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Abstract— We study the min max optimization problem in-
troduced in [Fonteneau et al. (2011), “Towards min max
reinforcement learning”, Springer CCIS, vol. 129, pp. 61-77]
for computing control policies for batch mode reinforcement
learning in a deterministic setting with fixed, finite optimization
horizon. First, we state that the min part of this problem
is NP-hard. We then provide two relaxation schemes. The
first relaxation scheme works by dropping some constraints
in order to obtain a problem that is solvable in polynomial
time. The second relaxation scheme, based on a Lagrangian
relaxation where all constraints are dualized, can also be solved
in polynomial time. We theoretically show that both relaxation
schemes provide better results than those given in [Fonteneau
et al. (2011)].

I. INTRODUCTION

Research in Reinforcement Learning (RL) [1] aims at
designing computational agents able to learn by themselves
how to interact with their environment to maximize a nu-
merical reward signal. The techniques developed in this
field have appealed researchers trying to solve sequential
decision making problems in many fields such as Finance
[2], Medicine [3], [4] or Engineering [5]. Since the end of the
nineties, several researchers have focused on the resolution of
a subproblem of RL: computing a high-performance policy
when the only information available on the environment is
contained in a batch collection of trajectories of the agent
[6]1, [7], [8], [9], [5], [10]. This subfield of RL is known as
“batch mode RL”.

Batch mode RL (BMRL) algorithms are challenged when
dealing with large or continuous state spaces. Indeed, in
such cases they have to generalize the information contained
in a generally sparse sample of trajectories. The dominant
approach for generalizing this information is to combine
BMRL algorithms with function approximators [11], [8], [7],
[12]. Usually, these approximators generalize the information
contained in the sample to areas poorly covered by the
sample by implicitly assuming that the properties of the
system in those areas are similar to the properties of the
system in the nearby areas well covered by the sample.
This in turn often leads to low performance guarantees on
the inferred policy when large state space areas are poorly
covered by the sample. This can be explained by the fact that
when computing the performance guarantees of these poli-
cies, one needs to take into account that they may actually
drive the system into the poorly visited areas to which the
generalization strategy associates a favorable environment
behavior, while the environment may actually be particularly
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adversarial in those areas. This is corroborated by theoretical
results which show that the performance guarantees of the
policies inferred by these algorithms degrade with the sample
dispersion where, loosely speaking, the dispersion can be
seen as the radius of the largest non-visited state space area
[13].

To overcome this problem, reference [14] proposes a
min max-type strategy for generalizing in deterministic,
Lipschitz continuous environments with continuous state
spaces, finite action spaces, and finite time-horizon. The
minmax approach works by determining a sequence of
actions that maximizes the worst return that could possibly be
obtained considering any system compatible with the sample
of trajectories, and a weak prior knowledge given in the
form of upper bounds on the Lipschitz constants related
to the environment (dynamics, reward function). However,
they show that finding an exact solution of the minmax
problem is far from trivial, even after reformulating the
problem so as to avoid the search in the space of all
compatible functions. To circumvent these difficulties, they
propose to replace, inside this min max problem, the search
for the worst environment given a sequence of actions by an
expression that lower-bounds the worst possible return which
leads to their so called CGRL algorithm (the acronym stands
for “Cautious approach to Generalization in Reinforcement
Learning”). This lower bound is derived from their previous
work [15], [16] and has a tightness that depends on the
sample dispersion. However, in some configurations where
areas of the state space are not well covered by the sample of
trajectories, the CGRL bound turns to be very conservative.

This paper - which is a shortened version of [18] - pro-
poses to further investigate the min max generalization opti-
mization problem that was initially proposed in [14]. We first
state that the min part of this optimization problem is NP-
hard. Since it seems hopeless to exactly solve the problem,
we propose two relaxation schemes that preserve the nature
of the min max generalization problem by targeting policies
leading to high performance guarantees. The first relaxation
scheme works by dropping some constraints in order to
obtain a problem that is solvable in polynomial time for a
given finite time horizon. This results into a configuration
where each stage resorts in solving a trust-region subproblem
[17]. The second relaxation scheme, based on a Lagrangian
relaxation where all constraints are dualized, can be solved
in polynomial time. We state that both relaxation schemes
always provide bounds that are greater or equal to the CGRL
bound. For conciseness reasons, proofs are not reported in
this version (see [18]).



II. RELATED WORK

Several works have already been built upon min max
paradigms for computing policies in a RL setting. In stochas-
tic frameworks, min max approaches are often successful for
deriving robust solutions with respect to uncertainties in the
(parametric) representation of the probability distributions
associated with the environment [19]. In the context where
several agents interact with each other in the same environ-
ment, min max approaches appear to be efficient strategies
for designing policies that maximize one agent’s reward
given the worst adversarial behavior of the other agents.
[20], [21]. They have also received some attention for solving
partially observable Markov decision processes [22], [23].

The min max approach towards generalization, originally
introduced in [14], implicitly relies on a methodology for
computing lower bounds on the worst possible return (con-
sidering any compatible environment) in a deterministic
setting with a mostly unknown actual environment. In this re-
spect, it is related to other approaches that aim at computing
performance guarantees on the returns of inferred policies
[24], [25], [26].

Other fields of research have proposed min max-type
strategies for computing control policies. This includes Ro-
bust Control theory [27] with H., methods [28], but also
Model Predictive Control (MPC) theory - where usually the
environment is supposed to be fully known [29], [30] - for
which min max approaches have been used to determine an
optimal sequence of actions with respect to the “worst case”
disturbance sequence occurring [31], [32]. Finally, there is a
broad stream of works in the field of Stochastic Programming
[33] that have addressed the problem of safely planning
under uncertainties, mainly known as “robust stochastic
programming” or “risk-averse stochastic programming” [34],
[35], [36], [37].

III. PROBLEM FORMALIZATION

We first formalize the BMRL setting in Section III-A, and
we state the min max generalization problem in Section III-
B.

A. Batch Mode Reinforcement Learning

We consider a deterministic discrete-time system whose
dynamics over 7T stages is described by a time-invariant
equation

Tip1 = f(wug) t=0,...,T —1,

where for all ¢, the state x; is an element of the state space
X C R? where R? denotes the d—dimensional Euclidean
space and wu; is an element of the finite (discrete) action
space U = {uM, ..., ul™} that we abusively identify with
{1,...,m}. We assume that the (finite) optimization horizon
T € N\ {0} is a given (fixed) parameter of the problem. An
instantaneous reward

ry = p(z,u) €R

is associated with the action w; taken while being in state
x,. For a given initial state o € X and for every sequence

of actions (ug, . ..,ur_1) € UT, the cumulated reward over
T stages (also named T'—stage return) is defined as follows:
Definition 1 (T —stage Return):

T-—1
V(UO, - 7UT—1) S UT, J(UQ, . ,UT_1) £ Z p(mt,ut) s
t=0

where Ti4+1 = f (xt, Ut) ,Vt S {0, cee 7T‘ - ].}
An optimal sequence of actions is a sequence that leads to
the maximization of the 7—stage return:
Definition 2 (Optimal T —stage Return):
max

Jp & J(ug, . .
T (ugy..osur—1)EUT ( 0
We further make the following assumptions that characterize
the batch mode setting:

~7UT—1) .

1) The system dynamics f and the reward function p are
unknown;

2) For each action u € U, a set of nl®) e N one-step
system transitions

Flu) { (x(uxk-’ )k y<u>,k) }
k=1

is known where each one-step transition is such that:

y(“)’k =f (:c(“)7k,u) and 7"k — p (x(“)’k,u> .

()

3) We assume that every set F(*) contains at least one
element: Yu € U, n(™ > 0.
In the following, we denote by F the collection of all system
transitions:

F=rFBy. .urm, (1)

Under those assumptions, batch mode reinforcement learning
(BMRL) techniques propose to infer from the sample of one-
step system transitions F a high-performance sequence of
actions, i.e. a sequence of actions (af,..., a5 ;) € U
such that J(&f, ..., @r_,) is as close as possible to Ji.

B. Min max Generalization under Lipschitz Continuity As-
sumptions

In this section, we state the min max generalization prob-
lem that we study in this paper. The formalization was
originally proposed in [14].

In all this paper, we assume that the system dynamics
f and the reward function p are Lipschitz continuous, i.e.
there exist finite constants Ly, L, € R such that V(z,2’) €
X2 Yu e U:

1f (@yu) = £ ()] <
|p(x,u)—p(x',u)| <

where |.|| denotes the Euclidean norm over the space X.
We also assume that two constants Ly and L, satisfying
the above-written inequalities are known. Such Lipschitz
continuity assumptions are very standard in the field of batch
mode reinforcement learning in continuous state spaces.
For a given sequence of actions, one can define the
worst possible return that can be obtained by any system
whose dynamics f/ and p’ would satisfy the Lipschitz

Lf ||J} - .’IT/H )

Ly lx =2,



inequalities and that would coincide with the values of the
functions f and p given by the sample of system transitions
F. As shown in [14], this worst possible return can be
computed by solving a finite-dimensional optimization
problem over X7~! x RT. Intuitively, solving such an
optimization problem amounts to determining a most
pessimistic trajectory of the system that is still compliant
with the sample of data and the Lipschitz continuity
assumptions. More specifically, for a given sequence of
actions (ug,...,ur—1) € UT, some given constants Ly
and L,, a given initial state xop € A and a given sample of
transitions F, this optimization problem writes:

(P(.F, Lf, LP’ o, UQy - - - ,UT_l)) :
T-1
min Zf‘t,
Ty Fr_; €R t=0
X0 Xp_1 €X

subject to
2

- ut ),k
’rtfr( +):kt ,

2 2 k
< 12|z — ol

Y(t, ki) € {0,..., T — 1} x {1,...,71(“‘)}, )

V(t, k) € {0,..., T —1} x {1,...,71(’“)}, 3)

B0 — 8o |* < L2 )|% — %o |,

2

)

2
Rppr —yO R < LG IR — a0k

vt t' € 4{0,...,T — lus = up }, 4)
[%es1 — %ep1])® < L% — %o |12

Vi, t' € {0,...,T —2uy = uy }, 3)
)’\(0 = Xo- (6)

For short, we refer to this problem as (P (F, uq, ..., ur—1)).
Intuitively, the objective of the optimization problem
modelizes the sum of rewards gathered along a trajectory
Xg,...,X7—1. The idea of minimizing this objective comes
from the fact that we want to find a most pessimistic
trajectory. The constraints ensure that Lipschitz inequalities
hold (i) between states / rewards from the pessimistic
trajectory and states / rewards from the sample of data F
and (ii) between states / rewards from different time-steps
within the pessimistic trajectory. We also define the “optimal
lower bound” B*(F,ug,...,ur—1):

Definition 3 (Optimal lower bound B*(F, uq, ..
Let X3,...,%Xp_, and £f,...,#7_; be an optimal solution
to (P(F,uq,...,ur—1)). We define the optimal lower
bound B*(F,uq,...,ur—1) as follows:

T-1
* axk
B (]:,uo,...,uT_l): E r,.
=0

Note that, throughout the paper, optimization variables will
be written in bold. The objective function represents the
search for the most pessimistic trajectory. The constraints
(2) and (4) (resp. (3) and (5) ) express the fact that the
reward function (resp. the system dynamics) must satisfy

SuT—1)):

the Lipschitz inequalities for every pair of points from
both the sample of data F and the pessimistic trajectory
(X0, %0, ..., X7—1,7_1). Constraint 6 ensures that the pes-
simistic trajectory starts in xg.

The min max approach to generalization aims at identify-
ing which sequence of actions maximizes its worst possible
return, that is which sequence of actions leads to the highest
value of (P(F,uq,...,ur—1)).

We focus in this paper on the design of resolution
schemes for solving the program (P(F,uq,...,ur—_1)).
These schemes can afterwards be used for solving the
min max problem through exhaustive search over the set of
all sequences of actions.

Later in this paper, we will also analyze the computational
complexity of this min max generalization problem. When
carrying out this analysis, we will assume that all the data of
the problem (.e., T, F, Ly, L,, %o, ug, ..., ur—1) are given
in the form of rational numbers.

IV. ANALYSIS OF THE COMPLEXITY

This section states that solving the min problem
(P(F,uq,-..,ur—1)) is NP-hard. More precisely, we show
that, in the case where 1" = 2, the problems of stage 0 and
stage 1 are decoupled, and that the second stage problem is
NP-hard.

A. Redundancy of constraint (4)

We first state that the constraints (4) are not needed.
Indeed, in any optimal solution, they are always sat-
isfied. Let P (F,ug,...,ur_1) be the relaxation of
P (F,ug,...,ur—1) where all constraints of type (4) are
relaxed.

Lemma 1: Consider (#*,%*) € RT x XT an optimal
solution to P (F,ug, . ..,ur_1). Then, for all ¢,# such that
Ut = Uy,

7 — £ 17 < LD IR - %017

Observe that Lemma 1 implies that #j is decoupled from
the rest of the problem. Therefore, ¥ is the solution of:

min Ty
g eR
Xog EX

(P'(F,up)) :

subject to |fo — r(0):ko |2 < L2 [|%0 — ;lc(ito),koH2

Vko € {1, .. ,n(“O)} , Xg = xg.
Lemma 2: The solution of the problem (P’(F,ug)) is

= max
ko€{1,...,n(0)}

In the particular case T' = 2, Lemma 1 implies that the two
stages are decoupled. In particular, the problem P (F, ug, u1)
can be decomposed in two subproblems (P’(F,ug)) and

(PH<J:, uo,ul)):

p(uo)sko _ L, Hmo — g(uo)ko




min T @)
1 eR
X eX

(P"(F,ug,u1)) :

subject to

|81 — r(w)h ‘2 < 12 |&1 — 2w H?

Vky € {1,...,n(m)}, (8)
1 =y < L flan — ateod o
Vko € {1,...,n(u0)} . 9)

B. Complexity of (P"(F,ug,u1))

The problem (P’(F,up)) being solved, we now focus
in this section on the resolution of (P”(F,up,u1)). In
particular, we show that it is NP-hard, even in the partic-
ular case where there is only one element in the sample
Flua) = {(zlu)1 pw)d () 1)1 Tn this particular case,
the problem (P”(F,up,u1)) amounts to maximizing the
distance H)‘(l — glua)l || under an intersection of balls as we
show in the following lemma.

Lemma 3: If the cardinality of F(“1) is equal to 1:

Flun) — { (Wl%l, )t y<u1>,1) } ’

then the optimal solution to (P”(F,up,u1)) satisfies

A%

o= pla)l Lp||>‘(’{ —x(ul)’ln where X] maximizes
%1 — a:("l)’lH subject to
2 2
H)’“(l _ y(uo)JCo < L?} H‘TO _ x(”o);’%

v (w(uo),]fo7 - (40),ko , y(uo)Jﬁo) c Fluo),

Note that if the cardinality n(“0) of F(%0) is also equal to
1, then (P(F, up,u1)) can be solved exactly, as we will later
show in Corollary 10. But, in the general case where n(to)
is not fixed this problem of maximizing a distance under a
set of ball-constraints is NP-hard as we state in Lemma 4.
To do it, we introduce the MNBC (for “Max Norm with Ball
Constraints”) decision problem:

Definition 4 (MNBC Decision Problem): Given z(9) €
Q% y' € Q4y; € Qi € {1,...,1},C € Q, the MNBC
problem is to determine whether there exists z € R? such
that || — «®|* > C and ||o — y||* < v , Vi€ {1,...,T}.

Lemma 4: MNBC is NP-hard.

The MNBC problem amounts to maximizing the Eu-
clidean norm of a vector over a finite intersection of spheres.
Let us first mention that the problem of maximizing the
norm of a vector over a finite intersection of concentric
ellipsoids, which directly reduces to MNBC, is claimed
to be NP-hard in [38] and [39], but without proof. Ad-
ditionally, the complexity class of some related problems
has already been investigated. In particular, it has been
established that minimizing (or, equivalently, maximizing)
a quadratic function under linear constraints is a NP-hard
problem [40]. Furthermore, containment problems between
polyhedra and spheres are known to be NP-hard as well [41].
However, those problems do not admit immediate reductions

to MNBC. This motivates our development of a proof in [18]
relying on a reduction from {0, 1}—programming.

Note that the NP-hardness of MNBC is independent from
the choice of the norm used over the state space X. Also
observe that, since {0, 1}—programming is strongly NP-hard
[42], it is also the case for MNBC. The two results follow:

Corollary 5: (P"(F,ug,u1)) is NP-hard.
Theorem 6: The two-stage problem (P(F,ug,u1)) and

the generalized T —stage problem (P(F, ug,...,ur—_1)) are
NP-hard.
Observe that the NP-hardness of (P(F,uq,...,ur—1))

does not imply that finding a sequence of actions maximizing
B*(F,ug,...,ur—1) is also NP-hard. However, even for
cases where finding such a sequence is easy, we are still
interested in computing the value of the optimal lower bound
associated with such a sequence, which is NP-hard.

V. RELAXATION SCHEMES

The two-stage case with only one element in the set
F(1) was shown to be NP-hard in the previous section. It
is therefore unlikely that one can design an algorithm that
optimally solves the general case in polynomial time (unless
P = NP). Therefore, we propose relaxation schemes that are
computationally more tractable. Note that since the main
motivation for solving the minmax optimization problem
is to obtain a sequence of actions that has a performance
guarantee, we will only propose relaxation schemes that are
leading to lower bounds on the actual return of the sequences
of actions. Note that all relaxation schemes are designed for
the general T'—stage case.

The first relaxation scheme works by dropping some
constraints in order to obtain a problem that is solvable in
polynomial time. We state that this scheme provides bounds
that are greater or equal to the CGRL bound introduced in
[14]. The second relaxation scheme is based on a Lagrangian
relaxation where all constraints are dualized. The resulting
problem can be solved in polynomial time using interior-
point methods. We also state that this relaxation scheme
always gives better bounds than the first relaxation scheme
mentioned above, and consequently, better bounds than [14].
We also deduce from CGRL properties that the bounds
computed from these relaxation schemes converge towards
the actual return of the sequence (uo,...,ur—1) when the
sample dispersion converges towards zero. As a consequence,
the sequences of actions that maximize those bounds also
become optimal when the dispersion decreases towards zero.

From the previous section, we know that the first stage
problem can be solved straightforwardly (cd. Lemma 2). We
therefore only focus on relaxing the problem corresponding
to the remaining stages (P”(F,ug,...,ur—1)):



(P"(F,uo,...,ur—1))
T—1
min T,
) fr 1 eR 5
f(o XT_1 € X
subject to
£ — r(ut)akt < L2 H Ut) ket ,
V@h)eﬂyn,«—ux{ I}, (10)
2
’ S H — gluhkell
Y(t k) €{0,..., T —1} x { , .,n<“f>}, (11)
%1 — e ||” < L? 1% — %o )|
Vi, t' € {0,...,T —2luy = up }, (12)
5(0 = 2Xo - (13)

A. The Intertwined Trust-region (ITR) Relaxation Scheme

A natural way to obtain a relaxation from an optimization
problem is to drop some constraints. A particular case
of tractable non-convex quadratically constrained quadratic
programs (QCQP) is where there is only one quadratic
constraint. The idea here is to relax many constraints in order
to obtain a tractable problem for each stage.

For all t € {0,...,T — 1}, we select k; in {1,...,n()},
The relaxation is obtained by dropping all constraints of
type (5) and keeping one constraint by stage and by type.
We therefore obtain a relaxed problem of the form:

(’P}/TR(‘Fv UQy -+ -, UT—1, ];10, ceey ET—l)) :
T—1
min Zf’t
fr,...,fr1€R t—1
Xo, ,f(T_l eX

subject to

— 12 - 12
‘ft — k" < g2 th _ p(u) ke

te{l,.... T—1} (14)
_ 2 ~ 2
‘ X — y(utfl)vkt—l < L?p ‘ Req — x(ut—l)vktfl
te{l,..., T -1} (15)
)A(o =X (16)
In the following, we provide the optimal solution

of (Pirgr(F,uo,...,ur—1,ko,...,kr—1)) in closed-form.
Such a solution is obtained by induction. It is more prac-
tical to work with the following family of T 0pt1m1za-

tion problems {(QITR(]:,UO,~~>Ug,k07~-a/_fj)) i Z '

(Qfrr(F o, -, k)

Hij o (ug) kK

’u]‘,ko,...

max
f‘l,...,f‘jER
%0,....%, €X

subject to

_ 2 - 112
‘ff _ p(we) ke (ui) e

tE{l,...,j} (17
_ 2 - 2
’ Xy — y(“tfl)’ktfl < L?c ’ Re_1 — x(utfl)akt—l
tE{l,...,j} (18)
Xo = o (19)

he initialization of the induction is provided by the follow-
ing Lemma:

Lemma 7: The optimal solution DYrp(ug, u1, ko, k1) to
(Q’I’TR(./":7 Uug, U1, ];30,]2'1)) is given by

DII/TR(UO7U1; EOalz"l) = H&T(‘I;Ovél) - I(UI)’EI

% (ko, k1) = ylworko

Hwo _x(0) kOH ( (u0),ko 7‘%(“1)’%1) if y(uo),Eo ?é

f ||y(uo> ko —g(u1), k1||
2wk and, if y(uo)ko — glua)kr

where

%3 (ko, k1) can be any
point of the sphere centered in y(UO) ko = glw)kr with

radius L ||z — z(0)Fo||,

+ p(u1)ky

y(’LL(]),EO.'.

U A
Lf on — m(“(l)ako/

x5 (Ko, k1)

Fig. 1. A simple geometric algorithm to solve (QY 5 (F, uo, u1, ko, k1)).

Lemma 8: The ~ optimal solution to
(Qfrr(F, uO?"'an,k07~-~,kj)) s given  by:
Vt € {1 a]} Xt (ko,.. kt) = y(ut—l)ykt—l

%5 (Ko, kp_q)—a (M- 1)kt 1 _ B
|| - ‘19(:; 1):t11_m(ut>ktH || (y(utfl)’ktfl —w(uf)’kt)

if y(ut 1),ke—1 £ () ke and, if y(ut 1)keo1 — x(u,)k,

+Ly

% (ko,...,k;) can be any point of the sphere
centered in y(w-1)ker = glu)ke with  radius
Loll%i_y(Fo, - Fu_y) — v

Theorem 9: The solution to

(Pirr(F,uo,...,ur—1,ko, ..., kr—1)) is given by:
T-1
B},TR(]:v’u@a---7UT71ak07~-~>kT71): f‘:

t=1



r(ut)wkt — Lp
f(f(ko,.. -71%15) ( )% y(“t—l)jﬂt—l +
2* (k T wyp_q) ke
[#is Forici)—aem B R
f y(”t—l)-,’;t—l_x(ut),fct‘ Y

if y(ut—1)7f€t—1 # (ue) ke and, if y(ut—l)j?tfl - x(ut);Et’
%5 (ko,...,k;) can be any point of the sphere
centered in y(we-ki-r = )k with  radius
Lyl (Ro, - Fo) = stk

Solving (P/rr(F,uo, ..., ur—1,ko, ..., kr_1)) provides
us with a family of relaxations for our initial problem
by considering any combination (kq,...,k7_1) of non-
relaxed constraints. Taking the maximum out of these lower
bounds yields the best possible bound out of this family of
relaxations. Finally, if we denote by Birgr(F, ug, ..., ur—1)
the bound made of the sum of the solution of the first
stage problem and the maximal ITR relaxation of the prob-
lem (Pypp(F,uo,...,ur—1,ko,--.,kr—1)) over all possi-
ble couples of constraints, we have:

Definition 5 (Intertwined Trust-region Bound):
B[TR(]:,UO,...,UT_l)éf‘S—F _ max
kr_q € {1, R n(“Tfl)}

e ot (T 7 N2
where T} = %5 (ko, ..., k) — x(w)ke

Fo € {1,...,nw)}
B/I/TR('F’UO"' .,kT_l).

Notice that in the case where all n(*t) ¢t =0...T—1 are
equal to 1, then the ITR relaxation scheme provides an exact
solution of the original problem (P(F,uo,...,ur—1)):

Corollary 10: (Vt €{0,...,T —1},n*) =1)
BITR(]:; Ugy -« - - ,’LLTfl) = B*(]:, UQ,y - - - >UT71)-

'7uT—17k05' .

=

B. The Lagrangian Relaxation

Another way to obtain a lower bound on the value
of a minimization problem is to consider a Lagrangian
relaxation. Consider again the optimization problem
(P"(F,ug,...,ur—1)). If we multiply the constraints (10)
by dual variables p, > 0, the constraints (11) by dual
variables Ay, > 0 and the constraints (12) by dual
variables v, > 0, we get the Lagrangian dual problem

(PZD('F’ 7—’40;~~~7UT71)):
(PZD(]:7’U’0)"'7UT71))
max min
Vgt e R f‘17...7f'T—1 ERil,---,f{T_le.X

Atk € R pyg, €R

B+ - A Bt Z(t,k:t)e{l,“.,Tfl}x Lm0 }
R e ] R
J’_E(t,kt)e{l ..... T—1}x{1,..,n=)}

g (e =0 = 13 a0 )
+Et,t’e{O,...,T72|ut:ut/}

v (Ko = Foall* = L3 1% = %o ) -

Observe that the optimal value of
(P p(F,up,...,ur—1)) is known to provide a lower
bound on the optimal value of (P”(F, ug,...,ur_1)) [43].

Note that the above Lagrangian relaxation can be solved
in polynomial time and is equivalent to another standard

relaxation of quadratically constrained quadratic programs
known as the SDP relaxation. It turns out that one relaxation
is the dual of the other [44], [45], [46].

Definition 6 (Lagrandian Bound Bpp (F,ug,...,ur—_1)):
Let BY ,(F,uo,...,ur—1) be the optimal Lagrangian dual
of (’PZD(‘F7 Ug, - - - auT—l))- Then’

Brp(F,ug, ... ur—1) =r§ + Bl p(F,ug, ..., ur—_1) .

C. Comparing the Bounds

The CGRL algorithm proposed in [16], [14] for addressing
the min max problem uses the procedure described in [15]
for computing a lower bound on the return of a policy given a
sample of trajectories. More specifically, for a given sequence
(ug,...,ur_1) € U?, the program (P(F, ug,...,ur_1)) is
replaced by a lower bound Bogrr(F,ug,...,ur—1). We
may now wonder how this bound compares with the two new
bounds of (P(F,ug,...,ur—1)) that we have proposed: the
ITR bound and the Lagrangian bound.

1) Trust-region Versus CGRL: We first recall the defini-
tion of the CGRL bound.

Definition 7 (CGRL Bound Bogrr (F, g, .-, ur—1)):

Begro(Fug, ... up_1) =

~ max

kr_q1 € {1, e ’rl(uT_l)}

];30 € {1, . ,n(“‘J)}

(10).ko
~L, (1 +Lp+ L5+ + L}“Q) meﬂ)”m - o:OH
+...+

+T(U4T72),ET72

_Lp (1 + Lf) Hy(uT73)7ET—3 _ x(quz)J_Csz

_’_T(UT—I)xET—l _ Lp Hy(Usz),Esz _ plur—1)kr

The following theorem states that the ITR bound is always
greater than or equal to the CGRL bound.
Theorem 11:

Begro(F,uo, ..., ur—1) < Brrr(F,uo, ..., ur—1).

2) Lagrangian Relaxation Versus Intertwined Trust-region
Relaxation: 1In this section, we state that the lower
bound obtained with the Lagrangian relaxation is al-
ways greater than or equal to the ITR bound. To do
so, we show that strong duality holds for the La-
grangian dual of (P}rp(F,uo,...,ur—1,ko,... . kr_1))
for a given (ko,...,kr—1). The Lagrangian dual of

(Pirr(F,ug, ... ,ur—1,ko, ..., kr_1)) reads
(LD/I/TR(‘T:v Uy - - - ,UT_l,Eo, . .,/_i‘T_l))) :

max min
Alyeo s Ar_1 ER #q,...,f7_1 €ER
iy pr—1 €ER R, Xp1 €X

_ 2 _
NS ¥ A 2] (‘f'l — plur) k| ” L?, Hil _ p(u1)ika

+...+

)



K1 — x(uT—l)jCT—l

)

_ 2
& _plur—1) k1| _ 72
HT—1 (’rT—l r LP

2)
ug),k 2 2 k
Al (H)"(l y( O)v 0 l H}":O :L.('U'O)v 0

+Ar—1 ( H)"(T71 _ y(uT—2)vTVT_2

y

Theorem 12: Strong duality holds for the Lagrangian

_L? H)"(T_2 _ plur—2)kr_2

relaxation of the Intertwined Trust-region problem
(LDII/TR(.F, Uy -y UT—1, k07 ey k‘Tfl)).

Theorem 13:

B]TR(f, U, - - - ,uT_l) S BLD(]:, UuQg, - - - 7UT—1)-

3) Bounds Inequalities: Summary: We summarize in the
following theorem all the results that were obtained in the
previous sections.

Theorem 14: ¥ (ug, ..., ur_1) € UT,

Begro(F,uo, ... ur—1) < Brrr(F,uo,...,ur—1)
< Brp(F,ug,...,ur—1)
< B*(.F,Uo,...,qul)
< o ur).

D. Convergence Properties

Theorem 14 implies that the convergence properties of
the CGRL bound - when the dispersion of the sample of
transitions goes to zero - also apply to other bounds presented
in this paper (see [18] for more informations).

VI. CONCLUSIONS

This paper - which is a shortened version of [I8] -
addresses the problem of computing min max policies for
deterministic, Lipschitz continuous batch mode reinforce-
ment learning. First, we have shown that this minmax
problem is NP-hard. Afterwards, we have proposed two
relaxation schemes. Both have been extensively studied and,
in particular, they have been shown to perform better than the
CGRL algorithm that has been introduced earlier to address
this min-max generalization problem.

Lipschitz continuity assumptions are common in a batch
mode reinforcement learning setting, but one could imagine
developing min max strategies in other types of environ-
ments that are not necessarily Lipschitzian, or even not
continuous. Additionally, it would also be interesting to
extend the resolution schemes proposed in this paper to
problems with very large/continuous action spaces.
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