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ABSTRACT

Context. CoRoT and Kepler observations of red giant stars revealed very rich spectra of non-radial solar-like oscillations. Of particular
interest was the detection of mixed modes that exhibit significant amplitude, both in the core and at the surface of the stars. It opens
the possibility of probing the internal structure from their innermost layers up to their surface throughout their evolution on the red
giant branch, as well as on the red clump.

Aims. Our objective is primarily to provide physical insight into the mechanism responsible for mixed-mode amplitudes and lifetimes.
Subsequently, we aim at understanding the evolution and structure of red-giant spectra along with their evolution. The study of
energetic aspects of these oscillations is also important for predicting the mode parameters in the power spectrum.

Methods. Non-adiabatic computations, including a time-dependent treatment of convection, are performed and provide the lifetimes
of radial and non-radial mixed modes. We then combine these mode lifetimes and inertias with a stochastic excitation model that
gives us their heights in the power spectra.

Results. For stars representative of CoRoT and Kepler observations, we show under which circumstances mixed modes have heights
comparable to radial ones. We stress the importance of the radiative damping in determining the height of mixed modes. Finally, we
derive an estimate for the height ratio between a g-type and a p-type mode. This can thus be used as a first estimate of the detectability

of mixed modes.
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1. Introduction

One of the major achievements of the CoRoT (Baglin et al. 2006)
and Kepler (Gilliland et al. 2010) space-borne missions has been
to detect a rich harvest of both radial and non-radial solar-like
oscillations in red-giant stars (e.g. De Ridder et al. 2009; Mosser
etal. 2010; Bedding 2011; Beck et al. 2011). These stars present
a structure characterised by a high density contrast between the
core and the envelope. It leads to the appearance of modes be-
having as acoustic modes in the stellar envelope and as grav-
ity modes in the core. These mixed modes, as studied in the
early works of Dziembowski (1971) for Cepheids and Scuflaire
(1974) for a condensed polytropic model, have been subject to
an extensive investigation from a theoretical point of view (e.g.
Dziembowski et al. 2001; Dupret et al. 2009; Montalban et al.
2010; Dziembowski 2012; Montalbian & Noels 2013). From an
observational point of view, these modes present the major ad-
vantage of having detectable amplitudes at the star surface and
of being able to probe the innermost region. We called the modes
that present acoustic-mode characteristics p-type modes. The
others, which are mostly trapped in the core, are called g-type
modes.

Among other results, the period spacing of mixed modes en-
ables the stars’ evolutionary stage to be determined (Bedding
2011; Mosser et al. 2011). Indeed, it allows distinguishing be-
tween the stars belonging to the ascending red-giant branch (hy-
drogen shell-burning phase) from those belonging to the red

* Appendices are available in electronic form at
http://www.aanda.org
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clump (helium central burning phase), which was previously im-
possible for field stars. This leap forward then opened the way
to a large number of applications. For instance, it permitted us to
give constraints on the mass loss during the helium flash (Mosser
et al. 2012a), to investigate stellar population in the Galaxy (e.g.
Miglio et al. 2009, 2013), and more recently to identify the phys-
ical nature of the semi-regular variability in M giants (Mosser
et al. 2013). Another key result is the ability of mixed modes
to unveil the rotation profile of the innermost region of red gi-
ants (Beck et al. 2012; Deheuvels et al. 2012, 2014; Mosser
et al. 2012b; Goupil et al. 2013; Ouazzani et al. 2013), as well
as to emphasise the need for additional physical processes to
transport angular momentum in current red-giant models (e.g.
Eggenberger et al. 2012; Marques et al. 2013).

All these works mainly focused on the red-giant oscilla-
tion pattern. However, the observed power spectra also pro-
vide us with additional information through mode heights and
linewidths that are related to the amplitudes and lifetimes of the
modes (see Sects. 2.2 and 2.3 for details). Those observables
have recently been considered more thoroughly for radial modes
both on the observational (e.g. Baudin et al. 2011; Corsaro et al.
2012, 2013; Appourchaux et al. 2012, 2014) and on the theoret-
ical side (e.g. Chaplin et al. 2009b; Belkacem et al. 2011, 2012)
since they are important for estimates of mode detectability, and
they give us constraints on the interaction between pulsation and
turbulent convection.

Nevertheless, the literature is more tenuous about the am-
plitudes and lifetimes of mixed modes. Only very recently
have mixed-mode linewidths and amplitudes been measured
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(Benomar et al. 2013, 2014), mainly because of the com-
plexity of mode fitting for power spectra including mixed
modes. Moreover, heights and linewidths determined from
observed spectra are closely correlated (see Chaplin et al.
1998). Concerning the theoretical modelling of these modes,
Christensen-Dalsgaard (2004) discuss the trapping and inertia
of non-radial adiabatic modes and the possible effects on am-
plitudes of subgiants and red giants. Houdek & Gough (2002)
computed theoretical amplitudes and lifetimes of radial modes
in the star ¢ Hydrae. Finally, Dupret et al. (2009) propose the
first theoretical modelling of the observed power spectra includ-
ing dipole and quadrupole mixed modes, based on non-adiabatic
calculations as well as modelling of mode excitation. It enables
us to gain insight into how to interpret the observed spectra of
red giants and their change with stellar evolution. However, this
work was restricted to very massive models (2 and 3 My).

Motivated by all these recent results and the pioneering work
of Dupret et al. (2009), our objective is to go further in theoret-
ical study of the energetic aspects of these oscillations in red
giants. We assume that the modes are stochastically excited by
turbulent motions at the top of the convective envelope (see e.g.
Samadi 2011) and damped through the coherent interaction be-
tween convection and oscillations (see e.g. Belkacem & Samadi
2013). In this paper, we present models of lower masses than in
Dupret et al. (2009), which are more representative of CoRoT
and Kepler samples, and discuss the effect of the mass on the
detectability of mixed modes. Compared to Dupret et al. (2009),
both our equilibrium and oscillations models have been strongly
improved for the specific case of red giants (see Sect. 2).

The paper is thus organised as follows. In Sect. 2, we com-
pute the lifetimes of radial and non-radial modes with a non-
adiabatic code, using a non-local and time-dependent treatment
of convection, as well as the amplitudes with a stochastic excita-
tion model. With these results, we discuss in Sect. 3 the effect of
the radiative damping on the height ratio between a g-type and a
p-type mixed mode. We also study the effect of the duration of
observation on our synthetic power spectra to draw conclusions
about the possibility of detecting mixed modes. Finally, Sect. 3.3
is dedicated to conclusions and discussions.

2. Modelling the power spectra
2.1. Computation of equilibrium models

We first consider 1.5 M models that are typical of CoRoT and
Kepler observed red-giant stars from the bottom of the red-giant
branch to the helium core-burning phase (see Models A to D in
Table 1 and Fig. 1). For each model we give the global seismic
parameters: the large frequency separation (Av), the frequency
of maximum oscillation power (vi.x ), and the asymptotic period
spacing (AIT). An adiabatic analysis of these models is presented
in Montalban & Noels (2013). Second, we selected models be-
tween 1 and 2.1 M, (see Models E to G in Table 1 and Fig. 1) ata
similar evolutionary stage to Model B. The criteria for choosing
these models, as well as the consquences for theoretical power
spectra are discussed in Sect. 3.3.

All the equilibrium models were computed using the ATON
stellar evolutionary code (Ventura et al. 2008) with X = 0.7 and
Z = 0.02 for the initial chemical composition. The convection is
described by the classical mixing-length theory (Bohm-Vitense
1958) with aympr = 1.9. The radiative opacities come from
OPAL (Iglesias & Rogers 1996) for the metal mixture of
Grevesse & Noels (1993) completed with Alexander & Ferguson
(1994) at low temperatures. The conductive opacities correspond
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Fig. 1. Evolutionary tracks in the Hertzprung-Russel diagram of our
models. Selected models are represented by dots. Blue dots correspond
to models of a 1.5 My, star at different ages (on the red-giant branch and
in the clump). Black dots corresponds to models with the same number
of mixed modes over a large separation.

Table 1. Global parameters of our models.

Model Mass [M,] Radius [Ro] AIl[s] Av[uHz] v [pHZ]

A 1.5 5.17 79.7 14.1 190
B 1.5 7.31 70.5 8.4 97
C 1.5 11.9 57.2 4 37
D 1.5 11.9 242.5 4 37
E 1.0 6.3 76.7 8.5 88
F 1.7 8.1 68.6 7.7 90
G 2.1 10.5 88.0 5.7 66

Notes. The large separation Ay and the frequency of maximum power
Ymax are computed using the seismic scaling relations (e.g. Mosser et al.
2010; Belkacem 2012). The period spacing AIl is computed using the
asymptotic expansion (e.g. Tassoul 1980).

to the Potekhin et al. (1999) treatment corrected following the
improvement of the treatment of the e-e scattering contribu-
tion (Cassisi et al. 2007). Thermodynamics quantities are de-
rived from OPAL (Rogers & Nayfonov 2002), Saumon et al.
(1995) for the pressure ionisation regime and Stolzmann &
Bloecker (1996) treatment for the He/C/O mixtures. Finally, the
nuclear cross-sections are from NACRE compilation (Angulo
et al. 1999), and the surface boundary conditions are provided
by a grey atmosphere following the treatment by Henyey et al.
(1965).

2.2. Non-adiabatic computations

To compute theoretical mode frequencies (v), mode inertias (1),
and mode lifetimes (7), we use the non-adiabatic pulsation code
MAD (Dupret et al. 2002). Since the major outcome of non-
adiabatic computations are the mode lifetimes (or equivalently
damping rates 1), we describe the different contributions to the
damping and the way they are modelled. The lifetime of a
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mode, 7, is related to the linewidth I" of the peak in the power
spectrum by

ey

The damping rate of a mode is given by the integral expression
(e.g. Dupret et al. 2009)

1
- | aw
= e ®EM fv

where f dW is the work performed by the gas during one oscil-
lation cycle, &, the radial component of the eigendisplacement
vector, R and M the total radius and mass of the star, and / the
dimensionless mode inertia.

Two regions of the red giants can play a significant role in
the work integral: the radiative region in the core of the red giant
and especially around the bottom of the H-burning shell (W)
and the outer non-adiabatic part of the convective envelope (W.)

I'=1/rt=n/n.

©))

fdw - We+ W 3)
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For more insight into the radiative term, it is useful to consider
the asymptotic formulation developed by Dziembowski (1977)
(see also Van Hoolst et al. 1998; Godart et al. 2009) for g modes.
It gives

~ f aw - Kee 1))*2 f Vaa = V VaaNgL
o dr 2y3 o v prd

dr, 4)

0

where ry and r,. are the lower and upper radii of the g-cavity, K is
a normalisation constant, V and V,q are the real and adiabatic
gradients, N the Brunt-Viisild frequency, g the gravity, L the
local luminosity, and p the pressure. This formulation shows that
the main contribution to the radiative damping occurs around the
bottom of the H-burning shell. When the star evolves on the red-
giant branch, N/r° increases as a result of the contraction of the
central layers, leading to an increase in the radiative damping as
shown in Fig. 2.

About the convective contribution, we note that the transition
region occurs in the upper part of the convective envelope. In this
region, the time scale of most energetic turbulent eddies is also
close to the oscillation periods. It is therefore important for the
estimate of the damping rates to take the interaction between
convection and oscillations into account. This is done by using
a non-local, time-dependent treatment of the convection (TDC)
that considers the variations in the convective flux and of the
turbulent pressure due to the oscillations (see Grigahcene et al.
2005; Dupret et al. 2006b, for the description of this treatment).
Gough (1977) proposed a second treatment based on the “kinetic
of gas” picture of the MLT. For the non-local parameters, we
used a = 10 and b = 3 according to the definition of Balmforth
(1992). This set of parameters fits the turbulent pressure in sub-
adiabatic atmospheric layers of a solar hydrodynamic simulation
(Dupret et al. 2006a).

The main source of uncertainty in the TDC treatment comes
from the closure term of the perturbed energy equation. This un-
certainty appears in the form of a complex parameter 8 (Eqgs. (2)
and (33) of Grigahcene et al. 2005). Belkacem et al. (2012) show
that this parameter can be adjusted to obtain a plateau of the
damping rates at the frequency v, predicted by the scaling re-

lations (Vmax & g/ Telf/f, first conjectured by Brown et al. 1991),

which is similar to having a minimum in the product of the in-
ertia and the damping rate. The existence of this plateau is well
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asymptotic dW 4 /dlogT
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Fig. 2. Integrant of the asymptotic expansion of the radiative damping
(Eq. (4)) for Models A (blue), B (green), and C (red). The vertical lines
represent the lower limit of the H-burning shell in each model. The work
is normalised by GM?/R.

known in the solar case and is at the origin of the maximum ob-
served in power spectra. We thus adjust this parameter follow-
ing the procedure of Belkacem et al. (2012), while paying par-
ticular attention to avoiding non-physical spurious oscillations
(Grigahcene et al. 2005). In this procedure we assume that the
canonical scaling relation for vy, is valid. However, we know
this relation is incomplete because, for example, the dependence
on the Mach number is missing. Nevertheless, for red-giant stars,
the dependence of vy, on the surface gravity dominates, making
the variation in the Mach number disappear during the evolution
on the red-giant branch (see Belkacem et al. 2013). In Fig. 3,
using a unique value of B (Brgs = —0.106 — 0.945i), we see
that we can reproduce a minimum of 7/ around the frequency
vmax predicted by the scaling relation for all our RGB models.
For the helium-burning model, we have to take another value of
B (Brec = —0.130 — 0.950i). This can seem to amount to only a
small difference, but our predictions are very sensitive to this pa-
rameter. We discuss the effect of this parameter on the lifetimes
of the modes in Sect. 3.2. We emphasise that such an approach
makes our predictions more accurate than in Dupret et al. (2009),
where the bell shape of the heights and the v, scaling relation
were not reproduced.

A numerical difficulty occurring when computing red giant
oscillation spectra comes from the existence of discontinuities
of chemical composition and density in the equilibrium models.
These discontinuities come from the evolution of the convec-
tive zones in the star, and they play an important role in mixed-
mode trapping. The amplitudes of eigenfunctions on each side of
the discontinuities strongly change from one mode to the next.
Therefore, we have adjusted the oscillation code to ensure the
continuity of the Lagrangian perturbations of pressure, gravita-
tional potential, and its gradient (see also Reese et al. 2014).
Special care was also given to computing the Brunt-Viisili fre-
quency because it affects our results strongly

Another significant difficulty arises from the high den-
sity of non-radial modes over a large separation. It leads to
having modes with very close angular frequencies (real part
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Fig. 3. Product of the damping rates (17 in uHz) by the dimensionless
mode inertia (/) for radial modes for all our RGB models. The mini-
mums of the curves correspond to the frequency of maximum height
found in theoretical power spectra. The dashed lines are the v,,x deriv-
ing from scaling relations.

of modes eigenvalues) but with very different damping rates
(imaginary part of the eigenvalues). The algorithm solving the
non-adiabatic equations searches the eigenvalues by the inverse
iteration method. Thus, it converges towards the closest eigen-
value to the initial guess in the complex plane. This eigenvalue
is not necessarily the one that corresponds to the frequency and
trapping of the initial adiabatic mode. Using only the adiabatic
frequencies as an initial guess for the real part of the eigenval-
ues, the convergence to the correct mode (i.e. the one with the
frequency and trapping corresponding to the adiabatic case) of
the algorithm is not easily ensured. Initial adiabatic frequencies
of different modes could lead to the same eigenvalue in the non-
adiabatic algorithm. As a remedy, we have to find an initial guess
of the imaginary part for the frequency to be sure to obtain all
the modes with different trappings. To do this, we use the inertia
ratio between radial and non-radial modes derived from previous
adiabatic calculations. We scale the initial guess for the imagi-
nary part of the eigenvalues to the damping rates of radial modes
with this inertia ratio.

2.3. Stochastic excitation model

To compute mode heights, one also needs to compute mode
driving. For this purpose, we consider the stochastic excitation
model of Samadi & Goupil (2001; see also Belkacem et al.
2006a,b; Samadi 2011) and consider the turbulent Reynolds
stresses (hereafter PR) as the dominant driving source. We do
not take the entropy contribution into account (thermal source of
driving) for which a severe deficiency in the modelling with non-
adiabatic eigenfunctions appears (as discussed in Samadi et al.
2013).

We use solar parameters for describing the turbulence in the
upper convective layers (constrained with a 3D numerical sim-
ulation by Samadi et al. 2003) with an extended Kolmogorov
spectrum (EKS) for the £ dependency of the kinetic energy spec-
trum (k is the wavenumber in the Fourrier space of turbulence)
and a Lorentzian profile, with a high frequency cut-off to take the
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Table 2. Conversion factor C? from radial velocities to intensity varia-
tions for heights around vy,

Model v [puHz]  C}ppm*/(m/s)*]  H [ppm?/uHz]
A 190 3.6 x 10° 9x10°
B 97 2.9x10° 2 x 10*
C 37 2.4x%10° 8 x 10*
D 37 3.2x 10° 4x10°
E 88 8.8 x 10° 4% 10*
F 90 12.7 x 10° 6 x 10*
G 66 39.1 x 10° 3x10°

sweeping phenomena into account for the eddy time-correlation
function (Belkacem et al. 2010). For the injection length scale,
we assume that it scales as the pressure scale height at the pho-
tosphere (Samadi et al. 2008).

With the power provided by the Reynold stresses and the
damping rates from non-adiabatic computations, we then com-
pute the amplitude velocity (V) of the mode, using

2 Pr
2nM1

&)

One can convert the amplitude velocity into bolometric inten-
sity following Samadi et al. (2013). A bolometric conversion
that consider the instrumental response was originally proposed
by Michel et al. (2009). However, this approach is made in the
adiabatic hypothesis. To make direct comparisons with observa-
tions, the visibilities of the mode should also be accounted for.
We give in Table 2 the conversion factor to obtain the height for
the radial mode at vy in ppm?/uHz. When the non-adiabatic
phase lag is neglected here, it is obtained using the relation

oL 4fr -2

—_— = = 6
L= 2ok TGV ©)
with fr = |0Teq/Terl/|é-/R|. We decided to present our results

in radial velocity because the conversion to bolometric intensity
introduces additional uncertainties.

To compute the height H of a mode, we have to distinguish
between resolved and unresolved modes. We assume that modes
are resolved when their lifetimes (7) are shorter than the duration
of observation (Tops), i.€., T << Tops/2. In this case, we use for
the height of the modes in the power spectra (e.g. Lochard et al.
2005)

H = VR, ©)
and for unresolved modes 7 > Tops/2
Heo = V(R)Tons/2, (8)

where V(R) is the amplitude of the oscillation where it is mea-
sured (assumed here at the optical depth 7g = 0.1), not includ-
ing the disk integration factor. These formulae are strictly cor-
rect in the limit cases, when the lifetimes are much longer or
shorter than the duration of observations. Both formulae give
the same value for the height in 7 = T,ps/2, but using Eq. (7) for
T < Tobs/2 and Eq. (8) for 7 > Tops/2, as done in Dupret et al.
(2009), gives a derivative discontinuity in 7ops/2.

The relation between amplitudes and heights depends on
whether we deal with a two-sided or a single-sided power spec-
trum. In the first case, the normalisation is such that the integral
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of the spectrum from —oo to +oco gives the total energy, so we
have

V = VaTH. )

In the opposite case, with a single-sided power spectrum we have

V = nTH/2. (10)

Here we consider a two-sided power spectrum, which is a dif-
ferent convention than the one used in Chaplin et al. (2009a).
Based on the formulation proposed by Fletcher et al. (2006; see
also Chaplin et al. 2009a) we have

— Vz(R)Tobs
Tobs/T +2’

which tends to the same value of Egs. (7) and (8) when 7 <«
Tobs/2 and T > Tops/2, respectively, and interpolate the heights
smoothly between these two extreme cases. All our power spec-
tra are computed using this latest description of the height.

With Eq. (11) the height of the mode is only half its maximal
height if 7 = Tops/2. More observational times is required to
fully resolve a mode. Indeed, in an observed power spectrum it is
necessary to have many more than two points within a linewidth
to resolve the mode.

In this work we choose to take 7,5 = 360 days. Even though
we now have a longer observational time with Kepler, we picked
up this value to discuss the different patterns that can occur in a
power spectra and to make a clear distinction between resolved
and unresolved modes in all our models. We discuss the effect of
increasing Tops for each model in Sect. 3.

(1)

3. Results
3.1. Non-adiabatic effects on power spectra

The shape of the power spectra is mainly determined by two
contributions: the modulation of inertia through mode trapping
and the radiative damping. To discuss this shape, we describe the
behaviour of the ratio between the height of a g-type mode (H,)
and of a p-type mode (H),). From Egs. (5) and (11), we have

(ﬂ ) (PRIl £y
H,| ~ (PrD)p n 12 f,’

where f;, = (Tobsty,p + 2)~!. In the following, we derive this
height ratio in the two asymptotic cases to discuss the main phys-
ical properties of the modes that can affect this ratio.

The following simple formulae illustrate this and can help
with interpreting our results. Assuming that the modes are re-
solved, f,/f, in Eq. (12) tends to 1,/n, and the height ratio is
given by

() - )
HP res (PRI)P (T]I)g ’

where Prl does not depend on the trapping (see Samadi &
Goupil 2001) because the stochastic excitation is only efficient
close to the surface (so (P.1), = (P,I),). Taking into account the
equation of the damping rate Eq. (2) and the decomposition of
the work integral into the contribution of the core (W,) and the
envelope (W.) Eq. (3), we can rewrite the height ratio as

> ((f : -
()=o) - (] (-l

12)

(13)

(14)

where we use (W,), =~ (W.), since the eigenfunctions of p-type
and g-type modes are very close in the envelope. We also ne-
glect the core contribution in the work integral of a p-type mode.
We note from this formula that, when the radiative damping
of g-type modes is negligible by comparison with the convec-
tive damping, their heights are the same as the height of p-type
modes if they are resolved. Increasing the radiative damping
clearly decreases the height ratio.

If we assume now that the p-type mode is resolved and the
g-type mode is not (which is often the case in observed power
spectra), the situation is different, and f,/f, in Eq. (12) tends to
Mp Tobs/2 SO

(H;mres) _ (Prl)g (7719119)2 Tobs _ ((771)19 )277 Tobs (15)

H, (PrD), mgl2 2 (mhy) " 2"

following the same development as in Eq. (14), we find

(H;anS): (ﬂ) npl_p[1+ Lorede]Tobs. (16)
H, H,) .. "1, aw, ) 2

env

We see from this formula that the height ratio of unresolved
modes depends on both their inertia and radiative damping.

We can also rewrite the resolution criteria (Tops/2 > 74)
where 7, = 1/n, represents the lifetime of the mixed mode with
the maximum inertia, so that all modes are resolved:

Tops I(/ [1 n Lore de)

> 2
2 1, dw,

a7

env

We see in Eqs. (14), (16), and (17) that there are clearly two con-
tributions, the inertia and the non-adiabatic effects, that deter-
mine the shape of the power spectra. How the inertia depends on
the models is explained in several other studies (e.g. Montalban
& Noels 2013) and can be understood through simple asymp-
totic derivations (see Goupil et al. 2013, and Appendix A). The
work due to non-adiabatic effects for p-type mode can be esti-
mated with scaling relations (Belkacem et al. 2013). The only
remaining unknown is the ratio of the work integrals. We dis-
cuss its evolution along with the evolution of the star in the next
section.

3.2. Power spectrum evolution of a 1.5 M, star

In this section, we discuss the changes in the power spectrum
along with the stellar evolution. We focus on the changes in the
damping rates and on the height of mixed modes, as well as
the effect of increasing the duration of observation. We consider
the 1.5 M, models as described in Sect. 2.1.

The theoretical lifetimes of the p-type modes can be strongly
affected by the choice of the complex parameter 3 in the time-
dependent convection treatment. We present in Fig. 5 the life-
times of the radial modes for the model B for different values of
the 8 parameter. All the presented values of 8 give a minimum of
nl around the frequency v predicted by the scaling relation.

We first computed the lifetimes of radial modes for many
values of 3 throughout the complex plane. Based on this inves-
tigation, we located a value of B that gives a minimum of n/
at vmax for all our RGB models. We first present the results for
this 8. The power spectra for other values of 3 are presented at
the end of this section.

The work integrals of Models A to C are presented in Fig. 4,
while the corresponding mode lifetimes and theoretical power
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Fig.4. Core and envelope contributions to the work integral for the three RGB models of 1.5 M. The work is normalised by GM?/R. Unlike the
envelope contribution, the core contribution depends on the trapping and on the angular degree of the mode.
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Fig. 5. Theoretical lifetimes of radial modes of model B for different
values of . The lifetimes corresponding to 8 used in this paper are
denoted by red squares.

spectra are displayed in Fig. 7. As an overall tendency, we find
the well known global changes of the power spectra in Fig. 6
with the evolution of the star on the RGB. (The frequency range
of solar-like oscillations goes to lower frequency and, the high
frequency and the period spacing decrease, and the height of the
modes in the power spectrum increases.) In particular, we find an
increase in the heights in the power spectra during the evolution
of the star that is qualitatively compatible with previous theo-
retical computations (Samadi et al. 2012) and with observations
(Mosser et al. 2012a).

For all our models, we show the lifetimes (Figs. 7 and 10 left
panel) for the radial and non-radial modes around vy,.x and the
associated power spectra in Figs. 7 and 10 (right panel). These
synthetic power spectra take the resolution of the modes for the
height of the peaks into account. However, we do not consider
the noise background (which can limit the detectability of mixed
modes). We therefore consider that the detectability of mixed
modes can be derived from the appearance of peaks in our syn-
thetic power spectra. For convenience, we model all peaks by
Lorentzians, which give us a limit power spectrum.

Model A: at the bottom of the red-giant branch, the radiative
contribution in the work integral (Eq. (3)) is small for all modes
in comparison with the convective one (Fig. 4, left panel). In
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addition, the convective work is a smooth function of the fre-
quency and thus, as already pointed out in Sect. 2.2, is indepen-
dent of the mode trapping. In the damping rate equation (see
Eq. (2)), as a result, only the inertia is responsible for the ob-
served modulation of dipole and quadrupole modes lifetimes
(Fig. 7, first panel).

In this model, all dipole mixed modes are resolved (except
for low frequencies) and have amplitudes that are high enough
to be detected. Since the radiative damping is always negligible,
their heights are close to those of the modes trapped in the en-
velope (p-dominated and radial modes, see Eq. (14)). This spec-
trum is more regular than the one corresponding to Model A
in Dupret et al. (2009). Some quadrupole mixed modes, close
to the p-dominated ones, are also visible in the synthetic power
spectrum (Fig. 7, first panel).

Increasing the duration would not change the dipole mode
profiles. Indeed, since those modes are resolved, their heights
no longer depend on the duration of the observations. Thus, at
this early stage on the red-giant branch, we already find a clear
structure in the power spectrum for dipole modes, allowing us
to derive a period spacing. Conversely, as the observation du-
ration increases, the number of visible quadrupole modes in-
creases, too. With four years of observation, some quadrupole
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Fig.7. Left: lifetimes of £ = 0 (red), £ = 1 (blue), and ¢ = 2 (green) modes in Models A, B, C, and D (from top panel to bottom). The dashed line
represents Tops/2. Right: corresponding power spectra. The heights in power spectra are given in (m/s)?/uHz. For the sake of simplicity, all peaks
are modelled by a Lorentzian, and we did not account for the different mode visibilities that depend on the angular degree. The resolution criteria
(and so the time of observation) is taken into account for the height of the modes.

modes are resolved (more precisely quadrupole modes with synthetic power spectra. Finally, a very long time of observa-
lifetimes lower than 700 days) with heights comparable to the tion (typically about 27.5 yrs) is required to have all quadrupole
p-dominated modes. Moreover, the height of some quadrupole modes resolved, with all heights similar to the heights of the ra-
unresolved modes increases so as to become visible in the dial ones.
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In this star, we also check the behaviour of the £ = 3 modes
(not represented in the figures). At this early stage on the RGB,
they already undergo a strong radiative damping so that only the
modes trapped in the envelope are visible in the power spec-
trum (observations longer than a hundred years would be re-
quired to see them). The increase in the radiative damping during
the ascension of the red giant branch will prevent detecting
¢ = 3 g-types modes higher on the RGB even more. We thus pre-
dict that the detectable £ = 3 modes in red giants are all p-type
modes.

Model B: higher on the red-giant branch, the radiative contri-
bution to the work integral is similar to the convective contri-
bution for quadrupole modes (Fig. 4). This explains why the
lifetimes for low-frequency quadrupole modes level off (Fig. 7,
second panel). Moreover, the coupling between the two cavi-
ties decreases due to the contraction of the core and the expan-
sion of the envelope. Indeed, when the star evolves, the number
of mixed modes by large separation increase, leading to an in-
crease in the inertia ratio between a p-type and a g-type mode
(see Appendix A). Because of these two effects, £ = 2 mixed
modes are no longer visible in our synthetic power spectrum.
Even when increasing the duration of observation above two
times the lifetime of quadrupole modes (corresponding to ap-
proximately 10 years of observation), they would still not be de-
tectable due to their significant radiative damping in the core.

For dipole modes, the convective contribution is still the
dominant part of the work integral so that their lifetimes are
still clearly modulated by the inertia. Dipole modes strongly
trapped in the core are not resolved and have smaller amplitudes.
Moreover, as shown in Fig. 7 (second panel), their detection
would be made difficult by the overlapping with radial modes
and p-type quadrupole modes that exhibit large linewidths. At
the end of this section, we detail the effect of the TDC parame-
ter 8 on the lifetimes of the p-type modes (see also Fig. 5). Other
values of this parameter could lead to longer lifetimes, hence to
narrower peaks (see Fig. 8). Nevertheless, increasing the dura-
tion of observations will increase the heights of dipole modes.
Taking four years of observation would allow us to have almost
all ¢ = 1 modes resolved, and in this case, their heights are very
similar to the p-dominated non-radial modes.

Model C: for a more evolved model, the radiative damping con-
tinues to increase and the coupling between the two cavities be-
comes very small owing to the expansion of the envelope and
contraction of the core. This implies that the lifetimes of all
modes, except modes strongly trapped in the envelope, are dom-
inated by the radiative damping (Fig. 7, third panel). This damp-
ing is high enough to obtain lifetimes of g-dominated quadrupole
mixed modes that are lower than the dipole ones. Consequently,
only p-dominated modes are detectable (Fig. 7, third panel). In
this model, increasing the duration of the observation even more
(even with Tops > 27 for all modes) does not lead to detectable
mixed modes, because of strong radiative damping (much more
important than the convective one, Fig. 4).

Model D: further along in the evolution, after the helium flash,
the star begins to burn helium in its core. This model presents
lifetimes similar to those of Model B (Fig. 7, fourth panel). After
the helium flash, the core has expanded and the envelope con-
tracted leading to a decrease in the radiative damping of mixed
modes and a stronger coupling between the p and g cavities. The
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Fig. 8. From top to bottom: power spectra of models A, B, and C with
new values of the 8 parameter allowing longer lifetimes for the p-type
modes (84 = 1.700-0.700i, Bz = —1.940-0.800, B¢ = —1.780-0.920i).
The detectability of the g-type modes is not significantly affected by the
change in this parameter.

appearance of a convective core also contributes to this decrease.
The detectability of mixed modes (Fig. 7, fourth panel) is very
similar to the case of Model B. After the He flash, the radiative
damping of the £ = 3 modes is still too high to see the g-type
modes in our synthetic power spectrum.

Change in 8 parameter: with the value of 8 presented above
(the same for all the RGB models), the resulting lifetimes
seem shorter than observations (see e.g. Baudin et al. 2011;
Appourchaux et al. 2012). We present the power spectra ob-
tained for other values of the 8 parameter in Fig. 8. In this
case, we obtain longer lifetimes but at the price of changing
the value of 8 between each model to be able to reproduce the
scaling relation for vp,x. This change in parameter does not af-
fect the general aspect of the power spectra much and, in par-
ticular, the detectability of g-type modes. Comparing the pre-
dicted lifetimes for stellar models fitting a selection of stars to
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observations would allow us to derive a better constraint for the
B parameter.

3.3. A proxy to the shape of power spectra

In the previous section, we have seen that when the stars climb
the red-giant branch, the mixed modes become more difficult to
detect until their heights are too low to be visible in our synthetic
power spectra (even if we consider enough time of observation to
resolve all modes). In the following lines, we denote n, and n, as
the number of nodes of a dipole mode in the g- and p-cavities,
respectively. Our analysis of models with the same number of
mixed modes over a large separation (Models E to G in Table 1)
or, equivalently, a given ratio n,/n, shows that they all exhibit
the same behaviour for the lifetimes (Fig. 10, left panel). They
also present very similar power spectra (Fig. 10, right panel)
with the same height ratios of mixed modes. Using the heights
computed in the previous sections (i.e. from the calculations of
the damping rates and of the Reynold stress), we show in Fig. 9 a
relation between the height ratio of g- and p-type modes around
Vmax ON the one side and n,/n, on the other side, for fully re-
solved and partially resolved modes. This relation is particularly
marked in the case of fully resolved modes. More computations
for a larger number of models will be needed to derive a more
precise relation for the relative heights of the modes.

We notice that for unresolved modes, the inertia ratio can
also be expressed as a function of n,/n, (see Appendix A) so
that this ratio is a good proxy for the shape of power spectra.
In Fig. 9, there is a higher dispersion between the models with
the same n,/n, with only one year for the duration of obser-
vations, because these modes are only partially resolved. We
notice that a theoretical evaluation of this proxy is very easy
through asymptotic relations and the scaling relation for vy:
ng/n, = Av/AIIV2, . Taking then the background noise into ac-
count, it becomes possible to estimate the detectability of mixed
modes along the red-giant branch.

Using this relation, we present in Fig. 11 a curve that cor-
responds to n,/n, =~ 60, which appears to be the level on the
red-giant branch where we are no longer able to see any dipole
mixed modes in the synthetic power spectra even by increasing
the time of observation to more than ten years (so that all modes
are resolved).

4. Conclusion

We have determined lifetimes and heights of radial and non-
radial mixed modes for several red-giant models of various evo-
lutionary states and various masses. The corresponding synthetic
power spectra agree overall with the observed bell shape. We
followed the change in the frequency of maximal amplitude and
reproduced the increase in the maximum height along with the
evolution of the star. For some of our models, we predicted that
long enough observations would increase the heights of mixed
modes up to those of radial modes. But for models with a higher
density contrast between the core and the envelope, radiative
damping becomes too strong and the coupling too weak to have
detectable mixed modes in our synthetic power spectra.

In a 1.5 M, star, we predict no detection of dipole mixed
modes at vp,x S 50 pHz and Av < 4.9 pyHz (corresponding
to ny/n, 2 60) and no detection of quadrupole mixed modes
around vpax S 97 uHz and Av < 8.4 uHz (corresponding to
(ng/np)e=> 2 15). We present in Appendix B a brief qualita-
tive comparison between the tendencies we found in our syn-
thetic power spectra and Kepler spectra. Theoretical power spec-
tra are in qualitatively good agreement with observed ones. The
general aspects of mixed-mode spectra and their evolution on
the red-giant branch was reproduced well. The lifetimes of our
p-type modes seems to be underestimated, but they strongly de-
pend on the complex parameter 8 (see Sect. 3.2 for more de-
tails). Quantitative comparisons between theory and observa-
tions will then require a much more precise determination of this
parameter.

Computations of power spectra for other masses show that
we have very similar lifetimes patterns and power spectra and,
in particular, the same height ratios for mixed modes, if we take
models with the same number of mixed modes in a large sep-
aration. We can then rely on the number of mixed modes by
large separation to predict the height ratio between a p-type and
a g-type mixed mode for various stars.

More numerical computations that vary not only the mass
but also the other parameters of the equilibrium models (e.g.
chemical composition or convection treatment) will help to ver-
ify these results for a larger set of stars. Then we will have to
compare our height ratios and their dependence with the num-
ber of mixed modes by large separations with a large set of ob-
served power spectra (see e.g. Mosser et al. 2012a). In such a
large set of observations, some power spectra show depressed
mixed modes. Up to now, from a theoretical point of view, we did
not find any depressed mixed mode in all our red-giant branch
models. The discovery of models for which the inertia of p-type
dipole modes, as well as their damping rates, is close to the
g-type modes ones could give us more insight into the mecha-
nism depressing these modes, but we did not find such models.

Our results should also be tested by comparing the observed
height and lifetimes with the theoretical ones for some individual
stars. Such comparisons can now be done with the measurements
of linewidths and heights of the modes in solar-like stars (see e.g.
Appourchaux et al. 2014), in subgiants (see e.g. Benomar et al.
2013), and in red giants (Huber et al. 2010; Hekker et al. 2010;
Corsaro et al. 2012). These comparisons will help in particular
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to test our TDC treatment and to calibrate the 8 parameter. This
will be the subject of a future work.
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Appendix A: Inertia ratios

For a better understanding of the inertia ratios between a p-type
and a g-type mode, we follow the development of Goupil et al.
(2013) based on the asymptotic method developed by Shibahashi
(1979).

In the asymptotic regime and neglecting the size of the
evanescent zone, Goupil et al. (2013) show that the inertia in
the envelope of the stars varies as lo;,y =~ (c?/ 2nv)7, and in the
core as lore = (a?/ 27v)1,, SO We can express the total inertia as

C2 (12
I = leore + leny = %(Tp + C_2Tg) (A1)
with
1 1
- — | kdr=—
T TV Jeny " Av
1
= — k. dr ~
YT core NG

with k, the radial wavenumber and v the frequency of the mode
in uHz. Here, c is a normalisation constant, and a is related to ¢
by (Egs. (16.49) and (16.50) from Unno et al. 1989) :

¢ _ 2c0s (arc cot (5 cot(mvr, ))) (A2)
cos(mvt,)

Q|

where (c/a)’ is a function of v of period 1/7, = Av which
varies between 4 (p-modes) and 1/4 (g-modes). Finally when
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comparing the inertia of a mode trapped in the envelope (/,) and
of a mode trapped in the core (/,), we have

1+42
~ P

(A.3)

Izy
41,

Sl P

_1+

This inertia ratio is then a function of the ratio 7,/7, = ny/n,,
the number of mixed-modes by large separation.

Appendix B: Qualitative comparison to Kepler
spectra

We present in Fig. B.1 some power spectra obtained with Kepler
along with our 1.5 My RGB theoretical power spectra to show
the main tendencies discussed in this paper. Concerning the
height ratios and the limit for the detectability of mixed modes
in our theoretical power spectra, we found the same tendencies
in the observed ones. At the beginning of the red-giant branch,
dipole mixed modes have heights that are comparable to p-type
modes. Higher on the RGB, dipole mixed modes are partially
resolved, and their heights present a clear modulation compared
to the heights of p-type modes. At the level of model C, only
the p-type modes have significant heights. There are more visi-
ble mixed modes in the observed spectra, owing to the presence
of rotational multiplets, but without any consequence for their
height and width.



M. Grosjean et al.: Theoretical power spectra of mixed modes in low-mass red giant stars
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Fig. B.1. Theoretical and observed power spectra of Kepler stars with similar masses (from top to bottom: 1.44, 1.48, 1.47 M), Av, and vp.x. The
heights in theoretical power spectra are in (m/s)?/uHz. The heights for observed spectra are given in ppm?/uHz divided by a factor 6000 to have
scales similar to the theoretical spectra.
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