
What about treatments for patients with disorder of consciousness

THIBAUT Aurore
PhD Student
Coma Science Group
University of Liège, Belgium

September 18, 2013

Treatment in DOC

1. Curative

- Cognitive functions
- Motility

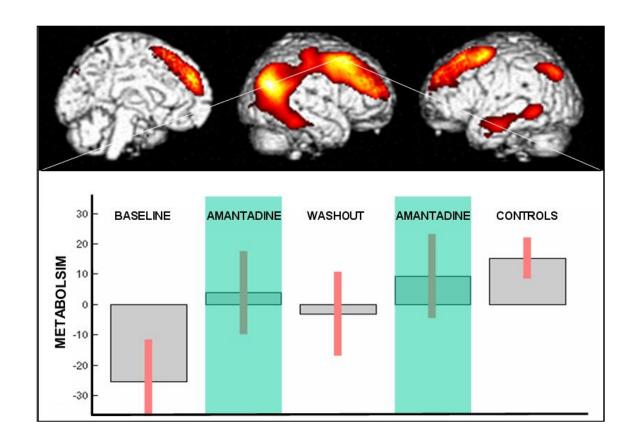
2. Palliative

Decrease side effects

& improve comfort

- Pharmacological treatment
- 2. Deep brain stimulation
- 3. Transcranial direct current stimulation (tDCS)
- 4. Pain
- 5. Spasticity

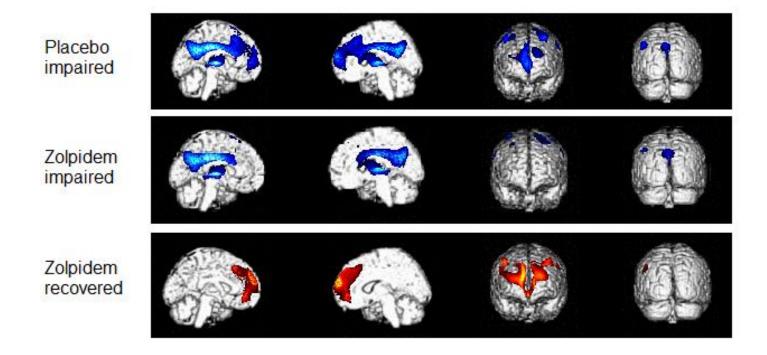
Pharmacological treatments



Pharmacological treatments

Drugs	Study (first author, year)	Number of patients and etiology			Reported functional outcome		
Dopaminergic agents							
Amantadine	Giacino (2012)	184 TBI	MCS/VS	Yes	Positive		
	Schnakers (2008)	1 anoxic	MCS	No	Positive		
	Patrick (2006)	10 TBI	Low responsive level	No	No effect		
	Hughes (2005)	123 TBI	Coma	NA	No effect		
	Saniova (2004)	41 TBI	'Persistent unconsciousness'	NA	Positive		
	Meythaler (2002)	35 TBI	MCS	Yes	Positive		
Bromocriptine	Brahmi (2004)	4 intoxication	Coma	No	Positive		
Levodopa	Matsuda (2003)	3 TBI	VS	No	Positive		
Nonbenzodiaz	epine sedative						
Zolpidem	Cohen (2008)	1 anoxic	Lethargic	No	Positive		
	Shames (2008)	1 anoxic	MCS	No	Positive		
	Singh (2008)	1 TBI	MCS	No	No effect		
	Brefel-Courbon (2007)	1 hypoxic	Akinetic mutism	Yes	Positive		
	Clauss (2006)	2 TBI, 1 anoxic	VS	No	Positive		
	Clauss (2000)	1 TBI	Semi-comatose	No	Positive		
GABA agonist							
Baclofen	Sarà (2007)	1 non-TBI	VS	No	Positive		

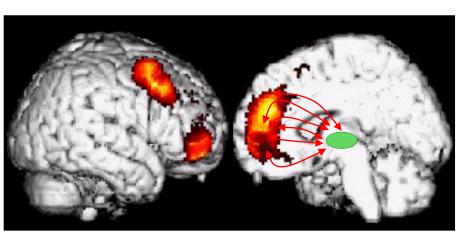
Amantadine

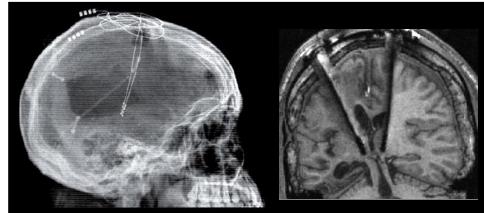

Dopaminergic agent (Parkinson)

Zolpidem

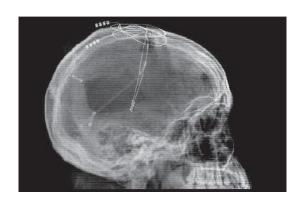
Sedative-hypnotic agent (insomnia)

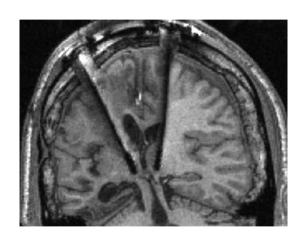
Indirect agonist of GABA_A receptors

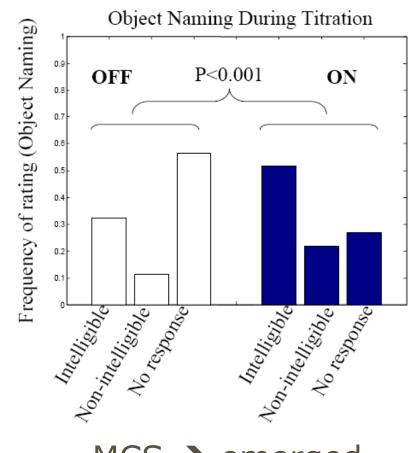

Deep brain stimulation



Curative treatment: Deep brain stimulation?


Recovery of consciousness = recovery of thalamo-cortical (prefrontal) connectivity

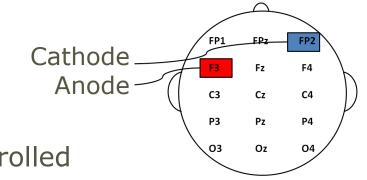

Intralaminar nuclei stimulation induces "recovery" from minimally responsive state

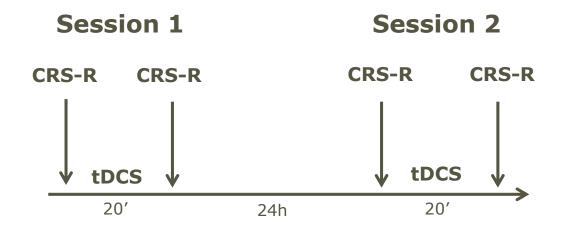


Curative treatment: Deep brain stimulation?

MCS → emerged

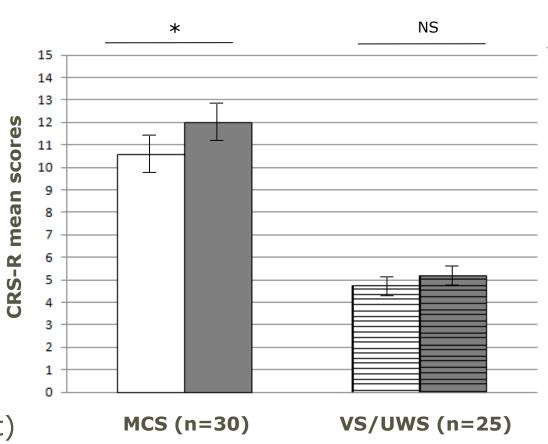
Transcranial direct current stimulation (tDCS)


Why direct current?


Stimulation	Population	Effects	Authors
Motor cortex	Healthy subjects	Dexterity	Boggio et al. Neurosci Lett, 2006
	Hemiplegic patients	Dexterity and strength	Hummel et al. Lancet, 2006
	Spastic patients	Spasticity & ADL (activity of daily life)	Wu et al., Arch Phys Med Rehabil 2012
Prefrontal cortex	Healthy subjects	Memory	Marshall et al. J Neurosci, 2004
	Alzheimer's patients	Memory	Ferrucci et al. Neurology, 2008
	Stroke patients	Attention	Jo et al. Am J Phys Med Rehabil, 2009
	Aphasic patients	Language	Baker et al. Stroke, 2010

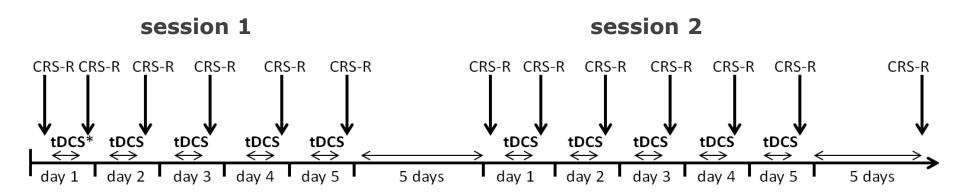
Cheap & easy to use

Methods


- Direct current
- 2 mA; 20 minutes
- Anode: PFDL (F3)
- Randomised, double blind, sham controlled

Results

- 55 patients (43±18y;25 VS/UWS, 30 MCS;25 TBI; 35 chronic (>3 months)
- 15 responders
 Patient who showed
 signs of consciousness
 after tDCS and not
 before tDCS or before
 and after sham
- 2 UWS; acute
- 13 MCS (5>1y post insult)

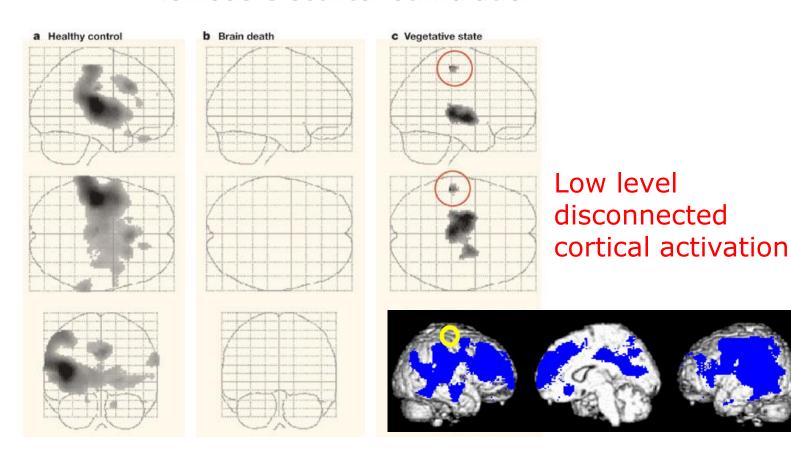


tDCS – long term

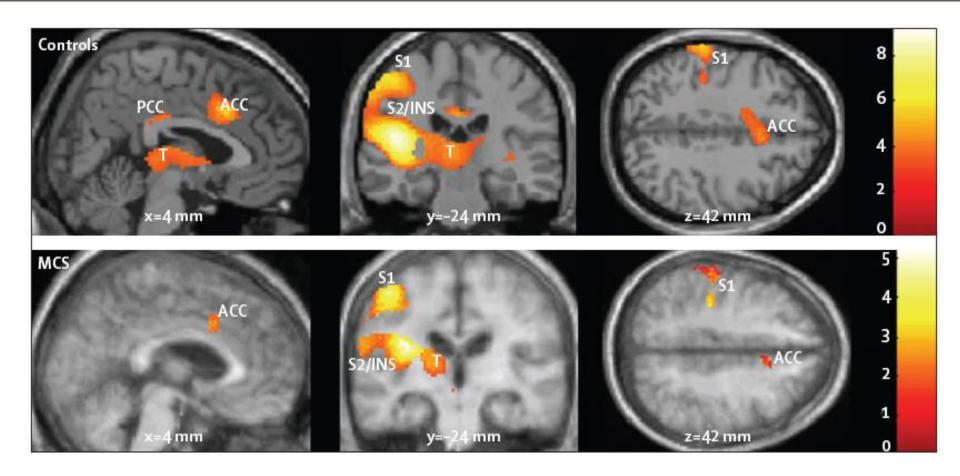
Effects last ± 90 minutes (Hummel et al., Lancet 2006)

→ Short improvement, back to initial state

Daily stimulations (5days) (Antal et al., J Pain Symptom Manage 2010) Improvement and extension of benefits Randomised sham controlled double blind study


*tDCS = 20minutes

Pain in DOC



Pain in brain death & VS/UWS

Noxious electrical stimulation

Pain in minimally conscious state

BUT...

Subject number	Sex	Age	ACC	Al	S2	S1	Thalamus	PI	Cerebellum
1	F	52	_	_	+	+	_	_	+
2	F	29	_	+	+	+	+	+	+
3	M	46	_	_	+	_	+	_	+
4	M	29	+	+	+	+	+	+	+
5	F	31	Т	+	+	+	+	+	+
6	F	35	+	+	+	_	_	+	_
7	M	32	+	+	+	+	+	+	_
8	M	62	_	_	+	_	_	+	_
9	F	47	_	_	_	+	_	+	_
10	M	52	_	٦.	+	+	_	+	_
11	F	58	_	_	+	+	_	_	_
12	M	48	+	+	+	+	_	_	_
13	F	28	+	+	+	+	+	+	+
14	M	33		+	+	+	_	+	+
15	М	54	-	_	+	-	-	-	-

Acc ai = ***

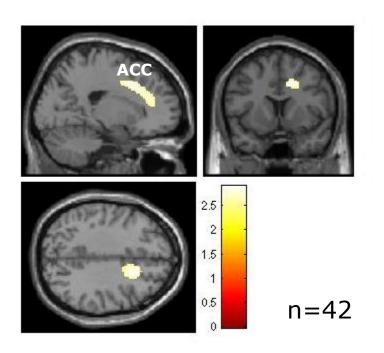
Nociception and pain

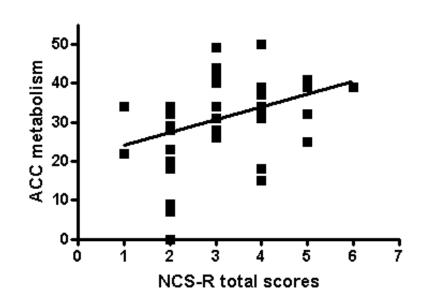
Nociception Coma Scale - Revised

Motor response

- 3 Localization to noxious stimulation
- 2 Flexion withdrawal
- 1 Abnormal posturing
- 0 None/flaccid

Verbal response


- 3 Verbalisation (intelligible)
- 2 Vocalisation
- 1 Groaning
- 0 None


Facial expression

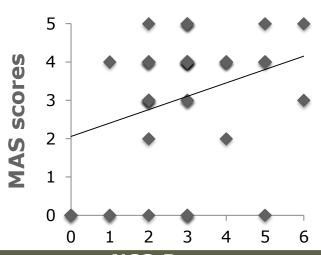
- 3 Cry
- 2 Grimace
- 1 Oral reflexive movement/startle response
- 0 None

Score > 3/9 = analgesic treatment

NCS-R and brain metabolism

Correlation between brain metabolism in anterior cingulate cortex (ACC – pain matrix) and Nocicetion Coma Scale Revised

Spasticity in DOC


Spasticity in DOC

Assess spasticity (MAS*) in VS/UWS and MCS (n= 57)

- 84% showed spasticity
 67% had severe spasticity
 (MAS≥3)
- Time since insult: positively correlated with MAS scores
- Pain (Nociception Coma Scale Revised): positive correlation

^{*} MAS=Modified Ashworth Scale

Soft splints

 AIM: Test the efficacy of soft splints on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS

Avantages:

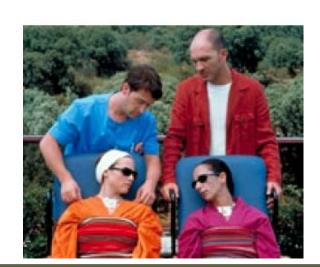
- Easy to apply
- Patient can be alone
- Soft and confortable
- Several hours/day

Clinical benefits:

- Spasticity decrease on fingers flexors
- Increase of hand opening
- Better improvement for patients without tendon retraction

Conclusion

Conclusion

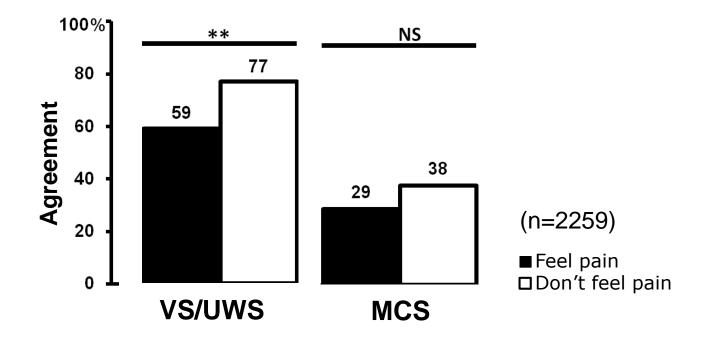

- Current treatments: Amantadine, Zolpidem, (+ other drugs and DBS)
- tDCS could improve cognitive and motor functions of severe brain injured patients
- Pain → Nociception Coma Scale-Revised (antalgics: >3)
- Chronic patients → improve their comfort and treat spasticity

Needs

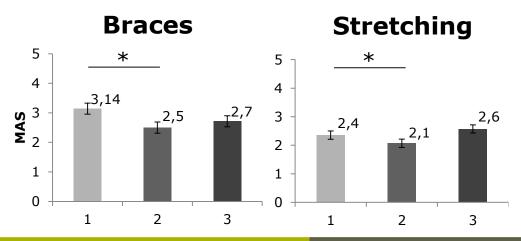
Clear therapeutic guidelines for acute and chronic patients with DOC

Best chance to recover good quality of life

THANK YOU



Artificial nutrition as a


Pain Perception in Disorders of Consciousness: Neuroscience, Clinical Care, and Ethics in Dialogue

- A. Demertzi · E. Racine · M-A. Bruno · D. Ledoux · O. Gosseries ·
- A. Vanhaudenhuyse M. Thonnard A. Soddu G. Moonen S. Laureys

Study: soft braces

- AIM: Test the efficacy of soft braces on spastic upper limb to reduce spasticity in chronic VS/UWS & MCS
- Clinical benefits:
 - Spasticity decrease on fingers flexors
 - Increase of hand opening
 - Better improvement for patients without tendon retraction

tDCS - Motor

Parameters:

2 mA - 20 min M1 (C3/C4)

1. Anodal (motricity)

Improve streke patients street

Improve stroke patients strenght and dexterity (Hummel et al., 2006)

2. Cathodal (\square spasticity)

Decrease spasticity of stroke patients (Vandermeeren et al., 2013)