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ABSTRACT

Aims. We propose a method based on the Principal Component Analysis (PCA) to classify and estimate the redshift of an extinction
law in a distant gravitational lens galaxy. Such extinction laws are very poorly known and an efficient method to characterize them is
badly needed.
Methods. We first compute the principal axes of an exhaustive collection of redshifted theoretical extinction laws. Then, we project
on these new axes the extinction law we wish to classify. The position of its projection among those redshifted extinction laws from
the collection allows us to characterize it and to estimate its redshift.
Results. Monte Carlo simulations show that the method is efficient and relatively precise for reasonably good signal-to-noise ratio
data. The application of the method to a real case, the gravitational lens system SBS 0909+532, leads to very encouraging results.
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1. Introduction

Extinction laws of remote galaxies (i.e. with the exception of
the Magellanic Clouds) are very poorly known. They have been
studied for a small number of cases, e.g., M 31 (Bianchi et al.
1996), M 101 (Rosa & Benvenuti 1994), NGC 2076 (Sahu et al.
1998), NGC 2207 (Berlind et al. 1997), NGC 7070 (Brosch et al.
1985), NGC 7625 (Brosch & Loinger 1991) and some lensing
galaxies like B1152+199 (Toft et al. 2000) and SBS 0909+532
(Motta et al. 2002). Gravitational lens systems can provide, un-
der some hypotheses, a way to extract the extinction law of lens-
ing galaxies by dividing the spectra of the lensed images of the
background quasar between each other (see, e.g., Nadeau et al.
1991; Jean & Surdej 1998; Motta et al. 2002). If we assume a
theoretical model for the extinction laws, i.e. the equations of
Cardelli et al. (1989, hereafter CCM) which only depend on
the RV parameter, we can try to classify the extracted extinc-
tion law and estimate its redshift zl. The common method used
to reach this aim is to fit the parameters RV and zl by minimizing
a χ2 (see, e.g., Jean & Surdej 1998). Here, we propose another
method, based on the Principal Component Analysis (PCA),
used to classify and to estimate the redshift of a remote extinc-
tion law. Note that PCA was already used to determine and ana-
lyze an extinction law from multi-band photometric data of stars
by Massa & Lillie (1978) and by Massa (1980a,b).

PCA is a mathematical technique which allows us to find pat-
terns in data and to express the data in a more compact way that
highlights their similarities and differences (see, e.g., Connolly
et al. 1995 and Murtagh & Heck 1987, for a mathematical de-
scription). This technique is a very efficient way to summarize
and classify data which may depend on a large number of pa-
rameters. Among many astronomical applications (see, for a
list of examples, Cabanac et al. 2002), PCA is often used as a

spectral classification tool for stars and galaxies (e.g., Scarlata
et al. 2006; Cabanac et al. 2002; Connolly et al. 1995).

We propose to classify gravitational lens extinction laws and
estimate their redshift by means of PCA. The first part of this
article describes the method and the second part presents Monte-
Carlo simulations to assess the reliability of the method and the
accuracy of the estimated parameters. In the third part, we apply
the method to a real case.

2. Description of the method

The principle of the method is the following. We first build a col-
lection of theoretical extinction laws computed with the help of
the relations of Cardelli et al. (1989) which only depend on the
RV parameter, RV =

AV
AB−AV

, the ratio of the total extinction in the
V band to the selective extinction between the B and V bands.
Thus, by computing extinction laws with different values of the
RV parameter and for redshifts zl within a given range, we fill
a collection of theoretical extinction laws, which has to be as
exhaustive as possible. Figure 1 illustrates three examples of ex-
tinction laws from that collection: two at a redshift zl of 0 with
RV values of 2.6 and 3.1 and one at zl = 0.5 with RV = 3.1.

Next, we have to compute the principal axes of the collec-
tion. This is done with the prcomp command in the R environ-
ment (R Development Core Team 2005). Then, by projecting
the extinction laws of the collection on the principal axes, we
obtain a new expression of the data. For example, let us con-
sider a collection made of 451 extinction laws which correspond
to 41 values of the RV parameter from 2 to 6 with a step of 0.1
and 11 redshifts from 0 to 1 with a step of 0.1. Each law has a
spectral resolution of 0.05 µm−1, that is to say 105 wave num-
bers between 0.3 and 5.5 µm−1. The data are first normalized,
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Fig. 1. Three extinction curves computed with the Cardelli et al. (1989)
relations for different values of the RV parameter and the redshift zl.

Fig. 2. First two principal component diagram for the 451 extinction
laws (see text). Each symbol corresponds to an extinction law. The ar-
row indicates the direction of increasing values for RV (2 ≤ RV ≤ 6).

i.e. their mean is subtracted and they are then divided by their
standard deviation. After this operation, the extinction laws have
a zero mean and a standard deviation equal to one. The normal-
ization is done in order to avoid a possible preponderance of
certain variables. In our case, the second step (the division by
the standard deviation) is not strictly necessary because the vari-
ables are all of the same type (relative extinction A(λ)/A(V)) and
of the same order but this division improves the results.

If we compute the principal axes and project the extinction
laws on them, we obtain the principal components. Figure 2
shows the first two principal components for the 451 extinction
laws.

The principal axes are computed in such a way that the pro-
jections of the extinction laws are the most spread, i.e. that their
variances are maximum. Figure 3 represents the variances of the
first ten principal components and shows that the first two com-
ponents dominate. Consequently, these two components contain

Fig. 3. Variances of the first ten principal components.

Fig. 4. Projections of Seaton’s extinction law for redshifts between 0
and 1 (large open squares) over the second and third principal compo-
nents of a collection of CCM extinction laws (small symbols). These
moments were chosen for a better visibility.

most of the information necessary to describe the 451 extinction
laws.

Finally, if we have an unknown extinction law that we wish
to characterize, we project it on the principal axes of the collec-
tion and we have to search for its nearest neighbour among the
451 projections.

To assess the aptitude of the method for classifying an exter-
nal extinction law, let us now test the method using an extinction
law which does not come from the CCM relations: the extinction
law published by Seaton (1979). The analytic expression of this
extinction law is computed for RV = 3.2. Figure 4 shows the pro-
jections of Seaton’s law for different redshifts on the second and
the third principal components (chosen for a better visibility) of
a collection built with the CCM extinction laws. The result is
that the projections of Seaton’s law are close to the correspond-
ing ones in the collection of CCM laws, at least for the lowest
redshifts (0 ≤ zl ≤ 0.5). For redshifts higher than 0.5, the dis-
crepancy is more important because Seaton’s law differs from
the CCM law with RV = 3.2 for 1/λ > 7 µm−1 (see Cardelli
et al. 1989).
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Fig. 5. Projections of two collections of extinction laws with a spectral
resolution of 0.05 µm−1 and a step in zl and RV of 0.1. The noisy col-
lection (small symbols) was derived by adding a Gaussian noise to the
extinction laws of the original collection (large symbols) from which
the principal axes were computed. The signal-to-noise ratio of the noisy
collection is 10 per resolution element.

3. Monte Carlo simulations

3.1. Presentation

To test the reliability and to estimate the accuracy of the method,
we have carried out a large number of Monte Carlo simulations.
We built 100 collections with the same values of parameters as
the original collection but we added Gaussian noise to the extinc-
tion laws in such a way that they are characterized by a given
signal-to-noise ratio. We then projected these noisy extinction
laws on the principal axes of the original collection. Because of
the noise added to the data, their projections do not necessarily
match those of the original data but may get closer to projections
of laws characterized by other parameter values. Therefore, by
doing 100 simulations for each configuration of the parameters
(spectral resolution, steps in zl and RV and signal-to-noise ratio)
and by computing the standard deviation of the 100 projections
around the projection of the original law, we can estimate the
error on the determination of the parameters zl and RV for each
projected law.

3.2. Example

Let us consider two collections with the same spectral resolution
(0.05 µm−1) and the same steps in zl and RV (0.1). We now add
a Gaussian noise to the second collection in such a way that the
final signal-to-noise ratio is 10 per resolution element. Figure 5
represents the projections of the two collections on the principal
axes of the original collection (i.e. without noise). We can see
in Fig. 5 that the projection of a noisy extinction law can be
rather distant from the projection of the original law and, thus,
its nearest neighbour may be the projection of an extinction law
with different parameter values.

Fig. 6. Contour map of the uncertainty σzl as a function of RV and zl

for a signal-to-noise ratio of 3 per resolution element and a spectral
resolution of 0.1 µm−1. The darker it is, the smaller the uncertainty is.

To find the nearest neighbour of a projection, we have first
to compute the weighed distances d between all the projections
(see Cabanac et al. 2002):

d =

√√
m∑

i=1

√
λi(ni − oi)2

where m is the number of variables, i.e. the number of spec-
tral resolution elements; λi is the eigenvalue associated with the
eigenvector vi; ni and oi are the projections of the noisy extinc-
tion law and of the original extinction law on the eigenvector vi,
respectively. For a given projection of a noisy extinction law, the
projection whose distance is minimal is its nearest neighbour,
from which we extract the parameters zl and RV of the corre-
sponding extinction law. By repeating this process 100 times,
we obtain two sets of 100 values of zl and RV and, by computing
their standard deviations, we can estimate the accuracy of the
method.

3.3. Results

The simulations show that the uncertainties on the estimated pa-
rameters (zl and RV ) depend on the parameters themselves, on
the signal-to-noise ratio, on the spectral resolution and on the
sampling rate in RV and zl of the collection. For example, let
us consider a set of 100 collections of extinction laws with a
spectral resolution of 0.1 µm−1, a step in RV and zl of 0.1 and
a signal-to-noise ratio of 3. Figures 6 and 7 present, as contour
maps, the uncertainties σzl and σRV affecting the estimates of
the zl and RV parameters. Figure 6 shows that the errorσzl on the
estimate of the zl parameter varies from about 0.02 for the lowest
values of zl and RV to 0.15 for the highest values of zl and RV .
On the other side, as shown by Fig. 7, the uncertainty σRV on the
estimate of the RV parameter varies from a bit less than 0.06 to
about 0.46. For both zl and RV estimates, the relative uncertain-
ties do not exceed 10% or so in this example. Furthermore, we
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Fig. 7. Contour map of the uncertainty σRV as a function of RV and zl

for a signal-to-noise ratio of 3 per resolution element and a spectral
resolution of 0.1 µm−1. The darker it is, the smaller the uncertainty is.

have to make sure that the collection is sufficiently exhaustive
(i.e. with a high sampling rate in zl and RV ) in order to allow the
projections to match with good nearby neighbours. Otherwise,
the standard deviations will not be representative of the true error
on the estimates. Of course, a much larger number of simulations
have been carried out with different spectral resolutions, differ-
ent sampling rates in zl and RV and various signal-to-noise ratios.
Those simulations lead to consistent and encouraging results.

4. Application to a real case: SBS 0909+532

4.1. Introduction

Motta et al. (2002) extracted the extinction law of the lensing
galaxy of the gravitational lens system SBS 0909+532 from in-
tegral field spectroscopic observations and fitted the theoretical
expressions from Cardelli et al. (1989) to it. After fixing the lens
redshift to its known value (zl = 0.83), they found by χ2 mini-
mization a value of 2.1 for the RV parameter. We are now going
to apply our PCA-based method to this extinction law in order
to estimate the values of the zl and RV parameters.

4.2. Application of the method

The extinction law published by Motta et al. (2002) consists of
the calculation of 20 differential extinctions between the two
components of the gravitational lens system. On the other side,
the relations of Cardelli et al. (1989) give a normalized expres-
sion of the extinction: A(λ)/A(V). Since we are not supposed to
know the lens redshift of SBS 0909+532, we cannot estimate the
value of A(V) in the lens frame. Therefore, we have to normalize
in the same way all the extinction laws, that of Motta et al. (2002)
as well as those of Cardelli et al. (1989). We choose a classical
normalization: their mean is first subtracted and the laws are then
divided by their standard deviation. Figure 8 shows the extinc-
tion curve published by Motta et al. (2002), after normalization.

Fig. 8. Normalized extinction law of the lensing galaxy of
SBS 0909+532, published by Motta et al. (2002)

Fig. 9. Projections of the extinction laws from the collection and of the
one extracted by Motta et al. (2002), marked “M”, over the two first
principal axes of the collection.

To classify the observed extinction law as a function of its
position in the space defined by the principal axes of the original
collection, the latter must be made of extinction laws with the
same spectral sampling as the observed one. We therefore build
a collection of normalized extinction laws with, as spectral sam-
pling, the 20 wavelengths of the observed curve. Since we do
not know a priori the values of zl and RV , we first choose large
ranges for these parameters: zl between 0 and 1 with a step of 0.1,
and RV between 1 and 6 with a step of 0.2. Then, we compute the
principal axes of this collection and project on them the observed
extinction law. The result for the first two principal components
is depicted in Fig. 9. The apparent degeneracy of projections for
z ≤ 0.4 results from the fact that the extinction laws are projected
on a plane. In the full space, the points are indeed distinct.

We can already notice that the projection, marked “M”, of
the law from Motta et al. (2002) is between the points represent-
ing the laws at zl = 0.8 and zl = 0.9. As for the RV parameter,
we cannot estimate it yet. To yield a more accurate estimate of
the parameters zl and RV , we repeat the same process with a
smaller range of redshifts and a higher sampling rate. We there-
fore build a new collection of normalized extinction laws with
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Fig. 10. “Zoom” of Fig. 9 for redshifts zl between 0.8 and 0.9 and for RV

values between 1 and 6. The letter “M” still corresponds to the observed
law.

a redshift between 0.8 and 0.9 and a step reduced to 0.01. We
keep the same range and the same step for the RV parameter
(RV between 1 and 6 with a step of 0.2). Again, we compute the
principal components and we project the extinction laws on the
principal axes. The results for the two principal components are
presented in Fig. 10. The nearest projection of an extinction law
from the collection is the one which corresponds to a redshift
of 0.84 and a RV value of 2.4. These results are to be compared
with those of Motta et al. (2002): zl = 0.83 (previously known)
and RV = 2.1 ± 0.9.

4.3. Error estimate

Our results seem to be consistent with the published values but
we still have to estimate their precision. For that purpose, we
here also use Monte Carlo simulations. We simulate 100 collec-
tions with the same configuration as in the original collection
but we add a Gaussian noise whose dispersion is, for each wave-
length, the corresponding error stated in the extinction law of
Motta et al. (2002). These simulated laws are then projected on
the principal axes of the original collection and we calculate the
dispersions σzl and σRV of the parameters zl and RV of the near-
est projections. Figures 11 and 12 show these dispersions σzl

and σRV .
Finally, for a redshift of zl = 0.84 and a value of the pa-

rameter RV = 2.4, the corresponding uncertainties deduced from
the dispersion of the projections are σzl � 0.02 and σRV � 1.2.
These results are in very good agreement with those published
by Motta et al. (2002). Of course, we can go further and retrieve
better estimates of the parameters by repeating the process with
a finer collection, i.e. smaller sampling steps in zl and RV , around
the zl and RV values found so far.

4.4. Conclusion

The result of the application of our method to this real case
is very encouraging. Without knowing the redshift zl and the
value of the RV parameter, we are able to estimate them with
a good precision for zl (σzl � 0.02) and an uncertainty on RV
(σRV � 1.2) comparable to those Motta et al. (2002) obtained by

Fig. 11. Contour map of the uncertainties σzl of the zl parameter de-
duced from the projections of 100 simulated collections of extinction
laws. The darker it is, the smaller the uncertainty is.

Fig. 12. Same as Fig. 11 for the RV parameter.

χ2 minimization with the redshift fixed. Mediavilla et al. (2005)
completed in the ultraviolet range the extinction law of Motta
et al. (2002). By proceeding with this completed extinction law
in the same way as before, we obtain the following estimates:
zl � 0.78 and RV = 1.0. The discrepancy with the published
results is now more important. The most probable explanation
for this discrepancy is that the law of Mediavilla et al. (2005)
moves away from the extinction laws deduced from the rela-
tions of Cardelli et al. (1989). Of course, before validating this
method, we must test it on numerous other examples.
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5. Discussion and conclusion

We have presented a PCA-based method to classify remote ex-
tinction laws in lensing galaxies, in the same way as Cabanac
et al. (2002) did with star and galaxy spectra.

By first computing the principal axes of an exhaustive col-
lection of well-defined extinction laws and then by projecting on
these axes another extinction law taken outside of the collection,
we are able to classify it and estimate its redshift zl.

Monte Carlo simulations have shown that, as long as the
signal-to-noise ratio and the spectral resolution are reasonably
good, the parameters RV and zl can be retrieved with a good pre-
cision. Numerous other simulations with different configurations
of the spectral resolution and of the completeness of the collec-
tion confirm this encouraging result.

Application of this method to the extinction curve of the
lensing galaxy of SBS 0909+532, published by Motta et al.
(2002), yields a good estimate for the true redshift zl and the
RV parameter. We could also have applied our method to the
extinction curves of Falco et al. (1999) and, very recently, of
Elíasdóttir et al. (2006) but these extinction curves do not have
as good a spectral sampling as the one published by Motta et al.
(2002), obtained with spectroscopic observations.

One advantage of this PCA-based method over the tradi-
tional χ2 minimization is that, in case there is no clear estimate
of the parameters, the position of the projection of the target law
among the other ones can give some information about a “fam-
ily resemblance” with other extinction laws, though limited to
the ones included in the collection. This strengthens the neces-
sity to have a very exhaustive collection of extinction laws. On
the other hand, a high χ2 does not yield such an information.

Finally, if we could retrieve several remote extinction laws
with a good signal-to-noise ratio and a good spectral sampling,
we could first estimate their redshift and the value of the RV pa-
rameter and include them in the collection. This improved col-
lection will then be used to classify further extinction laws and,

therefore, we could gradually explore the properties of the inter-
stellar dust in distant galaxies.
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