
Batch mode reinforcement learning

based on the synthesis of artificial

trajectories

Damien Ernst

University of Liège, Belgium

Princeton - December 2012

Batch mode Reinforcement Learning ≃
Learning a high-performance policy for a sequential decision

problem where:

• a numerical criterion is used to define the performance of

a policy. (An optimal policy is the policy that maximizes

this numerical criterion.)

• “the only” (or “most of the”) information available on the

sequential decision problem is contained in a set of

trajectories.

Batch mode RL stands at the intersection of three worlds:

optimization (maximization of the numerical criterion),

system/control theory (sequential decision problem) and

machine learning (inference from a set of trajectories).

A typical batch mode RL problem

Discrete-time dynamics:

xt+1 = f (xt , ut ,wt) t = 0, 1, . . . ,T − 1 where xt ∈ X , ut ∈ U

and wt ∈ W . wt is drawn at every time step according to Pw (·).

Reward observed after each system transition:

rt = ρ(xt , ut ,wt) where ρ : X × U × W → R is the reward

function.

Type of policies considered: h : {0, 1, . . . ,T − 1} × X → U.

Performance criterion: Expected sum of the rewards

observed over the T -length horizon

PCh(x) = Jh(x) = E
w0,...,wT−1

[
∑T−1

t=0 ρ(xt , h(t , xt),wt)] with x0 = x

and xt+1 = f (xt , h(t , xt),wt).

Available information: A set of elementary pieces of

trajectories Fn = {(x l , ul , r l , y l)}n
l=1 where y l is the state

reached after taking action ul in state x l and r l the

instantaneous reward associated with the transition. The

functions f , ρ and Pw are unknown. 2

Batch mode RL and function approximators

Training function approximators (radial basis functions, neural

nets, trees, etc) using the information contained in the set of

trajectories is a key element to most of the resolution schemes

for batch mode RL problems with state-action spaces having a

large (infinite) number of elements.

Two typical uses of FAs for batch mode RL:

• the FAs model of the sequential decision problem (in

our typical problem f , r and Pw). The model is afterwards

exploited as if it was the real problem to compute a

high-performance policy.

• the FAs represent (state-action) value functions which

are used in iterative schemes so as to converge to a

(state-action) value function from which a

high-performance policy can be computed. Iterative

schemes based on the dynamic programming principle

(e.g., LSPI, FQI, Q-learning). 3

Why look beyond function approximators?

FAs based techniques: mature, can successfully solve many

real life problems but:

1. not well adapted to risk sensitive performance criteria

2. may lead to unsafe policies - poor performance

guarantees

3. may make suboptimal use of near-optimal trajectories

4. offer little clues about how to generate new experiments in

an optimal way

4

1. not well adapted to risk sensitive performance criteria

An example of risk sensitive performance criterion:

PCh(x) =

{

−∞ if P(
∑T−1

t=0 ρ(xt , h(t , xt),wt) < b) > c

Jh(x) otherwise.

FAs with dynamic programming: very problematic because

(state-action) value functions need to become functions that

take as values “probability distributions of future rewards” and

not “expected rewards”.

FAs with model learning: more likely to succeed; but what

about the challenges of fitting the FAs to model the distribution

of future states reached (rewards collected) by policies and not

only an average behavior?

5

2. may lead to unsafe policies - poor performance

guarantees

• Benchmark: • Trajectory set • Trajectory set not

puddle world covering the puddle covering the puddle

• RL algorithms: ⇒ Optimal policy ⇒ Suboptimal

FQI with trees (unsafe) policy

Typical performance guarantee in the deterministic case for

FQI = (estimated return by FQI of the policy it outputs minus

constant×(’size’ of the largest area of the state space not

covered by the sample)).
6

3. may make suboptimal use of near-optimal

trajectories

Suppose a deterministic batch mode RL problem and that in

the set of trajectory, there is a trajectory:

(xopt. traj.
0 , u0, r0, x1, u1, r1, x2, . . . , xT−2, uT−2, rT−2, xT−1, uT−1, rT−1, xT)

where the ut s have been selected by an optimal policy.

Question: Which batch mode RL algorithms will output a

policy which is optimal for the initial state x
opt. traj.
0 whatever the

other trajectories in the set? Answer: Not that many and

certainly not those using parametric FAs.

In my opinion: batch mode RL algorithms can only be

successful on large-scale problems if (i) in the set of

trajectories, many trajectories have been generated by

(near-)optimal policies (ii) the algorithms exploit very well the

information contained in those (near-)optimal trajectories.

7

4. offer little clues about how to generate new

experiments in an optimal way

Many real-life problems are variants of batch mode RL

problems for which (a limited number of) additional trajectories

can be generated (under various constraints) to enrich the

initial set of trajectories.

Question: How should these new trajectories be generated?

Many approaches based on the analysis of the FAs produced

by batch mode RL methods have been proposed; results are

mixed.

8

Rebuilding trajectories

We conjecture that mapping the set of trajectories into FAs

generally lead to the loss of essential information for

addressing these four issues ⇒ We have developed a new line

of research for solving batch mode RL that does not use at all

FAs.

Line of research articulated around the the rebuilding of

artificial (likely “broken”) trajectories by using the set of

trajectories input of the batch mode RL problem; a rebuilt

trajectory is defined by the elementary pieces of trajectory it is

made of.

The rebuilt trajectories are analysed to compute various things:

a high-performance policy, performance guarantees, where to

sample, etc.

9

BLUE ARROW = elementary piece of trajectory

Set of trajectories Examples of 5-length

given as input of the rebuilt trajectories made

batch RL problem from elements of this set

10

Model-Free Monte Carlo Estimator

Building an oracle that estimates the performance of a policy:

important problem in batch mode RL.

Indeed, if an oracle is available, problem of estimating a

high-performance policy can be reduced to an optimization

problem over a set of candidate policies.

If a model of sequential decision problem is available, a Monte

Carlo estimator (i.e., rollouts) can be used to estimate the

performance of a policy.

We detail an approach that estimates the performance of a

policy by rebuilding trajectories so as to mimic the behavior of

the Monte Carlo estimator.

11

Context in which the approach is presented

Discrete-time dynamics:

xt+1 = f (xt , ut ,wt) t = 0, 1, . . . ,T − 1 where xt ∈ X , ut ∈ U

and wt ∈ W . wt is drawn at every time step according to Pw (·)

Reward observed after each system transition:

rt = ρ(xt , ut ,wt) where ρ : X × U × W → R is the reward

function.

Type of policies considered: h : {0, 1, . . . ,T − 1} × X → U.

Performance criterion: Expected sum of the rewards

observed over the T -length horizon

PCh(x) = Jh(x) = E
w0,...,wT−1

[
∑T−1

t=0 ρ(xt , h(t , xt),wt)] with x0 = x

and xt+1 = f (xt , h(t , xt),wt).

Available information: A set of elementary pieces of

trajectories Fn = {(x l , ul , r l , y l)}n
l=1. f , ρ and Pw are unknown.

Approach aimed at estimating Jh(x) from Fn.

12

Monte Carlo Estimator

Generate nbTraj T -length trajectories by simulating the system

starting from the initial state x0; for every trajectory compute the

sum of rewards collected; average these sum of rewards over

the nbTraj trajectories to get an estimate MCEh(x0) of Jh(x0).

trajectory 2

r1

r2

r0

r4
r3 = r (x3, h(3, x3), w3)trajectory 1

sum rew. traj. 1 =
∑4

i=0 ri

MCEh(x0) =
1
3

∑3
i=1 sum rew . traj . i

w3 ∼ Pw (·)
x4 = f (x3, h(3, x3), w3)

x3

Illustration with

and T = 5
nbTraj = 3

x0

trajectory 3

Bias MCEh(x0) = E
nbTraj∗T rand. var . w∼Pw (·)

[MCEh(x0)− Jh(x0)]= 0

Var. MCEh(x0) = 1
nbTraj

(Var. of the sum of rewards along a traj.)

13

Description of Model-free Monte Carlo Estimator

(MFMC)

Principle: To rebuild nbTraj T -length trajectories using the

elements of the set Fnand to average the sum of rewards

collected along the rebuilt trajectories to get an estimate

MFMCEh(Fn, x0) of Jh(x0).

Trajectories rebuilding algorithm: Trajectories are

sequentially rebuilt; an elementary piece of trajectory can only

be used once; trajectories are grown in length by selecting at

every instant t = 0, 1, . . . ,T − 1 the elementary piece of

trajectory (x , u, r , y) that minimizes the

distance ∆((x , u), (xend , h(t , xend)))

where xend is the ending state of the already rebuilt part of the

trajectory (xend = x0 if t = 0).

14

Remark: When sequentially selecting the pieces of

trajectories, no information on the value of the disturbance w

“behind” the new piece of elementary trajectory

(x , u, r = ρ(x , u,w), y = f (x , u,w)) that is going to be selected

is given if only (x , u) and the previous elementary pieces of

trajectories selected are known. Important for having a

meaningful estimator !!!
rebuilt trajectory 2

r 3 r 21
r 9

rebuilt trajectory 1

x0

rebuilt trajectory 3

r 18

Illustration with

T = 5 and

(x18
, r 18

, u18
, y18)

sum rew. re. traj. 1 = r 3 + r 18 + r 21 + r 7 + r 9

MFMCEh(Fn, x0) =
1
3

∑3
i=1 sum rew . re. traj . i

nbTraj = 3,

r 7

F24 = {(x l
, r l

, ul
, y l)}24

l=1

15

Analysis of the MFMC

Random set F̃n defined as follows:

Made of n elementary pieces of trajectory where the first two

components of an element (x l , ul) are given by the first two

element of the lth element of Fn and the last two are generated

by drawing for each l a disturbance signal w l at random from

PW (·) and taking r l = ρ(x l , ul ,w l) and y l = f (x l , ul ,w l).

Fn is a realization of the random set F̃n.

Bias and variance of MFMCE defined as:

Bias MFMCEh(F̃n, x0) = E
w1,...,wn∼Pw

[MFMCEh(F̃n, x0)− Jh(x0)]

Var .MFMCEh(F̃n, x0) =

E
w1,...,wn∼Pw

[(MFMCEh(F̃n, x0)− E
w1,...,wn∼Pw

[MFMCEh(F̃n, x0)])
2]

We provide bounds of the bias and variance of this

estimator.

16

Assumptions

1] The functions f , ρ and h are Lipschitz continuous:

∃Lf , Lρ, Lh ∈ R+ : ∀(x , x ′, u, u′,w) ∈ X2 × U2 × W ;

‖f (x , u,w)− f (x ′, u′,w)‖X ≤ Lf (‖x − x ′‖X + ‖u − u′‖U)

|ρ(x , u,w)− ρ(x ′, u′,w)| ≤ Lρ(‖x − x ′‖X + ‖u − u′‖U)

‖h(t , x)− h(t , x ′)‖U ≤ Lh‖x − x ′‖ ∀t ∈ {0, 1, . . . ,T − 1}.

2] The distance ∆ is chosen such that:

∆((x , u), (x ′, u′)) = (‖x − x ′‖X + ‖u − u′‖U).

17

Characterization of the bias and the variance

Theorem.

Bias MFMCEh(F̃n, x0) ≤ C ∗ sparsity of Fn(nbTraj ∗ T)

Var . MFMCEh(F̃n, x0) ≤

(
√

Var . MCEh(x0) + 2C ∗ sparsity of Fn(nbTraj ∗ T))2

with C = Lρ

∑T−1
t=0

∑T−t−1
i=0 [Lf (1 + Lh)]

i and with the

sparsity of Fn(k) defined as the minimal radius r such that all

balls in X × U of radius r contain at least k state-action pairs

(x l , ul) of the set Fn = {(x l , ul , r l , y l)}n
l=1.

18

Test system

Discrete-time dynamics: xt+1 = sin(π
2
(xt + ut + wt)) with

X = [−1, 1], U = [− 1
2
,

1
2
], W = [− 0.1

2
,
−0.1

2
] and Pw (·) a uniform

pdf.

Reward observed after each system transition:

rt =
1

2π
e− 1

2
(x2

t +u2
t) + wt

Performance criterion: Expected sum of the rewards

observed over a 15-length horizon (T = 15).

We want to evaluate the performance of the policy

h(t , x) = − x
2

when x0 = −0.5.

19

Simulations for nbTraj = 10 and size of Fn = 100, ..., 10000.

Model-free Monte Carlo Estimator Monte Carlo Estimator

20

Simulations for nbTraj = 1, . . . , 100 and size of Fn = 10, 000.

Model-free Monte Carlo Estimator Monte Carlo Estimator

21

Remember what was said about RL + FAs:

1. not well adapted to risk sensitive performance criteria

Suppose the risk sensitive performance criterion:

PCh(x) =

{

−∞ if P(Jh(x) < b) > c

Jh(x) otherwise

where Jh(x) = E [
∑T−1

t=0 ρ(xt , h(t , xt),wt)].

MFMCE adapted to this performance criterion:

Rebuilt nbTraj starting from x0 using the set Fn as done with the

MFMCE estimator. Let sum rew traj i be the sum of rewards

collected along the ith trajectory. Output as estimation of

PCh(x0) :







−∞ if
∑nbTraj

i=1
I{sum rew traj i<b}

nbTraj
> c

∑nbTraj

i=1
sum rew traj i

nbTraj
otherwise.

22

MFMCE in the deterministic case

We consider from now on that: xt+1 = f (xt , ut) and

rt = ρ(xt , ut).

One single trajectory is sufficient to compute exactly Jh(x0) by

Monte Carlo estimation.

Theorem. Let [(x lt , ult , r lt , y lt)]T−1
t=0 be the trajectory rebuilt by

the MFMCE when using the distance measure

∆((x , u), (x ′, u′)) = ‖x − x ′‖+ ‖u − u′‖. If f , ρ and h are

Lipschitz continuous, we have

|MFMCEh(x0)− Jh(x0)| ≤

T−1
∑

t=0

LQT−t
∆((y lt−1 , h(t , y lt−1)), (x lt , ult))

where y l−1 = x0 and LQN
= Lρ(

∑N−1
t=0 [Lf (1 + Lh)]

t).

23

Previous theorem extends to whatever rebuilt trajectory:

Theorem. Let [(x lt , ult , r lt , y lt)]T−1
t=0 be any rebuilt trajectory. If f ,

ρ and h are Lipschitz continuous, we have

|

T−1
∑

t=0

rlt − Jh(x0)| ≤

T−1
∑

t=0

LQT−t
∆((y lt−1 , h(t , y lt−1)), (x lt , ult))

where ∆((x , u), (x ′, u′)) = ‖x − x ′‖+ ‖u − u′‖, y l−1 = x0 and

LQN
= Lρ(

∑N−1
t=0 [Lf (1 + Lh)]

t).

r2 = r (x2, h(2, x2))
r3

trajectory generated by policy h

∆2 = LQ3
(‖y l1 − x l2‖ + ‖h(2, y l1) − ul2‖)

r l4
r l1

x l2 , ul2

|
∑4

t=0 rt −
∑4

t=0 r lt | ≤
∑4

t=0 ∆t
r1

r0x0

r5

r l0

r l2

r l3y l1

24

Computing a lower bound on a policy

From previous theorem, we have for any rebuilt trajectory

[(x lt , ult , r lt , y lt)]T−1
t=0 :

Jh(x0) ≥

T−1
∑

t=0

r lt −

T−1
∑

t=0

LQT−t
∆((y lt−1 , h(t , y lt−1)), (x lt , ult))

This suggests to find the rebuilt trajectory that maximizes the

right-hand side of the inequality to compute a tight lower bound

on h. Let:

lower bound(h, x0,Fn),

max
[(x lt ,ult ,r lt ,y lt)]T−1

t=0

∑T−1
t=0 r lt −

∑T−1
t=0 LQT−t

∆((y lt−1 , h(t , y lt−1)), (x lt , ult))

25

A tight upper bound on Jh(x) can be defined and computed in

a similar way:

upper bound(h, x0,Fn),

min
[(x lt ,ult ,r lt ,y lt)]T−1

t=0

∑T−1
t=0 r lt +

∑T−1
t=0 LQT−t

∆((y lt−1 , h(t , y lt−1)), (x lt , ult))

Why are these bounds tight? Because:

∃C ∈ R
+: Jh(x)− lower bound(h, x ,Fn) ≤ C ∗ sparsity of Fn(1)

upper bound(h, x ,Fn)− Jh(x) ≤ C ∗ sparsity of Fn(1)

Functions lower bound(h, x0,Fn) and higher bound(h, x0,Fn)

can be implemented in a “smart way” by seeing the problem as

a problem of finding the shortest path in a graph. Complexity

linear with T and quadratic with |Fn|.

26

Remember what was said about RL + FAs:

2. may lead to unsafe policies - poor performance

guarantees

Let H be a set of candidate high-performance policies. To

obtain a policy with good performance guarantees, we suggest

to solve the following problem:

h ∈ arg max
h∈H

lower bound(h, x0,Fn)

If H is the set of open-loop policies, solving the above

optimization problem can be seen as identifying an “optimal”

rebuilt trajectory and outputting as open-loop policy the

sequence of actions taken along this rebuilt trajectory.

27

• Trajectory set covering the puddle:

FQI with trees h ∈ arg max
h∈H

lower bound(h, x0,Fn)

• Trajectory set not covering the puddle:

FQI with trees h ∈ arg max
h∈H

lower bound(h, x0,Fn)

28

Remember what was said about RL + FAs:

3. may make suboptimal use of near-optimal

trajectories

Suppose a deterministic batch mode RL problem and that in

Fn you have the elements of the trajectory:

(xopt. traj.
0 , u0, r0, x1, u1, r1, x2, . . . , xT−2, uT−2, rT−2, xT−1, uT−1, rT−1, xT)

where the ut s have been selected by an optimal policy.

Let H be the set of open-loop policies. Then, the sequence of

actions h ∈ arg max
h∈H

lower bound(h, xopt. traj.
0 ,Fn) is an optimal

one whatever the other trajectories in the set.

Actually, the sequence of action h outputted by this algorithm

tends to be an append of subsequences of actions

belonging to optimal trajectories.

29

Remember what was said about RL + FAs:

4. offer little clues about how to generate new

experiments in an optimal way

The functions lower bound(h, x0,Fn) and

upper bound(h, x0,Fn) can be exploited for generating new

trajectories.

For example, suppose that you can sample the state-action

space several times so as to generate m new elementary

pieces of trajectories to enrich your initial set Fn. We have

proposed a technique to determine m “interesting” sampling

locations based on these bounds.

This technique - which is still preliminary - targets sampling

locations that lead to the largest bound width decrease for

candidate optimal policies.

30

Closure

Rebuilding trajectories: interesting concept for solving many

problems related to batch mode RL.

Actually, the solution outputted by many RL algorithms (e.g.,

model-learning with kNN, fitted Q iteration with trees) can be

characterized by a set of “rebuilt trajectories”.

⇒ I suspect that this concept of rebuilt trajectories could lead

to a general paradigm for analyzing and designing RL

algorithms.

31

Presentation based on the paper:

Batch mode reinforcement learning based on the

synthesis of artificial trajectories. R. Fonteneau, S.A.

Murphy, L. Wehenkel and D. Ernst. Annals of Operations

Research, Volume 208, Issue 1, September 2013, Pages

383-416.

A picture of the authors:

32

