Curative and palliative treatments for patients with disorder of consciousness

THIBAUT Aurore
Coma Science Group
University of Liège, Belgium

& HUANG Wangshan
International vegetative state and consciousness science institute,
Hangzhou Normal University, China
Consciousness

NORMAL CONSCIOUSNESS

COMA

VEGETATIVE STATE

MINIMALLY CONSCIOUS STATE

Laureys, Owen and Schiff, Lancet Neurology, 2005
Coma Recovery Scale-Revised

Patients in VS and MCS: correct diagnosis

JFK COMA RECOVERY SCALE - REVISED

<table>
<thead>
<tr>
<th>Patient</th>
<th>Date</th>
</tr>
</thead>
</table>

AUDITORY FUNCTION SCALE

- 4 - Consistent Movement to Command *
- 3 - Reproducible Movement to Command *
- 2 - Localization to Sound
- 1 - Auditory Startle
- 0 - None

VISUAL FUNCTION SCALE

- 5 - Object Recognition *
- 4 - Object Localization: Reaching *
- 3 - Visual Pursuit *
- 2 - Fixation *
- 1 - Visual Startle
- 0 - None

MOTOR FUNCTION SCALE

- 6 - Functional Object Use *
- 5 - Automatic Motor Response *
- 4 - Object Manipulation *
- 3 - Localization to Noxious Stimulation *
- 2 - Flexion Withdrawal
- 1 - Abnormal Posturing
- 0 - None/Flaccid

OROMOTOR/VERBAL FUNCTION SCALE

- 3 - Intelligible Verbalization *
- 2 - Vocalization/Oral Movement
- 1 - Oral Reflexive Movement
- 0 - None

COMMUNICATION SCALE

- 2 - Functional: Accurate
- 1 - Non-Functional: Intentional *
- 0 - None

AROUSAL SCALE

- 3 - Attention
- 2 - Eye Opening w/o Stimulation
- 1 - Eye Opening with Stimulation
- 0 - Unarousable

TOTAL SCORE

Denotes emergence from MCS *

Denotes MCS *
Treatment in DOC

1. Curative
 • Cognitive function
 • Physical function

2. Palliative
 Decrease side effects & improve comfort

 1. Pharmacological
 2. Deep brain stimulation
 3. Transcranial direct current stimulation (tDCS)

 4. Pain
 5. Spasticity
Curative treatments

Pharmacological
Pharmacological treatment

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Study (first author, year)</th>
<th>Number of patients and etiology</th>
<th>Diagnosis</th>
<th>Placebo control</th>
<th>Reported functional outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dopaminergic agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amantadine</td>
<td>Giacino (2012)</td>
<td>184 TBI</td>
<td>MCS/VS</td>
<td>Yes</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Schnakers (2003)</td>
<td>1 anoxic</td>
<td>MCS</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Patrick (2006)</td>
<td>10 TBI</td>
<td>Low responsive level</td>
<td>No</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
<td>Hughes (2005)</td>
<td>123 TBI</td>
<td>Coma</td>
<td>NA</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
<td>Saniova (2004)</td>
<td>41 TBI</td>
<td>‘Persistent unconsciousness’</td>
<td>NA</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Meythaler (2002)</td>
<td>35 TBI</td>
<td>MCS</td>
<td>Yes</td>
<td>Positive</td>
</tr>
<tr>
<td>Levodopa</td>
<td>Matsuda (2003)</td>
<td>3 TBI</td>
<td>VS</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td>Nonbenzodiazepine sedative</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zolpidem</td>
<td>Cohen (2008)</td>
<td>1 anoxic</td>
<td>Lethargic</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Shames (2008)</td>
<td>1 anoxic</td>
<td>MCS</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Singh (2008)</td>
<td>1 TBI</td>
<td>MCS</td>
<td>No</td>
<td>No effect</td>
</tr>
<tr>
<td></td>
<td>Brefel-Courbon (2007)</td>
<td>1 hypoxic</td>
<td>Akinetic mutism</td>
<td>Yes</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Clauss (2006)</td>
<td>2 TBI, 1 anoxic</td>
<td>VS</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td></td>
<td>Clauss (2000)</td>
<td>1 TBI</td>
<td>Semi-comatose</td>
<td>No</td>
<td>Positive</td>
</tr>
<tr>
<td>GABA agonist</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baclofen</td>
<td>Sara (2007)</td>
<td>1 non-TBI</td>
<td>VS</td>
<td>No</td>
<td>Positive</td>
</tr>
</tbody>
</table>

Amantadine

Dopaminergic agent (Parkinson)

Schnakers et al, *JNNP*, 2008
Zolpidem

Sedative-hypnotic agent (insomnia)
Indirect agonist of GABA$_A$ receptors
Curative treatments

Deep brain stimulation
Curative treatment: Deep brain stimulation?

Recovery of consciousness = recovery of thalamo-cortical (prefrontal) connectivity

Intralaminar nuclei stimulation induces “recovery” from minimally responsive state

Laureys et al, Lancet, 2000
Curative treatment: Deep brain stimulation?

Curative treatments

Transcranial direct current stimulation (tDCS)
Why direct current?

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Population</th>
<th>Effects</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hemiplegic patients</td>
<td>Dexterity and strength</td>
<td>Hummel et al. Lancet, 2006</td>
</tr>
<tr>
<td></td>
<td>Spastic patients</td>
<td>Spasticity & ADL</td>
<td>Wu et al., Arch Phys Med Rehabil 2012</td>
</tr>
<tr>
<td></td>
<td>Alzheimer’s patients</td>
<td>Memory</td>
<td>Ferrucci et al. Neurology, 2008</td>
</tr>
<tr>
<td></td>
<td>Aphasic patients</td>
<td>Language</td>
<td>Baker et al. Stroke, 2010</td>
</tr>
</tbody>
</table>

Cheap & easy to use

Thibaut et al, Rev Neurol, 2013
Methods

- Direct current
- 2 mA; 20 minutes
- Anode: PFDL (F3)
- Randomised, double blind, sham controlled

Session 1
- CRS-R
- tDCS 20’

Session 2
- CRS-R
- tDCS 20’
- CRS-R
- tDCS 20’
Results

- 55 patients (43±18y; 25 VS/UWS, 30 MCS; 25 TBI; 35 chronic (>3 months)

- **15 responders**
 Patient who showed **signs of consciousness** after tDCS and not before tDCS or before and after sham
 - 2 VS; acute
 - 13 MCS (5>1y post insult)

Thibaut et al, submitted
tDCS – long term

Effects last ± 90 minutes (Hummel et al., Lancet 2006)
→ Short improvement, back to initial state

Daily stimulations (5days) (Antal et al., J Pain Symptom Manage 2010)
Improvement and extension of benefits
Randomised sham controlled double blind study

Timeline

Session 1
- Day 1: CRS-R, tDCS
- Day 2: CRS-R, tDCS
- Day 3: CRS-R, tDCS
- Day 4: CRS-R, tDCS
- Day 5: CRS-R, tDCS
- 5 days

Session 2
- Day 1: CRS-R, tDCS
- Day 2: CRS-R, tDCS
- Day 3: CRS-R, tDCS
- Day 4: CRS-R, tDCS
- Day 5: CRS-R, tDCS
- 5 days

*CRS-R = 20 minutes

Prefrontal & precuneus stimulations

www.comascience.org
Palliative treatments

Pain in disorders of consciousness
Pain in brain death & VS/UWS

Noxious electrical stimulation

Low level disconnected cortical activation

Laureys et al, Neuroimage, 2002
Laureys, Nature Reviews Neuroscience, 2005
Pain in minimally conscious state

BUT...

<table>
<thead>
<tr>
<th>Subject number</th>
<th>Sex</th>
<th>Age</th>
<th>ACC</th>
<th>AI</th>
<th>S2</th>
<th>S1</th>
<th>Thalamus</th>
<th>PI</th>
<th>Cerebellum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>29</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>46</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>29</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>31</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>35</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>32</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>62</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>F</td>
<td>47</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>52</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>58</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>48</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>28</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>33</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>54</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

ACC = anterior cingulate cortex
AI = anterior insula
S1/S2 = primary and secondary somatosensory areas
Nociception and pain

Nociception Coma Scale - Revised

Motor response	3 - Localization to noxious stimulation
	2 - Flexion withdrawal
	1 - Abnormal posturing
	0 - None/flaccid

Verbal response	3 - Verbalisation (intelligible)
	2 - Vocalisation
	1 - Groaning
	0 - None

Facial expression	3 - Cry
	2 - Grimace
	1 - Oral reflexive movement/startle response
	0 - None

Score >3/9 = analgesic treatment

Chatelle et al, JNNP, 2012
Palliative treatments

Spasticity
Spasticity in DOC

Spasticity assessment (MAS*) in VS/UWS and MCS (n=57)

- **84%** showed spasticity
 67% had severe spasticity (MAS≥3)

- **Time since insult**: positively correlated with MAS scores

- **Pain** (*Nociception Coma Scale Revised*): positive correlation

* MAS=Modified Ashworth Scale

Thibaut et al, *in prep*
<table>
<thead>
<tr>
<th>Drug</th>
<th>Dose</th>
<th>Mechanism of action</th>
<th>Side effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazepam</td>
<td>5-20 mg 3 times daily</td>
<td>Increases the affinity of GABA for the GABAa receptor complex leading to an increase in presynaptic inhibition and reduction of synaptic reflexes</td>
<td>Sedation, weakness, hypotension, adverse gastrointestinal effects, memory trouble, confusion, depression and ataxia</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>0.5-1.00 once daily</td>
<td>Same as above</td>
<td>Weakness, hypotension, ataxia, disco-ordination, sedation, depression and memory impairment. Prolonged use could increase the risk of addiction</td>
</tr>
<tr>
<td>Baclofen</td>
<td>5-20 mg 3-4 times daily</td>
<td>Centrally acting GABA analogue. Binds to GABAB receptor at the presynaptic terminal and thus inhibits the muscle stretch reflex</td>
<td>Daytime sedation, dizziness, weakness, fatigue, nausea; lowers seizure threshold Withdrawal seizures and hallucinations with abrupt discontinuation</td>
</tr>
<tr>
<td>Tizanidine</td>
<td>4-36 mg daily</td>
<td>Imidazole derivative, with agonist action on alpha-2 adrenergic receptors in central nervous system</td>
<td>Dry mouth, sedation, dizziness, mild hypotension, weakness (less common than with baclofen) Liver enzymes should be monitored</td>
</tr>
<tr>
<td>Dantrolene</td>
<td>25–100 mg 4 times daily</td>
<td>Interferes with the release of calcium from the sarcoplasmic reticulum of the muscle</td>
<td>Generalized muscle weakness, mild sedation, dizziness, nausea, diahhrhea, Hepatotoxicity</td>
</tr>
<tr>
<td>Phenol/alcohol</td>
<td>30 mg/kg</td>
<td>Chemical denervation of the muscles</td>
<td>Burning and dysesthesias. Damage of the sensory nerves with pain</td>
</tr>
<tr>
<td>Botox</td>
<td>10-15 units/kg</td>
<td>Inhibit the release of acetylcholine at the neuromuscular junction</td>
<td>minimal side effects. Rarely, children may become unusually floppy for a few days or weeks after high doses of Botox.</td>
</tr>
<tr>
<td>Intratecal baclofen</td>
<td>25–1000 mg daily</td>
<td>Binds to GABAb receptor at the presynaptic terminal and inhibits the muscle stretch reflex</td>
<td>Decreased ambulation speed and muscle weakness</td>
</tr>
</tbody>
</table>

Thibaut et al, *Brain Injury*, 2013
Physical therapy

- Stretching is very important to keep physiological amplitude of patient’s articulations
 - Every day on each articulation

- Massage could relax patient (but not sufficient)

- Be careful about irritative sources (bedsores, infections, etc)
 - ➔ pain, stress and fatigue increase spasticity

- Splints to hands and feet could be beneficial
Soft splints

AIM: Test the efficacy of soft braces on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS

Avantages:
- Easy to apply
- Patient can be alone
- Soft and comfortable
- Several hours/day
Soft splints

AIM: Test the efficacy of soft braces on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS

Clinical benefits:
- Spasticity decrease on fingers flexors
- Increase of hand opening
- Better improvement for patients without tendon retraction

![Graph showing MAS scores for Splints and Stretching](image-url)

Thibaut et al, *in prep*
Conclusions
Conclusions

• Current treatments: **Amantadine**, Zolpidem, (+ other drugs?)

• **Deep Brain Stimulation**

• **tDCS** could improve **cognitive** function in severe brain injured patients

• **Pain** ➔ Nociception Coma Scale-Revised

• Chronic patients ➔ improve their **comfort** and treat **spasticity**
Conclusions

- To treat spasticity
 - Botox: localized hypertonicity
 - Intrathecal baclofen pump: generalized hypertonicity
 - Baclofen, Diazepam, etc
 - Physical therapy: stretching & massage every day
 - Soft braces
 - !! Remove irritative causes
THANK YOU