Improvement of consciousness after transcranial direct current stimulation - a sham-controlled double blind study

9th World Congress on Brain Injury
Edinburgh, Scotland
24 March 2012

Aurore THIBAUT PhD Student Physiotherapist

Coma Science Group
Cyclotron Research Centre & Neurology Dept & University Hospital of Liège, Belgium

www.comascience.org
Patients

Introduction | Materials and Methods | Results | Conclusion

Aim of the study

Assessing the effect of transcranial direct current stimulation (tDCS) on consciousness in VS/UWS and MCS patients

double blind sham controlled randomized study
Why direct current stimulation?

<table>
<thead>
<tr>
<th>Stimulation</th>
<th>Population</th>
<th>Effects</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aphasia</td>
<td>Language</td>
<td>Baker et al, Stroke 2010</td>
</tr>
</tbody>
</table>

- Non-invasive
- Easy to apply
Methods

- Direct current
- 2 mA
- 20 minutes

Randomized double blind sham/placebo controlled
Methods

Responders: CRS-R total score post tDCS > pre-tDCS > sham > pre-sham

Statistics: Stata 10.0
ANOVA
Wilcoxon signed-rank test
Population

- 55 patients (16 women)
- 25 VS/UWS, 30 MCS (18 MCS-/12MCS+)
- aged 43 ± 18 y
- 25 traumatic/30 non-traumatic
- 20 acute/35 chronic (>3 months post insult)
Effect of tDCS

Total (n=55) Responders (n=17) MCS (n=30) VS/UWS (n=25)

* * *

CRS-R increase

sham tDCS
sham tDCS
sham tDCS
Effect of tDCS

Total (n=55) Responders (n=17) MCS (n=30) VS/UWS (n=25)

No effect of ethiology or chronicity
Observed improvements

17 responders

- Response to command (n=7)
- Visual pursuit (n=4)
- Object manipulation (n=3)
- Functional communication (n=3)
Conclusion

tDCS improves consciousness in minimally conscious state patients both acute and chronic; traumatic and non traumatic
THANK YOU!
Responders

25 VS/UWS → 2 responders
2/11 VS/UWS acute
0/14 VS/UWS chronic

30 MCS → 15 responders
7/9 acute
8/21 chronic
Neuroimagery

Prefrontal stimulation

- Improvement of DMN connectivity (MRI)
- Increase of regional electrical activity in the PF and AC cortexes (EEG) ($\uparrow \beta$ and $\downarrow \delta/\theta$)

Motor stimulation

- rCBF increase in the left M1, right prefrontal cortex, right S1 (PET-scan)
- Functional connectivity increased within premotor, motor and sensorimotor areas (EEG)

Responders: audition subscale

- Consistent movement to command
- Reproducible movement to command
- Localisation of sounds
- Auditory startle
- None

Comparison between tDCS and sham: PRE vs POST
Responders: motor subscale

<table>
<thead>
<tr>
<th></th>
<th>PRE</th>
<th>POST</th>
<th>tDCS</th>
<th>sham</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional use of objects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object localization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Object manipulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localization of noxious stimulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flexion withdrawal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abnormal posturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Responders: communication

Functional communication

Intentional communication

None

tDCS

sham

www.comascience.org
Group data (n=55)

17 responders
- 2 VS/UWS; acute
- 15 MCS; 7 acute/8 chronic

CRS-R

17 responders
- 2 VS/UWS; acute
- 15 MCS; 7 acute/8 chronic

www.comascience.org
VS/UWS vs MCS

MCS

*

VS/UWS

<table>
<thead>
<tr>
<th></th>
<th>PRE</th>
<th>POST</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDCS</td>
<td>10</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PRE</th>
<th>POST</th>
</tr>
</thead>
<tbody>
<tr>
<td>tDCS</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

NS
Status improvement

3 VS/UWS ➞ MCS

- Visual pursuit (n=2)
- Response to command (n=3)

3 MCS ➞ EXIT

- Functional communication (n=3)
- Functional use of objects (n=1)
tDCS presumed mode of action

Short term effects
Modification of neuronal excitability (action potential)

Long term effects
Action on opening of ion channels (Na^+, Ca^{2+})
Increase NMDA receptors excitability
$
\iff$
improve neuron excitability

Nitsche et al., J Physiol 2000
Nitsche et al., Neuroscientist 2010
tDCS – advantages

DBS and **Amantadine** improve cognitive functions of patients with disorder of consciousness.

But side effects

tDCS improve cognition of patients in minimally conscious state without risk of brain damage or seizure.

Schiff et al., Nature 2008
Thibaut et al., in prep
tDCS criticisms

Limitations:

- Short term effect
- Moderate clinical change
- Unknown physiological effects (cathode)
- Improve electrode position?
tDCS parameters and safety

Intensity: 2mA
Time: 20 minutes
Voltage: max 26V
Electrodes: 35cm²
Max: 0.1mA/cm²

\[U = R \times I \]

2mA et 10kOhm
= 20V OK
2mA and 20kOhm
= 40V STOP