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New analytic unitarization schemes
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We consider two well-known classes of unitarization of Born amplitudes of hadron elastic scat-
tering. The standard class, which saturates at the black disk limit includes the standard eikonal
representation, while the other class, which goes beyond the black disk limit to reach the full
unitarity circle, includes the U matrix. It is shown that the basic properties of these schemes are in-
dependent of the functional form used for the unitarisation, and that U-matrix and eikonal schemes
can be extended to have similar properties. A common form of unitarization is proposed interpo-
lating between both classes. The correspondence with different nonlinear equations are also briefly
examined.

I. INTRODUCTION

At low energies, hadron scattering can be described
by one-Reggeon exchange terms. But as the Pomeron
term(s) grow(s) with energy, these exchanges will even-
tually violate unitarity. To see this, one can switch to
partial waves [1], or to the representation in impact pa-
rameter b. As s grows, one needs to sum many partial
waves with l ∼ |b|√s → ∞. The summation over l then
becomes an integration over b.

The partial wave G(s,b) has two regimes. First of all,
it can reach maximum inelasticity. In this case, G(s,b) =
1, and half of the interactions are inelastic. The center of
the protons then becomes black, and multiple exchanges,
i.e. cuts in the complex J plane, become important.
Second, the partial wave can later reach the full unitarity
limit G(s,b) = 2.

The maximum inelasticity limit may be reached in pp
or pp̄ scattering a little above the Tevatron energy [2],
so that one expects cuts to be important in the descrip-
tion of soft interactions at the CERN LHC. The inclu-
sion of these goes under the name of unitarization. It is a
formidable task to calculate the contribution of cuts, as
not only multiple Pomeron exchanges must be calculated,
but also multiple Pomeron vertices.

Different schemes have been proposed, and we want in
this paper to show that the general properties of the am-
plitude do not heavily depend on the scheme, but rather
on what assumes for the inelastic contribution at high
energy. We shall limit ourselves to two popular schemes:
the eikonal and the U matrix, and show that simple ex-
tensions of each lead to similar properties.

In Sec. I, we remind the reader of the simple require-
ments coming from unitarity, and examine in Sec. II the
two schemes. In Sec. III, we show that it is possible to
obtain the properties of the eikonal by extending the U -
matrix scheme, whereas in Sec. IV, we show the reverse,
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i.e. that one can extend the eikonal to mimic the behav-
ior of the U matrix, at least for physical amplitudes.

II. UNITARITY

At high energy, we can start with the elastic scatter-
ing amplitude a(s, t), related to the elastic cross section
though

dσ

dt
=

1

16πs2
|a(s, t)|2. (1)

One can then Fourier transform a to b space

G(s,b) =

∫

d2
∆

(2π)2
a(s, t)

2s
ei∆·b, (2)

which leads to the expressions

σtot = 2

∫

d2
b Im G(s,b), (3)

σel =

∫

d2
b |G(s,b)|2 , (4)

where we have assumed that the spin-flip contribution to
the elastic cross section is negligible. One can then write
the square of the S-matrix density S(s,b) = 1+ iG(s,b)
as

|S(s,b)|2 = 1 − 2Im G(s,b) + |G(s,b)|2 . (5)

Unitarity demands that |S(b)|2| ≤ 1, the difference com-
ing from inelastic channels:

ηin(s,b) = 1 − |S(s,b)|2 ≥ 0. (6)

There are several ways to represent the unit circle.
First of all, one can map the upper complex plane into a
circle via a complex exponential

S(s,b) = exp(iz(s,b)) with Imz(s,b) ≥ 0, . (7)

This maps in fact an infinite number of strips with 2nπ <
Rez(s,b) < 2(n + 1)π each onto the unit circle.
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It is also possible to use a one-to-one map through a
Möbius transform and write

S(s,b) =
1 + iz′(s,b)

1 − iz′(s,b)
, with Imz′(s,b) ≥ 0. (8)

Other representations are possible, but we shall concen-
trate on these two in the following section.

III. UNITARIZATION

The physical amplitude lies within the unitarity circle,
so that the associated S matrix can always be represented
by Eqs. (7) and (8). The unitarization scheme comes in
once one identifies z or z′ with the one-Reggeon exchange
amplitude. One then considers (7) and (8) as series ex-
pansions in n-Reggeon exchanges, so that their first term
must give 1 + iχ(s, b).

Indeed, if one writes the one-Reggeon exchange ampli-
tude as χ(s,b), then assuming z = χ in (7) leads to the
well-known eikonal representation:

G(s,b) = i(1 − exp(iχ(s,b)). (9)

This scheme can be derived in QED and other field the-
ories [3, 4, 5, 6] or in potential theory [7]. It can be
extended to include diffractive channels [8]. It leads at
asymptotic energies (s → ∞) to the limit σel/σinel = 1,
i.e. to maximum inelasticity.

The other unitarization scheme considered here is the
U -matrix representation [9, 10, 11] where one identifies z′

in (8) with χ(s,b)/2, to match the one-Reggeon exchange

G(s,b) =
χ(s,b)

1 − iχ(s,b)/2
. (10)

In this scheme, S(s,b) tends to −1 when s → ∞ and b

is finite, so that the inelastic partial wave ηin(s,b) tends
to 0: the ratio σel/σinel vanishes asymptotically.

Both schemes have the same development at second
order in χ, and differ only in the rest of the series.

It must be noted however that the resummation must
lead to an amplitude within the unitarity circle, but there
is no reason to assume that it maps the entire complex
plane to the circle. Hence, one can easily extend both
schemes through a change in the strength of successive
scattering. This gives the extended eikonal schemes [12,
13, 14]

G(s,b) =
i

ω
(1 − exp(iωχ(s,b)) (11)

and the extended U -matrix schemes

G(s,b) =
χ(s,b)

1 − iω′χ(s,b)
. (12)

It is straightforward to check that using ω ≥ 1 or ω′ ≥
1/2 maps any amplitude χ into the unitarity circle.

We shall now show that the various possibilities can be
grouped into two wide classes of unitarization schemes,
and that the exact form matters little.

IV. SHADOWING

As we have seen, the eikonal predicts that at high en-
ergy the inelastic component of the cross section will be
maximal, ηin = 1. This in turn leads to |S(∞,b)| = 0
and G(∞,b) = i. To reach this regime via an extended
U matrix, one needs to choose ω′ = 1 in (12).

The inelasticity will then be

ηin(s,b) =
2Imχ(s,b) + |χ(s,b)|2

1 + 2Imχ(s,b) + |χ(s,b)|2
. (13)

It can easily be seen that s → ∞ leads to σinel/σel → 1
and σel/σtot → 1/2.

Differently stated, this extended U matrix representa-
tion has the standard black disk limit.
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FIG. 1: Inelasticity for the eikonal and extended U matrix at
√

s = 1.8 TeV (upper figure) and
√

s = 14 TeV (lower figure).

Throughout this paper, we shall use as an example of
one-Reggeon exchange amplitude a hard Pomeron term,
with a parametrization

χ(s, b) =

( √
s

1500 GeV

)0.9

exp(−b
2/(9 GeV −2)

×
(

(i + tan

(

0.45π

2

))

. (14)

This amplitude reaches the black disk limit at 1500 GeV,
similarly to the model of ref. [15], and has a dependence
in t similar to that of pp scattering. We also neglect the
effect of shrinkage, which is small for a hard Pomeron.
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In Fig. 1, one can compare the inelasticity in the case
of the eikonal and in that of the extended U matrix. One
clearly sees that the generic features of both schemes are
very close.

The extended U matrix and the eikonal scheme are
different representations of a wider class of unitarization
procedures with a standard black disk limit. Indeed, we
can extend (12) to

G(s,b) = i[1 − 1

(1 − iχ(s,b)/γ)γ
]. (15)

If γ = 1 this form leads to the extended U matrix while,
for γ → ∞, we obtain the standard eikonal. When γ
varies from 1 to ∞, we obtain different forms of unita-
rization which all lead to a black disk limit, and the am-
plitude G does not change anymore once it has reached
its maximum value. In Fig. 2, we show the inelasticity
η(s,b) for different values of γ , again in the case of the
hard Pomeron input of Eq. (14).
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FIG. 2: Inelasticity ηin(s,b) for various values of γ, for
√

s =
1.8 TeV (upper line) and

√

s = 14 TeV (lower line).

It may be worth pointing out that Eq. (15) can also
lead to a noninteracting theory in the limit n → 0, as in
this case G(s,b) → 0.

V. FULL UNITARITY LIMIT

The standard U -matrix scheme (10) was intensively ex-
plored in [11] in the partial-wave language. In the impact
parameter representation, the properties of the U -matrix
are explored in [16].

For a purely imaginary one-Reggeon exchange, when
Imχ(s,b) goes from 0 to ∞, the S-matrix varies in the
interval [−1, +1], and the amplitude G goes from 0 to 2i.
Hence in this case the full unitarity limit can be reached.

This form of unitarization leads to unusual properties
at super-high energies as was shown in [16]. In this rep-
resentation

σel(s) = 4

∫ ∞

0

∣

∣

∣

χ(s,b)
2

∣

∣

∣

2

∣

∣

∣1 − i
(

χ(s,b)
2

)∣

∣

∣

2 db (16)

and

σinel(s) = 4

∫ ∞

0

Im







(

χ(s,b)
2

)

[

1 − i
(

χ(s,b)
2

)]2






db. (17)

so that, when Imχ(s,b) → ∞, one gets σinel/σtot → 0
and σel/σtot → 1.

It is often considered [17] that these properties are in-
trinsic to the Möbius projection of χ onto the unitarity
circle. We want to show now that, in fact, extended
eikonals can lead to the same properties for the unita-
rized amplitude.

We have seen that choosing ω > 1 in (11) guarantees
that any amplitude would be unitarized. However, one
must be concerned with the physical amplitude, and it
is not needed to map the whole complex plane into the
unitarity circle. This means that for some specific choices
of one-reggeon exchange χ, one can extend the range of
values of ω, and restrict oneself to part of the complex χ
plane. Unitarity, in this case, leads to the condition

cos(ωReχ) ≥ e−ωImχ − (2ω − 1)eωImχ

2(1 − ω)
. (18)

So we see that for ω < 1/2, the second term of the nu-
merator will guarantee the inequality for sufficiently large
Imχ.

We show in Fig. 3 the region allowed in the case
ω = 0.525 together with a curve showing the amplitude
corresponding to the exchange of one hard pomeron with
intercept 1.45. This is of course an extreme curve, corre-
sponding to a ratio Reχ/Imχ of 0.73. Any physical am-
plitude will include softer intercepts, and will lie above
the hard pomeron line. So we see that, in practice, eikon-
als can be extended to values of ω between 1/2 and 1.

But at high energy, such eikonals have all the basic
properties of the U -matrix unitarization. For instance,
the inelasticity reaches the asymptotic value

ηin → 2ω − 1

ω2
as s → ∞ (19)

which is close to 0 for ω close to 1/2.
Our calculations for ηin(s, b) in the cases of the U -

matrix and of the extended eikonal are shown in Fig.
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FIG. 3: The allowed region (in white) for amplitudes χ to be
unitarised by an extended eikonal with ω = 0.525, together
with the line corresponding to a hard pomeron amplitude with
intercept 1.45.
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FIG. 4: Antishadowing effects in extended eikonal and U

matrix schemes, for
√

s = 1.8 TeV (upper figure) and
√

s =
14 TeV (lower figure).

4. We see that both solutions have the same behavior in
s and b, but also that the extended eikonal has sharper
anti-shadowing properties.

Hence, the peculiar asymptotic properties of (17) are
not unique to the U -matrix (10). The extended eikonal
(11) has a similar asymptotic behavior for ω between 1/2
and 1.

Again, we can find a scheme that interpolates between
these two forms [18]:

G(s, b) =
i

ω
[1 − 1

(1 − iωχ(s, b)/γ)γ
]. (20)

If γ = 1 this form coincides with the standard U -matrix

representation for ω = 1/2. If, on the contrary, we let
γ → ∞, we recover the extended form of the eikonal
representation. Hence, when γ varies from 1 to ∞, and
ω ≈ 1/2, we obtain different forms of unitarization be-
longing to a wide class with the similar asymptotic prop-
erties, which we shall examine more closely in the next
section.

VI. COMPARISON OF THE BORN TERMS

Another way to make the unitarization schemes lead
to similar results is to use different inputs for z in (8) or
(7). We can solve the equation

i

ω
(1 − exp(iωχe) =

χu

1 − iω′χu
. (21)

to find which Born term in the U-matrix representation
would give results similar to those of the eikonal. Writing
χu = χR

u + iχI
u, and χe = χR

e + iχI
e, we obtain

2ωχI
e = log

( |χu|2ω′2 + 2χI
uω′ + 1

|χu|2(ω − ω′)2 − 2χI
u(ω − ω′) + 1

)

(22)

tan(ωχR
e ) =

χR
u ω

|χu|2ω′(ω′ − ω) + χI
u(2ω′ − ω) + 1

(23)

This simplifies to a particularly simple expression in
the case of a purely imaginary χu:

ωχI
e = log

∣

∣

∣

∣

χI
uω′ + 1

1 − χI
u(ω − ω′)

∣

∣

∣

∣

(24)

and the real part goes from 0 to ωχR
e = π if (ω − ω′)χI

u

crosses 1. This relation is clearly discontinuous if ω 6= ω′.
We illustrate this in Fig. 5 in the case ω = 1 (eikonal)
and ω′ = 1/2 (U matrix). At low energy, the phases
are approximately the same. But at high energy when
χI

u(s, b) → 2, χe has a discontinuity: its imaginary part
goes to infinity, and its real part jumps by iπ. On the
other hand, the extended U matrix does not lead to such
a singularity if ω′ = 1.

VII. NON-LINEAR EQUATIONS

All previous schemes can be recast as non-linear equa-
tions, which may be reminiscent of those obtained in
QCD from gluon saturation.

The simplest way [19] to get these is first to take the
derivative of G with respect to χ in (11) and (12):

dG

dχ
= 1 + iωG (25)

in the eikonal case, and

dG

dχ
= (1 + iω′G)2 (26)



5!0 = 1!0 = 1=2

�Iu
�I e

1010.1

54.543.532.521.510.50
FIG. 5: The relation between the Born terms of the U-matrix
scheme and of the eikonal scheme, in the case of a purely
imaginary χu. The real part of ωχe is discontinuous and goes
from 0 to iπ at χu = 2.

for the U matrix. To make a tentative connection with
saturation, we shall consider a purely imaginary Born
term, and we shall write G = ig. Assuming χ = ig0x

−∆,
we can write the above equations as an evolution in y =
log(1/x) at fixed b:

dg

dy
=

∆

ω
log(1 − ωg)(1 − ωg) . (27)

in the eikonal case and

dg

dy
= ∆g(1 − ω′g) (28)

for the U matrix.
We see that the U matrix schemes lead to equations

which look more natural than the corresponding ones in
the eikonal case, as it is hard to imagine how saturation
would lead to a log containing the amplitude.

One can further generalize these equation to reproduce
Eqs. (15) and (20). The corresponding nonlinear equa-
tion will be

dg

dy
=

γ∆

ω
(1 − (1 − g)1/γ)(1 − ωg) . (29)

It is easily seen that when γ = 1 we obtain the non-linear
equation for the U matrix. In the case ω = 1 Eq.(28)
amounts to the standard logistic equation, and leads to
the extended U -matrix unitarization scheme.

VIII. CONCLUSION

In this paper we presented two new unitarization
schemes which generalize the usual eikonal and U ma-
trix unitarization schemes. We showed that they belong
to two wide classes which cannot be mapped analytically
one onto the other. We showed however that it is pos-
sible to build a more general scheme which interpolates
between the two.

The basic behavior of G(s,b) as a function of s is
mostly constrained by the value of ω (or ω′), but not

by the details of the unitarizing map. To illustrate this
point, we show in Fig. 6 the behavior of G(s,b = 0) in our
interpolating scheme (20), for γ = 9 (close to an eikonal)
and for γ = 1 (U matrix), for ω = 1 or 1/2. Clearly, the
large-s behavior of the amplitude is controlled by ω, and
not by γ.
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FIG. 6: The behavior of G(s,b = 0) from (20) for various
choices of γ and ω.

So the question of the asymptotic behavior of the elas-
tic amplitude remains open. It is possible to build an
infinite number of schemes in which the amplitude will
saturate at the black disk limit, but there also exists an
infinite number of schemes in which it will exceed it and
eventually converge to the full unitarity limit.

Up to now we do not have a decisive argument to
choose one class of unitarization over the other. One pos-
sibility would be to fit the existing data to determine γ
and ω. It is however known that this is possible in eikonal
schemes, so that it is unlikely that the constraints will be
very stringent. However, the prediction for the total cross
sections in these two classes of unitarization have large
differences (see, for example [15, 20]) for the LHC energy
region, and hence we may know soon which is realized.
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