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Abstract. Under natural and weak hypotheses, we prove a reproducing formula for
polynomials. Then we obtain a new recurrence relation between the moments of a
scaling function and a new exact formula for the computation of moments of even
order.

1. Introduction

In [7], W. Sweldens and R. Piessens present the following result:

M2 = (M1)
2

where

Mj =
∫

IR
xjϕ(x) dx

are the moments of a compactly supported scaling function associated to a
multiresolution analysis and in case the associated wavelet has at least three vanishing
moments. Then, considering the shifted moments, they cancel the first and the second
error terms in approximations and obtain an interesting quadrature formula. Their
result about moments comes from a reproducing formula for polynomials.

A general result leading to a formula of that kind has been obtained by Y. Meyer
in [6] but under rather strong regularity hypothesis.

In [1], under natural hypothesis and Strang-Fix conditions on a function ϕ (not
necessarily a scaling function), we prove the reproducing formula for polynomials with
absolute uniform convergence on compact sets and obtain the unicity of the coefficients.
The proof we give does not follow the lines of the one of Y. Meyer and only use
trigonometric Fourier series. Moreover, our result leads to relations showing that
moments Mj of even order can be expressed in terms of a linear combination of products
of moments of smaller order, with coefficients directly computable. In particular, we
obtain M2 = (M1)

2.
Recurrence relations to compute the moments or approximations of them can be

found in [2],[7]. These relations involve approximations or computation of auxiliary
numbers related to the specific property of scaling functions. Here, we present relations
leading to the exact computation of moments of even order using only combinatory
coefficients.

In what follows, the set of natural numbers greater or equal to 0 (resp. strictly
greater than 0) is denoted IN (resp. IN0) and the set of all integers (resp. all integers
not equal to 0) is denoted ZZ (resp. ZZ0).

We also use the following notation Cn
m = m!

n! (m−n)!
where m,n ∈ IN , m ≥ n.
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2. Reproducing formula

Here is the result concerning the reproducing formula (see [1]).

Proposition 2.1 Let ϕ be a function defined on IR satisfying

|ϕ(x)| ≤
C

(1 + |x|)m+1+ε

for some m ∈ IN0, C, ε > 0 and such that the functions ϕ(.− k), k ∈ ZZ satisfy∫

IR
ϕ(x− k) ϕ(x− j) dx = δkj, j, k ∈ ZZ.

If in addition ϕ is such that M0 = ϕ̂(0) = 1 and satisfy the Strang-Fix conditions

Djϕ̂(2kπ) = 0 for k ∈ ZZ0, 1 ≤ j ≤ m,

then for every j = 0, . . . ,m, there is a unique sequence (a
(j)
k )k∈ZZ such that

xj =
∑

k∈ZZ

a
(j)
k ϕ(x− k) ae

where the serie is absolutely and uniformly convergent on every compact subset of IR

and where a
(j)
k is a polynomial of degree j in the variable k. These coefficients are

a
(j)
k =

∫

IR
xjϕ(x− k) dx, j = 0, . . . ,m, k ∈ ZZ.

In particular we have

a
(j)
0 = Mj.

Another expression of the polynomials a
(j)
k is obtained below. The proof can be

found in [1]; it uses the previous result and recurrence technique. This expression leads
to new relations between moments.

We use some definitions and notations: for j, l ∈ IN0, we define

Kl(j) = {(i1, . . . , il) ∈ IN l
0 :

l∑

k=1

ik = j}

and

K(j) =
j⋃

l=1

Kl(j).

For (i1, . . . , il) ∈ K(j), we write i ∈ K(j). For j ≥ i1 + . . .+ il we define

Fj(i1, . . . , il) = Fj(i) = (−1)i1+1 · · · (−1)il+1C i1
j C

i2
j−i1 . . . C

il

j−
∑l−1

k=1
ik
Mi1 . . .Mil

where

Mj =
∫

IR
xjϕ(x) dx = a

(j)
0 .

For j ∈ IN , we also set
∑

i∈K(0)

Fj(i) = 1. (∗)

Proposition 2.2 Under the same hypothesis as in Proposition 2.1 and using the
notations introduced above, we have the following relations

a
(j)
k =

j∑

l=0

kl
∑

i∈K(j−l)

Fj(i), k ∈ ZZ, j = 1, . . . ,m. (1)
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3. Relation between moments

We can deduce from the previous relations that the moments of even order can be
expressed in terms of a linear combination of products of moments of smaller order in
which the coefficients are of type C l

m.

Corollary 3.1 Under the same hypothesis as in Proposition 2.1 and using the same
notations, we have

Mj =
∑

i∈K(j)

Fj(i) =
∑

i∈∪j

l=1
Kl(j)

Fj(i), j = 1, . . . ,m.

In particular, if j is even, we have

2Mj =
∑

i∈∪j

l=2
Kl(j)

Fj(i)

Proof. It suffices to take k = 0 in the relations (1) giving a
(j)
k in the previous proposition.

For j even, we have

Fj(j) = (−1)1+jMj = −Mj

hence the conclusion.

As example, we obtain

K2(2) = {(1, 1)}, F2((1, 1)) = 2

hence

2M2 = 2(M1)
2;

in the same way

M4 = −3(M1)
4 + 4M1M3,

M6 = 45(M1)
6 − 60(M1)

3M3 + 6M1M5 + 10(M3)
2.

4. A numerical use

The previous relations can be used for numerical applications. In the following example,
a recurrence formula can be replaced by simple exact formulas which directly lead to
the same precision.

Following the ideas of [2], for a filter of the form

m0(ω) = 2−1/2
2M∑

k=1

hk exp(i(k − 1)ω),

we can approximate the m-th moment with the relation

M(r)
m = i−m[Dm

r∏

j=1

m0(2
−jω)]ω=0. (2)

Here, r represents the number of factors in the approximation. From (2), we can obtain
the recurrence formula

M(r+1)
m =

m∑

k=0

Ck
m2−rkM

(r)
m−kM

(1)
k .
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When m is even, we can replace this approximation with our formula where the
preceding moments, which have been estimated, are involved. So, in this case,we replace
r evaluations by 1.
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[7] Sweldens W. and Piessens R. 1992, Calculation of the wavelet decomposition using

quadrature formulae, CWI Quarterly 5, 1, 33–52


