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Problem addressed in this talk

How can we design algorithms able to extract from experience
good sequential decision making policies?

⇒ Discuss different algorithms exploiting batch-mode supervised
learning.

⇒ Illustrate one of these algorithms, named fitted Q iteration, on an
academic power systems example

NB. I Many practical problems are concerned (medical applications,
robot control, finance, ...)

I Most are related to complex and uncertain environments
I To simplify derivations, we restrict to the deterministic case
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Batch-mode supervised learning (Reminder)

I From sample ls = (x , y)N of N observations (inputs, outputs)

I Compute a model ŷ(x) = f ls(x) (decision tree, MLP, ...)
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Learning a static decision policy (Problem statement and solution)

Given state information x and a set of possible decisions d , learn an
approximation of the policy d∗(x) maximizing the reward r(x , d).

To learn, let’s assume avaible a sample of N elements of the type
(x , d , r).

Case 1: learn from a sample of optimal decisions (x , d∗)N :
⇒ direct application of SL to get d̂∗(x).
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Learning a static decision policy (Problem statement and solution)

Given state information x and a set of possible decisions d , learn an
approximation of the policy d∗(x) maximizing the reward r(x , d).

To learn, let’s assume avaible a sample of N elements of the type
(x , d , r).

Case 1: learn from a sample of optimal decisions (x , d∗)N :
⇒ direct application of SL to get d̂∗(x).

Case 2: learn from a sample of random decisions (x , d , r)N :
⇒ apply SL to get r̂(x , d) and compute
d̂∗(x) = arg maxd r̂(x , d).

Damien Ernst Supervised learning based ... (4/15)



Problem addressed
Batch-mode supervised learning

Supervised learning for sequential decision making
Illustration: power system control

Finish

Learning a sequential decision policy (Problem statement)

Given initial state information x0, state dynamics xt+1 = f (xt , dt),
and instantaneous reward r(x , d), find (d∗

0 , . . . , d∗

h−1) maximizing
the cumulated discounted reward over h stages

R(x0, d0, . . . , dh−1) =

h−1∑

t=0

γtr(xt , dt).

Different kinds of optimal policies:

Open loop: d∗

t = d∗(x0, t) (OK in the deterministic case)

Closed loop: d∗

t = d∗(xt , t) (Also OK in the stochastic case)

Stationary: d∗

t = d∗(xt) (OK in the infinite horizon case)
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Learning a sequential decision policy (Problem statement)

Given initial state information x0, state dynamics xt+1 = f (xt , dt),
and instantaneous reward r(x , d), find (d∗

0 , . . . , d∗

h−1) maximizing
the cumulated discounted reward over h stages

R(x0, d0, . . . , dh−1) =

h−1∑

t=0

γtr(xt , dt).

Different kinds of optimal policies:

Open loop: d∗

t = d∗(x0, t) (OK in the deterministic case)

Closed loop: d∗

t = d∗(xt , t) (Also OK in the stochastic case)

Stationary: d∗

t = d∗(xt) (OK in the infinite horizon case)

To learn, let’s assume available a sample of N h-stage trajectories

(x0, d0, r0, x1, d1, r1, . . . , xh−1, dh−1, rh−1, xh)
N
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Learning a sequential decision policy (Case 1, Direct)

We first assume that the decisions shown in the sample are the
optimal ones:

Learning open-loop policy: can use open loop parts of sample
(x0, d

∗

0 , . . . , d∗

h−1)
N

⇒ apply SL h times,∀t = 0, . . . , h − 1, to construct
d̂∗(x0, t) from (x0, d

∗

t )N .
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Learning a sequential decision policy (Case 1, Direct)

We first assume that the decisions shown in the sample are the
optimal ones:

Learning open-loop policy: can use open loop parts of sample
(x0, d

∗

0 , . . . , d∗

h−1)
N

⇒ apply SL h times,∀t = 0, . . . , h − 1, to construct
d̂∗(x0, t) from (x0, d

∗

t )N .

Learning closed-loop policy: should use closed loop parts of sample
(x0, x1, . . . , xh−1, d

∗

0 , . . . , d∗

h−1)
N

⇒ apply SL h times, ∀t = 0, . . . , h − 1, to construct
d̂∗(xt , t) from (xt , d

∗

t )N .
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Learning a sequential decision policy (Case 1, Direct)

We first assume that the decisions shown in the sample are the
optimal ones:

Learning open-loop policy: can use open loop parts of sample
(x0, d

∗

0 , . . . , d∗

h−1)
N

⇒ apply SL h times,∀t = 0, . . . , h − 1, to construct
d̂∗(x0, t) from (x0, d

∗

t )N .

Learning closed-loop policy: should use closed loop parts of sample
(x0, x1, . . . , xh−1, d

∗

0 , . . . , d∗

h−1)
N

⇒ apply SL h times, ∀t = 0, . . . , h − 1, to construct
d̂∗(xt , t) from (xt , d

∗

t )N .

Possible discussion: for the stochastic case, the closed-loop approach still

holds valid.
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Learning a sequential decision policy (Case 2, Naive aproach)

Problem: How to generalize this if the decisions shown in the
sample are random (i.e. not necessarily the optimal ones)?

Brute force approach: one could use open loop parts of sample
(x0, d0, . . . , dh−1,R)N

⇒ apply SL to construct R̂(x0, d0, . . . , dh−1)
⇒ compute (d0, . . . , dh−1)

∗(x) =
arg maxd0,...,dh−1

R̂(x0, d0, . . . , dh−1).
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Learning a sequential decision policy (Case 2, Naive aproach)

Problem: How to generalize this if the decisions shown in the
sample are random (i.e. not necessarily the optimal ones)?

Brute force approach: one could use open loop parts of sample
(x0, d0, . . . , dh−1,R)N

⇒ apply SL to construct R̂(x0, d0, . . . , dh−1)
⇒ compute (d0, . . . , dh−1)

∗(x) =
arg maxd0,...,dh−1

R̂(x0, d0, . . . , dh−1).

Possible discussion: computational complexity of arg max; sample

complexity; what if system is stochastic...
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Learning a sequential decision policy (Case 2, Classical approach)

Model based approach:

I Exploit sample of state transitions (xti , dti , xti +1)
N×h

⇒ use SL to build model of dynamics f̂ (x , d).

I Exploit sample of instantaneous rewards (xti , dti , rti )
N×h

⇒ use SL to build model of reward function r̂(x , d).

I Use dynamic programming algorithms (e.g. value iteration) to
compute from f̂ (x , d) and r̂(x , d) the optimal policy d̂∗(x , t).
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Learning a sequential decision policy (Case 2, Classical approach)

Model based approach:

I Exploit sample of state transitions (xti , dti , xti +1)
N×h

⇒ use SL to build model of dynamics f̂ (x , d).

I Exploit sample of instantaneous rewards (xti , dti , rti )
N×h

⇒ use SL to build model of reward function r̂(x , d).

I Use dynamic programming algorithms (e.g. value iteration) to
compute from f̂ (x , d) and r̂(x , d) the optimal policy d̂∗(x , t).

Possible discussion: can be modified to work in the stochastic case,

makes good use of sample information; exploits stationary problem

structure; has computational complexity of DP, therefore is problematic

in continuous or high-dimensional state spaces ...
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Learning a sequential decision policy (Case 2, Proposed approach)

Interlacing batch-mode SL and backward value-iteration:

I Assume we are in a certain state x at time h − 1 (last stage):
⇒ define Q1(x , d) ≡ r(x , d)
⇒ optimal decision: d∗(x , h − 1) = arg maxd Q1(x , d)
⇒ SL on (xti , dti , rti )

N×h to compute Q̂1(x , d) + arg max...
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Learning a sequential decision policy (Case 2, Proposed approach)

Interlacing batch-mode SL and backward value-iteration:

I Assume we are in a certain state x at time h − 1 (last stage):
⇒ define Q1(x , d) ≡ r(x , d)
⇒ optimal decision: d∗(x , h − 1) = arg maxd Q1(x , d)
⇒ SL on (xti , dti , rti )

N×h to compute Q̂1(x , d) + arg max...

I Assume we are in state x at time h − 2:
⇒ define Q2(x , d) = r(x , d) + γ arg maxd ′ Q1(f (x , d), d ′)
⇒ optimal decision to take: d∗(x , h − 2) = arg maxd Q2(x , d)
⇒ SL on (xti , dti , rti + γ arg maxd ′ Q̂1(xti +1, d

′))N×h

⇒ Q̂2(x , d) + arg max ⇒ d̂∗(x , h − 2)
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Learning a sequential decision policy (Case 2, Proposed approach)

Interlacing batch-mode SL and backward value-iteration:

I Assume we are in a certain state x at time h − 1 (last stage):
⇒ define Q1(x , d) ≡ r(x , d)
⇒ optimal decision: d∗(x , h − 1) = arg maxd Q1(x , d)
⇒ SL on (xti , dti , rti )

N×h to compute Q̂1(x , d) + arg max...

I Assume we are in state x at time h − 2:
⇒ define Q2(x , d) = r(x , d) + γ arg maxd ′ Q1(f (x , d), d ′)
⇒ optimal decision to take: d∗(x , h − 2) = arg maxd Q2(x , d)
⇒ SL on (xti , dti , rti + γ arg maxd ′ Q̂1(xti +1, d

′))N×h

⇒ Q̂2(x , d) + arg max ⇒ d̂∗(x , h − 2)

I Continue h − 2 further times to yield sequence of Q̂i -functions
and policy approximations d̂∗(x , h − i), ∀t = 1, . . . , h.
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Learning a sequential decision policy (Case 2, Proposed approach)

Interlacing batch-mode SL and backward value-iteration:

I Assume we are in a certain state x at time h − 1 (last stage):
⇒ define Q1(x , d) ≡ r(x , d)
⇒ optimal decision: d∗(x , h − 1) = arg maxd Q1(x , d)
⇒ SL on (xti , dti , rti )

N×h to compute Q̂1(x , d) + arg max...

I Assume we are in state x at time h − 2:
⇒ define Q2(x , d) = r(x , d) + γ arg maxd ′ Q1(f (x , d), d ′)
⇒ optimal decision to take: d∗(x , h − 2) = arg maxd Q2(x , d)
⇒ SL on (xti , dti , rti + γ arg maxd ′ Q̂1(xti +1, d

′))N×h

⇒ Q̂2(x , d) + arg max ⇒ d̂∗(x , h − 2)

I Continue h − 2 further times to yield sequence of Q̂i -functions
and policy approximations d̂∗(x , h − i), ∀t = 1, . . . , h.

I This algorithm is called “Fitted Q iteration”.
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Fitted Q iteration: discussion

I All what the algorithm actually needs to work is a sample of
four-tuples (xti , dti , rti , xti+1)

N , and a a good supervised
learning algorithm (for least squares regression).

I It has be shown to give excellent results when using ensemble
of regression trees as supervised learning algorithms

I It can cope (without modification) with stochastic problems.

I It can exploit efficiently very large samples.

I It already proved to work well on several complex continuous
state space problems.

I Iterating it sufficiently many times, it yields an approximation
of the optimal (closed-loop, and stationary) infinite horizon
decision policy.
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Illustration: power system control

Infinite Bus
System
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The sequential decision problem

I Two state variables: δ and ω.

I Time discretization: time between t and t + 1 equal to 50ms

I Two possible decisions d : capacitance set to zero or
capacitance set to its maximal value.

I r(xt , ut ,wt)=−|Pe t+1 − Pm| if xt+1 ∈ stability domain and
−100 otherwise

I γ = 0.98

I Sequential decision problem such that the optimal stationary
policy damps the electrical power oscillations
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Representation of d̂∗(x , t) (h = 200), 10,000 four-tuples
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I Fitted Q iteration algorithm combined with ensemble of
regression trees has been evaluated on several problems and
was constantly giving second to none performances.

I Why has not this algorithm been proposed before ?
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