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Abstract

We study the freeness problem for matrix semigroups. We show that the freeness problem
is decidable for upper-triangular 2×2 matrices with rational entries when the products are re-
stricted to certain bounded languages. We also show that this problem becomes undecidable
for large enough matrices.
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is available online 12 March 2014.

1 Introduction

We study the freeness problem over matrix semigroups. In general, if S is a semigroup and
X is a subset of S, we say that X is a code if for any integers m,n ≥ 1 and any elements
x1, . . . , xm, y1, . . . , yn ∈ X the equation

x1x2 . . . xm = y1y2 . . . yn

implies that m = n and xi = yi for 1 ≤ i ≤ m. The freeness problem over S consists of deciding
whether a finite subset of S is a code.

The freeness problem over S can also be stated as follows. Suppose Σ is a finite nonempty
alphabet and µ : Σ+ → S is a morphism. Then the freeness problem over S is to decide whether
µ is injective.

For a general introduction to freeness problems over semigroups see [5].

An interesting special case of the freeness problem concerns freeness of matrix semigroups. Let
R be a semiring and let k ≥ 1 be an integer. Then the semiring of k × k matrices (resp.
upper-triangular k×k matrices) is denoted by Rk×k (resp. Rk×k

uptr). The sets Rk×k and Rk×k
uptr are

monoids and the freeness problem over Rk×k is to decide whether a given morphism

µ : Σ∗ → Rk×k

is injective. Most cases of this problem are undecidable. In fact, Klarner, Birget and Satterfield
[8] proved that the freeness problem over N3×3 is undecidable. Cassaigne, Harju and Karhumäki
[4] improved this result by showing that the problem remains undecidable for N3×3

uptr. Both
of these undecidability results use the Post correspondence problem. Cassaigne, Harju and
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Karhumäki also discuss the freeness problem for 2× 2 matrices having rational entries (also see
[3]). This problem is still open even for upper-triangular 2× 2 matrices having rational entries.
On the other hand, Bell and Potapov [2] have proved that the freeness problem is undecidable
for diagonal matrices over quaternions. For some special decidable cases of the freeness problem
for 2× 2 matrices see [5], [4], [6] and [7].

In this paper we discuss the problem whether a given morphism µ : Σ∗ → Qk×k
uptr is injective

on certain bounded languages. This approach is inspired by the well-known fact that many
language theoretic problems which are undecidable in general become decidable when restricted
to bounded languages. Recall that a language L ⊆ Σ∗ is called bounded if there is an integer
s and words w1, . . . , ws ∈ Σ∗ such that L ⊆ w∗1w

∗
2 . . . w

∗
s . Our main result is that we can

decide the injectivity of a given morphism µ : {x, z1, . . . , zt+1}∗ → Q2×2
uptr on the language Lt =

z1x
∗z2x

∗z3 . . . ztx
∗zt+1 for any t ≥ 1, provided that the matrices µ(zi) are nonsingular for 1 ≤

i ≤ t + 1. To prove this result we study the representation of rational numbers in a rational
base.

On the other hand, we show that if we consider large enough matrices the injectivity problem
becomes undecidable even if restricted to certain very special bounded languages. Hence, con-
trary to the common situation in language theory, the restriction of the freeness problem over
bounded languages remains undecidable. The proof of our undecidability result uses a reduction
from Hilbert’s tenth problem in a way which is commonly used to obtain various undecidability
results for rational power series (see [9]) and which is also used in [1] to prove that the mortality
problem is undecidable on a bounded language.

2 Results and examples

As usual, Z and Q are the sets of integers and rational numbers. If k ≥ 1 is an integer, the set
of k × k matrices having integer (resp. rational) entries is denoted by Zk×k (resp. Qk×k) and
the set of upper-triangular k × k matrices is denoted by Zk×k

uptr (resp. Qk×k
uptr).

We consider two special families of bounded languages. Suppose t ≥ 1 is a positive integer. Let

Σt = {x, z1, . . . , zt+1}

be an alphabet having t+ 2 different letters and let

∆ = {x, y, z1, z2}

be an alphabet having four different letters. Define the languages Lt ⊆ Σ∗t and Kt ⊆ ∆∗ by

Lt = z1x
∗z2x

∗z3 · · · ztx∗zt+1

and
Kt = z1(x

∗y)t−1x∗z2.

We can now state our results.

Theorem 1. Let t be a positive integer. It is decidable whether a given morphism

µ : Σ∗t → Q2×2
uptr

such that µ(zi) is nonsingular for i = 1, . . . , t+ 1, is injective on Lt.

Theorem 2. There exist two positive integers k and t such that there is no algorithm to decide
whether a given morphism

µ : ∆∗ → Zk×k
uptr

is injective on Kt.



Observe that Theorem 1 holds true if Σt and Lt are replaced by ∆ and Kt, respectively.

Intuitively, the languages Kt of Theorem 2 are the simplest bounded languages for which we are
able to show that the injectivity problem is undecidable while the languages Lt of Theorem 1
are the most general bounded languages for which we are able to show decidability. The study
of the injectivity problem on bounded languages is motivated by the fact that while bounded
languages have a simple structure the induced matrix products already can be used to represent
very general sets as we will see in the proof of Theorem 2.

Our proof of Theorem 2 gives a method to compute the integers k and t in Theorem 2. Indeed,
if we are given a polynomial which has the required universality property for Hilbert’s tenth
problem, the computation of k is a tedious but straightforward task which is left to the interested
reader. The resulting value of k is large.

We will continue with examples which illustrate the problem considered in Theorem 1. In the
examples we assume that t is a positive integer,

µ : Σ∗t → Q2×2
uptr

is a morphism such that µ(zi) is nonsingular for i = 1, . . . , t+ 1. We denote

µ(x) = M and µ(zi) = Ni

for i = 1, . . . , t+ 1.

Example 3. Assume that t = 2. Let µ(x) =
( 3 0

0 1

)
and let µ(z2) =

( 2 1
0 3

)
. Then

µ(xmz2x
n) =

(
2 · 3m+n 3m

0 3

)
for all m,n ∈ N. Hence µ is injective on L2.

Example 4. Assume that t = 1. Let M = c
( 1 b

0 1

)
where b, c ∈ Q and c 6= 0. Then

M
n

= cn
( 1 nb

0 1

)
for all n ≥ 0. It follows that there exist different integers m,n ≥ 0 such that

M
m

= M
n

if and only if c ∈ {−1, 1} and b = 0. Hence µ is injective on L1 if and only if c 6∈ {−1, 1} or
b 6= 0.

Example 5. Assume that t = 2 and let M be as in Example 4. Let

N2 =
( A2 B2

0 C2

)
where A2, B2, C2 ∈ Q. Then

M
m
N2M

n
= cm+n

( A2 A2bn+B2 + C2bm
0 C2

)
for all m,n ≥ 0. This implies that if c 6∈ {−1, 1}, then µ is injective if and only if A2b 6= C2b. If
c ∈ {−1, 1}, then µ is not injective on L2.



Example 6. Assume that t ≥ 3. Let M and N2 be as in Example 5 and let

N3 =
( A3 B3

0 C3

)
where A3, B3, C3 ∈ Q. Then we can find two different triples (m1,m2,m3) and (n1, n2, n3) of
nonnegative integers such that

m1 +m2 +m3 = n1 + n2 + n3

and
C2C3m1 +A2C3m2 +A2A3m3 = C2C3n1 +A2C3n2 +A2A3n3.

This implies that
M

m1
N2M

m2
N3M

m3
= M

n1
N2M

n2
N3M

n3

which shows that µ is not injective on Lt.

In the proof of our undecidability result we use singular matrices. On the other hand, in
Theorem 1 we require that µ(zi) is nonsingular for i = 1, . . . , t + 1. This assumption plays an
essential role in our proof of the theorem. At present we do not know how to avoid using this
assumption.

The following examples illustrate the situations where some of the matrices µ(zi), 1 ≤ i ≤ t+ 1,
are singular. The first two examples show that the singularity of some µ(zi) often implies that µ
is not injective while the third example shows that this is not always the case. In these examples
we use the notations of Section 3.

Example 7. Let t ≥ 2 and assume that there is an integer i, 1 ≤ i ≤ t − 1, such that Ni is of

the form

(
0 B
0 C

)
, where B,C ∈ Q. Then

NiMNi+1 = NiNi+1M,

which implies that µ is not injective on Lt.

Example 8. Let t ≥ 2 and assume that there is an integer i, 3 ≤ i ≤ t + 1, such that Ni is of

the form

(
A B
0 0

)
, where A,B ∈ Q. Then

MNi−1Ni = Ni−1MNi,

which implies that µ is not injective on Lt.

Example 9. Let t ≥ 1 and let

N1 = N2 = · · · = Nt =

(
3 1
0 1

)
, Nt+1 =

(
0 1
0 1

)
, M =

(
3 0
0 1

)
.

Then for any m1, . . . ,mt ≥ 0 we have

N1M
m1
N2M

m2
N3 . . . NtM

mt
Nt+1 =

(
0 E
0 1

)
where

E = 3m1+···+mt+t + 3m1+···+mt−1+t−1 + · · ·+ 3m1+m2+2 + 3m1+1 + 1.

This implies that µ is injective on Lt.
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