
1

Efficient Finite Element Assembly of High Order Whitney Forms

N. Marsic*, C. Geuzaine*

*University of Liège, Department of Electrical Engineering and Computer Science,

Montefiore Institute B28, B-4000 Liège, Belgium

E-mail: nicolas.marsic@ulg.ac.be

Keywords: Whitney elements, high order, assembly, finite

element method, high performance computing.

Abstract

This paper presents an efficient method for the finite element

assembly of high order Whitney elements. We start by

reviewing the classical assembly technique and by

highlighting the most time consuming part. Then, we show

how this classical approach can be reformulated into a

computationally efficient matrix – matrix product. We also

address the problem of the basis orientation by considering

more than one reference space. We conclude by presenting

numerical results on a wave guide problem.

1 Introduction

There is a growing consensus that state of the art finite

element technology requires, and will continue to require, too

extensive computational resources to provide the necessary

resolution for complex high-frequency electromagnetic

compatibility simulations, even at the rate of computational

power increase.

The requirement for precise resolution naturally leads us to

consider methods with a higher order of grid convergence

than the classical second order provided by most industrial

grade codes. This indicates that higher order discretization

methods will replace at some point the finite element solvers

of today, at least for part of their applications.

2 Classic finite element assembly

Let us star by considering the time harmonic propagation of

an electrical wave 𝒆(𝑥, 𝑦, 𝑧) into wave guide Ω(𝑥, 𝑦, 𝑧). The

solution is interpolated using a curl-conforming [1] basis

𝔹(Ω), as follow:

𝒆 𝑥, 𝑦, 𝑧 = 𝑐𝑘 𝒆𝑘 𝑥, 𝑦, 𝑧 .

#𝔹(Ω)

𝑘=1

 (1)

By applying the classical Galerkin finite element (FE)

scheme [1], the coefficients 𝑐𝑘 can be computed using the

elementary terms 𝒯𝑖,𝑗
𝑒 given in (2) and (3), with 𝜇 the magnetic

permeability, 𝜀 the electric permittivity and 𝑘 the

wavenumber. Each 𝒯𝑖 ,𝑗
𝑒 is giving the contribution of the

degrees of freedom (DOF) 𝑖 and 𝑗 of the mesh element 𝑒:

𝒯𝑖,𝑗
𝑒 = ℐ𝑖,𝑗

𝑒 − 𝒦𝑖 ,𝑗
𝑒 , (2)

with

 ℐ𝑖,𝑗

𝑒 = 𝜇−1 det−1 𝑱𝑒 𝑱𝑒 𝐜𝐮𝐫𝐥 𝒆𝑖
𝑇 𝑱𝑒 𝐜𝐮𝐫𝐥 𝒆𝑗 d𝜔,

𝜔

𝒦𝑖 ,𝑗
𝑒 = 𝑘2𝜀 det 𝑱𝑒 𝑱𝑒−𝑇

𝒆𝑖
𝑇
 𝑱𝑒−𝑇

𝒆𝑗 d𝜔,
𝜔

 (3)

where 𝑱𝑒 is the Jacobian matrix of the mapping between a

reference element 𝜔 and the element 𝑒 of the mesh.

The classical finite element assembly algorithm is quite

simple. It consists in iterating on every element. Then, for a

given element, the integrals of (2) and (3) are computed for

every pair of DOF 𝑖 and 𝑗. The corresponding results are

stored in a matrix used to compute the coefficients of (1).

It is worth noticing that increasing the basis order will have

two impacts on the computation time:

 each element will have more DOFs, thus increasing

the number of 𝒯𝑖 ,𝑗
𝑒 to compute;

 the numerical quadrature will require more points,

thus slowing down the computation of each 𝒯𝑖 ,𝑗
𝑒 .

These two phenomena will substantially increase the

assembly time. To give some orders of magnitude, Table 1

shows the number of 𝒦𝑖 ,𝑗
𝑒 terms in (3), for a given

tetrahedron 𝑒, and the required number of integration points.

Curl-conforming basis order 1 2 3 4

Integration points 4 11 24 43

𝒦𝑖 ,𝑗
𝑒 terms in (3) 144 900 3600 11025

Table 1: Number of 𝒦𝑖 ,𝑗
𝑒 terms and the required integration

points for a curl-conforming basis defined over a tetrahedron.

3 Efficient assembly

The key idea of a fast assembly procedure is to compute all

the integrals of (3) with dense matrix – matrix products, as

proposed by [2,3] for 𝐻1 bases. This operation exhibits an

excellent cache reuse, and is standardized in the Basic Linear

Algebra Subprograms (BLAS). Highly optimized BLAS

implementations can be found for almost all architectures.

For simplicity, only the integral ℐ𝑖,𝑗
𝑒 of (3) will be treated. But

the same procedure can be applied to 𝒦𝑖 ,𝑗
𝑒 . We start by

rewriting ℐ𝑖 ,𝑗
𝑒 in a per-element way, with 𝐹𝑒 = 𝜇−1 det−1 𝑱𝑒 :

ℐ𝑖 ,𝑗
𝑒 = 𝐹𝑒𝐽𝑎,𝑏

𝑒 𝐽𝑎,𝑐
𝑒 curl𝑏𝒆𝑖 curl𝑐𝒆𝑗 d𝜔

3

𝑐=1

3

𝑏=1

3

𝑎=1ω

. (4)

2

This integral can be computed numerically with a Gaussian

quadrature. The set of integration points is denoted by 𝔾, and

the 𝑔th
integration weight is written 𝑤𝑔 . The notation 𝛼 𝑔

means that 𝛼 is evaluated at the 𝑔th
 point of 𝔾. In addition,

the operation ⋅,⋅ , resp. ⋅,⋅,⋅ , is defined as returning a unique

value from two, reps. three, others. Thus, (4) becomes:

ℐ𝑖,𝑗

𝑒 = 𝑩 𝑒, 𝑔, 𝑏, 𝑐 𝑪[𝑔, 𝑏, 𝑐 , {𝑖, 𝑗}]

3

𝑐=1

3

𝑏=1

#𝔾

𝑔=1

,

𝑩 𝑒, 𝑔, 𝑏, 𝑐 = 𝐹𝑒 𝑔 𝐽𝑎,𝑏
𝑒

𝑔
 𝐽𝑎,𝑐

𝑒
𝑔

3

𝑎=1

,

𝑪 𝑔, 𝑏, 𝑐 , 𝑖, 𝑗 = 𝑤𝑔 curl𝑏𝒆𝑖 𝑔 curl𝑐𝒆𝑗 𝑔 .

 (5)

From (5) it can be immediately seen that ℐ𝑖,𝑗
𝑒 is an entry at

row 𝑒 and column {𝑖, 𝑗} of a matrix, defined as the product of

𝑩 and 𝑪 of (5). Matrix 𝑩 is composed of the Jacobian

matrices and potentially non linear terms (𝜇 for instance).

Matrix 𝑪 is composed only of the basis functions defined over

the reference element, and is thus geometrically invariant.

4 Orientation problem

As exposed in [4], the functions of a curl-conforming basis

are dependent on the orientation of the mesh elements.

Usually, this problem is overcome by choosing the right

function at runtime, when each element is evaluated during

the assembly. However, to apply (5) it is needed to know the

basis functions before iterating on the elements.

This situation may be solved by generating every possible

basis function, for every possible element orientation. Then,

the matrices of (5) are split among these possible orientations.

A tree structure can be used to generate all the possible

orientations, and to sort efficiently the elements among their

orientation. For a topology composed by 𝑉 vertices, it is

possible to find 𝑉! permutations of these vertices. A tree can

be constructed where every path from root to leaf is one of

these permutations, as shown in Figure 1 for the triangle case.

Figure 1: Example of tree structure (triangle case).

To reduce the number of needed bases, the permutations are

compared to find rotations that can be exploited. For example,

only two bases are needed on a tetrahedron. These rotations

will be taken into account using their Jacobian matrix. Then,

every leaf is associated to its corresponding oriented basis.

If the elements are represented by an ordered sequence of 𝑉

vertices, the basis corresponding to an element is found by

matching its sequence to a path in the tree. This can be

achieved in 𝒪 𝑉 log2 𝑉 . Indeed, it is needed to travel a path

of length 𝑉. And at a given depth, the next node matching the

sequence is found by dichotomic search in 𝒪(log2 𝑉).

5 Numerical results

In Figure 2, the assembly time of the classical and efficient

matrix – matrix algorithms are presented. The FE matrix is

assembled for a propagation problem into a wave guide,

meshed with 5585 curved tetrahedra.

The FE system is assembled for an increasing basis order.

The tests were done on a Intel Core i7 960 using a serial

implementation of ATLAS BLAS.

Figure 2: Assembly time for the classical and fast algorithms.

It can be seen from Figure 2 that the matrix algorithm is much

faster than the classical one for high order interpolations. For

instance, the speedup on an order 5 problem, with around

500000 unknowns, approaches 8.

Acknowledgements

This work was supported in part by the Belgian Science

Policy under grant IAP P7/02 and the Walloon Region under

grant WIST3 DOMEX. N. Marsic is a fellowship beneficiary

with the Belgian Research Training Fund for Industry and

Agriculture (FRIA).

References

[1] A. Bossavit. Computational electromagnetism,

Acedemic Press, (1998).

[2] J. Lambrechts. Finite Element Methods for Coastal

Flows: Application to the Great Barrier Reef, PhD

thesis, Université catholique de Louvain, (2011).

[3] K. Hillewaert. “Exploiting Data Locality in the DGM

Discretisation for Optimal Efficiency”, Notes on

Numerical Fluid Mechanics and Multidisciplinary

Design, 113, pp. 11–23, (2010).

[4] M. Ainsworth, J. Coyle. “Hierarchic finite element bases

on unstructured tetrahedral meshes”, International

Journal for Numerical Methods in Engineering, 58,

pp. 2103–2130, (2003).

