Solar irradiance modelling over Belgium using Regional Climate Models within the frame of a day-ahead photovoltaic production forecasting system

Julien Beaumet^{1*}, Sébastien Doutreloup¹, Xavier Fettweis¹, Aline Hermans² & Michel Erpicum¹ ¹Laboratory of Climatology and Topoclimatology, University of Liège, Belgium ² Centre Spatial de Liège, University of Liège, Belgium

* julien.beaumet@ulg.ac.be

1. Introduction

Context:

- Growing interest and growing photovoltaic production in European countries
- Local hazards due to over-production for low voltages networks
- Needs of photovoltaic production assessment for the management of the electricity market

Scientific issues :

- Modelling of solar global irradiance using Regional **Climate Models**
 - Model (shallow) convective clouds, low clouds clearance ...
 - Decompose global irradiance into diffuse and direct irradiances

52.5°N

51.5°N

50.5°N

49.5°N

48.5°]

2.0°E

4.0°E

MAR 10kms domain

6.0°E

8.0°E

5.5°E

6.5°E

remas

3. Solar irradiance data

2. Regional Climate Models

4. Global irradiance modelling : results

Method : Normalized RMSE, normalized bias, and determination coefficient (R²) are computed at the 15' time scale for MAR and WRF-ARW forced by different reanalysis and by GFS data, compared to observations at Sart-Tilman and Daussoulx. Observations performed when cosine of the sun zenith angle is < 0.1 are discarded

Model	nRMSE (%)		nBIA	S (%)	R ²		
	DAU	ST	DAU	ST	DAU	ST	
WRF-GFS 1	83	62	-4	1	0.41	0.38	
WRF-GFS 2	99	75	-30	-23	0.43	0.42	
WRF-GFS 3	113	81	-39	-29	0.39	0.39	
WRF-GFS mean	89	66	-22	-15	0.46	0.44	
WRF-NCEP2	116	68	-25	-2	0.28	0.38	
MAR-GFS	77	55	-2	3	0.45	0.47	
MAR-NCEP2	61	50	16	17	0.45	0.54	

5. Diffuse fraction estimation

Decomposition of global irradiance into direct and diffuse using a sigmoid model (Ruis-Ariaz et al., 2010):

1) Determination of the atmospheric clearness index (kt) :

from the analysis in order to avoid less reliable measurements (different objects on the horizon)

Figure 3 : Observed (black), WRF-GFS 1st simulation (red), WRF-GFS mean (green) and MAR-NCEP2 (purple) global solar irradiance (W/m²) at Sart-Tilman for the 24th – 30th November 2013 period. Normalized RMSE, normalized bias and R² are represented in the plot.

Table 1 : Normalized Root Mean Square Error (%) , normalized bias (%) and determination coefficient for MAR and WRF-ARW and different forcings for winter time period (DJF) at Daussoulx (DAU) and Sart-Tilman (ST)

	Model	nRMSE (%)		nBIA	S (%)	R ²		
		DAU	ST	DAU	ST	DAU	ST	
	WRF-GFS 1	45	49	18	25	0.65	0.51	
	WRF-GFS 2	45	48	12	17	0.66	0.55	
	WRF-GFS 3	48	50	7	11	0.64	0.53	
	WRF-GFS mean	42	45	13	18	0.69	0.58	
	WRF-NCEP2	47	49	20	23	0.62	0.48	
	MAR-GFS	47	49	9	16	0.61	0.54	
	MAR-NCEP2	48	52	22	28	0.56	0.49	

Table 2 : Normalized Root Mean Square Error (%) , normalized bias

Figure 5 : Comparison between observed diffuse fraction from Daussoulx measurements and estimated diffuse fraction from observed global irradiance. Normalized RMSE = 19.7 % ; normalized bias = -7.5%; Coefficient of determination (R^2) = 0.84

	_	WRFGFS 1 :	nRMSE	75.1%	nBIAS 36%	\mathbb{R}^2 0.48
Mean obs: 177.5 W/m2	_	WRFGFS m :	nRMSE	74.2%	nBIAS 18.4%	\mathbb{R}^2 0.48
N. valid points: 399	_	MAR-NCEP :	nRMSE:	70%	nBIAS 41.3%	\mathbb{R}^2 0.47

Figure 4 : Observed (black), WRF-GFS 1st simulation (red), WRF-GFS mean (green) and MAR-NCEP2 (purple) global solar irradiance (W/m²) at Daussoulx for the 11th – 17th May 2013 period. Normalized RMSE, normalized bias and R² are represented in the plot.

(%) and determination coefficient for MAR and WRF-ARW and different forcings for summer time period (JJA) at Daussoulx (DAU) and Sart-Tilman (ST)

D 0.40 $\overset{\circ}{0}_{0}^{0}$ 0.30 -0.200.10 Mean observed diffuse fraction: 0.72 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00Estimated diffuse fraction

Figure 6 : Comparison between observed diffuse fraction from Daussoulx measurements and estimated diffuse fraction from WRF-ARW mean simulation global irradiance. Normalized RMSE = 52.5 %; normalized bias = -22.4%; Coefficient of determination (R^2) = 0.31

7. References

[1] Ruiz-Arias J.A, Alsamamra H., Tovar-Pescador J. et Pozo-Vasquez D. (2010). Proposal of a regressive model for the hourly diffuse solar radiation under all sky condition. *Energy conversion and management*, **51**, 881-893

[2] Nakanishi M. and Niino H., 2004. An improved Mellor Yamada Level-3 model with Condensation physics : its design and verification. *Boundary-Layer Meteorology*, **112**, 1-31.

6. Conclusions

- The mean of the different WRF-ARW simulations shows better performances in general, mainly in summer, and is more stable \rightarrow « statistical » approach more suitable for solar irradiance forecasting/modelling
- Both models show in overall higher RMSE in winter. Bias is significantly negative in winter in WRF-ARW simulations (over-estimation of low clouds thickness)
- Positive bias in summer with both RCM (under-estimation of convective clouds occurrence)
- Encouraging results for firsts solar irradiance modelling over Belgium using MAR
- Diffuse fraction estimation is strongly dependent on global irradiance modelling \rightarrow improvement required if modelling at 15 minutes targeted **Perspective (short -term) :**
- Room for improvement (surface properties) and ongoing development for an adapted MAR version for solar irradiance modelling over Belgium
- Need to adapt sigmoid model adjustments to diffuse fractions observations over Belgium

14th EMS / 10th ECAC Annual Meeting – Prag, Czech Republic – 6th-10th October 2014