The “WebGIS” as a Tool for Territorial Diagnostic and Dialogue Among Territorial Actors: What is the Optimal Format within a Socio-Ecological Transition Context?

Mathieu Jaspard (Université de Liège)
Blanca Miedes Ugarte (Universidad de Huelva)
Celia Sánchez López (Universidad de Huelva)
Antonio Moreno Moreno (Universidad de Huelva)
Guénaël Devillet (Université de Liège)
Agenda

1. Context and Objectives
2. Framework Description: WebGIS-IT Concepts
 - WebGIS: Notions and Definitions
 - IT: Context of Territorial Actions
3. Observations and Analyses Based on WebGIS-IT Examples
4. Conclusions and Future Perspectives
1. Context and Objectives

Optimal WebGIS format

 Territorial intelligence principles
2. Framework Definition

• What is a WebGIS?

“Online geographic information diffusion”
2. Framework Definition

• Spatial data server: notion of centralisation and distribution of geographic information

• Advanced open source software solutions (for example, the solution: PostGIS - GeoServer - OpenLayers)

• International standards and organisations (OGC and OSGEO)

• Many advantages (data updates, dynamic mapping; indicators combination; representation customisation; collaboration among actors...)
2. Framework Definition

• Technical elements:
 o A few key rules
 ▪ Don’t feel confused.
 ▪ Three clicks rules;
 ▪ A function = A need ;
 ▪ …
 o Interface development
 ▪ Identification of 9 indicators to describe a WebGIS-IT
2. Framework Definition
2. Framework Definition

• “Territorial intelligence is a process where information technologies are organised to produce”:
 o Knowledge related to the understanding of territorial structures and dynamics,
 o Tools to be used by territorial actors to create, use and share knowledge for sustainable territorial development.
2. Framework Definition

- Territorial resources organisation
- Common results control
- Knowledge and competency pooling
- Participants accountability
2. Framework Definition

Territorial resources organisation
- Seek resources of the targeted territory
- Partnership organisations

Knowledge and competency pooling
- Multi-dimensional project
- Co-learning

Participants accountability
- Organise collaborative project management
- Participant’s deontology and autonomy

Commun results control
- Valuation of territorial impact
- Sustainability of actions
3. Observations and Analyses

• What is the optional format of a WebGIS-IT?
• An application must fulfill its objectives;
• A “User friendly” application ;
 o Satisfaction level ;
 o Usage level (Gap between the expected and actual use);
• An application integrates IT principles.
3. Observations and Analyses
3. Observations and Analyses

WebGIS-IT usage and satisfaction

Technical rules

Users context
3. Observations and Analyses

• Users context :
 o Their needs: *WebGIS-IT = a tool*
 The application must be developed according to the users needs (investigation among them).
 o Their efficiency: *WebGIS-IT = an opportunity*
 The application must reinforce users efficiency within their field of practice
3. Observations and Analyses

- 6 WebGIS-IT examples (C3IT and SEGEFA projects)
3. Observations and Analyses

WebGIS complexity level

Users specialisation level

LOGIC 2.0
ArcelorMittal
Sistema Comunitario de información territorial
CartoLOGIC
Observatoire des territoires

Non-user-friendly zone

Hypothesis
3. Observations and Analyses

- Analysis and evaluation of 6 examples taking into account their finalities

<table>
<thead>
<tr>
<th>Application</th>
<th>Laborstat</th>
<th>Sistema Comunitario info territorial</th>
<th>Economía Crútil</th>
<th>CartoLOGIC</th>
<th>LOGIC 2.0</th>
<th>ArcelorMittal Lieja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of use (%)</td>
<td>60</td>
<td>30</td>
<td>70</td>
<td>10</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>Ergonomics</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Fluency</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>2</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Navigation</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Functions</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Map</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Dynamics</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>Representation</td>
<td>8</td>
<td>6</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Referential</td>
<td>3</td>
<td>1</td>
<td>8</td>
<td>3</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Design</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Modernity</td>
<td>7</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Disposition</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Simplicity</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>4</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
3. Observations and Analyses

- Analysis and evaluation of 6 examples taking into account their finalities

<table>
<thead>
<tr>
<th>Application</th>
<th>Laborstat</th>
<th>Sistema Comunitario de información territorial</th>
<th>Economía Crútil</th>
<th>CartoLOGIC</th>
<th>LOGIC 2.0</th>
<th>ArcelorMittal Lieja</th>
</tr>
</thead>
<tbody>
<tr>
<td>Territorial resources organisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resources</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Partnerships</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Knowledge and competency pooling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multi dimensions</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Co-learning</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Participants accountability</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collaborative management</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participants autonomy</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Commun results control</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts evaluation</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Sustainability</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
4. Conclusions and Perspectives

• Towards a quality agreement including rules for WebGIS-IT settings

• Examples of rules:
 – WebGIS-IT= geographic data sharing space. This requires both spatial data bases and OGC standards (WMS, WFS ...).
 – WebGIS-IT = known and recognised. Orientation must be ensure through reference maps and information search tools.
 – ...

4. Conclusions and Perspectives

WebGIS-IT

Users

Developpers

Lateral dialogue

Top-down development
4. Conclusions and Perspectives

WebGIS-IT

Territorial representation