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We report an experimental investigation of the near-solidus phase equilibria of a water-saturated

analog of the Martian mantle. Experiments were performed at low temperatures (700–920 1C) and high

pressure (4–7 GPa) using multi-anvil apparatus and piston cylinder device (4 GPa). The results of this

study are used to explore the role of water during early melting and chemical differentiation of Mars,

pressure. Water has a significant effect on the temperature of melting and, therefore, on accretion and

subsequent differentiation processes. Experiments locate the wet solidus at �800 1C, and is isothermal

between 4 GPa and 7 GPa. The Martian primitive mantle can store significant amounts of water in

hydrous minerals stable near the solidus. Humite-group minerals and phase E represent the most

abundant hydrous minerals stable in the 4–7 GPa pressure range. The amount of water that can be

stored in the mantle and mobilized during melting ranges from 1 to up to 4 wt% near the wet solidus.

We discuss thermal models of Mars accretion where the planet formed very rapidly and early on in

solar system history. We incorporate the time constraint of Dauphas and Pourmand (2011) that Mars

had accreted to 50% of its present mass in 1.8 Myr and include the effects of 26Al radioactive decay and

heat supplied by rapid accretion. When accretion has reached 30% of Mars current mass (�70% of its

present size), melting starts, and extends from 100 to 720 km depth. Below this melt layer, water can

still be bound in crystalline solids. The critical stage is at 50% accretion (�80% of its size), where Mars is

above the wet and dry solidi with most of its interior melted. This is earlier in the accretion process

than what would be predicted from dry melting. We suggest that water may have promoted early core

formation on Mars and rapidly extended melting over a large portion of Mars interior.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

Geological evidence points to the presence of water on the
surface of Mars throughout the history of the planet (Carr and
Head, 2010). However, there is no consensus on when and how
water has been added to the planet and on its role in the early
chemical differentiation of Mars (e.g. Lunine et al., 2003; Drake,
2005). If water was added at the very beginning of accretion from
planetesimals, then it was likely stored in mineral phases. To
remain in Mars as the planet grows, water must survive heating
from energy released during impacts and radioactive heating.
Thermal models of Mars allow sufficiently low temperatures at
the beginning of accretion for water to be bound into mineral
phases (e.g. Senshu et al., 2002) and melting powered by the heat
generated from 26Al decay (Dauphas and Pourmand, 2011) will
ultimately redistribute and drive volatiles out of the proto-mantle
(Marty and Marti, 2002).
All rights reserved.
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Quantifying the amount of water initially stored in the
planetary embryo places important constraints on the next steps
of its accretion, mainly the formation and evolution of the magma
ocean, the differentiation into a core and the degassing of the
planet’s interior that led to the formation of a proto-atmosphere.
The total abundance of water throughout the history of Mars
remains an outstanding question of Martian geology (e.g. Carr and
Head, 2010). Water estimates for the melts derived from the
Martian mantle range from 1 ppm (Mysen et al., 1998) to 1.8 wt%
(McSween et al., 2001) and estimates of the water added by
accreting bodies indicate that as much as 25% of one Earth ocean
(0.38�1020 kg, Lunine et al., 2003) could have been added.
Experiments in the laboratory on Martian meteorites (shergot-
tite-nakhlite-chassignite (SNC) meteorites) and mantle analog
compositions represent a reliable source of information about
igneous processes and phase-relationships. These data are the
filter through which computing models attempt to constrain
accretion and differentiation processes of Mars.

The post-magma ocean history of Mars has been widely
investigated with experiments on a dry Martian mantle and
basalt analogs (Bertka and Holloway, 1994a,b; Bertka and Fei,
1997; Agee and Draper, 2004; Musselwhite et al., 2006; Monders
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et al., 2007; Minitti and Rutherford, 2007; Filiberto et al., 2008,
2010; Filiberto and Treiman, 2009). However, only a limited
number of studies performed on a hydrous mantle analog at
experimental conditions relevant to early water storage on Mars
investigated the pre-magma ocean time. Water-saturated experi-
ments by Médard and Grove (2006) at lower temperature (775–
1000 1C) and over the pressure range 1–3 GPa quantified the
significant amount of water (up to more than 1 wt%) that can be
stored in a mantle made of hydrous minerals (chlorite, amphibole
and antigorite). The observed effect of water on the solidus of the
mantle also allowed them to deduce that hydrous melting
probably started when the planet accreted to �70% of its present
size. 70% of Mars size corresponds to a radius of �2365 km,
which justifies the need to investigate the properties of a hydrous
mantle at higher pressures than 3 GPa.

This paper presents an experimental investigation at low
temperature (700–920 1C) and high pressure (4–7 GPa) of a
water-saturated analog of the primitive Martian mantle
(Dreibus and Wänke, 1985). This composition corresponds to
the mantleþcrust Martian bulk composition and is consistent
with phase relations of basaltic rocks from Gusev crater (Monders
et al., 2007). The hypothesis of an accretion-driven early hydrous
melting is tested in order to further our understanding of the
processes by which Mars evolved to its present state.
2. Experimental and analytical methods

2.1. Starting bulk composition

Experiments have been performed on the Martian mantle
analog determined by Dreibus and Wänke (1985) (Table 1). This
bulk composition was estimated using the elemental abundances
in SNC meteorites and evidence from the Mg, Si and refractory
lithophile element abundances in CI chondrites to infer a compo-
sition for the other major elements and volatile trace elements.
This composition is similar to the one proposed by Lodders and
Fegley (1997) from oxygen isotope evidence. Also, the Dreibus
and Wänke (1985) composition has been shown to be consistent
with phase equilibria constraints from basaltic rocks at Gusev
crater (Bertka and Holloway, 1994; Monders et al., 2007), and it
allows a direct comparison with the work by Médard and Grove
(2006) performed at lower pressures. Bertka and Fei (1997) have
also investigated the phase equilibrium of this composition over a
wide pressure range under dry conditions (e.g. Bertka and Fei,
Table 1
Starting composition (Dreibus and Wänke (1985), DW) (wt%)

and comparison with terrestrial upper mantle (Hart and

Zindler, 1986).

Mars Earth

SiO2 44.5 46.1

TiO2 0.10 0.18

Al2O3 3.01 4.07

Cr2O3 0.80 0.47

FeOt 17.9 7.56

MnO 0.50 0.13

MgO 30.3 37.9

CaO 2.41 3.22

Na2O 0.50 0.33

K2O 0.04 0.03

P2O5 0.16 0.02

Mg#a 75 90

a molar Mg/(MgþFe).
1997), allowing us to compare anhydrous and water-bearing
phase equilibria.

The starting material consists of a water-saturated Dreibus
and Wänke (1985) composition (abbreviated DWH), obtained
from analytical grade oxides mixing. The amount of water added
under the form of brucite (Mg(OH)2) is high enough to ensure
H2O-saturation over the experimental pressure conditions.
Details regarding the starting material preparation are presented
in Médard and Grove (2006).

2.2. Experimental conditions and calibrations

Water-saturated experiments have been conducted between
4 and 7 GPa, and at temperatures between 700 and 920 1C. Run
durations range from 2.5 up to 11 days and the lower-temperature
experiments had the longest durations (Table 2). Experiments at
4 GPa have been performed with a 12.7 mm end-loaded solid-
medium piston-cylinder apparatus (Boyd and England, 1960)
using the hot piston-in technique. Experimental details for the
piston-cylinder experiments are discussed in Médard and Grove
(2006). Experiments at higher pressures have been conducted in a
multi-anvil apparatus. The design of our multi-anvil device is
similar to that of Walker (1991) and a 12/8 (octahedron edge
length/truncated edge length, in mm) cell assembly was used
(Supplementary materials).

Pressures were calibrated at 1000 1C using the quartz-coesite
transition at 3.1 GPa (Bohlen and Boettcher, 1982) and at 1200 1C
using the fayalite–spinel transition at 5.75 GPa (Yagi et al., 1987).
In both cases, minerals were identified according to their respec-
tive characteristic refractive indices. We performed a two-pyrox-
ene thermometry experiment to determine the temperature
gradient in our sectioned graphite furnace assembly (Lindsley
and Dixon, 1976) as well as an experiment with two thermo-
couples, placed on both sides of the capsule. In both cases,
temperature gradient across the capsule is estimated to be a
few tens of Celsius degrees, in agreement with predictions using
the thermal modeling program by Hernlund et al. (2006)
(Supplementary materials S1).

For each experiment, the approach to equilibrium is enhanced
by the presence of a free fluid phase. We consider that chemical
equilibrium was attained because crystals do not present any
chemical zoning. Also, two experiments (one in piston-cylinder
and one in multi-anvil apparatus) were carried out under iden-
tical conditions to demonstrate the compatibility of the results
from the two experimental devices (Table 2).

2.3. Mineral identification and analytical technique

Longitudinal sections of the experimental charges were
mounted and polished. Backscattered electron images, chemical
composition maps and quantitative chemical analyses were
obtained with a five spectrometer JEOL 8200 electron microprobe
using wavelength dispersive spectrometry (WDS) at the electron
microprobe facility at MIT. Analyses were performed with a 15 kV
accelerating voltage and a beam current of 10 nA. All mineral
phases were analyzed with a focused beam and quenched melt
analyses were analyzed with a 10 mm beam. Natural and syn-
thetic primary and secondary standards were used and the
CITZAF online data correction package was used for all analyses
(Armstrong, 1995).

Because many phases have grain size o5 mm (even for the
longest run durations), quantitative analysis was challenging
because analyses sometimes were a composite of two different
adjacent grains. We solved this problem performing multiple
analyses of all candidate minerals until clear subsets of microp-
robe analyses emerged and defined distinct, stoichiometrically



Table 2
Summary of experimental conditions and phase proportions.

Run T
(deg.)

P
(GPa)

Duration
(days)

Phases
(vol%)

D242 760 4 8 ol(30), opx(12), cpx(27), gt(10), ap(tr), sp(1), (Ti)chum(19), chl(1)

D235 800 4 8 ol(41), opx(35), cpx(5), gt(14), ap(tr), sp(tr), (Ti)chum(3), gl(2)

D240a 800 4 8 ol(41), opx(35), cpx(5), gt(14), ap(tr), sp(tr), (Ti)chum(3), gl(2)

A40 780 5 10 ol(12), opx(49), cpx(1), gt(13), Tichum(10), phE(15)

A26 720 5.2 5 ol(5), opx(28), cpx(7), gt(12), sp(2), (Ti)chum(36)

A25 920 5.2 2.5 ol(53) opx(19), cpx(8), gt(6), sp(5), gl(9)

A34 850 6 6 ol(47), opx(31), cpxb (tr), gt(15), sp(tr), chum(6), gl(1)

A31 720 6.5 11 ol(31), opx(31), cpx(11), gt(14), ap(tr), sp(tr), chum(tr), phE(13)

A27 820 6.5 4 olb(2), opx(40), cpx(5), gt(15), sp(2), phE(36)

A39a 820 6.5 8 olb(2), opx(40), cpx(5), gt(15), sp(2), phE(36)

A36 770 7 8.5 ol(38), opx(22), cpx(5), gt(15), sp(tr), phE(20)

A38 850 7 4 olb(2), opx(27), cpx(18), gt(15), sp(tr), phE(38)

a Reproducibility experiments.
b No microprobe analyses, phase identified using EDS spectra.
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coherent mineral compositions. This technique, together with
Raman analyses on selected samples was used to verify the
identity of mineral groups in each experimental sample.

Water contents in hydrous phases were estimated using the
summation deficit from the electron microprobe analysis (differ-
ence between original analytical total and a sum of 100 wt% gives
H2O content of the mineral). This technique was checked for
selected hydrous phases, by combining identification from elec-
tron microprobe WDS analyses and qualitative EDS identification
with additional analyses using Raman spectroscopy performed at
the University of Minnesota. Existing spectra of hydrous minerals
(e.g. Mernagh and Liu, 1998; Frost et al., 2007) were used as
fingerprints to confirm the identity of the phases in the experi-
mental samples (Supplementary material S2).
3. Results

The assemblages produced in our experiments are listed in
Table 2. Mineral and melt analyses are presented in Table 3.

3.1. Nominally anhydrous phases

Olivine, orthopyroxene, clinopyroxene and garnet are present
in all experiments. The composition of olivine ranges from Fo75
to Fo80; the Mg# of orthopyroxene is 0.78–0.88. Spinel occurs in
all experiments but the small size of the euhedral crystals allowed
measurements in 4 samples only. The compositions lie close to
the chromite–magnetite solid solution. The spinel also contains
minor amounts of Al2O3 (0.5–6.9 wt%), MgO (2.1–3.5 wt%) and
TiO2 (0.3–3.2 wt%). Two experiments contain two distinct popu-
lations that lie across the miscibility gap between in the
chromite–magnetite binary system (Sack and Ghiorso, 1991).

3.2. Wet solidus and hydrous melt

Over the investigated pressure range, the wet solidus has
been crossed at �800 1C. Once the average mantle geotherm of
the accreting planet passes this reaction, a hydrous melt is
formed under water-saturated conditions. Our phase diagram
in Fig. 1 shows that wet solidus reaction is not affected by
pressure above �3 GPa. The experiment is considered to contain
melt when glass or quench crystals are observed in backscat-
tered electron images. The quench glass is difficult to analyze
because of the presence of quench crystals. Moreover, in most
partially melted runs, glass is present in very small amount and
concentrated on grain boundaries, as previously observed by
Médard and Grove (2006). However, in one run (A25), a few
large glass pockets segregated from the crystals, allowing
microprobe analyses (Fig. 2). The composition is silica-rich, with
�77 wt% SiO2 and 3.6 wt% Na2OþK2O (on an anhydrous basis,
Table 3), which is consistent with the fact that low degrees of
partial melting of peridotite can produce high silica melts (e.g.
Kushiro et al., 1968).

3.3. Hydrated minerals stable under pressure

Depending on the experimental conditions, different hydrous
minerals have been identified, their water content ranging from
4 to �13 wt%.

Chlorite has been identified using EDS spectra in only one run
(760 1C, 4 GPa), which places an important constraint on its
stability field (Fig. 1). This phase was present in very small
amount in the sample, rendering its chemical analyses difficult.
However, its composition was found to be similar to the one
analyzed at a similar temperature and 3 GPa by Médard and
Grove (2006).

Humite minerals have been identified in all our runs below
850 1C and 6 GPa (Fig. 1 and Table 2). The presence of minerals
that are part of the humite family was expected since they have
stability fields below 13 GPa and below 1000 1C (e.g. Kawamoto
et al., 1996). These minerals are structurally similar to olivine
with interlayers of brucite (Mg(OH)2) their formula being
n(Mg,Fe)2SiO4.(Mg,Fe)(OH,F)2, in which n values of 2 and 4 corre-
spond to chondrodite and clinohumite, respectively. At pressures
up to 5.2 GPa, the presence of titanoclinohumite was also
observed (Table 2).

Phase E has been identified in the highest pressure experiments
(P44.5 GPa) and represents with humites the other most abundant
hydrous mineral in this study (Fig. 1 and Table 2). Phase E
(Mg2.3Si1.25H2.4O6) is a high-pressure and dense hydrous magnesium
silicate (DHMS) whose water storage capacity can be as high as
15.8 wt% H2O (e.g. Kudoh et al., 1993). Chemical variations in the
composition of phase E have been observed in the same experiment
(ternary diagrams, Fig. 1), which is consistent with other previous
experimental investigations (Kudoh et al., 1993). In Earth mantle-
analog compositions, phase E is stable at higher pressure (12–
15 GPa) and higher temperatures (800–1100 1C) (Kanzaki, 1989,
1991). Neither phase A (Mg7Si2O8(OH)6, 12 wt% H2O, Horiuchi et al.,
1979) nor the 10Å phase (Mg3Si4O14H6, 13 wt% H2O, Comodi et al.,
2007) have been observed in our Martian mantle analog experi-
ments, while these two DHMS have stabilities corresponding to the



Table 3
Electron microprobe analyses of run products.

Expt. P (GPa) T (1C) Phase SiO2 TiO2 Al2O3 Cr2O3 FeOtot MnO MgO CaO Na2O K2O Mg# Sum

D242 4 760 ol(4)a 37.9 (14)b 0.06 (6) 0.07 (8) – 21.5 (13) 0.28 (9) 41.4 (12) 0.04 (3) – – 0.77 101.3
opx(12) 54.0 (22) 0.06 (2) 2.19 (34) 0.18 (5) 13.7 (12) 0.36 (5) 28.9 (15) 0.57 (11) 0.10 (3) 0.01 (1) 0.79 100.0
cpx(2) 56.4 (7) 0.04 (1) 2.26 (33) 0.33 (3) 11.9 (1) 0.31 (3) 23.1 (15) 5.51 (42) 0.11 (3) 0.01 (0) 0.78 100.0
gt(9) 41.3 (13) 0.19 (8) 19.6 (12) 0.01 (2) 19.5 (7) 0.63 (13) 10.5 (13) 8.50 (8) 0.01 (2) – 0.49 100.3
sp(3) 0.55 (23) 2.74 (3) 6.94 (27) 38.2 (32) 42.1 (7) 0.43 (6) 3.50 (64) 0.06 (1) – – 94.6
cHum(8) 39.7 (23) 0.03 (2) 0.59 (33) – 20.5 (10) 0.28 (7) 35.1 (17) 0.14 (10) – – 0.75 96.4
TicHum(1) 34.4 3.04 0.14 – 17.9 0.19 43.7 0.17 – – 0.81 99.6
chl(1) 27.4 0.01 13.8 0.00 13.3 0.12 24.7 0.24 0.11 – 0.77 79.7

D235 4 800 ol(19) 38.4 (11) 0.12 (25) 0.16 (19) – 22.7 (7) 0.33 (4) 38.4 (11) 0.10 (8) – – 0.75 100.2
D240 opx(10) 53.8 (22) 0.05 (4) 1.54 (46) 0.21 (6) 14.0 (17) 0.32 (3) 28.3 (15) 0.91 (43) 0.06 (2) 0.01 (1) 0.78 99.1

cpx(8) 53.7 (15) 0.03 (2) 0.75 (53) 0.40 (7) 6.77 (96) 0.24 (3) 18.2 (20) 19.3 (19) 0.24 (6) 0.01 (0) 0.83 99.6
gt(4) 40.3 (7) 0.41 (6) 17.0 (7) 0.01 (1) 18.6 (5) 0.59 (2) 13.5 (8) 8.37 (14) 0.02 (1) – 0.56 98.8
cHum(3) 41.7 (22) 0.04 (2) 0.60 (11) – 21.3 (4) 0.35 (5) 31.3 (23) 0.17 (4) – – 0.73 95.8

A40 5 780 ol(2) 38.0 (21) 0.26 (34) 0.03 (5) – 20.0 (14) 0.30 (2) 41.9 (4) 0.04 (4) – – 0.79 100.7
opx(2) 53.7 (1) 0.03 (1) 0.57 (2) 0.11 (0) 13.6 (3) 0.36 (4) 30.4 (6) 1.24 (23) 0.10 (3) 0.01 (0) 0.80 100.1
cpx(1) 51.0 0.00 0.31 0.39 8.89 0.54 21.9 13.9 0.43 0.03 0.82 97.5
gt(6) 39.1 (14) 0.46 (19) 17.5 (14) 1.69 (53) 16.3 (6) 0.73 (4) 11.5 (15) 11.2 (13) 0.04 (3) – 0.56 98.5
TicHum(3) 33.5 (17) 3.07 (7) 0.03 (2) – 20.9 (4) 0.27 (3) 38.8 (28) 0.03 (1) – – 0.77 96.6
phE(15) 27.4 (16) 0.15 (2) 0.07 (3) – 28.0 (4) 0.38 (4) 32.8 (17) 0.06 (9) – – 0.68 89.0

A26 5.2 720 ol(8) 38.2 (11) 0.74 (53) 0.31 (51) – 19.6 (10) 0.22 (8) 41.5 (7) 0.20 (29) – 0.79 100.9
opx(5) 57.2 (6) 0.01 (2) 0.54 (18) 0.07 (6) 7.73 (9) 0.33 (8) 33.2 (16) 0.80 (34) 0.11 (3) 0.01 (1) 0.88 99.9
cpx(4) 55.4 (5) 0.01 (1) 0.76 (8) 0.20 (1) 6.84 (16) 0.75 (82) 20.1 (26) 15.0 (23) 1.18 (3) 0.02 (1) 0.84 100.3
gt(9) 40.1 (11) 0.12 (5) 20.2 (15) 0.38 (20) 18.4 (7) 1.52 (10) 12.3 (11) 7.69 (8) 0.05 (6) – 0.55 100.8
sp1(2) 0.93 (12) 0.27 (2) 1.02 (38) 31.0 (64) 59.3 (49) 0.30 (3) 2.12 (25) – 0.07 (2) – 95.6
sp2(2) 0.92 (8) 0.39 (2) 0.52 (55) 3.49 (98) 84.9 (13) 0.14 (2) 2.19 (23) – 0.44 (24) – 93.2
cHum(2 ) 37.1 (2) 0.08 (9) 0.29 (33) – 21.4 (4) 0.20 (6) 38.5 (8) 0.06 (3) – – 0.76 97.7
TicHum(1) 34.4 2.87 0.06 – 19.0 0.22 40.8 0.04 – – 0.78 97.2

A25 5.2 920 ol(7) 38.5 (6) 0.05 (10) 0.04 (5) – 18.8 (9) 0.30 (5) 41.5 (8) 0.11 (19) – – 0.80 99.3
opx(8) 56.6 (6) 0.03 (2) 0.52 (9) 0.21 (6) 10.9 (5) 0.38 (3) 31.2 (8) 0.45 (17) 0.06 (3) 0.00 0.84 100.3
cpx(6) 54.6 (9) 0.02 (1) 0.46 (4) 0.22 (6) 5.56 (30) 0.29 (4) 17.1 (5) 20.4 (14) 0.53 (4) 0.00 (1) 0.84 99.1
gt(12) 40.4 (7) 0.18 (2) 19.7 (6) 0.00 (1) 18.7 (6) 1.33 (5) 12.2 (6) 6.97 (6) 0.05 (4) – 0.54 99.9
sp1(3) 0.61 (15) 1.29 (6) 1.20 (8) 9.27 (21) 77.2 (4) 0.24 (1) 2.39 (6) – 0.09 (8) – 92.8
sp2(7) 0.48 (20) 1.66 (7) 0.93 (10) 0.99 (67) 86.4 (7) 0.16 (4) 2.24 (28) – 0.20 (15) – 93.4
gl(7) 59.6 (4) 0.04 (3) 12.6 (4) – 1.19 (44) 0.08 (4) 0.66 (21) 0.31 (23) 2.33 (46) 0.44 (7) 0.25 77.3

A34 6.0 850 ol(3) 39.7 (16) 0.02 (1) 0.35 (4) 0.11 (4) 22.1 (11) 0.29 (1) 37.9 (30) 0.02 (2) 0.04 (1) 0.00 (1) 0.75 100.6
opx(10) 56.8 (21) 0.06 (5) 0.43 (10) 0.52 (12) 13.0 (1) 0.35 (3) 27.7 (23) 0.40 (4) 0.02 (4) 0.00 (1) 0.79 99.2
gt(20) 40.7 (17) 0.37 (10) 20.4 (14) 1.69 (53) 13.5 (9) 0.95 (10) 13.1 (15) 9.04 (72) 0.02 (3) 0.00 (0) 0.63 99.9
cHum(5) 38.6 (11) 0.03 (2) 0.36 (37) 0.12 (7) 22.8 (24) 0.31 (3) 31.6 (32) 0.07 (6) 0.02 (1) 0.00 (0) 0.71 94.1

A31 6.5 720 ol(11) 38.2 (5) 0.03 (3) 0.02 (2) 0.12 (6) 20.3 (7) 0.29 (3) 40.4 (8) 0.05 (2) 0.08 (3) – 0.78 99.5
opx(9) 56.5 (7) 0.01 (1) 0.37 (15) 0.23 (7) 11.7 (17) 0.34 (6) 30.6 (12) 0.64 (6) 0.06 (4) – 0.82 100.4
cpx(1) 52.1 0.13 3.20 0.45 10.5 0.38 17.6 14.9 0.47 – 0.75 99.8
gt(5) 39.7 (4) 0.14 (6) 16.9 (20) 4.19 (18) 18.2 (13) 0.72 (5) 15.5 (6) 3.91 (5) 0.00 (0) – 0.60 99.1
TicHum(1) 36.0 3.00 0.05 – 7.73 0.09 48.1 0.04 – – 0.92 95.4
phE(7) 28.4 (3) 0.15 (5) 0.58 (5) 0.21 (4) 30.7 (12) 0.62 (10) 28.0 (12) 0.16 (7) 0.08 (2) – 0.62 89.0

A27 6.5 820 cpx(1) 54.0 0.00 0.22 0.12 12.3 0.46 19.2 14.0 0.38 0.00 0.74 100.7
A39 opx(10) 57.9 (20) 0.02 (1) 0.26 (20) 0.30 (6) 10.5 (3) 0.18 (1) 31.1 (18) 0.16 (13) 0.03 (3) 0.01 (1) 0.84 100.5

gt(6) 39.9 (12) 0.34 (9) 18.4 (5) 2.69 (54) 19.3 (6) 1.21 (13) 8.39 (7) 10.1 (12) 0.03 (3) – 0.44 100.4
sp(5) 1.68 (54) 3.19 (17) 1.27 (51) 70.1 (20) 9.74 (84) 0.18 (2) 2.39 (57) – 0.14 (10) – 88.9
phE(17) 27.8 (24) 0.21 (4) 0.09 (4) – 24.1 (6) 0.31 (5) 35.5 (8) 0.06 (7) – – 0.72 88.2

A36 7 770 ol(12) 37.4 (13) 0.09 (5) 0.09 (3) – 22.5 (9) 0.29 (4) 39.2 (18) 0.09 (10) – – 0.75 99.7
opx(13) 56.7 (17) 0.01 (2) 0.14 (13) 0.16 (4) 11.1 (2) 0.16 (3) 30.3 (19) 0.16 (12) 0.02 (2) 0.01 (1) 0.83 98.8
cpx(3) 54.1 (2) 0.04 (5) 0.38 (6) 0.21 (1) 9.55 (15) 0.32 (0) 16.1 (16) 19.1 (13) 0.26 (7) 0.01 (0) 0.75 100.0
gt(5) 39.9 (15) 0.39 (10) 17.4 (5) 1.23 (17) 20.4 (6) 0.57 (3) 10.7 (7) 8.24 (9) 0.02 (2) – 0.48 98.9
phE(20) 27.0 (6) 0.21 (2) 0.06 (2) – 29.3 (9) 0.42 (4) 31.3 (9) 0.01 (1) – – 0.66 88.4

A38 7 850 opx(12) 56.0 (28) 0.01 (1) 0.36 (24) 0.16 (5) 11.5 (11) 0.20 (3) 32.1 (14) 0.15 (6) 0.05 (2) 0.01 (1) 0.83 100.5
cpx(1) 61.2 0.01 0.17 0.11 10.1 0.20 23.7 5.11 0.11 0.01 0.81 100.7
gt(7) 40.0 (9) 0.32 (9) 18.6 (11) 1.75 (54) 20.9 (7) 1.14 (9) 9.95 (125) 7.95 (70) 0.01 (2) – 0.46 100.6
phE(20) 28.6 (14) 0.21 (7) 0.09 (6) – 23.4 (4) 0.29 (5) 36.4 (19) 0.07 (11) – – 0.74 89.1

ol olivine; opx orthopyroxene; cpx clinopyroxene; gt garnet; sp spinel; cHum clinohumite; TicHum titanoclinohumite; chl chlorite; phE phase E; gl glass.
a Number of microprobe analyses.
b One standard deviation of replicate analyses in terms of least unit cited.
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Fig. 1. Petrogenetic grid presenting experimental water-saturated phase relations of the investigated Martian analog composition (DWH) up to 7 GPa and hydrous

minerals compositions synthesized in different runs. Three kinds of hydrous minerals have been observed: chlorite in one run at 4 GPa, clinohumite and phase E at higher

pressure (in red in the ternary diagrams). Numbers in ovals represent the amount of water in vol% that can be bounded in the bulk mantle composition at the run P,T

conditions. These amounts are calculated using the water content bounded in identified hydrous phases and their relative proportion obtained by mass-balance

calculations. Stability fields for pressure o4 GPa come from Médard and Grove (2006).

Fig. 2. Back-scattered image of run A25 (920 1C, 5.2 GPa, 2.5 day). The quenched

melt located close to the capsule wall presents numerous cracks and small bubble-

shape cavities, indicating on important amount of dissolved water.
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investigated pressure range (Kawamoto and Holloway, 1997;
Fumagalli and Poli, 2005). Compositional differences between
Earth’s and Mars mantles may explain this difference in DHMS
stabilities. Actually, the influence of major elements on DHMS
stability field has been underscored in a few studies (e.g. Luth,
1995) but the influence of compositional variability remains poorly
known (Williams and Hemley, 2001).
4. Implications for the early Mars evolution

4.1. Deep water storage and melting path: comparison with

previous models

Previous investigations of the stability fields of mineral phases
in hydrous peridotite can be classified into two groups, depending
on the phase stabilities found at high pressure (Fig. 3). Médard
and Grove (2006) used results from Fumagalli and Poli (2005) and
Schmidt and Poli (1998) to infer hydrous mineral phase relations
at P43 GPa (Fig. 3B). These two studies found chlorite, phase A
and the 10 Å phase as stable hydrous minerals. The breakdown of
chlorite and the 10 Å phase are in agreement with the recent
study by Dvir et al. (2011). However, our results are more
consistent with the studies by Kawamoto and Holloway (1997)
and Kawamoto et al. (1996). These two studies did not synthesize
10 Å phase or phase A but observed the presence of humite
minerals and phase E (Fig. 3A and C). The differences in hydrous
mineral stabilities are most likely explained by the difference in
bulk chemical composition of the starting peridotite. The starting
compositions of Kawamoto and coworkers has an Mg# of 78–81,
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Fig. 3. Stability diagrams for hydrous phases as a function of pressure and

temperature for water-saturated peridotite mineralogy. (A) Fe-rich peridotite

(DWH), this study. Chlorite (chlor), clinohumite (chum) and phase E (phE) have

been identified at pressures up to 7 GPa. (B) Same composition, Médard and Grove

(2006). Experiments constraints stability fields up to 3 GPa. Hydrous phase at

higher pressure are predicted based on previous studies on (Mg-rich) Earth

peridotite (see text for details). (C) Fe-rich peridotite (Kilborne Hole), Kawamoto

and Holloway, 1997. This composition is closer to the one investigated in the

present study and led to the synthesis of similar hydrous phases (humites and

phase E).
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which is closer to our composition (Mg#¼75). The compositions
used by Fumagalli and Poli (2005) has Mg#¼83–91. Therefore, it
seems that the humite minerals and phase E are favored in iron-
rich peridotites compared to the one of phase A and 10Å phase,
stable in compositions with higher Mg#.

Médard and Grove (2006) estimated the position of the wet
solidus by extrapolating the Mysen and Boettcher (1975) water-
saturated solidus. Our results determine the wet solidus position
directly and show that there is no pressure effect between 3 and
7 GPa, a result similar to that found by Kawamoto and Holloway
(1997). The differences in the water-saturated solidus as well as
in mineral phase stabilities have significant implications regard-
ing the amount of water that can be stored at high pressure and
the melting processes within Mars. First, the absence of pressure
effect on the position of the wet solidus implies that melting at
pressures 43 GPa occurs at temperatures distinctly cooler than
what was inferred by Médard and Grove (2006). For example, at
7 GPa, our experiments show that melting starts at �780 1C,
which is �100 1C cooler than previous predictions (Fig. 3C and B).
In terms of accretion processes, this means that the formation of a
low-degree H2O-rich melt, and thus the initiation of a hydrous
component to the developing magma ocean, could be initiated at
a temperature lower than previously predicted. As discussed
below, these new constraints can be combined with thermal
models to predict the evolution of Martian magma ocean. Sec-
ondly, the absence of phase A and 10 Å phase and the presence of
humite minerals together with phase E demonstrate a higher
storage capacity of water in the Martian mantle than predicted by
Médard and Grove (2006) (Fig. 3A and B). At temperatures close
to the water-saturated solidus, our data show that up to 4 wt%
water can be stored in the mantle, because of the abundance of
phase E. In contrast, Médard and Grove (2006) predicted no
hydrous minerals and only the presence water as a supercritical
fluid phase. These discrepancies will modify the amount of water
that can be stored in the Martian mantle and mobilized during
melting. In the next section we will explore an early wet accretion
model and the subsequent melting differentiation of Mars.
4.2. Constraints on early hydrous melting from time scales of Mars

accretion

Several important criteria need to be met if early hydrous
melting processes are to be of importance in the Martian mantle:
(1) the accreting bodies must be cold so that the water they
contain has not been degassed at the time of their accretion and
(2) the thermal evolution of proto-Mars needs to allow water
brought in by the accreting materials to be stored inside the
planet before melting begins so that water can participate in the
differentiation process. Hydrous melting can occur in two ways.
Vapor-saturated melting in the presence of an H2O-rich super-
critical fluid can occur if hydrous minerals trapped in the deep
interior of the planet break down to anhydrous silicates and
release their structurally bound water. Hydrous melting in the
absence of excess water can also occur when hydrous minerals
stable above the water-saturated solidus breakdown and release
water. There are three regions in the phase diagram (Fig. 3A)
where this type of melting can occur at the termination of
amphibole, chlorite and humiteþphase E stability. Constraints
on the water content come from the model of the bulk composi-
tion of Mars by Lodders and Fegley (1997) that uses oxygen
isotopes to estimate the types and proportions of chondritic
material that make up Mars. The thermal evolution of Mars can
be inferred from the models of accretion (Senshu et al., 2002) and
from constraints on the timing of core formation on Mars that is
assumed to occur after the planet has accreted.
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Evidence from the Hf/W isotopic system indicates that Mars
accreted rapidly. Kleine et al. (2004), Jacobsen (2005), Foley et al.
(2005) and Nimmo and Kleine (2007) estimate core formation
ages between 0 and 15 Myr after the formation of CAIs in the
early solar nebula. The ranges in these estimates arise from the
range in Hf abundance in different chondrites (Nimmo and Kleine,
2007). Dauphas and Pourmand (2011) recognize this uncertainty
and refined the Hf/W abundances in Mars mantle allowing a
tighter constraint on core formation and infer that Mars accreted
to half its present size in 1.8 Myr or less. With such a short time
between the formation of the elements in the solar nebula and
assembly of Mars, 26Al decay to 26Mg becomes an important heat
source in the accretion of Mars (e.g. Gosh and McSween, 1998)
and therefore, the accreting proto-planet will contain sufficient
26Al to become a significant heat source.
4.3. Models of Mars accretion

Two thermal models are presented in Fig. 4 at different time
steps in the accretion process. These steps concern the early
accretion of Mars (i.e. before and just after melting occurred),
when H2O was potentially kept in the interior of the planet. This
approach considers that Mars accreted mostly from undifferen-
tiated materials, which may be possible, particularly under cold
conditions. But it does not apply in case sufficient time has elapsed
so that the small accreting bodies have heated up and de-hydrated.
One model is that of Senshu et al. (2002) who consider the
heating that occurs from impact heating during rapid accretion
(1 Myr) and neglects radioactive heating. The second model
includes the effect of heating from decay of 26Al and 60Fe in
addition to heating from accretion (adapted after Sahijpal et al.,
2007). The thermal model that includes accretion and radioactive
heating was estimated by adding the heating expected from 26Al
decay (Sahijpal et al., 2007) to the Senshu et al. (2002) thermal
model. The addition of temperature from radioactivity to the
Senshu et al.’s model represents a simple approach to the
modeling of Mars early evolution. However, it provides a first
estimate of the effect of both radioactive and impact heating on
the thermal history of Mars. We have adjusted the accretion time
scale to account for core formation at 1.8 Myr as inferred from
Hf/W isotopic constraints when Mars reached about half of its
present mass (Dauphas and Pourmand, 2011). The temperature
distribution in the planet is superimposed on our hydrous
Martian phase equilibria (Fig. 4a) at a time when 10% of the mass
of Mars has accreted (m/mf¼0.1) and it has reached a radius that
is 46% of its final radius (R/Rf¼0.46). At this stage in the accretion
process the deep interior of the proto-Mars will be cool in both
thermal models and all hydrous minerals added during accretion
will be stable or metastable throughout the planet. An estimate of
the bulk water content of the accreting material can be obtained
using the Lodders and Fegley (1997) oxygen-isotope model for
Mars bulk composition and the water content of the chondrites
(Jarosewich, 1990). The chondrite mix inferred by Lodders and
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Fegley (1997) is 85% H, 11% CV and 4% CI. We assume the H
chondrites have lost some of the water that is found in the low-
grade H3 chondrites and infer an H2O content of 0.2 wt%. CV and
CI carbonaceous chondrites contain 2.3 and 16.9 wt% H2O, respec-
tively and carry the bulk of the water in the accreting material.
The bulk water content of the chondrite mix is 1.1 wt% H2O that is
buried in the Martian interior.

The next stage in the early accretion of Mars occurs at a time
when the proto-Mars has reached 30% of its final mass and
R/Rf¼0.67 (Fig. 4b). In the model that considers both accretion
and radioactive heat sources Mars is above the water-saturated
solidus from 100 to 720 km depth and the temperature drops in
the deep interior to just above 500 1C. Within the molten zone melt
fraction will increase with decreasing depth, but melt fractions will
probably remain low (o20% for Earth-like peridotite, Gaetani and
Grove, 2003 but this estimate is probably a bit higher for more
fertile (Fe-rich) peridotite) and the water content of the melt will
be high. The mixture of chondritic material in the deep interior
beneath the melt zone will be at high enough temperature so that
it will react and recrystallize to the stable mineral assemblage
(anhydrous silicatesþhumite mineralsþphase E) and the storage
capacity for H2O in the Martian mantle is sufficient to keep the
water bound stably in crystalline solids. In the Senshu et al. (2002)
thermal model the heat derived from accretion has heated the
interior so that it has just reached the water-saturated solidus at a
depth of 200 km. This is the last stage at which water can be
trapped in significant amounts during the accretion process,
because the temperature at shallow, near-surface depths increases
rapidly and water-bearing minerals become unstable. At this point,
the amount of water stored in Mars could be as much as
7.2�1021 kg or 5.1 Earth oceans of water using the chondrite
mix of Lodders and Fegley (1997).

The critical stage in the early accretion of Mars occurs at a time
when the proto-Mars has reached 50% of its final mass and
R/Rf¼0.79 (Fig. 4c). In the model that considers both accretion
and radioactive heat sources the interior of Mars is now above the
dry solidus from 50 to 1400 km depth. A low-H2O melt will be
present and melting extent will be high. This is the time of
core formation based on Dauphas and Pourmand (2011) Hf/W
isotopic constraint and core formation would be facilitated in a
wet magma ocean at this time. The temperature of the outer part
of Mars has increased dramatically from the effect of 26Al decay
and accretionary heating. If only the accretionary heating is
considered, a shallower outer zone of Mars is above the water-
saturated solidus from 100 to 720 km depth and the temperature
drops in the deep interior and remains low, much like the
situation in Fig. 4b where 26Al is contributing heat to raise the
temperature of the interior. Senshu et al. (2002) show that this
temperature profile rapidly develops into one where a magma
ocean envelops the planet. From this time of Mars accretion, it is
worth noticing that gravitational potential energy released by
metal segregation into the core (Ricard et al., 2009) probably
becomes an important energetic contribution. However, we
assume that it has little influence in the early Mars since it is
likely that core formation really occurred only when hydrous
melting was initiated.

Based on our experiments and existing thermal models, Fig. 4
clearly underlines the critical influence of 26Al radioactive heating as
part of the thermal evolution of the planet. These results stress
the importance of the contributions from radioactive decay in
simulations of the thermal evolution of planetesimals that accrete
rapidly and early on in solar system evolution. The model that
includes radioactive heating (Fig. 4) predicts that a significant part of
the outer portions of proto-Mars will be above the water-saturated
solidus, just before the planet reached half of its present mass.
This is significantly earlier than what is predicted by Senshu et al.
(2002) who propose that the magma ocean forms of when the
planet reached �95% of its current mass. It is worth noting
that, Senshu et al. (2002) model is a scenario of dry accretion
(solidus determined by Fei and Bertka, 2005). An interesting con-
sequence of hydrous melting is that a significant amount of melt has
formed in the presence of water by the time Mars is 50% accreted
and this is when the Hf/W isotopic system predicts the onset of core
formation.

Fig. 4 shows that thermal models agree on an initiation of melting
at shallow depth (between 1 and 3 GPa), regardless of the source of
heating (impacts, or impactsþ26Al). But radioactive heating com-
bined with the vertical slope of the wet solidus in pressure–
temperature space to at least 7 GPa (Fig. 3) implies that as soon as
melting starts, it affects most of the interior of proto-Mars and is not
limited to a shallow depth range. This conclusion is a major contrast
between our results and the study by Médard and Grove (2006) of
cold interior lasting for a large part of Mars accretion.
4.4. Implications for magma ocean and fate of water

The formation of a magma ocean in an initially hydrous
embryo raises the question of the fate of water during accretion
and differentiation. Water was driven out of hydrous minerals to
a melt phase when the increase in temperature crosses the wet
solidus, i.e. at m/mf�0.50. This occurs as the core forms. Our
current knowledge of Mars history cannot exclude that part of the
initial water budget might have been partitioned into metallic
blobs and segregated into the core. Mars differentiation had likely
already started at the time of magma ocean formation (e.g.
Righter and Chabot, 2011). Actually, the formation of a buoyant
solid silicate layer, suggested as a possible differentiation
mechanism to trap metal into the forming core, could hamper
the mobility of hydrogen towards the surface and thus limit its
degassing. Experimental studies of metal/silicate partitioning of
hydrogen and other light elements have observed that a signifi-
cant amount of these elements can be incorporated into molten
iron (Okuchi, 1997; Terasaki et al., 2011). The process of hydrogen
and other light elements segregation into metallic core has been
proposed to explain the Earth’s differentiation and density deficit
of its core (Poirier, 1994; Okuchi, 1997) and may be relevant for
Mars as well.

As the Mars magma ocean evolves, the combined effects of
accretionary and radioactive heating will lead to the formation of
a planet-wide magma ocean. This ocean will cool (Elkins-Tanton
et al., 2003) and crystallize from the bottom up. Water will be
concentrated in the residual liquid and lost from the surface of the
ocean as convection transports the dissolved water to the surface
where vapor-saturation and degassing processes lead to a sig-
nificant loss of water from the forming planet, into a proto-
atmosphere and/or directly released to the atmosphere (Elkins-
Tanton, 2011). If our assumptions about the amount of water that
can be trapped during accretion are correct, the amount of water
that is degassed into the atmosphere is enormous (5.1 Earth
oceans). Even if we assume that the CV and CI carbonaceous
chondrites had degassed prior to incorporation into Mars and
contained only a small amount of water (say 0.2 wt%, like the
assumption we made for the dominant H chondrite component)
Mars would still end up trapping 5 wt% of an Earth ocean
(3.9�1020 kg). Elkins-Tanton (2008) has discussed the impor-
tance of small amounts of accretion-trapped water during solidi-
fication of planet-wide magma ocean, and a better knowledge of
the amount of water trapped in Mars provides important con-
straints of the cooling and solidification. We suggest here that
water also plays an important role in the early evolution of
planet-wide magma oceans and may have promoted early core
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formation on Mars and accelerated and extended melting over a
large portion of Mars interior.
5. Concluding remarks

This study presents experimental data that provide new insights
into the role of water’s influence on planetary melting and differ-
entiation processes during Mars accretion. We suggest that water can
play an important role in promoting early melting of the Martian
mantle and may also serve to accelerate the early core formation
process that is a unique and important chemical differentiation event.
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Ricard, Y., Srámek, O., Dubuffet, F., 2009. A multi-phase model of runaway core-mantle
segregation in planetary embryos. Earth Planet. Sci. Lett. 284, 144–150.

Righter, K., Chabot, N.L., 2011. Moderately and slightly siderophile element
constraints on the depth and extent of melting in early Mars. Mekorit. Planet.
Sci. 46, 157–176.

Sack, R.O., Ghiorso, M.S., 1991. Chromian spinels as petrogenetic indicators;
thermodynamics and petrological applications. Am. Miner. 76 (5-6), 827–847.

Sahijpal, S., Soni, P., Gupta, G., 2007. Numerical simulations of the differentiation
of accreting planetesimals with 26Al and 60Fe as the heat sources. Meteorit.
Planet. Sci. 42 (9), 1529–1548.

Schmidt, M.W., Poli, S., 1998. Experimentally based water budgets for dehydrating
slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163,
361–379.
Senshu, H., Kuramoto, K., Matsui, T., 2002. Thermal evolution of a growing Mars.
J. Geophy. Res. 107 (E12), 5118.

Terasaki, H., Kamada, S., Sakai, T., Ohtani, E., Hirao, N., Ohishi, Y., 2011. Liquidus
and solidus temperatures of a Fe–O–S alloy up to the pressures of the outer
core: implication for the thermal structure of the Earth’s core. Earth Planet. Sci.
Lett. 304, 559–564.

Walker, D., 1991. Lubrication, gasketing, and precision in multianvil experiments.
Am. Miner. 76 (7-8), 1092–1100.

Williams, Q., Hemley, R.J., 2001. Hydrogen in the deep Earth. Annu. Rev. Earth
Planet. Sci. 29, 365–418.

Yagi, T., Akaogi, M., Shimomura, O., Suzuki, T., Akimoto, S., 1987. In situ
observation of the olivine-spinel phase transformation in Fe2SiO4 using
synchrotron radiation. J. Geophy. Res. 92, 6207–6213.


	Water storage and early hydrous melting of the Martian mantle
	Introduction
	Experimental and analytical methods
	Starting bulk composition
	Experimental conditions and calibrations
	Mineral identification and analytical technique

	Results
	Nominally anhydrous phases
	Wet solidus and hydrous melt
	Hydrated minerals stable under pressure

	Implications for the early Mars evolution
	Deep water storage and melting path: comparison with previous models
	Constraints on early hydrous melting from time scales of Mars accretion
	Models of Mars accretion
	Implications for magma ocean and fate of water

	Concluding remarks
	Acknowledgments
	Supplementary material
	References




