


A shows production kinetic of RP in culture supernatant Surprisingly, STR with intense agitation leads to highest RP production whereas low agitation leads to the lowest → Do high shear stress conditions activate pglaB?

Despite use of a specific promoter, we observe middle RP production in aspersed and immersed BfR

<u>Does biofilm thickness influence diffusional mass transfer of RP?</u>
a fraction of RP has been extracted from the biofilm matrix (results not shown)

For each sample of supernatant, immunodetection of the RP with an antibody anti-GFP detects two bands of different molecular weight : • 1st band at 70 kDa is the RP and 2nd band at 27 kDa is a

proteolytically truncated GFP B bar graph represents total amount of secreted RP for each culture condition. Fraction of truncated GFP is given in % of total amount • Fraction of truncated GFP reaches less than 25% in immersed BfR whereas it reaches much than 50% in two other conditions → Do biofilm conditions alter secretion and quality of the RP? P and the second s

STIR 800 rpm STIR 200 r

100kDa 7 ← ____ pH

C 2D-gel electrophoresis of extracellular proteom at the end of the culture

Among 21 major spots identified, 3 families of enzymes are mainly expressed at different levels in each culture condition : proteases (P) , polysaccharides hydrolases (H) and chitinases (C)

The RP and several forms of ::GFP are identified in each gel. Proteolysis level of the RP supports results of 1D-gel electrophoresis

Smeared spots and aligned spots of same MW would attest the presence of differently glycosylated or phosphorylated proteins

→ Culture conditions induce distinct secretion profiles. Presence of several protease families modify quality and recovery of the RP.

Conclusion

Productivity and quality of the recombinant product are influenced by culture conditions

→ Surprisingly, glaB is broadly expressed in submerged culture at 800 rpm but is nearly basent in submerged culture at 200 rpm (high shear stress effect?)

→ Aspersed BfR reaches middle RP productivity but immersed BfR leads to the best quality of the RP (post-translational modifications effect?)

· Secretion profile characterized by extracellular proteom is altered by culture conditions

→ several proteins spots highlight different expression levels and different posttranslational modifications : exoglucanase (exgA) and chitosanase (csnC)

Perspectives :

→ implementation of the fungal BfR in a continuous process in order to improve productivity

→ experiment cycles of aspersion/immersion in order to increase secretion and recovery of the RP

→ construct and experiment a new transcriptional reporter with a promoter characterizing biofilm conditions

¹Univ. Liege- Gembloux Agro-Bio Tech. Bio-Industries Unit. Passage des Déportés, 2. B-5030 Gembloux (Belgium). (*) Thesis funded by FRIA
²Univ. Liege-Gembloux Agro-BioTech. Functional and Evolutive Entomolgy Unit. Passage des Déportés, 2. B-5030 Gembloux (Belgium)
³Univ. Liege. Chemical Engineering Laboratory. Allée de la Chimie, 3/6c. B-4000 Liege (Belgium).
⁴Wageningen Centre for Food Sciences, P.O. Box 557, 6700 AN Wageningen (The Netherlands)