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Abstract 

This paper presents an efficient method for the finite element 

assembly of high order Whitney elements. We start by 

reviewing the classical assembly technique and by 

highlighting the most time consuming part. Then, we show 

how this classical approach can be reformulated into a 

computationally efficient matrix – matrix product. We also 

address the problem of the basis orientation by considering 

more than one reference space. We conclude by presenting 

numerical results on a wave guide problem. 

1 Introduction 

There is a growing consensus that state of the art finite 

element technology requires, and will continue to require, too 

extensive computational resources to provide the necessary 

resolution for complex high-frequency electromagnetic 

compatibility simulations, even at the rate of computational 

power increase.  
 

The requirement for precise resolution naturally leads us to 

consider methods with a higher order of grid convergence 

than the classical second order provided by most industrial 

grade codes. This indicates that higher order discretization 

methods will replace at some point the finite element solvers 

of today, at least for part of their applications. 

2 Classic finite element assembly 

Let us star by considering the time harmonic propagation of 

an electrical wave 𝒆(𝑥, 𝑦, 𝑧) into wave guide Ω(𝑥, 𝑦, 𝑧). The 

solution is interpolated using a curl-conforming [1] basis 

𝔹(Ω), as follow: 
 

𝒆 𝑥, 𝑦, 𝑧 =   𝑐𝑘  𝒆𝑘 𝑥, 𝑦, 𝑧 .

#𝔹(Ω)

𝑘=1

 (1)   

 

By applying the classical Galerkin finite element (FE) 

scheme [1], the coefficients 𝑐𝑘  can be computed using the 

elementary terms 𝒯𝑖,𝑗
𝑒  given in (2) and (3), with 𝜇 the magnetic 

permeability, 𝜀 the electric permittivity and 𝑘 the 

wavenumber. Each 𝒯𝑖 ,𝑗
𝑒  is giving the contribution of the 

degrees of freedom (DOF) 𝑖 and 𝑗 of the mesh element 𝑒: 
 

𝒯𝑖,𝑗
𝑒 =  ℐ𝑖,𝑗

𝑒 − 𝒦𝑖 ,𝑗
𝑒 , (2)   

with 
 

 
 
 

 
 ℐ𝑖,𝑗

𝑒 =  𝜇−1 det−1 𝑱𝑒  𝑱𝑒  𝐜𝐮𝐫𝐥 𝒆𝑖 
𝑇 𝑱𝑒  𝐜𝐮𝐫𝐥 𝒆𝑗  d𝜔,

𝜔

𝒦𝑖 ,𝑗
𝑒 =  𝑘2𝜀 det 𝑱𝑒  𝑱𝑒−𝑇

𝒆𝑖 
𝑇
 𝑱𝑒−𝑇

𝒆𝑗   d𝜔,                 
𝜔

  (3)   

 

where 𝑱𝑒  is the Jacobian matrix of the mapping between a 

reference element 𝜔 and the element 𝑒 of the mesh.  
 

The classical finite element assembly algorithm is quite 

simple. It consists in iterating on every element. Then, for a 

given element, the integrals of (2) and (3) are computed for 

every pair of DOF 𝑖 and 𝑗. The corresponding results are 

stored in a matrix used to compute the coefficients of (1). 
 

It is worth noticing that increasing the basis order will have 

two impacts on the computation time: 

 each element will have more DOFs, thus increasing 

the number of 𝒯𝑖 ,𝑗
𝑒  to compute; 

 the numerical quadrature will require more points, 

thus slowing down the computation of each 𝒯𝑖 ,𝑗
𝑒 . 

These two phenomena will substantially increase the 

assembly time. To give some orders of magnitude, Table 1 

shows the number of 𝒦𝑖 ,𝑗
𝑒  terms in (3), for a given 

tetrahedron 𝑒, and the required number of integration points.  
 

Curl-conforming basis order 1 2 3 4 

Integration points 4 11 24 43 

𝒦𝑖 ,𝑗
𝑒  terms in (3) 144 900 3600 11025 

 

Table 1: Number of 𝒦𝑖 ,𝑗
𝑒  terms and the required integration 

points for a curl-conforming basis defined over a tetrahedron. 

3 Efficient assembly 

The key idea of a fast assembly procedure is to compute all 

the integrals of (3) with dense matrix – matrix products, as 

proposed by [2,3] for 𝐻1  bases. This operation exhibits an 

excellent cache reuse, and is standardized in the Basic Linear 

Algebra Subprograms (BLAS). Highly optimized BLAS 

implementations can be found for almost all architectures. 
 

For simplicity, only the integral ℐ𝑖,𝑗
𝑒  of (3) will be treated. But 

the same procedure can be applied to 𝒦𝑖 ,𝑗
𝑒 . We start by 

rewriting ℐ𝑖 ,𝑗
𝑒  in a per-element way, with 𝐹𝑒 = 𝜇−1 det−1 𝑱𝑒 : 

 

ℐ𝑖 ,𝑗
𝑒 =      𝐹𝑒𝐽𝑎,𝑏

𝑒  𝐽𝑎,𝑐
𝑒  curl𝑏𝒆𝑖  curl𝑐𝒆𝑗  d𝜔

3

𝑐=1

3

𝑏=1

3

𝑎=1ω

. (4)   
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This integral can be computed numerically with a Gaussian 

quadrature. The set of integration points is denoted by 𝔾, and 

the 𝑔th 
integration weight is written 𝑤𝑔 . The notation  𝛼 𝑔  

means that 𝛼 is evaluated at the 𝑔th
 point of 𝔾. In addition, 

the operation  ⋅,⋅ , resp.  ⋅,⋅,⋅ , is defined as returning a unique 

value from two, reps. three, others. Thus, (4) becomes: 
 

 
 
 
 

 
 
 
ℐ𝑖,𝑗

𝑒 =    𝑩 𝑒,  𝑔, 𝑏, 𝑐   𝑪[ 𝑔, 𝑏, 𝑐 , {𝑖, 𝑗}]

3

𝑐=1

3

𝑏=1

#𝔾

𝑔=1

,

𝑩 𝑒,  𝑔, 𝑏, 𝑐  =  𝐹𝑒  𝑔    𝐽𝑎,𝑏
𝑒  

𝑔
  𝐽𝑎,𝑐

𝑒  
𝑔

3

𝑎=1

,                    

𝑪  𝑔, 𝑏, 𝑐 ,  𝑖, 𝑗  = 𝑤𝑔   curl𝑏𝒆𝑖 𝑔   curl𝑐𝒆𝑗  𝑔 .           

  (5)   

 

From (5) it can be immediately seen that ℐ𝑖,𝑗
𝑒  is an entry at 

row 𝑒 and column {𝑖, 𝑗} of a matrix, defined as the product of 

𝑩 and 𝑪 of (5). Matrix 𝑩 is composed of the Jacobian 

matrices and potentially non linear terms (𝜇 for instance). 

Matrix 𝑪 is composed only of the basis functions defined over 

the reference element, and is thus geometrically invariant. 

4 Orientation problem 

As exposed in [4], the functions of a curl-conforming basis 

are dependent on the orientation of the mesh elements. 

Usually, this problem is overcome by choosing the right 

function at runtime, when each element is evaluated during 

the assembly. However, to apply (5) it is needed to know the 

basis functions before iterating on the elements. 
 

This situation may be solved by generating every possible 

basis function, for every possible element orientation. Then, 

the matrices of (5) are split among these possible orientations. 
 

A tree structure can be used to generate all the possible 

orientations, and to sort efficiently the elements among their 

orientation. For a topology composed by 𝑉 vertices, it is 

possible to find 𝑉! permutations of these vertices. A tree can 

be constructed where every path from root to leaf is one of 

these permutations, as shown in Figure 1 for the triangle case. 
 

 
 

Figure 1: Example of tree structure (triangle case). 
 

To reduce the number of needed bases, the permutations are 

compared to find rotations that can be exploited. For example, 

only two bases are needed on a tetrahedron. These rotations 

will be taken into account using their Jacobian matrix. Then, 

every leaf is associated to its corresponding oriented basis.  
 

If the elements are represented by an ordered sequence of 𝑉 

vertices, the basis corresponding to an element is found by 

matching its sequence to a path in the tree. This can be 

achieved in 𝒪 𝑉 log2 𝑉 . Indeed, it is needed to travel a path 

of length 𝑉. And at a given depth, the next node matching the 

sequence is found by dichotomic search in 𝒪(log2 𝑉). 

5 Numerical results 

In Figure 2, the assembly time of the classical and efficient 

matrix – matrix algorithms are presented. The FE matrix is 

assembled for a propagation problem into a wave guide, 

meshed with 5585 curved tetrahedra. 
 

The FE system is assembled for an increasing basis order. 

The tests were done on a Intel Core i7 960 using a serial 

implementation of ATLAS BLAS. 
 

 
 

Figure 2: Assembly time for the classical and fast algorithms. 
 

It can be seen from Figure 2 that the matrix algorithm is much 

faster than the classical one for high order interpolations. For 

instance, the speedup on an order 5 problem, with around 

500000 unknowns, approaches 8. 
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