
et al., 2005).

In the most comparable study to the present experiment,
Petrovic et al. (2008) found reduced brain responses to win-
ning outcomes following opioid blockade in healthy participants,
coupled with greater activation to monetary losses. However,
the Petrovic et al. (2008) study (and also Drewnowski et al.,
1995) used naloxone rather than naltrexone, and delivered intra-
venously rather than orally. The more rapid changes in brain con-
centrations associated with intravenous injection as opposed to
oral dosing may cause divergent effects on behavior, as in the case
of methylphenidate (Volkow and Swanson, 2003). Naltrexone
may also exert partial agonism effects (Ignar et al., 2011), and
along with naloxone and nalmefene, it is only moderately selective
for the μ-opioid receptor, which may modify its effects on reward
seeking behavior (Giuliano et al., 2012). As a third notable differ-
ence, the majority of past work in clinical groups has employed
either subchronic (e.g. 7 day) dosing (e.g., Davidson et al., 1999;
Drobes et al., 2004; Myrick et al., 2008) or slow-release depot for-
mulations (Langleben et al., 2012a). Compensatory effects can
occur in single-dose designs; for example, single dose citalopram
treatment in healthy volunteers induced an impairment in rever-
sal learning that was comparable to (rather than opposite to)
effects observed in patients with major depression (Chamberlain
et al., 2006). Nevertheless, the single administration of naltrexone
used in the present study was seen to increase plasma pro-
lactin levels, replicating Shaw and Al’Absi (2010). Given that
prolactin release is inhibited by hypothalamic dopamine trans-
mission (Freeman et al., 2000), a prolactin rise is presumed
to reflect downstream dopamine blockade, indicative of overall
opioid down-regulation.

In terms of the other gambling distortions under study, our
findings were mixed. Consistent with the increased responsivity
to wins, there was also an indication of enhanced confidence after
winning streaks (i.e., increased “hot hand” effect). However, the
motivational effects of near-miss outcomes were blunted in the
naltrexone group. Given that the naltrexone effect on near-misses
was restricted to a subjective rating (“continue to play”) and did

not generalize to the psychophysiological measures, this result
should be treated with caution. Moreover, the naltrexone group
did not differ from placebo on two cardinal gambling distortions,
the Gambler’s Fallacy (on the roulette task) and the illusion of
control (the manipulation of personal choice on the slot machine
task), despite the fact that these distortions were robustly elicited
in the overall study group. Related to the possibility that patho-
logical gamblers may show a distinctive response to naltrexone,
it is also conceivable that pathological and recreational gamblers
may differ in their responses to gambling effects like near-misses
(Habib and Dixon, 2010) or illusory control (Orgaz et al., 2013).

EFFECTS OF HALOPERIDOL ON GAMBLING BEHAVIOR
Prior research has shown that the stimulation of dopamine trans-
mission can induce (Voon et al., 2009) and exacerbate (Zack and
Poulos, 2004) gambling tendencies, as well as specific distortions
including the sense of agency (relevant to the illusion of control)
(Moore et al., 2010) and the behavioral response to near-misses
(Winstanley et al., 2011). There is some evidence that these effects
are D2-receptor specific (Zack and Poulos, 2007; Weintraub et al.,
2010; Winstanley et al., 2011). Based on the argument by Frank
and O’Reilly (2006) that lower doses of dopamine D2 receptor
antagonists act preferentially on presynaptic D2 auto-receptors to
increase dopamine transmission (see also Zack and Poulos, 2007),
we predicted that low dose haloperidol would enhance the reac-
tivity to win and near-miss outcomes on the slot machine task,
and increase the influence of personal choice. We found lim-
ited support for these predictions, and haloperidol showed few
effects in this study. The only statistically significant difference
from the placebo group was on the pleasantness ratings on the
slot machine task, where the haloperidol group showed increased
pleasantness ratings after wins and increased ratings of unpleas-
antness after non-win outcomes. This effect was not corroborated
by any change in physiological reactivity under haloperidol. It
should also be noted that collapsing across treatment groups, the
pleasantness ratings varied significantly as a function of personal
choice (i.e., an Outcome × Choice interaction), but no 3-way
interaction was evident with treatment group. We infer that the
haloperidol group may have been more extreme in their affective
ratings, but that this may not constitute a genuine drug action.

Notably, the lack of any observed effect of haloperidol on pro-
lactin levels raises the possibility that the 2 mg dosage may not
have been functionally active. In the study by Frank and O’Reilly,
2 mg haloperidol significantly increased prolactin levels in a cross-
over design. While we note that our post-dose plasma sample
was obtained slightly earlier (at 2.5 h) than the expected peak
(at 3 h in Darby et al., 1995; at 4 h in Frank and O’Reilly, 2006),
we also observed no cardiovascular or mood effects, unlike past
reports (Zack and Poulos, 2007; Pine et al., 2010). A number of
other studies have employed low doses of haloperidol (1–3 mg)
in 3-arm studies that have included a group treated with the
dopamine precursor levodopa (Pessiglione et al., 2006; Pleger
et al., 2009; Pine et al., 2010; Oei et al., 2012). These studies have
generally succeeded in demonstrating linear effects (i.e., haloperi-
dol < placebo < levodopa) on reinforcement-related parameters,
although in several instances, the specific haloperidol vs. placebo
contrast was either non-significant (Pine et al., 2010), or not
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reported (Pessiglione et al., 2006; Oei et al., 2012). Of course,
based upon the argument of presynaptic upregulation, an inter-
mediate dose may exist where the presynaptic and post-synaptic
actions cancel each other out. It is also recognized that both pha-
sic and tonic components of dopamine signaling are implicated
in reward-driven behavior, and that a presynaptic manipulation
may primarily affect phasic firing (Grace, 1991; Niv et al., 2007).
Overall, we find limited evidence for functional effects of the 2 mg
dose, and the absence of a significant prolactin response is partic-
ularly concerning; we recommend that future studies in healthy
participants opt for higher doses ≥3 mg.

LIMITATIONS AND CONCLUSION
This study was the first to assess the effects of an opioid
antagonist, naltrexone, and a dopamine D2-receptor antagonist,
haloperidol, on gambling tendencies. The indications of increased
gambling proclivity following naltrexone (increased physiologi-
cal reactivity to wins, increasing confidence ratings on winning
streaks) are at odds with the reported clinical efficacy of naltrex-
one in pathological gambling, although the non-clinical study
population and single dose administration design necessarily
limit any direct comparison. As a strength of the study, the
two tasks were successful at inducing the key cognitive distor-
tions of interest in the overall study group. While the group
comparisons involved no correction for the multiple dependent
variables (hence risk of Type I error), we sought to corrobo-
rate effects on behavioral measures and subjective ratings with
the acquisition of event-related psychophysiology, which success-
fully demonstrated significant EDA and HR reactivity to wins
and near-misses. We opted to use a 3-arm, parallel-groups design,
because our tasks were not known to be suitable for repeated test-
ing, although this decision had several consequences. First, the
direct comparisons involved non-independent tests against the
same placebo group, and some of the specific gambling effects

(HR deceleration to wins, the hot hand effect) were not selec-
tively evident in the placebo group. In addition, between-groups
analysis limits any examination of individual differences in drug
responses; for example whether dopamine or opioid effects var-
ied with age or trait impulsivity (Zack and Poulos, 2009). As
further limitations, we acknowledge that laboratory-based gam-
bling simulations entail some compromises to ecological validity
(Gainsbury and Blaszczynski, 2011). While our slot machine task
delivered real monetary wins, which is important for establish-
ing physiological arousal (Ladouceur et al., 2003), our tasks did
not involve a variable wager. With regard to the limited effects
of haloperidol on the gambling tasks, we highlight the non-
significant change in prolactin as an indication that our low dose
may not have achieved functional effectiveness, and as such, the
null effects for haloperidol on the gambling tasks may say lit-
tle about the relevance of dopamine signaling pathways to the
neurobiology of gambling or the treatment potential of dopamin-
ergic medications. However, the observed actions of naltrex-
one substantiate the relevance of opioid transmission to human
decision-making and reinforcement processing, with treatment
implications for a range of addictive and impulse control- related
disorders.
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Cognitions play an important role in
addictive behavior. This may be espe-
cially true for “behavioral addictions,” like
pathological gambling, where reinforce-
ment derives from environmental events
whose value is, for the most part, learned.
The study by Porchet and colleagues
examines the roles of dopamine and the
endogenous opioids in response to tasks
designed to evoke gambling-related cog-
nitive distortions in recreational gamblers.
The investigators report that the dopamine
D2 receptor antagonist, haloperidol had
little effect on subjective responses to near-
misses (outcomes that closely approximate
wins) but slightly enhanced physiological

response to these stimuli. In contrast, the
mixed opioid receptor antagonist, naltrex-
one increased physiological reactivity to
these stimuli and also increased subjective
confidence to predict future outcomes fol-
lowing a winning streak on a roulette task.
The findings for haloperidol are consistent
with the increased physiological response
and lack of subjective effects of this drug
on response to gambling activity previ-
ously seen in healthy individuals. The
findings for naltrexone are counterintu-
itive, given that naltrexone and the opioid
antagonist nalmefene have proven effective
in curbing urges to gamble in patho-
logical gamblers. Although not entirely
predicted, the results confirm that, like
drugs of abuse, gambling activity reliably
engages the dopamine and opioid sys-
tems. Together with other evidence, they
also indirectly suggest that recreational
gamblers may respond differently to drug
manipulations than pathological gamblers
due to functional differences in the brains
of these two populations. Whereas the
effects in recreational gamblers reflect a
perturbation from homeostatic baseline

function, the increase in dopamine cell
firing induced by haloperidol and increase
in stress axis responding induced by
naltrexone may act to restore or mitigate
deviations from normal brain function
that represent the new baseline or “allo-
static” brain state of the pathological
gambler. Replication of this experiment
in pathological gamblers would be a
valuable complement to this important
study.
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Pathological gambling is a behavioral addiction characterized by a chronic failure to
resist the urge to gamble. It shares many similarities with drug addiction. Glucocorticoid
hormones including cortisol are thought to play a key role in the vulnerability to addictive
behaviors, by acting on the mesolimbic reward pathway. Based on our previous report
of an imbalanced sensitivity to monetary versus non-monetary incentives in the ventral
striatum of pathological gamblers (PGs), we investigated whether this imbalance was
mediated by individual differences in endogenous cortisol levels. We used functional
magnetic resonance imaging (fMRI) and examined the relationship between cortisol
levels and the neural responses to monetary versus non-monetary cues, while PGs and
healthy controls were engaged in an incentive delay task manipulating both monetary
and erotic rewards. We found a positive correlation between cortisol levels and ventral
striatal responses to monetary versus erotic cues in PGs, but not in healthy controls.
This indicates that the ventral striatum is a key region where cortisol modulates incentive
motivation for gambling versus non-gambling related stimuli in PGs. Our results extend
the proposed role of glucocorticoid hormones in drug addiction to behavioral addiction,
and help understand the impact of cortisol on reward incentive processing in PGs.

Keywords: cortisol, reward, pathological gambling, fMRI, ventral striatum, addiction, incentive, glucocorticoid
hormones

INTRODUCTION
Glucocorticoid hormones (cortisol in humans and corticos-
terone in rodents) are produced by the adrenal cortex after the
hypothalamic-pituitary-adrenal (HPA) axis is stimulated by psy-
chologically or physiologically arousing stimuli (Sapolsky et al.,
2000; Herman et al., 2005; Ulrich-Lai and Herman, 2009). These
hormones have essential roles in normal physiological processes,
such as acting on anti-stress and anti-inflammatory pathways,
and, by doing so, have wide-ranging effects on behavior. Over the
past few years, the potential role of glucocorticoid hormones on
mental disorders has gained increased attention (Meewisse et al.,
2007; Wingenfeld and Wolf, 2011). In particular, in the search
for risk factors for drug addiction, increasing evidence points
to an interaction between HPA functioning and drug exposure
(Stephens and Wand, 2012). For example, a positive correlation
between glucocorticoid levels and self-administration of psychos-
timulants has been observed in rodents (Goeders and Guerin,
1996; Deroche et al., 1997). In addition, drug administration
produces stress-like cortisol responses (Broadbear et al., 2004)
and similarly, acute administration of cortisol promotes cocaine
craving in cocaine-dependent individuals (Elman et al., 2003).
These findings not only point to the link between glucocorticoid
hormones and addiction (Lovallo, 2006), but also emphasize the

need to develop integrative theories explaining the mechanisms
by which they affect addictive behavior.

Animal and human neuroimaging studies have demonstrated
that addiction involves altered functioning of the mesolimbic
reward system (Koob and Le Moal, 2008; Koob and Volkow,
2010; Schultz, 2011). Another line of research has shown that
altered HPA response is associated with changes in dopaminergic
regulation (Oswald and Wand, 2004; Alexander et al., 2011)
and that glucocorticoid hormones have modulatory effects on
dopamine release in the mesolimbic pathway, especially in the
nucleus accumbens (NAcc; Oswald et al., 2005; Wand et al.,
2007). Building on this evidence, it has been proposed that
glucocorticoid hormones have facilitatory effects on behavioral
responses to drugs of abuse, and that these effects are imple-
mented via action on the mesolimbic reward system (Marinelli
and Piazza, 2002; de Jong and de Kloet, 2004). Furthermore,
on the basis of the incentive sensitization theory stating that the
mesolimbic reward system mediates addiction-related cue hyper-
sensitivity (Robinson and Berridge, 1993; Vezina, 2004, 2007;
Robinson and Berridge, 2008), it has been proposed that gluco-
corticoid hormones contribute to drug addiction by modulating
this neural system directly (Goodman, 2008; Vinson and Brennan,
2013).
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Pathological gambling is a behavioral addiction characterized
by compulsive gambling behavior and loss of control, which
has gained much attention recently (van Holst et al., 2010;
Conversano et al., 2012; Achab et al., 2013; Clark and Limbrick-
Oldfield, 2013; Petry et al., 2013; Potenza, 2013). Since patho-
logical gambling behavior shares many similarities with drug
addiction in terms of clinical phenomenology (e.g., craving, toler-
ance, compulsive use, or withdrawal symptoms), heritability, and
neurobiological profile (Potenza, 2006, 2008; Petry, 2007; Ware-
ham and Potenza, 2010; Leeman and Potenza, 2012), it may be
similarly under the influence of glucocorticoid hormones. How-
ever, little is known about the interaction between glucocorticoid
hormones and incentive reward processing in pathological gam-
bling. In the present study, we examined how endogenous cortisol
modulates the processing of monetary and non-monetary cues
in PGs. To achieve this goal, we re-analyzed previously published
data using an incentive delay task manipulating both monetary
and erotic rewards in PGs and healthy controls (Sescousse et al.,
2013), and performed further correlation analyses between basal
cortisol levels and neural responses. Based on the role of gluco-
corticoid hormones in drug addiction, we expected endogenous
cortisol levels to be associated with neural responses to addiction-
related cues versus non-addiction related cues. Specifically, since
our previously published analysis found a differential response to
monetary versus erotic cues in the ventral striatum of gamblers
(Sescousse et al., 2013), we expected that higher cortisol levels
would be associated with an increased differential response in
anticipation of monetary versus erotic rewards in PGs.

MATERIALS AND METHODS
SUBJECTS
We evaluated 20 healthy control subjects and 20 PGs. All were
right-handed heterosexual males. We chose to study only men
because men generally respond more to visual sexual stimuli
than women (Hamann et al., 2004; Rupp and Wallen, 2008) and
because there is a higher prevalence of pathological gambling
among men than among women (Blanco et al., 2006; Kessler
et al., 2008). The dataset from these subjects has already been used
in our published functional magnetic resonance imaging (fMRI)
study aiming at comparing primary and secondary rewards in
healthy controls and pathological gamblers (PGs; Sescousse et al.,
2013). Our current analysis focuses specifically on the relationship
with cortisol levels and is therefore entirely original. As described
in Sescousse et al. (2013), our published analysis excluded data
from two PGs, due to technical problems with the task presen-
tation in one case, and due to a highly inconsistent behavior in
terms of hedonic ratings throughout the task in the other case.
In the current analysis, we further discarded the data from one
pathological gambler, because of a failure in successfully collecting
blood samples. Therefore, the results reported are based on 20
healthy control subjects and 17 PGs. All subjects gave written
informed consent to participate in the experiment. The study
was approved by the local ethics committee (Centre Léon Bérard,
Lyon, France).

Subjects underwent a semi-structured interview (Nurnberger
et al., 1994) performed by a psychiatrist. All PGs met the DSM-
IV-TR [Diagnostic and Statistical Manual of Mental Disorders

(fourth edition, text revision)] criteria for pathological gambling
diagnosis. Patients had a minimum score of 5 on the South Oaks
Gambling Screen questionnaire (SOGS; range: 5–14) (Lesieur and
Blume, 1987). Importantly, all were active gamblers, and none
were under therapy or treatment of any type. Healthy control
subjects had a score of 0 on the SOGS questionnaire, except
one subject who had a score of 1. In both groups, a history of
major depressive disorder or substance abuse/dependence (except
nicotine dependence) in the past year was considered an exclusion
criterion. All other DSM-IV-TR axis I disorders were excluded
based on lifetime diagnosis.

We used a number of questionnaires to assess our subjects. The
Fagerstrom Test for Nicotine Dependence (FTND; Heatherton
et al., 1991) measured their nicotine dependence severity; the
Alcohol Use Disorders Identification Test (AUDIT; Saunders et al.,
1993) was employed to estimate their alcohol consumption; the
Hospital Anxiety and Depression scale (HAD; Zigmond and
Snaith, 1983) was used to evaluate current depressive and anxiety
symptoms; and finally the Sexual Arousability Inventory (SAI;
Hoon and Chambless, 1998) was used to assess their sexual
arousal. Both groups were matched on age, nicotine depen-
dence, education, alcohol consumption, and depressive symp-
toms (Table 1). PGs scored slightly higher on the anxiety subscale
of the HAD questionnaire. Importantly, the two groups did not
differ on income level and sexual arousability (Table 1), thereby
ensuring a comparable motivation across groups for monetary
and erotic rewards.

To assess the subjects’ motivation for money, we asked them
about the frequency with which they would pick up a 0.20e coin
from the street on a scale from 1 to 5 (Tobler et al., 2007) and
matched the two groups based on this criterion (Table 1). To
ensure that all subjects would be in a similar state of motivation
to see erotic stimuli, we asked them to avoid any sexual contact
during a period of 24 h before the scanning session. Finally, we
also sought to enhance the motivation for money by telling sub-
jects that the financial compensation for their participation would
add up the winnings accumulated in one of the three runs. For
ethical reasons, however, and unbeknownst to the subjects, they
all received a fixed amount of cash at the end of the experiment.

All subjects were medication-free and instructed not to use any
substance of abuse other than cigarettes on the day of the scan.

EXPERIMENTAL TASK
We used an incentive delay task with both erotic and mone-
tary rewards (Figure 1A). The total number of trials was 171.
Each of them consisted of two phases: reward anticipation and
reward outcome. During anticipation, subjects saw one of 12 cues
announcing the type (monetary/erotic), probability (25/50/75%)
and intensity (low/high) of an upcoming reward. An additional
control cue was associated with a null reward probability. After
a variable delay period (question mark representing a pseudo-
random draw), subjects were asked to perform a visual discrim-
ination task. If they answered correctly within less than 1 s,
they were then allowed to view the outcome of the pseudo-
random draw. In rewarded trials, the outcome was either an erotic
image (with high or low erotic content) or the picture of a safe
mentioning the amount of money won (high [10/11/12e] or low
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Table 1 | Demographic and clinical characteristics of PGs and healthy controls.

Healthy control
subjects (n = 20)

Pathological
gamblers (n = 17)

Group comparison

Age 31 ± 7.3 34 ± 11.9 U = 157.5, p = 0.71
Education level (number of years) 13.2 ± 1.7 12 ± 2.7 U = 132, p = 0.24
Monthly income (e) 1537.5 ± 1010.7 2191.2 ± 1410.2 U = 124.5, p = 0.16
SAI 88.6 ± 12.6 92.5 ± 14.8 t(35) = 0.89, p = 0.38
AUDIT 4.2 ± 3.5 6 ± 4 t(35) = 1.5, p = 0.14
FTND 0.1 ± 0.3 0.8 ± 1.4 U = 132, p = 0.1
HADS depression subscale 3.4 ± 2.3 4 ± 2.9 t(35) = 0.71, p = 0.49
HADS anxiety subscale 6.1 ± 2.7 7.94 ± 2.9 t(35) = 2.04, p = 0.05
SOGS 0.05 ± 0.2 8.76 ± 2.4 U = 0, p < 0.001
Pick-up frequency of 0.2e coin (1–5) 3.2 ± 1.6 3.7 ± 1.5 U = 137, p = 0.31

SAI, sexual arousability inventory; AUDIT, alcohol use disorders identification test; FTND, fagerstrom test for nicotine dependence; HADS, hospital anxiety and

depression scale; SOGS, south oaks gambling screen; Groups were compared using independent sample t-tests for normally distributed variables, and with Mann-

Whitney U-tests for non-normally distributed variables.

[1/2/3e]). Following each reward outcome, subjects were asked
to provide a hedonic rating on a 1–9 continuous scale (1 = very
little pleased; 9 = very highly pleased). In non-rewarded and
control trials, subjects were presented with “scrambled” pictures.
A fixation cross was finally used as an inter-trial interval of
variable length.

STIMULI
Two categories (high and low intensity) of erotic pictures and
monetary gains were used. Nudity being the main criteria driving
the reward value of erotic stimuli, we separated them into a
“low intensity” group displaying females in underwear or bathing
suits and a “high intensity” group displaying naked females in
an inviting posture. Each erotic picture was presented only once
during the course of the task to avoid habituation. A similar
element of surprise was introduced for monetary rewards by
randomly varying the amounts at stake (low amounts: 1, 2, or
3e; high amounts: 10, 11, or 12e). The pictures displayed in
non-rewarded and control trials were scrambled versions of the
pictures used in rewarded trials and hence contained the same
information in terms of chromaticity and luminance.

PLASMA CORTISOL MEASUREMENTS
In order to minimize the effect of circadian hormone rhythms,
we conducted all fMRI sessions between 8.50 and 11.45 AM.
Just prior to the scanning session, blood samples were collected
(mean time, 9.24 AM ± 0.27 mn) to measure the levels of
plasma cortisol for each subject. Cortisol concentrations were
measured by radioimmunoassay using an antiserum raised in
rabbit immunized with cortisol 3-O (carboxy-methyl oxime)
bovine serum albumin conjugate, 125I cortisol as tracer and
buffer containing 8-anilino-1-naphtalene sulfonic acid (ANS)
for cortisol-corticosteroid-binding globulin dissociation. Below
is the description of the procedure. 100 µL of 125I cor-
tisol (10000 dpm) was mixed with the standard or the
sample (10 µL), buffer (500 µL) and 100 µL of antiserum
solution. Samples were incubated for 45 min at 37◦C and
1 h at 4◦C. Bound and free cortisol was separated by addic-
tion of a mixture PEG—anti-rabbit gamma globulin. After

centrifugation, the radioactivity of the supernatant, containing
the cortisol bound to antibody, was counted in a gamma-
counter. The within and inter-assay coefficients of variation
were less than 3.5 and 5.0% respectively at 300 nmol/L
cortisol level. This method has been validated by gas chro-
matography/mass spectrometry measurements (Chazot et al.,
1984).

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) DATA
ACQUISITION
Imaging was conducted on a 1.5 T Siemens Sonata scanner, using
an eight-channel head coil. The scanning session was divided into
three runs. Each of them included four repetitions of each cue,
with the exception of the control condition, repeated nine times.
This yielded a total of 171 trials. Within each run, the order of
the different conditions was pseudorandomized and optimized to
improve signal deconvolution. The order of the runs was coun-
terbalanced between subjects. Before scanning, all subjects were
given oral instructions and familiarized with the cognitive task in
a short training session. Each of the three functional runs con-
sisted of 296 volumes. Twenty-six interleaved slices parallel to the
anterior commissure–posterior commissure line were acquired
per volume (field of view, 220 mm; matrix, 64 × 64; voxel size, 3.4
× 3.4 × 4 mm; gap, 0.4 mm), using a gradient-echoechoplanar
imaging (EPI) T2*-weighted sequence (repetition time, 2500 ms;
echo time, 60 ms; flip angle, 90◦). To improve the local field
homogeneity and hence minimize susceptibility artifacts in the
orbitofrontal area, a manual shimming was performed within a
rectangular region including the orbitofrontal cortex (OFC) and
the basal ganglia. A high-resolution T1-weighted structural scan
was subsequently acquired in each subject.

FUNCTIONAL MAGNETIC RESONANCE IMAGING (fMRI) DATA
ANALYSIS
The analysis of the data was conducted using Statistical Para-
metric Mapping (SPM2). The pre-processing procedure included
the deletion of the first four functional volumes of each run,
slice-timing correction for the remaining volumes and spatial
realignment to the first image of each time series. Subsequently,
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FIGURE 1 | Incentive delay task and behavioral results. (A) Subjects first
saw a cue informing them about the type (pictogram), intensity (size of
pictogram) and probability (pie chart) of an upcoming reward. Three cases
are represented here: a 75% chance of receiving a large amount of money
(left), a 25% chance of seeing a low erotic content picture (middle) and a
sure chance of getting nothing (control trials, right). Then the cue was
replaced by a question mark, symbolizing a delay period during which a
pseudorandom draw was performed according to the announced
probability. Following this anticipation phase, participants had to perform a
target discrimination task within <1 s. The target was either a triangle (left
button press required) or a square (right button press required). Both their
performance and the result of the pseudorandom draw determined the
nature of the outcome. In rewarded trials, subjects saw a monetary amount
displayed on a safe (high or low amount, left) or an erotic picture (with high
or low erotic content, middle), and had to provide a hedonic rating on a
continuous scale. In non-rewarded and control trials, subjects saw a
scrambled picture (right). (B) Plot of mean reaction times according to
reward type (monetary/erotic) and group (healthy controls/gamblers) in the
discrimination task. There is a significant interaction between group and
reward type, driven by slower reaction times for erotic compared to
monetary cues in gamblers. Error bars indicate SEM. Asterisks denote
significance of Tukey’s HSD tests (** p < 0.01).

we used tsdiffana utility1 to search for residual artifacts in the time
series and modeled them with dummy regressors in our general
linear model. Then, the functional images were normalized to the
Montreal Neurological Institute (MNI) stereotaxic space using the
EPI template of SPM2 and spatially smoothed with a 10 mm full-

1http://imaging.mrc-cbu.cam.ac.uk/imaging/215DataDiagnostics

width at half-maximum isotropic Gaussian kernel. Anatomical
scans were normalized to the MNI space using the icbm152
template brain and averaged across the subjects. The averaged
anatomical image was used as a template to display the functional
activations.

Following the preprocessing step, the functional data from
each subject was subjected to an event-related statistical analysis.
Responses to monetary and erotic cues were modeled separately
with 2.5 s box-car functions time-locked to the onset of the cue.
For each cue, two orthogonal parametric regressors were added
to account for the trial-to-trial variations in reward probability
and intensity. The control condition was modeled in a separate
regressor. Outcome-related responses were modeled as events
time-locked to the appearance of the reward. The two rewards
(monetary/erotic) and two possible outcomes (rewarded/non-
rewarded) were modeled as four separate conditions. Two covari-
ates linearly modeling the probability and the ratings were further
added to each rewarded condition, while another covariate mod-
eling the probability was added to each of the non-rewarded con-
ditions. A last regressor modeled the appearance of a scrambled
picture in the control condition. All regressors were subsequently
convolved with the canonical hemodynamic response function
and entered in a first level analysis. A high-pass filter with a
cut-off of 128 s was applied to the time series. Contrast images
were calculated based on the parameter estimates output by the
general linear model, and were then passed in a second level group
analysis.

Second-level analyses focused on the anticipation phase. First,
we examined the contrast “monetary > erotic cue” in gamblers
minus control subjects. This contrast was thresholded using a
cluster-wise family-wise error (FWE) corrected p < 0.05. Then,
based on our hypothesis, we investigated the relationship between
basal cortisol levels and the differential brain response to mone-
tary versus erotic cues. This correlation was computed separately
for each group, and was then compared between groups. Based on
our a priori hypotheses regarding the role of the ventral striatum
in attributing incentive salience to reward cues, we used a small
volume correction (SVC) based on 7 mm radius spheres centered
around the peak voxels reported in a recent meta-analysis on
reward processing (x, y, z = 12, 10, −6; x, y, z = −10, 8, −4)
(Liu et al., 2011). We used a cluster-wise FWE corrected threshold
of p ≤ 0.05. To further describe the patterns of activation, we
used the EasyROI toolbox to extract the parameter estimates from
significant clusters in the ventral striatum.

RESULTS
HORMONAL DATA
No significant differences between PGs and healthy control sub-
jects were observed in basal cortisol levels (PGs: mean = 511.59,
SD = 137.46; Healthy controls: mean = 588.7, SD = 121.61; t(35) =
−1.81, p > 0.05). This is consistent with findings from recent
studies reporting no difference in basal cortisol levels between
recreational and PGs (Franco et al., 2010; Paris et al., 2010a,b).
In addition, we performed a correlation analysis between cortisol
levels and gambling symptom severity in PGs as indexed by the
SOGS scale. Our result did not reveal a significant correlation
between these variables (r = −0.35, p = 0.17).
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BEHAVIOR
In our previous study (Sescousse et al., 2013), the main behav-
ioral finding was a group × reward type interaction in the
reaction time data, reflecting a weaker motivation for erotic
compared with monetary rewards in gamblers. Given that one
subject was discarded from our current analysis due to a
failure to collect hormonal data, we performed this analysis
again without this subject. The previous group × reward type
interaction remained significant without this subject (F(1,35)

= 7.85, p < 0.01). In addition, Tukey’s post-hoc t-tests con-
firmed that the interaction was due to slower reaction times
for erotic (mean = 547.54, SD = 17.22) compared with mon-
etary rewards (mean = 522.91, SD = 14.29) in gamblers rel-
ative to healthy controls (p < 0.01) (Figure 1B). However,
there was no significant correlation between basal cortisol levels
and the performance on the discrimination task in either
group.

BRAIN-CORTISOL CORRELATION
Our previously published analysis revealed a group × reward type
interaction in the ventral striatum, reflecting a larger differen-
tial response to monetary versus erotic cues in PGs compared
with controls (Sescousse et al., 2013). In our current analysis,
the results of the group × reward type interaction were still
significant after removing the discarded subject (x, y, z = −9,
0, 3, T = 4.11; 18, 0, 0, T = 3.88; p(SVC) < 0.05, FWE). The
present analysis focused on how this differential response relates
to endogenous cortisol levels. Between-subject correlation anal-
yses revealed a positive relationship between cortisol levels and
BOLD responses to monetary versus erotic cues in the ventral
striatum of gamblers (x, y, z = 3, 6, −6, T = 4.76, p(SVC) < 0.05,
FWE; Figure 2A), but no such relationship in healthy controls.
The direct comparison between groups was also significant (x, y,
z = −3, 6, −6, T = 3.10, p(SVC) ≤ 0.05, FWE; Figure 2B). We
additionally examined whether cortisol levels were correlated with
brain activity elicited by each reward cue separately, as compared
to the control cue. This analysis did not reveal any significant
correlation in the ventral striatum in either group (at p < 0.001
uncorrected).

DISCUSSION
To the best of our knowledge, this is the first study exploring the
relationship between cortisol levels and brain activation during an
incentive delay task in PGs. In line with our a priori hypothesis, we
observed that higher endogenous cortisol levels were associated
with an increased differential neural response to monetary versus
erotic cues in the ventral striatum of gamblers as compared to
healthy controls. This indicates a specific role of cortisol in biasing
gamblers’ motivation towards monetary relative to non-monetary
cues. Thus, cortisol may contribute to the addictive process in
PGs by enhancing the saliency of gambling-related cues over
other stimuli. Because enhanced incentive salience of gambling-
related cues in PGs triggers gambling urges, this supports a
link between cortisol and PGs’ motivation to pursue monetary
rewards.

One potential mechanism through which cortisol might act
to influence cue-elicited brain activity is glucocorticoid receptors

in the NAcc. It has been shown that glucocorticoid hormones
act on the brain through binding with two main intracel-
lular receptors: the mineralocorticoid receptor (MR) and the
glucocorticoid receptor. Glucocorticoid hormones play a fun-
damental role in reward-related behavior via their influence
on mesolimbic dopamine circuitry and the NAcc in particu-
lar. For example, animal evidence shows that glucocorticoid
hormones facilitate dopamine transmission in the NAcc shell
through glucocorticoid receptors (Marinelli and Piazza, 2002).
Microdialysis studies reported that corticosterone has stimu-
lant effects on dopamine transmission in the NAcc (Piazza
et al., 1996). Furthermore, infusion of glucocorticoid receptor
antagonists has inhibitory effect on drug-induced dopamine
release in the NAcc (Marinelli et al., 1998). In line with
these findings in animals, human studies found evidence that
cortisol levels were positively associated with amphetamine-
induced dopamine release in the ventral striatum (Oswald et al.,
2005).

It is important to note that we did not observe differences in
basal cortisol levels between PGs and controls. Although this find-
ing is in agreement with previous reports showing no difference in
basal cortisol levels between PG and recreational gamblers (Meyer
et al., 2004; Paris et al., 2010a,b), it does not imply that there is
no HPA dysfunction in PGs. Indeed, while most previous studies
investigating cortisol levels in PGs have focused on HPA responses
to stress-inducing cues, such as gambling cues (Ramirez et al.,
1988; Meyer et al., 2000; Franco et al., 2010), in the current study
we measured baseline cortisol and its relationship with striatal
activations. Moreover, other factors, such as the time of the day
when blood or saliva are collected for cortisol level assessment,
need to be considered because there are known endogenous diur-
nal variation in cortisol levels, which may vary between PGs and
healthy controls or recreational gamblers. In particular, PGs may
have a greater cortisol rise following waking than do recreational
gamblers (Wohl et al., 2008).

Another important aspect to consider is that although cortisol
is frequently used as a biomarker of psychological stress, a linear
relationship between cortisol and other measures of HPA related
endocrine signals does not necessarily exist (Hellhammer et al.,
2009). Moreover, the absence of relationship between reward-
related activity and basal cortisol levels in healthy controls is
consistent with the variable effects of both acute stress and cortisol
levels observed in the neuroimaging literature on reward process-
ing in healthy individuals. For example, a recent study reported
that stress reduces NAcc activation in response to reward cues,
but that cortisol suppresses this relationship, as high cortisol was
related to stronger NAcc activation in response to reward (Oei
et al., 2014). Another study reported that acute stress decreased
the response of the dorsal (not ventral) striatum and OFC to
monetary outcomes (Porcelli et al., 2012), while no difference was
observed in the NAcc between a stress group and control group
using an emotion-induction procedure (Ossewaarde et al., 2011).
Together, the evidence from fMRI studies indicates non-trivial
relationships between stress, cortisol levels and brain activation
and suggest that stress and cortisol may play distinct mediating
roles in modulating sensitivity to potentially rewarding stimuli
through the ventral striatum.
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FIGURE 2 | Correlation between striatal cue reactivity and basal
cortisol levels in gamblers. (A) Ventral striatal responses to monetary
versus erotic cues in gamblers are positively correlated with basal
cortisol levels. The scatter plot illustrates this positive correlation within

significant striatal voxels extracted from the whole-brain map. (B) This
correlation between ventral striatal responses to monetary versus erotic
cues and basal cortisol levels is stronger in gamblers than in healthy
controls.

Several limitations of the present study need to be consid-
ered. First, only male PG were involved in the current study.
It remains unclear whether our current findings would extend
to female gamblers. This is an important question because sex
differences exist in several aspects of gambling activity (Tschibelu
and Elman, 2010; Grant et al., 2012; González-Ortega et al., 2013;
van den Bos et al., 2013). Moreover, the modulatory effect of
a number of hormonal factors on cognitive functioning varies
between sexes (Kivlighan et al., 2005; Reilly, 2012; Vest and Pike,
2013). The current study only included men because they are
generally more responsive to visual sexual stimuli than women
(Stevens and Hamann, 2012; Wehrum et al., 2013) and show
an elevated risk for gambling problems or severity of gambling
compared to women (Toneatto and Nguyen, 2007; Wong et al.,
2013). Second, we cannot make causal inferences regarding the
effects of cortisol on neural responses because our results are
based on correlational analyses. A pharmacological design with
external cortisol administration compared to a placebo condition
would be needed to assess the causal role of cortisol on gam-
bling addiction. Despite these limitations, we believe that our
current findings provide a foundation for further research on
the interaction between cortisol and brain responses to incentive
cues.

CONCLUSIONS
We have found that, in PGs, endogenous cortisol levels are
associated with a differential activation of the ventral striatum
in response to gambling-related incentives relative to non-
gambling-related incentives. Our results point to the impor-
tance of integrating endocrinology with a cognitive neuroscience
approach to elucidate the neural mechanisms underlying mal-
adaptive gambling behavior. Finally, this study may have impor-
tant implications for further research investigating the role of
cortisol on vulnerability to develop behavioral addictions such as
pathological gambling.
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Recent laboratory studies have shown that men display more risk-taking behavior
in decision-making tasks following stress, whilst women are more risk-aversive or
become more task-focused. In addition, these studies have shown that sex differences
are related to levels of the stress hormone cortisol (indicative of activation of
the hypothalamus-pituitary-adrenocortical-axis): the higher the levels of cortisol the
more risk-taking behavior is shown by men, whereas women generally display more
risk-aversive or task-focused behavior following higher levels of cortisol. Here, we
assessed whether such relationships hold outside the laboratory, correlating levels
of cortisol obtained during a job-related assessment procedure with decision-making
parameters in the Cambridge Gambling Task (CGT) in male and female police recruits.
The CGT allows for discriminating different aspects of reward-based decision-making.
In addition, we correlated levels of alpha-amylase [indicative of activation of the
sympatho-adrenomedullary-axis (SAM)] and decision-making parameters. In line with
earlier studies men and women only differed in risk-adjustment in the CGT. Salivary cortisol
levels correlated positively and strongly with risk-taking measures in men, which was
significantly different from the weak negative correlation in women. In contrast, and less
strongly so, salivary alpha-amylase levels correlated positively with risk-taking in women,
which was significantly different from the weak negative correlation with risk-taking in
men. Collectively, these data support and extend data of earlier studies indicating that
risky decision-making in men and women is differently affected by stress hormones. The
data are briefly discussed in relation to the effects of stress on gambling.

Keywords: cortisol, alpha-amylase, decision-making, Cambridge Gambling Task, sex, humans

INTRODUCTION
Recently we have reviewed whether sex differences are present
in the occurrence and development of disordered gambling (van
den Bos et al., 2013a); an area of research still poorly studied
(see also van den Bos et al., 2013b). Among others, stress may
promote gambling episodes in men and women (Tschibelu and
Elman, 2011), and, in addition, may (be expected to) affect gam-
bling behavior as stress has been shown to disrupt reward-based
decision-making under laboratory conditions (review: Starcke
and Brand, 2012). In particular, studies encompassing both sexes
have shown that men display more risk-taking behavior following
stress, whilst women are more risk-aversive or become more task-
focused (Preston et al., 2007; Lighthall et al., 2009; van den Bos
et al., 2009; Mather and Lighthall, 2012). In addition, it has been
found that the higher the levels of cortisol [indicative of activa-
tion of the hypothalamic-pituitary-adrenal cortex (HPA) axis] the
more risk-taking behavior men show (van den Bos et al., 2009),
while in general women show more risk-aversive or task-focused
behavior (Lighthall et al., 2009; van den Bos et al., 2009). A
recent study in men has shown that activation of the sympathetic

nervous system [releasing catecholamines, i.e., (nor)adrenaline]
is associated with decreased risk-taking, while this study con-
firmed that cortisol is associated with increased risk-taking (Pabst
et al., 2013).

While data in the laboratory using standardized protocols,
such as the Trier Social Stress Test, begin to reveal the relation-
ship between sex, neuro-endocrine status and decision-making,
they may not be indicative of the effects occurring in real-life,
where currently circulating levels of cortisol and catecholamines,
related to earlier events, context and time of the day, may deter-
mine the outcome of decision-making (see for discussion: van
den Bos et al., 2013a,c). Next to understanding the relationship
to activities such as gambling, this knowledge may also be of rel-
evance for decision-making behavior in the military, police force,
financial business or health care, where decisions often have to
be made under highly stressful conditions. When decisions are
taken wrongly due to changes in risk-perception under stress
they may have a highly negative personal, financial and societal
impact (Taylor et al., 2007; LeBlanc et al., 2008; LeBlanc, 2009;
Arora et al., 2010; Akinola and Mendes, 2012). Therefore, given
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the limited body of current knowledge as well as to assess the
effects of circulating levels of cortisol and catecholamines on risk-
taking, we correlated spontaneously occurring variation in stress
hormones during a job-assessment procedure in male and female
police recruits with reward-based decision-making parameters
in the Cambridge Gambling Task (CGT) (Rogers et al., 1999).
Thus, we chose to conduct the study in an applied setting to
assess whether laboratory findings would hold under real-life
conditions.

The CGT allows for discriminating different aspects of reward-
based decision-making, such as risk-taking, impulsivity and
risk-adjustment (e.g., Rogers et al., 1999; Deakin et al., 2004;
Newcombe et al., 2011; van den Bos et al., 2012). Male and
female subjects performed the CGT during their assessment for
the Master of Criminal Investigation at the Police Academy. This
assessment is generally considered to be stressful by candidates.
Thus, rather than using a laboratory set-up with a separate stress
group and control group, we used spontaneously occurring vari-
ation in levels of salivary cortisol (activation of the HPA-axis;
review: Foley and Kirschbaum, 2010) and alpha-amylase [acti-
vation of the sympatho-adrenomedullary (SAM) axis; review:
Nater and Rohleder, 2009] to correlate physiological changes
and behavior. We predicted that the higher the current levels of
salivary cortisol in men, the more risk-taking behavior they dis-
play, while in women the opposite effect was expected (conform
Lighthall et al., 2009; van den Bos et al., 2009). As no data exist
regarding sex differences for current salivary alpha-amylase levels
and risk-taking behavior, no specific predictions were made for
these correlations.

MATERIALS AND METHODS
SUBJECTS AND PROCEDURE
Physically and psychologically healthy men [n = 49; age (mean ±
SD): 28.5 ± 5.4 years; range 22–43 years] and women (n = 34;
age: 26.7 ± 4.1; range 22–37 years; Student t-test; t = 1.516,
df = 81, p = 0.133) were recruited from subjects who applied
for the Master of Criminal Investigation. All subjects signed an
informed consent before participating in this study. The study
was performed in accordance with the ethical standards as for-
mulated in the 1964 Declaration of Helsinki [The Code of Ethics of
the World Medical Association (Declaration of Helsinki) for experi-
ments involving humans http://www.wma.net/en/30publications/
10policies/b3/index.html].

Candidates were subjected to a two-day assessment at the
Police Academy (Apeldoorn, Netherlands) containing a series of
physical tests (day 1) and psychological tests (day 2). Only candi-
dates who passed the physical tests enrolled into the second day
of psychological tests. The psychological tests encompassed cog-
nitive ability tests, a personality inventory, a psychological inter-
view and a job-related simulation [Fact Finding Decision-Making
(FFDM) task]. For logistic reasons inherent to the assessment
procedure at the Police Academy the order of tests varied between
subjects. Therefore, we scheduled the CGT to follow the FFDM
task for each candidate, such that each candidate had the same
test immediately before the CGT.

To determine daytime cortisol and alpha-amylase levels in
saliva, samples using Salivettes® Cortisol (Sarstedt, Nümbrecht,

Germany) were collected at four moments during the assess-
ment procedure according to procedures and recommendations
of the manufacturer: (1) when subjects arrived early in the morn-
ing (8:15–8.45 AM), (2) directly before the start of the FFDM
task (8:45 AM, 10:15 AM, or 2:15 PM), (3) after the FFDM,
which lasted 1.45 h, which is directly before the CGT (10:30 AM,
0:15 PM, or 4:00 PM), and (4) after the CGT (11.00 AM, 1:00 PM,
4.30 PM; see below). In cases where subjects started with the
FFDM task as their first assignment of the day saliva sample 1
and 2 collided. As only levels before (3) and after (4) the CGT
are of relevance for the present paper, only these values will be
reported here. We chose to obtain levels of salivary cortisol and
alpha-amylase before and after the CGT to optimize correlations
between these levels and task-performance. It should be noted
that the CGT by itself is not a stress-inducing task.

CAMBRIDGE GAMBLING TASK
The CGT was developed to assess different aspects of decision-
making (Rogers et al., 1999). Detailed information on the task
and procedure can be found in the manual of CGT (www.cantab.

com) and earlier published papers (Rogers et al., 1999; Deakin
et al., 2004; Newcombe et al., 2011; van den Bos et al., 2012). In
brief, in each trial the subject is presented with an array of 10
red and blue boxes. The subject must guess if a yellow token is
hidden in a red or blue box by touching one of two rectangles,
with the word “red” or “blue,” on the screen. The ratio of red to
blue boxes varies from trial to trial. Some trials have highly favor-
able odds (e.g., nine blue boxes/one red box), while others have
less favorable odds (e.g., six blue boxes/four red boxes). In the
gambling stages the subjects start with 100 points. Subjects can
select a proportion of these points (5, 25, 50, 75, or 95%), dis-
played in an ascending or a descending order, to bet on whether
the yellow token is hidden in a blue or red box. In the ascend-
ing order subjects start with the option to gamble 5% of their
credit points on their choice (blue or red) after which percentages
increase (as indicated above; about 2 s delay between options)
until subjects press the button on the screen, which is the taken
as their choice for this trial. In the descending order subjects start
with the option to gamble 95% of their credit points on their
choice (blue or red) after which percentages decrease (as indicated
above; about 2 s delay between options) until subjects press the
button on the screen, which is the taken as their choice for this
trial.

The task contains five stages. The first stage is a decision-
making stage. Subjects have to choose whether the token is hidden
in a blue or red box (four trials). The second stage is a gam-
bling training stage (ascending order; four trials). Subjects have
to choose whether the token is hidden in a blue or red box and
then select the amount they wish to bet, both by touching the
screen. The third stage is a gambling test stage (ascending order;
four series of nine trials). The fourth stage is a gambling training
stage (descending order; four trials). The fifth stage is a gambling
test stage (descending order; four series of nine trials). The sub-
jects must try to accumulate as many points as possible. Whether
subjects start with the ascending order followed by the descending
order or the other way round is randomized across test-subjects.
The task takes 20–25 min to complete.
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The following measures are extracted: (1) Quality of decision-
making (QDM): a measure which reflects the ability of subjects
to judge the likelihood of events to happen (cognition), i.e., it
measures the proportion of trials on which the subject chose
to gamble on the more likely outcome. The higher the value
the more appropriate subjects behave according to the situa-
tion. (2) Overall proportion bet (OPB) and Risk taking (Likely
Proportion Bet; LPB): both parameters are measures of risk tol-
erance, i.e., the higher the value the more subjects tolerate risks.
OPB measures the average proportion of the current points
total that the subject chose to risk on each gamble test trial,
including trials on which they bet on the less likely outcome.
However, differences may exist regarding betting behavior on
likely or unlikely options. For instance, subjects may bet a lower
amount of credit points when choosing an unlikely option than a
likely option. Therefore, the CGT also includes a second param-
eter, which is labeled Risk taking in the manual, but will be
labeled LPB here to stay in line with the previous parameter.
This measure reports the mean proportion of the current points
total that the subject chose to risk on gamble test trials for
which they had chosen the more likely outcome, i.e., trials on
which they had a higher chance of winning than losing. OPB
equals LPB when subjects hardly choose the unlikely option,
i.e., in such case they are highly correlated (van den Bos et al.,
2012). In line with our earlier studies (van den Bos et al., 2012)
we used both measures. (3) Deliberation time (DT) and Delay
Aversion (DA): two measures which may reflect impulsivity. DT
is the mean latency from presentation of the colored boxes to
the subject’s choice of which color to bet on. The higher the
value the longer subjects take to decide. This parameter mea-
sures reflection impulsivity although the CGT is not a task in
which delay increases the information available. Subjects who are
unable/unwilling to wait will bet larger amounts when they are
presented in descending order than in ascending order. This is
reflected in DA, which is calculated as the difference between
the risk-taking score in the descend condition and the ascend
condition. This measure reflects DA, but may also reflect motor
impulsivity. The higher the value the more impulsive subjects
are or the more they avoid delays. (4) Risk adjustment (RA): the
ability to adjust betting behavior according to the likelihood of
winning (interaction cognition-reward), i.e., subjects will gam-
ble more of their current points when the odds are strongly in
favor of them. A low RA score could be interpreted as a fail-
ure to use the available information when making a decision.
This measure reflects the tendency to bet a higher proportion
of points on trials when the large majority of the boxes are of
the color chosen (e.g., 9:1) than when a small majority of the
boxes are of the color chosen (e.g., 6:4). This RA score was cal-
culated as the degree to which the risk differed across the ratios,
as a proportion of the overall amount risked by that subject:
RA = [2∗(% bet at 9:1) + (% bet at 8:2) − (% bet at 7:3) −
2∗(% bet at 6:4)]/average % bet. A RA score of approximately zero
reflects no systematic tendency to take differential risks across
the ratios, whereas a high positive score indicates a tendency
to bet a larger proportion of the available points on the higher
ratio (9:1 and 8:2) trials than on the lower ratio (7:3 and 6:4)
trials.

PHYSIOLOGICAL MEASUREMENTS
Saliva samples were stored at −20◦C directly following collec-
tion and remained at this temperature for a maximum period
of 4 months until processing at the Specieel Laboratorium
Endocrinologie (UMCU, Utrecht, Netherlands).

Cortisol in saliva was measured without extraction using an in
house competitive radio-immunoassay employing a polyclonal
anticortisol-antibody (K7348). [1,2-3H(N)]-Hydrocortisone
(PerkinElmer NET396250UC) was used as a tracer. The lower
limit of detection was 1.0 nmol/l and inter-assay variation
was <6% at 4-29 nmol/l (n = 33). Intra-assay variation was
<4% (n = 10). Samples with levels >100 nmol/L were diluted
10× with assay buffer.

Alpha-amylase in saliva was measured on a Beckman-Coulter
AU5811 chemistry analyzer (Beckman-Coulter Inc., Brea, CA).
Saliva samples were diluted 1000× with 0.2% BSA in 0.01 M
phosphate buffer pH 7.0. Interassay variation was 3,6% at
200.000 U/L (n = 10).

Although cortisol and alpha-amylase levels may differ between
women which use oral contraceptives or not, and cortisol levels
vary across the menstrual cycle (Foley and Kirschbaum, 2010)
we did not take these differences into account here as we were
interested in the effects of the current levels of cortisol and alpha-
amylase on decision-making behavior (see also van den Bos et al.,
2009; de Visser et al., 2010). However, the number of male and
female subjects was counterbalanced across morning and after-
noon periods to account for differences in morning and afternoon
values (Nater et al., 2007).

STATISTICAL ANALYSIS
All statistical analyses were carried out using SPSS 16.0 for
Windows or the Vasserstats website (www.vasserstats.net) where
needed. Tests are indicated in the Results section. Significance
(two-tailed) was set at p ≤ 0.05; p-values > 0.05 and ≤ 0.10
were considered trends, while p-values > 0.10 were considered
non-significant (NS).

RESULTS
CAMBRIDGE GAMBLING TASK
No differences were found between men and women for choosing
the most likely option [QDM: men vs. women (mean ± SD): 0.96
± 0.06 vs. 0.95 ± 0.06; Student t-test, NS], for risk-taking mea-
sures [OPB: 0.53 ± 0.09 vs. 0.54 ± 0.11 (Student t-test, NS); LPB:
0.58 ± 0.10 vs. 0.58 ± 0.11 (Student t-test, NS)] and for impul-
sivity measures [DT: 2019.6 ± 1132.8 ms vs. 1749.8 ± 565.2 ms
(Student t-test, NS); DA: 0.14 ± 0.12 vs. 0.19 ± 0.16 (Student
t-test, NS)]. Only risk-adjustment differed significantly between
men and women (1.82 ± 0.80 vs. 1.46 ± 0.74; Student t-test:
t = 2.098, df = 81, p = 0.039). As subjects chose the most likely
option often (QDM > 0.95) it should be noted that OPB and LPB
are virtually identical. These measures were strongly correlated
in men and women: men: r = 0.975, n = 49, p < 0.001; women:
r = 0.979, n = 34, p < 0.001.

SALIVARY CORTISOL AND ALPHA-AMYLASE
Table 1A shows the levels of salivary cortisol and alpha-amylase
before the CGT at the different time-points across the day,
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while Table 1B shows the levels of salivary cortisol and alpha-
amylase after the CGT at the different time-points across the
day. While cortisol levels decreased across time-points in both
cases [before: two-way ANOVA; time-points: F(2, 77) = 6.552, p =
0.002; after: F(2, 77) = 6.345, p = 0.003], no differences were
found between men and women [before: sex: F(1, 77) = 0.801,
NS; sex∗time-points: F(2, 77) = 0.612, NS; after: sex: F(1, 77) =
0.011, NS; sex∗time-points: F(2, 77) = 1.186, NS]. In both cases
no differences were observed for time-points or sex for alpha-
amylase levels (before: F values <0.671, p-values >0.415; after:
F values <1.566, p-values >0.215).

CORRELATION BETWEEN CGT PARAMETERS AND SALIVARY CORTISOL
AS WELL AS ALPHA-AMYLASE
In both men and women cortisol as well as alpha-amylase levels
before and after the CGT were highly correlated: men, cortisol:
r = 0.971, n = 49, p < 0.001; women, cortisol: r = 0.953, n =
34, p < 0.001; men, alpha-amylase: r = 0.716, n = 49, p < 0.001;
women, alpha-amylase: r = 0.926, n = 34, p < 0.001. To reduce
the number of correlations we therefore decided to calculate the
mean of the levels before and after the CGT to capture the average
levels of salivary cortisol and alpha-amylase during the task and
correlate these average levels with the CGT parameters.

Figure 1A, shows the correlations between salivary cortisol
levels and CGT measures. Salivary cortisol levels were posi-
tively and significantly correlated with LPB (r = 0.408, n = 49,
p = 0.004) and OPB (r = 0.378, n = 49, p = 0.007) in men,
which were significantly different from the negative, but non-
significant, correlations in women (LPB: r = −0.241, n = 34,
NS; Fisher-r-to-z, z = 2.92 p = 0.004; OPB: r = −0.196, n =
34, NS; Fisher-r-to-z, z = 2.57, p = 0.01). Cortisol levels in
men tended to correlate negatively with RA (r = −0.271, n =
49, p = 0.06). No other significant differences or trends were
found. It should be noted that the significant correlations in
men remain even when we would correct for the number of

correlations (p-value = 0.05/6 = 0.0083). In, addition we con-
firmed that the main effects of LPB and OPB in men were not
due to differences in levels of cortisol across time-points per se
(see Tables 1A,B) as correlations remained significant following
correction for differences in time-points: before CGT: no correc-
tion OPB: r = 0.365, df = 47, p = 0.01, LPB: r = 0.395, df = 47,
p = 0.005; with correction (partial correlations): OPB: r = 0.287,
df = 46, p = 0.048; LPB: r = 0.329, df = 46, p = 0.023, after
CGT: no correction: OPB: r = 0.387, df = 47, p = 0.006; LPB:
r = 0.418, df = 47, p = 0.003; with correction (partial correla-
tions): OPB: r = 0.314, df = 46, p = 0.030; LPB: r = 0.355, df =
46, p = 0.013.

Figures 2A,B, show the significant correlations between sali-
vary cortisol levels and LPB as well as OPB scores in men and the
non-significant correlations in women. The panels show that risk-
taking measures and cortisol levels were within the same range in
men and women. The mean values of cortisol were not different
between men and women (men vs. women; mean ± SD; nmol/l):
15.50 ± 6.20 vs. 15.24 ± 5.18 (Student t-test, NS).

Figure 1B, shows the correlations between salivary alpha-
amylase levels and CGT measures. Salivary alpha-amylase levels
correlated positively and significantly with LPB (r = 0.336, n =
34, p = 0.05), while a trend was observed for the correlation
with OPB (r = 0.324, n = 34, p = 0.06), in women, which were
significantly different from the negative, but non-significant, cor-
relations in men (LPB: r = −0.184, n = 49, NS; Fisher-r-to-z,
z = −2.31, p = 0.02; OPB: r = −0.178, n = 49, NS; Fisher-r-to-
z, z = −2.22, p = 0.03). Risk-adjustment tended to correlate neg-
atively in women (r = −0.312, n = 34, p = 0.07), which tended
to differ from the non-significant positive correlation in men (r =
0.112, n = 49, NS; Fisher r-to-z, z = 1.87, p = 0.06). No other
significant differences or trends were found. It should be noted
that the significant correlations in women disappear when we
would correct for the number of correlations (p-value = 0.05/6 =
0.0083).

Table 1A | Salivary cortisol and alpha-amylase levels (mean ± SD) before the CGT in men and women at different time-points during the day;

number of subjects is indicated between brackets.

Men 0:15 PM 4:00 PM Women 0:15 PM 4:00 PM

10:30 AM 10:30 AM

Cortisol
(nmol/l)

19.4 ± 7.7
(17)

18.8 ± 6.3
(16)

13.0 ± 4.3
(16)

18.5 ± 6.5
(16)

15.4 ± 4.5
(7)

13.6 ± 4.6
(11)

Alpha Amylase
(U/l)

457.117 ± 276.638
(17)

454.125 ± 332.008
(16)

457.250 ± 288.402
(16)

369.250 ± 224.139
(16)

457.142 ± 367.517
(7)

383.636 ± 184.590
(11)

Table 1B | Salivary cortisol and alpha-amylase levels (mean ± SD) after the CGT in men and women at different time-points during the day;

number of subjects is indicated between brackets.

Men 1:00 PM 4:30 PM Women 1:00 PM 4:30 PM

11:00 AM 11:00 AM

Cortisol
(nmol/l)

15.8 ± 6.6
(17)

15.2 ± 5.4
(16)

10.5 ± 2.9
(16)

16.3 ± 5.0
(16)

12.6 ± 2.5
(7)

12.4 ± 4.0
(11)

Alpha Amylase
(U/l)

316.529 ± 179.901
(17)

338.825 ± 264.301
(16)

306.875 ± 170.377
(16)

241.812 ± 162.416
(16)

296.285 ± 234.909
(7)

255.090 ± 133.498
(11)
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FIGURE 1 | (A) Correlations (r -values; y-axis) between cortisol levels during
the CGT and CGT parameters (x-axis). (B) Correlations (r -values; y-axis)
between alpha-amylase levels during the CGT and CGT parameters (x-axis).
For both panels: QDM, quality of decision-making; LPB, likely proportion
bet; OPB, overall proportion bet; DT, deliberation time; DA, delay aversion;
RA, risk-adjustment. Gray bars indicate significant differences between
r -values of men and women (see text for details); asterisks indicate
significant r -values (see text for details).

Figures 2C,D, show the significant correlations between sali-
vary alpha-amylase levels and LPB as well as OPB scores in women
and the non-significant correlations in men. The panels show
that risk-taking measures and alpha-amylase levels were within
the same range in men and women. The mean values of alpha-
amylase were not different between men and women (men vs.
women; mean ± SD; U/l): 379.859 ± 219.974 vs. 324.397 ±
201.199 (Student t-test, NS).

A significant negative correlation was found between salivary
cortisol and alpha-amylase levels in women (r = −0.394, n = 34,
p = 0.02); this was not the case in men (r = −0.137, n = 49, NS).
We therefore used multiple regression to assess whether the com-
bination explained more of the variance. This was not case (not
shown). Since it was observed earlier that in women curve-linear
relationships may exist between cortisol and risk-taking (van den
Bos et al., 2009), this possibility was also explored for cortisol
and alpha-amylase and LPB as well OPB scores. However, no such
curve-linear relationships were found (not shown).

Figures 2A,B, suggest that the risk-taking measures are lower
in men than women at the low end of cortisol levels, while the
opposite is the case at the high end of cortisol levels. To capture
this as well as to further underpin the correlations we calculated

the quartiles for the cortisol values and assessed risk-taking mea-
sures according to these quartiles. We only compared the low end
(quartile 1) and the high end values (quartile 4). Table 2A shows
that no difference existed between men and women regarding the
cortisol levels when quartiles for men and women were calcu-
lated. In contrast risk-taking measures changed differently in men
and women related to the low and high end quartiles. While in
men LPB and OPB increased significantly from quartile 1 to 4, in
women they did not, in line with the correlations reported above.
Furthermore, LPB and OPB values in women were higher than
values of men at the low end, while the opposite was true at the
high end of cortisol quartiles. In addition, alpha-amylase levels
tended to be lower at high end of the cortisol levels in men, but
not women.

Figures 2C,D, suggest that the risk-taking measures are lower
in women than men at low levels of alpha-amylase, while the
opposite is the case at high levels. To capture this as well as to fur-
ther underpin the correlations we calculated the quartiles for the
alpha-amylase values and assessed risk-taking measures according
to these quartiles. We only compared the low end (quartile 1) and
the high end values (quartile 4). Table 2B indicates that women
showed overall slightly lower alpha-amylase levels. Risk-taking
measures changed differently in men and women related to the
low and high end of the quartiles. While in women LPB and OPB
increased significantly, in men they did not, in line with the corre-
lations reported above. Furthermore, LPB and OPB values in men
were higher than values in women at the low end, while this was
not the case at the high end of alpha-amylase levels. In addition,
cortisol levels tended to be lower at high end of the alpha-amylase
quartiles in women, but not men.

DISCUSSION
The aim of this study was to determine whether individual dif-
ferences in current levels of salivary cortisol (activation of the
HPA-axis) and/or alpha-amylase (activation of the SAM-axis) in
an assessment procedure were related to differences in decision-
making related parameters in the CGT in men and women.
The main findings of this study were that, (1) men and women
differed in risk-adjustment in the CGT, (2) cortisol levels corre-
lated strongly positively with risk-taking measures in men, which
was significantly different from the weak negative correlation in
women, and (3) alpha-amylase levels correlated positively, but not
strongly, with risk-taking in women, which was significantly dif-
ferent from the weak negative correlation with risk-taking in men.
Collectively, these data support and extend data of earlier studies
indicating that risky decision-making in men and women is dif-
ferently affected by stress hormones (Lighthall et al., 2009; van
den Bos et al., 2009).

GENERAL
Men and women only differed in risk-adjustment in the CGT.
This difference between sexes matches the outcome of earlier
studies (Deakin et al., 2004; van den Bos et al., 2012), indicating
that this is a robust finding between sexes regarding decision-
making (review: van den Bos et al., 2013b,c). As we did not
include a control group we cannot address the question whether
CGT parameters, for instance those related to risk-taking, were in
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FIGURE 2 | (A) Correlation between Likely proportion bet and cortisol levels
during the CGT in men (n = 49) and women (n = 34). Trend-lines are added
to indicate correlations. (B) Correlation between Overall proportion bet and
cortisol levels during the CGT in men (n = 49) and women (n = 34).
Trend-lines are added to indicate correlations. (C) Correlation between Likely

proportion bet and alpha-amylase levels during the CGT in men (n = 49) and
women (n = 34). Trend-lines are added to indicate correlations. (D)

Correlation between Overall proportion bet and alpha-amylase levels during
the CGT in men (n = 49) and women (n = 34). Trend-lines are added to
indicate correlations.

Table 2A | Risk-taking parameters and salivary alpha-amylase levels (mean ± SD) in men and women calculated according to cortisol-related

quartiles (see text).

Quartile 1 Quartile 4 Statistics

(Q1 vs. Q4)

Cortisol (nmol/l) Men 9.3 ± 1.3 (n = 13) 24.2 ± 5.2 (n = 12) P ≤ 0.001

Women 9.8 ± 1.7 (n = 10) 22.3 ± 3.8 (n = 8) P ≤ 0.001

LPB Men 0.54 ± 0.10 (n = 13) 0.64 ± 0.06 (n = 12) P ≤ 0.004

Women 0.61 ± 0.10 (n = 10) 0.56 ± 0.10 (n = 8) NS

OPB Men 0.49 ± 0.09 (n = 13) 0.59 ± 0.05 (n = 12) P ≤ 0.003

Women 0.57 ± 0.10 (n = 10) 0.53 ± 0.11 (n = 8) NS

Alpha-Amylase Men 482 ± 230 (n = 13) 301 ± 227 (n = 12) P ≤ 0.06

(units/l; × 1000) Women 429 ± 248 (n = 10) 285 ± 120 (n = 8) NS

Red: values significantly different between men and women; Blue: values trend between men and women.
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Table 2B | Risk-taking parameters and salivary cortisol levels (mean ± SD) in men and women calculated according to alpha-amylase-related

quartiles (see text).

Quartile 1 Quartile 4 Statistics

(Q1 vs. Q4)

Alpha-Amylase Men 147 ± 55 (n = 12) 692 ± 110 (n = 13) P ≤ 0.001

(units/l; × 1000) Women 117 ± 4 (n = 8) 578 ± 200 (n = 9) P ≤ 0.001

LPB Men 0.59 ± 0.10 (n = 12) 0.56 ± 0.10 (n = 13) NS

Women 0.47 ± 0.09 (n = 8) 0.60 ± 0.10 (n = 9) P ≤ 0.01

OPB Men 0.54 ± 0.08(n = 12) 0.52 ± 0.09 (n = 13) NS

Women 0.44 ± 0.09 (n = 8) 0.56 ± 0.08 (n = 9) P ≤ 0.009

Cortisol (nmol/l) Men 16.5 ± 6.5 (n = 12) 14.7 ± 8.6 (n = 13) NS

Women 17.8 ± 5.4 (n = 8) 12.1 ± 4.7 (n = 9) P ≤ 0.04

Red: values significantly different between men and women; Blue: values trend between men and women.

generally higher or lower in the job assessment group. However,
earlier data of a group of subjects within the same age range (van
den Bos et al., 2012) suggest that LPB and OPB scores were overall
higher in the present study.

We did not assess levels of (psychological or subjective) stress
experienced by our test-subjects, as this was not the objective of
this study. However, the assessment procedure is generally con-
sidered to be stressful by the candidates. As increased levels of
subjective stress and increased levels of stress hormones co-occur
(e.g., Starcke and Brand, 2012; van den Bos et al., 2013c), the lev-
els of salivary cortisol and alpha-amylase, that we observed here,
suggest that subjects may have been psychologically stressed: lev-
els were above for what may normally be found across the day
(e.g., Nater et al., 2007; Nater and Rohleder, 2009; van den Bos
et al., 2009; de Visser et al., 2010). Therefore, discussions which
follow should be considered against the background of possibly
psychologically stressed subjects.

CGT, CORTISOL, AND ALPHA-AMYLASE
A striking finding was that while risk-taking measures and cur-
rent salivary cortisol levels during the assessment procedure were
not different between men and women, current salivary corti-
sol levels were strongly and positively correlated with risk-taking
measures in men, which was significantly different from the non-
significant negative correlation between current salivary cortisol
levels and risk-taking parameters in women. These correlations
and differences between sexes were supported by the analysis of
differences in risk-taking parameters related to the low and high
end of cortisol quartiles. In conjunction with the trend for a neg-
ative correlation with risk-adjustment the data in men suggest
that related to HPA-axis activation men increase their bets across
the entire range of odd-ratio’s without adjusting betting behavior
according to the odds of winning. This increased risk-taking may
be related to a cortisol induced increase in reward-processing and
decrease in punishment-processing (Putman et al., 2010; Mather
and Lighthall, 2012).

An obvious limitation of our study is that we did not explic-
itly use a control and stress group as in laboratory studies to
manipulate cortisol levels (Lighthall et al., 2009; van den Bos

et al., 2009). Still, our data are in line with data obtained in
the laboratory, where it has been shown, using a stress and con-
trol group, that higher levels of salivary cortisol are associated
with higher levels of risk-taking behavior in men and higher
levels of salivary cortisol with risk-aversive and/or task-focused
behavior in women (Lighthall et al., 2009; van den Bos et al.,
2009; Pabst et al., 2013). Thus, this study confirms and extends
earlier reports and points to a general difference between sexes.
Furthermore, these data add to the validity of laboratory studies
showing that differences in cortisol levels in daily life affect the
behavior of men and women differently. In contrast to an earlier
study (van den Bos et al., 2009) we did not observe a curve-linear
relationship between cortisol and task-performance in women.
This may be related to differences between the (parameters of)
CGT and Iowa Gambling Task or the way stress was elicited
(short-lasting Trier Social Stress Test vs. long-lasting assessment
procedure).

A second striking finding, but less strongly than the first, was
that while current salivary alpha-amylase levels were not different
between men and women, current salivary alpha-amylase lev-
els were differently correlated with risk-taking measures in men
and women: salivary alpha-amylase levels correlated positively
with risk-taking in women, which was significantly different from
the non-significant negative correlations with risk-taking in men.
These correlations and differences between sexes were supported
by the analysis of differences in risk-taking parameters related
to the low and high end alpha-amylase quartiles. In conjunction
with the trend for a negative correlation with risk-adjustment the
data in women suggest that related to SAM-axis activation women
increase their bets across the entire range of odd-ratio’s with-
out adjusting betting behavior according to the odds of winning.
Although measuring salivary alpha-amylase may be indicative of
SAM-axis activation (Nater and Rohleder, 2009; but see Bosch
et al., 2011 for critical remarks) the present results should be con-
firmed using other parameters indicative of SAM-axis activation
such as heart rate and heart rate variability.

A recent study in men showed that an increase in SAM-axis
activation was associated with a decrease in risk-taking behavior
(Pabst et al., 2013). While we did not observe a clear-cut relation
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between SAM-axis activation and risk-taking here in men, the
sign of the correlation was in the same direction as in the study by
Pabst et al. (2013). Currently, no studies have studied SAM-axis
activation regarding reward-based decision-making in both men
and women. These data thus await further confirmation in lab-
oratory studies. However, one recent study clearly showed a dif-
ference between men and women regarding amygdala activation,
emotional memory and noradrenaline (Schwabe et al., 2013)
hinting at differences between men and women in the way SAM-
axis activation may affect behavior.

It would be tempting to suggest from the present data that
in men low levels of cortisol (low HPA-axis activation) and high
levels of alpha-amylase (high SAM-axis activation) are associated
with lower risk-taking levels than in women, while the opposite
is the case for high levels of cortisol and low levels of alpha-
amylase. Similarly, it would be tempting to suggest that in women
low levels of cortisol (low HPA-axis activation) and high levels
of alpha-amylase (high SAM-axis activation) are associated with
higher risk-taking levels than in men, while the opposite is the
case for high levels of cortisol and low levels of alpha-amylase.
While we observed an inverse relationship between cortisol and
alpha-amylase in women, the relationship in men was less strong
and clear, although the analysis using quartiles did suggest such an
inverse relationship. At present therefore this precludes drawing
too strong conclusions regarding the interplay of HPA-axis and
SAM-axis activation as well as the role of differences in coping
styles in men and women [see for a discussion van den Bos et al.
(2013c)]. Thus, while the data do not allow for extensive specula-
tion as yet, they do suggest differences in the effects of SAM-axis
and HPA-axis activation on risk-taking behavior in men and
women. Future studies should focus on differences in the inter-
action between HPA-axis and SAM-axis activation in men and
women in more detail.

The present study clearly extends data of previous studies fur-
ther as the CGT measures also other aspects of decision-making.
Thus, we did not observe any correlation between cortisol levels
or alpha-amylase levels with other measures of decision-making
such as impulsivity as measured by DT (speed of decisions; reflec-
tive impulsivity) and delay-aversion (the inability to wait, motor
impulsivity) and the ability to assess whether events are more or
less likely to happen (QDM; cognition). It has been suggested
that acute stress may increase the speed with which subjects make
choices, indicative of a loss of top-down control (Keinan et al.,
1987; Porcelli and Delgado, 2009). While we did observe that
stress increased decision-making speed in women in our earlier
study (van den Bos et al., 2009), this effect was independent of
cortisol levels. In a delay discounting task, which measures aspects
of impulsivity or levels of self-control it was shown that low levels
of saliva alpha-amylase correlate with high levels of impulsivity
in men (Takahashi et al., 2007). These data seem in line with
the weak correlation between alpha-amylase levels and risk-taking
in men that we observed here. In another study it was shown
that high and low impulsive male subjects did not differ in basal
or gambling induced increases in cortisol levels (Krueger et al.,
2005), suggesting no direct relationship between impulsivity and
cortisol, which is in line with the data observed here. Future
studies should further examine the relationship between speed

of decision-making, different forms of impulsivity and stress in
more detail.

NEURONAL UNDERPINNINGS
As to the underlying neural substrates, sex differences in the reg-
ulation of the balance between prefrontal areas and subcortical
areas may underlie behavioral differences as we have recently
discussed extensively elsewhere (van den Bos et al., 2013c; see
also Wang et al., 2007). We refer therefore to this review for
detailed information. Here, we only allude to general conclu-
sions, especially related to the effects of cortisol as this has been
studied in more detail than adrenergic effects (Schwabe et al.,
2013). The increase in risk-taking behavior in men in reward-
related decision-making under high levels of cortisol may be
associated with a loss of top-down control of prefrontal (lat-
eral orbitofrontal cortex and dorsolateral prefrontal cortex) over
subcortical structures. Furthermore, within the limbic system
high levels of cortisol may shift the balance of the activity of
the ventral striatum (reward-related behavior) and amygdala
(punishment-related behavior) toward the ventral striatum. In
line with this, it was recently observed that systemic injections
of corticosterone in male rats in a rodent analog of the Iowa
Gambling Task disrupted decision-making performance, which
was associated with changes in activity in prefrontal structures
(Koot et al., 2013). As to the underlying neural substrate in
women it seems that top-down control may actually be increased
under stress, related to levels of cortisol, with among others a
lower striatal and a stronger amygdala activity. It has been sug-
gested that the persistent activity in, for instance, the anterior
cingulate cortex following a stressful experience in women may
be associated with the development of depressive symptoms in
women related to tendencies of ruminative thinking. The men-
strual cycle has a strong effect on the outcome of stress-related
changes in neuronal activity (Goldstein et al., 2010; Ter Horst
et al., 2013). At present changes in neuronal activity in women are
less clear and straightforward than in men. However, by and large
these changes in women seem compatible with a shift toward risk-
aversive behavior. However, given the current lack of studies that
have assessed the behavior of women in decision-making tasks,
changes in decision-making behavior are better documented in
men than women. Clearly, there is a need for more studies mea-
suring stress, stress hormones and decision-making behavior in
men and women under the same conditions using fMRI to assess
task-related changes in neuronal activity (Lighthall et al., 2011;
Mather and Lighthall, 2012; Porcelli et al., 2012).

IMPLICATIONS
The data of this study add to the growing number of studies show-
ing differences between men and women in task-performance
encompassing emotional regulation (Cahill, 2006; van den Bos
et al., 2012, 2013a,b,c). Related to gambling we have elsewhere
discussed that more attention should be given to assessing sex
differences in the tendency to engage in gambling and develop
disordered gambling (van den Bos et al., 2013a). While stress may
trigger gambling episodes, underlying reasons for this may be dif-
ferent, e.g., excitement in men vs. overcoming negative mood in
women (van den Bos et al., 2013a). In addition, here we show that
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depending on neuro-endocrine status the consequences in men
and women may be different when being involved in gambling
episodes. It is clear that studies are needed to assess whether these
neuro-endocrine differences also relate to patterns of problematic
gambling behavior in real-life.

Finally, the data suggest that some individuals in the military,
police force, financial business or health care, which may experi-
ence high levels of work-related stress throughout the day, may be
at risk of taking wrong decisions due to strong HPA-axis and/or
SAM-axis induced changes in risk-perception (Taylor et al., 2007;
LeBlanc et al., 2008; LeBlanc, 2009; Arora et al., 2010; Akinola and
Mendes, 2012). Both high tendencies to take risks and high ten-
dencies to avoid them may not be optimal for job fulfillment (van
den Bos et al., 2013c). Given that police officers may have to take
decisions at unexpected time-points during a potential stressful
day, the design of the study mimics this situation. Laboratory
conditions may not adequately address such a dynamic situation.
By doing so, our study revealed differences in patterns between
men and women due to (long-term) activation of the HPA-axis
and SAM-axis. These data may in turn lead to new laboratory
designs for testing the effects of stress on decision-making.

CONCLUSION
In conclusion, the data of this study show that high levels of HPA-
axis and SAM-axis activation may have different effects in men
and women on risk-taking behavior. Future studies should con-
centrate on the underlying mechanisms of these sex differences.
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An influential model suggests that dopamine signals the difference between predicted
and experienced reward. In this way, dopamine can act as a learning signal that can
shape behaviors to maximize rewards and avoid punishments. Dopamine is also thought to
invigorate reward seeking behavior. Loss of dopamine signaling is the major abnormality in
Parkinson’s disease. Dopamine agonists have been implicated in the occurrence of impulse
control disorders in Parkinson’s disease patients, the most common being pathological
gambling, compulsive sexual behavior, and compulsive buying. Recently, a number of
functional imaging studies investigating impulse control disorders in Parkinson’s disease
have been published. Here we review this literature, and attempt to place it within a
decision-making framework in which potential gains and losses are evaluated to arrive
at optimum choices. We also provide a hypothetical but still incomplete model on the
effect of dopamine agonist treatment on these value and risk assessments. Two of the
main brain structures thought to be involved in computing aspects of reward and loss are
the ventral striatum (VStr) and the insula, both dopamine projection sites. Both structures
are consistently implicated in functional brain imaging studies of pathological gambling in
Parkinson’s disease.

Keywords: impulse control disorders, impulsivity, reward, loss aversion, insula, ventral striatum

GAMBLING AS A DISORDER OF REWARD AND PUNISHMENT
PROCESSING
Pathological gambling can be conceptualized as a disorder of
reward and punishment processing, whereby the gambler selects
an immediate but risky opportunity to obtain money over
the larger, more probable opportunity to save money (Ochoa
et al., 2013). Indeed, gambling is typically conceptualized as
a disorder of impulsivity, in which decision-making is rash
and relatively uninfluenced by future consequences. Patholog-
ical gamblers demonstrate increased impulsivity and increased
delayed discounting on laboratory measures (Verdejo-Garcia
et al., 2008). The coupling of increased reward seeking behav-
ior with insensitivity to negative consequences may explain the
persistence of gambling in the face of overall monetary losses
(Vitaro et al., 1999; Petry, 2001b; Cavedini et al., 2002). This
conceptual framework is similar to that used in drug addic-
tion, where seeking immediate gains while minimizing potential
risks is ubiquitous. Hallmarks of addiction include cravings or
compulsions, a loss of control, and continued engagement in
behaviors that maintain the addiction despite repeated negative
consequences (American Psychiatric Association, 2000). Simi-
larly, pathological gambling can be referred to as a behavioral
addiction because it shares many common features with drug-
addiction, such as compulsion and loss of control over one’s
behavior, as well as continuation of the behavior in the face
of negative consequences (Grant et al., 2006; Goodman, 2008).
Pathological gamblers exhibit uncontrollable cravings, tolerance,

habituation, and withdrawal symptoms, similar to those of drug
addicts (Wray and Dickerson, 1981; Castellani and Rugle, 1995;
Duvarci and Varan, 2000; Potenza et al., 2003). Moreover, both
pathological gambling and substance abuse are associated with
the same specific personality traits, namely sensation seeking and
impulsivity (Zuckerman and Neeb, 1979; Castellani and Rugle,
1995), which index heightened arousal to potential rewards and
reduced self-control and inhibitory function. The high comor-
bidity between substance dependence (drugs and alcohol) and
pathological gambling (Petry, 2001a; Petry et al., 2005), and
evidence for common genetic factors, point to the two disorders
having overlapping etiologies (Slutske et al., 2000; Goodman,
2008).

One useful model views reward and punishment learning as
inherent components in the decision-making process. Decision-
making can be broken down to the weighing of the probabil-
ity and value of reward against potential costs (e.g., negative
consequences). Other factors such as outcome ambiguity and
variance (sometimes referred to as risk) also affect individual
choices (Huettel et al., 2006), but here we will only consider
potential gains and losses as determinants of decision-making
while gambling. We will also take “risk” to mean the potential
loss attached to any choice. Risk, as so defined, increases with
the magnitude and probability of potential losses. In fact, risk-
taking may be seen as an indicator of the balance existing between
computations of potential gains and losses. Two of the main
brain structures thought to be involved in these computations
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are the ventral striatum (VStr) and the insula, both dopamine
projection sites. Both have been linked to computations of value,
with the VStr being especially responsive to reward prediction
error (RPE), encoding gain anticipation positively and loss antici-
pation negatively (Rutledge et al., 2010; Bartra et al., 2013), and
the insula responding predominantly to losses and loss antici-
pation in some studies (Knutson and Greer, 2008) or to both
positive and negative outcomes in others (Campbell-Meiklejohn
et al., 2008; Rutledge et al., 2010). Bartra et al.’s meta-analysis
(Figure 1) suggests that the insula encodes arousal or salience
as opposed to value, as it responds positively to both gains
and losses. This meta-analysis also raises the possibility of a
greater role for the insula in the assessment of risk and losses
than gains (compare panels A and B in Figure 1). Alteration
of the balance between these gain and loss anticipation sys-
tems may underlie the inappropriate choice behaviors that occur
in disorders such as addiction, gambling and impulse control
disorders.

Recent research suggests that differences in brain function,
structure, and biochemistry are present in those who develop
gambling problems, with dopamine being a common etiolog-
ical factor. Imaging studies have demonstrated an increase in
mesolimbic dopamine release during gambling tasks in healthy
subjects (Thut et al., 1997; Zald et al., 2004; Hakyemez et al.,
2008). However it should be noted that unpredictable reward
tasks have the ability to cause a suppression and enhance-
ment of dopamine transmission in different regions of the
striatum (Zald et al., 2004; Hakyemez et al., 2008). Earlier
research on pathological gamblers suggested altered dopamin-
ergic and noradrenergic systems, as found through a decrease
in concentration of dopamine and an increase in cerebrospinal
fluid levels of 3,4-dihydroxyphenyl-acetic acid and homovanilic
acid (Bergh et al., 1997). Pathological gamblers have also been
reported to have higher cerebrospinal fluid levels of 3-methoxy-
4-hydroxyphenylglycol, a major metabolite of norepinephrine, as
well as significantly greater urinary outputs of norepinephrine in
comparison to controls (Roy et al., 1988), indicative of a func-
tional disturbance of the noradrenergic system. In addition there
is evidence that genetic polymorphisms affecting dopaminergic
neurotransmission act as risk factors for problem gambling (Lobo
and Kennedy, 2006).

DOPAMINE IN REINFORCEMENT
Considerable evidence from animal studies, implicating
dopamine in behavioral reinforcement, provides a
neurobiological substrate that could encompass processing
of natural rewards, such as food and sex, as well as drugs of
abuse and pathological gambling (Di Chiara and Imperato, 1988;
Wise and Rompre, 1989; Wise, 1996, 2013). The observations of
Schultz and others (Schultz et al., 1998; Schultz, 2002) confirmed
a role for dopamine neurons in response to rewards; however
the current model of dopamine signaling can be traced to a
seminal paper by Montague, Dayan and Schultz (Schultz et al.,
1997), where it was argued that the firing pattern of dopamine
neurons did not signal reward per se, but a RPE signal, similar
to those used in machine learning. This finding, along with
evidence that dopamine could modulate synaptic plasticity

FIGURE 1 | Meta-analysis of fMRI studies of value (taken from Bartra
et al., 2013). The authors extracted peak coordinates of activation from
206 published fMRI studies that investigated value computations. (A)
Significant clustering of positive responses. (B) Significant clustering of
negative responses. (C) Conjunction maps, showing regions with
significant clustering for both positive and negative responses. (D)
Results of a between-category comparison, showing regions with
significantly greater clustering for positive than negative effects. (E)
Detail of the striatum, illustrating overlap between the conjunction map
(Panel C) and the difference map (Panel D). These data demonstrate the
relative response of anterior insula, striatum and ventromedial PFC to
positive and negative value.
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(Calabresi et al., 2007; Surmeier et al., 2010) led to the theory that
dopamine acts as a learning (or reinforcement) signal that shapes
future motivated behavior. Subsequent research has shown that
dopamine may also encode predictions about upcoming rewards
and reward rate, thus acting as a value signal in the mesocortical
and mesolimbic dopaminergic pathways (Montague and Berns,
2002).

The main projection site of dopamine neurons is the striatum,
whose connectivity to frontal, limbic and insular cortex, provides
a mechanism whereby dopamine can act as a prediction error
signal driving both “Go” learning, which relates to actions with
positive outcomes, and “No Go” or avoidance learning, which
relates to actions that lead to punishment or an absence of reward.
First, dopamine signaling operates in two modes (Grace, 2000):
slow constant release of dopamine regulates tonic levels, which
mostly signal via dopamine D2 receptors on striatal medium
spiny neurons; phasic bursts of dopamine firing lead to large
increases in synaptic dopamine which signal via both the D1

and D2 receptor systems. D1 receptors have low affinity for
dopamine (Marcellino et al., 2012) and only respond to large
increases in synaptic dopamine released during phasic dopamine
neuron bursts that reflect positive RPEs, supporting learning to
approach rewarding stimuli (Frank, 2005). Dopamine D2 recep-
tors, on the other hand, have a higher affinity for dopamine,
allowing them to respond to tonic dopamine signaling, and to
detect transient reductions in tonic dopamine levels that follow
pauses in dopamine neuron firing during negative RPEs. This
facilitates learning to avoid negative outcomes (Frank, 2005).
The cortico-striatal system can be divided into a direct and an
indirect pathway (Figure 2), which have opposite effects on the
thalamus and hence cortex (Albin et al., 1989). In the dorsal
striatum, receptors are segregated, with the D1 receptors within
the direct pathway, related to action selection, while the D2

receptors control response inhibition within the indirect pathway
(Mink, 1996). This separation allows dopamine to drive both
reward (increases in dopamine signaling a better outcome than
expected) and punishment (reductions in tonic dopamine indi-
cated a worse outcome than expected). Frank proposed a model
in which phasic dopamine bursts following rewards promote
positive reinforcement while reductions in tonic dopamine levels
lead to negative reinforcement, each controlled by the D1/direct
pathway and the D2/indirect pathway, respectively (Cohen and
Frank, 2009). This computational model suggests that the RPE
dopamine signal promotes learning from positive outcomes via
stimulation of D1 receptors, whereas learning to avoid negative
outcomes is mediated via disinhibition of indirect pathway striatal
neurons secondary to a reduction of D2 receptor stimulation
during dopamine pauses (Cohen and Frank, 2009). A negative
outcome (punishment or lack of an expected reward) leads to
pause in the firing of dopamine neurons, which then leads to a
transient reduction in tonic dopamine. It should also be noted
that D2 receptor stimulation reduces excitability of neurons in
the indirect pathway (Hernandez-Lopez et al., 2000), therefore,
reductions in D2 receptor signaling have the effect of activating
the inhibitory “No Go” pathway. This allows for bidirectional
positive and negative reinforcement signaling by dopamine neu-
rons. Support for this model has been provided by numerous

FIGURE 2 | Basal ganglia model. A possible model whereby basal
ganglia compute the utility of gains and losses via two segregated
pathways in the corticostriato-thalamocortical circuit. Striatal output
neurons of the direct pathway express D1 receptors and project to the
internal globus pallidus (GPi) and the substantia nigra pars reticulata (SNr),
and has an action selection effect on cerebral cortex. Striatal output
neurons in the indirect pathway express D2 receptors and reduce the
tonic inhibition of the external globus pallidus (GPe) on the GPi/SNr, which
leads to action inhibition in the cortex. D1 receptors respond mainly to
phasic (high concentration) dopamine signaling due to their low affinity for
dopamine. D2 receptors have high affinity for dopamine and respond to
lower tonic dopamine levels. Excitatory projections in green, inhibitory in
red.

experiments. Parkinson’s disease patients show enhanced posi-
tive learning when on their medications, but improved negative
learning while off medication (Frank et al., 2004). Pharmacolog-
ical manipulations also support the model (Frank and O’Reilly,
2006; Pizzagalli et al., 2008). The striatal release of dopamine
is linked to associative learning and habit formation via con-
trol of corticostriatal synaptic plasticity, which is affected in an
opposite manner by D1 and D2 signaling (Shen et al., 2008).
D1 dopamine receptor signaling promotes long-term potentiation
(Reynolds et al., 2001; Calabresi et al., 2007), whereas D2 receptor
signaling promotes long-term depression (Gerdeman et al., 2002;
Kreitzer and Malenka, 2007). Note that this model has been
tested most thoroughly at the level of the striatum. Multivariate
analysis of fMRI data shows that reinforcement and punishment
signals are ubiquitous in the brain, most notably in the entire
frontal cortex and striatum (Vickery et al., 2011). Less is known
about the information signaled by dopamine projections to brain
areas other than the striatum, such as frontal cortex, insula,
hippocampus and amygdala, or how the RPE signal is used by
these areas.

STRIATUM AND MONETARY REWARD
In human functional neuroimaging studies, changes in brain
activation have been demonstrated consistently in response to
monetary rewards (Thut et al., 1997; Elliott et al., 2000; Knutson
et al., 2000; Breiter et al., 2001; O’Doherty et al., 2007). Further,
studies have teased apart the different brain areas involved in the
various components of monetary reward, such as anticipation,
feedback, winning and losing. There seems to be a specialization
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within dopamine projection sites in relation to monetary reward:
anticipation of monetary reward increases activation in the VStr,
which includes the nucleus accumbens, while rewarding out-
comes increase activation in the ventral medial prefrontal cor-
tex, dorsal striatum, and posterior cingulate, with deactivation
in the aforementioned regions during reward omission (Elliott
et al., 2000; Breiter et al., 2001; Knutson et al., 2001b; Tricomi
et al., 2004). Neuroimaging experiments in humans suggest that
VStr activity strongly correlates with expected value, as well as
magnitude and probability (Breiter et al., 2001; Knutson et al.,
2001a, 2005; Abler et al., 2006; Yacubian et al., 2006; Rolls et al.,
2008). Work by D’Ardenne et al. (2008) supports a role for the
mesolimbic dopamine system in monetary RPE signaling. Acti-
vation of the ventral tegmental area, the origin of the mesolim-
bic dopamine circuit, reflected positive RPEs, whereas the VStr
encoded positive and negative RPEs. Similarly, Tom et al. (2007)
showed that VStr activity reflected potential monetary gains and
losses bidirectionally. This study also demonstrated that these
neural signals reflected individual variations in loss aversion, the
tendency for losses to be more impactful than potential gains.
Finally, the influential actor-critic model (Sutton and Barto, 1998)
proposes that the VStr uses prediction errors to update informa-
tion about expected future rewards while the dorsal striatum uses
this same prediction error signal to encode information about
actions that are likely to lead to reward. This distinction has
found support from fMRI experiments (O’Doherty et al., 2004;
Kahnt et al., 2009). Interestingly, the ability to update behavior
in response to RPE was shown to correlate with functional con-
nectivity between dorsal striatum and dopaminergic midbrain
(Kahnt et al., 2009). The imaging studies mentioned here support
the theory of dopamine as a RPE signal, at least in its striatal
projection.

INSULA AND RISK
The insula is frequently activated in functional neuroimaging
experiments (Duncan and Owen, 2000; Yarkoni et al., 2011).
Functionally it can be divided into three distinct subregions: a
ventroanterior region associated with chemosensory (Pritchard
et al., 1999) and socio-emotional processing (Sanfey et al., 2003;
Chang and Sanfey, 2009), a dorsoanterior region associated with
higher cognitive processing (Eckert et al., 2009), and a posterior
region associated with pain and sensorimotor processing (Craig,
2002; Wager et al., 2004). Different functional insular areas project
to different striatal targets: the VStr receives insular projections
primarily related to food and reward, whereas the dorsolat-
eral striatum receives insular inputs related to somatosensation
(Chikama et al., 1997).

The insular cortex is involved in decision-making processes
that involve uncertain risk and reward. Specifically, fMRI studies
have reported insular cortex involvement in risk-averse decisions
(Kuhnen and Knutson, 2005), risk avoidance and the representa-
tion of loss prediction (Paulus et al., 2003), monetary uncertainty
(Critchley et al., 2001), and encoding a risk prediction error
(Preuschoff et al., 2008). Patients with insular cortex damage place
higher wagers in comparison with healthy participants and their
betting is less sensitive to the odds of winning, with high wagers
even at unfavorable odds (Clark et al., 2008). Other research

suggests that optimum decisions involving risk depend on the
integrity of the insular cortex, showing that insula lesion patients
have altered decision-making involving both risky gains and risky
losses (Weller et al., 2009) (However see Christopoulos et al.,
2009). Specifically, insula damage was associated with a relative
insensitivity to expected value differences between choices. Previ-
ous research has shown that there is a dissociation between insula
and VStr, with VStr activation preceding risk-seeking choices, and
anterior insula activation predicting risk-averse choices (Kuhnen
and Knutson, 2005) suggesting that the VStr represents gain
prediction (Knutson et al., 2001a), while anterior insula repre-
sents loss prediction (Paulus et al., 2003). While imaging studies
also demonstrate a more general role of the anterior insula in
signaling the valence (positive or negative) of potential rewards
(Litt et al., 2011; Bartra et al., 2013) the lesion data argue that the
anterior insular cortex has a role in risk evaluation, specifically
in making risk-averse decisions. Indeed, in healthy subjects, the
insula is part of a value network that appears to track potential
losses in a way that correlates with individual loss aversion level
(Canessa et al., 2013). It is possible that an imbalance between
prefrontal-striatal circuitry and insular-striatal circuitry may lead
to suboptimal choices when weighing potential gains and losses,
as observed in pathological gamblers (Petry, 2001a; Goudriaan
et al., 2005).

PATHOLOGICAL GAMBLING AMONG PATIENTS WITH
PARKINSON’S DISEASE
Pathological gambling was first reported in the context of Parkin-
son’s disease and dopamine replacement therapy in 2000 (Molina
et al., 2000). The lifetime prevalence of pathological gambling in
the general public is approximately 0.9 to 2.5% (Shaffer et al.,
1999). In Parkinson’s disease, the prevalence rates are higher, from
1.7 to 6.1% (Ambermoon et al., 2011; Callesen et al., 2013).
The risk factors associated with the occurrence of pathological
gambling in Parkinson’s disease are young age of Parkinson’s
disease onset, a personal or family history of drug or alcohol
abuse, depression, and relatively high impulsivity and novelty
seeking personality scores (Voon et al., 2007b). Interestingly, these
are similar to the risk factors for drug addiction and pathological
gambling in the general population. Also, there have been reports
of addiction to L-dopa in certain patients (e.g., Giovannoni et al.,
2000), a phenomenon that had already been noted in the 1980s.
It was perhaps initially surprising to find that Parkinson’s disease
patients can become addicted to their own medication or develop
behavioral addictions because they were thought to not possess
the personality type typical of addicted individuals. They are
generally described as industrious, punctual, inflexible, cautious,
rigid, introverted, slow-tempered, with lack of impulsiveness and
novelty seeking, and they have low lifetime risks for cigarette
smoking, coffee drinking, and alcohol use predating Parkinson’s
disease onset (Menza et al., 1993; Menza, 2000).

Dopamine replacement therapy has been implicated in the
development of pathological gambling in Parkinson’s disease
(Gschwandtner et al., 2001; Dodd et al., 2005) and a remission or
reduction of pathological gambling is typically noted after reduc-
tion or cessation of dopamine agonist medication (Gschwandtner
et al., 2001; Dodd et al., 2005). A broader set of behavioral
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addictions termed impulse control disorders, including but not
limited to pathological gambling, compulsive sexual behavior,
and compulsive buying, have been reported in association with
dopamine replacement therapy (Weintraub et al., 2006; Voon
et al., 2007a; Dagher and Robbins, 2009). Dopamine agonists
(pramipexole, ropinirole and pergolide) appear to pose a greater
risk than L-Dopa monotherapy (Seedat et al., 2000; Dodd et al.,
2005; Pontone et al., 2006). Reducing the dopamine agonist and
increasing L-Dopa to achieve same motor response abolished
pathological gambling in affected individuals (Mamikonyan et al.,
2008), while a cross-sectional study of over 3000 Parkinson’s
disease patients found that taking a dopamine agonist increased
the odds of developing an impulse control disorder by 2.72
(Weintraub et al., 2010). Finally, these side-effects of dopamine
agonist therapy have been recently noted in other diseases, such
as restless leg syndrome, fibromyalgia and prolactinomas (Davie,
2007; Driver-Dunckley et al., 2007; Quickfall and Suchowersky,
2007; Tippmann-Peikert et al., 2007; Falhammar and Yarker,
2009; Holman, 2009). It should be noted however that some
studies have reported behavioral addictions and/or impulsiv-
ity and compulsivity in association with high-dose L-Dopa
monotherapy (Molina et al., 2000), deep brain stimulation for
Parkinson’s disease (Smeding et al., 2007), and in drug naïve
Parkinson’s disease patients (Antonini et al., 2011), all in the
absence of dopamine agonists. Nonetheless, the clinical evidence
overwhelmingly supports the theory that dopamine agonism at
the D2 receptor family is sufficient to cause impulse control
disorders.

BRAIN IMAGING STUDIES
NEUROTRANSMITTER IMAGING
Positron emission tomography (PET) imaging allows for changes
in endogenous levels of dopamine to be inferred from changes in
the binding of the [11C]raclopride to the dopamine D2 receptors.
The first [11C]raclopride PET study in this area was on Parkin-
son’s patients with dopamine dysregulation syndrome. Dopamine
dysregulation syndrome is characterized by the compulsive taking
of dopaminergic drugs, which is often comorbid with impulse
control disorders (Lawrence et al., 2003). Patients with dopamine
dysregulation syndrome exhibited enhanced L-Dopa induced
VStr dopamine release compared to similarly treated Parkinson’s
disease patients not compulsively taking dopaminergic drugs
(Evans et al., 2006). This was the first study to provide evidence
for sensitization of mesolimbic dopamine circuitry in Parkinson’s
disease patients prone to compulsive drug use. Subsequent studies
have supported a relative hyperdopaminergic state in Parkin-
son’s disease patients with pathological gambling. Three studies
mapping the concentration of dopamine reuptake transporters
(DAT) have shown reduced levels in the VStr of Parkinson’s
disease patients with impulse control disorders compared to
unaffected patients (Cilia et al., 2010; Lee et al., 2014; Voon et al.,
2014). Unfortunately the finding is non-specific, as reduced DAT
concentration can index either reduced nerve terminals (and
reduced dopamine signaling) or reduced DAT expression (and
therefore increased tonic dopamine levels). Supporting the lat-
ter hypothesis, impulse control patients demonstrate reduced
[11C]raclopride binding in the VStr compared to Parkinson’s

controls (Steeves et al., 2009), which is also consistent with
elevated tonic dopamine in this group. Note, however that this
result failed to be replicated in a similar study (O’Sullivan et al.,
2011).

However, these two [11C]raclopride PET studies reported a
greater reduction of VStr binding potential (an index of dopamine
release) during gambling (Steeves et al., 2009) and following
reward-related cue exposure (images of food, money, sex) com-
pared to neutral cues (O’Sullivan et al., 2011) in Parkinson’s
disease patients with impulse control disorders compared to
unaffected patients. This suggests an increased responsiveness of
striatal reward circuitry to gambling and reward-related cues in
those patients with impulse control disorders. In O’Sullivan et al.
(2011) dopamine release was only detected in the VStr and only
when subjects received a dose of oral L-Dopa just prior to scan-
ning, consistent with post-mortem data in Parkinson’s disease
showing that brain dopamine levels are much lower in dorsal
than VStr (Kish et al., 1988). These results are therefore consistent
with the sensitization hypothesis proposed by Evans et al. (2006).
More recently it was reported that Parkinson’s disease patients
with pathological gambling have a reduced concentration of
dopamine autoreceptors in the midbrain (Ray et al., 2012), which
is known to correlate with elevated dopaminergic responsivity
and increased impulsivity (Buckholtz et al., 2010). Finally, in
Parkinson’s disease patients, dopamine synthesis capacity, as mea-
sured by [18F]DOPA PET, correlates with a personality measure
of disinhibition, itself a risk factor for pathological gambling and
other addictions (Lawrence et al., 2013). In summary, PET studies
provide converging evidence of heightened dopaminergic tone
and increased dopamine response to reward cues as the under-
lying vulnerability in Parkinson’s disease patients who develop
pathological gambling during dopamine agonist treatment.

FUNCTIONAL MAGNETIC RESONANCE IMAGING
Parkinson’s disease patients with pathological gambling show
enhanced hemodynamic responses to gambling-related visual
cues in the bilateral anterior cingulate cortex, left VStr, right
precuneus and medial prefrontal cortex (Frosini et al., 2010).
This is in line with similar experiments in pathological gambling
without Parkinson’s disease (Crockford et al., 2005; Ko et al.,
2009) and drug addiction (Wexler et al., 2001), supporting the
view that impulse control disorders in Parkinson’s disease may be
conceptualized as behavioral addictions.

Parkinson’s disease patients with an impulse control disor-
der show diminished BOLD activity in the right VStr during
risk taking and significantly reduced resting cerebral blood flow
in the right VStr compared to their healthy disease counter-
parts (Rao et al., 2010). Similarly, it was found that Parkinson’s
disease patients with impulse control disorders showed a bias
toward risky gambles compared to control patients, and that
dopamine agonists enhanced risk taking while decreasing VStr
activity (Voon et al., 2011). The authors suggested that dopamine
agonists may decouple brain activity from risk information in
vulnerable patients, thus favoring risky choices. Another fMRI
study reported that, relative to Parkinson’s controls, impulse con-
trol disorder Parkinson’s patients had decreased anterior insular
and orbitofrontal cortex RPE signals. They also showed that

Frontiers in Behavioral Neuroscience www.frontiersin.org May 2014 | Volume 8 | Article 196 | 103

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Behavioral_Neuroscience/archive


Clark and Dagher Dopamine’s role in risk taking

dopamine agonists increased the rate of learning from gain
outcomes, and increased striatal RPE activity, suggesting that
dopamine agonists may skew neural activity to encode “better
than expected” outcomes in Parkinson’s disease patients suscep-
tible to impulse control disorders (Voon et al., 2010).

While differences in striatal dopamine signaling may distin-
guish Parkinson’s disease patients who do and do not develop
pathological gambling, the mechanism of action by which
dopamine agonists change risk assessment remains unclear.
Dopamine agonists change the way in which the brains of
healthy individuals respond to the anticipation and feedback
of rewards. During reward feedback, administration of a single
dose of pramipexole to healthy adults caused decreased VStr
activity in a lottery game (Riba et al., 2008). Similarly, there
was reduced VStr activation when Parkinson’s patients received
a dose of L-Dopa compared to placebo (Cools et al., 2007).
This pattern of hypoactivation is reminiscent of that found in
pathological gamblers without Parkinson’s disease (Reuter et al.,
2005): during a simulated gambling task, pathological gamblers
showed decreased activation with respect to controls in the ven-
tromedial prefrontal cortex and the VStr. Severity of gambling
was negatively correlated with the BOLD effect in the VStr and
ventromedial prefrontal cortex, suggesting that hypoactivity is a
predictor of gambling severity. As noted above, impulse control
disorder Parkinson’s patients were found to have diminished
resting perfusion as well as diminished BOLD activity during
risk taking in the VStr compared to Parkinson’s controls (Rao
et al., 2010). These studies suggest that dopamine agonists cause
individuals to seek rewards and make risky choices (Riba et al.,
2008), in the face of suppressed VStr response to rewards.

It should be noted however that reduced VStr activation
in fMRI experiments does not necessarily indicate reduced
dopaminergic signaling. There is evidence to support relatively
spared mesolimbic dopamine signaling as the risk factor for
pathological gambling in Parkinson’s disease. First, the repeated
taking of a dopaminergic medication for the treatment of
Parkinson’s disease could lead to sensitization of dopamine sig-
naling. VStr sensitization has been shown following repeated
amphetamine administration in humans (Boileau et al., 2006).
Moreover, in Parkinson’s disease the ventral portion of striatum
is relatively spared by the disease compared to the dorsal areas
(Kish et al., 1988), and thus dopamine replacement therapy, while
correcting the dopamine deficiency in the dorsal striatum to
normal levels, has the potential to raise dopamine levels in the
VStr circuit to higher than optimal levels (Cools et al., 2007). This
“overdose” theory was first proposed by Gotham et al. (1988)
to explain the fact that L-Dopa administration to Parkinson’s
disease patients, while improving some cognitive deficits, could
also cause specific impairments in other fronto-striatal cognitive
tasks. In the case of impulse control disorders, we propose that
excessive dopaminergic stimulation in the VStr obscures the dips
in dopamine signaling related to negative prediction errors.

The insula has also been implicated in imaging studies of
pathological gambling in Parkinson’s disease. In an fMRI study,
Ye et al. (2010) found that during the anticipation of monetary
rewards, a single dose of pramipexole (compared to placebo)
increased the activity of the VStr, enhanced the interaction

between the VStr and the anterior insula, but weakened the
interaction between the VStr and the prefrontal cortex, leading
to increased impulsivity. Cilia et al. (2008) found Parkinson’s
patients with pathological gambling showed resting over-activity
in brain areas in the mesocorticolimbic network, including the
insula. In an fMRI study, relative to Parkinson’s controls, impulse
control disorder patients had decreased anterior insular and
orbitofrontal cortex activity (van Eimeren et al., 2009; Voon et al.,
2010). Finally, in a study of Parkinson’s disease patients with and
without hypersexuality, a single dose of L-Dopa abolished the
normal insular deactivation seen in response to erotic pictures,
only in the hypersexual patients (Politis et al., 2013). Taken
together these results may suggest an imbalance between the
prefrontal-striatum connectivity and insula-striatum connectiv-
ity, favoring the influence of potential gains over that of potential
risks (losses) in decision-making.

RISK TAKING AND LOSS AVERSION
An influential framework for studying risky decision making is
prospect theory, developed by Kahneman and Tversky (1979).
A key finding of their work is loss aversion, a tendency for
losses to loom larger than potential gains, and for individuals
to typically forego risky choices when less valuable safer alter-
natives exist. For example most people will reject the offer of
a coin flip unless the potential gain is considerably larger than
the potential loss. Impulsiveness, at least in a gambling context,
can be characterized as a reversal of loss aversion, and an over-
weighing of potential rewards relative to losses. It remains to be
seen whether loss aversion results from asymmetrical weighting
of gains and losses along a single value axis (Tom et al., 2007),
or from a competitive interaction between separate systems for
gains and losses (Kuhnen and Knutson, 2005; De Martino et al.,
2010). Possibly, both models are correct: recent fMRI evidence
(Canessa et al., 2013) shows bidirectional responses to losses and
gains in the VStr and ventromedial prefrontal cortex (positive for
gains) and the amygdala and insula (positive for losses). In both
cases, there is greater activation to potential losses, correlating
with individual loss aversion measured using prospect theory
(Kahneman and Tversky, 1979). However, there are also brain
regions that respond uniquely to potential losses, namely the right
insula and the amygdala, once again reflecting individual varia-
tion in loss aversion (Canessa et al., 2013). In sum, a network of
regions centered on VStr, insula and amygdala seems to compute
gain and loss anticipation in a way that typically results in loss
aversion. Interestingly these structures, along with dorsal anterior
cingulate, form an intrinsic connectivity network as identified
by resting state fMRI. This network is thought to be involved in
detecting and processing emotionally salient events (Seeley et al.,
2007).

Loss aversion can be explained on an emotional basis, with
both potential gains and losses influencing behavior via different
emotions (Loewenstein et al., 2001), namely motivation on the
gain side and anxiety for losses. Such a model might tie the
former to the nucleus accumbens and the latter to the amygdala
and insula. In either case, it is conceivable that individuals who
are relatively less loss averse may also be at risk for impulsive
behaviors such as drug addiction and gambling, due to relative
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under valuation of losses, although surprisingly this has yet to
be formally tested.

There is some evidence implicating the striatum in reversal
of normal loss aversion in pathological gamblers. Loss of stri-
atal dopamine neurons in Parkinson’s disease is associated with
reduced risk-taking behavior compared to control subjects (Brand
et al., 2004; Labudda et al., 2010), while chronic administration
of dopamine agonists, especially in high doses, reverses this
tendency and promotes risky behavior and impulsivity (Dagher
and Robbins, 2009). In the healthy brain, acute administration
of D2 dopamine agonists may also cause an increase in risky
choices in humans (Riba et al., 2008) and rats (St Onge and
Floresco, 2009). Acute D2/D3 receptor stimulation has been found
to produce complex changes in the value of losses judged worth
chasing (chasing being the continued gambling to recover losses)
(Campbell-Meiklejohn et al., 2011). Taken together, this suggests
dopamine, acting on the striatum and possibly other mesolimbic
structures, may modulate loss aversion. Two studies in Parkinson’s
disease patients not affected by impulse control disorders found
that a single dose of the dopamine agonist pramipexole reduced
loss prediction error coding in the orbitofrontal cortex in one case
(van Eimeren et al., 2009) and the orbitofrontal cortex and insula
in the other (Voon et al., 2010). In sum, tonic dopamine activity
appears to reduce loss prediction signaling, and may therefore
reduce loss aversion.

We propose a general framework based on prospect theory,
in which the anticipation of potential losses and rewards is com-
puted, possibly in separate brain regions initially, and integrated
to compute a decision value (Figure 3). We speculate that gain
anticipation might be computed in the ventral medial prefrontal
cortex, based on numerous imaging studies implicating this area
in computation of value (Kable and Glimcher, 2007; Plassmann
et al., 2007; Bartra et al., 2013). As reviewed above, the amygdala
and insula may be involved in computing loss anticipation. A
possible site for the final computation of value, at least for the
purpose of updating choices and action plans, is the striatum,
which has fairly direct access to brain regions involved in action
planning (van der Meer et al., 2012). The striatum has inher-
ent roles in both response-reward associations (dorsal striatum)
(Alexander and Crutcher, 1990) and creating stimulus-reward
contingencies (VStr), which afford it the unique opportunity for
computation of value (Packard and Knowlton, 2002). Striatal
value signals can promote reinforcement processes leading to the
updating of future actions, strategies and habits, mediated by
the dorsal striatum, while also driving appetitive reward seeking
behavior via the VStr. For a review of the role of the striatum
in value coding see Knutson et al. (2008); Bartra et al. (2013).
The balance between gain and loss evaluation systems may be
modulated at least in part by dopamine. We propose a model in
which tonic dopamine, acting via the indirect basal ganglia path-
way (Figure 2) regulates inhibitory control manifesting as loss
aversion. Here lower levels of tonic dopamine would be associated
with increased loss aversion. Conversely, phasic dopamine, acting
via the direct pathway, would increase the value of gains. This is
based on the finding that young healthy subjects given a single
dose of the dopamine agonist cabergoline show reduced learning
in response to gains (positive feedback), due presumably to a

FIGURE 3 | A model of decision-making based on prospect theory. (A)
The utility of potential gains and losses is given by the following equation:
u(x) = (x)α for potential gains and u(x) = −λ · (−x)β for losses
(Kahneman and Tversky, 1979). When the loss aversion parameter λ is
greater than 1 the function is steeper in the loss domain, implying loss
aversion. In this model the utility of gains and losses is computed by
different neural networks and combined at some point. We list regions
that may be implicated in the calculation. (B) Dopamine may influence the
shape of the utility function for gains and losses, by affecting any of the
parameters α,β or λ to regulate the degree of loss aversion. Tonic and
phasic dopamine may modulate gain and loss calculation via the direct and
indirect basal ganglia pathways (Figure 2). The balance of tonic and phasic
dopamine signaling could regulate the balance between action selection
and inhibition, regulating the current level of loss aversion.

presynaptic effect (in low doses, cabergoline, a D2 agonist, reduces
phasic dopamine neuron firing via actions on the high affinity
D2 autoreceptor, located pre-synaptically on dopamine neurons)
(Frank and O’Reilly, 2006). Conversely, haloperidol, a D2 antag-
onist, increased learning from gains, probably due to its ability
to enhance phasic dopamine firing. With respect to Parkinson’s
disease, if a patient has an individual vulnerability to undervalue
losses, then dopamine agonist therapy, which tonically stimulates
D2 receptors and blocks sensing of the phasic dopamine dips
associated with negative rewards, (Frank et al., 2004, 2007), could
result in even lower loss aversion. One interpretation is that the
intensity of phasic activity sets the gain on the value of potential
rewards, while the tonic stimulation of D2 receptors blocks the
negative feedback associated with losses.
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Parkinson’s disease patients show enhanced positive learning
when on dopaminergic medications, and improved negative
learning while off medication, compared to age-matched controls
(Frank et al., 2004). Treatment with dopamine D2 agonists is now
accepted as the cause of impulse control disorders in Parkinson’s
disease, in which problem gambling is phase locked to medication
use. In the model proposed here, D2 stimulation would reduce
loss aversion via the indirect corticostriatal pathway. We suggest
that under D2 agonist treatment, these patients have a tendency
to undervalue losses and be more risk seeking. This is consistent
with the observation that Parkinson’s disease patients’ deficits in
risky decision making is dominated by impaired ability to use
negative feedback (Labudda et al., 2010). The effect on gain, risk,
and loss processing of dopamine signaling in other parts of the
mesolimbic and mesocortical system, notably the vmPFC, OFC,
insula and amygdala, remains to be investigated in greater depth.

Loss tolerance profile may also be affected by norepinephrine
signaling. In healthy volunteers, a single dose of the centrally
acting beta blocker propranolol reduced the perceived magnitude
of losses (Rogers et al., 2004) and normal variations in nore-
pinephrine reuptake transporter in the thalamus, as assessed by
PET, correlate with loss aversion (Takahashi et al., 2013). An
explanation for this is that norepinephrine increases the arousal
response to potential losses, and low norepinephrine signaling
may therefore reduce loss aversion. While norepinephrine neu-
rons are also affected in Parkinson’s disease, their role in the
motivational and impulsive aspects of the disease have yet to be
investigated (Vazey and Aston-Jones, 2012).

CONCLUSION
The causal association between dopamine D2 receptor agonism
and impulse control disorders in Parkinson’s disease has impli-
cations for addiction more generally. First, not all individuals
develop addictive syndromes following dopamine replacement
therapy; those who do appear to have relatively preserved
dopamine signaling in the mesolimbic pathway, possibly through
a combination of their specific pattern of neurodegeneration,
sensitization and pre-morbid vulnerability (as evidenced by the
fact that a family history of addiction is a risk factor). It is conceiv-
able that enhanced mesolimbic transmission is also a risk factor
in the general population (Buckholtz et al., 2010). Second, it is
clear that D2 receptor agonism alone is sufficient for the develop-
ment of the addictive syndrome. While combined D1/D2 agonists
such as L-Dopa may themselves be addictive (Lawrence et al.,
2003), D2 agonists are not typically administered compulsively;
rather, they have the ability to promote other addictions such as
pathological gambling (O’Sullivan et al., 2011). This is supported
by animal experiments (Collins and Woods, 2009), computational
neuroscience models (Cohen and Frank, 2009), and molecular
biology evidence (Shen et al., 2008) suggesting that D1 receptor
stimulation is reinforcing while D2 receptor stimulation inhibits
the inhibitory indirect pathway. We suggest that D2 agonism,
in vulnerable individuals, has the effect of “releasing the brake”
on reinforcement systems, thus facilitating the development of
impulse control disorders. The time-locked nature of the D2

effect, and the fact that addictive behaviors typically resolve upon
discontinuation of the dopamine agonist, is consistent with the

theory that tonic dopamine has an invigorating effect on reward
seeking behavior (Niv et al., 2007; Dagher and Robbins, 2009).

We note however that other mechanisms besides dopamine-
mediated disruption of responses to reinforcing events and stim-
uli may play a role. For example, Averbeck et al. (2014) have
proposed that Parkinson’s disease patients with impulse control
disorders are uncertain about using future information to guide
behavior, which could lead to impulsivity (a tendency to privi-
lege immediate action). Also, frontal lobe deficits (Djamshidian
et al., 2010) could also lead to impulsivity through impaired self-
control. These mechanisms need not be mutually exclusive.
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Huntington’s disease (HD) is a genetic, neurodegenerative disorder, which specifically
affects striatal neurons of the indirect pathway, resulting in a progressive decline in muscle
coordination and loss of emotional and cognitive control. Interestingly, predisposition to
pathological gambling and other addictions involves disturbances in the same cortico-
striatal circuits that are affected in HD, and display similar disinhibition-related symptoms,
including changed sensitivity to punishments and rewards, impulsivity, and inability
to consider long-term advantages over short-term rewards. Both HD patients and
pathological gamblers also show similar performance deficits on risky decision-making
tasks, such as the Iowa Gambling Task (IGT). These similarities suggest that HD patients
are a likely risk group for gambling problems. However, such problems have only
incidentally been observed in HD patients. In this review, we aim to characterize the risk
of pathological gambling in HD, as well as the underlying neurobiological mechanisms.
Especially with the current rise of easily accessible Internet gambling opportunities, it is
important to understand these risks and provide appropriate patient support accordingly.
Based on neuropathological and behavioral findings, we propose that HD patients may
not have an increased tendency to seek risks and start gambling, but that they do have
an increased chance of developing an addiction once they engage in gambling activities.
Therefore, current and future developments of Internet gambling possibilities and related
addictions should be regarded with care, especially for vulnerable groups like HD patients.

Keywords: Huntington’s disease, risk-taking, gambling, prefrontal cortex, basal ganglia, disinhibtion

INTRODUCTION
Huntington’s disease (HD) is a genetic neurodegenerative dis-
order, inherited in an autosomal dominant fashion. The disease
is characterized by progressive motor, cognitive and behavioral
symptoms, which usually become apparent between 30 and 50
years of age, and lead to premature death in 10–20 years after
disease onset. HD is caused by a mutation in the Huntingtin
gene (HTT), which leads to protein aggregation, deregulation
of several cellular processes, and eventually cell death. Neuronal
degeneration initially occurs selectively in the striatum (caudate
nucleus and putamen), where it affects cortico-striatal pathways
that serve to control motor and cognitive functions (Reiner et al.,
2011; Vonsattel et al., 2011). At the motor level, this degenerative
process is expressed as disorganized movements (chorea), while
at the cognitive/behavioral level patients display an “executive
dysfunction syndrome”, encompassing amongst others impulsiv-
ity, poor risk assessment and an inability to halt a poor course
of action (Hamilton et al., 2003; Duff et al., 2010b). Similar
behavioral and cognitive symptoms are seen in addictive behavior
related to substances or activities (Newman, 1987; Rosenblatt,
2007; Iacono et al., 2008). Therefore, it may be expected that HD
patients are at risk of developing addictions. Decision-making
paradigms in laboratory settings have indeed suggested deficits

in risky decision-making in advanced HD patients (e.g., Stout
et al., 2001), and pathological gambling has incidentally been
observed in this patient group (De Marchi et al., 1998). However,
these findings are rare, and surprisingly few studies have directly
examined symptoms and consequences of, for instance, behav-
ioral disinhibition in HD.

In this review we will argue that HD patients may be a risk
group for developing problematic gambling. Firstly, problematic
gambling is characterized by subjects’ inability to stop gam-
bling despite financial, personal or professional problems. Based
on neurobiological disturbances and behavioral symptoms the
capacity to stop gambling behavior seems diminished or absent in
HD patients. Secondly, due to the more liberal attitudes towards
gambling and increasing possibilities of legal and illegal Internet
gambling (see e.g., Griffiths, 2003), we may expect the occurrence
of gambling problems to increase in the coming years. Increased
accessibility may specifically pose a risk to vulnerable groups, such
as HD patients, that have not been previously exposed to such
risks.

In general, changing external conditions and treatment meth-
ods can have unexpected and undesirable effects on patient
behavior, especially in complex neurological diseases. Such effects
are easily missed when behavioral symptoms are not regularly
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reevaluated. This may be best illustrated by the case of Parkinson’s
disease, where the introduction of drug treatment with dopamine
agonists led to impulse control disorders such as compulsive
gambling, shopping, eating, and hypersexuality, caused by over-
stimulation of the mesolimbic dopaminergic system (Dodd et al.,
2005; Witjas et al., 2012; Weintraub et al., 2013). However, these
side effects were not recognized until years after the introduc-
tion of dopamine agonist therapies in combination with societal
changes related to (the availability of) shopping, food consump-
tion, sexuality, Internet, and gambling. This example illustrates
that reassessment of risk factors is important to be able to provide
effective treatment and guidance to patients in face of a changing
environment.

Here, we will explore the disease profile of HD in relation
to addiction, gambling problems, and decision-making deficits.
In Section HD: Neuropathology, Symptoms, and Progression, pro-
gression of HD symptoms will be discussed in relation to dis-
turbances in cortico-striatal circuits involved in task learning,
sensitivity to punishment, and cognitive/impulse control. In
Section Risk Taking and Pathological Gambling Behavior in HD,
the neurobiological profile of HD patients will be discussed in
the context of gambling and well-established risk-taking and
decision-making tests, such as the Iowa Gambling Task (IGT)
and the Cambridge Gambling Task (CGT). In Section Discussion,
we will discuss how a characterization of gambling risks may
lead to recommendations for HD patients and their caretak-
ers on how to deal with this issue and which situations are
best avoided. We also aim to identify yet unanswered ques-
tions, which may act as a starting point for future research
into the occurrence and risks of gambling problems in HD
patients.

HD: NEUROPATHOLOGY, SYMPTOMS, AND PROGRESSION
NEUROBIOLOGICAL DISEASE MECHANISMS
HD is caused by an unstable CAG (trinucleotide; cytosine-
adenine-guanine) repeat in the coding region of the HTT gene,
which leads to the production of mutant huntingtin protein (Htt)
with an expanded polyglutamine (polyQ) stretch (MacDonald
et al., 1993). The number of trinucleotide repeats is inversely
correlated to the age of onset of disease (Snell et al., 1993; Stine
et al., 1993). The majority of HD patients has 40–55 repeats
which causes typical adult-onset disorder, while expansions of
more than 70 repeats lead to juvenile onset disorder. Individuals
with fewer than 35 CAG repeats in the HTT gene will not
develop HD. Although the exact mechanisms of HD pathogenesis
remain unknown and cannot be discussed here in detail, they
involve the formation of protein aggregates by polyQ expanded
Htt, as well as the interaction of mutant Htt with numerous
proteins that are involved in energy metabolism, protein and
vesicle transport, and regulation of gene transcription (Li and
Li, 2004; Jones and Hughes, 2011). The resulting deregulation of
these cellular processes eventually leads to neuronal degeneration
through mechanisms involving excitotoxicity and apoptosis.

Neuronal degeneration is initially restricted to the basal gan-
glia, where the medium spiny neurons in the striatum (caudate
nucleus and putamen) are specifically affected (Vonsattel and
DiFiglia, 1998; Kassubek et al., 2004). The striatum receives its

main excitatory (glutamatergic) input from cortical areas, while
it receives its dopaminergic input from the substantia nigra.
The striatum has two main inhibitory (GABA-ergic) outputs:
a direct and an indirect pathway (Figure 1A). Striatal neurons
of the direct pathway project to the internal globus pallidus
(GPi), which in turn has inhibitory projections to the thalamus.
The thalamus gives rise to the main excitatory input to the
cortex. Thus, in effect, activation of the direct striatal pathway
inhibits GPi activity, which in turn disinhibits thalamocortical
activity, thereby facilitating movement and cognitive functions.
The indirect striatal pathway, on the other hand, projects to the
external GP (GPe), which in turn sends inhibitory projections
to the subthalamic nucleus (STN). The STN sends excitatory
projections to the GPi. Accordingly, activation of the indirect
striatal pathway thereby disinhibits the STN, allowing it to activate
the GPi, which in turn inhibits thalamocortical activity, sup-
pressing movement and cognitive functions. Adaptive behavior
results from a (delicate) balance of activity in the direct and
indirect pathway. Pathology in the indirect pathway is key to
HD and disrupts the balance in striatal control resulting in a
loss of inhibitory control over motor functioning and behav-
ior (Figure 1B; Albin et al., 1989; Alexander and Crutcher,
1990).

Cortico-basal ganglia circuits, encompassing connections
between cortical areas, striatal areas, pallidal areas and thalamic
areas, are organized in a parallel fashion subserving different
functions in the organization of behavior. As many excellent
reviews exist on the anatomy and function of these circuits
(e.g., Alexander et al., 1986, 1990; Alexander and Crutcher,
1990; Yin and Knowlton, 2006; Verny et al., 2007; Yin et al.,
2008; Haber and Knutson, 2010; Sesack and Grace, 2010), we
only highlight a few issues here conducive to our review. First,
roughly speaking a dorsal to ventral topographical organiza-
tion in both cortical and striatal areas exists. Thus, the dorsal
prefrontal areas are associated with dorsal striatal areas while
the more ventral prefrontal areas are associated with more ven-
tral striatal areas (including the nucleus accumbens). Second,
broadly three functionally different circuits may be described.
The sensorimotor circuit encompasses the sensorimotor stria-
tum (putamen) and sensorimotor cortices associated with the
execution of motor behavior. The associative/cognitive control
circuit involves the dorsolateral prefrontal cortex, anterior cin-
gulate cortex, and associative striatum (caudate nucleus). This
circuit is especially relevant for executive functioning, i.e., it is
involved in cognitive control, planning and working memory. In
addition it is involved in promoting long-term adaptive behavior
by reinforcing or stopping (punishing) instrumental behavior,
i.e., sequences of behavioral acts, learned in interaction with
the environment (Kravitz et al., 2012; Paton and Louie, 2012).
The limbic circuit includes the orbitofrontal cortex, ventrome-
dial prefrontal cortex, amygdala, and limbic striatum (nucleus
accumbens). This circuit is especially relevant for evaluating
the affective value of stimuli, signaling the expected reward or
punishment of an upcoming stimulus, choice or event, emo-
tional control, and adaptive (emotional) learning (O’Doherty
et al., 2001; Rushworth et al., 2007; van den Bos et al., 2013b,
2014).
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FIGURE 1 | (A) Simplified scheme of the organization of cortico-basal
ganglia networks (cortical, striatal, pallidal and thalamic areas) showing the
direct and indirect pathways in normal brains. (B) Specific degeneration of
the indirect pathway (X) in HD leads to a decrease in inhibitory control over
cortical functions. GPe: external globus pallidus; GPi: internal globus
pallidus; STN: subthalamic nucleus. Red: inhibitory (GABA) pathways, Blue:
excitatory (glutamate) pathways.

Pathology in HD is observed in both the putamen and caudate
nucleus (Vonsattel and DiFiglia, 1998; Kassubek et al., 2004;
Vonsattel, 2008; Vonsattel et al., 2011; Hadzi et al., 2012). In addi-
tion, in both structures atrophy follows a characteristic pattern,
starting in the dorsal and caudal regions and moving towards the
ventral and rostral regions as the disease progresses (Vonsattel and
DiFiglia, 1998; Kassubek et al., 2004; Vonsattel, 2008). However
early atrophy has also been observed in the nucleus accumbens
and globus pallidus in some studies (van den Bogaard et al., 2011;
Sánchez-Castañeda et al., 2013). While disturbances in the senso-
rimotor circuit (putamen) may be related to the motor symptoms,

disturbances in the associative/cognitive control circuit (caudate
nucleus) may be related to executive dysfunction, and cause
deficits in e.g., working memory in early HD patients (Lawrence
et al., 1996; Bonelli and Cummings, 2007; Wolf et al., 2007).
Disturbances in the limbic circuit, such as due to early atrophy in
the nucleus accumbens, may be related to apathy and depression
(Bonelli and Cummings, 2007; Unschuld et al., 2012). Progressive
atrophy in the striatum may lead to a successive dysfunction of
cortico-striatal circuits. For instance, the ventral caudate nucleus
is also part of the orbitofrontal circuit, which is affected as
the disease progresses. Dysfunction of this circuit is related to
behavioral disinhibition (Bonelli and Cummings, 2007). Even-
tually, degeneration may spread to other brain areas, including
other parts of the basal ganglia (pallidal areas and thalamus),
hippocampus, amygdala and cortical areas at the late stages of the
disease.

In sum, HD is characterized by a specific degeneration of
striatal neurons belonging to the indirect pathway. As the disease
progresses, atrophy of the striatum spreads along a caudal-rostral
and dorsal-ventral gradient causing a sequential disturbance of
cortico-striatal circuits. The resulting loss of inhibitory control
in these circuits is directly related to the progression of motor,
cognitive and behavioral symptoms in HD, as discussed below.

SYMPTOMS OF HD
HD is characterized by a variety of progressive motor, cognitive
and behavioral symptoms. The first symptoms usually arise at
mid-age, with an average onset age of 40, although a small
percentage of patients suffer from juvenile-onset HD, which starts
before the age of 20. As the symptoms and progression of juvenile-
onset HD are somewhat distinct from adult-onset disorder, we
will focus on the latter patient group in this review. One of the
first symptoms to become apparent in HD is chorea (involuntary
movement disorder), and a clinical diagnosis is usually made
after onset of movement abnormalities (Shannon, 2011). Some
studies, however, report subtle cognitive and emotional changes
before onset of motor symptoms, and the exact order of occur-
rence and progression of HD symptoms remains a subject of
debate. Nevertheless, several comprehensive reviews of the clinical
manifestations of HD are available (Roos, 2010; Anderson, 2011;
Shannon, 2011).

Motor symptoms
Motor symptoms start to become apparent in the early stages of
HD, and are usually the first symptoms to be noticed in laboratory
settings and by first-degree relatives of HD patients (de Boo
et al., 1997; Kirkwood et al., 1999, 2001). Motor disturbances
appear to begin as a dysfunction in error feedback control (Smith
et al., 2000), consistent with the role of the cortico-striatal motor
circuit in sensorimotor learning and control (Graybiel et al.,
1994). The first signs of motor abnormalities are often subtle
involuntary movements (chorea) of e.g., facial muscles, fingers
and toes (“twitching”), hyperreflexia, and exaggerated voluntary
movements (Young et al., 1986; Shannon, 2011), which lead to
a general appearance of restlessness and clumsiness in early HD
patients. These abnormal movements are subtle and often go
unnoticed at first, but gradually worsen and spread to all other
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muscles over time. Other early motor symptoms include slow
or delayed saccadic eye movements (Peltsch et al., 2008) and
dysarthria (Ramig, 1986; Young et al., 1986). Dysarthria, a motor
speech disorder, leads to difficulty with articulation and slurring
of words, which makes speech progressively more difficult to
understand. Dysphagia (swallowing difficulties) is observed in
most patients with an onset at mid-disease stages, and gradually
worsens until patients can no longer eat unassisted and often
require a feeding tube in late-stage HD (Heemskerk and Roos,
2011). Other, non-choreic motor symptoms that usually become
apparent at mid-stage disease include complex gait disorder, pos-
tural instability, and dystonia (involuntary muscle contractions
that cause slow repetitive movements and abnormal postures),
which is often accompanied by frequent falls (Koller and Trimble,
1985; Tian et al., 1992; Louis et al., 1999; Grimbergen et al., 2008).
Rigidity and bradykinesia (slowness of movement and reflexes)
are sometimes observed, but are mostly restricted to cases of
juvenile-onset HD (Bittenbender and Quadfasel, 1962; Hansotia
et al., 1968). These motor symptoms are consistent with dys-
function of the sensorimotor (and associative/cognitive control)
cortico-striatal circuits that are commonly affected in HD.

Behavioral and psychiatric symptoms
Behavioral disorders in HD can be complex and difficult to
classify, and their occurrence and onset is highly variable between
individuals. Moreover, it can sometimes be difficult to distinguish
behavioral disorders from normal coping with a distressing dis-
ease (Caine and Shoulson, 1983). The number of studies that
have characterized behavioral symptoms in HD is limited, and as
a result there is relatively little insight in their prevalence in the
disease (van Duijn et al., 2007). The most frequently and consis-
tently reported behavioral and emotional symptoms in HD are
irritability, apathy, and depression, which occur with a prevalence
of approximately 50% (Caine and Shoulson, 1983; Folstein and
Folstein, 1983; Craufurd et al., 2001; Kirkwood et al., 2001; van
Duijn et al., 2007, 2014; Tabrizi et al., 2009). Both irritability
and apathy are sometimes observed in pre-manifest HD patients
(Tabrizi et al., 2009; van Duijn et al., 2014), and also depression
has been reported at early clinical stages (Shiwach, 1994; Julien
et al., 2007; Epping et al., 2013). These affective symptoms are
among the first non-motor symptoms to be noticed by first-
degree relatives (Kirkwood et al., 2001). Typical apathy-related
symptoms, which gradually become worse during the course of
the disease, include lack of energy, motivation and initiative,
decreased perseverance and quality of work, impaired judgment,
poor self-care and emotional blunting (Craufurd et al., 2001;
Kirkwood et al., 2001). Depressive symptoms have been related to
increased activity in the ventromedial prefrontal cortex (Unschuld
et al., 2012). Irritability is associated with orbitofrontal circuit
dysfunction, which leads to decreased control over emotional
responses in the amygdala (Klöppel et al., 2010).

Other, less commonly observed psychiatric symptoms and dis-
orders in HD are anxiety, obsessive-compulsive disorder, mania,
schizophrenia-like psychotic symptoms, such as paranoia, hallu-
cinations, and delusions (Caine and Shoulson, 1983; Folstein and
Folstein, 1983; Craufurd et al., 2001; Kirkwood et al., 2001; van
Duijn et al., 2007). These symptoms usually don’t occur until mid

or late stages of the disease, although they have incidentally been
reported to occur in preclinical HD patients (Duff et al., 2007).
Obsessive-compulsive disorder has been associated with damage
to the orbitofrontal cortex and anterior cingulate cortex, while
schizophrenia, a disorder which involves deficits in organizing,
planning and attention, is related to dorsolateral prefrontal cortex
dysfunction (Tekin and Cummings, 2002).

It is suggested that most psychiatric symptoms in HD are in
fact part of a broad, ill-defined “frontal lobe syndrome” or “exec-
utive dysfunction syndrome”, which includes symptoms such as
apathy, irritability, disinhibition, impulsivity, obsessiveness, and
perseveration (Lyketsos et al., 2004; Rosenblatt, 2007), all of
which are commonly observed in HD patients (Hamilton et al.,
2003; Duff et al., 2010b). Taken together, the literature indicates
that onset and progression of behavioral symptoms in HD is
heterogeneous, with affective disorders occurring most often and
with early onset, while anxiety, obsessive-compulsive disorder,
and psychotic symptoms are less common and usually occur later
in the disease. These psychiatric symptoms are associated with
dysfunction of limbic and associative/cognitive control cortico-
striatal circuits that are commonly affected in HD.

Cognitive symptoms
Cognitive decline is another important aspect of HD pathology.
Many studies have focused specifically on the occurrence of
cognitive symptoms in preclinical and early clinical stages of HD,
in the hope to discover early clinical biomarkers of the disease
(reviewed in Papp et al., 2011; Dumas et al., 2013). Overall, results
suggest that subtle cognitive changes may be observed up to 5–10
years before onset of motor symptoms with sufficiently sensitive
methods. One study even found that, at preclinical and early
clinical stages of HD, about 40% of patients already meet the
criteria for mild cognitive impairment (a disorder associated with
limited memory loss, not meeting the criteria for diagnosis of
dementia; Duff et al., 2010a). However, not all studies support
these findings (Blackmore et al., 1995; Giordani et al., 1995; de
Boo et al., 1997; Kirkwood et al., 2001). In general, the litera-
ture agrees that information processing and psychomotor speed
are especially affected at this early stage (Rothlind et al., 1993;
Kirkwood et al., 1999; Verny et al., 2007; Paulsen et al., 2008).
Other commonly observed early cognitive impairments include
problems with attention, (working) memory, and visuospatial
performance (Jason et al., 1988; Rothlind et al., 1993; Foroud
et al., 1995; Lawrence et al., 1996; Hahn-Barma et al., 1998; Verny
et al., 2007; Paulsen et al., 2008; Tabrizi et al., 2009; Papp et al.,
2011; Stout et al., 2011). Cognitive inflexibility has been observed
in early disease patients (Jason et al., 1988), at which stage
extra-dimensional shifts are specifically impaired, while reversal
learning is still intact (Lawrence et al., 1996). Thus, patients are
still able to reevaluate stimulus value and learn new stimulus-
reward contingencies within the same dimension (e.g., shape or
color), but have problems shifting their attention to a different
dimension (e.g., from color to shape) as required by the new
task rule to obtain reward. In later stages of the disease, cognitive
inflexibility and perseveration also cause impaired reversal learn-
ing in HD patients (Josiassen et al., 1983; Lange et al., 1995). This
progression of symptoms is consistent with specific dysfunction of
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the dorsolateral prefrontal circuit early in the disease, since extra-
dimensional set shifting is mediated by the dorsolateral prefrontal
cortex, while reversal learning is mediated by the orbitofrontal
cortex (Dias et al., 1996; McAlonan and Brown, 2003). Other early
impairments include disorganized behavior, impaired planning,
poor judgment, and reduced behavioral and emotional control
(Watkins et al., 2000; Paradiso et al., 2008; Duff et al., 2010b).
Disinhibition has been observed in early HD patients, whose
performance is impaired on tasks that require inhibition of pre-
potent but inappropriate responses (Holl et al., 2013). Finally, sev-
eral studies have found that preclinical HD patients are impaired
in the recognition of negative emotions such as anger, disgust, fear
and sadness. Emotional recognition declines progressively, and
can spread to problems with neutral emotions in early clinical
stages of the disease (Johnson et al., 2007; Tabrizi et al., 2009;
Labuschagne et al., 2013). This phenotype is related to dysfunc-
tion of the orbitofrontal cortex, which is involved in processing
emotional and reward information (Henley et al., 2008; Ille et al.,
2011).

Studies with animal models of HD show similar cognitive
impairments to those observed in human patients. Although
not all studies find robust cognitive deficits (Fielding et al.,
2012), findings in rat and mouse models of HD include anxi-
ety, increased responsiveness to negative emotional stimuli, and
impairments in reversal learning and strategy shifting (Faure
et al., 2011; Abada et al., 2013). One study found specific early
deficits in reversal learning before onset of motor symptoms in
a rat model of HD (Fink et al., 2012). Interestingly, HD animals
appear to have an increased responsiveness to negative emotional
stimuli, while human patients show decreased recognition of
negative emotions. At present it is unclear whether this reflects
differences in task administered (recognizing emotions versus
behavioral responses to threatening stimuli), species-related dif-
ferences in the outcome of pathology or a fundamental difference
between the rat model and the human condition. In general, stud-
ies in both human patients and animal models of HD demonstrate
that a wide range of cognitive functions can already be impaired in
early HD. Early abnormalities mainly include deficits in attention,
memory, cognitive flexibility, and emotional recognition. At this
early stage, patients often have impaired awareness of their own
(decline in) cognitive abilities (Hoth et al., 2007). Over time,
cognitive symptoms progressively get worse, eventually leading to
severe subcortical dementia in late stages of the disease. Although
the occurrence of symptoms is generally consistent with successive
impairment of associative/cognitive control and limbic cortico-
striatal circuits, respectively, specific functions that are related to
the limbic circuit can also already be affected at early-stage HD.

Conclusion
Motor, behavioral and cognitive symptoms in HD have been
studied extensively in the past, and continue to be a topic of
interest due to the wide variety and variability in the occur-
rence and onset of these symptoms across patients. In general,
behavioral and cognitive symptoms are related to three frontal
behavioral categories: apathy, executive dysfunction, and disinhi-
bition. The combination of these symptoms is sometimes referred
to as “executive dysfunction syndrome”. All of these symptoms

are related to deficits in the cortico-striatal circuits involving the
orbitofrontal cortex, dorsolateral prefrontal cortex and anterior
cingulate cortex. As discussed above, neuropathological studies
have observed a gradual degeneration of the striatum in a dorsal
to ventral direction in HD patients. Although the behavioral and
cognitive observations partly agree with a progressive impairment
of cortico-striatal circuits, the symptomatic findings appear to be
more diffuse than expected based on pathological observations.
Onset and progression of behavioral and cognitive symptoms in
HD is highly heterogeneous, indicating that damage to striatal
regions may be more variable and widespread in early stages of
HD than previously thought. This view is supported by evidence
from several structural imaging studies (Thieben et al., 2002;
Rosas et al., 2005; van den Bogaard et al., 2011).

RISK TAKING AND PATHOLOGICAL GAMBLING
BEHAVIOR IN HD
PATHOLOGICAL GAMBLING
While many people are able to gamble recreationally, it may
become an overt problem for some, as they develop pathological
forms of this behavior. Pathological gambling is characterized
by an excessive urge to gamble despite clear negative financial,
personal and professional consequences. It has recently been clas-
sified as an addiction in DSM-V, as it closely resembles substance
abuse disorders in both diagnostic criteria and neuropathology
(van Holst et al., 2010; Clark and Goudriaan, 2012). Pathological
gambling will be the first and only “behavioral addiction” rec-
ognized within the category “Addiction and Related Disorders”.
Nevertheless, it should be noted that differences exist between
addiction to psychoactive substances and addiction to gambling.
First, satisfying craving for psychoactive substances lies in con-
suming the substance of which the effect is known, while satisfy-
ing the craving for gambling may have an uncertain outcome as
money may be won or not, unless, it is the act of gambling itself,
for instance as an exciting activity. Thus, pathological gambling
may be more heterogeneous in this respect with also a more
uncertain outcome than substance abuse. It should be noted
that outcome variability, including both wins and losses, may be
crucial to the development of gambling addiction, as it presents
a variable intermittent pattern of reinforcement, which is the
most powerful form of instrumental/classic conditioning (Sharpe,
2002; Fiorillo et al., 2003). Second, psychoactive substances may
more strongly change activity in the brain and peripheral nervous
system than gambling, due to their direct pharmacological activity
at several neurotransmitter systems, accelerating thereby addictive
processes, making substance abuse a more powerful form of
addiction.

The underlying neurobiological mechanisms of gambling are
complex and involve many different brain regions and neuro-
transmitter systems (reviewed in Raylu and Oei, 2002; Goudriaan
et al., 2004; Potenza, 2013). Predisposition to addiction has been
related to a reduced level of dopamine D2 receptors in the
striatum, which function in a feedback loop to inhibit further
dopamine release. The resulting hyperactivity of dopaminergic
pathways increases sensitivity to reward, motivation, and positive
reinforcement of the addictive behavior (Volkow et al., 2002; Di
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Chiara and Bassareo, 2007). Specific motivational changes that
occur when pathological gambling develops include increased
motivation to gamble (van Holst et al., 2012) and enhanced
attention to gambling-related stimuli (Brevers et al., 2011a,b). In
addition, pathological gamblers have reduced cognitive control
over behavior in general, as exemplified by decreased performance
on response inhibition tasks, increased impulsivity, and a prefer-
ence for immediate over delayed rewards in neurocognitive tasks
(Goudriaan et al., 2004; Brevers et al., 2012a; van den Bos et al.,
2013a).

Pathological gamblers perform poorly compared to con-
trols on formal reward-related risky decision-making tasks (e.g.,
Cavedini et al., 2002; Brand et al., 2005; Brevers et al., 2012b;
review: Brevers et al., 2013). This poor performance is indepen-
dent of whether tasks contain explicit and stable rules for wins
and losses such as the Game of Dice Task (Brand et al., 2005) or
whether subjects have to learn by trial-and-error which choices
are advantageous in the long run, such as the IGT (Cavedini
et al., 2002; Brevers et al., 2012b; see Section Risky Decision-
Making by HD Patients on Laboratory Tasks for details of this
task). However, gambling severity was rather correlated with
performance on decision-making tasks in which probability of
outcome is unknown (IGT) than with tasks with explicit rules
(Brevers et al., 2012b). This observation is interesting in view
of the fact that in normal subjects the second half of the IGT
when subjects have learned task contingencies is akin to tasks
with explicit rules. Collectively, these data therefore suggest that
in pathological gambling impairments in decision-making may
result from both decreased executive control, which is related
to more explicit rules, and disturbed reward-punishment (emo-
tional) processing, which is more related to trial-and-error learn-
ing to assess long-term value of options (van den Bos et al.,
2013a, 2014). In addition, it suggests that disturbances in the
latter may be a predisposing factor to escalation of gambling
behavior.

From these studies it is clear that neurobiological predisposi-
tion for developing pathological gambling behavior involves dis-
turbances in both the associative/cognitive control circuit and the
limbic circuit (van den Bos et al., 2013a). As a result, pathological
gamblers display reduced cognitive control, increased impulsivity,
and increased sensitivity to reward, all of which are aspects of
behavioral disinhibition (Iacono et al., 2008). The chance that
an individual develops an addiction in its life, however, also
depends on many other aspects, such as early-life experiences and
environmental risks.

PATHOLOGICAL GAMBLING IN HD: EPIDEMIOLOGICAL EVIDENCE
With the increasing amount of possibilities offered by the Inter-
net, there has also been a rise in both legal and illegal online
gambling opportunities in recent years. These easily accessible and
often uncontrolled gambling activities may pose a risk to anyone
who has an increased susceptibility to gambling addiction, but
may otherwise not become involved in such activities (Griffiths,
2003). HD patients are one of the groups for which Internet gam-
bling may pose such a risk, because behavioral disinhibition—
a common feature in the disease—is an important factor in
the development of addictions (Iacono et al., 2008). Indeed, as

mentioned above, HD patients show several signs of disinhibition,
such as irritability, impaired response inhibition, and reduced
emotional recognition, at an early stage in the disease. Other
symptoms that have been observed in HD, and can influence
patients’ ability to make rational decisions, are cognitive inflexi-
bility, perseveration, poor judgment, and reduced self-awareness.
Besides these symptomatic similarities between HD patients and
pathological gamblers, both groups display structural and func-
tional abnormalities in similar cortico-striatal circuits.

In view of these similarities between pathological gamblers and
HD patients, we may expect the incidence of gambling problems
to be increased among HD patients compared to the normal
population. Nevertheless, only one study so far has reported cases
of pathological gambling in an Italian family with HD (De Marchi
et al., 1998). In this family, two individuals were diagnosed with
pathological gambling around the age of 18, well before the onset
of clinical signs of HD. Other epidemiological studies have not
reported on this issue, although impaired decision-making, risk
taking, and poor judgment have been shown to pose a risk for HD
patients handling important life decisions and financial affairs
(Klitzman et al., 2007; Shannon, 2011). Similarly, reports on
related issues such as substance abuse and addiction to Internet
use are missing in the current literature on HD pathology. At this
moment, it is unclear whether the absence of reports of gambling
problems in the HD literature is caused by a lack of attention
for this phenomenon, or whether there really is no increased
prevalence of pathological gambling among HD patients. Several
reasons may explain why such problems have not been reported
more frequently. Firstly, even if the incidence of pathological
gambling is increased in HD, this will likely still only affect a
small percentage of patients. In combination with the fact that
the HD-affected population itself is limited in number, this may
cause gambling problems to go unnoticed as a specific issue in
this patient group. Secondly, the lack of gambling problems in
HD may be related to the inability or unwillingness of patients to
leave the house due to motor disorders and frequently observed
signs of apathy and depression. Before the advent of Internet
gambling, this may have kept HD patients from visiting public
gambling places like the casino. Finally, adolescence appears to
be a sensitive period for developing gambling problems (van den
Bos et al., 2013a), while most HD patients do not start to show
disinhibition-related symptoms until later in life. However, with
the rise of Internet-related activities of adolescents, they may
acquire forms of recreational behavior such as online gambling,
which develop into a problem when HD symptoms become
manifest later in life. Thus, while the environment in which
gambling-susceptible HD patients find themselves may not have
promoted such behavior in the past, it is clear that an increased
accessibility and availability of gambling opportunities from the
home may change the prevalence of related problems in the HD
population.

RISKY DECISION-MAKING BY HD PATIENTS ON LABORATORY TASKS
Laboratory tasks are commonly used to assess cognitive and
behavioral abnormalities in neurological disorders. To gain
insight into the processes and impairments involved in decision-
making and risk-taking behavior, several tasks have been
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developed, including the IGT (Bechara et al., 1994) and the CGT
(Rogers et al., 1999). On the IGT, participants are presented with
four decks of cards. They are instructed to choose cards from
these decks, with which they can win or lose money; the goal of
the task is to win as much money as possible. The decks differ
from each other in the frequency and amount of wins and losses.
Two of these are “bad” decks, leading to an overall loss in the
long run, and two are “good” decks, leading to an overall gain.
The participants are not given this information, however, and
need to discover which decks are most advantageous during the
experiments. Normal, healthy, participants successfully learn the
rules of the task after a certain amount of sampling, and eventually
start to prefer the two “good” decks. Nevertheless, there are signif-
icant individual differences in performance even among healthy
participants, including for example clear sex differences (van den
Bos et al., 2013b). On the CGT, participants are presented with
a row of 10 boxes of two different colors, and need to make
a probabilistic decision in which color box a token is hidden.
They must then gamble credit points on their confidence in this
decision. In this task, all relevant information is presented to the
participant during the experiment, and trials are independent,
thus minimizing working memory and learning demands. Both
gambling tasks are well established, and the IGT is accepted as a
valid simulation of real-life decision-making (Buelow and Suhr,
2009), while the CGT is especially useful for studying decision-
making outside a learning context.

HD patients have been tested on both the Iowa and Cambridge
Gambling Task. In a study with intermediate-stage patients, Stout
et al. (2001) found that performance on the IGT was reduced
compared to normal subjects. The difference in performance
became apparent in the second part of the task; where sub-
jects normally start to show a preference for the good decks,
HD patients continued to make frequent selections from the
bad decks. This suggests that HD patients either did not learn
which decks were advantageous, or continued to choose cards
from the bad decks despite this knowledge. The authors noted
that several HD participants indicated to know that some decks
were disadvantageous, but still continued to select cards from
those decks, suggesting that HD patients can learn the rules of
the task, but are not able to enforce an advantageous selection
pattern and resist responding to individual punishments and
rewards. Nevertheless, reduced performance was found to be
associated with impaired memory and conceptualization, leading
the authors to speculate that HD patients may have trouble
learning or remembering the long-term consequences of choosing
cards from a particular deck. HD patients also scored higher on
disinhibition than healthy controls, but this measure was not
correlated with task performance. In a follow-up of the same data
Stout and colleagues, compared three cognitive decision models
to explain the performance deficit of HD patients, and found that
this was best explained by deficits in working memory and by
increases in recklessness and impulsivity (Busemeyer and Stout,
2002). Impaired performance of HD patients on the IGT may
also be related to a reduced impact of losses on these patients,
which was found by measuring skin conductance responses dur-
ing the IGT (Campbell et al., 2004). This finding is consistent
with impaired recognition of negative emotions in HD patients

(Johnson et al., 2007; Ille et al., 2011), and suggests that they
may be less sensitive to large punishments, and therefore less
likely to turn away from the bad card decks. Especially the second
part of the IGT requires the ability to suppress disadvantageous
courses of action in response to punishments, while reinforcing
profitable actions (de Visser et al., 2011; van den Bos et al., 2013b,
2014).

A limited number of other studies have tested risky decision-
making in early stages of HD, but did not find performance dif-
ficulties in these patients on either the IGT or the CGT (Watkins
et al., 2000; Holl et al., 2013). Thus, it appears that impairments
in decision-making and risk of gambling problems do not develop
until intermediate stages of the disease. However, these studies did
find impairments in tasks that required planning and inhibition
of pre-potent responses in early HD patients. It thus appears
that HD patients first develop subtle problems with inhibition,
planning, emotional recognition, and working memory. In some
patients this can already lead to problems with judgment and
decision-making in early stages of the disease, but most HD
patients don’t have problems with risky decision-making tasks
until they reach an intermediate stage of the disease.

NEUROBIOLOGICAL MECHANISMS OF DECISION MAKING IN HD
Neurobiological pathways underlying normal decision-making
processes in the IGT
The neurobiological mechanisms underlying decision-making
processes in the IGT have been well studied and described (see
e.g., Bechara et al., 2000; Doya, 2008; de Visser et al., 2011; van den
Bos et al., 2013b, 2014). Normal execution of this task requires an
interaction between the limbic and associative/cognitive control
cortico-striatal circuits. Activity in the limbic circuit is thought
to be dominant during the first phase of the IGT, during which
it is involved in exploratory behavior, responding to rewards
and punishments, and learning the affective values of short- and
long-term outcomes of decisions in the task (Manes et al., 2002;
Clark and Manes, 2004; Fellows and Farah, 2005; Gleichgerrcht
et al., 2010; de Visser et al., 2011; van den Bos et al., 2014). The
associative/cognitive control circuit, on the other hand, is more
important during the second part of the IGT, when it is necessary
to suppress impulsive responses to rewards and punishments for
long-term benefit, reinforce advantageous behavioral patterns
and suppress disadvantageous patterns (Manes et al., 2002; Clark
and Manes, 2004; Fellows and Farah, 2005; Gleichgerrcht et al.,
2010; de Visser et al., 2011; van den Bos et al., 2014).

Neurobiological abnormalities in IGT decision-making
processes in HD
Since decision-making processes in the IGT involve an interac-
tion of limbic and associative/cognitive control cortico-striatal
circuits, it is not surprising that HD patients are impaired in
the performance of this task. One of the observations by Stout
and colleagues is that the impact of loss on decision-making is
reduced in HD patients (Campbell et al., 2004). This is consistent
with findings that these patients are impaired in the recognition
of negative emotions, and may be explained by disturbances
in the orbitofrontal cortex (Ille et al., 2011). The orbitofrontal
cortex is important for emotional processing, and is activated in
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normal subjects in response to punishments and rewards in a
decision-making task (O’Doherty et al., 2001). Another finding
by Stout et al. (2001) is that the performance of HD patients on
the IGT is correlated with decreased conceptualization and long-
term memory measures on the Mattis Dementia Rating Scale.
A failure to learn or remember which decks are advantageous
on the long-term may be associated with decreased activity of
the associative/cognitive control circuit, which is required for
long-term planning and impulse control (Manes et al., 2002;
Clark and Manes, 2004; Fellows and Farah, 2005; Gleichgerrcht
et al., 2010). This is also consistent with specific deficits of the
indirect pathway in HD, since a recent study shows that the
indirect pathway is important for sensitivity to punishment in a
reinforcement-learning task (Kravitz et al., 2012; Paton and Louie,
2012). Insensitivity to the future consequences of a decision may
also be caused by ventromedial prefrontal cortex dysfunction,
since similar insensitivity is observed in patients with damage
to this prefrontal area (Bechara et al., 1994). Thus, decreased
performance of HD patients on the IGT may be caused by a
combination of dysfunctions in cortico-striatal circuits involv-
ing the orbitofrontal cortex, ventromedial prefrontal cortex and
dorsolateral prefrontal cortex. This leads to reduced responsive-
ness to punishment in the first phase of the task, and failure
to learn which decks are long-term advantageous, plan accord-
ingly, and suppress impulsive responses in the second phase of
the IGT.

DISCUSSION
HD AND PATHOLOGICAL GAMBLING: WHAT ARE THE RISKS?
The typical array of motor, emotional, and cognitive symptoms
of HD is caused by progressive striatal atrophy that affects the
different cortico-striatal circuits. Although onset and progression
of behavioral and cognitive symptoms appear to be highly het-
erogeneous, motor and cognitive circuits are typically affected
early in the disease, while the limbic circuit is affected at a later
stage. Interestingly, neurobiological predisposition to pathologi-
cal gambling and other addictions involves disturbances in the
same cortico-striatal circuits that are affected in HD. Despite
these striking similarities, however, in the medical literature HD
has not been associated with pathological gambling or other
addictive behaviors. Only one study so far has described a family
in which gambling problems occurred in several HD-affected
family members (De Marchi et al., 1998). We speculate that
patients’ motor symptoms, as well as their age and social envi-
ronment, may thus far have prevented them from developing
pathological gambling, despite their increased susceptibility to
such problems. On the other hand, the frequently diagnosed
depression may be expected to increase impulsivity and the risk of
gambling problems, based on correlation studies (Clarke, 2006).
Another explanation for the lack of observations of gambling
problems in HD may be related to differences in underlying
neuropathology. While the cognitive disturbances appear to be
highly similar between pathological gamblers and HD patients,
the emotional changes are of a different nature. Pathological
gamblers mainly show an increased sensitivity to rewards, urging
them to start and continue gambling. HD, on the other hand,
has been associated with a decreased sensitivity to punishments

and negative emotions. This difference may be an important
reason why HD patients do not appear to have an increased
tendency to start gambling or engage in other rewarding, addictive
behaviors.

Nevertheless, disturbances in the limbic cortico-striatal circuit
of HD patients may still promote risky decision-making in situa-
tions with uncertain outcome, as demonstrated in the IGT (Doya,
2008). Moreover, the combination of decreased sensitivity to
punishment, failure to inhibit impulsive responses to immediate
rewards, and inability to consider long-term delayed rewards and
enforce advantageous behavioral patterns accordingly, makes it
likely for HD patients to develop gambling problems, when they
encounter a situation that promotes such behavior. Characteristic
problems of HD patients with strategy shifting and symptoms
of cognitive inflexibility and perseveration may contribute to the
progression of pathological behavior in these situations. Thus,
we propose that HD patients do not have an increased ten-
dency to start gambling or other addictive behaviors inherent
to their neuropathology, but that they do have an increased risk
of developing an addiction once they engage in gambling. In
accordance with this idea, it has been observed that frontal lesion
patients become impulsive and often make poor decisions, but
that they do not exhibit increased risk-taking behavior (Miller,
1992; Bechara et al., 2000). This suggests that impaired decision-
making and risk-taking or -seeking behavior do not necessarily
occur together, and that different combinations of limbic and
associative/cognitive control circuit disturbances can have differ-
ent effects on risky-decision making and gambling behavior. Our
hypothesis would also explain why HD patients have not been
observed to perform worse on the CGT. Since all information
about chances and values of wins and losses is available up
front in this task, HD patients may not develop disadvantageous
strategies, because they are not actively seeking risks. However,
this would need to be tested in more advanced disease patients.

If HD patients indeed have an increased risk of developing
pathological gambling behavior when presented with the appro-
priate situation, the rise of easily accessible Internet gambling
opportunities may pose a specific risk for this patient group. Even
if they do not actively seek out these situations, HD patients are
now much more likely to come across gambling opportunities
than they were in the past. This is especially true for patients who
spend most of their time at home due to their symptoms, where
the Internet may be an important means to occupy them. A higher
probability of engaging in gambling behavior may therefore cause
a disproportionate increase in related problems in the HD popula-
tion. We suggest that caretakers should be aware of these possible
risks, and preferably try to prevent HD patients from engaging in
(online) gambling activities. Moreover, we argue that clinicians
should regularly assess the risk and prevalence of gambling-
related problems in the HD population, to be able to provide
appropriate treatment and guidance to patients and caretakers.

FUTURE DIRECTIONS
Besides epidemiological studies to assess the prevalence of patho-
logical gambling and other addictions in HD, several lines of
research can be suggested to increase our understanding of the
issues discussed in this paper. First of all, it would be interesting
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to link performance deficits on the IGT directly to disturbances in
cortico-striatal activity in HD patients. To this end, HD patients’
brain activation patterns can be studied with functional magnetic
resonance imaging while performing the IGT, and compared to
activity in normal subjects. Activity in the striatum, dorsolat-
eral prefrontal cortex and orbitofrontal cortex is expected to be
decreased in HD patients during decision-making on the IGT.

To study the behavioral and neurobiological aspects of
gambling-behavior in HD in more detail, currently available
rodent disease models can be utilized. On a behavioral level,
these animals can be expected to show decreased performance
on the IGT, similar to human patients. Rodent versions of
the IGT are available (review: de Visser et al., 2011) and the
involvement of different neuronal structures in these models is
well characterized (de Visser et al., 2011; van den Bos et al.,
2013a, 2014). Therefore, such experiments are feasible, and can
be combined with in-depth analysis of underlying neuronal
changes in rodent models of HD using a variety of techniques.
Furthermore, with the advent of more ecological valid research
methods and tools to assess the development of pathological
behaviors, the risk for developing pathological gambling may
be studied under (semi)natural conditions in both humans and
animals (van den Bos et al., 2013a). Together, these studies
of gambling-related symptoms and underlying neuropathology
in both human patients and animal models of HD will pro-
vide us with a better understanding of the risks related to
gambling—and possibly other addictive behaviors—in HD, and
improve our ability to provide appropriate treatment and guid-
ance.
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Pathological gambling [PG—now termed
“gambling disorder” in DSM-5 (APA,
2013; Petry et al., 2013)] is character-
ized by maladaptive patterns of gam-
bling that are associated with significant
impairments in functioning. Over the past
decade, significant advances have been
made in understanding the pathophysi-
ology of PG (Potenza, 2013). Similarities
between PG and substance-use disorders
(Petry, 2006; Potenza, 2006; Leeman and
Potenza, 2012) prompted the reclassifi-
cation of PG in DSM-5 as an addictive
disorder (rather than an impulse-control
disorder, as was the case in DSM-IV).

Multiple neurotransmitter systems have
been implicated in PG including seroton-
ergic, noradrenergic, dopaminergic, opioi-
dergic, and glutamatergic (Potenza, 2013).
An understanding of these systems as
they relate to PG is important clini-
cally for drug development as presently
there are no FDA-approved medications
with indications for PG. Dopamine has
long been implicated in substance addic-
tions and early articles postulated a sim-
ilarly important role for dopamine in
PG (Potenza, 2001). However, a precise
role for dopamine in PG remains unclear.
Studies of cerebrospinal fluid samples
indicated low levels of dopamine and high
levels of dopamine metabolites in PG, rais-
ing the possibility of increased dopamine
turnover (Bergh et al., 1997). However,
medications that target dopamine func-
tion have not demonstrated clinical effects
in PG. For example, medications that
block dopamine D2-like receptor function
(e.g., olanzapine) have shown negative
results in small, randomized clinical trials
(Fong et al., 2008; McElroy et al., 2008).
Furthermore, a D2-like dopamine recep-
tor antagonist widely used in the treatment

of psychotic disorders (haloperidol) was
found to increase gambling-related moti-
vations and behaviors in individuals with
PG (Zack and Poulos, 2007). However,
administration of the pro-dopaminergic
(and pro-adrenergic) drug amphetamine
also led to increased gambling-related
thoughts and behaviors in PG (Zack and
Poulos, 2004).

Recent imaging studies have begun
to use radioligands and positron-
emission tomography to investigate
dopamine function in PG. In contrast
to findings in cocaine dependence in
which between-group differences were
observed in [11C]raclopride-binding
in the striatum, similar levels were
observed in PG and comparison sub-
jects by two investigative groups (Linnet
et al., 2010, 2011; Clark et al., 2012).
Similarly, no between-group difference
between PG and comparison subjects
was observed using [11C]raclopride or
the D3-preferring agonist-radioligand
[11C]-(+)-propyl-hexahydro-naphtho-
oxazin (PHNO) (Boileau et al., 2013).
However, in these studies, relation-
ships with mood-related or generalized
impulsivity, disadvantageous decision-
making or problem-gambling severity
were reported, suggesting that dopamine
function may relate to specific aspects
of PG (Potenza and Brody, 2013). These
findings are consistent with the idea that
PG represents a heterogeneous condition
and that identifying biologically relevant
individual differences or subgroups may
help advance treatment development or
the appropriate targeting of therapeutic
interventions.

A now well-documented association
between dopamine and PG exists in
Parkinson’s disease (PD) (Leeman and

Potenza, 2011). Specifically, dopamine
agonists (e.g., pramipexole, ropinirole)
have been associated with PG and exces-
sive or problematic behaviors in other
domains (relating to sex, eating, and shop-
ping) in individuals with PD (Weintraub
et al., 2010). Furthermore, levodopa dos-
ing has also been associated with these
conditions in PD (Weintraub et al., 2010).
However, factors seemingly unrelated to
dopamine (e.g., age of PD onset, marital
status and geographic location) have also
been associated with these conditions in
PD (Voon et al., 2006; Weintraub et al.,
2006, 2010; Potenza et al., 2007), high-
lighting the complicated etiologies of these
disorders. Nonetheless, in a study using
[11C]raclopride, individuals with PD and
PG as compared to those with PD alone
demonstrated in the ventral (but not dor-
sal) striatum diminished D2-like binding
at baseline and greater [11C]raclopride
displacement during a gambling/decision-
making task (suggesting greater dopamine
release in the PG group during task perfor-
mance) (Steeves et al., 2009). These find-
ings are reminiscent of those suggesting
blunted levodopa-induced displacement
of [11C]raclopride in the ventral but not
dorsal striatum in PD subjects who self-
administer dopamine-replacement thera-
pies to excess (as compared to those who
do not) (Evans et al., 2006). As other find-
ings have identified in association with
behavioral addictions in PD (vs. those
with PD alone) relatively reduced signal
in the ventral striatum at baseline and
during risk-taking (Rao et al., 2010), a
question arises as to whether dopamine
might relate to these processes in PD.
Similar questions exist about the relatively
blunted ventral striatal activation seen in
non-PD PG in non-ligand-based imaging
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during simulated gambling (Reuter et al.,
2005) and monetary reward processing
(Balodis et al., 2012a; Choi et al., 2012).
Although multiple studies have found
blunted ventral striatal activation during
the monetary-reward-anticipation phase
(particularly during the performance of
Monetary Incentive Delay tasks) across
multiple addictive disorders [e.g., alcohol-
use (Wrase et al., 2007; Beck et al., 2009)
and tobacco-use (Peters et al., 2011) dis-
orders] and other conditions character-
ized by impaired impulse control [e.g.,
binge-eating disorder (Balodis et al., 2013,
in press)], other studies have found rela-
tively increased ventral striatal activation
during reward processing in individuals
with PG and those with other addic-
tions (Hommer et al., 2011; van Holst
et al., 2012a), further raising questions
about how striatal function contributes
precisely to PG and addictions and how
dopamine may be involved in these pro-
cesses (Balodis et al., 2012b; Leyton and
Vezina, 2012; van Holst et al., 2012b).

Although much of the radioligand-
related data described above investigate
D2/D3 receptor function, other dopamine
receptors warrant consideration in PG.
For example, on a rodent slot-machine
task, the D2-like receptor agonist quin-
pirole enhanced erroneous expectations
of reward on near-miss trials, and this
effect was attenuated by a selective D4
(but not D3 or D2) dopamine receptor
antagonist (Cocker et al., 2013). These
preclinical findings complement human
studies that suggest a role for the D4
dopamine receptor in gambling behaviors.
For example, allelic variation at the gene
coding for the D4 dopamine receptor has
been associated with differential responses
to levodopa-related increases in gam-
bling behaviors (Eisenegger et al., 2010).
These findings complement a larger liter-
ature linking the D4 dopamine receptor
to impulsivity-related constructs and dis-
orders like attention-deficit/hyperactivity
disorder, albeit somewhat inconsistently
(Ebstein et al., 1996; Gelernter et al.,
1997; DiMaio et al., 2003). As preclini-
cal (Fairbanks et al., 2012) and human
(Sheese et al., 2012) data suggest gene-
by-environment interactions involving the
gene encoding the D4 dopamine receptor
and aspects of impulsive or poorly con-
trolled behaviors, further research should

examine a role for the D4 dopamine recep-
tor in PG, particularly in studies employ-
ing careful assessments of environmental
and genetic factors. Although several D4-
preferring/selective agonist compounds
(e.g., PD-168,077 and CP-226,269) have
been used in preclinical studies to study
D4 receptors, additional research is needed
to study human D4 dopamine receptors as
might be accomplished through positron-
emission-tomography studies—this repre-
sents an important line of future research
(Bernaerts and Tirelli, 2003; Tarazi et al.,
2004; Basso et al., 2005). Additionally, as
the D1 dopamine receptor has been impli-
cated in addictions like cocaine depen-
dence (Martinez et al., 2009), a role for the
D1 dopaminergic system in PG warrants
exploration.

The above findings indicate that
how dopaminergic function may con-
tribute to PG and other addictions is
currently at an early stage of understand-
ing. Current data suggest that individual
variability in dopamine function may
obscure differences between PG and
non-PG populations, with arguably the
strongest between-group differences to
date observed in a group with dopamin-
ergic pathology (PD). The individual
characteristics (e.g., impulsivity, decision-
making and gambling-related behaviors)
linked to dopamine function in PG and
non-PG subjects also warrant consid-
eration from a clinical perspective and
suggest that these might represent novel
treatment targets that link particularly
closely to biological function [raising the
possibility that they may be particularly
amenable to targeting with medications
(Berlin et al., 2013)]. Additionally, other
potential endophenotypes like compulsiv-
ity (Fineberg et al., 2010, in press) warrant
consideration given their preliminary links
to treatment outcome in PG (Grant et al.,
2010). Additionally, systems that may reg-
ulate dopamine function warrant further
consideration in treatment development.
For example, in randomized clinical tri-
als, opioid antagonists like nalmefene and
naltrexone have been found to be superior
to placebo in treating PG (Grant et al.,
2006, 2008b), particularly amongst indi-
viduals with strong gambling urges or
familial histories of alcoholism (Grant
et al., 2008a). Similarly, glutamatergic sys-
tems warrant consideration in this regard

(Kalivas and Volkow, 2005), with pre-
liminary data linking the neutraceutical
n-acetyl cysteine to positive treatment
outcome in PG (Grant et al., 2007). As
dissecting the dopamine system is provid-
ing insight into PG, similar approaches
should be used to investigate serotonin
function in PG (Potenza et al., 2013), par-
ticularly given inconsistent findings with
serotonergic medications in the treatment
of PG (Bullock and Potenza, 2012). A
systematic approach to investigating the
neurobiology and clinical characteristics
of PG should help advance prevention and
treatment strategies for PG.
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Pathological gambling is one manifestation of impulse control disorders. The biological
underpinnings of these disorders remain elusive and treatment is far from ideal. Animal
models of impulse control disorders are a critical research tool for understanding
this condition and for medication development. Modeling such complex behaviors is
daunting, but by its deconstruction, scientists have recapitulated in animals critical
aspects of gambling. One aspect of gambling is cost/benefit decision-making wherein one
weighs the anticipated costs and expected benefits of a course of action. Risk/reward,
delay-based and effort-based decision-making all represent cost/benefit choices. These
features are studied in humans and have been translated to animal protocols to measure
decision-making processes. Traditionally, the positive reinforcer used in animal studies is
food. Here, we describe how intracranial self-stimulation can be used for cost/benefit
decision-making tasks and overview our recent studies showing how pharmacological
therapies alter these behaviors in laboratory rats. We propose that these models may
have value in screening new compounds for the ability to promote and prevent aspects of
gambling behavior.
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INTRODUCTION
Problem or maladaptive gambling, including the extreme condi-
tion termed pathological gambling, is characterized by behaviors
that often persist over extended periods. Problem gambling can
have a significant negative impact on personal, professional and
financial well-being. In the last two decades, gambling opportu-
nities have increased through changes in legislation and the intro-
duction of new venues (e.g., internet gambling). Accordingly, the
prevalence of problem gambling has been on the rise. There are
no FDA-approved treatments for this disorder, and thus, it is
critical to better understand these behaviors in order to develop
efficacious therapies.

Problem gambling is a complex phenomenon, which includes
increased levels of impulsive decision-making (Alessi and Petry,
2003; Dixon et al., 2003; Holt et al., 2003; Kraplin et al., 2014)
that stem from disadvantageous evaluations of cost/benefits.
Clinical assessments of decision-making, which often employ sur-
vey and interactive computer-based tools, have been instrumental
in determining suboptimal decision-making profiles in vari-
ous pathologies including pathological gamblers (Ledgerwood
et al., 2009; Madden et al., 2009; Michalczuk et al., 2011;
Petry, 2011; Miedl et al., 2012). Clinical assessments are fre-
quently made based on three differing, albeit overlapping,
aspects of cost/benefit decision-making, including the follow-
ing: (i) the amount of risk in obtaining a reward (risk/reward

decision-making), (ii) a delay experienced before reward deliv-
ery (delay-based decision-making), and (iii) the amount of effort
required to obtain a reward (effort-based decision-making).
Several tasks have been developed to measure these critical fea-
tures of suboptimal decision-making to further understand pro-
cesses that comprise problem gambling. In these tasks, the subject
chooses between a small and large reward, each associated with
specific response contingencies. In risk/reward decision-making
(i.e., probability discounting), subjects choose between a small
reward delivered consistently at high probabilities (e.g., 100%
probability of receiving $10) and a large reward delivered at vary-
ing probabilities (e.g., 10–80% probability of receiving $100).
In clinical and preclinical studies, the absence of an expected
reward is an aversive event which elicits corresponding physio-
logical responses (Douglas and Parry, 1994; Papini and Dudley,
1997). Preference for the larger, “risky” option over the small,
certain option is considered to reflect suboptimal risk/reward
decision-making, and has been reported for several human
pathologies that display enhanced impulsivity (Reynolds et al.,
2004; Rasmussen et al., 2010; Dai et al., 2013). In delay-based
decision-making (i.e., delay discounting, a measure of impulsive
choice), the small reward is delivered soon after the option is
selected, whereas the large reward is delivered following a vari-
able delay, (e.g., $10 now or $100 in 2 weeks). Individuals who
exhibit high impulsivity demonstrate preference for immediately
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available rewards (even if smaller), over delayed rewards (even
if larger) although the latter option may be more beneficial to
the individual (Crean et al., 2000; Reynolds et al., 2004; Bickel
et al., 2012). In effort-based decision-making, the subject chooses
between a small reward delivered following small amounts of
effort, or a large reward delivered after a greater amount of effort
has been exerted. In this task, individual preference for the high
effort/large reward option and the “point” at which the individ-
ual switches to the low effort/small reward option is determined.
Studies of effort-based decision-making in human gamblers have
yet to be conducted, but would be of significant interest to assess
cognitive function in this population.

Decision-making protocols used in clinical assessments can
be modified to study decision-making in laboratory rats, and
these models are critical for exploring the behavioral and neu-
ropharmacological aspects of pathological gambling. In rats,
decision-making can be assessed by placing the animal in an oper-
ant conditioning chamber, and allowing the animal to choose
between two levers (or two nose-poke hoppers) that are made
available at the same time. The established reward modality for
the positive reinforcer in these rodent tasks is food (Stopper and
Floresco, 2011; Eubig et al., 2014). We discuss here a novel method
used in our laboratory which employs direct electrical stimulation
of brain reward pathways (intracranial self-stimulation; ICSS)
to assess cost/benefit decision-making in rats and the contri-
bution of monoaminergic neurotransmitters in decision-making
(Rokosik and Napier, 2011, 2012; Tedford et al., 2012; Persons
et al., 2013).

INTRACRANIAL SELF-STIMULATION
An operant reinforcer is a stimulus, which when made depen-
dent upon some action, increases the likelihood of the recurrence
of that action. Intracranial self-stimulation (ICSS) is an operant
behavior in which animals self-administer electrical stimulation
to brain regions known to be involved in positive reinforce-
ment. ICSS was first studied in the 1950s when James Olds and
Peter Milner (Olds and Milner, 1954) determined that rats would
repeatedly return to a location in a box where they received elec-
trical stimulation to reward-related regions in the brain. They
allowed rats to work for this electrical brain stimulation (EBS) by
responding on an operant manipulandum (e.g., pressing a lever,
spinning a wheel) (Olds and Milner, 1954). The discovery of this
technique has been instrumental in mapping reward pathways
throughout the brain, and while there are many regions of the
brain that can be used to support ICSS (Olds and Milner, 1954;
Wise and Bozarth, 1981; Wise, 1996), it is well-documented that
stimulation of the medial forebrain bundle (MFB) promotes pro-
found and reliable behavioral outputs (Corbett and Wise, 1980;
Pirch et al., 1981; McCown et al., 1986; Tehovnik and Sommer,
1997). Stimulation current parameters can be manipulated to
affect the reinforcing value of the EBS and therefore alter ICSS
behavior. These parameters include the intensity (i.e., amperes)
of the electrical current and the current frequency (i.e., hertz).
Elevations in both parameters typically results in increased exci-
tation of the reward-relevant neurons being stimulated, either
by increasing the number of neurons engaged by the stimula-
tion (amperes) (Keesey, 1962; Wise et al., 1992) or by increasing

the frequency in which a set population of neurons fire (hertz)
(Wise and Rompre, 1989; Wise, 2005). Manipulations of current
intensity alter the number of neurons activated, i.e., larger current
intensities affect a wider population of neurons than smaller cur-
rents. Thus, when this parameter is kept constant, the population
of neurons excited by EBS is relatively similar regardless of cur-
rent frequency. The stimulation parameter variable of choice for
these protocols is current frequency, as this selection allows us to
manipulate the firing rate of the same group of neurons with min-
imal effects on the time or space of stimulation integration. By
manipulating these EBS parameters, we have developed sophisti-
cated models of cost/benefit decision-making that employ ICSS
(Rokosik and Napier, 2011, 2012; Tedford et al., 2012; Persons
et al., 2013). This application represents a radical departure from
the traditionally used reinforcing stimulus (i.e., food) in tasks
assessing decision-making in rodents. ICSS may provide several
experimental advantages over traditional reinforcement methods.
To facilitate operant responding for food, daily intake is often
restricted (Feja and Koch, 2014; Hosking et al., 2014; Mejia-Toiber
et al., 2014). This practice can confound outcome measures,
as there is substantial overlap in the neurobiological systems
that are altered during chronic food restriction and those that
mediate impulsive decision-making (Schuck-Paim et al., 2004;
Minamimoto et al., 2009). Additionally, animals reinforced with
food become increasingly satiated throughout a session, which
decreases the value of food reinforcement (Bizo et al., 1998),
although this effect may be dependent on reinforcer size (Roll
et al., 1995). In contrast to food reinforcement, the reinforcer
value of the EBS remains stable throughout a session, allowing
for more extensive and consistent behavioral assessments (Trowill
et al., 1969). This feature allows for testing sessions to occur
repeatedly throughout a day, which can be beneficial when study-
ing the effects of pharmacological therapies, specifically chronic
drug treatment. Our published probability discounting studies
(discussed below) were conducted several times a day throughout
chronic dopamine agonist (pramipexole) treatments. We propose
that this procedural benefit is more applicable to the human con-
dition and thus provides enhanced translational findings. To date,
similar studies assessing dopamine agonist effects on impulsive
decision-making using food reward have only assessed acute drug
treatments (St Onge and Floresco, 2009; Zeeb et al., 2009; Madden
et al., 2010; Johnson et al., 2011; Koffarnus et al., 2011) and it
will be of significant interest to compare the behavioral outcomes
following both acute and chronic drug treatment between these
different reinforcers. While ICSS provides several advantages over
food reinforcement, ICSS also presents several disadvantages. For
example, ICSS requires invasive brain surgery and recovery, and
ill-fitted head stages can result in loss of subjects throughout the
behavioral paradigm. Despite these drawbacks, we hold that ICSS
is a viable alternative to food reinforcement and presents con-
siderable advantages to food reinforcement in these behavioral
tasks.

Cost/benefit decision-making tasks require choices to be made
between options associated with varying reward magnitudes.
Accordingly, reinforcers used in these tasks should demonstrate
the ability to produce such changes in reward magnitude and
subsequently rats must be able to discriminate between the small
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reinforcer (SR) and large reinforcer (LR) option. In procedures
that use food reinforcement, this is achieved by altering the
number of food pellets obtained after a response. In ICSS, the
EBS can be varied by changing stimulation current intensity
or current frequency. Figure 1 illustrates lever-press responding
obtained when current intensity is varied (i.e., current frequency
was held constant; Figure 1A) or when current frequency is var-
ied (i.e., current intensity was held constant; Figure 1B). When

FIGURE 1 | Effects of brain stimulation parameters on lever-press

responding and probability discounting. The two EBS parameters tested
were current intensity and current frequency. Rats lever pressed for EBS (in
a fixed ratio-1 schedule of reinforcement) wherein every 2 min, one
parameter of EBS was manipulated and the other parameter was held
constant. (A) Manipulation of current intensity. Current intensities ranging
from 10 to 350 µA were presented in randomized order (n = 6); current
frequency was held at 100 Hz. (B) Manipulation of current frequency.
Current frequencies ranging from 5 to 140 Hz were presented in
randomized order (n = 3); current intensity was held constant at a level that
was individualized and determined in prior training sessions. Manipulating
current intensity or current frequency produced similar patterns of
lever-press responding. Data are shown as mean ± s.e.m. for the last three
consecutive sessions. Rats were subsequently trained in the probability
discounting task and values for the small and large reinforcers were
determined individually for each animal by computing the effective
stimulation current intensities and current frequencies obtained from the
EBS vs. lever-press responding curve that elicited 60 and 90% of maximal
lever-press response rates, respectively. Varying the magnitude of current
intensity (C) or current frequency (D) resulted in discounting the large
reinforcer (LR) as the probability of delivery was decreased (i.e., decrease
in percent selection of the lever associated with the LR over total
selections). Data are shown as mean ± s.e.m. for day one of discounting
using current intensity and 2 days of discounting using current frequency.
Figure modified from Rokosik and Napier (2011) and reprinted with
permission from the publisher.

either parameter is altered, rats exhibit moderate lever pressing
for small EBS values and show increased lever-pressing rates
for large EBS values, suggesting that the reinforcer value of the
larger stimulation is greater (independent of whether current
intensity or frequency is manipulated). EBS can therefore be tai-
lored for the small and large reinforcer necessary for cost/benefit
decision-making protocols. These reinforcer values can be deter-
mined in individual rats by generating stable lever-pressing rate
response curves for each animal (Rokosik and Napier, 2011,
2012). Alternatively, a population curve can be generated from
a group of rats from which a standardized SR and LR value can be
determined (Tedford et al., 2012; Persons et al., 2013). This latter
approach provides a more time-efficient and yet reliable means
to derive the SR and LR. In a second series of studies, we used
either manipulations of current intensity or frequency to establish
SR/LR values in a probability discounting task (i.e., risk/reward
decision-making). Changes in current intensity reinforcer values
(i.e., current frequency was held constant) and current frequency
values (i.e., current intensity was held constant) both produce
significant discounting behavior in rats (Figures 1C,D). Based
in part on the steepness of the discounting curve, current fre-
quency was determined to be the appropriate parameter for
manipulating reinforcement values. Once it is established that
rats can distinguish between the standardized current frequen-
cies used for the SR and LR, they can be tested in any one of
our ICSS-mediated decision-making paradigms: (i) risk/reward
decision-making (Rokosik and Napier, 2011, 2012), (ii) delay-
based decision-making (Tedford et al., 2012), or (iii) effort-based
decision-making (Persons et al., 2013).

VALIDATING THE USE OF ICSS TO EVALUATE MEASURES OF
IMPULSIVITY AND DECISION-MAKING
The development of new animal models requires careful consider-
ation regarding validity. Thus, in designing these ICSS-mediated
decision-making tasks, we have strived to verify face and con-
struct validity, and to ascertain the likelihood for predictive
validity.

Face validity refers to the extent in which a test subjectively
appears to measure its intended phenomenon. The design of
each ICSS-mediated decision-making task was based on cur-
rent protocols employed in humans for delay and probability
discounting (Rasmussen et al., 2010; Leroi et al., 2013) and
other effort-based decision-making tasks (Treadway et al., 2009;
Buckholtz et al., 2010; Wardle et al., 2011). In humans, mea-
sures of cost/benefit decision-making are derived from asking
individuals to select between several options available with spe-
cific contingencies placed on each selection (i.e., risk, delay, or
effort). We emulate this scenario by presenting rats with two
simultaneously extended levers, wherein a selection of either lever
is associated with small or larger rewards that are also delivered
under particular parameters of contingency. Thus, each of our
ICSS-mediated decision-making tasks demonstrates face validity.

Construct validity refers to the ability of the paradigm to accu-
rately assess what it proposes to measure. In risk/reward and
delay-based decision-making, preference for the large reward is
decreased as the probability of delivery is lowered, or the delay
toward reward delivery is increased, respectively. In effort-based
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decision-making, individuals demonstrate initial preference for
the high effort/large reward option when the effort associated
with the large reward is deemed reasonable. A shift in preference
to the low effort/small reward is observed when the high effort
is no longer worth the energy expenditure. It is well-documented
that rodents exhibit similar patterns of risk/reward, delay-based
and effort-based decision making compared to humans (Rachlin
et al., 1991; Buelow and Suhr, 2009; Jimura et al., 2009), and we
have observed these profiles in each of our tasks (Rokosik and
Napier, 2011, 2012; Tedford et al., 2012; Persons et al., 2013) (for
example, see Figure 2).

Predictive validity refers to the ability of models to foresee
future relationships, and we pose that our models can be used
to predict the capacity of novel pharmacological treatments to
alter cost/benefit decision-making. That is, by demonstrating
proof-of-concept through replicating the effects of pharmaco-
logical agents on decision-making behaviors that have already
been established in humans, we propose that our models may
be efficacious in predicting how other drugs may mediate these
behaviors in the clinic. For example, a subset of patients with
Parkinson’s disease (PD) who are treated with dopamine ago-
nist therapies demonstrate an increased prevalence of gambling
behavior (Weintraub et al., 2010) and increased discounting in
delay-based decision-making (Housden et al., 2010; Milenkova
et al., 2011; Voon et al., 2011; Leroi et al., 2013; Szamosi et al.,

FIGURE 2 | Effects of pramipexole on risk/reward decision-making

using a probability discounting task. Chronic (±)PPX decreases
discounting in PD-like (A) and sham control (B) rats. Briefly describing the
task, PD-like (n = 11) and sham control (n = 10) rats were trained in the
probability discounting task using ICSS. Probabilities associated with
delivery of the large reinforcer (LR) were presented in a pseudo-randomized
order. Once stable behavior was observed, rats were treated chronically
with twice daily injections of 2 mg/kg (±)PPX for 13 days. Data shown were
collected from the time point in which we observed the peak effect on the
final day of treatment (i.e., 6 h post injection) and are compared with the
pretreatment baseline (BL). Shown is the percent selection of the LR (i.e.,
free-choice ratio) vs. the probability that the LR was delivered. A Two-Way
rmANOVA with post hoc Newman-Keuls revealed significant increases in %
selection of the uncertain, LR following chronic PPX treatment (∗p < 0.05)
for both PD-like and sham rat groups. Although the group averages indicate
a PPX-induced increase in suboptimal risk/reward decision-making, two rats
in each group showed less than a 20% increase from baseline at the lowest
probability tested; therefore, some rats appeared to be insensitive to the
ability of the drug to modify probability discounting. Figure modified from
Rokosik and Napier (2012) and reprinted with permission from the publisher.

2013). Thus, our laboratory set out to model PD in rats and study
the effects of pramipexole, a commonly employed dopamine
agonist associated with gambling behaviors (Weintraub et al.,
2010), on cost/benefit decision-making in the rat using the prob-
ability discounting task (risk/reward decision-making) (Rokosik
and Napier, 2012). To do so, rats were rendered “PD-like” by
selective lesioning of dopaminergic terminals within the dorso-
lateral striatum via bilateral infusions of 6-OHDA, while control
rats received infusions of the 6-OHDA vehicle (Rokosik and
Napier, 2012). Neurons in the dorsolateral striatum of only the
6-OHDA treated rats show a decrease in tyrosine hydroxylase
(Rokosik and Napier, 2012), a marker of dopamine. PD-like rats
exhibit motor disturbances similar to humans with early-stage
PD, which can be reversed dose-dependently with pramipexole
treatment. The dose of pramipexole we administered to study
risk/reward decision-making alleviates motor deficits, and thus
is therapeutically-relevant (Rokosik and Napier, 2012). While we
find no difference in baseline “risky” behavior between control
rats and PD-like rats, chronic pramipexole treatment increases
selection of the risky LR in both groups of rats when prob-
abilities of delivery were small (Figures 2A,B), indicating that
pramipexole induces suboptimal risk/reward decision-making.
These data concur with studies that have assessed the effects of
pramipexole in humans (Spengos et al., 2006; Pizzagalli et al.,
2008; Riba et al., 2008). Nonetheless, we infer the predictive
validity of our rodent models in indicating other pharmaco-
logical agents that may mediate cost/benefit decision-making in
humans.

We also have tested mirtazapine, an atypical anti-depressant,
in the effort-based decision-making task. Behavioral addic-
tions and substance abuse share many overlapping characteris-
tics, including suboptimal decision-making, and new studies in
humans and non-human animals illustrate that mirtazapine is
effective at reducing behaviors motivated by abused drugs (e.g.,
opiates and psychostimulants) even those that are associated
with relapse during periods of abstinence (for review, see Graves
et al., 2012). Data collected from our ICSS-mediated effort-
based decision-making task indicates that mirtazapine effectively
reduced preference for a high effort/LR, switching to a low
effort/SR, suggesting that the amount of effort required for the LR
was no longer “worth it,” or that the reward value of the LR was
diminished (Persons et al., 2013). These results suggest that it may
be of interest to study the effects of mirtazapine on suboptimal
decision-making in problem gamblers in the clinic.

CONCLUSION
In summary, we have utilized ICSS as a positive reinforcer in sev-
eral novel tasks designed to measure separate, yet overlapping,
aspects of cost/benefit decision-making exhibited in problem
gambling. These measures can be used to further explore the
contribution of various neuroanatomical substrates and neuro-
transmitter systems in problem gambling. ICSS-mediated tasks
provide a viable alternative to food reinforcement in these com-
plex operant paradigms. We believe that the validity of these tasks
indicates that they can aid in screening drugs for their potential to
induce impulse control disorders, such as problem gambling, and
to help identify drugs that reduce these disorders.
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