

Gembloux Agro-Bio Tech Université de Liège

) IECN Université catholique de Louvain

INTEGRATED CARBON OBSERVATION SYSTEM

SEASONAL AND INTER-ANNUAL VARIABILITY OF PHOTOSYNTHETIC CAPACITY IN A TEMPERATE FOREST

<u>Quentin Hurdebise⁽¹⁾, Caroline Vincke⁽²⁾, Rémy Soubie⁽²⁾, Anne De Ligne⁽¹⁾, Bernard Heinesch⁽¹⁾ and Marc Aubinet⁽¹⁾</u>

(1) University of Liege, Gembloux Agro-Bio Tech, Dept. of Biosystem Engineering, Ecosystems – Atmosphere Exchanges, Belgium
 (2) Université catholique de Louvain, Earth and Life Institute, Forest Sciences, Belgium

1. Introduction

-In temperate forests, the relation between vegetation phenology and carbon sequestration variability remains to be explored.

-To study phenology impact on CO₂ fluxes, two photosynthetic capacity indicators were used :

+NEE at light saturation (NEE_{sat}); +green proportion in canopy pictures (g_{cc}).

4. Results

-Seasonal dynamic for both indicators.

-Correlations between these indicators were investigated at seasonal and inter-annual scale.

2. Material

-Site : Vielsalm Terrestrial Observatory (ICOS Belgium): a mixed (deciduous (mainly beeches) – coniferous) temperate forest. -Four years (2010-2013) of : +eddy covariance (EC) data; +digital camera pictures.

-Deciduous sub-plot in the main footprint zone.

- -Tree ring widths measured by wood coring.
- -LAI_{max} and Specific Leaf Area (SLA) from litter collection.

Data	EC Data		Pictures	
Database	European Fluxes		VTO (Be-Vie)	
Time frame and	1996-Today		2010-Today	
resolution	half hourly		hourly	
Description	Fluxes and Weather		Red, Green and Blue (RGB	;)
			components	
Selection	*daily data		*11, 12 and 13h	
	*deciduous footprint		*deciduous sub-plot,	
	*no drought (low VPD)		*no snow and no rain	

3. Method

2 Photosynthetic capacity indicators

+NEE at light saturation (NEE_{sat})

-Weekly values were deduced from flux light-response curves **for each week** using Misterlich function (below).

+Green proportion in canopy pictures (g_{cc})

-For each hour, g_{cc} was calculated as the mean proportion of green component value (G) in the picture.

-**Daily values**, g_{cc-day} were calculated as the mean g_{cc} value of three pictures taken at 11, 12 and 13 o'clock.

 the difference between one week data and the mean of the same week value for the four years.

-Then, indicator anomalies were compared :

- at inter-annual scale : badly correlated (data not shown);
- during full vegetation period : fairly correlated (r²=0.39).

Both indicators suggest lower photosynthetic capacity in 2011.
This result corroborates with tree ring measurements. Indeed, in 2011 :

the lowest tree ring widths in the 1998-2011 period were observed.
the lowest LAI_{max} and SLA in the 2009-2011 period were observed.

These low values have been related to a dry and warm spring (highest spring Ta, Rd and VPD in the 1998-2011 period)¹.

-Weekly values were computed as the mean g_{cc-day} values.

5. Conclusion

Our results suggest:

- A continuous decrease of photosynthetic capacity during the full vegetation period.
- Correlation between what is measured (NEE_{sat}) and what is seen (g_{cc}), not only at seasonal but also at inter-annual scale.
- A lower photosynthetic capacity during full vegetation period in 2011:
 - corroborated by trunk and canopy development measurements;

- related to spring drought.

¹Soubie, R., 2014. Evaluation de l'évapotranspiration réelle, de ses composantes et de sa régulation dans un peuplement composé de hêtre et de douglas: analyse comparative de l'effet espèce et des méthodes d'évaluation. Thèse de doctorat, Université Catholique de Louvain (FRIA, Région Wallonne). Acknowledgements : This research was funded by the Service Public de Wallonie (Convention 1217769) Contact : <u>quentin.hurdebise@ulg.ac.be</u>