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HIV

I Human Immunodeficiency Virus (HIV) is a retrovirus at the
source of the Acquired Immune Defficiency Syndrome (AIDS)

I HIV particles target cells of the immune system (mostly CD4+

lymphocytes and macrophages)

I Inclusion of HIV particles in immune cells lead to massive
production of new viral particles, death of the infected cells
and, ultimately, devastation of the immune system
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Current anti-HIV drugs

Two main categories:

1. Reverse Transcriptaese Inhibitors (RTI)
2. Protease Inhibitor (PI)

Figure: Taken from http://www.cellsalive.com/hiv0.htm
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Treatments for infected patients

I Highly Active Anti-Retroviral Therapy (HAART): combination
of two or more drugs. Usually one or more RTIs in
combinations with a PI.

I Two main concerns about the long-term used of anti retroviral
drugs: undesirable side effects (leading to poor compliance)
and mutation of the virus (need to change drugs or even
inability to find appropriate pharmaceutical treatments).

I Need for efficient drug scheduling strategies.

I Idealistically, a drug-scheduling strategy should bring the
system to a state where the immune system has control over
the virus (with low amount of drugs and low systemic effects).
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Structured Treatment Interruption (STI)

I STI: to cycle the patient on and off drug therapy

I STI strategies often well received by patients since they offer
them period of relief from treatment

I In some remarkable cases, STI strategies have enabled the
patients to maintain immune control over the virus in the
absence of treatment

Goal of this research: to compute optimal STI strategies
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STI: A glimpse at today’s practice

If CD4+ cell count falls below a certain threshold, put the patient
on drugs. Otherwise put him off. This practice has met some
problems:

Figure: Taken from
http://www.cpcra.org/docs/pubs/2006/croi2006-smart.pdf
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More advanced techniques (not clinically tested)

I Some authors have proposed to design STI treatments by
exploiting mathematical models of the HIV infection.

I Models are under the form of a set of Ordinary Differential
Equations (ODEs)

I Deduction of STI strategies is done by using methods from
the control theory.

But modelling of the HIV dynamics is a difficult task. Indeed, one
has

I to select the right parametric system of ODEs

I to fit the parameters to reflect quantitatively biological
observations
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An interesting alternative

I Infer directly from clinical data good STI strategies, without
modelling the HIV infection dynamics.

I Clinical data: time evolution of patient’s state (CD4+ T cell
count, systemic costs of the drugs, etc) recorded at
discrete-time instant and sequence of drugs administered.

I Clinical data can be seen as trajectories of the immune system
responding to treatment.
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Inferring policies from trajectories

I Problem of inferring from trajectories appropriate control
policy has been studied in control theory and computer
science.

I One way to approach it: state an optimality criterion and
search for strategies optimizing this criterion.

I Classical approach: infer a model and derive from it and the
optimality criterion an optimal strategy.

I Reinforcement learning approach: compute optimal strategies
directly from the trajectory, without identifying a model.
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The trajectories are processed
by using reinforcement learning techniques

patients

A pool of
HIV infected

problem which typically containts the following information:

some (near) optimal STI strategies,
often under the form of a mapping

given time and the drugs he has to take

protocols and are monitored at regular intervals
The patients follow some (possibly suboptimal) STI

The monitoring of each patient generates a trajectory for the optimal STI

drugs taken by the patient between t0 and t1 = t0 + n days
state of the patient at time t0

state of the patient at time t1
drugs taken by the patient between t1 and t2 = t1 + n days
state of the patient at time t2
drugs taken by the patient between t2 and t3 = t2 + n days

Processing of the trajectories gives

between the state of the patient at a

till the next time his state is monitored.

Figure: Determination of optimal STI strategies from clinical data by
using reinforcement learning algorithms: the overall principle.

Damien Ernst Clinical data .... (10/22)



Learning from a sample of trajectories: the RL approach

Problem formulation
Discrete-time dynamics:

xt+1 = f (xt , ut) t = 0, 1, . . .

where xt ∈ X and ut ∈ U.
Cost function: c(x , u) : X × U → R. c(x , u) bounded by Bc .
Discounted infinite horizon cost associated to stationary policy
µ : X → U: Jµ(x) = lim

N→∞

∑N−1
t=0 γtc(xt , µ(xt))

Optimal stationary policy µ∗ : Policy that minimizes Jµ for all x .
Objective: Find an optimal policy µ∗.
We do not know: The discrete-time dynamics.
We know instead: A set of trajectories (x0, u0, x1, · · · , uT−1, xT ).
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Some dynamic programming results
Sequence of functions QN : X × U → R

QN(x , u) = c(x , u) + γ min
u′∈U

QN−1(f (x , u), u′), ∀N > 1

with Q1(x , u) ≡ c(x , u), converges to the Q-function, unique
solution of the Bellman equation:

Q(x , u) = c(x , u) + γ min
u′∈U

Q(f (x , u), u′).

Necessary and sufficient optimality condition:

µ∗(x) ∈ arg min
u∈U

Q(x , u)

Stationary policy µ∗
N :

µ∗
N(x) ∈ arg min

u∈U

QN(x , u).

Bound on the suboptimality of µ∗
N :

Jµ
∗

N − Jµ
∗

≤
2γNBc

(1 − γ)2
.
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Fitted Q iteration
Trajectories (x0, u0, x1, · · · , uT−1, xT ) transformed into a set of

one-step system transitions F = {(x l
t , u

l
t , x

l
t+1)}

#F

l=1 .

Fitted Q iteration computes from F the functions Q̂1, Q̂2, . . .,
Q̂N , approximations of Q1, Q2, . . ., QN .

Computation done iteratively by solving a sequence of standard
supervised learning (SL) problems. Training sample for the k th

(k ≥ 2) problem is
{(

(x l
t , u

l
t), c(x l

t , u
l
t) + γmin

u∈U
Q̂k−1(x

l
t+1, u)

)}#F

l=1

with

Q̂1(x , u) ≡ c(x , u). From the k th training sample, the supervised
learning algorithm outputs Q̂k .

µ̂∗
N(x) ∈ arg min

u∈U

Q̂N(x , u) is taken as approximation of µ∗(x).

In our simulations, SL method used is an ensemble of regression
trees method named Extra-Trees.
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Illustration

I We present results we have obtained by using the RL-based
approach on artificially generated data.

I The example is directly inspired from
B.M. Adams, H.T. Banks, Hee-Dae Kwon and H.T. Tran.
(2004). “Dynamic multidrug therapies for HIV: Optimal and
STI Control Approaches”. Mathematical Biosciences and
Engineering, 1, 223-241.

Damien Ernst Clinical data .... (14/22)



Illustration: Kinds of STI strategies targeted

Bi-therapy treatments combining a fixed RTI and a fixed PI.
Revise drug administration every five days based on clinical
measurements.
Four possible on-off combinations for the next five days: RTI and
PI on, only RTI on, only STI on, RTI and PI off
We seek STI strategies that minimize Jµ.
Instantaneous cost at time t:

c(xt , ut) = 0.1Vt + 20000ε2
1t

+ 2000ε2
2t
− 1000Et

ε1t = 0.7 (resp. ε1t = 0) if the RTI is cycled on (resp. off) at t
ε2t = 0.3 (resp. ε2t = 0) if the PI is cycled on (resp. off) at time t
V : number of free HI viruses
E : number of cytotoxic T -lymphocytes
Decay factor γ: chosen equal to 0.98.
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Illustration: A mathematical model as substitute for
real-life patients

Ṫ1 = λ1 − d1T1 − (1 − ε1)k1VT1

Ṫ2 = λ2 − d2T2 − (1 − f ε1)k2VT2

Ṫ ∗

1 = (1 − ε1)k1VT1 − δT ∗

1 − m1ET ∗

1

Ṫ ∗

2 = (1 − f ε1)k2VT2 − δT ∗

2 − m2ET ∗

2

V̇ = (1 − ε2)NT δ(T ∗

1 + T ∗

2 ) − cV − [(1 − ε1)ρ1k1T1 + (1 − f ε1)ρ2k2T2]V

Ė = λE +
bE (T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kb

E −
dE (T ∗

1 + T ∗

2 )

(T ∗

1 + T ∗

2 ) + Kd

E − δEE

T1 (T ∗

1 ) = number of non-infected (infected) CD4+ lymphocytes
T2 (T ∗

2 ) = non-infected (infected) macrophages
V = number of free HI viruses
E = number of cytotoxic T -lymphocytes.
ε1 and ε2 = control actions corresponding to RTI and the PI.
Period during which the RTI (resp. the PI) is administrated to the
patient: ε1 (resp. ε2) is set equal to 0.7 (resp. 0.3).

RTI (resp. the PI) not administrated: ε1 = 0 (resp. ε2 = 0).

Damien Ernst Clinical data .... (16/22)



Illustration: Some insight into this model

In absence of treatment, three physical equilibrium points:

1. uninfected state:

(T1,T2,T
∗
1 ,T ∗

2 ,V ,E ) = (106, 3198, 0, 0, 0, 10)

2. “healthy” locally stable equilibrium

(T1, T2, T
∗

1 , T ∗

2 , V , E ) = (967839, 621, 76, 6, 415, 353108)

(small viral load, a high CD4+ T-lymphocytes count, high
HIV-specific cytotoxic T-cells count)

3. “non-healthy” locally stable equilibrium point

(T1, T2, T
∗

1 , T ∗

2 , V , E ) = (163573, 5, 11945, 46, 63919, 24)

(T-cells depleted, viral load very high).
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Illustration: Protocol for artificially generating the clinical
data

Monitoring of patients: every five days during 1000 days.
Medication: can be revised every five days based on the
information generated by the monitoring.
Iterative generation of the clinical data (ten iterations):

I First iteration. Thirty patients in “non-healthy” steady-state.
Physiological data ( T1, T2, T ∗

1 , T ∗
2 , V , E ) recorded and a

new type of medication randomly selected in U every five
days. Monitoring of each patient generates a trajectory
(x0, u0, x1, · · · , x199, u199, x200).

I Second iteration. Only difference with first iteration:
medication determined by the following STI strategy: in 85%
of the cases, use strategy µ̂∗

400 computed by fitted Q iteration
on previously generated trajectories; in the remaining 15%
medication randomly selected in U.

I Third-tenth iteration: idem as second iteration.
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Illustration: Simulation results
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Figure: Solid curve (−) corresponds = patient which follows STI
strategies; dashed curves (−−) = no interruption in the treatment;
dotted curves (− ·) = no treatment
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Figure: STI treatment for a patient treated from early stage of infection.
Clinical data generated by 300 patients.

infinite time
horizon cost
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Figure: Influence of the number of patients on the infinite time horizon
cost corresponding to the computed STI strategies.
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From numerically simulated data to real-life patients

We expect to face four main difficulties:

I The HIV/immune system dynamics may be different from one
patient to the other.

I Difficulty to state properly the optimal control problem

I Partial observability

I Corrupted measurements
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Conclusions

I Reinforcement learning algorithms seem to be promising tools
to extract from clinical data, good STI strategies.

I Lot of work is however still needed !!!
I But 40 millions of people are living with HIV/AIDS. Isn’t it a

good reason to keep working hard ?

Figure: Taken from UNAIDS. AIDS epidemic update: December 2005.
“UNAIDS/05.19E”
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