Prediction of meso-scale mechanical properties of poly-silicon materials

Vincent Lucas1, Ling Wu1, Maarten Arnst1, Jean-Claude Golinval1, Stéphane Paquay2, Ludovic Noels1

1University of Liege (ULg), Department of Aerospace and Mechanical Engineering
Chemin des Chevreuils 1, B-4000 Liège, Belgium
2Open Engineering SA, Rue des Chasseurs-Ardennais 7, B-4031 Liège (Angleur), Belgium
email: s.paquay@open-engineering.com

The miniature sizes of micro-electro-mechanical systems (MEMS) as well as the nature of their manufacturing processes, such as etching, material layer deposition, or embossing, are responsible for the existence of a scatter in the final dimensions, material properties ... of manufactured micro-sensors. This scatter is potentially threatening the behavior and reliability of samples from a batch fabrication process, motivating the development of non-deterministic computational approaches to predict the MEMS properties.

In this work we extract the meso-scale properties of the poly-silicon material under the form of a probabilistic distribution.

To this end, Statistical Volume Elements (SVE) of the micro-structure are generated under the form of a Voronoï tessellation with a random orientation for each silicon grain. Hence, a Monte-Carlo procedure combined with a homogenization technique allows a distribution of the material tensor at the meso-scale to be estimated1. As the finite element method is used to discretize the SVE and to solve the micro-scale boundary value problem, the homogenization technique used to extract the material tensor relies on the computational homogenization theory2.

In a future work, we will investigate, in the context of MEMS vibrometers, the propagation to the macro-scale of the meso-scale distribution of the homogenized elasticity tensor, with the final aim of predicting the uncertainty on their resonance frequencies.

![Figure 1: Extraction of the meso-scale properties (a) Different SVEs (b) Extracted Young modulus distributions.](image)