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a b s t r a c t

The present study gives a summary using state-of-the-art technology to monitor Posidonia oceanica and
Mytilus galloprovincialis as bioindicators of the pollution of the Mediterranean littoral with trace elements
(TEs), and discusses their complementarity and specificities in terms of TE bioaccumulation. Furthermore,
this study presents two complementary indices, the Trace Element Spatial Variation Index (TESVI) and
the Trace Element Pollution Index (TEPI): these indices were shown to be relevant monitoring tools since
they led to the ordering of TEs according to the overall spatial variability of their environmental levels
(TESVI) and to the relevant comparison of the global TE pollution between monitored sites (TEPI). In addi-
tion, this study also discusses some underestimated aspects of P. oceanica and M. galloprovincialis bioac-
cumulation behaviour, with regard to their life style and ecophysiology. It finally points out the necessity
of developing consensual protocols between monitoring surveys in order to publish reliable and compa-
rable results.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The pollution of trace elements (TEs) remains a topical subject:
on the one hand, because some of these elements, which had been
up to now little monitored (e.g. Bi, Sb, Mo, etc.) can be considered
as pollutants of environmental ‘‘emerging concern’’ (Daughton,
2004, 2005); whereas on the other hand because their world pro-
duction and use, after having suffered a slight slowdown at the
end of the 1990s, is now experiencing new growth (US Geological
Survey, http://www.usgs.gov/) as a result of the economic growth
of a series of nations (e.g. the People’s Republic of China, India, etc.;
Sievers et al., 2010; Tiess, 2010). Consequently, the threats that
represent TE anthropogenic loadings in the environment require
to be continuously monitored, from their emission sources down
to their ultimate repository, i.e. the oceans.

The monitoring of the marine pollution relying upon the use of
bioindicator species (i.e. biomonitoring; Blandin, 1986) exhibits
obvious predominance when compared with the conventional
analysis of chemicals in environmental matrices (i.e. water and
sediments). Biomonitoring reveals biological changes of organisms
affected by exogenous chemicals as well as synergistic and inte-
grated effects of pollutants on organisms. It has high sensitivity

due to rapid responses induced in organisms exposed to pollutants
and allows the relevant monitoring of pollutants found at low envi-
ronmental levels. It further allows wide sampling even in remote
areas and avoids limits of conventional chemical analyses such as
continuous sampling or needs of expensive instruments (Zhou
et al., 2008). The use of specific bioindicator organisms (e.g. seag-
rasses) has led to the development of different classification tools
for assessing the global quality of water bodies and the health sta-
tus of coastal ecosystems (Montefalcone, 2009; Lopez y Royo et al.,
2011). In contrast, there currently exists no satisfactory biomoni-
toring index to specifically assess the TE pollution status of aquatic
bodies. For example, the international Metal Pollution Index (MPI)
proposed by Usero et al. (1996), in its current form, only allows to
compare the global TE pollution between the different monitored
sites of a specific survey, for a given species (Chaudhuri et al.,
2007; Lafabrie et al., 2008; Lopez y Royo et al., 2009). We believe
that this index could be adapted in order to make the calculated
index values comparable between studies, regardless the bioindi-
cator species considered or the list of TEs monitored. In addition,
there currently exists no monitoring index providing the ability
to order and to compare TEs according to the overall spatial vari-
ability of their environmental levels throughout the whole of a
studied area. However, we believe that such an index could be use-
ful to efficiently highlight TEs of main environmental concern
regarding their discharge to coastal waters.

http://dx.doi.org/10.1016/j.marpolbul.2014.08.030
0025-326X/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +32 4366 3329; fax: +32 4366 5147.
E-mail address: jonathan.richir@alumni.ulg.ac.be (J. Richir).

Marine Pollution Bulletin xxx (2014) xxx–xxx

Contents lists available at ScienceDirect

Marine Pollution Bulletin

journal homepage: www.elsevier .com/locate /marpolbul

Please cite this article in press as: Richir, J., Gobert, S. A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal
pollution of trace elements: New tools and tips. Mar. Pollut. Bull. (2014), http://dx.doi.org/10.1016/j.marpolbul.2014.08.030

jonathan
Texte surligné 
please replace the address with the following one:
Laboratory of Oceanology - MARE Centre - University of LIEGE - B6C - 4000 LIEGE - Sart Tilman - Belgium

http://www.usgs.gov/
http://dx.doi.org/10.1016/j.marpolbul.2014.08.030
mailto:jonathan.richir@alumni.ulg.ac.be
http://dx.doi.org/10.1016/j.marpolbul.2014.08.030
http://www.sciencedirect.com/science/journal/0025326X
http://www.elsevier.com/locate/marpolbul
http://dx.doi.org/10.1016/j.marpolbul.2014.08.030


A wide variety of species have been shown to be relevant indi-
cators to assess the contamination status of marine ecosystems
(Burger, 2006; Zhou et al., 2008). In the Mediterranean, the magno-
liophyte Posidonia oceanica (L.) Delile and the Mediterranean mus-
sel Mytilus galloprovincialis Lamarck, 1819 are part of the key
bioindicator species integrated for a long time in environmental
monitoring surveys (Montefalcone, 2009; Andral et al., 2011). P.
oceanica and M. galloprovincialis respond appreciably and quantita-
tively to the pollution of TEs (Casas et al., 2008; Benedicto et al.,
2011; Luy et al., 2012; Richir et al., 2013) and could complement
one another. The two species bioaccumulate TEs dissolved in the
water column (Lafabrie et al., 2007; Casas et al., 2008). P. oceanica
is strongly rooted in sediments and reflects the contamination of
this compartment (Lafabrie et al., 2007) whereas M. galloprovincial-
is, as filter feeder, bioaccumulates TEs from their particulate phase
(Casas et al., 2008). Together, they could give an overview of the
pollution status (water, sediments, suspended matter) of the
coastal Mediterranean. However, of the few surveys that have con-
comitantly used these two bioindicators (Kantin and Pergent-
Martini, 2007; Lafabrie et al., 2007; Joksimović and Stanković,
2012), none has so far either discussed P. oceanica and M. gallopro-
vincialis monitoring complementarity and specificity according to
their life style or compared their bioaccumulation behaviour
according to their respective ecophysiology. We nevertheless
believe that such knowledge is required in order to improve their
use as main bioindicators of the coastal pollution of the Mediterra-
nean. Furthermore, the use of specific body compartments of both
P. oceanica and M. galloprovincialis instead of entire organisms has
been suggested in some studies (Adami et al., 2002; Roméo et al.,
2005; Romero et al., 2007a, 2007b; Salivas-Decaux et al., 2010).
Therefore, we believe that a harmonization of monitoring practices
is necessary, both in terms of sampling strategy and sample pro-
cessing, in order to make biomonitoring studies comparable
between themselves.

Based on these considerations, the main goal of the present
work was to propose new tools and tips regarding to the use of
P. oceanica and M. galloprovincialis to biomonitor the coastal pollu-
tion of the Mediterranean with 19 TEs (Al, V, Fe, Cr, Mn, Co, Ni, Cu,
Zn, Se, Ag, Cd, Sn, Sb, As, Mo, Be, Pb and Bi). More precisely, detailed
objectives were: firstly, to propose a new index, the Trace Element
Spatial Variation Index (TESVI) allowing to order and to compare
TEs according to the overall spatial variability of their environmen-
tal levels throughout the whole of a studied area; secondly, to
study and compare the spatial resolution (the response sensitivity)
of P. oceanica and M. galloprovincialis in the biomonitoring of envi-
ronmental TE pollution loads, and to develop a weighted version of
the Metal Pollution Index (Usero et al., 1996) allowing the reliable
comparison of global TE pollution levels whatever the bioindicator
used; thirdly, to study and compare TE kinetics in P. oceanica and
M. galloprovincialis, with regard to their ecophysiology; and
fourthly, to discuss the reliability of using specific compartments
of both bioindicator species instead of entire organisms in moni-
toring surveys.

2. Material and methods

2.1. P. oceanica and M. galloprovincialis sampling

The 1st objective of the present study aimed to develop a new
Trace Element Spatial Variation Index (TESVI), proposed to order
and to compare TEs according to the overall spatial variability of
their environmental levels throughout the whole of a studied area.
To this end, P. oceanica (n = 15) were sampled at 15 m depth in April
2007 in 18 sites (diamonds in Figs. 1a and 1c) remote from a few km
to hundreds of km and located along Provence-Alpes-Côte d’Azur

(PACA) and Corsican Mediterranean coasts of France (TE concentra-
tions detailed in Luy et al., 2012; St Raphaël and Cap Roux sites were
properly reordered according to their west-to-east geographic
localization; maps of both manuscripts cover the same 41–44�
south-to-north (wrong scaling in Luy et al., 2012) and 5–10�
west-to-east geographic area).

The 2nd objective aimed to study and compare the response
sensitivity of M. galloprovincialis and P. oceanica in the biomonitor-
ing of coastal TE pollution loads. To this end, rope-grown M. gallo-
provincialis were purchased from the pristine shellfish farm SARL
Etang de Diane, eastern Corsica (bold-thick right cross in Fig. 1a),
in March 2010 (Richir and Gobert, 2014). Mussels were carefully
detached from ropes with a ceramic scalpel and individuals with
sizes ranging from 60 to 70 mm were stored in 8 conchylicultural
pouches (n = 103 mussels in each pouch) mounted on PVC tubing
(Andral et al., 2004). Two man-made mussel biointegrator stations
were immersed for 3 months at 7–10 m depth, from March to June
2010 (i.e. during mussel sexual dormancy), in 4 stations remote
from 1 to 3 km in Calvi Bay area, northwestern Corsica. The 4 sta-
tions were respectively in front of the oceanographic station STA-
RESO, beside an aquaculture farm, in the vicinity of the pipe
discharging the treated domestic wastewater of Calvi city and at
the Punta Bianca, just outside of the Bay influence (right-crosses
in Figs. 1b and 1c). At haul-out time (June 2010), pouches were
recovered by divers, while P. oceanica shoots (n = 15) were con-
comitantly sampled between 13 and 22 m depth (circles in
Figs. 1b and 1c), depending on site configuration. To study TE bio-
accumulation in P. oceanica along a gradient of disturbance, addi-
tional seagrasses (n = 9–10) were further sampled at 8–9 m depth
in May 2010 in 9 stations spaced approximately 300 m along a
radial following the coastline at the back of the Ajaccio Bay, wes-
tern Corsica (squares in Fig. 1d), with increasing distance from
the port and urban centre of Ajaccio city. To discuss P. oceanica
response sensitivity at two very different spatial scales, observa-
tions from monitoring surveys along the Ajaccio Bay radial (pres-
ent study) or along the French Mediterranean littoral (TE
concentrations detailed in Luy et al., 2012) are compared in the
results and discussion section.

The 3rd objective aimed to study and compare TE kinetics in M.
galloprovincialis and P. oceanica, with regard to their ecophysiology.
To this end, rope-grown M. galloprovincialis were purchased from
the shellfish farm SARL Etang de Diane in February 2011 (Richir
and Gobert, 2014). Once detached from ropes, mussels with sizes
ranging from 50 to 80 mm were stored in 2 conchylicultural
pouches, each subdivided into 9 individual sub-pouches for time-
scaled sampling (n = 25 in each sub-pouches), and mounted on
PVC tubing. The 2 man-made mussel biointegrator stations were
immersed for 4.5 months, from February to June 2011, just under
the sea surface near the oceanographic station STARESO (leaning
cross in Fig. 1c), and regularly sampled during that time interval.
Regarding P. oceanica, samples (n = 15) were collected at 10 m depth
in March, June and November of years 2008–2010 in the pristine sea-
grass bed in front of the oceanographic station STARESO (Luy et al.,
2012; Richir et al., 2013), in the Calvi Bay (triangle in Fig. 1c), and
in the Plateau des Chèvres (diamond 4 in Fig. 1a) near Cortiou sewage
outfall discharging wastewater from Marseille city (Oursel et al.,
2013). Results from this mussel-caging experiment and results from
the seasonal monitoring of TE levels in P. oceanica are discussed in the
results and discussion section concomitantly with complementary
observations from previous published studies.

P. oceanica sampled to meet objectives 1–3 were always col-
lected randomly by divers within areas of minimum 25 m2. Finally,
the 4th objective aiming to discuss the reliability of using specific
mussel or seagrass compartments instead of entire individuals in
biomonitoring surveys was met through the compilation of obser-
vations from previous published studies.
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2.2. P. oceanica and M. galloprovincialis sample processing

All collected P. oceanica (to meet 1st–3rd objectives) were trea-
ted according to the biometric method proposed by Giraud (1979).
Epiphytes were scraped from leaves with the aid of a ceramic scal-
pel blade (Dauby and Poulicek, 1995). Leaves were then freeze
dried (BenchTop 3L, VirTis Company Inc.) and weighed.

Of the 103 mussels placed in conchylicultural pouches for the
spatial biomonitoring of TEs in Calvi Bay area (to meet the 2nd
objective), 24–25 individuals were randomly considered for analy-
sis. The 24–25 mussels from the duplicated cages immerged in
each of the 4 monitored stations were afterwards regarded as orig-
inating from one single cage (i.e. one mussel cage by station;
Andral et al., 2004; Benedicto et al., 2011) since mean concentra-
tions in TEs between duplicated cages did not differ (results from
additional statistics not shown). Of the 25 mussels placed in sub-
pouches for the monitoring of TE kinetics in M. galloprovincialis
with regard to their ecophysiology (to meet the 3rd objective),
12 individuals were randomly considered for analysis. M. gallopro-
vincialis were measured with an electronic calliper (0.01 mm). Soft

tissues (byssus excluded) were carefully removed from shells with
a ceramic scalpel blade. Mussels soft tissues were freeze dried
(BenchTop 3L, VirTis Company Inc.) and weighed. Their shells were
oven dried (48 h at 60 �C) and weighed to calculate individual con-
dition indices (CI; Andral et al., 2004).

P. oceanica and M. galloprovincialis dried samples were cryogen-
ically ground with liquid nitrogen in an agate mortar and re-lyoph-
ilized to eliminate condensed ambient water vapour. Dried
powders were mineralized in Teflon bombs in a closed microwave
digestion lab station (Ethos D, Milestone Inc.). The digestion proce-
dure performed was a nitric acid-hydrogen peroxide mineraliza-
tion (HNO3/H2O2; suprapur grade, Merck). Digestates were
diluted to an appropriate volume of 50 ml prior to being analysed.

2.3. Trace element analysis

TE levels were determined by inductively coupled plasma mass
spectrometry (ICP-MS) using dynamic reaction cell (DRC) technol-
ogy (ICP-MS ELAN DRC II, PerkinElmer Inc.). Analytical accuracy
was checked by analysing Certified Reference Materials (CRMs):

Fig. 1. (a) Map of the northwestern Mediterranean. Diamonds � – 18 sites located along coasts of the French Mediterranean littoral, remote from one another of a few to
hundreds of km and sampled for P. oceanica (n = 15) at 15 m depth in April 2007 (Luy et al., 2012). Arabic and Roman numbers represent sites along continental Provence-
Alpes-Côte d’Azur (1–11) or insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St Raphaël; 9: Cap Roux;
10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio Isolaccio; V: Bravone; VI: Ajaccio Sud; VII: Ajaccio Nord. Bold-thick right cross – The shellfish
farm SARL Etang de Diane on the eastern Corsican coast where rope-grown M. galloprovincialis were purchased in March 2010 and February 2011 (Richir and Gobert, 2014).
Zoomed Calvi and Ajaccio areas of maps (b) and (d) are dark grey circled. (b) Zoom in Calvi Bay area. Right crosses + – Caged M. galloprovincialis (n = 103 in each pouch)
immerged in duplicate at 7–10 m depth from March to June 2010 in 4 stations in Calvi Bay area, remote from one another by a distance of 1 to 3 km: STARESO (in STARESO (c)
zoomed area), aquaculture farm, Calvi city sewer and Punta Bianca. Circles d – P. oceanica (n = 15) sampled between 13 and 22 m depth in June 2010, concomitantly when
caged mussels were retrieved from water. (c) Zoom in STARESO area. Triangle N – P. oceanica (n = 15) seasonally sampled at 10 m depth in March, June and November of years
2008–2010; an identical sampling effort was performed at 10 m depth in Plateau des Chèvres site (map (a), diamond 4). Leaning cross � – Caged M. galloprovincialis (n = 25 in
each of several sub-pouches) immerged just below the sea surface from February to June 2011 and regularly sampled during that time interval. �, + and d symbols are the
same than on maps (a) and (b). (d) Zoom in Ajaccio area. Squares j – P. oceanica (n = 9–10) sampled at 8–9 m depth in May 2010 in 9 stations remote from one another of
around 300 m along a radial located at the back of the Ajaccio Bay, with increasing distance from the port and urban centre of Ajaccio city (from station A1 to station A9).
Medium grey areas on maps (b), (c) and (d) are P. oceanica biocoenoses, and lines are 25 m depth equidistant isobaths (Abadie, 2012; ANDROMEDE OCEANOLOGIE et
STARESO, 2012).
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BCR 60 (Lagarosiphon major; n = 8–20; mean recovery = 87 ± 21%),
BCR 61 (Platyhypnidium riparioides; n = 8; mean recovery =
87 ± 23%), BCR 62 (Olea europaea; n = 8–20; mean recovery =
94 ± 6%) and BCR 278 (mussel tissue; n = 3; mean recovery = 95 ± 9%)
from the JCR’s Institute for Reference Materials and Measurements;
GBW 07603 (bush branches and leaves; n = 10–23; mean recov-
ery = 97 ± 19%, Se excluded) from the Chinese Institute of Geophys-
ical and Geochemical Exploration; NIST 1577c (bovine liver; n =
10; mean recovery = 103 ± 8%), NIST 1566b (oyster tissue; n = 10;
mean recovery = 95 ± 8%) and NIST 2976 (mussel tissue; n = 10;
mean recovery = 106 ± 7%) from the American National Institute
of Standards and Technology. The global mean recovery of certified
values, all CRMs and TEs together, was 96 ± 14% (Se excluded for
GBW 07603; no certified value for Sn).

For each TE, detection decision (LC), detection limit (LD) and
quantification limit (LQ) were calculated according to Currie
(1999) or Grinzaid et al. (1977), depending on their specific blank
distribution (normal or not). Data were analysed as TE concentra-
tions on a dry weight basis and are expressed in lg gDW

�1 . The num-
ber of decimals, for each TE, is retained throughout the entire
manuscript (Tables 2–5) in order to facilitate the comparison of
concentrations between species and/or studied areas.

2.4. Data analysis

2.4.1. Index calculation
To order and to compare TEs according to the overall spatial

variability of their environmental levels along French Mediterra-
nean coasts, using P. oceanica as bioindicator species, Trace
Element Spatial Variation Index (TESVI) values were calculated,
for each TE, as follows:

TESVI ¼ ðxmax=xminÞ=
X
ðxmax=xiÞ=n

� �h i
� SD;

where xmax and xmin are the maximum and minimum mean con-
centrations recorded among the n sites, xi are the mean concen-
trations recorded in each of the n sites, and SD is the standard
deviation of the weighted sum

P
(xmax/xi)/n. The higher the index

value for a given TE, the more its environmental levels globally
vary throughout the whole of the studied area the index is applied
to (punctual contaminations and overall coastal spatial heteroge-
neity of TE levels taken into account). The overall spatial variabil-
ity of TE levels, summarized in the form of single TESVI values,
can further be graphically compared by using a proportional ordi-
nate (concentration) scaling between TEs. The proportional ordi-
nate scaling is obtained by multiplying the minimum mean
concentration of each TE recorded among the n sites by the high-
est xmax/xmin mean concentration ratio calculated among all the
studied TEs.

To compare global TE pollution levels between monitored sites
using either M. galloprovincialis or P. oceanica as bioindicator spe-
cies, a weighted version of the Metal Pollution Index (MPI) pro-
posed by Usero et al. (1996) was used. This index was renamed
Trace Element Pollution Index (TEPI), to include non-metallic
chemical elements, and a data pre-treatment was performed prior
calculating TEPI values, i.e. the mean normalization. This pre-treat-
ment standardizes the data, by converting all the variable mean
values to unity and the rest close to unity. This is useful when data
of very different magnitude, such as concentrations of various TEs,
are present (Moreda-Pineiro et al., 2001). TEPI values were calcu-
lated, for each site or station, as follows:

TEPI ¼ ðCf1 � Cf2 . . . CfnÞ1=n
;

where Cfn is the mean normalized concentration of the TE n in a
given monitored site or station. The higher the index value, the
more polluted is the monitored site or station. The TEPI allows
to differentiate little contaminated sites or stations from highly
polluted ones with an efficiency equivalent to that of the MPI,
while minimizing the variability related to the number and the
sorting of TEs used for its calculation (tested on random lists of
TEs; results from additional statistics not shown). This weighted
index further allows, contrary to the MPI, the reliable comparison
of global TE pollution levels between monitoring surveys, and that
even if the list of monitored TEs and/or bioindicator species used
differ.

2.4.2. Statistical analyses
Statistical analyses were performed with STATISTICA (Statsoft,

Inc.). Significant differences between mean TE concentrations mea-
sured in caged M. galloprovincialis (n = 48–49, except for Be:
n = 24–25) immersed from March to June 2010 in the 4 stations
of Calvi Bay area and significant differences between mean TE con-
centrations measured in P. oceanica (n = 15) concomitantly sam-
pled when mussels were retrieved from water were highlighted
through one-way analysis of variance (one-way ANOVA), followed
by Tukey HSD pairwise comparison test of means with equal (P.
oceanica) or unequal (M. galloprovincialis) n’s (p < 0.05), after test-
ing for normality and homogeneity of variances (Levene test) on
raw or log-transformed data. Non-parametric analysis of variance
(Kruskal-Wallis test) was performed when assumptions prior to
ANOVAs (normality and/or homoscedasticity) were not achieved,
followed by Dunn pairwise comparison test of means (p < 0.05).
One-way ANOVA or Kruskal-Wallis test were further performed
on raw or log-transformed TE concentrations measured in P. ocea-
nica (n = 9–10) sampled in May 2010 in the 9 stations located along
the Ajaccio Bay radial, to study the significance (p < 0.05) of their
spatial evolution with increasing distance from the port and urban
centre of Ajaccio city.

Table 1
Trace Element Spatial Variation Index (TESVI) values calculated from trace element
(TE) mean concentrations in P. oceanica (n = 15) sampled at 15 m depth in April 2007
in 18 sites located along the French Mediterranean littoral and remote from one
another of a few to hundreds of km. Analysed TEs have been either little or broadly
monitored in that species. For each TE, xmax/xmin is the ratio between the maximum
(xmax) and minimum (xmin) mean concentrations recorded among the 18 sites, andP

(xmax/xi)/18 (mean ± SD) is the mean ratio between the maximum mean concen-
tration (xmax) and each of the 18 site mean concentrations (xi). TESVI = [(xmax/xmin)/
(
P

(xmax/xi)/18)] ⁄ SD. The higher the TESVI value for a given TE, the more its levels
globally varied throughout the whole of the French Mediterranean littoral. Data used
are from Luy et al. (2012). The site with the highest mean concentration reported by
these authors is also given for each TE. BAL = blades of P. oceanica adult leaves.

xmax/xmin
P

(xmax/xi)/18 ± SD TESVI Site xmax

TEs little monitored in P. oceanica
Be 3.1 1.6 ± 0.6 1.0 Ajaccio Nord
Al 7.5 2.2 ± 1.8 6.1 Ajaccio Nord
V 14.5 5.9 ± 5.0 12.3 Antibes
Mn 2.2 1.6 ± 0.4 0.5 St Raphaël
Co 2.9 1.8 ± 0.5 0.7 St Raphaël
As 10.6 5.9 ± 2.7 4.9 Pl. des Chèvres
Se 1.7 1.3 ± 0.2 0.3 Calvi
Mo 22.8 13.6 ± 6.2 10.5 Aregno
Ag 3.1 1.9 ± 0.6 0.9 La Vesse
Sn (BAL) 6.9 3.5 ± 1.9 3.8 Corbière
Sb 4.4 3.6 ± 0.7 0.9 Bravone
Bi 13.6 6.1 ± 3.5 7.9 Pl. des Chèvres

TEs broadly monitored in P. oceanica
Cr 6.0 3.6 ± 1.3 2.2 St Florent
Fe 4.4 2.0 ± 0.9 1.9 Bravone
Ni 2.4 1.6 ± 0.3 0.5 St Raphaël
Cu 3.4 1.9 ± 0.7 1.2 Villefranche
Zn 19.6 13.3 ± 4.4 6.5 Bravone
Cd 3.9 1.9 ± 0.7 1.4 St Raphaël
Pb 4.4 2.7 ± 1.2 2.0 Ajaccio Nord
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Table 2
Trace element (TE) concentrations (mean ± SD, in lg gDW

�1 ) in caged rope-grown M. galloprovincialis (n = 48–49, except for Be: n = 24–25) purchased from the Diane salty pond (eastern Corsica, France) and immerged between 7 and 10 m
depth from March to June 2010 in 4 stations in Calvi Bay area (northwestern Corsica, France), and in P. oceanica (n = 15) sampled between 13 and 22 m depth in June 2010 concomitantly when mussels were retrieved from water. Trace
Element Pollution Index (TEPI) values were calculated for each station and bioindicator species from mean normalized concentrations of the 19 TEs. The 4 sampled stations STARESO, aquaculture farm, Calvi city sewer and Punta Bianca
were remote from one another by a distance of 1 to 3 km. Letters represent significant differences between stations for each bioindicator species. *, ** and struck-through values represent concentrations <LQ, <LD or <LC, respectively. For
each bioindicator species, the largest difference in concentrations (in %) between stations for each of the 19 TEs and TEPI values is also given.

Species-Station Al V Fe Cr Mn Co Ni Cu Zn Se

Mytilus galloprovincialis
STARESO 36.7 ± 21.3a 1.52 ± 0.45a 81 ± 21ab 0.310 ± 0.111a 2.3 ± 0.4a 0.47 ± 0.15ab 1.01 ± 0.35a 3.29 ± 0.54a 121 ± 38 3.36 ± 0.48a

Aquaculture farm 25.8 ± 17.2ab 1.29 ± 0.41b 74 ± 19a 0.284 ± 0.066b 2.0 ± 0.3b 0.43 ± 0.17a 0.85 ± 0.23b 2.80 ± 0.52b 117 ± 56 2.97 ± 0.47b

Calvi sewer 55.0 ± 29.7c 1.37 ± 0.37bc 101 ± 35b 0.324 ± 0.094ab 2.5 ± 0.6a 0.52 ± 0.20b 1.02 ± 0.30ab 3.35 ± 0.79ab 121 ± 69 3.37 ± 0.63ab

Punta Bianca 25.0 ± 13.2b 1.55 ± 0.44ac 77 ± 19a 0.290 ± 0.076ab 2.3 ± 0.5ab 0.47 ± 0.17ab 1.01 ± 0.31a 3.22 ± 0.52b 113 ± 57 3.28 ± 0.47ab

largest difference 120% 20% 36% 14% 25% 22% 20% 20% 7% 14%

Posidonia oceanica
STARESO 19.2 ± 3.5a 10.42 ± 1.78a 40 ± 3a 0.211 ± 0.015ab 37.2 ± 3.0a 1.72 ± 0.12a 29.21 ± 2.68a 5.69 ± 0.87a 76 ± 6a 0.35 ± 0.03a

Aquaculture farm 85.6 ± 15.0b 6.46 ± 1.62b 83 ± 10b 0.232 ± 0.028a 36.3 ± 3.7a 1.84 ± 0.21a 23.21 ± 1.60b 8.07 ± 1.19b 70 ± 7a 0.38 ± 0.04b

Calvi sewer 35.3 ± 7.6c 2.43 ± 0.46c 89 ± 13b 0.184 ± 0.024b 37.2 ± 3.5a 1.83 ± 0.18a 18.79 ± 1.04b 8.50 ± 0.96b 107 ± 11b 0.33 ± 0.03a⁄

Punta Bianca 8.1 ± 1.6d 1.29 ± 0.37d 35 ± 3a 0.139 ± 0.011c 53.6 ± 5.8b 2.35 ± 0.26b 28.54 ± 1.54a 7.91 ± 1.11b 106 ± 7b 0.36 ± 0.03ab

largest difference 954% 708% 155% 68% 47% 36% 55% 49% 52% 16%

Species-Station Ag Cd Sn Sb As Mo Be Pb Bi TEPI

Mytilus galloprovincialis
STARESO 0.018 ± 0.021a 0.74 ± 0.21 0.014 ± 0.017⁄ 0.014 ± 0.010a 13.73 ± 1.50ab 5.45 ± 1.95a 0.0067 ± 0.0054** 0.84 ± 0.33 0.0120 ± 0.0047 1.01
Aquaculture farm 0.010 ± 0.004b 0.74 ± 0.18 0.015 ± 0.021⁄ 0.010 ± 0.006b 12.81 ± 1.35a 5.21 ± 1.62b 0.0110 ± 0.0055⁄ 0.85 ± 0.28 0.0105 ± 0.0040 0.91
Calvi sewer 0.015 ± 0.019ab 0.80 ± 0.29 0.017 ± 0.014⁄ 0.012 ± 0.003a 13.37 ± 1.16ab 4.86 ± 1.80b 0.0138 ± 0.0061 0.92 ± 0.33 0.0127 ± 0.0043 1.09
Punta Bianca 0.014 ± 0.007a 0.71 ± 0.21 0.012 ± 0.009* 0.013 ± 0.003a 14.29 ± 1.31b 5.44 ± 2.07a 0.0064 ± 0.0036** 0.99 ± 0.37 0.0122 ± 0.0043 0.96
largest difference 79% 12% 42% 35% 12% 12% 114% 18% 21% 20%

Posidonia oceanica
STARESO 0.452 ± 0.071a 2.15 ± 0.19a 0.022 ± 0.005a⁄ 0.255 ± 0.028 1.40 ± 0.33a 2.52 ± 0.69ab 0.0047 ± 0.0009a** 0.66 ± 0.08a 0.0043 ± 0.0004a 0.91
Aquaculture farm 0.551 ± 0.084b 1.95 ± 0.19b 0.035 ± 0.005b⁄ 0.268 ± 0.024 1.02 ± 0.17bc 1.74 ± 0.30a 0.0134 ± 0.0030b 0.82 ± 0.12b 0.0046 ± 0.0008a 1.08
Calvi sewer 0.559 ± 0.080b 2.28 ± 0.18a 0.033 ± 0.006b⁄ 0.271 ± 0.031 0.92 ± 0.13c 3.53 ± 1.14b 0.0053 ± 0.0011a** 0.97 ± 0.08c 0.0076 ± 0.0022b 1.00
Punta Bianca 0.660 ± 0.083c 3.07 ± 0.21c 0.014 ± 0.002a** 0.254 ± 0.029 1.29 ± 0.42ab 3.61 ± 1.80b 0.0030 ± 0.0006c 0.53 ± 0.05d 0.0025 ± 0.0001c 0.78
largest difference 46% 58% 162% 7% 52% 108% 350% 84% 205% 38%
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Table 3
Trace element (TE) concentrations (mean ± SD, in lg gDW

�1 ) in P. oceanica (n = 9–10) sampled at 8–9 m depth in May 2010 in 9 stations located along a radial following the coastline at the back of the Ajaccio Bay (western Corsica, France),
and in the two supplementary Ajaccio Sud and Ajaccio Nord sites sampled at 15 m depth for P. oceanica (n = 15) in April 2007 by Luy et al. (2012). Trace Element Pollution Index (TEPI) values were calculated by site and station from
mean normalized concentrations of the 19 TEs. The 9 stations located along the Ajaccio Bay radial were remote from one another of around 300 m, while the two Ajaccio Sud and Ajaccio Nord sites were remote of around 5 km of the
radial. The significance of the overall spatial evolution of TE concentrations along the radial from station A1 to station A9 (i.e. with increasing distance from the port and urban centre of Ajaccio city) is given for each TE (s.d. or
s.i. = significant decrease or increase, respectively, p < 0.05; n.s. = no significant evolution, p > 0.05). * and ** represent TE concentrations <LQ or <LD, respectively. Analytical limits for Ajaccio Sud and Ajaccio Nord sites are from Luy et al.
(2012).

Study-Station/Site Al V Fe Cr Mn Co Ni Cu Zn Se

Present study (s.d.) (s.d.) (s.d.) (s.d.) (n.s.) (s.d.) (s.d.) (s.d.) (n.s.) (s.d.)
A1 430.9 ± 167.8 7.51 ± 1.27 347 ± 120 0.743 ± 0.481 163.6 ± 17.3 2.65 ± 0.23 19.28 ± 1.89 15.96 ± 1.46 106 ± 11 1.02 ± 0.24
A2 274.4 ± 78.7 5.67 ± 0.68 279 ± 69 0.454 ± 0.098 140.0 ± 16.5 2.46 ± 0.26 18.04 ± 1.61 14.22 ± 1.47 115 ± 7 0.77 ± 0.13
A3 139.0 ± 38.6 3.50 ± 0.80 152 ± 30 0.327 ± 0.069 146.6 ± 35.7 4.56 ± 0.46 16.05 ± 1.65 18.20 ± 2.47 91 ± 7 0.71 ± 0.10
A4 149.0 ± 36.7 3.39 ± 1.67 163 ± 25 0.382 ± 0.030 94.8 ± 8.1 1.62 ± 0.11 15.46 ± 1.91 10.11 ± 0.73 78 ± 3 0.62 ± 0.05
A5 71.5 ± 27.3 3.00 ± 0.91 75 ± 14 0.207 ± 0.034 143.7 ± 59.7 1.55 ± 0.17 14.51 ± 1.67 9.60 ± 1.32 98 ± 13 0.61 ± 0.09
A6 78.1 ± 42.1 2.86 ± 0.48 77 ± 17 0.172 ± 0.030 149.5 ± 32.1 1.53 ± 0.34 14.20 ± 1.83 7.37 ± 0.97 92 ± 20 0.56 ± 0.09
A7 92.4 ± 31.0 1.54 ± 0.32 80 ± 11 0.187 ± 0.036 78.7 ± 10.8 1.81 ± 0.24 17.09 ± 2.95 6.99 ± 2.23 103 ± 12 0.48 ± 0.06
A8 103.5 ± 29.8 2.82 ± 0.38 128 ± 33 0.220 ± 0.035 69.3 ± 9.7 1.54 ± 0.28 14.52 ± 1.20 6.28 ± 1.13 81 ± 11 0.59 ± 0.05
A9 63.1 ± 25.2 2.91 ± 1.73 86 ± 52 0.265 ± 0.064 122.8 ± 18.9 1.22 ± 0.21 11.99 ± 2.36 6.39 ± 1.37 62 ± 7 0.56 ± 0.10

Luy et al. (2012)
Ajaccio Sud 111.8 ± 23.9 3.50 ± 0.86 80 ± 9 0.206 ± 0.026 55.9 ± 2.3 2.65 ± 0.09 34.04 ± 1.38 8.37 ± 0.26 89 ± 6 0.28 ± 0.03⁄

Ajaccio Nord 151.0 ± 28.6 6.81 ± 2.79 143 ± 7 0.242 ± 0.017 55.2 ± 2.1 1.56 ± 0.06 21.79 ± 0.64 7.51 ± 0.38 72 ± 7 0.20 ± 0.02⁄⁄

Study-Station/Site Ag Cd Sn Sb As Mo Be Pb Bi TEPI

Present study (n.s.) (s.i.) (s.d.) (n.s.) (n.s.) (n.s.) (s.d.) (s.d.) (s.d.)
A1 0.706 ± 0.075 0.92 ± 0.06 0.234 ± 0.073 0.352 ± 0.032 1.55 ± 0.29 2.57 ± 0.58 0.0319 ± 0.0061 6.01 ± 0.93 0.0612 ± 0.0121 1.55
A2 0.475 ± 0.055 1.19 ± 0.10 0.173 ± 0.036 0.277 ± 0.025 1.40 ± 0.15 1.73 ± 0.13 0.0203 ± 0.0026 5.12 ± 0.69 0.0483 ± 0.0101 1.25
A3 0.550 ± 0.088 0.76 ± 0.10 0.101 ± 0.018 0.336 ± 0.042 1.26 ± 0.17 2.83 ± 0.69 0.0174 ± 0.0043 5.81 ± 0.72 0.0230 ± 0.0022 1.09
A4 0.569 ± 0.098 0.87 ± 0.10 0.103 ± 0.019 0.314 ± 0.019 1.57 ± 0.08 2.41 ± 0.22 0.0173 ± 0.0029 4.41 ± 0.31 0.0285 ± 0.0026 0.98
A5 0.604 ± 0.104 1.53 ± 0.15 0.048 ± 0.015 0.296 ± 0.039 1.55 ± 0.21 3.40 ± 1.06 0.0114 ± 0.0039 3.00 ± 0.99 0.0169 ± 0.0033 0.84
A6 0.417 ± 0.083 1.47 ± 0.21 0.045 ± 0.016 0.311 ± 0.068 1.23 ± 0.12 3.45 ± 0.45 0.0088 ± 0.0052⁄ 3.07 ± 0.64 0.0112 ± 0.0032 0.76
A7 0.533 ± 0.155 1.80 ± 0.18 0.047 ± 0.016 0.294 ± 0.042 1.62 ± 0.15 2.25 ± 0.56 0.0085 ± 0.0018⁄ 1.67 ± 0.22 0.0103 ± 0.0011 0.72
A8 0.499 ± 0.095 1.61 ± 0.21 0.072 ± 0.015 0.306 ± 0.041 1.16 ± 0.10 2.98 ± 0.23 0.0105 ± 0.0039⁄ 1.52 ± 0.17 0.0103 ± 0.0017 0.76
A9 0.354 ± 0.076 1.37 ± 0.14 0.110 ± 0.077 0.303 ± 0.029 2.73 ± 0.41 5.79 ± 4.66 0.0081 ± 0.0027⁄ 2.96 ± 0.79 0.0093 ± 0.0039 0.80

Luy et al. (2012)
Ajaccio Sud 1.133 ± 0.123 2.45 ± 0.14 0.045 ± 0.026 0.201 ± 0.021 2.21 ± 0.16 3.37 ± 0.30 0.0077 ± 0.0012⁄ 2.32 ± 0.49 0.0105 ± 0.0013 0.83
Ajaccio Nord 0.523 ± 0.021 1.56 ± 0.08 0.050 ± 0.013 0.188 ± 0.015 1.70 ± 0.09 2.38 ± 0.21 0.0113 ± 0.0014 4.85 ± 0.92 0.0134 ± 0.0012 0.82
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Table 4
Seasonal and pluriannual kinetics of trace element (TE) concentrations (mean ± SD, in lg gDW

�1 ) in P. oceanica (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine seagrass bed of Stareso (Calvi Bay,
northwestern Corsica, France) and in the impacted seagrass bed of Plateau des Chèvres (Maseille, France). The sampling of June 2009 is missing for Plateau des Chèvres site, and Sn concentrations are only available for samplings of
November 2010 in both P. oceanica beds. *, ** and struck-through values represent TE concentrations <LQ, <LD or <LC, respectively. P. oceanica intermediate and adult leaf foliar surfaces (FS; mean ± SD, in cm2) and leaf numbers
(mean ± SD) are also given. As P. oceanica leaf and shoot foliar surfaces and leaf numbers did not significantly (p < 0.05) differ between June 2008 and June 2010 in Plateau des Chèvres site, they were averaged to calculate the missing
mean foliar surfaces and leaf numbers of June 2009.

Seagrass bed-Date Al V Fe Cr Mn Co Ni Cu Zn Se Ag Cd

STARESO
03/17/08 51.7 ± 6.1 3.75 ± 0.70 45 ± 5 0.131 ± 0.005 33.9 ± 2.7 1.72 ± 0.16 24.38 ± 3.10 6.34 ± 0.45 67 ± 6 0.38 ± 0.04 0.503 ± 0.056 2.00 ± 0.11
06/01/08 38.6 ± 5.6 3.82 ± 0.31 45 ± 3 0.206 ± 0.008 45.5 ± 2.9 1.69 ± 0.09 22.11 ± 1.33 5.92 ± 0.31 63 ± 6 0.48 ± 0.02 0.470 ± 0.036 1.97 ± 0.11
11/10/08 29.7 ± 3.7 2.41 ± 0.66 45 ± 2 0.238 ± 0.053 43.4 ± 5.7 1.21 ± 0.21 16.87 ± 1.68 8.69 ± 0.86 48 ± 6 0.26 ± 0.04⁄ 0.625 ± 0.072 1.55 ± 0.15
03/04/09 30.1 ± 3.9 2.15 ± 0.32 42 ± 2 0.103 ± 0.005 39.1 ± 2.5 1.95 ± 0.07 25.84 ± 2.03 6.45 ± 0.42 82 ± 3 0.31 ± 0.03⁄ 0.570 ± 0.035 2.42 ± 0.11
06/01/09 36.1 ± 5.5 5.40 ± 1.15 52 ± 6 0.219 ± 0.010 45.8 ± 3.5 1.93 ± 0.11 23.90 ± 0.88 5.17 ± 0.31 81 ± 4 0.37 ± 0.03 0.477 ± 0.043 2.30 ± 0.08
11/14/09 42.2 ± 10.3 1.74 ± 0.51 45 ± 3 0.217 ± 0.030 51.8 ± 3.5 1.10 ± 0.10 17.02 ± 1.50 8.42 ± 0.46 52 ± 3 0.30 ± 0.02⁄ 0.863 ± 0.081 2.04 ± 0.11
03/11/10 36.7 ± 6.5 1.32 ± 0.43 48 ± 3 0.115 ± 0.009 41.3 ± 2.8 1.77 ± 0.13 30.20 ± 1.64 7.50 ± 0.41 89 ± 4 0.35 ± 0.02 0.703 ± 0.048 2.96 ± 0.08
05/31/10 70.4 ± 16.8 3.94 ± 0.65 52 ± 4 0.188 ± 0.032 35.3 ± 4.1 1.76 ± 0.20 24.84 ± 1.73 5.48 ± 0.94 85 ± 7 0.43 ± 0.05 0.472 ± 0.094 2.25 ± 0.23
11/01/10 17.8 ± 4.3 1.50 ± 0.59 39 ± 6 0.201 ± 0.038 37.1 ± 3.7 1.23 ± 0.14 18.55 ± 2.80 8.52 ± 1.82 62 ± 7 0.18 ± 0.03⁄ 0.756 ± 0.245 1.86 ± 0.20

Pl. des Chèvres
03/20/08 30.9 ± 5.8 6.30 ± 2.04 53 ± 6 0.163 ± 0.035 27.2 ± 2.1 1.21 ± 0.16 22.39 ± 1.14 11.57 ± 1.13 73 ± 7 0.27 ± 0.03⁄ 1.201 ± 0.295 1.81 ± 0.06
06/25/08 24.0 ± 2.5 4.27 ± 0.67 56 ± 4 0.195 ± 0.020 35.3 ± 1.4 1.62 ± 0.11 16.98 ± 1.06 7.57 ± 0.68 82 ± 5 0.32 ± 0.02⁄ 1.018 ± 0.404 1.46 ± 0.07
11/28/08 27.2 ± 5.9 2.36 ± 0.60 49 ± 3 0.141 ± 0.013 29.2 ± 3.8 1.15 ± 0.22 17.43 ± 2.69 10.02 ± 0.61 71 ± 10 0.26 ± 0.02⁄ 1.007 ± 0.102 1.65 ± 0.14
03/18/09 62.4 ± 11.0 4.16 ± 1.95 79 ± 12 0.270 ± 0.043 23.0 ± 1.8 1.28 ± 0.09 19.68 ± 1.10 11.00 ± 0.57 78 ± 3 0.32 ± 0.03⁄ 0.924 ± 0.076 1.54 ± 0.06
06/14/09 nd nd nd nd nd nd nd nd nd nd nd nd
11/19/09 41.4 ± 6.0 4.57 ± 1.66 71 ± 3 0.236 ± 0.025 45.3 ± 2.6 1.20 ± 0.18 17.13 ± 2.44 11.05 ± 0.61 63 ± 3 0.30 ± 0.02⁄ 1.013 ± 0.096 1.38 ± 0.09
03/17/10 38.8 ± 4.3 2.33 ± 0.60 63 ± 4 0.187 ± 0.014 26.0 ± 2.7 1.60 ± 0.16 19.87 ± 1.29 13.13 ± 0.97 94 ± 8 0.31 ± 0.03⁄ 1.066 ± 0.092 1.98 ± 0.16
06/03/10 55.3 ± 6.8 4.10 ± 1.30 71 ± 4 0.265 ± 0.016 38.4 ± 4.0 1.62 ± 0.12 18.29 ± 1.36 9.32 ± 0.62 85 ± 6 0.36 ± 0.01 0.643 ± 0.055 1.58 ± 0.13
11/10/10 24.3 ± 4.0 2.84 ± 1.14 56 ± 11 0.207 ± 0.016 61.9 ± 7.0 1.89 ± 0.21 21.61 ± 1.91 8.63 ± 0.97 88 ± 8 0.31 ± 0.03⁄ 0.919 ± 0.169 1.71 ± 0.16

Seagrass bed-Date Sn Sb As Mo Be Pb Bi FS inter. leaves FS adult leaves Nb inter. leaves Nb adult leaves

STARESO
03/17/08 nd 0.213 ± 0.013 1.91 ± 0.14 1.56 ± 0.15 0.0061 ± 0.0015** 0.69 ± 0.06 0.0048 ± 0.0004 107 ± 48 83 ± 37 3.9 ± 0.8 3.0 ± 0.9
06/01/08 nd 0.233 ± 0.008 2.32 ± 0.46 3.75 ± 0.51 0.0058 ± 0.0014** 0.90 ± 0.04 0.0058 ± 0.0007 158 ± 33 231 ± 76 3.6 ± 1.1 4.5 ± 1.2
11/10/08 nd 0.204 ± 0.043 0.89 ± 0.13 1.76 ± 0.28 0.0071 ± 0.0014⁄ 1.05 ± 0.13 0.0080 ± 0.0010 46 ± 11 100 ± 22 3.5 ± 0.5 4.3 ± 0.6
03/04/09 nd 0.206 ± 0.015 1.35 ± 0.15 1.81 ± 0.44 0.0047 ± 0.0008** 0.64 ± 0.05 0.0044 ± 0.0005 114 ± 32 88 ± 40 4.3 ± 0.7 3.1 ± 0.8
06/01/09 nd 0.272 ± 0.013 1.99 ± 0.19 1.70 ± 0.32 0.0051 ± 0.0009** 0.95 ± 0.07 0.0077 ± 0.0007 167 ± 32 228 ± 62 2.5 ± 0.5 3.7 ± 0.9
11/14/09 nd 0.207 ± 0.020 1.01 ± 0.06 2.81 ± 0.40 0.0056 ± 0.0005** 1.11 ± 0.12 0.0082 ± 0.0006 47 ± 12 81 ± 26 3.3 ± 0.5 3.7 ± 0.7
03/11/10 nd 0.187 ± 0.011 1.20 ± 0.12 2.29 ± 0.61 0.0058 ± 0.0007** 0.61 ± 0.03 0.0057 ± 0.0003 113 ± 49 96 ± 36 3.5 ± 0.7 3.3 ± 0.9
05/31/10 nd 0.241 ± 0.030 1.95 ± 0.36 1.56 ± 0.24 0.0091 ± 0.0011⁄ 0.73 ± 0.09 0.0064 ± 0.0012 145 ± 32 144 ± 52 2.7 ± 0.6 2.9 ± 0.8
11/01/10 0.028 ± 0.007⁄ 0.212 ± 0.026 0.62 ± 0.13 1.34 ± 0.17 0.0052 ± 0.0017** 0.80 ± 0.13 0.0072 ± 0.0011 35 ± 9 109 ± 31 2.7 ± 0.5 3.8 ± 0.8

Pl.des Chèvres
03/20/08 nd 0.136 ± 0.012 2.35 ± 0.54 1.23 ± 0.11 0.0030 ± 0.0007 0.87 ± 0.14 0.0214 ± 0.0041 92 ± 26 61 ± 20 3.6 ± 0.9 2.8 ± 0.7
06/25/08 nd 0.236 ± 0.019 1.85 ± 0.19 2.03 ± 0.20 0.0021 ± 0.0005 0.82 ± 0.06 0.0163 ± 0.0014 90 ± 17 101 ± 27 2.5 ± 0.5 3.6 ± 0.7
11/28/08 nd 0.167 ± 0.028 1.11 ± 0.16 1.31 ± 0.21 0.0023 ± 0.0005 1.15 ± 0.18 0.0238 ± 0.0037 35 ± 14 78 ± 27 2.4 ± 0.6 3.6 ± 0.9
03/18/09 nd 0.173 ± 0.009 2.56 ± 0.50 1.54 ± 0.08 0.0043 ± 0.0013** 1.02 ± 0.10 0.0280 ± 0.0022 64 ± 20 48 ± 15 3.5 ± 0.7 2.9 ± 0.6
06/14/09 nd n.d n.d n.d n.d n.d n.d 88 ± 22 94 ± 29 2.7 ± 0.5 3.7 ± 0.8
11/19/09 nd 0.203 ± 0.024 2.89 ± 0.56 2.48 ± 0.67 0.0044 ± 0.0011** 2.43 ± 0.17 0.0408 ± 0.0024 25 ± 13 82 ± 31 2.2 ± 0.7 3.9 ± 0.6
03/17/10 nd 0.169 ± 0.013 1.34 ± 0.26 1.95 ± 0.23 0.0034 ± 0.0006** 1.06 ± 0.05 0.0450 ± 0.0026 72 ± 33 43 ± 23 3.7 ± 0.8 2.9 ± 0.9
06/03/10 nd 0.242 ± 0.008 2.57 ± 0.70 2.87 ± 0.33 0.0035 ± 0.0006** 1.05 ± 0.06 0.0229 ± 0.0015 86 ± 26 87 ± 30 2.9 ± 0.5 3.8 ± 0.9
11/10/10 0.049 ± 0.005 0.227 ± 0.044 1.15 ± 0.27 2.02 ± 0.51 0.0040 ± 0.0006** 1.69 ± 0.38 0.0334 ± 0.0023 19 ± 15 115 ± 38 1.6 ± 0.7 4.1 ± 0.7
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3. Results and discussion

For clarity purpose, only some representative examples chosen
among the 19 studied TEs are graphically illustrated throughout
the manuscript, and discussion mainly revolves around these
selected examples. The complete set of data is however available
under graphical format in the associated annexes published online
alongside the electronic version of the manuscript.

3.1. An index ordering and comparing trace elements according to the
overall spatial variability of their environmental levels

The 1st objective of this work aimed to test a Trace Element
Spatial Variation Index (TESVI) to order and to compare TEs accord-
ing to the overall spatial variability of their environmental levels
throughout the whole of a studied area. This new index was calcu-
lated for the 19 TEs measured in P. oceanica (n = 15) sampled at
15 m depth in April 2007 in 18 sites located along the French Med-
iterranean littoral (diamonds in Fig. 1; Table 1; TE concentrations
detailed in Luy et al., 2012). Of these 19 TEs, 12 had not been pre-
viously recorded or had little published information for P. oceanica
(Be, Al, V, Mn, Co, As, Se, Mo, Ag, Sn, Sb and Bi), contrary to the 7
remaining ones (Cr, Fe, Ni, Cu, Zn, Cd and Pb; Pergent-Martini
and Pergent, 2000; Luy et al., 2012). The range of TESVI values, cal-
culated for TEs little monitored in P. oceanica, went from 0.3 for Se
to 12.3 for V, a range more important that the one reported for TEs
classically monitored in that species (from 0.5 for Ni to 6.5 for Zn).
TESVI values were listed in ascending order as: Se, Ni, Mn, Co,
Sb, Ag, Be, Cu, Cd, Fe, Pb, Cr, Sn, As, Al, Zn, Bi, Mo, V. The spatial

variability of TE environmental levels was then graphically com-
pared by using a proportional ordinate (concentration) scaling
between TEs (Annex A). The example given for Ni, Pb, Al and V in
Fig. 2 properly demonstrates that the higher the index value
(Table 1), the more environmental levels of a TE spatially varied
throughout the whole of the French Mediterranean littoral. Ni lev-
els remained similar between sites (Fig. 2a), contrary to Pb con-
taminations in the vicinity of big city centres such as Marseille,
Villefranche or Ajaccio (Fig. 2b). The higher spatial variability of
Al levels was likely related to the natural heterogeneity of sedi-
mentary facies and not to any anthropogenic activities (Fig. 2c),
contrary to V contaminations resulting from the transport, the
depot and the refinery of oil products (Fig. 2d; Luy et al., 2012).

Thus, TESVI values, associated to their corresponding graphs
with proportional ordinate scaling, appear to be an efficient tool
to compare the overall spatial variability of TE environmental lev-
els throughout the whole of a studied area that index is applied to.
TE sorting in ascending order of their corresponding TESVI values
also allows one to efficiently highlight TEs of main environmental
concern, as properly illustrated in Fig. 2 for V along French Medi-
terranean coasts. For comparison purpose, this index was further
applied at the scale of the entire Mediterranean (110 sites), moni-
tored using P. oceanica as bioindicator species (Richir et al.,
accepted for publication). In that survey, studied TEs were sorted
in ascending order of TESVI values as follows: Cd, Cu, Pb, As, Ag
and Ni; the equivalent list for the French Mediterranean littoral
(see above) was Ni, Ag, Cu, Cd, Pb and As. Ni therefore displayed
a more important spatial variability of its environmental levels at
the scale of the entire Mediterranean than at the scale of the

Table 5
Temporal kinetics of trace element (TE) concentrations (mean ± SD, in lg gDW

�1 ) in caged rope-grown M. galloprovincialis (n = 12, except for sampling dates 02/11/2011 – n = 30 –
and 02/12/2011 – n = 44) purchased from the Diane salty pond (eastern Corsica, France) and immerged from February to June 2011 near the oceanographic station STARESO after
a 3 days acclimatization period (02/11-14/2011) in STARESO marina (Calvi Bay, northwestern Corsica, France). * represent TE concentrations <LQ. Mussel Condition Index values
(CI ± SD; Andral et al., 2004) are also given.

Date Al V Fe Cr Mn Co Ni Cu Zn Se

02/11/11 155.1 ± 51.1 6.19 ± 1.72 151 ± 39 0.465 ± 0.125 14.4 ± 3.8 0.58 ± 0.12 1.23 ± 0.33 4.96 ± 1.51 65 ± 21 2.58 ± 0.78
02/12/11 230.3 ± 184.6 5.20 ± 2.29 195 ± 119 0.615 ± 0.392 10.0 ± 4.6 0.67 ± 0.24 1.54 ± 0.62 4.73 ± 1.50 78 ± 39 2.79 ± 0.77
02/14/11 30.2 ± 11.5 6.30 ± 2.32 91 ± 24 0.324 ± 0.072 5.4 ± 1.0 0.85 ± 0.31 1.65 ± 0.76 4.38 ± 0.80 104 ± 46 3.12 ± 0.38
02/16/11 29.6 ± 13.0 2.52 ± 1.28 64 ± 16 0.244 ± 0.075 4.6 ± 1.6 0.53 ± 0.19 0.74 ± 0.53 3.97 ± 0.99 69 ± 22 3.63 ± 0.95
02/19/11 96.9 ± 38.7 1.87 ± 0.77 106 ± 24 0.335 ± 0.109 6.4 ± 2.4 0.60 ± 0.19 0.72 ± 0.24 4.39 ± 1.01 88 ± 29 3.19 ± 0.63
02/22/11 36.8 ± 18.1 1.54 ± 0.67 76 ± 20 0.278 ± 0.095 4.7 ± 1.8 0.57 ± 0.23 0.62 ± 0.29 4.02 ± 1.06 96 ± 39 4.29 ± 1.01
02/25/11 78.5 ± 62.2 1.03 ± 0.35 93 ± 38 0.304 ± 0.131 5.7 ± 2.7 0.48 ± 0.23 0.53 ± 0.18 4.62 ± 1.26 89 ± 38 3.56 ± 0.90
02/28/11 69.5 ± 42.5 1.06 ± 0.25 86 ± 27 0.254 ± 0.093 5.5 ± 2.4 0.48 ± 0.16 0.55 ± 0.19 4.41 ± 1.22 84 ± 37 3.47 ± 0.91
04/04/11 159.2 ± 100.1 1.84 ± 1.23 150 ± 59 0.424 ± 0.117 4.8 ± 1.3 0.60 ± 0.19 0.90 ± 0.24 3.85 ± 0.61 77 ± 25 4.42 ± 0.88
03/07/11 37.2 ± 27.4 2.38 ± 0.71 77 ± 20 0.283 ± 0.057 4.3 ± 0.9 0.67 ± 0.22 0.87 ± 0.25 3.57 ± 0.56 86 ± 44 4.44 ± 0.95
03/11/11 38.7 ± 29.8 1.97 ± 0.41 76 ± 15 0.409 ± 0.327 4.4 ± 1.3 0.65 ± 0.24 0.80 ± 0.23 3.88 ± 0.80 90 ± 43 5.16 ± 0.88
03/14/11 62.4 ± 24.6 1.83 ± 0.37 91 ± 16 0.411 ± 0.146 4.7 ± 1.3 0.80 ± 0.26 0.88 ± 0.31 3.85 ± 0.64 107 ± 31 4.84 ± 0.88
03/28/11 64.1 ± 88.6 1.84 ± 0.46 98 ± 56 0.473 ± 0.264 4.5 ± 2.7 0.72 ± 0.28 0.86 ± 0.24 3.79 ± 0.75 143 ± 105 3.52 ± 0.62
04/06/11 41.8 ± 17.8 1.42 ± 0.27 88 ± 19 0.496 ± 0.169 4.2 ± 1.3 0.70 ± 0.32 0.79 ± 0.23 4.30 ± 0.76 120 ± 75 3.63 ± 0.42
04/12/11 51.0 ± 22.4 1.53 ± 0.48 100 ± 30 0.380 ± 0.098 4.4 ± 1.6 0.82 ± 0.19 1.02 ± 0.28 4.31 ± 0.55 103 ± 23 3.47 ± 0.65
06/04/11 21.0 ± 10.2 3.10 ± 1.50 78 ± 14 0.420 ± 0.172 2.2 ± 0.3 0.61 ± 0.19 1.00 ± 0.38 3.00 ± 0.43 112 ± 45 3.50 ± 0.41
06/21/11 41.9 ± 28.7 4.37 ± 1.29 105 ± 29 0.419 ± 0.119 2.5 ± 0.3 0.70 ± 0.18 1.02 ± 0.24 3.05 ± 0.36 135 ± 83 3.30 ± 0.40

Date Ag Cd Sn Sb As Mo Be Pb Bi CI

02/11/11 0.012 ± 0.003 0.36 ± 0.08 0.029 ± 0.013 0.011 ± 0.002 35.50 ± 5.91 22.21 ± 4.73 0.0121 ± 0.0034⁄ 0.24 ± 0.10 0.0082 ± 0.0028 0.243 ± 0.036
02/12/11 0.013 ± 0.006 0.38 ± 0.16 0.034 ± 0.019 0.014 ± 0.005 31.12 ± 6.70 15.29 ± 6.07 0.0144 ± 0.0066 0.40 ± 0.21 0.0090 ± 0.0034 0.214 ± 0.059
02/14/11 0.021 ± 0.007 0.54 ± 0.11 0.030 ± 0.021 0.017 ± 0.003 28.37 ± 3.08 15.74 ± 3.05 0.0092 ± 0.0020⁄ 0.61 ± 0.18 0.0152 ± 0.0127 0.128 ± 0.032
02/16/11 0.027 ± 0.011 0.58 ± 0.21 0.020 ± 0.004⁄ 0.015 ± 0.003 25.52 ± 4.36 9.80 ± 4.73 0.0080 ± 0.0024⁄ 0.53 ± 0.14 0.0114 ± 0.0048 0.152 ± 0.033
02/19/11 0.030 ± 0.008 0.47 ± 0.12 0.029 ± 0.008 0.018 ± 0.004 23.64 ± 3.69 7.40 ± 3.50 0.0130 ± 0.0027 0.98 ± 0.33 0.0141 ± 0.0024 0.156 ± 0.035
02/22/11 0.037 ± 0.022 0.71 ± 0.23 0.026 ± 0.010 0.018 ± 0.007 28.97 ± 2.54 7.43 ± 3.54 0.0090 ± 0.0033⁄ 1.26 ± 0.57 0.0134 ± 0.0040 0.163 ± 0.039
02/25/11 0.030 ± 0.015 0.47 ± 0.12 0.030 ± 0.015 0.017 ± 0.007 26.81 ± 5.23 4.95 ± 1.93 0.0090 ± 0.0053⁄ 0.69 ± 0.29 0.0144 ± 0.0046 0.225 ± 0.074
02/28/11 0.023 ± 0.008 0.46 ± 0.18 0.027 ± 0.012 0.015 ± 0.004 25.62 ± 5.61 4.70 ± 1.74 0.0107 ± 0.0054⁄ 0.55 ± 0.18 0.0133 ± 0.0050 0.201 ± 0.053
04/04/11 0.039 ± 0.015 0.74 ± 0.18 0.046 ± 0.016 0.027 ± 0.007 27.41 ± 4.80 5.92 ± 2.21 0.0197 ± 0.0099 0.96 ± 0.37 0.0227 ± 0.0048 0.125 ± 0.029
03/07/11 0.030 ± 0.013 0.74 ± 0.18 0.017 ± 0.005⁄ 0.018 ± 0.003 25.02 ± 2.67 6.29 ± 2.03 0.0082 ± 0.0029⁄ 0.71 ± 0.17 0.0180 ± 0.0033 0.125 ± 0.031
03/11/11 0.035 ± 0.013 0.85 ± 0.27 0.015 ± 0.005* 0.018 ± 0.004 29.15 ± 4.76 5.09 ± 1.40 0.0085 ± 0.0026⁄ 0.69 ± 0.08 0.0153 ± 0.0034 0.138 ± 0.040
03/14/11 0.047 ± 0.037 0.82 ± 0.20 0.028 ± 0.012 0.017 ± 0.003 25.42 ± 3.90 5.02 ± 2.12 0.0117 ± 0.0045⁄ 0.92 ± 0.30 0.0198 ± 0.0133 0.120 ± 0.027
03/28/11 0.033 ± 0.016 0.67 ± 0.14 0.029 ± 0.014 0.025 ± 0.006 19.16 ± 1.55 3.62 ± 1.29 0.0098 ± 0.0038⁄ 0.90 ± 0.25 0.0143 ± 0.0033 0.092 ± 0.019
04/06/11 0.030 ± 0.011 0.67 ± 0.16 0.029 ± 0.015 0.029 ± 0.014 17.68 ± 1.89 3.66 ± 1.27 0.0087 ± 0.0019⁄ 0.74 ± 0.27 0.0137 ± 0.0029 0.091 ± 0.026
04/12/11 0.029 ± 0.006 0.72 ± 0.16 0.031 ± 0.029 0.036 ± 0.014 17.95 ± 1.72 3.64 ± 1.29 0.0119 ± 0.0064 1.14 ± 0.42 0.0179 ± 0.0041 0.077 ± 0.019
06/04/11 0.015 ± 0.006 0.75 ± 0.17 0.019 ± 0.010⁄ 0.020 ± 0.004 20.23 ± 2.16 3.70 ± 0.86 0.0076 ± 0.0042⁄ 1.03 ± 0.24 0.0115 ± 0.0034 0.077 ± 0.018
06/21/11 0.010 ± 0.002 0.80 ± 0.13 0.053 ± 0.087 0.034 ± 0.020 20.35 ± 2.25 2.42 ± 0.59 0.0120 ± 0.0069 1.17 ± 0.59 0.0154 ± 0.0051 0.066 ± 0.008
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French Mediterranean littoral. However, since Ni contamination
along French coasts was, on the whole, higher in comparison to
the rest of the Mediterranean (Luy et al., 2012; Richir et al., accepted
for publication), this TE could thus be regarded as a widespread con-
taminant of the French Mediterranean littoral. Such qualitative and
quantitative information on specific threats posed by TEs may be of
interest for environmental managers to design targeted monitoring
surveys to precisely define their anthropogenic pollution sources.
From these surveys, policy makers would have the ability to subse-
quently establish environmental protection measures in order to
regulate their pollution inputs to coastal environments, and that
at different spatial scales of protection (regional, national or interna-
tional). Finally, because ranges of TESVI values were more important
for TEs little monitored in P. oceanica compared to TEs classically
monitored in that species (Table 1), and because abnormally high
environmental levels of TEs previously little monitored in P. oceanica
could be linked to specific anthropogenic activities (Mo: agriculture;
Sb: mining; As: industry; V: transportation, storage and refinement
of oil products; Sn, Bi, Ag: presence of important ports and urban
centres; Luy et al., 2012), the list of TEs monitored along Mediterra-
nean coasts should be broaden.

3.2. Trace element biomonitoring using P. oceanica and M.
galloprovincialis

The 2nd objective of the present work was to study and com-
pare the spatial resolution (the response sensitivity) of P. oceanica
and M. galloprovincialis in the monitoring of environmental TE lev-
els. Moreover, little has been published on the influence of their life
styles (rooted primary producer or filter feeder) and their specific
use as bioindicator species (passive – P. oceanica – or active – caged
M. galloprovincialis – biomonitoring) in the modulation of their bio-
accumulation behaviour when exposed to TEs.

Therefore, to meet this 2nd objective, the spatial variability in
TE bioaccumulation in caged mussels (n = 48–49, except for Be:
n = 24–25) immersed at 7–10 m depth from March to June 2010
in the 4 stations of Calvi Bay area (STARESO, aquaculture farm, Cal-
vi city sewer and Punta Bianca; right crosses in Figs. 1b and 1c) was
compared to the spatial variability in TE bioaccumulation in P. oce-
anica (n = 15) sampled between 13 and 22 m depth concomitantly
when mussels were retrieved from water (circles in Figs. 1b and
1c). Tuckey and Dunn pairwise comparison test of means following
one-way ANOVA or Kruskal-Wallis test showed 74 significant dif-
ferences between stations, all TEs together, when using P. oceanica
as bioindicator species, against 28 for M. galloprovincialis (Table 2;
Fig. 3; Annex B). Thus, only P. oceanica could highlight the signifi-
cant (p < 0.05) local impact of both Calvi city wastewater dis-
charges and the fish farming activity on Sn (Fig. 3a) and Pb
(Fig. 3b) environmental levels, the local impact of Calvi city waste-
water discharges on Bi (Fig. 3c) environmental levels, or the gen-
eral weak containment effect played by the Bay (lower Sn, Pb
and Bi concentrations in P. oceanica from the Punta Bianca station).
Moreover, differences in concentrations between stations were
more marked when monitored in P. oceanica (from 7% for Sb to
954% for Al) rather than in M. galloprovincialis (from 7% for Zn to
120% for Al), except for Ag and Sb (Table 2). The same was true
for the global TE pollution, given as Trace Element Pollution Index
(TEPI) values, that differed up to two times more between stations
when calculated for P. oceanica (38%) rather than for M. galloprovin-
cialis (20%), respectively. This comparison further shows the rele-
vancy of the TEPI to compare global TE pollution levels of
monitoring surveys relying on the use of different bioindicator
species.

Caged M. galloprovincialis, as filter feeders artificially main-
tained in the water column, bioaccumulated dissolved and partic-
ulate TEs. The more similar levels of bioaccumulated TEs in that

Fig. 2. Spatial overall variability of (a) Ni, (b) Pb, (c) Al and (d) V concentrations (mean ± SD, in lg gDW
�1 ) in P. oceanica (n = 15) sampled at 15 m depth in April 2007 in 18 sites

located along coasts of the French Mediterranean littoral and remote from one another of a few to hundreds of km (Luy et al., 2012). The graphical comparison of the overall
spatial variability of trace element (TE) concentrations is based on the use of a proportional ordinate scaling between TEs, obtained by multiplying the minimum recorded
mean concentration of each TE by the highest xmax/xmin mean concentration ratio (22.8 for Mo; see Table 1) calculated among the 19 studied TEs. Ni, Pb, Al and V histograms
are ordered (a–d) according to the overall spatial variability of their concentrations (Trace Element Spatial Variation Index values; see Table 1) throughout the whole of the
French Mediterranean littoral. Arabic and Roman numbers on the X-axis represent sites along continental Provence-Alpes-Côte d’Azur (1–11) or insular Corsican (I–VII)
coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III:
St Florent; IV: Taglio Isolaccio; V: Bravone; VI: Ajaccio Sud ; VII: Ajaccio Nord.

J. Richir, S. Gobert / Marine Pollution Bulletin xxx (2014) xxx–xxx 9

Please cite this article in press as: Richir, J., Gobert, S. A reassessment of the use of Posidonia oceanica and Mytilus galloprovincialis to biomonitor the coastal
pollution of trace elements: New tools and tips. Mar. Pollut. Bull. (2014), http://dx.doi.org/10.1016/j.marpolbul.2014.08.030

jonathan
Note
I hadn't seen this format problem in the previous proof, although it already existed. The basis of the arabic and roman numbers on the X-axis of Fig. 2c and 2d are cutted (you can see it easily when zooming on the axis). Is it then possible to reinsert the Fig.2 to make the X-axis numbers readable? Thank you in advance.



In addition, I have found errors on the Y-axis of 2 of the graphs (c and d):

c) Al graph Y-axis higher value is 459 (and not 458);

d) V graph Y-axis higher value is 35.9 (and not 36.9).

I have therefore attached the new revised version of Fig.2 to the corrected 2nd proof. Thank you for replacing the current Fig.2 by the new one (and sorry for the inconvenience). 

jonathan
Texte surligné 
please replace:
Spatial overall
by:
Overall spatial

http://dx.doi.org/10.1016/j.marpolbul.2014.08.030


bioindicator species between stations reflected the relatively clean
homogenous status of the water body of Calvi Bay area. Conversely,
P. oceanica, as rooted organisms, bioaccumulated dissolved and
sedimentary TEs. TEs, as non-degradable pollutants, accumulate
in sediments (Navratil and Minarik, 2011; Pan and Wang, 2012);
it is consequently possible to highlight long-term contaminations
from weak point sources (e.g. fish farming activities, wastewater
discharges) when using benthic organisms, even at the scale of a
Bay. Results from the biomonitoring survey carried out in May
2010 along the Ajaccio Bay radial (western Corsica, France) ade-
quately demonstrated the high sensitivity of P. oceanica to fine spa-
tial scale monitoring mapping. Results showed that the more
stations randomly sampled at 8–9 m depth (n = 9–10) were remote
from the port and urban centre of Ajaccio city (from station A1 to
station A9; squares in Fig. 1d), the more concentrations of numer-
ous TEs decreased in seagrasses (Table 3). That pollution gradient
along the Ajaccio Bay radial was further compared to the pollution
recorded in the 18 sites sampled for P. oceanica (n = 15) at 15 m
depth in April 2007 along the French Mediterranean littoral (TE
concentrations detailed in Luy et al., 2012; Annex C), as shown in
Fig. 4 for Fe and Bi concentrations as well as TEPI values.

Environmental Fe levels monitored in P. oceanica sampled along
French Mediterranean coasts were low to very low (Fig. 4a0), for a
mean concentration (104 ± 39 lg gDW

�1 ) close to the critical value of
100 lg gDW

�1 of Fe-deficient seagrasses sampled from Fe-poor eco-
systems (Duarte et al., 1995). The spatial variability observed at
the scale of the French Mediterranean littoral could therefore be
considered as an environmental heterogeneity inherent to sampled
sites (Luy et al., 2012), such as the presence of carbonate-rich and
Fe-poor sediments (Duarte et al., 1995; Marbà et al., 2007). In

contrast, the significant (p < 0.05) rapid decrease of relatively high
to below 100 lg gDW

�1 Fe levels with increasing distance from the
port and urban centre of Ajaccio city (Fig. 4a00) likely highlighted
its local impact at short distance. Bi contaminations were reported
close to medium (e.g. Ajaccio city) to large-sized (e.g. Marseille
city) urban centres (Fig. 4b0; Luy et al., 2012). Bi has been consid-
ered as a non-toxic replacement for other more noxious elements,
particularly Pb (Filella, 2010). Bi concentrations measured in P. oce-
anica sampled along the Ajaccio Bay radial (Fig. 4b00) significantly
(p < 0.05) decreased with increasing distance from their emission
sources (port and urban centre of Ajaccio city), from contamination
levels even higher than those reported by Luy et al. (2012) for the
contaminated Plateau des Chèvres site (receiving wastewater from
Marseille city; diamond 4 in Fig. 1a; Oursel et al., 2013) to rela-
tively moderate ones. Furthermore, Bi concentrations in stations
A6 to A9 (squares in Fig. 1d) were similar to levels of moderately
contaminated Ajaccio Sud and Ajaccio Nord sites (diamonds VI
and VII in Fig. 1a; Luy et al., 2012), remote of around 5 km of the
radial. It can thus likely be assumed that Bi diffusely contaminated
the overall Ajaccio Bay from specific punctual sources. The evolu-
tion of Fe and Bi levels was further consistent with the evolution
of the global TE contamination (TEPI values; Fig. 4c00) along the
Ajaccio Bay radial: it exponentially decreased with increasing dis-
tance from the port and urban centre of Ajaccio city. But TEPI his-
tograms mainly highlighted that the global contamination of
coastal environments with TEs, when monitored in rooted P. ocea-
nica randomly sampled within areas of minimum 25 m2, can varies
as much at small spatial scale (e.g. a 116% variability in the Ajaccio
Bay; Fig. 4c00) than at large spatial scale (e.g. a 85% variability at the
scale of the French Mediterranean littoral; Fig. 4c0).

Fig. 3. Spatial variability of (a) Sn, (b) Pb and (c) Bi concentrations (mean ± SD, in lg gDW
�1 ) in caged rope-grown M. galloprovincialis (n = 48–49) purchased from the Diane salty

pond (eastern Corsica, France) and immerged between 7 and 10 m depth from March to June 2010 in 4 stations in Calvi Bay area (northwestern Corsica, France), and in P.
oceanica (n = 15) sampled between 13 and 22 m depth in June 2010 concomitantly when mussels were retrieved from water. (d) Trace Element Pollution Index (TEPI) values
were calculated for each station and bioindicator species from mean normalized concentrations of the 19 studied trace elements. The 4 sampled stations STARESO (ST),
aquaculture farm (Aq), Calvi city sewer (Sw) and Punta Bianca (PB) were remote from one another by a distance of 1 to 3 km. Letters represent significant differences between
stations for each bioindicator species. * and ** represent Sn concentrations <LQ or <LD, respectively.
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The choice of representative sampling stations for a given site/
area may consequently remain uncertain, all the more if the
selected bioindicator is associated to sediments (e.g. seagrasses,
but also naturally occurring benthic native Mytilidae populations)
whose TE contents can significantly vary at small spatial scales in
both pristine or contaminated sites (Birch et al., 2001; Scouller
et al., 2006). However, benthic bioindicator such as rooted P. ocea-
nica present the added benefit of allowing the fine-spatial scale
mapping of coastal TE pollutions, since sediments offer a degree
of time integration, contrary to the water column (Rainbow,
1995; Amiard, 2011). Since caged M. galloprovincialis can globally
characterize the contamination status of a water body (e.g. a Bay)
with less spatial variability (Fig. 3), this bioindicator could be pre-
ferred in large scale active monitoring surveys (Andral et al., 2011;
Benedicto et al., 2011). If P. oceanica is nevertheless elected as bio-
indicator in large scale monitoring surveys (Salivas-Decaux et al.,
2010), care will be taken when selecting sampling stations (i.e.
remote from any punctual sources of contamination) in order not
to overestimate the pollution status of areas P. oceanica will be
sampled from (Figs. 3 and 4).

3.3. Trace element kinetics in P. oceanica and M. galloprovincialis

The 3rd objective of the present work aimed to study and com-
pare TE kinetics in P. oceanica and M. galloprovincialis, with regard
to their ecophysiology. P. oceanica biomass, foliar surface and leaf
length are maximum in summer and minimum in winter. New
juvenile leaves appear throughout the year, but a larger number
of leaves are initiated from the end of September until November.
Old adult leaves become necrotic throughout the year, but severe
storms occurring in the winter favour their fall (Pergent and
Pergent-Martini, 1991; Gobert, 2002). Sampling campaigns sched-
uled at the different key phases of P. oceanica growth cycle could
give a good overview of the natural overall variation of TE concen-
trations in shoots, on annual basis. Such a seasonal monitoring sur-
vey was thus performed on P. oceanica (n = 15) sampled at 10 m
depth in March, June and November of years 2008–2010 in the
pristine seagrass bed in front of the oceanographic station STARES-
O (Luy et al., 2012; Richir et al., 2013), in the Calvi Bay (triangle
in Fig. 1c). Results showed that TE concentrations varied season-
ally according to the ecophysiological cycle of that perennial,

Fig. 4. Spatial variability of (a) Fe and (b) Bi concentrations (mean ± SD, in lg gDW
�1 ) in P. oceanica sampled at 15 m depth in April 2007 in 18 sites located along coasts of the

French Mediterranean littoral (a0 , b0; n = 15; Luy et al., 2012) and in P. oceanica sampled at 8–9 m depth in May 2010 in 9 stations located along a radial following the coastline
at the back of the Ajaccio Bay (western Corsica, France; a00 , b00; n = 9–10). Trace Element Pollution Index (TEPI) values (c0 , c00) were calculated by site and station from mean
normalized concentrations of the 19 studied trace elements. Arabic and Roman numbers on the X-axis of left graphs represent sites along continental Provence-Alpes-Côte
d’Azur (1–11) or insular Corsican (I–VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes;
11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio Isolaccio; V: Bravone; VI: Ajaccio Sud ; VII: Ajaccio Nord. Numbered A letters A1-9 on the X-axis of right graphs
represent stations along the Ajaccio Bay radial, with increasing distance from the port and urban centre of Ajaccio city. The two supplementary sites VI: Ajaccio Sud and VII:
Ajaccio Nord were also reported on right graphs for comparison purpose at the scale of the Ajaccio Bay. The 18 sites located along coasts of the French Mediterranean littoral
were remote from one another of a few to hundreds of km; the 9 stations located along the Ajaccio Bay radial were remote from one another of around 300 m, while the two
Ajaccio Sud and Ajaccio Nord sites were remote of around 5 km of the radial.
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deciduous plant (Table 4; Annex D), as illustrated in Fig. 5 for As,
Ag and Bi. As concentrations (Fig. 5a0) increased from November
to June, as did the shoot foliar surface (an indicator of the cyclic
growth of leaves): the more leaves grew, the more their exposure
duration to As increased, the more the latter was bioaccumulated
in shoots (Campanella et al., 2001; Luy et al., 2012; Cozza et al.,
2013), and this until the next major leaf fall period. Ag is 7 times
more concentrated in rhizomes than in leaves, on annual basis,
and is also efficiently translocated from leaves towards rhizomes
(Richir et al., 2013). This tissue distribution pattern could explain
the decrease of Ag foliar concentrations, continuously transferred
to rhizomes from November to June whereas the shoot foliar sur-
face increased (Fig. 5b0). Bi levels are 1.7 times more concentrated
in P. oceanica adult leaves than in intermediate leaves, on annual
basis (Richir et al., 2013), as a result of both a longer exposure
duration of old adult leaves to Bi (Campanella et al., 2001; Luy
et al., 2012; Cozza et al., 2013) and a dilution effect in actively
growing young intermediate leaves (Malea et al., 1994; Luy et al.,
2012). Bi concentrations (Fig. 5c0) consequently increased from

March to November following the trend of the ratio between adult
and intermediate leaf foliar surfaces (an indicator of the cyclic
aging of shoots). The winter drop in Bi concentrations corre-
sponded to the renewal of leaves.

In an environment subjected to anthropogenic disturbances,
these natural seasonal trends can however be deeply perturbed
(Malea et al., 1994). Therefore, for comparison purpose with the
seasonal monitoring survey performed in the pristine STARESO
seagrass bed, an equivalent study was conducted in the impacted
site of Plateau des Chèvres (diamond 4 in Fig. 1a), remote of around
3.5 km from the Cortiou outlet discharging TE contaminated
wastewater from Marseille city (Oursel et al., 2013). P. oceanica
(n = 15) were similarly sampled at 10 m depth in March, June
and November of years 2008–2010 (except June 2009). In the
impacted Plateau des Chèvres site, the seasonal cycle of numerous
TE concentrations in P. oceanica did not follow the ecophysiological
cycle of the plant (Table 4; Annex D), as illustrated in Fig. 5 for the
3 urban and industrial pollutants As, Ag and Bi. As concentrations
(Fig. 5a00) showed a saw-tooth profile incompatible with the one of

Fig. 5. Seasonal and pluriannual kinetics of (a) As, (b) Ag and (c) Bi concentrations (mean ± SD, in lg gDW
�1 ) in P. oceanica (n = 15) sampled at 10 m depth from March 2008 to

November 2010 in the pristine seagrass bed of STARESO (Calvi Bay, northwestern Corsica, France; left graphs a0–c0) and in the impacted seagrass bed of Plateau des Chèvres
(Marseille, France; right graphs a00–c00), compared to the seasonal variation of shoot metrics. The foliar surface of shoots (FSShoot; mean ± SD, in cm2) is an indicator of the cyclic
growth of leaves. The ratio between the foliar surface of adult leaves and the foliar surface of intermediate leaves (FSAL/FSIL; mean ± SD) is an indicator of the cyclic aging of
shoots. The sampling from June 2009 is missing for Plateau des Chèvres site. As P. oceanica leaf and shoot foliar surfaces did not significantly (p < 0.05) differ between June
2008 and 2010 in Plateau des Chèvres site, they were averaged to calculate the missing mean foliar surfaces of June 2009.
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the plant growth cycle. Ag concentrations (Fig. 5b00) remained sta-
ble from June 2008 to March 2010, while Bi concentrations
(Fig. 5c00) continuously increased during the same period of time;
both TE concentrations dropped in spring 2008 and 2010. Thus,
although TE kinetics in P. oceanica are naturally prone to temporal
variations linked to the cyclic evolution of the plant leaf growth
(e.g. STARESO station; Figs. 5a0–5c0), these natural variations can
be hidden when seagrasses are exposed to environmental TE pollu-
tion sources (e.g. Plateau des Chèvres site receiving TE contami-
nated wastewater from Cortiou outlet; Figs. 5a00–5c00; Oursel
et al., 2013).

Complementary to this field study, TE kinetics in P. oceanica
exposed to contaminated seawater were experimentally moni-
tored in 3 previous surveys. Ledent et al. (1992a, b) in situ contam-
inated P. oceanica with environmentally irrelevant high Cd levels,
and so demonstrated that P. oceanica bioaccumuled this metal pro-
portionally to experimental levels of exposure in a wide range of
high to very high concentrations. Efficient TE uptakes were also
reported by Warnau et al. (1996) who exposed P. oceanica acclima-
tized to laboratory conditions to a mix of radiolabelled Zn, Ag, Cd,
Cs, and Am in concentrations 1–5 orders of magnitude lower than
concentrations commonly reported for natural seawater. Recently,
Richir et al. (2013) in situ experimentally exposed P. oceanica bed
portions to environmentally relevant levels of a mix of 15 TEs
(Cr, Fe, Co, Ni, Cu, Zn, Cd, Pb, Al, V, Mn, As, Mo, Ag and Bi). They
reported that TE uptake kinetics depended of the nature of TEs
(essential or not), of their concentrations, of interactions between
TEs used as multielement solutions and of the duration of exposure
times. Although P. oceanica leaves depurated rapidly once initial
conditions were restored (Ledent et al., 1992a,b; Warnau et al.,
1996; Richir et al., 2013), their short-term exposures (24 h or
5 days; Richir et al., 2013) to some TEs (i.e. Al, V, Mn, Cu, Cd, Bi,
Zn, Ag) could nevertheless be recorded in below-ground rhizomes.
This basipetal translocation of TEs from leaves towards rhizomes
(superficial sediments in experimental setups had remained
uncontaminated; Richir et al., 2013), recently evaluated by Sanz-
Lazarro (2012) in the cycle of TEs within P. oceanica meadows,
had to be fast and efficient (Richir et al., 2013; basipetal term of
line 13, paragraph 2, section 4.4 and acropetal term of line 13, par-
agraph 2, section 4.5 of their manuscript must be inversed). P. oce-
anica below-ground tissues can thus effectively be used to
bioassess the past pollution of coastal Mediterranean waters with
TEs (Pergent-Martini and Pergent, 1994; Tranchina et al., 2005;
Copat et al., 2012). However, the necessary destructive uprooting
of P. oceanica raises again the question of its status of protected
species (Boudouresque et al., 2006; Montefalcone et al., 2007).

Like P. oceanica, TE bioaccumulation in caged M. galloprovincialis
relies on the ecophysiological status of mussels and ambient bio-
available TE levels (Casas and Bacher, 2006; Casas et al., 2008).
To study these kinetics in caged mussels, rope grown M. gallopro-
vincialis were purchased from the Diane pond (bold-thick right
cross in Fig. 1a) on February 11, 2011, detached from ropes and
placed in man-made pouches on February 12, left to acclimatize
and to fix to pouches in the marina of the oceanographic station
STARESO until February 14 and then placed on site (leaning cross
in Fig. 1c) and regularly sampled until June 21 (n = 12, except for
samplings dates 02/11/2011 – n = 30 – and 02/12/2011 – n = 44).
The initial evolution of TE concentrations in mussels transferred
from the productive Diane pond (Richir and Gobert, 2014) to the
oligotrophic Calvi Bay (Richir et al., 2012) was typically asymptotic
(e.g. V and Bi in Figs. 6a and 6b; Annex E), suggesting equilibrium
between TE concentrations in mussels and water as previously
reported by Casas and Bacher (2006) and Casas et al. (2008) for
Hg, Cd, Pb, and Cu. Within 2 weeks (by February 25), TE concentra-
tions in caged M. galloprovincialis had reached a new steady-state.
In this new steady-state, bioaccumulation should be regarded as a

stationary process, TE concentrations in mussel flesh being in
pseudo-equilibrium with TE loads of their surrounding environ-
ment (Casas and Bacher, 2006; Casas et al., 2008). In addition
to these general patterns, abrupt changes in flesh weight linked
to the emission of gametes (Cossa, 1989; Richir and Gobert,
2014) were reported to provoke steep increases in TE concentra-
tions at spawning time (Casas and Bacher, 2006; Casas et al.,
2008). A first drastic mussel weight loss (i.e. CI dropping of 02/
14/2011; Fig. 6; Table 5) likely linked to mussel gamete emission
was measured after mid-February initial handling stress when
mussels were detached from ropes, leading to the concentration
peak observed for most TEs in mussels’ remaining soft tissues
(e.g. V and Bi in Figs. 6a and 6b; Table 5; Annex E). Indeed, phys-
ical stimulation by scraping the shell or cutting the byssus
threads when detaching and sorting mussels prior to filing
pouches may have stimulated mussel spawning (Gosling, 2003).
The second mussel weight loss (i.e. CI dropping of 03/04/2011;
Fig. 6; Table 5), and the resulting second TE concentration peak
effect (e.g. V and Bi in Figs. 6a and 6b; Table 5; Annex E), was
likely linked to a natural occurring spawning event. No further
obvious increase of TE concentrations in mussels was observed
during the rest of the caging experiment, except for V (Fig. 6a).
This spring rise could presumably be linked to the resumption
of the touristic period, the main notorious anthropogenic activity
likely to contaminate the Calvi Bay (Vermeulen et al., 2011), and
the consequent increase of marine shipping and recreational
activities recognized as a major source of V pollution (Amiard
et al., 2008; Pey et al., 2013). Finally, concentrations of essential
Cu (Fig. 6c), Co, Se and Zn, as well as non-essential As (Table 5;
Annex E), remained proportionally relatively constant during the
overall deployment period of caged mussels. The temporal con-
stancy of these 4 essential micronutrients could be indicative of
a strong physiological regulation of their internal levels, as sug-
gested by Richir and Gobert (2014) who observed similar Cu, Co
and Zn contents in M. galloprovincialis having spawned or close
to spawn and sampled at a 1-year time interval (physiological
and temporal constancy).

TE uptake and loss kinetics in P. oceanica and M. galloprovincialis
are thus under the influence of various parameters that interact
such as environmental TE loads, the nature of TEs or the physiolog-
ical status of bioindicator species. For M. galloprovincialis, a set of
consensual protocol tools allow to compare results between sites
and studies, e.g. adjusting TE concentrations according to the
trophic heterogeneity of immersion sites, performing caging exper-
iments during the period of sexual dormancy, or using homoge-
nous starter batches of calibrated individuals (Andral et al., 2011;
Benedicto et al., 2011), although this last consideration can be min-
imized (Saavedra et al., 2004; Richir and Gobert, 2014). In contrast,
for P. oceanica, no general rule prevails, and shoots are collected at
any time of the year without considering the seasonality and the
small spatial scale sensitivity of this bioindicator species. However,
Pergent-Martini and Pergent (2000) had already pointed out the
importance of that seasonality and present results confirmed their
statement. Malea et al. (2013), who recently seasonally monitored
TE concentrations in the seagrass Cymodocea nodosa during one
year, concluded the same. Consequently, scientists should develop
consensual monitoring protocols in order to improve the use of
seagrasses as bioindicators of the coastal pollution, as is the case
for M. galloprovincialis.

3.4. Trace element compartmentalization in P. oceanica and M.
galloprovincialis

Although we have extensively discussed different aspects of the
biomonitoring of TEs using entire P. oceanica shoots of leaves or the
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entirety of M. galloprovincialis body flesh, some previous studies
have in contrast worked on specific body compartments (Adami
et al., 2002; Roméo et al., 2005; Romero et al., 2007a, 2007b;
Salivas-Decaux et al., 2010). The 4th objective of the present work
therefore aimed, based on the compilation of observations
reported in other studies, to discuss the reliability of using specific
compartments of these two bioindicators instead of entire individ-
uals in monitoring surveys, with regards to species-specific TE
body distribution and compartment kinetics.

In P. oceanica monitored on annual basis, Richir et al. (2013)
showed that TEs were either preferentially accumulated in
above-ground shoots of leaves (e.g. As, V, Mn), either in below-
ground rhizomes (e.g. Al, Fe, Ni) or indistinctly in above- and
below-ground tissues (e.g. Cr, Cu, Mo). TE concentrations further
differed between intermediate younger leaves and adult senescent
ones, as a result of a longer exposure of adult leaves to ambient TEs
(Campanella et al., 2001; Luy et al., 2012; Cozza et al., 2013), a
higher retention rate of TEs in adult leaves (Warnau et al., 1996;

Richir et al., 2013) and the dilution of accumulated TEs in actively
growing intermediate leaves (Malea et al., 1994; Luy et al., 2012).
In contrast, when P. oceanica shoots were experimentally contam-
inated with TEs, physiologically more active intermediate leaves
took up most TEs more rapidly than adult leaves (Warnau et al.,
1996; Richir et al., 2013). Both leaf types decontaminated rapidly
when initial conditions were restored (Warnau et al., 1996;
Richir et al., 2013), although some results showed that P. oceanica
contaminated with radiotracers at levels several orders of magni-
tude lower than TE concentrations commonly reported for natural
seawater could retained 110mAg, 134Cs and 137Cs for longer time
(Calmet et al., 1991; Warnau et al., 1996). TE concentrations also
varied along the same leaf, from its base to its tip (Campanella
et al., 2001; Luy et al., 2012; Cozza et al., 2013), and accumulated
TEs could further undergo redistribution processes between P. oce-
anica compartments (Richir et al., 2013). TE compartmentalization
could also vary according to the contamination status of studied
sites (Luy et al., 2012; Richir, 2012), but could also vary between

Fig. 6. Temporal kinetics of (a) V, (b) Bi and (c) Cu concentrations (mean ± SD, in lg gDW
�1 ) in caged rope-grown M. galloprovincialis (n = 12, except for sampling dates 02/11/

2011 – n = 30 – and 02/12/2011 – n = 44) purchased from the Diane salty pond (eastern Corsica, France) and immerged from February to June 2011 near the oceanographic
station STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO marina (Calvi Bay, northwestern Corsica, France). Mussel Condition Index values (CI ± SD;
Andral et al., 2004) are also given. For clarity purpose, one in two sampling date is reported on the left half of the X-axis.
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reference sites (Richir et al., 2013) and with depth within the same
reference site (Richir et al., unpubl. data).

Furthermore, for analytical or anatomical reasons, no compart-
ment of P. oceanica is fully satisfactory for the monitoring of TE pol-
lution. If P. oceanica 3rd intermediate leaf was shown to be globally
representative of entire shoots (Luy et al., 2012), this leaf is how-
ever not systematically present all year round, as in summer when
spring young intermediate leaves have aged to give adult leaves.
Romero et al. (2007a, 2007b) selected, in a preliminary study,
the 2nd youngest P. oceanica leaf instead of the 3rd one (juvenile
leaves excluded) to measure physiological metrics of their environ-
mental quality POMI index, of which TEs (Martínez-Crego, 2005;
Martínez-Crego et al., 2008); but that tissue was regarded as not
having had sufficient time to accumulate enough TEs (Martínez-
Crego, pers. com.). Moreover, TE concentrations in P. oceanica com-
partments can evolve seasonally, as for Cymodocea nodosa (Malea
et al., 2013), and that seasonality can differ from that of entire
shoots (Richir et al., unpubl. data). As regards P. oceanica, the def-
inition of water quality index based on different metrics of that
protected species must further evolve toward non-destructive
methods (Montefalcone, 2009). As an example, the non-destructive
index of Gobert et al. (NDSM: Non Destructive Shoot Method;
2012) requires the measurement of several metrics on entire
shoots of leaves cut close to their base to ensure their regrowth.
When special care was given to the sampling, the storage and
the processing of samples, it was possible to retrieve these shoots
of leaves for further chemical analyses (e.g. TEs; Gobert et al.,
unpubl. data). Such an approach not only reduces the required
amount of collected material, but also allows the optimization of
sample preparatory work. From these observations, it can be con-
cluded that the measurement of P. oceanica anatomical and physi-
ological metrics, of which TEs, in entire shoots of leaves (cut with
scissor and not uprooted) could be the most appropriate approach
when using that species to biomonitor the health status of the
coastal Mediterranean.

In M. galloprovincialis, there is a well-marked compartmentali-
zation of TEs between organs, most of them being preferentially
concentrated in the hepatopancreas (Richir and Gobert, 2014).
The analysis of this organ has therefore been specifically privileged
in some monitoring surveys (Adami et al., 2002; Gupta and Singh,
2011). Richir and Gobert (2014) reported that TE distribution
remained similar between individuals sampled before or after
spawning, from one year to the other. This conservative character
of TE compartmentalization (physiological and temporal con-
stancy) must imply the internal regulation of their levels and a
quantitative redistribution between tissues (Gabbott, 1975; Lobel
and Wright, 1982). TE concentrations are further lower in the man-
tle (Richir and Gobert, 2014) where the gonad follicles are dis-
persed (Torrado and Mikhailov, 2000). Caging experiments
scheduled with regular samplings showed that when M. gallopro-
vincialis spawned, most TE concentrations underwent a short-time
increase in mussel flesh to recover thereafter a pseudoequilibrum
with TE loads of their surrounding environment (Table 5; Figs. 6a
and 6b; Annex E; Casas and Bacher, 2006; Casas et al., 2008). TEs
must consequently be less concentrated in the reproductive mate-
rial (Casas et al., 2008). Because of these important regulatory pro-
cesses within the mantle, this tissue will not be used in
biomonitoring surveys, and biomonitoring surveys will be per-
formed with individuals in sexual dormancy (Andral et al., 2004).

Mytilus spp. are important shellfish products, which therefore
raises certain health issues of food security (Stankovic and Jovic,
2012). In both passive (e.g. the Mussel Watch program in the
USA: Goldberg, 1975; the RNO program in France: Chiffoleau
et al., 2005) and active (e.g. RINBIO and MYTILOS programs in the
Mediterranean: Andral et al., 2004; Benedicto et al., 2011) biomon-
itoring surveys, analysed Mytilus spp. may come from sites

designated for the production of shellfish products (e.g. the Diane
pond; Fig. 1a). In a risk assessment approach, it is the duty of eco-
toxicologists to provide a maximum of relevant information on the
incurred risks by the consumption of such products. Thus, regard-
ing M. galloprovincialis purchased from the shellfish farm SARL
Etang de Diane, Cd and Pb levels were reported to be well below
the phytosanitary standards of 1 lg g�1 of mussel fresh weight
(Richir and Gobert, 2014), as defined by the European Union (EC,
2001). Because of this phytosanitary aspect, entire mussels should
preferentially be analysed in biomonitoring surveys. In addition,
existing TE kinetic models (e.g. Casas and Bacher, 2006; Casas
et al., 2008) apply to entire M. galloprovincialis, not to specific
organs. From these observations, it can be concluded that the
health status of the coastal Mediterranean should be monitored
in entire mussels.

4. Conclusion

The calculation of Trace Element Spatial Variation Index (TESVI)
values, combined to the comparative graphical representation of
TE concentrations by using a proportional ordinate (concentration)
scaling, appeared to be an efficient tool to order and to compare
TEs according to the overall spatial variability of their environmen-
tal levels throughout the whole of a studied area. The complemen-
tary calculation of weighted Trace Element Pollution Index (TEPI)
values further allowed one to accurately compare the global TE
pollution between monitored sites, whatever the bioindicator spe-
cies considered. The calculation of TESVI values also highlighted
that the overall spatial variability of TEs of previous little environ-
mental concern could be higher than that of TEs classically bio-
monitored. The corresponding abnormally high concentrations of
these contaminating TEs could further be linked to specific anthro-
pogenic activities. In addition, the more the number of TEs being
studied increases, the more TEPI values are probative. For these
reasons, the list of Cr, Ni, Cu, Zn, Cd, Pb and Hg classically moni-
tored along Mediterranean coasts should be broaden.

P. oceanica and M. galloprovincialis efficiently bioaccumulated
TEs from their environment. If M. galloprovincialis appeared to be
a good indicator of the overall quality of a water body, P. oceanica
also allowed the fine-spatial scale mapping of the coastal pollution,
since this rooted organism reflected the long-term integration of
weak pollution sources in sediments. As both species are relevant
bioindicators, and because they complement one another, they
could consequently be used concomitantly to biomonitor the
coastal pollution of the Mediterranean with TEs.

Both bioindicators rapidly equilibrated with TE loads of their
ambient environment; both bioindicators therefore properly
reflected the contamination status of their sampling environment
within days to weeks, depending on the nature and kinetics of each
TE. But because of this fast balancing, some punctual pollutions of
importance could be missed. Although the efficient basipetal trans-
location of TEs from contaminated P. oceanica leaves towards rhi-
zomes could record these punctual events, the necessary
destructive uprooting of that protected species should limit
below-ground organs sampling to specific case studies.

The bioaccumulation behaviour of both species was influenced
by their biological cycle. In M. galloprovincialis, the gametogenic
cycle played an important role by concentrating TEs in spawning
individuals. For P. oceanica, the seasonal aging of their deciduous
leaves modulated TE concentrations within shoots. A consensual
use of these bioindicators is thenceforth essential to furnish rele-
vant and comparable information. If this is largely the case for M.
galloprovincialis, no common rule prevails for P. oceanica.

Body compartments of both species accumulated more or less
TEs according to their age, their function, their exposure to TEs,
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etc. It can therefore be interesting to study the compartmentaliza-
tion of TEs to better understand their dynamics and physiological
regulation within organisms. However, none of these compart-
ments properly reflected the bioaccumulation behaviour of entire
organisms. Furthermore, detailed kinetic models incorporating
environmental variables, which in return modulate TE bioaccumu-
lation processes in organisms, are designed for entire individuals,
as is the case for M. galloprovincialis. For these reasons among oth-
ers, the monitoring of the coastal Mediterranean should therefore
be performed in entire organisms.
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Annex A. Overall spatial variability of (a-h) Se, Ni, Mn, Co, Sb, Ag, Be and Cu concentrations (mean ± SD,

in µg gDW
-1) in P. oceanica (n = 15) sampled at 15 m depth in April 2007 in 18 sites located along coasts of

the French Mediterranean littoral and remote from one another of a few to hundreds of km. The graphical
comparison of the overall spatial variability of trace element (TE) concentrations is based on the use of a
proportional ordinate scaling between TEs, obtained by multiplying the minimum recorded mean concentration
of each TE by the highest xmax/xmin mean concentration ratio (22.8 for Mo) calculated among the 19 studied
TEs. TE histograms are ordered (a-s) according to the overall spatial variability of their concentrations (Trace
Element Spatial Variation Index values) throughout the whole of the French Mediterranean littoral. Arabic and
Roman numbers on the X-axis represent sites along continental Provence-Alpes-Côte d'Azur (1-11) or insular
Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7:
Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio
Isolaccio; V: Bravone; VI: Ajaccio Sud ; VII: Ajaccio Nord. * and ** represent TE concentrations <LQ or <
LD, respectively.
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Annex A (Continued). Overall spatial variability of (i-p) Cd, Fe, Pb, Cr, Sn, As, Al and Zn concentrations

(mean ± SD, in µg gDW
-1) in P. oceanica (n = 15) sampled at 15 m depth in April 2007 in 18 sites located

along coasts of the French Mediterranean littoral and remote from one another of a few to hundreds of km.
The graphical comparison of the overall spatial variability of trace element (TE) concentrations is based on the
use of a proportional ordinate scaling between TEs, obtained by multiplying the minimum recorded mean
concentration of each TE by the highest xmax/xmin mean concentration ratio (22.8 for Mo) calculated among
the 19 studied TEs. TE histograms are ordered (a-s) according to the overall spatial variability of their
concentrations (Trace Element Spatial Variation Index values) throughout the whole of the French
Mediterranean littoral. Arabic and Roman numbers on the X-axis represent sites along continental
Provence-Alpes-Côte d'Azur (1-11) or insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4:
Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I:
Calvi; II: Aregno; III: St Florent; IV: Taglio Isolaccio; V: Bravone; VI: Ajaccio Sud ; VII: Ajaccio Nord. BAL
= blades ofP. oceanica adult leaves. * represent TE concentrations <LQ.
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Annex A (Continued). Overall spatial variability of (q-s) Bi, Mo and V concentrations (mean ± SD, in µg

gDW
-1) in P. oceanica (n = 15) sampled at 15 m depth in April 2007 in 18 sites located along coasts of the

French Mediterranean littoral and remote from one another of a few to hundreds of km. The graphical
comparison of the overall spatial variability of trace element (TE) concentrations is based on the use of a
proportional ordinate scaling between TEs, obtained by multiplying the minimum recorded mean concentration
of each TE by the highest xmax/xmin mean concentration ratio (22.8 for Mo) calculated among the 19 studied
TEs. TE histograms are ordered (a-s) according to the overall spatial variability of their concentrations (Trace
Element Spatial Variation Index values) throughout the whole of the French Mediterranean littoral. Arabic and
Roman numbers on the X-axis represent sites along continental Provence-Alpes-Côte d'Azur (1-11) or insular
Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7:
Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio
Isolaccio; V: Bravone; VI: Ajaccio Sud ; VII: Ajaccio Nord. * represent TE concentrations <LQ.



ST Aq Sw PB ST Aq Sw PB

0

30

60

90

120

a

ab

c

b

a

b

c

d

A
l (

µ
g

 g
D

W
-1

)

ST Aq Sw PB ST Aq Sw PB

0

5

10

15

a b bc ac

a

b

c
d

V
 (

µ
g

 g
D

W
-1

)

ST Aq Sw PB ST Aq Sw PB

0

50

100

150

ab
a

b

a

a

b
b

aF
e 

(µ
g

 g D
W

-1
)

ST Aq Sw PB ST Aq Sw PB

0.0

0.1

0.2

0.3

0.4

0.5

a

b

ab
ab

ab
a

a

aC
r 

(µ
g

 g
D

W
-1

)

ST Aq Sw PB ST Aq Sw PB

0

5
5

25

45

65

85

a b a ab

a a a

b

M
n

 (
µ

g
 g

D
W

-1
)

ST Aq Sw PB ST Aq Sw PB

0

1

2

3

ab a b ab

a
a a

b

C
o

 (
µ

g
 g

D
W

-1
)

ST Aq Sw PB ST Aq Sw PB

0

1

2
2

11

20

29

38

a b ab a

a

b
b

a

N
i (

µ
g

 g
D

W
-1

)

ST Aq Sw PB ST Aq Sw PB

0

2

4

6

8

10

a
b

ab a

a

b b b

C
u

 (
µ

g
 g

D
W

-1
)

a b

c d

e f

g h

Annex B. Spatial variability of (a-h) Al, V, Fe, Cr, Mn, Co, Ni and Cu concentrations (mean ± SD, in

µg gDW
-1) in caged rope-grownM. galloprovincialis (n = 48-49) purchased from the Diane salty pond

(eastern Corsica, France) and immerged between 7 and 10 m depth from March to June 2010 in 4
stations in Calvi Bay area (northwestern Corsica, France), and inP. oceanica  (n = 15) sampled
between 13 and 22 m depth in June 2010 concomitantly when mussels were retrieved from water. The
4 sampled stations STARESO (ST), aquaculture farm (Aq), Calvi city sewer (Sw) and Punta Bianca
(PB) were remote from one another by a distance of 1 to 3 km. Letters represent significant
differences between stations for each bioindicator species.
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Annex B (Continued). Spatial variability of (i-p) Zn, Se, Ag, Cd, Sn, Sb, As and Mo concentrations

(mean ± SD, in µg gDW
-1) in caged rope-grownM. galloprovincialis (n = 48-49) purchased from the

Diane salty pond (eastern Corsica, France) and immerged between 7 and 10 m depth from March to
June 2010 in 4 stations in Calvi Bay area (northwestern Corsica, France), and inP. oceanica (n = 15)
sampled between 13 and 22 m depth in June 2010 concomitantly when mussels were retrieved from
water. The 4 sampled stations STARESO (ST), aquaculture farm (Aq), Calvi city sewer (Sw) and
Punta Bianca (PB) were remote from one another by a distance of 1 to 3 km. Letters represent
significant differences between stations for each bioindicator species. * and ** represent trace element
concentrations <LQ or < LD, respectively.

M. gallopro-
vincialis

P. oceanica M. gallopro-
vincialis

P. oceanica



Annex B (Continued). Spatial variability of (q-s) Be, Pb and Bi concentrations (mean ± SD, in µg

gDW
-1) in caged rope-grownM. galloprovincialis  (n = 48-49, except for Be: n = 24-25) purchased

from the Diane salty pond (eastern Corsica, France) and immerged between 7 and 10 m depth from
March to June 2010 in 4 stations in Calvi Bay area (northwestern Corsica, France), and inP. oceanica
(n = 15) sampled between 13 and 22 m depth in June 2010 concomitantly when mussels were retrieved
from water. (t) Trace Element Pollution Index (TEPI) values were calculated for each station and
bioindicator species from mean normalized concentrations of the 19 studied trace elements. The 4
sampled stations STARESO (ST), aquaculture farm (Aq), Calvi city sewer (Sw) and Punta Bianca
(PB) were remote from one another by a distance of 1 to 3 km. Letters represent significant
differences between stations for each bioindicator species. *, ** and*** represent trace element

concentrations < LQ, < LD or < LC, respectively.
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Annex C. Spatial variability of Al, V, Fe and Cr concentrations (mean ± SD, in µg gDW
-1) in P. oceanica sampled

at 15 m depth in April 2007 in 18 sites located along coasts of the French Mediterranean littoral (a'-d'; n = 15) and
in P. oceanica sampled at 8-9 m depth in May 2010 in 9 stations located along a radial following the coastline at
the back of the Ajaccio Bay (western Corsica, France; a"-d"; n = 9-10). Arabic and Roman numbers on the
X-axis of left graphs represent sites along continental Provence-Alpes-Côte d'Azur (1-11) or insular Corsican
(I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St
Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio Isolaccio; V:
Bravone; VI: Ajaccio Sud; VII: Ajaccio Nord. Numbered A letters A1-9 on the X-axis of right graphs represent
stations along the Ajaccio Bay radial, with increasing distance from the port and urban centre of Ajaccio city. The
two supplementary sites VI: Ajaccio Sud and VII: Ajaccio Nord were also reported on right graphs for
comparison purpose at the scale of the Ajaccio Bay. The 18 sites located along coasts of the French
Mediterranean littoral were remote from one another of a few to hundreds of km; the 9 stations located along the
Ajaccio Bay radial were remote from one another of around 300 m, while the two Ajaccio Sud and Ajaccio Nord
sites were remote of around 5 km of the radial.
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Annex C (Continued). Spatial variability of Mn, Co, Ni and Cu concentrations (mean ± SD, in µg gDW
-1) in P.

oceanica sampled at 15 m depth in April 2007 in 18 sites located along coasts of the French Mediterranean littoral
(e'-h'; n = 15) and in P. oceanica  sampled at 8-9 m depth in May 2010 in 9 stations located along a radial
following the coastline at the back of the Ajaccio Bay (western Corsica, France; e"-h"; n = 9-10). Arabic and
Roman numbers on the X-axis of left graphs represent sites along continental Provence-Alpes-Côte d'Azur (1-11)
or insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat;
7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio
Isolaccio; V: Bravone; VI: Ajaccio Sud; VII: Ajaccio Nord. Numbered A letters A1-9 on the X-axis of right graphs
represent stations along the Ajaccio Bay radial, with increasing distance from the port and urban centre of Ajaccio
city. The two supplementary sites VI: Ajaccio Sud and VII: Ajaccio Nord were also reported on right graphs for
comparison purpose at the scale of the Ajaccio Bay. The 18 sites located along coasts of the French
Mediterranean littoral were remote from one another of a few to hundreds of km; the 9 stations located along the
Ajaccio Bay radial were remote from one another of around 300 m, while the two Ajaccio Sud and Ajaccio Nord
sites were remote of around 5 km of the radial.
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French Mediterranean littoral Ajaccio Bay

Annex C (Continued). Spatial variability of Zn, Se, Ag and Cd concentrations (mean ± SD, in µg g DW
-1) in P.

oceanica sampled at 15 m depth in April 2007 in 18 sites located along coasts of the French Mediterranean littoral
(i'-l'; n = 15) and inP. oceanica sampled at 8-9 m depth in May 2010 in 9 stations located along a radial following
the coastline at the back of the Ajaccio Bay (western Corsica, France; i"-l"; n = 9-10). Arabic and Roman
numbers on the X-axis of left graphs represent sites along continental Provence-Alpes-Côte d'Azur (1-11) or
insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7:
Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio
Isolaccio; V: Bravone; VI: Ajaccio Sud; VII: Ajaccio Nord. Numbered A letters A1-9 on the X-axis of right graphs
represent stations along the Ajaccio Bay radial, with increasing distance from the port and urban centre of Ajaccio
city. The two supplementary sites VI: Ajaccio Sud and VII: Ajaccio Nord were also reported on right graphs for
comparison purpose at the scale of the Ajaccio Bay. The 18 sites located along coasts of the French
Mediterranean littoral were remote from one another of a few to hundreds of km; the 9 stations located along the
Ajaccio Bay radial were remote from one another of around 300 m, while the two Ajaccio Sud and Ajaccio Nord
sites were remote of around 5 km of the radial. * and ** represent trace element concentrations <LQ or < LD,
respectively.
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Annex C (Continued). Spatial variability of Sn, Sb, As and Mo concentrations (mean ± SD, in µg gDW
-1) in P.

oceanica sampled at 15 m depth in April 2007 in 18 sites located along coasts of the French Mediterranean littoral
(m'-p'; n = 15) and in P. oceanica  sampled at 8-9 m depth in May 2010 in 9 stations located along a radial
following the coastline at the back of the Ajaccio Bay (western Corsica, France; m"-p"; n = 9-10). Arabic and
Roman numbers on the X-axis of left graphs represent sites along continental Provence-Alpes-Côte d'Azur (1-11)
or insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3: Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat;
7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11: Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio
Isolaccio; V: Bravone; VI: Ajaccio Sud; VII: Ajaccio Nord. Numbered A letters A1-9 on the X-axis of right graphs
represent stations along the Ajaccio Bay radial, with increasing distance from the port and urban centre of Ajaccio
city. The two supplementary sites VI: Ajaccio Sud and VII: Ajaccio Nord were also reported on right graphs for
comparison purpose at the scale of the Ajaccio Bay. The 18 sites located along coasts of the French
Mediterranean littoral were remote from one another of a few to hundreds of km; the 9 stations located along the
Ajaccio Bay radial were remote from one another of around 300 m, while the two Ajaccio Sud and Ajaccio Nord
sites were remote of around 5 km of the radial. * represent trace element concentrations <LQ. BAL = blades of
P. oceanica adult leaves.
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Annex C (Continued). Spatial variability of Be, Pb and Bi concentrations (mean ± SD, in µg g DW
-1) in P.

oceanica sampled at 15 m depth in April 2007 in 18 sites located along coasts of the French Mediterranean littoral
(q'-s'; n = 15) and in P. oceanica  sampled at 8-9 m depth in May 2010 in 9 stations located along a radial
following the coastline at the back of the Ajaccio Bay (western Corsica, France; q"-s"; n = 9-10). Trace Element
Pollution Index (TEPI) values (t', t") were calculated by site and station from mean normalized concentrations of
the 19 studied trace elements. Arabic and Roman numbers on the X-axis of left graphs represent sites along
continental Provence-Alpes-Côte d'Azur (1-11) or insular Corsican (I-VII) coasts. 1: Ensuès; 2: La Vesse; 3:
Corbière; 4: Plateau des Chèvres; 5: Riou; 6: Bénat; 7: Giens; 8: St Raphaël; 9: Cap Roux; 10: Antibes; 11:
Villefranche; I: Calvi; II: Aregno; III: St Florent; IV: Taglio Isolaccio; V: Bravone; VI: Ajaccio Sud; VII: Ajaccio
Nord. Numbered A letters A1-9 on the X-axis of right graphs represent stations along the Ajaccio Bay radial, with
increasing distance from the port and urban centre of Ajaccio city. The two supplementary sites VI: Ajaccio Sud
and VII: Ajaccio Nord were also reported on right graphs for comparison purpose at the scale of the Ajaccio Bay.
The 18 sites located along coasts of the French Mediterranean littoral were remote from one another of a few to
hundreds of km; the 9 stations located along the Ajaccio Bay radial were remote from one another of around 300
m, while the two Ajaccio Sud and Ajaccio Nord sites were remote of around 5 km of the radial. * and **
represent trace element concentrations <LQ or < LD, respectively.
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Annex D. Seasonal and pluriannual kinetics of Al, V, Fe and Cr concentrations (mean ± SD, in µg gDW
-1) in P.

oceanica (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine seagrass bed of
STARESO (Calvi Bay, northwestern Corsica, France; left graphs a'-d') and in the impacted seagrass bed of
Plateau des Chèvres (Maseille, France; right graphs a"-d"). The sampling of June 2009 is missing for Plateau des
Chèvres site.

STARESO Plateau des Chèvres
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Annex D (Continued). Seasonal and pluriannual kinetics of Mn, Co, Ni and Cu concentrations (mean ± SD, in

µg gDW
-1) in P. oceanica (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine

seagrass bed of STARESO (Calvi Bay, northwestern Corsica, France; left graphs e'-h') and in the impacted
seagrass bed of Plateau des Chèvres (Maseille, France; right graphs e"-h"). The sampling of June 2009 is
missing for Plateau des Chèvres site.
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Annex D (Continued). Seasonal and pluriannual kinetics of Zn, Se, Ag and Cd concentrations (mean ± SD, in

µg gDW
-1) in P. oceanica (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine

seagrass bed of STARESO (Calvi Bay, northwestern Corsica, France; left graphs i'-l') and in the impacted
seagrass bed of Plateau des Chèvres (Maseille, France; right graphs i"-l"). The sampling of June 2009 is missing
for Plateau des Chèvres site. * represent trace element concentrations <LQ.

STARESO Plateau des Chèvres



0.00

0.01

0.02

0.03

0.04

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

*

S
n 

(µ
g 

g D
W

-1
)

0.00

0.02

0.04

0.06

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

S
n 

(µ
g 

g D
W

-1
)

0.15

0.20

0.25

0.30

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

S
b 

(µ
g 

g D
W

-1
)

0.10

0.15

0.20

0.25

0.30

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

S
b 

(µ
g 

g D
W

-1
)

0.3

0.8

1.3

1.8

2.3

2.8

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

A
s 

(µ
g 

g D
W

-1
)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

A
s 

(µ
g 

g D
W

-1
)

0

1

2

3

4

5

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

M
o

 (
µ

g 
g D

W
-1

)

0

1

2

3

4

01
/0

1/
08

04
/0

1/
08

07
/0

1/
08

10
/0

1/
08

01
/0

1/
09

04
/0

1/
09

07
/0

1/
09

10
/0

1/
09

01
/0

1/
10

04
/0

1/
10

07
/0

1/
10

10
/0

1/
10

01
/0

1/
11

M
o

 (
µ

g 
g D

W
-1

)

m' m"

n' n"

o' o"

p' p"

Annex D (Continued). Seasonal and pluriannual kinetics of Sn, Sb, As and Mo concentrations (mean ± SD, in

µg gDW
-1) in P. oceanica (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine

seagrass bed of STARESO (Calvi Bay, northwestern Corsica, France; left graphs m'-p') and in the impacted
seagrass bed of Plateau des Chèvres (Maseille, France; right graphs m"-p"). The sampling of June 2009 is
missing for Plateau des Chèvres site, and Sn concentrations are only available for samplings of November 2010
in bothP. oceanica beds. * represent trace element concentrations <LQ.
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Annex D (Continued). Seasonal and pluriannual kinetics of Be, Pb and Bi concentrations (mean ± SD, in µg

gDW
-1) in P. oceanica  (n = 15) sampled at 10 m depth from March 2008 to November 2010 in the pristine

seagrass bed of STARESO (Calvi Bay, northwestern Corsica, France; left graphs q'-s') and in the impacted
seagrass bed of Plateau des Chèvres (Maseille, France; right graphs q"-s"). The sampling of June 2009 is missing
for Plateau des Chèvres site. *, ** and*** represent trace element concentrations < L Q, < LD or < LC,

respectively.
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Annex E.  Temporal kinetics of (a-d) Al, V, Fe and Cr concentrations (mean ± SD, in µg

gDW
-1) in caged rope-grownM. galloprovincialis  (n = 12, except for sampling dates

02/11/2011 - n = 30 - and 02/12/2011 - n = 44) purchased from the Diane salty pond (eastern
Corsica, France) and immerged from February to June 2011 near the oceanographic station
STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO marina (Calvi
Bay, northwestern Corsica, France). For clarity purpose, one in two sampling date is reported
on the left half of the X-axis.
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Annex E (Continued). Temporal kinetics of (e-h) Mn, Co, Ni and Cu concentrations (mean

± SD, in µg gDW
-1) in caged rope-grownM. galloprovincialis (n = 12, except for sampling

dates 02/11/2011 - n = 30 - and 02/12/2011 - n = 44) purchased from the Diane salty pond
(eastern Corsica, France) and immerged from February to June 2011 near the oceanographic
station STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO
marina (Calvi Bay, northwestern Corsica, France). For clarity purpose, one in two sampling
date is reported on the left half of the X-axis.
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Annex E (Continued). Temporal kinetics of (i-l) Zn, Se, Ag and Cd concentrations (mean ±

SD, in µg gDW
-1) in caged rope-grownM. galloprovincialis  (n = 12, except for sampling

dates 02/11/2011 - n = 30 - and 02/12/2011 - n = 44) purchased from the Diane salty pond
(eastern Corsica, France) and immerged from February to June 2011 near the oceanographic
station STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO
marina (Calvi Bay, northwestern Corsica, France). For clarity purpose, one in two sampling
date is reported on the left half of the X-axis.
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Annex E (Continued). Temporal kinetics of (m-p) Sn, Sb, As and Mo concentrations (mean

± SD, in µg gDW
-1) in caged rope-grownM. galloprovincialis (n = 12, except for sampling

dates 02/11/2011 - n = 30 - and 02/12/2011 - n = 44) purchased from the Diane salty pond
(eastern Corsica, France) and immerged from February to June 2011 near the oceanographic
station STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO
marina (Calvi Bay, northwestern Corsica, France). * represent trace element concentrations
< LQ. For clarity purpose, one in two sampling date is reported on the left half of the X-axis.
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Annex E (Continued). Temporal kinetics of (q-s) Be, Pb and Bi concentrations (mean ±

SD, in µg gDW
-1) in caged rope-grownM. galloprovincialis  (n = 12, except for sampling

dates 02/11/2011 - n = 30 - and 02/12/2011 - n = 44) purchased from the Diane salty pond
(eastern Corsica, France) and immerged from February to June 2011 near the oceanographic
station STARESO after a 3 days acclimatization period (02/11-14/2011) in STARESO
marina (Calvi Bay, northwestern Corsica, France). * represent trace element concentrations
< LQ. For clarity purpose, one in two sampling date is reported on the left half of the X-axis.
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