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Cassava (Manihot esculenta) is the most important root crop in the tropics, but rapid postharvest physiological deterioration
(PPD) of the root is a major constraint to commercial cassava production. We established a reliable method for image-based
PPD symptom quantification and used label-free quantitative proteomics to generate an extensive cassava root and PPD
proteome. Over 2600 unique proteins were identified in the cassava root, and nearly 300 proteins showed significant
abundance regulation during PPD. We identified protein abundance modulation in pathways associated with oxidative stress,
phenylpropanoid biosynthesis (including scopoletin), the glutathione cycle, fatty acid a-oxidation, folate transformation, and
the sulfate reduction II pathway. Increasing protein abundances and enzymatic activities of glutathione-associated enzymes,
including glutathione reductases, glutaredoxins, and glutathione S-transferases, indicated a key role for ascorbate/glutathione
cycles. Based on combined proteomics data, enzymatic activities, and lipid peroxidation assays, we identified glutathione
peroxidase as a candidate for reducing PPD. Transgenic cassava overexpressing a cytosolic glutathione peroxidase in storage
roots showed delayed PPD and reduced lipid peroxidation as well as decreased H2O2 accumulation. Quantitative proteomics
data from ethene and phenylpropanoid pathways indicate additional gene candidates to further delay PPD. Cassava root
proteomics data are available at www.pep2pro.ethz.ch for easy access and comparison with other proteomics data.

INTRODUCTION

Cassava (Manihot esculenta) is the most important staple crop
consumed by food-insecure populations in sub-Saharan Africa
(Lobell et al., 2008). It is mostly produced for its starchy roots, but
the leaves are also part of the diet in several African regions (Achidi
et al., 2005). Efforts have been made to increase and secure sus-
tainable cassava production through improving agronomic practi-
ces and reducing biotic and abiotic stresses (El-Sharkawy, 2006;
Fermont et al., 2009). The potential of cassava as a food and in-
dustrial crop, however, is still limited because of rapid postharvest
physiological deterioration (PPD) of the root (Wenham, 1995; Sayre
et al., 2011). PPD is induced by mechanical damage during har-
vesting and handling operations (Booth, 1976; Rickard, 1985), and
progression depends on cassava genotypes and storage con-
ditions (Sanchez et al., 2006). The blue-black discoloration of the
vascular parenchyma that develops during PPD and that is followed

by a general discoloration of the storage parenchyma, as well as
physiological and biochemical changes, ultimately render the roots
unpalatable (Beeching et al., 1998).
Initial studies of PPD focused on gene expression changes (Han

et al., 2001; Huang et al., 2001; Reilly et al., 2001, 2004, 2007).
However, changes in protein accumulation, interactions, mod-
ifications, and activities during PPD development are equally im-
portant but currently not well understood. Earlier investigations
revealed that PPD is associated with changes in the activities of
enzymes such as catalase, superoxide dismutase, phenylalanine
ammonia lyase (PAL), and peroxidase (Tanaka et al., 1983; Rickard,
1985; Reilly et al., 2001, 2004).
Mass spectrometry (MS)–based proteomics offers a new ap-

proach to discover proteins and pathways associated with crop
physiological and stress responses (Vanderschuren et al., 2013).
The identification of protein candidates generally requires quanti-
tative data, because their precise modulation rather than presence/
absence is involved in the regulation of physiological processes.
Cassava proteomics studies have so far mostly used two-
dimensional gel electrophoresis (Sheffield et al., 2006; Baba et al.,
2008; Mitprasat et al., 2011). The number of proteins identified in
those studies was limited by the method as well as the lack of
a fully annotated cassava genome. To increase proteome cover-
age, we previously reported an iTRAQ-based matrix-assisted laser
desorption/ionization time-of-flight approach using the Viridiplantae
protein database to identify 1387 nonredundant protein groups
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(Owiti et al., 2011). With the recent release and annotation of the
cassava genome (Prochnik et al., 2012), it is now possible to ex-
pand cassava proteome coverage and better characterize its
modulation during PPD.

Here, we analyzed the proteome of cassava roots at harvest and
during the onset of PPD. We identified several proteins in pathways
that were regulated during the onset of PPD and extended the
number of proteins that likely have a role during root deterioration.
Protein identifiers and protein abundance ratios were integrated into
the pep2pro database (Baerenfaller et al., 2011; Hirsch-Hoffmann
et al., 2012) to enable a comprehensive cassava proteome data
analysis. Based on proteomics data, enzymatic assays, and lipid
peroxidation, we identified GLUTATHIONE PEROXIDASE (GPX) as
a candidate gene for delayed PPD and demonstrated that transgenic
overexpression of an Arabidopsis thaliana GPX in cassava storage
root could delay PPD.

RESULTS

Properties of the Samples Used for Analysis

Cassava storage roots of the model cv 60444 that is routinely used
for transformation (Bull et al., 2009) were harvested in the green-
house and sliced. Root slices were collected for characterization of
the root proteome at harvest (0 h). Additional root slices were in-
cubated for 6, 12, and 24 h at 28°C in the dark and imaged prior to
flash freezing and sample storage at 280°C. Image analysis of the
root slices was used to establish a standardized quantitative
measure of PPD progression in cassava roots and to ensure that
the material used for analysis showed significant and reproducible
differences during PPD progression. The image-based analysis we
developed relies on the gray value distribution. Because PPD
symptoms develop by continuous darkening of root tissues com-
mencing from the epidermis, their identification by standard his-
togram thresholding (Raju and Neelima, 2012) is not appropriate as
in the case of a bimodal histogram. We observed that the gray
value histogram broadened with PPD symptoms spreading from
the epidermis through the root tissue. Using the PPD imaging
method, we confirmed that the root sample replicates collected for
proteomics analysis showed homogenous and reproducible PPD
progression at the selected time points (Supplemental Figure 1).
The small variation between replicates demonstrates that our PPD
assay is a reliable method to investigate PPD progression.

Proteomics Workflow for the Identification of Cassava
Root Proteins

Previously, we used detergent to extend proteome analysis to the
nonsoluble protein fraction of cassava roots (Owiti et al., 2011),
which substantially increased proteome coverage. Here, we used
SDS to extract total protein from cassava roots during PPD pro-
gression. Three independent biological replicates of each time
point were analyzed, resulting in a total of 702,738 tandem mass
spectra (MS/MS) (Figure 1).

Selected spectra were searched against the cassava proteome
database 4.1, which comprises 30,666 proteins from 34,151 tran-
scripts (Prochnik et al., 2012). We identified 4121 proteins when
peptides with conflicting assignments were taken into account, and

identified proteins were not grouped (Supplemental Data Set 1). To
reduce redundancy in protein identification, conflicting peptides
were removed from the initial data set and the remaining identified
proteins were compiled into protein groups, resulting in 2632
nonredundant proteins (Supplemental Data Set 2).
The identified proteins represent 8.6% of the protein-coding loci

currently annotated in the cassava genome. In Arabidopsis,
Baerenfaller and colleagues (2011) detected 41.6% of the genome-
encoded proteins predicted in TAIR10 in root samples. The num-
ber of proteins expressed in cassava roots is not known; however,
proteome coverage could be increased in the future by improving
the cassava genome annotation, protein fractionation and enrich-
ment strategies, and the sensitivity of MS/MS instruments. Low-
abundance proteins as well as proteins whose expression is in-
duced under specific conditions probably represent an important
fraction of currently undetected proteins in cassava roots.

Identification of Abundant Proteins in Cassava
Storage Roots

Cassava roots have a low protein content and do not express
vegetative storage proteins that typically accumulate in vegetative

Figure 1. Experimental and Bioinformatics Workflow of the Proteome
Analysis.

Total proteins were extracted from roots, separated by gel electrophoresis,
digested with trypsin, and analyzed by liquid chromatography–MS/MS us-
ing an LTQ-Orbitrap device. The workflow references Supplemental Data
Sets 1 to 5, corresponding to the analysis steps.
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tissues as a temporary reservoir of amino acids (Fujiwara et al.,
2002; Stupak et al., 2006; Montagnac et al., 2009). As expected,
our proteomics analysis did not reveal proteins related to known
root and tuber storage proteins (Supplemental Data Sets 1 and 2)
(Shewry, 2003). To generate a ranking of the proteins based on
their abundance, we used the normalized volumes of the peptides
calculated by the Progenesis software for the top-three protein
quantification (T3PQ) method (Silva et al., 2006; Grossmann et al.,
2010). Nearly half of the detected proteins could not be ranked
because their identification and quantification were based on less
than three peptides (Supplemental Data Set 3). The most abundant
proteins were heat shock proteins, reactive oxygen species (ROS)–
scavenging enzymes, as well as several starch-related enzymes,
consistent with the physiological role of the cassava root. We also
detected the most abundant proteins previously reported from
a 2D gel analysis of tuberous cassava roots (Sheffield et al., 2006).
They are also ranked among the most abundant proteins on our list
(Supplemental Data Set 3).

The pep2pro Database as a Repository of Quantitative
Cassava Proteomics Data

The protein identifications of this study were loaded into the
pep2pro database (Baerenfaller et al., 2011; Hirsch-Hoffmann
et al., 2012) and are available at www.pep2pro.ethz.ch. We pro-
vide information on all proteins and their identified peptides as well
as visualization of the proteogenomic mapping of the peptides
onto the annotated cassava genome sequence. We also provide
the scores for the peptide spectrum assignment and display the
spectra in a Spectrum Viewer. For visualizing quantitative in-
formation, the normalized abundance of each protein across the
different time points is shown together with the P value and the
fold change of the quantitative analysis.

Regulated Proteins and Pathways during PPD Progression
and Target Gene Identification

MS peak intensity was used to identify 293 proteins regulated
during PPD progression (Supplemental Data Set 4). This list of
proteins was subsequently used for the further characterization
and interpretation of pathways activated during PPD progression.

Protein Categories Overrepresentation

Overrepresentation of protein categories from biological process
and molecular function was investigated during PPD progression
using the list of regulated proteins (Supplemental Data Set 4).
Proteins involved in phenylpropanoid biosynthetic and metabolic
processes were enriched in the fraction of modulated proteins
(Supplemental Figure 2). Other biological processes over-
represented during PPD progression include lipid and sulfur met-
abolic processes, response to biotic stresses, as well as toxin
catabolic process. Analysis of overrepresented molecular function
categories revealed that the majority accounted for antioxidant and
redox activities (i.e., oxidoreductase activity, antioxidant activity,
and glutathione transferase activity) (Figure 2), suggesting that
oxidative stress is a key process that induces PPD and facilitates
PPD progression (Reilly et al., 2004, 2007). We used the AraCyc

database (Mueller et al., 2003) and the list of modulated cassava
proteins to identify and analyze pathways with at least two en-
zymes that were significantly regulated during the onset and pro-
gression of PPD.

Ascorbate/Glutathione Cycles Are Pivotal to PPD

Both superoxide and H2O2 accumulate in cassava roots during
PPD (Buschmann et al., 2000a; Reilly et al., 2004). Enzymes in the
ascorbate/glutathione cycle, which scavenges H2O2, were modu-
lated during PPD (Figure 3). Notably, the ASCORBATE PEROXI-
DASE3 (APX3) protein level was strongly upregulated 6 h after
harvest. We also detected APX2, which was reported to be upre-
gulated at the mRNA level (Reilly et al., 2007), but its levels did not
change significantly during PPD progression. Other peroxidases
that were regulated at the transcript level during PPD (i.e., PER12
and PX3) (Reilly et al., 2001, 2007) had corresponding protein level
changes (i.e., cassava4.1_010796m and cassava4.1_011662m;
Supplemental Data Set 4). Glutathione dehydrogenase ascorbate
reductase (DHAR) and monodehydroascorbate reductase (MDHAR)
levels were not significantly changed or even slightly downregulated
at 6 and 12 h after harvest. Similarly, the level of glutathione de-
hydrogenase was significantly reduced 24 h after harvest. While the
increase of APX abundance does not correlate with increased APX
activities during early PPD progression (Owiti et al., 2011)
(Supplemental Figure 3), our study also revealed that levels of en-
zymes involved in the reduction of ascorbate and dehydroascorbate
are not significantly upregulated.
Enzymes that use glutathione to detoxify H2O2 (i.e., GPX1,

GPX2, and GPX6) were detected, but their abundances and total
GPX activity were not significantly changed during PPD pro-
gression (Figure 4A). However, glutathione disulfide reductase (GR)

Figure 2. Molecular Function Categories Overrepresented in the Pro-
teins Regulated during PPD.

Category overrepresentation was performed with Arabidopsis identifiers
and determined relative to the background set of all identified proteins for
which an Arabidopsis identifier was available to take into account the
bias introduced by the extraction and detection methods.
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Figure 3. Detection and Regulation of Proteins Involved in the Ascorbate/Glutathione Cycle.

Regulated proteins are selected based on the Progenesis ANOVA analysis (P < 0.05), and regulation is represented graphically using normalized protein
abundance and SD (n = 3).
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accumulated during PPD (Supplemental Data Set 4) and had in-
creased activities at 6, 12, and 24 h after harvest (Figure 4B). GR
converts GSSG into GSH to maintain GSH/GSSG homeostasis.
Because GPX activity is stable (glutathione redox reactions I) and
DHAR abundance is decreased during PPD, other ROS-scavenging
pathways using GSHmight also modulate the GSH/GSSG ratio and
therefore require increased GR activities.

In addition to DHAR, we detected four glutathione transferases
belonging to the two large plant-specific f and t classes that were
among the proteins that showed the strongest upregulation during
PPD. The difference of glutathione S-transferase (GST) abundances
correlated with a significant change in GST activity only 24 h after
harvest (Figure 4C). The lack of significant regulation at 6 and 12 h
might be due to stable and high abundances of other GSTs con-
tributing to the overall GST activity measured in our assays.

Glutathione can also be conjugated spontaneously to formal-
dehyde or by GSTs to methylglyoxal in the formaldehyde oxidation
II and methylglyoxal degradation I pathways. The two enzymes
from the glutathione-dependent formaldehyde oxidation II path-
way, which detoxifies formaldehyde, were detected, but only
S-formylglutathione hydrolase (cassava4.1_009729m) was found to
be downregulated at 24 h after harvest. The hydroxyacylglutathione
hydrolase (cassava4.1_011683m), which catalyzes the hydrolysis
of S-lactoylglutathione, displayed a similar abundance pattern
(Supplemental Data Set 4).

Increased GPX Activity in Transgenic Cassava Root
Significantly Reduces PPD Symptoms

Based on our observation that lipid peroxidation occurs during PPD
(Supplemental Figure 4) and both GPX protein level and activity
(Figures 3 and 4A) are not altered during PPD, we hypothesized
that increasing GPX activity in cassava roots could delay PPD
onset. Transgenic cassava plants overexpressing an Arabidopsis
cytosolic GPX in storage roots were generated (Supplemental
Figure 5), and four transgenic lines were assessed for PPD onset
using the PPD scoring method. We found that the appearance of
PPD symptoms in the inner section of cassava storage roots was
significantly delayed in the transgenic lines at 6 h after harvest
(Figure 5). The reduced PPD symptom score was maintained until
48 h after harvest in the PAT-GPX2 and PAT-GPX12 lines. En-
hanced GPX activity in transgenic cassava appeared to limit lipid
peroxidation (Supplemental Figure 6A) and lower H2O2 accumula-
tion during PPD onset (Supplemental Figure 6B).

Other Enzymatic Pathways Regulated during PPD

Ethene Biosynthesis

Early studies of PPD identified the emission of ethene in cassava
roots that peaked 18 h after harvest (Hirose et al., 1984),
which correlates with the upregulation of 1-aminocyclopropane-1-
carboxylate (ACC) oxidase mRNA 12 h after harvest (Reilly et al.,
2007). ACC oxidase catalyzes the final step of ethene synthesis
(Wang et al., 2002). Ethene biosynthesis using L-Met as substrate
requires two additional enzymes, S-adenosyl-L-methionine (SAM)
synthetase and ACC synthase. Both SAM synthetase and ACC
oxidase showed significant and coordinated upregulation consistent

Figure 4. Enzymatic Activities in Protein Fractions from Collected Time
Points.

Protein fractions were GPX (A), GR (B), and GST (C). Means6 SD of three
biological replicates are shown (Student’s t test, *P < 0.05).
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with increased ethene synthesis during PPD progression
(Supplemental Figure 7).

Phenylpropanoid Biosynthesis

Phenylpropanoids are produced in plants during biotic and abiotic
stress (reviewed in Vogt, 2010). The coumarin scopoletin accu-
mulates to high levels during PPD progression (Tanaka et al., 1983;
Wheatley and Schwabe, 1985; Buschmann et al., 2000b; Bayoumi
et al., 2010). Enzymes involved in the final steps of scopoletin
biosynthesis were significantly upregulated 6 h after harvest
(Supplemental Figure 8), including 4-coumarate-CoA ligase and
caffeoyl-CoA O-methyltransferase enzymes, which convert
4-coumarate into coumaroyl-CoA and caffeoyl-CoA into feruoyl-
CoA, respectively. 2-Oxoglutarate–dependent dioxygenase, which
was recently identified as a pivotal enzyme converting feruoyl-CoA
into 69-hydroxyferuoyl-CoA during scopoletin synthesis (Kai et al.,
2008), was upregulated during PPD progression only 12 h after
harvest. PAL, which initiates phenylpropanoid synthesis, also had
increased activity during PPD (Tanaka et al., 1983). We found that
both PAL1 and PAL2 abundances were regulated, with up to an
8-fold increase at 24 h after harvest (Supplemental Figure 9).
Analysis of PAL activity in the cassava root extracts used for the
proteomics study revealed a significant increase in PAL activity at
12 and 24 h after harvest (Supplemental Figure 10), but PAL activity
and protein levels did not strictly correlate.

Fatty Acid a-Oxidation

a-DOX1 (cassava4.1_003891m), a fatty acid dioxygenase cata-
lyzing the primary oxygenation of fatty acids (De León et al., 2002),
was more than 15-fold upregulated 24 h after harvest. This was
paralleled by the upregulation of an aldehyde dehydrogenase
(cassava4.1_005092m) (Supplemental Figure 11) during PPD pro-
gression. Upregulation of both enzymes at 24 h might be indicative
of fatty acid degradation through a-oxidation.

Folate Transformation

Several proteins involved in one-carbon metabolism accumulated
during PPD progression (Supplemental Figure 12). The upregula-
tion of Gly hydroxymethyltransferase (cassava4.1_006924m) and
5,10-methylenetetrahydrofolate reductase (cassava4.1_003870m),
combined with the downregulation of methylenetetrahydrofolate
dehydrogenase (cassava4.1_012783m), indicate that the folate
transformation pathway is directed toward the production of
59-methyltetrahydrofolate, which is the most reduced form of
tetrahydrofolate. The use of 59-methyltetrahydrofolate to convert
homocysteine to Met represents the largest anabolic flux of one-
carbon units (Hanson and Roje, 2001).
The upregulation of two Met synthases (cassava4.1_002156m

and cassava4.1_006508) (Supplemental Figure 13) supports the
hypothesis that Met biosynthesis is altered during PPD.

Sulfate Reduction II Pathway (Assimilatory)

A sulfate adenylyltransferase (APS2; cassava4.1_006467m), which
converts sulfate into adenosine 59-phosphosulfate, increased more
than 20-fold 6 h after harvest and further increased to over 60-fold
12 and 24 h after harvest (Supplemental Figure 14). Sulfate ad-
enylyltransferase catalyzes the first reaction of the sulfate reduction
II pathway (Saito, 2004). The adenylyl-sulfate reductase detected in
our study did not show significant abundance regulation, whereas
sulfite reductase, which converts sulfite into hydrogen sulfide, was
also upregulated during PPD progression. Modulation of the sul-
fate assimilation proteins suggests an increase of amino acids (i.e.,
Cys and Met) and glutathione biosynthesis during PPD.

DISCUSSION

We have significantly expanded the cassava root and PPD pro-
teome to more than 2600 nonredundant proteins using a com-
bination of high-accuracy label-free MS/MS and the cassava

Figure 5. PPD Score Analysis of Wild-Type and Transgenic Cassava Storage Roots.

(A) Comparison of the PPD scores of the control line and transgenic PAT-GPX lines at 6, 12, 24, and 48 h after harvest (Student’s t test, *P < 0.05).
(B) Root slice of the control line at 24 h after harvest.
(C) Root slice of the PAT-GPX2 line at 24 h after harvest.
[See online article for color version of this figure.]
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genome database. This data set provides a useful basis for further
characterizing the cassava root proteome in different conditions
relevant to cassava root physiology and trait improvement. The
cassava root proteomics data that are available on the pep2pro
web interface will allow comparison with other proteomics data to
uncover common responses in model and crop plants.

An analysis of overrepresented biological process and molecular
function categories shows that the phenylpropanoid pathway and
proteins with antioxidant and redox activities are pivotal to PPD.
The quantitative proteomics data indicate that quantities of DHAR
and MDHAR enzymes are not altered at 6 and 12 h after harvest.
DHAR is significantly downregulated at 24 h after harvest; there-
fore, DHAR activity might be limiting for maintenance of the
ascorbate pool. This is supported by a previous observation that
ascorbate supplementation can significantly delay PPD onset in
cassava (Reilly et al., 2001). Altering DHAR expression levels could
be instrumental to maintaining an ascorbate pool, as suggested by
previous studies in transgenic tobacco (Nicotiana tabacum) (Kwon
et al., 2003; Yin et al., 2010). Our data reveal that GR accumulates
during PPD and correlate with increased GR activity, suggesting
that the ascorbate/glutathione pathway might be more constrained
by the availability of ascorbate than glutathione. The abundance of
GluCys ligase (cassava4.1_005513m) and glutathione synthetase
(cassava4.1_004677m), which catalyze the formation of glutathi-
one from L-Glu and L-Cys, respectively, were not changed.

Our study also confirms that APX activity is not increased up to
24 h after harvest. The limited ascorbate availability and the non-
activation of peroxidases could explain the accumulation of H2O2

observed in cassava storage roots undergoing PPD (Reilly et al.,
2004; Xu et al., 2013). We consistently observed an initial increase
of H2O2 followed by a reduction at 48 h after harvest (Supplemental
Figure 6B), which could indicate a limited capacity of the ascorbate/
glutathione pathways to scavenge ROS. Recent work using trans-
genic cassava storage roots overexpressing catalase and super-
oxide dismutase demonstrates that limiting the accumulation of
ROS independently from the ascorbate pool can effectively reduce
PPD onset (Xu et al., 2013). Our measurement of detected GPX by
quantitative proteomics reveals an absence of regulation during
PPD (Figure 3), which is consistent with an overall decreasing ac-
tivity of GSH-dependent GPX activity (Figure 4). Previous work in
Arabidopsis and cassava suggests thatGPX genes are regulated by
stresses, including PPD, at the transcriptional level (Rodriguez Milla
et al., 2003; Reilly et al., 2007). Our work shows that the tran-
scriptional regulation does not lead to increased abundances of
GPX protein during PPD. Transgenic cassava expressing At-GPX2
under the control of the patatin promoter shows an increased GSH-
dependent GPX activity in storage roots, demonstrating that At-
GPX2 can have GSH-dependent activity in heterologous systems in
addition to its thioredoxin-dependent activity (Iqbal et al., 2006). The
reduction of malondialdehyde (MDA) accumulation in transgenic
PAT-GPX cassava storage roots during PPD (Supplemental Figure
6A) correlates with a significant decrease in PPD symptoms (Figure
5). Previous studies using transgenic tobacco overexpressing GPX
enzymes already provided evidence that resistance to abiotic
stresses correlates with decreasedMDA accumulation (Roxas et al.,
2000; Yoshimura et al., 2004).

Together, our proteomics data establish that the levels of
enzymes in the phenylpropanoid pathway involved in feruloyl-CoA

production are generally increased. However, further biochemical
analysis will be necessary to determine if this overall modulation of
the phenylpropanoid pathway is directed primarily toward an in-
creased production of scopoletin and its glucosylated derivative
scopolin that accumulate during PPD (Wheatley and Schwabe,
1985; Buschmann et al., 2000b). Previous studies demonstrated
the antioxidant activity of free scopoletin as well as the phenyl-
propanoid caffeoyl quinate (chlorogenic acid), which is produced
by p-coumaroyl shikimate/quinate 39-hydroxylase (Chong et al.,
1999; Niggeweg et al., 2004; Rommens et al., 2008). Thus, phe-
nylpropanoid pathway modulation might also reflect a response to
ROS production during PPD (Reilly et al., 2004). Enzymes of the
phenylpropanoid pathway and the related suberin pathway up to
feruloyl-CoA were generally upregulated (Supplemental Figures 9
and 15). However, the levels of cinnamoyl-CoA reductase, which
converts feruloyl-CoA into coniferyl aldehyde, were not signifi-
cantly changed during PPD progression (Supplemental Figure 15).
Coniferyl aldehyde is a precursor of monolignols that are the
building blocks of lignin (Vanholme et al., 2010). Enzymes leading
to the formation of sinapyl alcohol, a precursor of primary mono-
lignols (Dixon et al., 2001), were either not detected (i.e., coniferyl
aldehyde 5-hydroxylase and caffeate O-methyltransferase) or
downregulated (cinnamyl alcohol dehydrogenase). Similarly, tyra-
mine N-feruloyltransferase, which converts feruloyl-CoA into
N-feruloyltyramine, the major monomer in suberized potato (So-
lanum tuberosum; King and Calhoun, 2005), was detected, but its
abundance was not changed during PPD progression. Our data
indicate that the synthesis of lignin and suberin might be limited in
cassava storage roots after harvest.
Our quantitative proteomics data also suggest an activation of

the ethene pathway during PPD. It remains unclear if the rate-
limiting enzyme ACC synthase (Wang et al., 2002) is also upregu-
lated during PPD progression to convert SAM into ACC, because
we did not detect ACC synthase in our proteomics study. Previous
proteomics studies also failed to detect or quantify ACC synthase
in Arabidopsis (Baerenfaller et al., 2011), suggesting that it is a low-
abundance enzyme in plants (Kende, 1993; Wang et al., 2002).
In plants, Met is the only known precursor for ethene bio-

synthesis. Interestingly, proteins involved in the SAM cycle ap-
peared to be positively regulated during PPD (Supplemental Figure
13). Activation of the Met pathway is consistent with the increased
biosynthesis of ethene (Supplemental Figure 7) but could also
contribute to protein synthesis during PPD (Beeching et al., 1998).
The significant increase of three Met adenosyltransferases
(Supplemental Figure 13) might reflect the conversion of L-Met to
SAM, a donor for methylation reactions.
In addition, our quantitative proteomics data reveal significant

regulation of other pathways. For example, the abundances of
several enzymes involved in geranylgeranyl diphosphate bio-
synthesis II are upregulated during PPD. Our quantitative proteo-
mics analysis also reveals the upregulation of the two key enzymes
involved in the ent-kaurene biosynthesis pathway, ent-copalyl
diphosphate synthase (cassava4.1_001987m) and ent-kaurene
synthase (cassava4.1_001987m), which converts geranylgeranyl
diphosphate into ent-kaurene (Sun and Kamiya, 1997). A combi-
nation of the phytohormones jasmonic acid and ethene was pre-
viously shown to have a synergistic role in positively regulating
kauralexin accumulation, which is preceded by an increase of the
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ent-copalyl diphosphate synthase An2 transcript in maize (Zea
mays; Schmelz et al., 2011). It remains to be elucidated whether
the upregulation of ent-kaurene biosynthesis proteins during PPD
has a biological role or is a consequence of ethene accumulation.

Our work demonstrates that combining proteomics analysis
with functional validation of protein candidates facilitates the
improvement of orphan crops such as cassava. Based on our
quantitative proteomics data, we suggest that reducing ethene
biosynthesis and increasing enzymes involved in suberization
and lignification could further delay PPD onset in cassava roots.

METHODS

Plant Material

Stem-propagated 10-month-old plants of cassava (Manihot esculenta cv
60444) were grown in a greenhouse (16 h of light, 60%humidity, day/night
temperatures of 26/17°C), harvested at 10 AM, and roots were sliced into
5-mm-thick slices. The root slices were placed on Petri dishes containing
filter papers presoaked with 2 mL of distilled water to prevent drying. The
sliced roots were then randomized and stored at a constant temperature
of 28°C in the dark. For each time point, three replicates consisting of two
root slices each were sampled. Slices were taken and frozen in liquid
nitrogen after incubation for 0, 6, 12, and 24 h.

Plant Transformation

The transformation vector was designed using pCAMBIA 1301 as a back-
bone vector. Thecauliflowermosaic virus 35Spromoterwas substitutedwith
a gene fragment containing a 1.0-kb class I patatin promoter from potato
(Solanum tuberosum) followed by a 500-bp Arabidopsis thaliana cytosolic
GPX. The cDNA encoding cytosolic At-GPX2 (AT2G31570.1) was amplified
by RT-PCR from Arabidopsis total RNA using primers 59-ATGGCGGAT-
GAATCTCCAAAGTC-39 and 59-TTAAGAAGAGGCCTGTCCCAAC-39 and
cloned downstream of the patatin promoter to generate the PAT-GPX
transformation vector. Transgenic cassava plants were generated according
to an optimized transformation procedure (Bull et al., 2009). Transgenic plant
analysis and characterization were performed according to procedures
described previously (Vanderschuren et al., 2009).

Image Analysis

Root slices were photographed under standard light conditions with a
Nikon D700 camera. Image analysis was performed using the PPD
Symptom Score Software written in MatLab (The Mathworks)
(Supplemental File 1). Photographs of root probes were first interactively
marked with a polygon in the image. The software then converted the
color image into a gray value image and determined its histogram. To
obtain a robust PPD score that is insensitive to changing illumination
conditions, and outliers, we used the width of a binary histogram (Kunttu
et al., 2003) to calculate the number of occurring gray values. The range of
the gray value interval, covering 95% of the occurring gray values, was
normalized with the 97.5% quantile to generate a PPD score, which
ranges in theory from 0 to 1. Because the root slice method triggers rapid
and homogenous PPD symptoms, we observed saturation of the PPD
symptom score between 48 and 72 h after harvest. The inner 50% PPD
value was automatically calculated based on the gray values occurring in
the inner 50% surface area of the initially selected root area.

Protein Extraction

Root slices were ground in liquid nitrogen with a mortar and pestle. Total
proteins were extracted from root powder with an SDS extraction buffer

(4% [w/v] SDS, 40 mM Tris base, and 23 EDTA-free protease inhibitor
[Roche] in a 1:2 ratio [w/v]). Protein extracts were ultracentrifuged at
100,000g for 45 min to remove contaminants, and proteins were quan-
titated with the BCA Protein Assay Kit (Pierce).

For enzymatic assays, ground tissue powder was mixed in a 3:4 ratio
(v/v) with an extraction buffer containing 20mMHEPES buffer, pH 8.0, 1%
polyvinylpyrrolidone, and 13 Complete EDTA-free protease inhibitor
(Roche). In the case of the APX assay, 10 mM ascorbic acid was included
in the extraction buffer (Amako et al., 1994). For the GPX assay, fresh
protein samples were extracted from an independent PPD assay
experiment.

For MS, equal amounts of proteins (180 µg) per sample were subjected
to 1D SDS-PAGE. After electrophoresis, the gel was stained with Coo-
massie Brilliant Blue R 250. Each lane, corresponding to one replicate,
was cut into five equal gel slices longitudinally, and each gel slice was
diced into small pieces. The gel pieces were destained completely and
washed prior to an in-gel tryptic digestion according to Shevchenko et al.
(1996) with an overnight incubation at 30°C. Peptides were eluted and
purified using Sep-Pak reverse-phase cartridges (Waters).

Mass Spectrometry

Samples were analyzed on an LTQ-Orbitrap mass spectrometer (Thermo
Fischer Scientific) coupled to an Eksigent-Nano-HPLC system (Eksigent
Technologies). Solvent composition at the two channels was 0.2% formic
acid and 1% acetonitrile for channel A and 0.2% formic acid and 80%
acetonitrile for channel B. Peptides were loaded on a self-made tip column
(75 mm 3 80 mm) packed with reverse-phase C18 material (AQ, 3 mm,
200 Å; Bischoff) and eluted with a flow rate of 200 nL/min by a gradient from
3 to 15% B in 5 min, 40% B in 50 min, and 97% B in 56 min.

Full-scanMSspectra (300 to 2000m/z) were acquiredwith a resolution of
60,000 at 400m/z after accumulation to a target value of 500,000. Collision-
induced dissociation MS/MS spectra were recorded in a data-dependent
manner in the ion trap from the fivemost intense signals above a threshold of
500, using a normalized collision energy of 28% and an activation time of
30 ms. Charge state screening was enabled, and singly charged states were
rejected. Precursor masses already selected for MS/MS were excluded for
further selection for 60 s, and the exclusion window was set to 20 ppm. The
size of the exclusion list was set to a maximum of 500 entries.

Label-Free Proteomics Analysis

Raw data of gel slices with equal molecular weight were loaded together
into the commercial software package Progenesis LCMS version 4.0
(Nonlinear Dynamics), a software tool developed for label-free quantifi-
cation of liquid chromatography–MS data. For data loading, the option
High Mass Accuracy Instrument was selected. Liquid chromatography–
MS data were normalized and aligned according to the manufacturer’s
specifications. In the aligning step, three to five vectors along the retention
time gradient were manually seeded to give the automatic alignment
a good starting point.

For the annotation of the master map, Mascot generic files (.mgf file
format) generated with Progenesis LCMS (using up to five tandem mass
spectra for each sequenced feature with the top 200 fragment ion peaks and
the deisotoping and charge deconvolution option from Progenesis LCMS)
were searched against the cassava 4.1 protein database with known mass
spectrometry contaminants attached using the Mascot 2.3 search engine.
Parameters for precursor tolerance and fragment ion tolerance were set to
610ppmand60.6D, respectively. Carbamidomethylation ofCyswas set as
fixed modification, and oxidation of Met was set as variable. The Mascot
resultswere exported and filtered.Only rank 1 assignments and assignments
matching the term bold red (significant and assigned to the best protein
match) were kept. TheMascot ion score cutoff was set at 25, which resulted
in a peptide false discovery rate < 1%. For proteins identified with single
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peptide spectrum match, the annotated spectra are provided in
Supplemental Data Set 5. The three biological replicates were grouped for
quantification analysis. The Progenesis experiments were first performed
individually for each molecular weight fraction and subsequently com-
bined within the software using the combine-fractions approach. Peptide
features confidently assigned to proteins are stacked for quantification.
The statistical analysis was then performed for each protein on the stacks
of normalized feature volumes. The ANOVA statistical test was applied to
the selected PPD time points using data from the three biological repli-
cates, and proteins with significant regulation were identified (P < 0.05).
We also applied a minimum 1.5-fold change cutoff to the list of regulated
proteins to identify proteins with differential regulation. All regulated
proteins were identified with at least two peptide spectrum matches.

Cassava proteins were ranked with the T3PQ method, which is based
on the linearity between the average of the three most intense MS signals
of different tryptic peptides of a given protein and its abundance (Silva
et al., 2006; Grossmann et al., 2010).

pep2pro Database

Data import into pep2pro was based on the peptide and protein output files
generated with Progenesis (Nonlinear Dynamics). The protein output file
contained the quantitative abundance data for each protein, which are
graphically representedon the pep2prowebsite. For eachprotein, thepeptide
sequences and corresponding ion scores were retrieved from the peptide
output file, and the sample spectra shown on the pep2pro website were read
out from theMascot output file. The display of the cassava proteome data on
the pep2pro website relied on the peptide-protein assignment from the
Progenesis output, and the peptide and ambiguity filters, which are the basis
of the uploading procedure for other search algorithms, were not applied.

Gene Ontology Categories and Pathway Representations

The assignment of protein and transcript functional categories was based on
the TAIR Gene Ontology categories from aspect biological process (ATH_
GO_GOSLIM_20110301.txt), excluding annotations inferred from electronic
annotation (Gene Ontology evidence code IEA). The assignment was per-
formed using the elim algorithm from the topGOpackage (Alexa et al., 2006).

Quantitative proteomics data for the four PPD time points were
submitted to the Plant Metabolic Network (Mueller et al., 2003) to visualize
pathways modulated during PPD. Proteins with the highest peptide
coverage were selected for graphical representation when multiple ho-
mologs appeared regulated.

Assays

PAL Activity

PAL activity was assayed in a PAL assay buffer (0.1 M Tris-HCl buffer,
pH 8.9, and 15 mM L-Phe). The reaction was followed at 290 nm for 1 h at
30°C, with readings at 5-min intervals, and the molar extinction coefficient
of t-cinnamic acid (i.e., 1.0 3 104 M21 cm21) was used for calculation
(Rubery and Fosket, 1969). One unit of PAL activity was defined as the
amount of enzyme needed to produce 1 nmol of t-cinnamic acid per min.

APX Activity

APX activity was assayed in an APX assay buffer (50 mM potassium
phosphate buffer, pH 7.0, 0.5 mM ascorbic acid, 0.2 mM H2O2, and 0.1
mM EDTA). The reaction was followed at 290 nm for 3 min at 25°C, with
readings at 30-s intervals, and the molar extinction coefficient of ascorbic
acid (2.8 mM21 cm21) was used for calculation (Amako et al., 1994). One
unit of APX activity was defined as the amount of enzyme oxidizing 1mmol
of ascorbic acid per min at 25°C.

GR Activity

GR activity was assayed in a GR reaction buffer (25 mM sodium phos-
phate buffer, pH 7.8, 5 mMGSSG, and 1.2 mMNADPH). The reaction was
followed at 340 nm for 5 min at 25°C, with readings at 30-s intervals, and
themolar extinction coefficient of NADPH (6.22mM21 cm21) was used for
calculation (Foyer and Halliwell, 1976). One unit of GR activity was defined
as the amount of enzyme oxidizing 1 nmol of NADPH per min at 25°C.

GPX Activity

GPX activity was assayed in a GPX assay buffer (50 mM potassium
phosphate buffer, pH 7.0, 1 mM GSH, 1 mM EDTA, 1 mM NaN3, 0.2 mM
NADPH, and 0.35 units/mL GR [Sigma-Aldrich]). Samples were pre-
incubated at 30°C to deplete cellular GSSG, and the reaction was initiated
by adding 0.25 mM H2O2 using a molar extinction coefficient (6.22 mM21

cm21) for calculation. One unit of GPX activity was defined as the amount
of enzyme oxidizing 1 nmol of NADPH per min.

GST Activity

GST activity was assayed in a GST assay buffer (0.1 M potassium
phosphate buffer, pH 6.5, 10 mM GSH, and 10 mM 1-chloro-2,4-
dinitrobenzene [CDNB]). The reaction was followed at 340 nm for 10 min
at 25°C, with readings at 30-s intervals, and a molar extinction coefficient
of CDNB (9.6 mM21 cm21) was used for calculation (Loscalzo and
Freedman, 1986). One unit of GST activity was defined as the amount of
enzyme needed to conjugate 1 nmol of CDNB per min.

Determination of H2O2 Content and Lipid Peroxidation

H2O2 content was measured spectrophotometrically with potassium iodide
according to standardmethods established for plant tissues (Velikova et al.,
2000). Lipid peroxidation was estimated by the level of MDA production
using the thiobarbituric acid method according to previously described
protocols (Hodges et al., 1999; Chen and Gallie, 2006).

Accession Numbers

The mass spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium (http://proteomecentral.proteomexchange.
org) via the PRIDE partner repository (Vizcaíno et al., 2013) with the data set
identifier PXD000587.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Symptom Scores of Root Samples Used in
the Proteomics Study.

Supplemental Figure 2. Biological Process Categories Overrepre-
sentation in the Proteins Regulated during Postharvest Physiological
Deterioration.

Supplemental Figure 3. Ascorbate Peroxidase Enzymatic Activities in
Protein Fractions from Collected Time Points.

Supplemental Figure 4. MDA Content of Cassava Root Slices from
Collected Time Points.

Supplemental Figure 5. Characterization of Transgenic PAT-GPX
Cassava Lines.

Supplemental Figure 6. Characterization of Control and Transgenic
Cassava Storage Roots during PPD.

Supplemental Figure 7. Detection and Regulation of Proteins In-
volved in Ethene Biosynthesis.

Supplemental Figure 8. Detection and Regulation of Proteins In-
volved in Scopoletin Biosynthesis.
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Supplemental Figure 9. Detection and Regulation of Proteins In-
volved in Phenylpropanoid Biosynthesis.

Supplemental Figure 10. Enzymatic Activities of PAL in Protein
Fractions from Collected Time Points.

Supplemental Figure 11. Detection and Regulation of Proteins
Involved in the Fatty Acid a-Oxidation Pathway.

Supplemental Figure 12. Detection and Regulation of Proteins
Involved in Folate Transformation II.

Supplemental Figure 13. Detection and Regulation of Proteins
Involved in SAM Cycle II.

Supplemental Figure 14. Detection and Regulation of Proteins
Involved in Sulfate Reduction II.

Supplemental Figure 15. Detection and Regulation of Proteins
Involved in Suberin Biosynthesis.

The following materials have been deposited in the DRYAD repository
under accession number http://dx.doi.org/10.5061/dryad.6f48r.

Supplemental Data Set 1. Proteins Identified in Cassava Samples
from Four PPD Time Points.

Supplemental Data Set 2. Proteins Identified with No Conflicting
Peptides in Cassava Samples from Four PPD Time Points.

Supplemental Data Set 3. T3PQ-Based Protein Abundances of
Identified Proteins in Cassava Roots at 0 h.

Supplemental Data Set 4. Label-Free MS1-Based Quantitative Data
and Statistical Analysis of Cassava Proteins Detected in Cassava
Samples from Four PPD Time Points.

Supplemental Data Set 5. List of Proteins Identified with Single
Peptide Spectrum Match and Their Corresponding Spectra.

Supplemental File 1. PPD Symptom Score Software.
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