

Stress and singing accuracy: What is the relationship?

Evta-be

31/10/2014

Pauline Larrouy-Maestri, PhD

Logopédie de la voix Psychology Department Université de Liège, Belgium

Stress and singing accuracy

Singing accuracy

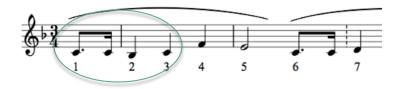
Definition and evaluation

Definition

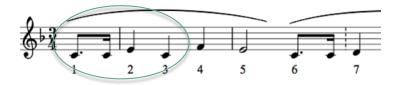
Respect of the musical score

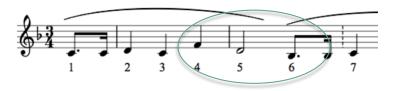
Relation between the tones (Dalla Bella et al., 2007, 2009; Pfordresher et al., 2007, 2009, 2010)

Evaluation


Subjective method	Objective method
Judges (experts)	Computer programs
Alcock et al., 2000a, 2000b; Hébert et al., 2003;	Dalla Bella & Berkowska, 2009; Dalla Bella et
Lévêque et al., 2012; Racette et al., 2006; Schön	al., 2007; Lévêque et al., 2009; Pfordresher &
et al., 2004; Wise & Sloboda, 2008	Brown, 2007; Pfordresher et al., 2010
Scales or detection of errors	F0 extraction
Global estimation	Computation of melodic errors

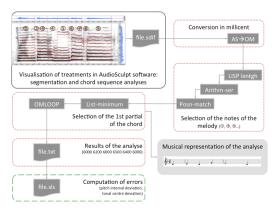
Singing accuracy Melodic errors





Pitch interval deviation

Modulations



Singing accuracy

Computer assisted method

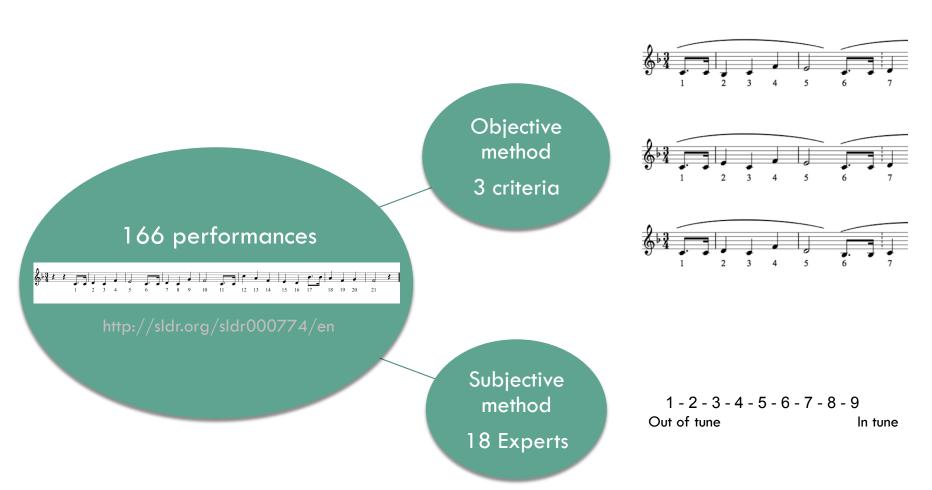
.

stict	Sculpt 3	3.0											H	• • •	н		:03:6				00 : 00.01 00 : 00.01			Char
ħ.	0 4		72										[(Sales	Filter Blode		44.13012	15 bit Sec. Mono	e a	Length : Cursor :			0 H2 -9 d0	•	Array
				-	-	-		-	-		-	-							-					
			-	-	-	-		-	-		-	-	_	-				_			-	÷		-
0.0	[0.2			10.8	110	112	11.4	110	118	2.0	12.2	2.4	12.8	12.8	3.0	133	3.4 🍰	4 13.8	4.0	4.2	4.4	4.8 (4.8	5.0	6.2
2	Funder		niy kut	4 1																				10.00
047	-	- E						-				_	_	1		$ \rightarrow $	~			R.			-	
07 F¥7		- 8		-	-	~						-	\sim		_	-	-					~	- >	×
		1		-	- `									1	-		-					-		8
				-					-	1.1													2	n -
																								802
			_	ē.	1	-		×				1	_	L					- 3			_	-	
=		-		÷.		_		-	+					-	_			_					-	
=		-	-		_	-		4				_	-	1				-			_		÷.,	8
=		_		_	-	-	140	+.	-	-	-	-	-	-	_						_			ĵ.
-		_		-		_		1.5		-	-	-	-	-	-	4		1.7	- 3					8
		-				-		-	1.		Ρ.	2.		-	2	-			-					
0.0	10.2	18.4	10.6	10.0	11.0	152	19.4	3.6	1.0	12.0	12.2	12.4	12.6	12.8	13.0	13	12.4	5 13.0	14.0	14.2	14.4	4.6 14.0	15.0	0
													2.6											

FO extraction

AudioSculpt et OpenMusic (Ircam)

Computation of errors Excel (Microsoft)


Manual segmentation

AudioSculpt (Ircam)

Larrouy-Maestri, P., & Morsomme, D. (2014a). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics Phoniatrics Vocology, 39, 11-18.

Singing accuracy Melodic criteria

Singing accuracy Melodic criteria

- □ 81% of the variance is explained
- Two criteria
 - **D** Pitch interval deviation ($\beta = 0.51$; p < .001)
 - Modulations ($\beta = 0.45$; p < .001)
 - Contour errors (ns)

Singing in tune: respect of the size of the melodic intervals and of the tonality

Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of Voice*, 27(2).

Singing accuracy Possible causes

□ Motivation (Gould, 1969)

- Perception (Amir et al., 2005; Estis et al, 2009; Moore et al., 2007; Nikjeh et al., 2009; Watts et al., 2005)
- □ Congenital amusia (i.e. see Peretz's work)
- □ Memory (Dalla Bella et al., 2012; Estis et al., 2009, 2011)
- □ **Timbre translation** (Hutchins & Peretz, 2012; Pfordresher & Brown, 2007)
- Production (Joyner, 1969; Hutchins & Peretz, 2012; Hutchins, Larrouy-Maestri, & Peretz, in press)

And stress/stage fright/performance anxiety?

Stress and singing accuracy

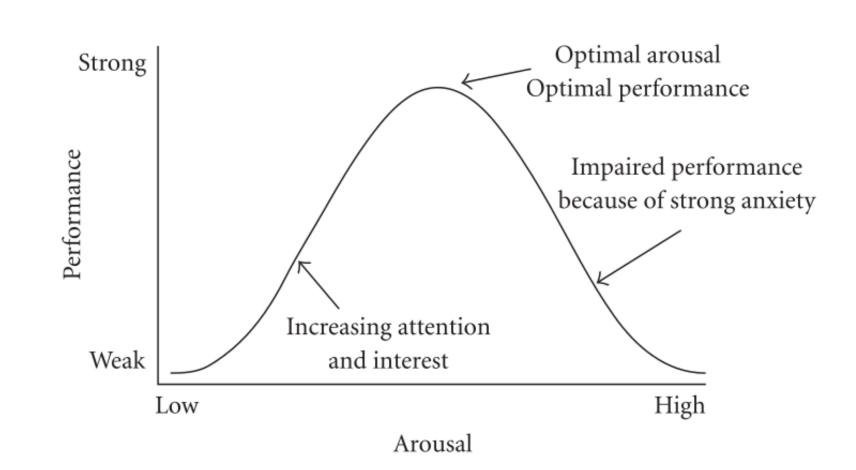
Stress/Stage fright/Performance anxiety

 Musical performance in front of an audience brings stress (Craske & Craig, 1984; Hamann & Sobaje, 1983; Kenny, 2011; Yoshie et al., 2008, 2009)

Stress/Stage fright/Performance anxiety Definition(s)

Several terms

Different kinds of anxiety


State Anxiety	Trait Anxiety
feeling at the time of a perceived threat	feeling across typical situations that everyone experiences
temporary	on a daily basis

General definition of stress

- Organism's response to a stressor such as an environmental condition or a stimulus.
- **Body's method of reacting** to a challenge.
- Arousal, activity, physical reaction, ...

Stress/Stage fright/Performance anxiety Yerkes-Dobson inverted-U law

12

Stress/Stage fright/Performance anxiety Manifestation(s)

- Physiological and psychological symptoms (Langendörfer et al., 2006)
 - Cognitive symptoms
 - Somatic symptoms
- Consequences on the voice
 - **FO increases with stress** (Streeter et al., 1977; Scherer et al., 1977)
 - **FO decreases with stress** (Brenner et al., 1979; Lively et al., 1993)
 - FO linked with heart rate (Bermudez et al., 2012)

What is the relationship between stress and singing voice?

What is the relationship?

Method

□ 31 music students of Conservatory

2 music levels (formative versus summative)

- 1st year: 18 students
- 2ndyear: 13 students
- Melody

Method

□ Stress level

- Heart rate
- Competitive State Anxiety Inventory 2 Revised (CSAI-2R) (Cox et al., 2003; Martinent et al., 2010)
 - Intensity of cognitive and somative symptoms
 - Direction of these symptoms
- Evaluation of singing accuracy
 - Pitch interval deviation
 - Respect of tonal center

Results Stress level

17

TABLE 1.

Mean and Standard Error (in Parentheses) of the Stress Measurements (Heart Rate, CSAI-2R Questionnaire) for Each Music Level (First and Second), in the Stressful and Nonstressful Conditions

	Stressful	Condition	Nonstress	ful Condition
	First Level	Second Level	First Level	Second Level
Heart rate (bpm) CSAI-2R	108.78 (7.80)	119.31 (3.78)	91.76 (3.10)	87.30 (4.87)
Somatic symptoms				
Intensity	23.65 (1.35)	23.89 (2.12)	13.65 (1.16)	12.78 (1.22)
Direction	-3.96 (1.57)	-6.11 (2.03)	0.10 (3.72)	8.75 (3.78)
Cognitive symptoms				
Intensity	29.63 (1.71)	24.00 (2.50)	15.25 (1.34)	13.67 (1.95)
Direction	-9.88 (1.88)	-6.67 (2.47)	0.63 (3.06)	9.17 (4.18)

□ Comparison of conditions (Wilcoxon)

- $\square p < .05$ for the two music levels
- $\square p < .05$ for each variable measured

Results Stress level

18

TABLE 3.

Mean and Standard Error (in Parentheses) for the Changes in the Stress Measurements (Heart Rate, CSAI-2R Question naire) Between the Nonstressful and the Stressful Conditions, for Each Music Level (First and Second)

	Descriptiv	e Statistics	Com	parison
	First Level	Second Level	U	<i>P</i> Value
Heart rate (bpm)	17.02 (6.41)	32.01 (6.74)	62.00	0.114
CSAI-2R				
Somatic symptoms				
Intensity	10.00 (1.38)	11.11 (1.91)	87.50	0.687
Direction	-4.06 (3.67)	-14.86 (3.29)	40.50	0.010
Cognitive symptoms				
Intensity	14.37 (1.80)	10.33 (2.10)	63.50	0.129
Direction	-10.50 (3.73)	-15.83 (4.83)	78.50	0.416

Notes: Differences between the two music levels were computed with the Mann-Whitney U test.

No difference between the two music levels

BUT for the direction of the somatic symptoms

- Examination: stress for everybody
- Validation of the experimental settings

Results Singing accuracy

	l st year (formative)	2 nd year (summative)
Precision of intervals	+	ns
Respect of the tonality	ns	-

Effects depend on the music level (challenge) Dissociation of the melodic criteria

Correlations

- Heart rate and singing accuracy?
 - NO

Results

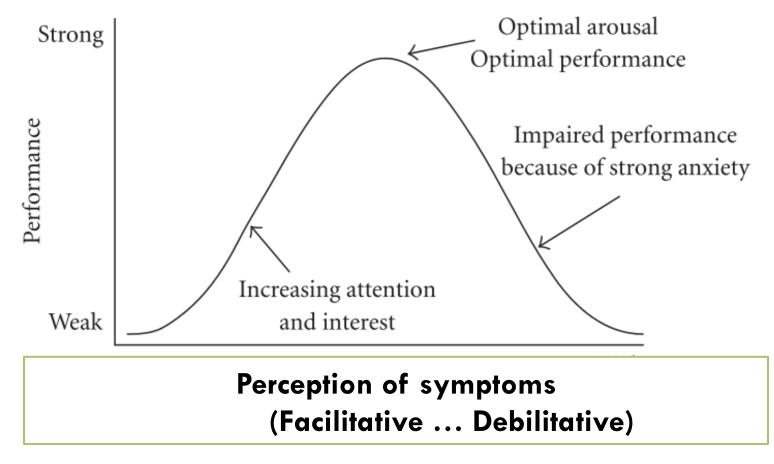
- Somatic symptoms and singing accuracy?
 NO
- Cognitive symptoms and singing accuracy?
 - 1st year
 - Precision of intervals and intensity of symptoms: r(16) = .52; p = .04
 - Precision of intervals and direction of symptoms: r(16) = .61; p = .01
 - 2nd year
 - Respect of tonality and intensity of symptoms: r(12) = .77; p < .01

Discussion

Stress and singing accuracy

Stress level

- Higher during solfeggio examination
- Whatever the music level
- Perception of symptoms particularly negative for the 2nd music level
- □ Effect on singing accuracy
 - Positive for 1st music level
 - Negative for the 2nd music level


Relationship between perception of symptoms and singing accuracy

Discussion

Stress and singing accuracy

Adaptation of the Yerkes-Dobson inverted-U law

Conclusions

Pedagogical context

- Focus on the respect of the tonal center
- Awareness about the influence of symptom perception
- Decrease the "challenge" of the situation
- Fundamental research
 - Take into account the stress experienced when performing
 - Dissociation of melodic errors
- Open the door to future passionating studies
 - Stress and prosody (actors)
 - Stress and trained voices (singers)
 - Coping strategies

Stress and prosody (actors)

Collaboration with the theatre ALENA

- Professional and non professional actors
- Ecological settings

Recordings during contrasted conditions

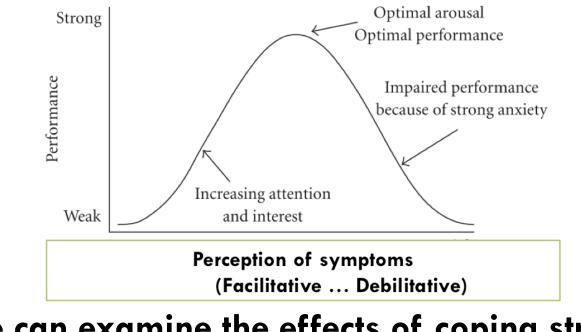
- Rehearsal
- First show
- Other show
- Examination of the stress level
- Acoustical analyse of the prosody
 - Pitch, intensity and rate variations in speech

Stress and speaking accuracy?

Stress and trained voices (singers)

- □ Operatic voices are complex (Larrouy-Maestri et al., 2014a)
 - Performance parameters (tempo, pitch accuracy, SPL)
 - Quality parameters (vibrato rate and extent, singer formant)
 - Perturbation parameters (jitter, shimmer, NHR)
- □ Specific definition of singing accuracy (Larrouy-Maestri et al., 2014b)
 - Importance of performance and quality parameters
 - All in interaction

Effects of stress on these particular voices?


Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014a). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.

Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014b). The evaluation of vocal pitch accuracy: The case of operatic singing voices. *Music Perception*.

Coping strategies

□ We know:

- How to mesure the quality of a performance
- How to mesure the perception of stress

We can examine the effects of coping strategies !

Evta-be 31

31/10/2014

Stress and singing voice

Thank you

- Alcock, K. J., Passingham, R. E., Watkins, K., & Vargha-Khadem, F. (2000a). Pitch and timing abilities in inherited speech and language impairment. *Brain and Language*, 75(1), 34-46.
- Alcock, K. J., Wade, D., Anslow, P., & Passingham, R. E. (2000b). Pitch and timing abilities in adult lefthemisphere-dysphasic and right-hemisphere-damaged subjects. Brain and Language, 75(1), 47-65.
- Amir, O., Amir, N., & Kishon-Rabin, L. (2003). The effect of superior auditory skills on vocal accuracy. The Journal of the Acoustical Society of America, 113(2), 1102-1108.
- Bermudez de Alvear, R. M., Baron-Lopez, F. J., Alguacil, M. D., & Dawid-Milner, M. S. (2012). Interactions between voice fundamental frequency and cardiovascular parameters. Preliminary results and physiological mechanisms. Logopedics, phoniatrics, vocology.
- Brenner, M., Branscomb, H. H., & Schwartz, G. E. (1979). Psychological stress evaluator. Two tests of a vocal measure. Psychophysiology, 16, 351–357.
- Cox, R. H., Martens, M. P., & Russell, W. D. (2003). Measuring anxiety in athletics: the revisited competitive state anxiety inventory-2. Journal of Sport and Exercise Psychology, 25, 519-533.
- Craske, M. G., & Craig, K. D. (1984). Musical performance anxiety: The three systems-model and selfefficacy-theory. *Behaviour Research and Therapy*, 22, 267-280.
- Dalla Bella, S., & Berkowska, M. (2009). Singing Proficiency in the Majority. Annals of the New York Academy of Sciences, 1169(1), 99-107.
- Dalla Bella, S., Tremblay-Champoux, A., Berkowska, M., & Peretz, I. (2012). Memory disorders and vocal performance. Annals of the New York Academy of Sciences, 1252, 338-344.

- Dalla Bella, S., Giguère, J-F. and Peretz, I., 2007, Singing proficiency in the general population, *Journal of Acoustical Society of America*, 121(2), 1192-1189.
- Estis, J. M., Coblentz, J. K., & Moore, R. E. (2009). Effects of increasing time delays on pitch-matching accuracy in trained singers and untrained individuals. *Journal of Voice*, 23(4), 439-445.
- Estis, J. M., Dean-Claytor, A., Moore, R. E., & Rowell, T. L. (2011). Pitch-matching accuracy in trained singers and untrained individuals: the impact of musical interference and noise. *Journal of Voice*, 25(2), 173-180.
- □ Gould, A. O. (1969). Developing specialized programs for singing in the elementary school. Bulletin of the Council for Research in Music Education, 17, 9–22.
- Hamann, D. L., & Sobaje, M. (1983). Anxiety and the college musician: a study of performance conditions and subject variables. *Psychology of Music, 11, 37–50*.
- Hébert, S., Racette, A., Gagnon, L., & Peretz, I. (2003). Revisiting the dissociation between singing and speaking in expressive aphasia. *Brain*, 126(8), 1838-1850.
- Hutchins, S., Larrouy-Maestri, P., & Peretz, I. (in press). Singing ability is rooted in vocal-motor control of pitch. Attention, Perception, & Psychophysics.
- Hutchins, S. & Peretz, I. (2012). A frog in your throat or in your ear? Searching for the causes of poor singing. Journal of experimental psychology. General, 141(1), 76-97.
- Joyner, D. R. (1969). The monotone problem. Journal of Research in Music Education, 17, 115–124.
- □ Kenny, D. (2011). The psychology of music performance anxiety. Oxford: Oxford University Press.

- 32
- Langendörfer, F., Hodapp, V., Kreutz, G. and Bongard, S., 2006, Personality and performance anxiety among professional orchestra musicians. *Journal of Individual Differences*, 27(3), 162-171.
- Larrouy-Maestri, P., Lévêque, Y., Schön, D., Giovanni, A., & Morsomme, D. (2013). The evaluation of singing voice accuracy: A comparison between subjective and objective methods. *Journal of voice*, 27(2), 259.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014a). Effects of melody and technique on acoustical and musical features of Western operatic singing voices. *Journal of Voice*.
- Larrouy-Maestri, P., Magis, D., & Morsomme, D. (2014b). The evaluation of vocal pitch accuracy: The case of operatic singing voices. *Music Perception*.
- Larrouy-Maestri, P., & Morsomme, D. (2014a). Criteria and tools for objectively analysing the vocal accuracy of a popular song. Logopedics, phoniatrics, vocology. 39, 11-18.
- Larrouy-Maestri, P., & Morsomme, D. (2014b). The effects of stress on singing voice accuracy. Journal of Voice, 28(1), 52-58.
- Lévêque, Y., Amy de la Bretèque, B., Giovanni, A., & Schön, D. (2009). Les défauts de justesse de la voix chantée: compétences et déficits tonaux. Revue de Laryngologie Otologie Rhinologie, 130(1), 23-38.
- Lévêque, Y., Giovanni, A., & Schön, D. (2012). Pitch-matching in poor singers : Human model advantage. Journal of voice, 26(3), 293-298.
- Lively, S. E., Pisoni, D. B., Van Summers, W., & Bernacki, R. H. (1993). Journal of the Acoustical. Society of America, 93, 2962–2973.

- Martinent, G., Ferrand, C., Guillet, E., & Gautheur, S. (2010). Validation of the French version of the Competitive State Anxiety Inventory – 2 Revised (CSAI-2R) including frequency and direction scales. *Psychology of Sport and Exercise*, 11(1), 51-57.
- Moore, R., Keaton, C., & Watts, C. (2007). The Role of Pitch Memory in Pitch Discrimination and Pitch Matching. *Journal of Voice*, 21(5), 560-567.
- Nikjeh, D. A., Lister, J. J., & Frisch, S. A. (2009). The relationship between pitch discrimination and vocal production: Comparison of vocal and instrumental musicians. The Journal of the Acoustical Society of America, 125(1), 328.
- Pfordresher, P. Q., & Brown, S. (2007). Poor-pitch singing in the absence of tone deafness. *Music Perception*, 25(2), 95-115.
- Pfordresher, P. Q., & Brown, S. (2009). Enhanced production and perception of musical pitch in tone language speakers. Attention, Perception & Psychophysics, 71(6), 1385-1398.
- Pfordresher, P. Q., Brown, S., Meier, K. M., Belyk, M., & Liotti, M. (2010). Imprecise singing is widespread. The Journal of the Acoustical Society of America, 128(4), 2182.
- Racette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: sing along! Brain, 129, 2571-2584.
- Schön, D., Lorber, B., Spacal, M., & Semenza, C. (2004). A selective deficit in the production of exact musical intervals following right-hemisphere damage. Cognitive Neuropsychology, 21(7), 773-784.
- Scherer, K. R. (1977). Effect of stress on fundamental frequency of the voice. Journal of Acoustical Society of America, 62, S25.

- Streeter, L. A., Krauss, R. M., Geller, V., Olson, C., & Apple, W. (1977). Pitch Changes During Attempted Deception. Journal of Personality and Social Psychology, 35(5), 345-350.
- Watts, C., Moore, R., McCaghren, K., 2005, The Relationship Between Vocal Pitch Matching Skills and Pitch Discrimination Skills in Untrained Accurate and Inaccurate Singers. *Journal of Voice*, 19, 534-543.
- Wise, K. J., & Sloboda, J. A. (2008). Establishing an empirical profile of self-defined "tone deafness": Perception, singing performance and self-assessment. *Musicae Scientiae*, 12(1), 3-26.
- Yoshie, M., Kudo, K., Murakoshi, T., & Ohtsuki, T. (2009). Music performance anxiety in skilled pianists: Effects of social-evaluative performance situation on subjective, autonomic, and electromyographic reactions. *Experimental Brain Research*, 199(2), 117-126.
- Yoshie, M., Kudo, K., & Ohtsuki, T. (2008). Effects of psychological stress on state anxiety, electromyographic activity, and arpeggio performance in pianists. *Medical Problems of Performing Artists*, 23, 120–132.