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Abstract 18 

We investigated how physical incorporation, brine dynamics and bacterial activity regulate the 19 

distribution of inorganic nutrients and dissolved organic carbon (DOC) in artificial sea ice during 20 

a 19-day experiment that included periods of both ice growth and decay. The experiment was 21 

performed using two series of mesocosms: the first consisted of seawater and the second 22 

consisted of seawater enriched with humic-rich river water. We grew ice by freezing the water at 23 

an air temperature of -14 °C for 14 days after which ice decay was induced by increasing the air 24 

temperature to -1 °C. Using the ice temperatures and bulk ice salinities, we derived the brine 25 

volume fractions, brine salinities and Rayleigh numbers. The temporal evolution of these 26 

physical parameters indicate that there was a succession of 3 stages in the brine dynamics: 27 

forced-convection, followed by bottom convection during ice growth, and then brine stratification 28 
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during ice decay. The major findings are: (1) the incorporation of dissolved compounds (nitrate, 29 

nitrite, ammonium, phosphate, silicate, and DOC) into the sea ice was not conservative (relative 30 

to salinity) during ice growth. Brine convection clearly influenced the incorporation of the 31 

dissolved compounds, since the non-conservative behavior of the dissolved compounds was 32 

particularly pronounced in the absence of brine convection. (2) Bacterial activity further 33 

regulated nutrient availability in the ice: ammonium and nitrite accumulated as a result of 34 

remineralization processes, although bacterial production was too low to induce major changes in 35 

DOC concentrations. (3) Different forms of DOC have different properties and hence 36 

incorporation efficiencies. In particular, the terrestrially-derived DOC from the river water was 37 

less efficiently incorporated into sea ice than the DOC in the seawater. Therefore the main factors 38 

regulating the distribution of the dissolved compounds within sea ice are clearly a complex 39 

interaction of brine dynamics, biological activity and in the case of dissolved organic matter, the 40 

physico-chemical properties of the dissolved constituents themselves.  41 

 42 

Highlights 43 

 We reproduced 3 stages of brine dynamic and bacterial activity in artificial ice 44 

 We showed that the dissolved compounds in ice were non-conservative to salinity 45 

 Brine dynamics and bacterial activity explain that non-conservative behavior 46 

 The physico-chemical properties of the compounds is an alternative explanation 47 

 48 

1. Introduction 49 

Sea ice is formed from the freezing of seawater, and therefore the dissolved inorganic and 50 

organic nutrient concentrations in sea ice depend on those of the parent water (Petrich and 51 

Eicken, 2010; Weeks, 2010). Most of these compounds are concentrated in the brine inclusions, 52 

as they are not incorporated within the matrix of pure ice crystals (Weeks, 2010).  53 

The two principal regions of sea ice production, the Arctic and Southern Oceans, differ widely in 54 

the concentrations of nutrients and dissolved organic matter (DOM) present in the surface waters 55 



3 
 

from which sea ice is formed. The waters of the Arctic Ocean have comparatively lower nutrient 56 

concentrations (e.g., nitrate and phosphate), except the Pacific water inflow, but higher input of 57 

riverine particulates and DOM, as well as silicate (Dittmar et al., 2001; Wheeler et al., 1997). In 58 

contrast, the Southern Ocean generally has high inorganic nutrient concentrations (Gleitz et al., 59 

1994), whereas DOM is of oceanic origin and at comparatively low concentrations (Hansell et al., 60 

2009). A consequence of this fundamental difference is that Arctic sea ice can be expected to 61 

have a higher DOM content than ice produced in the Southern Ocean (Stedmon et al., 2007; 62 

Stedmon et al., 2011), and as such may promote greater bacterial production, leading to higher 63 

pCO2 concentrations in the brines (Geilfus et al., 2012). In turn, this could result in the air-ice 64 

CO2 exchange in the Arctic and Antarctic being fundamentally different, although this hypothesis 65 

is yet to be verified.  66 

In addition to bacterial production, others mechanisms may regulate differences in the dynamics 67 

of dissolved constituents (nutrients and DOM) in sea ice. Previous studies have indicated 68 

selective incorporation of DOM during sea ice formation (Aslam et al., 2012; Giannelli et al., 69 

2001; Müller et al., 2013), raising the question as to whether or not there is a segregation among 70 

dissolved compounds during the incorporation phase, and in particular, whether the incorporation 71 

is comparable between Arctic and Antarctic sea ice because of the different composition of DOM 72 

in the parent waters. Various physical mechanisms induce changes in the nutrient pools in ice 73 

after the initial incorporation. Among these, brine convection is the most important during ice 74 

growth (Notz and Worster, 2009; Vancoppenolle et al., 2010). Flushing (Eicken et al., 2004) and 75 

flooding (Fritsen et al., 2013; Fritsen et al., 2001) may also be significant, but their impact 76 

remains difficult to assess (e.g., Pringle and Ingham, 2009).  77 

The aim of the present study was to better understand the differences in sea ice biogeochemistry 78 

and bacterial activity, related to additional allochthonous riverine DOC during a whole cycle of 79 

sea ice formation, consolidation and subsequent decay. In our mesocosm experiment, we 80 

reproduced ice growth and ice decay on two series of mesocosms: One consisting of North Sea 81 

seawater and the other consisting of North Sea seawater amended with 10% natural DOM-rich 82 

river water. The latter was designed to simulate the dissolved organic matter conditions that occur 83 

in Arctic shelf waters where much ice formation occurs. We hypothesized that the dissolved 84 

compounds of the parent waters would be predominantly incorporated conservatively into the ice 85 
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(relative to salinity), and would then deviate from the conservative behavior due to bacterial 86 

activity, given that there was no autotrophic component in the experiment. We also expected that 87 

a deviation from the conservative behavior would be higher in the river-water amended 88 

mesocosms because the higher organic matter content would stimulate bacterial activity, if the 89 

riverine DOM is bioavailable.  90 

2. Material and methods 91 

2.1 Experimental setting and sampling routine 92 

The 19-day experiment took place in the Hamburg Ship Model Basin (www.hsva.de). We used 93 

21 polyethylene experimental mesocosms with a volume of 1.2 m³ each. Eleven of the 94 

mesocosms were filled with 1000 L of seawater from the North Sea (referred here after as SW), 95 

and the remaining 10  were filled with 900 L of seawater from the North Sea and 100 L of river 96 

water (referred here after as SWR). The North Sea water was collected on 24 May 2012 (54°7’N 97 

7°54’E near Helgoland) and transported to Hamburg where the mesocosms were filled within 24 98 

hours of collection. The river water was collected during spring freshet in mid May 2012 from 99 

River Kiiminkijoki (NW Finland), just before it enters the estuary, stored one week in the cold (4 100 

°C), filtered through 0.2 µm using Durapore 10” (Millipore) and Clariflow G 10” (Parker) 101 

cartridge filters and added to the mesocosms 2 days afterwards. 102 

As there was a slight temperature gradient in the main test basin, the mesocosms were distributed 103 

only partially randomly. As shown in Figure 1, the units were first randomly positioned into 104 

rows, but the respective manipulations (SW and SWR) were located at the same or adjacent row. 105 

The unit SW11 was reserved for instrumentation and it was excluded from all subsequent 106 

calculations and analysis due to possible contamination from instrumentation that was placed 107 

inside it.  108 

The salinities of the SWR mesocosms were adjusted to the SW values by adding aquarium 109 

standard salt (Tropic Marin®). Nitrate (NO3
-) and phosphate (PO4

3-) were also adjusted to 110 

concentrations that did not limit bacterial growth in both series of mesocosms. The addition of 111 

river water caused large difference in dissolved silicate (Si(OH)4) and DOC concentrations 112 

between the SW and SWR mesocosms, while nitrite (NO2
-) and ammonium (NH4

+) 113 

concentrations were similar (Table 1). Indeed, the differences in the mean starting conditions 114 
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between SW and SWR were less than 10 % (which was about the range of standard deviation 115 

within each series of mesocosms), except for Si(OH)4, DOC, bacterial production derived from 116 

leucine (BP Leu) and thymidine (BP TdR) incorporation, which were about 4, 1.7, 1.3 and 1.2 117 

times higher in SWR, respectively.  118 

The adjusted NO3
- and PO4

3- concentrations (Table 1) are clearly higher than the maxima 119 

observed in the coastal Arctic Ocean (Codispoti et al., 2013; Dittmar et al., 2001), but were 120 

realistic compared to Southern Ocean values (e.g., Becquevort et al., 2009; Gleitz et al., 1994). 121 

DOC concentrations in both SW and SWR were consistent with the range observed in coastal 122 

Arctic Ocean (Dittmar and Kattner, 2003a) for a similar salinity as in the present study, and were 123 

also consistent with the range of DOC in surface waters of the Weddell Sea (50-60 µmol L-1) 124 

(Hansell et al., 2009; Lechtenfeld et al., 2014; Norman et al., 2011). Therefore, the findings of 125 

our experiment on the incorporation of DOC and the consequence on sea ice biogeochemistry 126 

may be pertinent to areas in both Arctic and Southern Oceans, where NO3
- and PO4

3- are not 127 

limiting for bacterial growth. 128 

Ice was grown from day 0 to 14, during which the air temperature was maintained at -14 °C, and 129 

then the air temperature was increased to -1 °C to trigger a decay phase. The resulting changes in 130 

ice thickness are shown in Figure 2 for each row of the mesocosms. Water and ice sample were 131 

collected at regular intervals from day 0 and day 1, respectively (Table 2). Brine samples were 132 

collected from day 8 onwards, from 6 cm deep sackholes, when the ice was thick enough to avoid 133 

lateral infiltration of seawater. The brines were collected 15 to 30 minutes after drilling 134 

(depending on the percolation rate) using a portable peristaltic pump (Master Flex®, E/S portable 135 

sampler). Once the ice in a mesocosm was sampled it was considered to be compromised and not 136 

used again in the experiment.  137 

A PVC tube was set at the corner of each mesocosm to maintain pressure equilibrium between 138 

the water and the atmosphere, and this was cleared of ice daily to relieve pressure and as a portal 139 

for sampling under-ice waters. Ice thickness was measured on all sampling days outside, but 140 

adjacent to, the mesocosms in order to not disturb the ice growth in the mesocosms before the 141 

sampling. The absence of active photoautotrophic organisms in ice and underlying waters was 142 

verified on all sampling days using epifluorescence microscopy, which would reveal the 143 

existence of functioning chloroplasts. 144 
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2.2 Physical characteristics of the ice 145 

Ice temperature was measured using a calibrated probe (Testo 720) immediately after the 146 

extraction of the ice core. The probe was inserted into holes (matching the diameter of the probe) 147 

drilled perpendicular to the ice core axis with a depth resolution of 2 cm. The precision of the 148 

probe was ± 0.1 °C. Bulk ice salinity was measured using two approaches: once with melting of 149 

ice sections; and secondly employing the approach of Cottier et al. (1999), which limits possible 150 

brine drainage and where ice was frozen with under-ice water, and then, sectioned. The latter 151 

method was used together with temperature measurements to derive brine volume fraction and 152 

brine salinity, following the relationships of Cox and Weeks (1983) (neglecting the air volume 153 

fraction). Measurements of the bulk ice salinity were performed on 2 or 4 cm vertical core 154 

sections. Salinities were measured with a portable conductivity meter (SEMAT Cond 315i/SET 155 

salinometer with WTW Tetracon 325 probe) on melted ice samples at room temperature. The 156 

precision was ± 0.1. This salinity was used to normalize the dissolved compounds to salinity (see 157 

section 2.6).  158 

For the brine calculations we assumed that the sea ice was permeable for a brine volume fraction 159 

exceeding 5 % (Golden et al., 1998), since the thin sections showed columnar ice structures (not 160 

shown). The derived brine salinity was comparable to the brine salinity measured on collected 161 

brine samples (data not shown). We therefore used temperature, bulk ice salinity, derived brine 162 

salinity and brine volume fraction to calculate the Rayleigh number (Ra), which is a proxy for 163 

brine convection as described by Notz and Worster (2008). Theoretically, convection is possible 164 

in an ice layer (of a thickness h) when Ra exceeds 1 and decreases from the top to the bottom of 165 

that layer. However, critical Ra of 10 (Notz and Worster, 2008) and up to 8 (Zhou et al., 2013) 166 

was observed in experimental study and natural conditions, respectively. Because the calculation 167 

of Ra depends on the gradient of brine salinity, salt loss by drainage during ice core extraction, or 168 

the sampling resolution may lead to different Ra values. As there is currently no consensus on the 169 

critical value of Ra, we simply assume the critical Ra being 1 following the theoretical 170 

consideration.   171 

2.3 Nutrients and DOC 172 

Samples for inorganic nutrient analyses were stored frozen in 50 mL PE bottles. Inorganic  173 

nutrients (NO3
-, NO2

-, NH4
+, PO4

3- and Si(OH)4) were measured with an autoanalyser system 174 
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(Evolution III, Alliance Instruments) according to slightly modified seawater standard methods 175 

(e.g.,Grasshoff et al., 1999; Kattner and Becker, 1991); NH4
+ concentrations were measured 176 

according to Kérouel and Aminot (1997). 177 

Samples for the determination of dissolved organic carbon (DOC) were stored frozen (-20 °C) in 178 

glass vials (Wheaton; precombusted at 500 °C, 5 h) and determined by high temperature catalytic 179 

oxidation and subsequent non-dispersive infrared spectroscopy (TOC-VCPN, Shimadzu). After 180 

each batch of five samples, one reference standard (DOC-DSR, Hansell Research Lab, University 181 

of Miami, US), one ultrapure-water blank and one potassium hydrogen phthalate standard were 182 

measured. The accuracy of the DOC measurements was ± 5 %. 183 

2.4 Bacterial abundance and production 184 

Bacterial abundance was determined by flow cytometry after Gasol et al. (1999) and Gasol and 185 

Del Giorgio (2000). Samples for bacterial abundance were fixed with particle-free (0.2 μm-186 

filtered) paraformaldehyde (final concentration of 1 %) and stored at -80 °C. Cells were stained 187 

with SYBR Green I (Molecular Probes) and counted on an LSR II flow cytometer (BD 188 

Biosciences, San Jose, USA) using a 488 nm laser. CountBright beads (Molecular Probes) with 189 

known concentration were added to each sample to calculate the measured volume. The bacterial 190 

counts were acquired for 1 minute, and the cell populations identified from bivariate plots of 191 

green fluorescence versus side scatter. Gating analysis was performed using FACS Diva software 192 

(BD Biosciences). The bacterial abundance counted (in cells mL−1) was calculated from the 193 

sample flow rates and number of events recorded. All samples were analyzed during one 194 

measurement session. 195 

For the bacterial production measurements, samples containing a known amount of crushed ice 196 

and sterile-filtered seawater (Kaartokallio, 2004) were prepared as follows: Each intact 5–10 cm 197 

ice core section was crushed using a spike and electrical ice cube crusher. Approximately 10 mL 198 

of crushed ice was weighed in a scintillation vial. To better simulate the brine pocket salinity and 199 

ensure an even distribution of labeled substrate, 2–4 mL of sterile filtered (through 0.2 μm filter) 200 

seawater from the sample bags were added to the scintillation vials. All the work was carried out 201 

in a cold room. 202 

Bacterial production was measured immediately after sample collection using simultaneously the 203 
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14C-leucine (Kirchman et al., 1985) and 3H-thymidine (Fuhrman and Azam, 1980; Fuhrman and 204 

Azam, 1982) incorporation methods. Two aliquots and a formaldehyde-fixed absorption blank 205 

were amended with L-[U-14C] leucine (PerkinElmer, USA, specific activity 310 mCi mmol-1) and 206 

[methyl-3H] thymidine (PerkinElmer, USA, specific activity 20 Ci mmol-1). For thymidine, the 207 

concentrations were 30 nmol L-1 for all sample types; for leucine, the concentrations were 1000 208 

nmol L-1 for ice samples, 330 nmol L-1 for water samples and 670 nmol L-1 for brine samples. The 209 

samples were incubated in the dark at -0.6°C on crushed ice in an insulated container according 210 

to the projected level of activity: ice samples were incubated 19-22 h, water and brine samples 4-211 

6 h. The incubations were stopped by addition of formaldehyde and samples were processed 212 

using the standard cold-TCA extraction and filtration procedure. Labeled macromolecules were 213 

collected on 0.2 μm mixed cellulose ester membrane filters (Osmonics) and placed in clean 214 

scintillation vials. A Wallac WinSpectral 1414 counter and InstaGel (Perkin-Elmer) cocktail were 215 

used in scintillation counting. Bacterial production was calculated using a cell conversion factor 216 

of 2.09×1018 cells mol-1 (Smith and Clement, 1990), a cell volume of 0.3 µm3 (Kaartokallio, 217 

2004; Smith and Clement, 1990) and a carbon conversion factor of 0.12 pg C µm-3 (Nagata and 218 

Watanabe, 1990; Pelegri et al., 1999) for thymidine; leucine-based bacterial production was 219 

calculated using a factor of 3.0 kg C mol-1 (Bjornsen and Kuparinen, 1991). 220 

2.5 Data normalization and enrichment factor 221 

In order to compare the nutrient and DOC concentrations between SW and SWR mesocosms, we 222 

needed to remove the effect of bulk ice salinity on the nutrient and DOC concentrations, and to 223 

take into account the variability of the starting conditions between the individual mesocosms. 224 

Therefore the data was normalized to both salinity and the starting conditions, according to the 225 

following equation: 226 

_
          (Eq.1) 227 

Where  228 

_
=normalized concentration of the mesocosms m for a given time t. 229 

 =concentration of the sample (water, brine or ice) for mesocosm m at time t 230 

Sm
t =salinity of the sample (water, brine or ice) in mesocosm m at time t 231 
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 = mean salinity of the parent water at time 0, which is 30.9 232 

Xm
0=concentration in the parent water in mesocosm m at time 0 233 

 =mean start concentrations of SW (or SWR) if the sample was collected from SW (or SWR) 234 
mesocosms  235 

The data that have been normalized are referenced hereafter with “_n” after the name of the 236 

variable. Equation 1 without   provides the enrichment factor. 237 

3. Results 238 

3.1 Ice thickness 239 

The ice thickness increased until day 16, reaching a maximum of 24 cm, and then stabilized or 240 

slightly decreased towards the end of the experiment (Figure 2). Overall, there was a general 241 

trend in the basin where the ice thickness decreased from row 1 to row 6. The difference was 242 

particularly obvious at the end of the experiment (4.5 cm of difference between row 1 and row 5 243 

on day 19). The maximum difference of ice thickness between adjacent rows was 2.6 cm. The 244 

majority of mesocosms sampled on the same day were generally located on the same row (e.g., 245 

SW8 and SWR8) or adjacent rows (e.g., SW3 and SWR3) (Figure 1), which minimized the 246 

influence of this cross-basin gradient.  247 

3.2 Physical properties of the ice 248 

There was an increasing temperature gradient between the top and the bottom of the ice from day 249 

1 to 15 (the freezing phase). In the subsequent melting phase the ice temperatures became more 250 

vertically homogeneous, approaching the ice melting point (-1.8 °C) on day 19 (Figure 3). 251 

The salinity of the bulk ice was homogeneous until day 3, before developing a typical C-shape 252 

profile with a higher salinity at the top and the bottom of the ice compared to the ice interior. 253 

From day 3 to 15, the ice bulk salinity ranged between 4.6 and 23.5. In the bottom ice horizons 254 

salinities of the SW ice were up to 3.9 salinity units higher than those of SWR between day 8 and 255 

day 14. From day 15 onwards, the salinity decreased in both the top and the bottom and ranged 256 

between 4.6 and 10.5. 257 
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The brine volume fraction remained above 5 % during the whole experiment in both SW and 258 

SWR mesocosms. The bottom of the ice always had a larger brine volume fraction compared 259 

with the upper ice layers, except between day 17 and 19 when the estimated brine volume 260 

fractions were homogeneous over the whole ice cover. As for the bulk ice salinity, the brine 261 

volume fractions at the bottom of SW ice were higher than in SWR between day 8 and 14. 262 

The calculated brine salinities decreased from the top to the ice bottom from day 1 to 16 in both 263 

SW and SWR mesocosms. During the final melting stage, brine salinities became more 264 

homogeneous throughout the ice cover. On day 19, they approached 32, which was lower than 265 

the salinity in the under-ice water (36.7). 266 

The temporal changes of Ra were similar to those in the bulk salinity: Ra slightly exceeded 1 267 

throughout the ice of both SW and SWR between day 1 and 3. From day 3 to 15, there was a 268 

sharp contrast of the Ra between the ice bottom and the ice interior: Ra was as high as 17.9 in the 269 

bottom of SWR and contrasted with the 0.1 value in the ice interior. The differences in salinity 270 

and brine volume fractions at the ice bottom between SWR and SW were particularly evident in 271 

Ra: On day 8, when the difference in salinity was 3.9, the difference in Ra reached 7.3 in both 272 

experiments. Ra dropped below 0.5 on day 15 and was equal to 0 at all ice depths on day 19.  273 

It is worth noting the difference of up to 3.9 in salinity and up to 7.3 in Ra between SW and SWR 274 

in the bottom ice layer on day 8. We observed a salinity of 23.5 in the ice bottom of SW, which is 275 

higher than the salinity measured on ice blocks that were obtained under similar conditions 276 

(salinity of 9 in Cottier et al. (1999)). However, because of the continuum of salinity between the 277 

ice and the under-ice water (Notz et al., 2005), a salinity of 23.5 may be realistic, since it is still 278 

lower than 30.9, the salinity of the under-ice water. Further, the resolution of the cutting was 279 

different for the last layer (2 cm for SW but 3 cm for SWR). Because ice salinity increased 280 

sharply in the last few centimeters of the ice (Notz et al., 2005), lower resolution sampling 281 

naturally results in higher ice salinities. The differences in salinity resulted in a difference in Ra 282 

(Vancoppenolle et al., 2013), but does not influence our interpretation since the qualitative 283 

interpretation of Ra (e.g., Zhou et al. (2013)) is sufficient to describe the brine dynamics. 284 
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3.3 Nutrients and DOC 285 

Figure 4 presents the normalized concentrations of the dissolved compounds in ice, brine and 286 

seawater (and the corresponding EF) for both SW and SWR mesocosms. If the nutrients had 287 

behaved conservatively with respect to salinity, they would exhibit an EF of 1. Therefore, Figure 288 

4 shows that, with the exception of the dissolved compounds in the under-ice water and PO4
3-_n 289 

in ice, all nutrients in ice and brine were not conservative, i.e., they significantly differ from an 290 

EF of 1 (t-test, p<0.001). This observation was true for both SW and SWR mesocosms. 291 

For NO3
-_n, NO2

-_n and NH4
+_n, the EFs varied similarly in both treatments: NO3

-_n in ice 292 

approached an EF of 2 for both mesocosms. NO2
-_n and NH4

+_n in ice approached an EF of 6, 293 

but local NO2
-_n in brine and NH4

+_n in ice reached an EF up to 10 in SWR. This contrasts with 294 

the NO3
-_n in brine that was only half of the concentration of the starting water concentrations 295 

(EF = 0.5). 296 

The normalized dissolved compounds did not show obvious changes over time, with the 297 

exception of NO2
-_n, which increased until day 7 and then remained constant.  NH4

+_n and 298 

DOC_n increased until day 19 in SW, but peaked already on days 12-14 and thereafter decreased 299 

in SWR. 300 

In contrast to all the previous dissolved compounds, Si(OH)4_n and DOC_n had different EFs in 301 

both treatments: although Si(OH)4 and DOC concentrations were both higher in SWR than in SW 302 

in the parent waters, their EFs in ice were lower in SWR than SW (Figure 5). In addition, both 303 

compounds show a decreasing EF from the top to the bottom of the ice, where the EFs generally 304 

approached a value of 1 (Figure 5).  305 

3.4 Bacterial abundance and production 306 

In both mesocosm series, bacterial abundance in ice (ca. 0.1 to 0.8 x 106 cells mL-1) (Table 3) 307 

was lower than in the parent water (0.9 to 1.0 x 106 cells mL-1) (Table 1). Figure 6 shows the 308 

temporal evolution of bacterial abundance and its vertical variability. During the ice growth 309 

phase (day 0 to 14), bacterial abundance was high at all depths from day 0 to day 2, then 310 

decreased in the ice interior, but remained in the bottom of the ice in the beginning and in the ice. 311 

During the ice decay phase, bacterial concentrations decreased, and the ice bottom maximum 312 

observed during ice growth phase disappeared.  313 
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In order to compare the bacterial activity in both treatments, without the effect of bacterial 314 

abundance, we compared both Leu and TdR incorporation per cell (Figure 6), rather than per 315 

volume of ice. It is evident that (1) all the values in ice were lower than those in the parent water 316 

at the starting conditions, but (2) both Leu and TdR incorporation per cell increased from day 14 317 

onwards in parallel with the increase of air temperature, and (3) they were both higher in SWR 318 

than in SW.  319 

For comparison with the literature, we also calculated bacterial production from both Leu and 320 

TdR incorporation. Overall Leu-based bacterial production rates ranged between 0.04 and 0.47 321 

µg C L-1h-1 and TdR-based bacterial production rates between 0.01 and 0.47 µg C L-1h-1 (Table 322 

3). The median Leu/TdR ratio was 44 in SW and 26 in SWR. 323 

4. Discussion 324 

4.1 Physical imprints on nutrient incorporation 325 

There were no significant differences in the physical parameters of SW and SWR (Figure 3), 326 

except small differences in ice thickness (Figure 2), and the vertical changes of the physical 327 

properties of the ice from growth to decay were consistent with observations from Arctic sea ice 328 

(Carnat et al., 2013; Zhou et al., 2013). We identified 3 main stages in brine dynamics, which 329 

affected the incorporation of nutrients. From day 1 to day 2, unstable brine salinity and high brine 330 

volume fraction should allow convection to establish hydrostatic equilibrium; the homogeneous 331 

bulk salinity throughout the ice indicates that convection had occurred. However, sea ice has to 332 

reach  a thickness of about 5 cm for gravity drainage to occur (Worster and Wettlaufer, 1997). 333 

Our samples were all thinner than 5 cm. We therefore suggest that forced-convection may have 334 

occurred instead of the gravity-driven convection (i.e., gravity drainage). Forced-convection is 335 

driven by pressure perturbations at the ice/water interface (Neufeld and Wettlaufer, 2008) and is 336 

generally induced by waves and tides on thin ice layers in natural conditions (Feltham et al., 337 

2002; Neufeld and Wettlaufer, 2008). Since waves and tides were absent in our experimental 338 

basin, we suggest that we may have artificially induced forced-convection while sawing the ice 339 

during the sampling. From day 2 to day 15, the Ra profile only suggests brine convection at the 340 

ice bottom, although the brine volume fraction remained above 5 % at all depths, i.e., permeable 341 

(Golden et al., 1998). Finally, from day 15 to the end of the experiment, the increase of air 342 
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temperature (Figure 2) increased the ice temperature. As a consequence, brine salinity decreased, 343 

Ra dropped below 1 and brine convection stopped.  344 

It is noteworthy that we did not observe full-depth brine convection at the beginning of the 345 

warming phase, as found in natural ice covers by Carnat et al. (2013) and Zhou et al. (2013). This 346 

is likely to be a result of the temperature not being low enough at the ice surface to promote a 347 

strong brine salinity gradient (a requirement for full-depth brine convection).  348 

The impact of brine dynamics on nutrient distribution was clear (Figure 5): because convection 349 

favors the exchange of nutrients between the brine and the under-ice water (Vancoppenolle et al., 350 

2010), the EF of Si(OH)4 approached 1 in the bottom of the ice, but increased towards the top of 351 

the ice, where convection was limited (Ra close to 0.1). Ice melt implies an addition of freshwater 352 

to the brine, which will dilute the nutrient concentrations; however, brine dilution was not seen in 353 

our data, since they were all double-normalized (including normalization to salinity).  354 

A solute that is solely subject to physical incorporation should behave conservatively with respect 355 

to salinity (i.e., concentrations evolve in parallel with salinity on a dilution curve (Thomas et al., 356 

2010)). If other processes such as biological uptake or regeneration occur, solute concentrations 357 

will deviate from the dilution curve, resulting in an EF that differs from 1. All measured 358 

parameters had an ice EF between 1.1 and 1.8 during initial freezing (day 1 to 2) indicating a net 359 

production or preferential incorporation (relative to salinity). This is in agreement with earlier 360 

results from natural sea ice for most of the nutrients, as opposed to other major ions (Meese, 361 

1989).  362 

One explanation is that the direct incorporation favors the accumulation of dissolved compounds 363 

in sea ice, although this has only been shown for DOC (Giannelli et al., 2001; Müller et al., 2013) 364 

and NH4
+ (Zhou et al., 2013). This explanation is at least true for fluorescent DOM, since optical 365 

measurements performed during this experiment showed a selective incorporation of different 366 

fluorescent DOM fractions in sea ice (i.e., amino-acid-like and humic-like fluorescent DOM 367 

(Jørgensen et al., submitted). Our range of EF for DOC is consistent with the one previously 368 

presented for artificially produced DOM (1.0 – 2.7) under similar ice growth conditions (Müller 369 

et al., 2013). 370 
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Another potential explanation for the EFs above 1 is that the compounds were initially 371 

incorporated as particulate matter, and then converted to DOM after incorporation. This could 372 

occur if organisms and particulate organic matter (POM) were incorporated in the ice; algal and 373 

bacterial lyses and POM degradation may have then increased the concentrations of the dissolved 374 

compounds in sea ice, leading to EFs above 1. DOC could originate from the degradation of 375 

POM (Thomas et al., 1995), and Si(OH)4, from death algal cells. Although no functioning 376 

chloroplast was observed, we cannot exclude the possible existence of dead algal cells, their 377 

fragments, and other POM in the parent water, because the seawater had not been filtered (see 378 

Material and Methods).  379 

NO3
- showed a negative EF in brine, in contrast to all the other compounds, suggesting either a 380 

consumption of NO3
- in sea ice or an adsorption of NO3

- to the ice crystals (Bartels et al., 2002) 381 

(i.e., parts of the NO3
- were not collected in brine). Potential pathways for NO3

- consumption are 382 

NO3
- respiration to NO2

- (Fripiat et al., 2014) and/or denitrification (Kaartokallio, 2001; Rysgaard 383 

et al., 2008) with production of NO2
-
, N2O and N2. However, NO2

- in ice (Table 3) or N2O in 384 

brine (data not shown) did not increase significantly, suggesting that NO3
- reduction and 385 

denitrification were minor. Therefore, the adsorption of NO3
- is more likely the factor responsible 386 

for the observed negative EF. This is also coherent with the observation of positive NO3
- EFs in 387 

the ice. 388 

4.2 Bacterial growth, production and imprints on nutrient concentrations 389 

Our Leu- and TdR-based bacterial production estimates are convergent, pointing to the reliability 390 

of the results. Overall BP Leu and TdR in ice were low, but were comparable to those of 391 

Kuparinen et al. (2011) obtained on predator-free batch cultures from melted 2-weeks-old sea ice. 392 

The bacterial abundance and ice salinities were in the same range to other studies measuring 393 

bacterial production in sea ice in the Southern Ocean (Grossmann and Dieckmann, 1994; Helmke 394 

and Weyland, 1995), the Arctic Ocean (Kaartokallio et al., 2013; Nguyen and Maranger, 2011) 395 

and the Baltic Sea (Kuparinen et al., 2007). Unlike many studies done in natural sea ice, algae 396 

and other typical larger sea ice organisms were absent in our experiment, which may have led to 397 

lower bacterial production, since ice algae may be a source of autochthonous DOM in ice 398 

(Thomas et al., 2001) .  399 
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Overall, cell-specific Leu and TdR were lower in ice than in parent water, indicating different 400 

physiological adaptations required in these two adjacent environments. The dynamics in bacterial 401 

activity appeared to be associated with three different stages in cell-specific Leu and TdR and 402 

bacterial abundance. At the beginning of the experiment, the majority of bacteria in ice were 403 

probably not well-acclimated to the sea ice environment and possibly undergoing a community 404 

shift (Eronen-Rasimus et al., 2014), resulting in a decrease in abundance throughout the ice 405 

before day 7. After day 7, cell-specific Leu and TdR were generally stable, but bacterial 406 

abundance increased in the bottom ice sections and decreased in the ice interior, pointing to 407 

active bacterial growth in the lower ice layers being also subject to brine convection before day 408 

15. After day 15, corresponding to the onset of the melting phase, bacterial abundance decreased 409 

throughout the ice column and a sharp increase in cell-specific Leu and TdR occurred. This 410 

points to a direct effect of physical changes on the bacterial physiology, most likely to be initiated 411 

by a sudden change in brine salinity and ice temperature or decreasing nutrient supply due to 412 

brine stratification. Brine dilution and direct cell loss from bottom ice during the melting phase 413 

could explain the decrease of bacterial abundance. 414 

While cell-specific Leu showed a similar pattern in both treatments, TdR was higher in SWR 415 

(compared to SW) both in ice and parent water. This indicates that DOC addition had a positive 416 

impact on bacterial growth, which is also in agreement with the slightly higher bacterial 417 

abundance and overall higher bacterial production in SWR series (Table 3).  418 

Bacterial activity may have impacted NH4
+ and NO2

- concentrations in sea ice, but had no 419 

notable effect on NO3
- and DOC. Indeed, NH4

+ and NO2
- further accumulated in sea ice on day 7, 420 

after their physical incorporation into sea ice, in SW and SWR. Although the accumulation of 421 

NH4
+ and NO2

- likely indicates bacterial remineralization, the highest concentrations of NH4
+ and 422 

NO2
- were not found at the bottom of the ice, where bacterial concentration was the highest, but 423 

rather at the surface ice layer (not shown). NH4
+ and NO2

- thus present a vertical EF profile 424 

similar to those of DOC (Figure 5), with decreasing EF from the top to the bottom, in spite of 425 

bacterial remineralization. We interpret this to be the result of the interaction between bacterial 426 

remineralization and brine convection: because brine convection tends to remove the additional 427 

NH4
+ and NO2

-, the accumulation of NH4
+ and NO2

- was only obvious at the surface ice layers, 428 

where convection was limited.  429 
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The remineralization of DOC was almost negligible because bacterial productions were low in 430 

comparison to the large pool of DOC in sea ice. Indeed, median bacterial production was 0.16 µg 431 

C L-1 h-1, which is equivalent to 0.013 µmol C L-1 h-1, and this is several orders lower than the 432 

DOC concentrations (up to 170 µmol L-1) (Table 3). As a consequence, the difference in bacterial 433 

productions could not explain the difference in the EFs of DOC between SW and SWR.                                        434 

4.3 The particular cases of Si(OH)4 and DOC 435 

All the dissolved compounds showed similar EF in both SW and SWR with the exception of 436 

Si(OH)4 and DOC. We did not expect a difference in the brine convection as a possible 437 

explanation since the physical conditions were comparable between the two treatments. Also, 438 

bacterial production might not have affected DOC and Si(OH)4 concentrations significantly, as it 439 

was too low in comparison to the large DOC pool, and because bacterial activity is not known to 440 

affect Si(OH)4.  441 

A possible explanation for the difference in EF for Si(OH)4 is the degradation of algal cells that 442 

were incorporated into the ice (see section 4.1), which may have induced a bias in the EF. To 443 

verify the hypothesis of particulate silicate (PSi) conversion into Si(OH)4 (DSi), we calculated 444 

the deviation of mean Si(OH)4 in ice at the mean ice salinity of 8 from the dilution curve: The 445 

mean Si(OH)4 in sea ice was 1.9 and 4.3 µmol L-1 in SW and SWR respectively, while it should 446 

be 0.8 and 3.2 µmol L-1 if it behaved conservatively. Thus, the deviation from the dilution curve 447 

was 1.1 µmol DSi L-1 for both SW and SWR. This deviation is the additional Si(OH)4 that we 448 

attribute to PSi degradation. Because DSi_n increased considerably on day 2 and then remained 449 

constant, the PSi degradation rate should approach 0.55 µmol L-1 d-1 and then became negligible. 450 

This PSi degradation rate corresponds to a dissolution rate constant of PSi of 0.15 d-1 (assuming a 451 

first order reaction). Similar PSi degradation rates (0.52 – 0.6 µmol L-1 d-1 (Fripiat et al., 2009) 452 

and dissolution rate constants (0.16 d-1 (Demarest et al., 2009), 0 - 0.2 d-1 (Beucher et al., 2004)) 453 

have been reported previously from seawater. In addition, similar rapid decreases in the 454 

dissolution rate constants were also observed in Demarest et al. (2009), and were attributed to the 455 

decrease of overall reactive surface area and the increase of the proportion of less soluble 456 

structure as dissolution proceeded. 457 
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For DOC, a possible explanation for the differences in incorporation is its molecular composition 458 

and the affinity to the other compounds in sea ice. In contrast to the other parameters measured, 459 

DOC represents a complex mixture of compounds spanning a range in physico-chemical 460 

characteristics (e.g., hydrophobicity and size). The addition of river water in the SWR 461 

mesocosms resulted in a higher DOC concentration and higher contribution of terrestrial DOC 462 

than in the SW mesocosms. Terrestrial DOM is generally composed of older soil-derived and 463 

younger vegetation-derived material of which the former is less degradable. We therefore 464 

conclude that the addition of riverine DOC, being half of the total DOC, notably changed the 465 

composition compared to the prevailing marine (mainly phytoplankton-derived) DOC in the 466 

seawater. Thus, the SWR mesocosms contained a higher proportion of refractory DOM than SW. 467 

Our data agree with the report that the more labile forms of DOC are better retained in sea ice 468 

than the refractory forms (e.g., humic acids) (Jørgensen et al., submitted; Müller et al., 2013), and 469 

that the DOC_n concentrations in ice may be even lower than in the under-ice water when the 470 

water contains higher concentrations of soil-derived DOC (Granskog et al., 2005; Hagström et 471 

al., 2001). Furthermore, Dittmar and Kattner (2003b) referred to the intra-molecular contraction 472 

and coiling of humic acids with increasing salinity to explain differences of their behavior in size-473 

exclusion chromatography. Therefore, even among different types of humic acids, there may be 474 

differences in the incorporation efficiency. 475 

5. Conclusion and perspectives 476 

The aim of our experiments was to better understand the difference in sea ice biogeochemistry 477 

from ice growth to ice decay related to additional DOC contribution and bacterial production. We 478 

reproduced the main stages in brine dynamics that affect the biogeochemistry in natural sea ice 479 

(i.e., full-depth convection, bottom convection and brine stratification) despite the short duration 480 

of the experiment (19 days).  481 

The experiment has shown that dissolved compounds do not necessary behave conservatively in 482 

relation to salinity during ice formation, consolidation and melt. Particulate organic matter 483 

incorporated into sea ice may rapidly be converted to dissolved compounds, thereby inducing a 484 

deviation from the conservative dilution curve. Such deviation from the conservative behavior is 485 

however reduced at the bottom of the ice where brine convection occurs. 486 
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Three distinct phases in bacterial abundance and carbon production were identified corresponding 487 

to physical changes. The overall cell-specific bacterial production was lower than in the starting 488 

waters, but increased one week after as a response to the bacterial growth in the ice cover. The 489 

initiation of a melting phase seemed to introduce unfavorable growth conditions for bacteria, 490 

presumably due to sudden change in brine salinity, which have induced osmotic stress on cells. 491 

Our results demonstrate that there is a direct regulation of bacterial activity by ice physical 492 

processes (brine stability and melting) and suggest that the length and periodicity of freeze-melt 493 

cycles may be important for the functioning of bacterial communities in sea ice. Although NH4
+ 494 

and NO2
- accumulation are a consequence of bacterial activity, the bacterial carbon demand was 495 

too low to significantly impact the overall DOC pool in sea ice during the experiment.  496 

This experiment has provided evidence that the inter-hemispheric difference of DOC dynamics 497 

and bacterial respiration are more complex than initially hypothesized. Indeed, although DOC 498 

concentrations are higher in the Arctic Ocean compared to those in the Southern Ocean, Arctic 499 

DOC may be less efficiently incorporated into sea ice (because of the properties of terrestrially-500 

derived DOC). The difference in sea ice biogeochemistry between the Arctic and Southern 501 

Oceans may also depend on the amount of bio-available DOC (arising from POM in parent 502 

seawater) and the associated bacterial production, rather than the total input of allochthonous 503 

riverine DOC in seawater.  504 
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Captions 701 

 702 

Figure 1. (a) The experimental basin at HSVA, (b) The spatial distribution of the SW and SWR 703 
mesocosms. Note that SW11, although sampled, was not included into the data set, because it was 704 
reserved for continuous physical measurements. 705 

Figure 2. Evolution of the ice thickness during the experiment. The ice thickness is given per row. Row 1 706 
refers to the bottommost row of mesocosms (Figure 1), while row 6 refers to the topmost row of 707 
mesocosms in Figure 1. The vertical dashed line represents the day when we increased the air temperature 708 
from -14 to -1 °C. 709 

Figure 3. Ice temperature (T), salinity (Bulk S), brine volume fraction (BrV), brine salinity (BrS) and 710 
Rayleigh number (Ra) for both SW and SWR mesocosms. Each black dot refers to one data point, the 711 
color in between results of interpolation.  712 

Figure 4. Normalized concentrations and enrichment factor in ice (circle), brine (triangle), and under-ice 713 
water (square), in both SW (left) and SWR (right). The horizontal lines indicate the mean starting 714 
concentration for all the mesocosms, and thus represent an enrichment factor of 1. The vertical dashed 715 
lines refer to day 14, the beginning of the warming stage of the experiment. 716 

Figure 5. Evolution of the enrichment factor (EF) of Si(OH)4_n and DOC_n in ice, between SWR and 717 
SW mesocosms. The black dots are depth-interpolated data points, while the colors in between are 718 
interpolations (natural neighbor). 719 

Figure 6. Evolution of the bacterial abundance (Bacteria) in 106 cells ml-1, cell-specific leucine and 720 
thymidine incorporation (in 10-21 mol cell-1 h-1) in ice, in SW and SWR mesocosms. The black dots are 721 
depth-interpolated data points, while the colors in between are interpolations (natural neighbor). For each 722 
category, the corresponding value in the parent water is mentioned for comparison (106 cells ml-1). 723 

Table 1. Mean and standard deviation (stdv) of the parameters measured at the beginning of the 724 
experiment (day 0) in SW and SWR mesocosms. Bact. refers to bacterial abundance, BP Leu and BP TdR, 725 
to leucine-based and thymidine-based bacterial production, respectively. 726 

Table 2. Days of the experiment with samplings and the associated sampled mesocosms. For all the 727 
mesocosms, available data in ice, under-ice water and brine are marked with a cross, while unavailable 728 
data are marked with a minus. 729 

Table 3. Minimum and maximum of the parameters measured in ice, brine and under-ice water, and in 730 
both SW and SWR mesocosms.  Bact. Refers to bacterial abundance, BP Leu and BP TdR, to leucine-731 
based and thymidine-based bacterial production, respectively.  732 


