
Distribution and robustness of a distance-based multivariate
coefficient of variation
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Univariate setting:
Univariate coefficient of variation : ratio of the standard deviation to the mean

CV =
σ

µ

This relative dispersion measure is advocated when comparing variability of populations with
variables expressed in different units or having really different means.

Multivariate setting:
When the data are intrinsically multivariate, comparing relative variability marginally may lead to
controversial results.

Goal: Summarize multivariate relative variability in one single index.

Applications in

• External Quality Assesment programs (to assess the reproducibility of measurement methods)

• Biostatistics (comparison of different species on the basis of several traits)

• Finance (comparison of the performance of several portfolios)

• ...

Measuring relative variability

Let X ∈ R
p ∼ Fp(µ,Σ) with mean vector µ 6= 0 and covariance matrix Σ ∈ S+

p .
Several propositions of multivariate coefficients of variation exist in the literature
(see Albert and Zhang, 2010 for a review):

Reyment (1960): γR =

√

(det Σ)1/p

µtµ

Van Valen (1974): γVV =

√

tr Σ

µtµ

Voinov & Nikulin (1996): γVN =

√

1

µtΣ−1µ

Albert & Zhang (2010): γAZ =

√

µtΣµ

(µtµ)2

In practice, these coefficients can be estimated by plugging any location and covariance estimators,
Tn and Cn, in expressions above.

Multivariate coefficients of variation

Voinov and Nikulin’s CV

•makes use of the whole correlation structure

• has an intuitive definition (Mahalanobis distance between the origin of the
design space and the mean vector)

• is scale invariant

Sample distribution under elliptical symmetry
Under elliptical distributions and if Vn is an estimator of γVN computed with equivariant
estimators of location and covariance, the distribution of Vn depends on the parameters (µ,Σ) only
through γVN.

Sample distribution under normality:
Under normality and if V cl

n is the sample estimator of γVN, then

n− p

p

1

(V cl
n )2

∼ Fp;n−p

(

n

γ2VN

)

.

This allows to

• construct exact confidence intervals for the parameter γVN (inversion
method)

• study the bias of the sample estimator

Focus on Voinov and Nikulin’s CV

In finite samples, V cl
n underestimates the relative dispersion.
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γVN = 0.5
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γVN = 0.9
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Fig. 1: Bias of the estimator V cl
n w.r.t. the sample size n (solid line: p = 3, dashed line: p = 7 and dotted line: p = 20)

Bias of the sample estimator

Bias-correction 1: Plugging unbiased estimators

The first advocated bias correction consists in taking, when it is possible, the square root of the inverse
of an unbiased estimator for 1/γ2VN, i.e.

V ′
n =

√

√

√

√

1
p
n

(

n−p−2
p

1
(V cl

n )2
− 1
)

Bias correction 2: Inversion

g : γ 7−→ Eγ[V
cl
n ] and b(γ) = g(γ)− γ

For an observed value vn, let γ1 = g−1(vn)
The bias is b(γ1) = g(γ1)− γ1 = vn − γ1
Thus, the estimator corrected for bias is given by:

V ′′
n = V cl

n − b
(

g−1(V cl
n )
)

= g−1(V cl
n )

γ1 γvn

vn
b(γ1)

0

Fig. 2: Expectation (solid-line curve) of V cl
n w.r.t γ, for

n = 50 and p = 7

Simulations suggest that both corrections tend to reduce the bias. The first one tends to overesti-
mate the parameter γVN but the second one allows a considerable improvement.

Bias correction

The statistical functional related to γVN is given by V (F, T, C) = (T (F )tC(F )−1T (F ))−1/2

where T and C are any statistical functionals of multivariate location and covariance.

The influence function of the statistical functional V at the model F is defined by

IF(x;V, F ) =
∂

∂ε
V ((1− ε)F + ε∆x)

∣

∣

∣

∣

ε=0

where ∆x is the Dirac distribution having all its mass at x ∈ R
p.

Provided that T (F ) = µ and C(F ) = Σ, we have

IF(x;V, F ) =
γ3VN
2

(

µtΣ−1IF(x;C,F )Σ−1µ− 2 µtΣ−1IF(x;T, F )

)
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Fig. 3: IF with classical estimators
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Fig. 4: IF with MCD estimators

The sample estimator is extremely sensitive to local contamination (unbounded IF).
One should use robust estimators of location and covariance (MCD, M, S,...) to obtain a robust
CV estimator.

Computation of IF allows to:

• study local robustness

• construct a diagnostic tool to detect influential observations (Pison & Van Aelst, 2004)

• derive a general expression for the asymptotic variance of several estimators for γVN.

Robustness - Influence function

Testing procedures for the equality of multivariate coefficients of variation

•Using asymptotic properties (Wald-type test)

• Study of the stability of level and power of these tests under contamination thanks to the
IF’s

Ongoing research
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