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Abstract

This note revisits the maximum deviation just-in-time (MDJIT) scheduling
problem previously investigated by Steiner and Yeomans (1993). Its main
result is a set of algebraic necessary and su±cient conditions for the existence
of a MDJIT schedule with a given objective function value. These conditions
are used to provide a ¯ner analysis of the complexity of the MDJIT problem.
The note also investigates various special cases of the MDJIT problem and
suggests several questions for further investigation.
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1 Introduction

This paper revisits an optimization model originally motivated by scheduling
issues arising in just-in-time (JIT) manufacturing environments. This model,
to be called the maximum deviation just-in-time problem, or MDJIT problem,
has been analyzed by Steiner and Yeomans (1993). These authors gave a
very interesting, quite complete analysis of the problem, including structural
and algorithmic results. We believe, however, that several intriguing complex-
ity issues are still open with respect to this problem (see Kovalyov, Kubiak,
and Yeomans (2000) for additional open questions). The main purpose of the
present note is to clarify some of these issues. On our way, we propose alter-
native proofs for some of the results stated by Steiner and Yeomans (1993),
we establish several new results and we propose a number of conjectures.

Section 2 contains a more precise description of JIT scheduling problems and
of related computational complexity issues. In Section 3, we focus on the
maximum deviation JIT problem. We recast it as a matching problem in
a bipartite graph and we derive necessary and su±cient conditions for the
existence of a schedule with a given objective function value. In Section 4,
we use the previous result to establish that the MDJIT problem is in Co-NP
and to prove that the problem can be solved in polynomial time when the
number of part types is ¯xed. Section 5 establishes lower and upper bounds
on the optimal value of the MDJIT problem. Section 6 proposes some results
and conjectures concerning the structure of instances with small deviation.
Finally, Section 7 provides a complete solution of the MDJIT problem for the
special case where there are only two distinct part types.

2 Just-in-time scheduling problems

2.1 Position of the problem

An instance of a generic just-in-time scheduling problem consists of a number n
of di®erent part types and of the demand di 2 N for part type i (i = 1; 2 : : : n).
All part types are produced on the same equipment (typically, a mixed-model
assembly line) and the production of each part requires one unit of time. We
denote by D =

Pn
i=1 di the total demand and by ri = di=D the ideal production

rate for parts of type i. The term \ideal" refers here to the fact that, at each
instant, we would like the line to have assembled part type i in proportion
ri. Such a schedule would be uniformly \leveled". Obviously, perfectly leveled
schedules are never attainable, but the aim of JIT control systems is to keep the
actual production of each part as close as possible to its \ideal rate". Monden
(1983) states that this is a main objective of Toyota's JIT systems.

We can formulate this generic question as an optimization problem of the form
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(see Miltenburg (1989), Kubiak and Sethi (1991), Kubiak (1993)):

minimize

maxk;i

P
k

P
i

F i(xik ¡ kri)
Maximum deviation

Total deviation
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subject to

Pn
i=1 xi;k = k k = 1; : : : ;D (1)

xi;D = di i = 1; : : : ; n (2)

0 · xi;k ¡ xi;k¡1 i = 1; : : : ; n; k = 2; : : : ; D (3)

xi;k 2 N i = 1; : : : ; n; k = 1; : : : ; D: (4)

In this formulation, xi;k = q if q parts of type i are produced in the ¯rst k
periods. So, equation (1) means that k parts have to be produced during
the ¯rst k periods, and equation (2) translates the demand constraints. In-
equality (3) indicates that the number of parts of type i increases with time.
Furthermore, for each i, the function F i is a nonnegative convex function such
that F i(x) = 0 if and only if x = 0. Its interpretation is that F i(xik ¡ kri)
penalizes the deviation between the actual production xik and the target kri.

The above formulation emphasizes the distinctive number-theoretic °avor of
JIT scheduling problems: given n rational numbers r1; : : : ; rn with common
denominator D, the problem is to ¯nd nD integers xik which `optimally' ap-
proximate the sequence (kri) under the `cardinality' and `monotonicity' re-
strictions (1)-(4). Diophantine approximation problems of a similar nature are
investigated for instance in GrÄotschel et al. (1993).

2.2 Literature review

We now brie°y review some of the main results concerning the above JIT mod-
els. For more comprehensive surveys, we refer to Kubiak (1993) and Kovalyov,
Kubiak, and Yeomans (2000).

The total deviation model has been proposed in Miltenburg (1989), together
with some heuristics for its resolution. Kubiak and Sethi (1991, 1994) refor-
mulated this model as an assignment problem. Their approach leads to an
algorithm whose complexity is polynomial in n and D. Inman and Bul¯n
(1991) also considered the total deviation objective with F i(x) = x2 or jxj.
They described a heuristic which runs in time O(nD). The heuristic is based
on a reduction to the one-machine scheduling problem with penalties for ad-
vance and tardiness.

The maximum deviation problem has been investigated in (Steiner and Yeo-
mans 1993), with F i(x) = jxj. These authors reduced the JIT problem to a
one-machine scheduling problem with release dates and due dates, which they
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solved by an exact pseudo-polynomial algorithm with complexity O(D logD).
This algorithm will be reviewed in Section 3.

Some of the connections between the above models are examined in Kovalyov,
Kubiak, and Yeomans (2000). For the sake of completeness, let us also mention
that multilevel extensions of the basic model have been investigated in the
literature. Kubiak (1993) and Kubiak et al. (1997) establish that several
of these extensions (including total and maximum deviation objectives) are
NP-hard.

Several authors have also noted the connections between JIT scheduling prob-
lems and apportionment problems, i.e. problems dealing with the allocation
of seats of a legislature among the states or provinces of a nation, in close
proportion to their respective populations; see e.g. Bautista, Companys, and
Corominas (1996) or Balinski and Shahidi (1998). From this connection, and
from known results concerning apportionment problems, it is not too di±cult
to deduce that simple-minded procedures of a greedy nature do not provide
an optimal solution of JIT scheduling problems (see Appendix).

2.3 The maximum deviation JIT problem: Complexity
issues

Our main goal in this paper is to initiate further investigations into the com-
plexity of JIT scheduling problems. We shall concentrate on (what seems to
be) one of the simplest variants of the problem, namely the maximum devi-
ation (MDJIT) problem with F i(x) = jxj previously investigated by Steiner
and Yeomans (1993).

The input of the generic JIT scheduling problem is essentially the list of in-
tegers d1; d2; : : : ; dn, so that its input size is O(

P
1·i·n log di) = O(n logD).

Hence, an algorithm which is polynomial in n andD is only pseudo-polynomial,
but not polynomial in the input size. This limitation has already been noted by
Kubiak (1993), who also mentioned in his survey that the question of the exact
complexity of JIT scheduling problems remains open. Similar issues actually
arise for a larger class of so-called high multiplicity optimization problems { see
for instance Psaraftis (1980), Hochbaum and Shamir (1991) or Brauner et al.
(2001).

The recognition version of this problem can be stated as follows:

MDJIT:

Input:

² n 2 N: number of part types;

² di 2 N: demand for part type i, i = 1; 2 : : : n;
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² B 2 Q: a bound.

Question: Does there exist an n£D matrix X = (xi;k) such that:

max
1·i·n; 1·k·D

jxik ¡ k
di
D
j · B (5)

nX

i=1

xi;k = k k = 1; : : : ; D (6)

xi;D = di i = 1; : : : ; n (7)

0 · xi;k ¡ xi;k¡1 i = 1; : : : ; n; k = 2; : : : ; D (8)

xi;k 2 N i = 1; : : : ; n; k = 1; : : : ; D? (9)

It is actually interesting to observe that even this simple formulation of the
problem is pseudo-polynomial in size, since it involves nD variables and O(nD)
constraints. So, obtaining truly polynomial algorithms for JIT scheduling
problems is far from trivial (if possible at all) and requires deep insight into
the structural properties of the problems. In particular, it is not even obvious
whether MDJIT is in NP (or in Co-NP), i.e. whether there exists a polynomial-
size certi¯cate for every \Yes" (or \No") instance of MDJIT. We shall come
back to this issue in Section 4.

2.4 Notations

We shall use the following notations:

² [x] is the rounding of x to the closest integer; when the fractional part
of x is equal to 1/2, we round downward unless otherwise speci¯ed; so,
x¡ 1

2
· [x] < x+ 1

2
;

² bxc is the largest integer smaller than x: x¡ 1 < bxc · x;

² dxe is the smallest integer larger than x: x · dxe < x+ 1;

² [x1::x2] is the set of all integers between x1 and x2.

3 Maximum deviation just-in-time problem

In this section, we establish several structural properties of the MDJIT prob-
lem. We consider the recognition version (5)-(9) of the problem for a ¯xed
value of B. These results constitute an alternative approach to the work of
Steiner and Yeomans (1993). They lead to di®erent insights and, in some
cases, complete the arguments provided by these authors.
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For i = 1; : : : ; n and j = 1; : : : ; di, we use the shorthand (i; j) to denote
the j ¡ th part of type i. A schedule for the MDJIT problem is a bijection
f(i; j) j i = 1; : : : ; n, j = 1; : : : ; dig ! [1::D]. We say that a schedule is
feasible if the inequality (5) holds for the implied variables X = (xi;k).

The following statement is essentially due to Steiner and Yeomans (1993):

Proposition 1 Consider an instance (n; d1; d2; : : : ; dn; B) of the MDJIT prob-
lem. A schedule for MDJIT is feasible if and only if, for all i = 1; : : : ; n and
j = 1; : : : ; di, this schedule assigns part (i; j) to the interval [E(i; j)::L(i; j)]
where

E(i; j) =

»
j ¡ B

ri

¼

L(i; j) =

¹
j ¡ 1 +B

ri
+ 1

º
:

Proof (a) Consider any feasible schedule and suppose that part (i; j) is pro-
duced at time k < j¡B

ri
in this schedule. Then, xi;k = j and

jxi;k ¡ krij ¸ xi;k ¡ kri > j ¡ j +B = B;

contradicting feasibility. Therefore, part (i; j) cannot start before time j¡B
ri

,

and hence before time E(i; j) =
l
j¡B
ri

m
.

Similarly, assume that part (i; j) starts at time k > j¡1+B
ri

+ 1. Then, at time
k ¡ 1, there holds xi;k¡1 = j ¡ 1 and

jxi;k¡1 ¡ (k ¡ 1)rij ¸ (k ¡ 1)ri ¡ xi;k¡1 > j ¡ 1 +B ¡ j + 1 = B;

a contradiction. This shows that part (i; j) cannot start after time L(i; j) =j
j¡1+B
ri

+ 1
k
. Hence, the necessary condition holds.

(b) Let us show that, if each part (i; j) is assigned to some time period in
[E(i; j)::L(i; j)] \ [1::D], and all parts are assigned to di®erent time periods,
then the resulting schedule is feasible.

Consider a ¯xed part type i and a time period k. Let j 2 f1; 2; : : : ; dig be
the number of parts of type i which have been produced up to (and including)
time k, i.e. xi;k = j. We must show that jj ¡ krij · B.

On one hand, k ¸ E(i; j). Therefore,

j ¡ kri · j ¡ E(i; j)ri · j ¡ (
j ¡ B

ri
)ri = B: (10)

If j = di, then j ¡ kri = di ¡ kri ¸ 0, so (10) implies that jj ¡ krij · B as
required.
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On the other hand, if j < di, then k < L(i; j + 1) since the (j + 1)-st part of
type i is produced after time k. Thus,

kri ¡ j · (L(i; j + 1)¡ 1)ri ¡ j ·
¹
j +B

ri

º
ri ¡ j · j +B ¡ j = B: (11)

So, jj ¡ krij · B follows from (10) and (11). 2

Steiner and Yeomans (1993) rely on Proposition 1 to solve the MDJIT problem.
First, they set up a bipartite graph G = (V1 [ V2; E), where V1 = [1::D], V2

is the set of all parts (i; j), for i = 1; : : : ; n, j = 1; : : : ; di, and (k; (i; j)) is an
edge in E if and only if k 2 [E(i; j)::L(i; j)]. For any subset X of vertices,
denote by N(X) the neighborhood of X, i.e. the set of all vertices adjacent
to at least one vertex in X. Observe that the neighborhood of every vertex
(i; j) 2 V2 is an interval (namely, the interval [E(i; j)::L(i; j)]). Therefore, in
agreement with Glover's terminology (Glover 1967), we say that the graph G
is V1-convex.

Let us illustrate this concept on an example. Consider the instance n = 3,
d1 = d2 = 3, d3 = 1 and B = 5

7
. The convex bipartite graph G associated with

this instance is represented in Figure 1. Observe that this instance is feasible,
as it admits the feasible production sequence (1; 2; 1; 3; 2; 1; 2). Furthermore,
this feasible sequence corresponds in a natural way to the perfect matching
of G indicated by the thick edges in Figure 1. This is no mere coincidence.
Indeed, the following proposition is a simple corollary of Proposition 1 (it is
implicit in Steiner and Yeomans (1993)).

Proposition 2 The MDJIT problem has a feasible solution if and only if the
graph G has a perfect matching.

Proof Any solution of the MDJIT problem de¯nes a perfect matching in G.
More precisely, any such solution corresponds to an order preserving matching,
i.e. a perfect matching such that, when j1 < j2, part (i; j1) is matched to an
earlier instant than part (i; j2).

Conversely, if G has a perfect matching M , then it necessarily has an order
preserving one, which corresponds therefore to a feasible solution of MDJIT.
Indeed, if (i; j1) is matched to k1 and (i; j2) is matched to k2 in M , where
k1 > k2, then matching (i; j1) to k2 and (i; j2) to k1 is also feasible (this is
due to the convexity of G and to the fact that both E(i; j) and L(i; j) are
nondecreasing in j). 2

In view of the fact that G is convex, Steiner and Yeomans (1993) suggest to use
Glover's (1967) Earliest Due Date algorithm to check the existence of a perfect
matching in G. The algorithm runs through the time instants k = 1; 2; : : : ; D,
in order, and assigns to k the part (i; j) with smallest value of L(i; j) among all
the available parts such that (k; (i; j)) 2 E (see also Lipski Jr. and Preparata
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Figure 1: Convex bipartite graph for d1 = d2 = 3, d3 = 1 and B = 5
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(1981), Gallo (1984), Gabow and Tarjan (1985) for successive improvements
in the e±ciency of Glover's algorithm).

We now proceed to develop necessary and su±cient conditions for the existence
of a perfect matching in G. These conditions build on Hall's theorem, which
implies that a bipartite graph H = (V1 [ V2; E) with jV1j = jV2j has a perfect
matching if and only if

jN(X)j ¸ jXj for all X µ V1 (12)

(see e.g. Bondy and Murty (1976)).

We ¯rst show that, for convex graphs, Hall's conditions can be restricted to
bear on special subsets of vertices. Let us de¯ne the following sets. First,

I1 = fI : I is an interval of V1g:

Then, for each I 2 I1, let U(I) be the largest subset of V2 whose neighborhood
is completely contained in I, i.e.

U(I) = fv 2 V2 : N(v) µ Ig

(in terms of the original MDJIT problem, U(I) is the set of all parts which
must be processed during the time interval I). Finally, let

I2 = fU(I) : I 2 I1g:

Proposition 3 A V1-convex bipartite graph G = (V1 [ V2; E) has a perfect
matching if and only if

8X 2 I1 [ I2; jN(X)j ¸ jXj: (13)

Proof The necessity of condition (13) is a consequence of Hall's theorem.

To establish su±ciency, suppose now that condition (13) is veri¯ed and that
there exists X1 µ V1 such that jN(X1)j < jX1j. The set X1 is a union of
disjoint intervals:

X1 = I1 [ I2 [ : : : [ Ip

7



where Ii = [xi::x
0
i] and x0i < xi+1 ¡ 1 (i = 1; : : : ; p). We assume that X1 is

chosen so that p is minimal.

Case 1: Assume that N(Ii)\N(Ij) = ; for all i; j 2 f1; : : : ; p¡1g with i 6= j.

This implies that jN(X1)j =
Pp

i=1 jN(Ii)j. But since Ii is an interval, condi-
tion (13) implies that jN(Ii)j ¸ jIij for i = 1; : : : ; p. Therefore,

jN(X1)j =
X

jN(Ii)j ¸
X

jIij = jX1j

which is in contradiction with the hypothesis on X1.

Case 2: There exist i and j (i < j) such that N(Ii) \N(Ij) 6= ;.
Let u 2 N(Ii) \ N(Ij). Since G is V1-convex, there also holds u 2 N(Ii) \
N(Ii+1). Therefore, we can suppose that j = i+1. Let I be the interval nested
between Ii and Ii+1, i.e. I = [x0i + 1::xi+1 ¡ 1]. Note that X1 \ I = ;.
Let U = U(I) be the set of vertices of V2 whose neighborhood is included
in I. Since U 2 I2, condition (13) implies that jU j · jN(U)j. Moreover,
jN(U)j · jIj (by de¯nition of U), so that jU j · jIj. By de¯nition of U , one
has U \N(X1) = ; and by convexity of the graph one has N(I) µ U [N(X1).
Therefore,

jN(I) [N(X1)j · jU [N(X1)j = jU j+ jN(X1)j < jIj+ jX1j = jI [X1j:

This implies that jN(X1[I)j < jX1[Ij. Let Y = X1[I. The set Y is a union
of p ¡ 1 intervals of V1 and satis¯es jN(Y )j < jY j. This is in contradiction
with the minimality of p.

Therefore, condition (13) implies Hall's condition (12), and thus (13) implies
the existence of a perfect matching in G. 2

One may be tempted to conjecture that the conditions on I2 are super°uous in
Proposition 3 and that Hall's conditions on intervals of V1 would be su±cient,
by themselves, to ensure the existence of a perfect matching in a V1-convex
bipartite graph. But this conjecture actually fails even in the special case
where the convex graph is associated with an instance of the MDJIT problem,
as illustrated by the graph in Figure 2. Indeed, this convex graph (which
corresponds to the instance d1 = d2 = 3, d3 = 1, B = 4

7
) satis¯es the conditions

8X 2 I1; jN(X)j ¸ jXj;

but does not have a perfect matching.

On the other hand, the conditions (13) can be strengthened by restricting them
to those sets of I2 whose neighborhood is an interval. De¯ne

I 02 = fU 2 I2 : N(U) 2 I1g:

Then, we can prove:

8
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Figure 2: Convex bipartite graph for d1 = d2 = 3, d3 = 1 and B = 4
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Proposition 4 Conditions (14) and (15) are equivalent:

8X 2 I2; jN(X)j ¸ jXj; (14)

8X 2 I 02; jN(X)j ¸ jXj: (15)

Proof Since, I 02 µ I2, (14) trivially implies (15).

Conversely, suppose that (15) holds and let U 2 I2. If N(U) is an interval,
then U 2 I 02 and jN(U)j ¸ jU j. So, suppose that N(U) is a union of disjoint
intervals:

N(U) = [x1::x
0
1] [ : : : [ [xp::x

0
p]

with x0i < xi+1 ¡ 1 (i = 1; : : : ; p¡ 1). Let Yi = fv 2 V2 : N(v) µ [xi::x
0
i]g. By

de¯nition, [pi=1Yi µ U . Suppose that there exists k 2 U such that k 62 [pi=1Yi.
This would mean that k has neighbors in at least two distinct intervals [xi::x

0
i]

and [xj::x
0
j], with i < j. Since the graph is V1-convex, this would imply that all

vertices between x0i and xj are in N(U), a contradiction. Therefore [pi=1Yi = U .

Since every element of [xi::x
0
i] is the neighbor of some element of U , there

follows immediately that N(Yi) = [xi::x
0
i] and hence Yi 2 I 02, for i = 1; : : : ; p.

Therefore,

jN(U)j =
pX

i=1

jN(Yi)j ¸
pX

i=1

jYij = jU j

and we conclude that (15) implies (14). 2

Remark 1. From the above results, one easily concludes that, in the case of
convex graphs, Hall's conditions need only to be applied to those sets X such
that X is either an interval in V1, or the neighborhood of an interval in V1.
Although we shall not use it in this form, this compact statement may be of
independent interest.

We are now in a position to apply Hall's conditions to the convex bipartite
graph associated with an instance of the MDJIT problem.
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Theorem 1 The MDJIT problem has a feasible solution if and only if, for all
x1, x2 in [1::D] with x1 · x2, the following inequalities are both valid:

nX

i=1

max(0; bx2ri +Bc ¡ d(x1 ¡ 1)ri ¡Be) ¸ x2 ¡ x1 + 1 (16)

nX

i=1

max(0; dx2ri ¡Be ¡ b(x1 ¡ 1)ri +Bc) · x2 ¡ x1 + 1: (17)

Proof We know that the MDJIT problem has a feasible solution if and only
if G has a perfect matching. This is equivalent to

8X 2 I1 [ I 02; jN(X)j ¸ jXj: (18)

We want to express these conditions algebraically.

(a) Let X = [x1::x2] be an interval of V1. Part (i; j) is in the neighborhood of
X if and only if

E(i; j) · x2 and L(i; j) ¸ x1

, j ¡B
ri

· x2 and
j ¡ 1 +B

ri
+ 1 ¸ x1

, (x1 ¡ 1)ri + 1¡ B · j · x2ri +B:

For a given part type i 2 f1; : : : ; ng, the number of copies j which verify the
previous inequality is

max(0; bx2ri +Bc ¡ d(x1 ¡ 1)ri + 1¡Be+ 1):

Therefore, for X = [x1::x2] 2 I1, jN(X)j ¸ jXj if and only if

nX

i=1

max(0; bx2ri +Bc ¡ d(x1 ¡ 1)ri ¡ Be) ¸ x2 ¡ x1 + 1:

(b) Given x1; x2 in V1, with x1 · x2, and given (i; j) 2 V2, the following
equivalences hold:

[E(i; j)::L(i; j)] µ [x1::x2]

, E(i; j) ¸ x1 and L(i; j) · x2

, E(i; j) > x1 ¡ 1 and L(i; j) < x2 + 1

, j ¡B
ri

> x1 ¡ 1 and
j ¡ 1 +B

ri
+ 1 < x2 + 1

, (x1 ¡ 1)ri +B < j < x2ri + 1¡B
, b(x1 ¡ 1)ri +B + 1c · j · dx2ri ¡Be:

For a given part type i, the number of j which verify the previous equivalences
is

max(0; dx2ri ¡Be ¡ b(x1 ¡ 1)ri +Bc):

10



Thus, the cardinality of U([x1::x2]) = f(i; j) 2 V2 : [E(i; j)::L(i; j)] µ [x1::x2]g
can be computed as

jU([x1::x2])j =
nX

i=1

max(0; dx2ri ¡ Be ¡ b(x1 ¡ 1)ri +Bc): (19)

(c) Assume now that the inequalities (17) hold for all values of x1 · x2 and
considerX 2 I 02. By de¯nition, N(X) is an interval of V1, sayN(X) = [x1::x2].
So, X µ U([x1::x2]). In view of (19) and (17), we conclude that

jXj · jU([x1::x2])j · x2 ¡ x1 + 1 = jN(X)j

as required by (18).

(d) Conversely, assume next that jXj · jN(X)j for all X 2 I 02. Then, we know
from Proposition 4 that jXj · jN(X)j for all X 2 I2. Consider now x1; x2

in V1 with x1 · x2. Let I = [x1::x2] and let U = U(I). By de¯nition of U ,
N(U) µ I, and by de¯nition of I2, U 2 I2. So,

jU j =
nX

i=1

max(0; dx2ri ¡ Be ¡ b(x1 ¡ 1)ri +Bc) (by (19))

· jN(U)j (because U 2 I2)

· jIj (because N(U) µ I)

= x2 ¡ x1 + 1;

and (17) follows. 2

In Section 5, we will see that the MDJIT problem always has a solution with
B < 1 (see Theorem 5). If we slightly anticipate on this result, we can refor-
mulate Theorem 1 in a simpler form by relying on the next observation.

Proposition 5 When B < 1, the following statements (a)-(d) are equivalent:

(a) for all x1, x2 in [1::D] with x1 · x2,

nX

i=1

(bx2ri +Bc ¡ d(x1 ¡ 1)ri ¡ Be) ¸ x2 ¡ x1 + 1; (20)

(b) for all x1, x2 in [1::D] with x1 · x2,

nX

i=1

max(0; bx2ri +Bc ¡ d(x1 ¡ 1)ri ¡Be) ¸ x2 ¡ x1 + 1; (21)

(c) for all x in [1::D],
nX

i=1

bxri +Bc ¸ x; (22)

11



(d) for all x in [1::D],

nX

i=1

bxri +Bc ¸ x (23)

nX

i=1

dxri ¡Be · x: (24)

Proof We are going to show that the following chain of implications is valid:

(a) ) (b) ) (c) ) (d) ) (a):

The ¯rst implication (a) ) (b) is trivial. To derive the next implication, just
set x1 = 1 in (21) and observe that bx2ri + Bc ¸ 0 and d¡Be = 0 (since
B < 1).

The third implication is obtained by verifying that (23) holds for all x 2 [1::D]
if and only if (24) holds for all x 2 [1::D] (just write out each inequality at the
point x0 = D ¡ x, the case x = D being trivial).

Finally, to derive the implication (d) ) (a), just write (23) at x = x2, write
(24) at x = x1 ¡ 1 and subtract the resulting inequalities. 2

As a corollary, we obtain the simpler form of Theorem 1:

Theorem 2 When B < 1, the MDJIT problem has a feasible solution if and
only if, for all x1, x2 in [1::D] with x1 · x2, the following inequalities are both
valid:

nX

i=1

bx1ri +Bc ¸ x1 (25)

nX

i=1

max(0; dx2ri ¡Be ¡ b(x1 ¡ 1)ri +Bc) · x2 ¡ x1 + 1: (26)

Proof This is an immediate consequence of Theorem 1 and Proposition 5. 2

In view of the equivalence of statements (c) and (d) in Proposition 5 and of
the easy observation that (24) arises by setting x1 = 1 and by dropping the
max-operator in (26), one may be led to conjecture that the inequalities (26)
actually are redundant in Theorem 2 and that the following compact statement
holds true:

Conjecture 1 The MDJIT problem has a feasible solution if and only if the
following inequality is valid for all x 2 [1::D]:

nX

i=1

bxri +Bc ¸ x: (27)

12



However, this conjecture is wrong, as evidenced by the instance I = (d1 =
3; d2 = 3; d3 = 1; B = 4

7
). Indeed, the conditions (27) hold for this instance (for

all x 2 [1::7]), but the instance is infeasible since the graph in Figure 2 has no
perfect matching or, alternatively, since inequality (26) fails when x1 = x2 = 4.

It may be interesting to note that Conjecture 1 is closely related to the so-
called \De¯ciency cases" described by Steiner and Yeomans (1993). These
authors assert that the EDD \algorithm can stop at time k < D ¡ 1 for one
of two reasons": if less than k parts are available to schedule in [1::k], or more
than k parts must be scheduled in [1::k]. We observe that, for the instance
I = (d1 = 3; d2 = 3; d3 = 1; B = 4

7
), neither of the de¯ciency cases holds, even

though I is infeasible.

4 Complexity results

As discussed in Section 2.3, the complexity of the MDJIT problem is not
exactly known. Namely, it would be possible for its recognition version to be
solvable in polynomial time despite the fact that the formulation (5)-(9) is
of pseudo-polynomial size (see Brauner et al. (2001) for a ¯ner discussion of
this issue). Such a result, if true, would necessarily imply that the MDJIT
problem is both in NP and in Co-NP. Here, we prove that at least one of these
conditions holds:

Theorem 3 The MDJIT problem is in Co-NP.

Proof If an instance of the MDJIT problem is not feasible, then, by Theo-
rem 2, there exist values of x1 and x2 such that one of the inequalities (25)
or (26) is not valid. Given x1 and x2, this can be checked in time O(n logD).
2

We can also use Theorem 2 to reduce the MDJIT problem to an integer linear
program (ILP) whose size is polynomial in n and logD. Indeed, consider an
instance (d1; : : : dn; B) of MDJIT. By Theorem 2, the instance has no feasible
solution if and only if either there exists x 2 [1::D] such that

nX

i=1

bxri +Bc < x (28)

or there exist x1; x2 2 [1::D] with x1 · x2 such that

nX

i=1

max(0; dx2ri ¡ Be ¡ b(x1 ¡ 1)ri +Bc) > x2 ¡ x1 + 1: (29)

For i = 1; : : : ; n, introduce the decision variable Xi to represent the quantity
bxri + Bc. Then, inequality (28) holds exactly when the following system of

13



inequalities is feasible:

nX

i=1

Xi < x

Xi > xri +B ¡ 1 (i = 1; : : : ; n)

x 2 [1::D]

Xi 2 N (i = 1; : : : ; n):

Observe that, from the expression (5) (or from the de¯nition of the \deviation"
concept), it is clear that we can restrict the values of B to integer multiples of
1=D. Thus, let B = ¯=D, where ¯ is an integer. After some manipulations,
the above system can be rewritten as

nX

i=1

Xi · x¡ 1 (30)

DXi ¸ xdi + ¯ ¡D + 1 (i = 1; : : : ; n) (31)

x · D (32)

x;Xi 2 N (i = 1; : : : ; n): (33)

In particular, the smallest value of B such that inequality (25) holds for all
values of x can be computed by solving the ILP

max

µ
¯

D
+

1

D

¶
subject to (30)-(33) and ¯ 2 N:

Inequality (29) can be handled in a similar way, except that the presence of
the max-operators creates some additional di±culties. So, for i = 1; : : : ; n,
introduce the decision variables x1, x2, X

1
i , X

2
i and Xi, where X1

i stands for
b(x1¡1)ri+Bc, X2

i stands for dx2ri¡Be and Xi stands for max(0;X2
i ¡X1

i ).
For each i, we also introduce a binary variable ±i which takes value 1 when
Xi = X2

i ¡X1
i and value 0 when Xi = 0.

Inequality (29) holds exactly when the following system of inequalities is fea-
sible:

nX

i=1

Xi > x2 ¡ x1 + 1

X1
i > (x1 ¡ 1)ri +B ¡ 1 (i = 1; : : : ; n)

X2
i < x2ri ¡ B + 1 (i = 1; : : : ; n)

Xi ¸ X2
i ¡X1

i (i = 1; : : : ; n)

Xi ¸ 0 (i = 1; : : : ; n)

Xi · X2
i ¡X1

i +D(1¡ ±i) (i = 1; : : : ; n)

Xi · ±iD (i = 1; : : : ; n)

14



x1 · x2

x1; x2 2 [1::D]

X1
i ; X

2
i ; Xi 2 N; ±i 2 f0; 1g (i = 1; : : : ; n):

After some manipulations, we obtain again that the smallest value of B such
that inequality (26) holds for all values of (x1; x2) can be computed by solving
an appropriate ILP problem. So, we conclude that the optimization version of
the MDJIT problem (i.e., the problem of ¯nding the smallest value of B such
that (5)-(9) is feasible) can be reduced to a pair of integer linear programs
involving O(n) variables. In particular:

Theorem 4 For ¯xed n, the minimum value of B such that the MDJIT prob-
lem is feasible can be computed in time polynomial in O(logD).

Proof This is a straightforward consequence of the above discussion and of
Lenstra's results (Lenstra Jr. 1983) on integer programming problems with a
¯xed number of variables. 2

In Section 7, we will show that the MDJIT problem is actually very easy to
solve when n = 2. But for ¯xed n > 2, we are not aware of a more direct proof
of the fact that MDJIT is polynomially solvable.

These observations also leave open the more challenging question: is it possible
to solve the (recognition version of the) MDJIT problem in time polynomial
in n and logD or is the problem co-NP-complete?

5 Bounds on the maximum deviation

In this section, we provide an upper bound and several lower bounds on the
optimal value of the MDJIT problem.

5.1 Upper bound

Steiner and Yeomans (1993) proved the interesting fact that the optimal value
of the MDJIT problem is always less than or equal to 1. The same bound
can also be deduced from the description of the quota apportionment method
(see Balinski and Young (1975); in fact, the quota method can be interpreted
as a version of the EDD algorithm, applied with the bound B = 1). Here,
we state a slightly stronger version of this result, whose proof is a rather easy
consequence of Theorem 2.

Theorem 5 The optimal value B¤ of the MDJIT problem satis¯es

B¤ · 1¡ 1

D
:

15



Proof Let B = 1 ¡ 1
D

. Since B < 1, we are in a position to apply Theorem
2, i.e., we only need to prove that inequalities (25) and (26) hold for this value
of B.

We ¯rst prove that, for any integer x ¸ 0, one has

bxri +Bc ¸ xri: (34)

Indeed, if xri is an integer, then bxri +Bc = xri. If xri is not an integer, then
fxrig ¸ 1

D
(where f®g denotes the fractional part of ®). This implies

fxrig+B ¸ 1

D
+ 1¡ 1

D
= 1

and hence
bxri +Bc = bxric+ 1 > xri;

which establishes (34). Inequality (25) follows now immediately by summing
(34) over i = 1; : : : ; n.

For inequality (26), ¯x x1; x2 2 [1::D], with x1 · x2, and consider the set
J µ f1; 2 : : : ng de¯ned by

i 2 J , dx2ri ¡ Be ¡ b(x1 ¡ 1)ri +Bc ¸ 0:

Note that substitutingD¡x2 for x in inequality (34) leads to dx2ri¡Be · x2ri
for i = 1; : : : ; n. Then, we derive successively
nX

i=1

max(0; dx2ri ¡Be ¡ b(x1 ¡ 1)ri +Bc) =
X

i2J
(dx2ri ¡Be ¡ b(x1 ¡ 1)ri +Bc)

·
X

i2J
(x2ri ¡ (x1 ¡ 1)ri)

· x2 ¡ x1 + 1

and hence inequality (26) holds. 2

Note that the bound 1¡ 1
D

is attained when di = 1 for all i = 1; : : : ; n.

Theorem 5 has interesting side-implications regarding the periodicity of opti-
mal sequences (this issue has also been considered, for instance, by Miltenburg
(1989), and Kubiak (2000), for total deviation objective functions). Assume
that kri is an integer for some k 2 [1::D] and i 2 f1; : : : ; ng. Then, in every
optimal solution of MDJIT, the number of parts of type i produced up to time
k must be equal to xi;k = kri, since otherwise the deviation at time k would be
at least 1 > B¤. Now, if gcd(d1; : : : ; dn; D) = ® and D = ®¢, then ¢ ri = di

®

is integral for all values of i. Thus, necessarily, di
®

parts of type i must have
been produced up to time ¢, for all i 2 f1; : : : ; ng. A similar argument also
applies at times 2¢, 3¢. . . and this implies that the optimal schedule must
consist of ® subsequences, where each subsequence involves exactly di

®
parts

of type i for i = 1; : : : ; n. Pushing the reasoning a little bit further actually
leads to the conclusion that, when ® > 1, there exists an optimal production
sequence of the form (S; S; : : : ; S), where S is an optimal production sequence
for the reduced instance (d1

®
; : : : ; dn

®
) (we omit the details).
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5.2 Lower bounds

We now turn to lower bounds on the optimal value B¤. We start with an easy
result.

Proposition 6 Assume that d1 · d2 · : : : · dn. Then, the optimal value B¤

of the MDJIT problem satis¯es

ri · B¤ for i = 1; 2; : : : ; n¡ 1 (35)

1¡ ri · 2B¤ for i = 1; 2; : : : ; n¡ 1 (36)

rn · 2B¤ (37)

1¡ rn · B¤ (38)
n¡ 1

2n¡ 1
· B¤: (39)

Proof (a) In any feasible schedule, some part type i must be produced in the
¯rst time period k = 1. From inequality (5), we deduce that j1¡ rij = 1¡ ri ·
B¤ and that j0¡ rjj = rj · B¤ for all j 6= i. Conditions (35) and (38) follow.

(b) If MDJIT has a feasible schedule, then necessarily E(i; j) · L(i; j) for all
parts (i; j). Hence:

0 · L(i; j)¡E(i; j)

· j ¡ 1 +B¤

ri
+ 1¡ j ¡ B¤

ri

=
2B¤ + ri ¡ 1

ri

and condition (36) follows. Moreover, condition (37) also holds, since

2B¤ ¸ 1¡ r1 =
nX

i=2

ri ¸ rn:

(c) For the last bound, just add the inequalities (36) (i = 1; 2 : : : ; n ¡ 1) to
inequality (38). 2

Interestingly, Kovalyov, Kubiak, and Yeomans (2000) mention that, for small
examples, the optimal value of MDJIT very often coincides with the lower
bound (38). In their computational experiments, however, they provide ex-
amples showing that the bound is not always attained. As a matter of fact,
combining bounds (37) and (38) immediately implies that (38) cannot be tight
as soon as rn >

2
3
. In particular, the instance d1 = 1, d2 = 3, whose optimal

value is B¤ = 1
2
, su±ces to show that none of the lower bounds in Proposition

6 needs to be attained (see also Theorem 9 hereunder).
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Theorem 6 Let ¢i = D=gcd(di;D) (i = 1; : : : ; n). The optimal value B¤ of
the MDJIT problem satis¯es

B¤ ¸ 1

¢i

¹
¢i

2

º
for i = 1; : : : ; n:

Proof Consider some part type i. Its ideal production rate is ri = di
D

= ±i
¢i

where gcd(¢i; ±i) = 1. Note that any feasible solution (xik) of the MDJIT
problem satis¯es jxik ¡ krij ¸ j[kri] ¡ krij for all k 2 [1::D]. We shall prove
the theorem by showing that there exists a value of k such that j[kri]¡ krij =
1

¢i

¥
¢i

2

¦
.

If ¢i is even, then, for k = ¢i

2
,

jkri ¡ [kri]j =
¯̄
¯̄¢i

2

±i
¢i

¡
·
¢i

2

±i
¢i

¸¯̄
¯̄ =

¯̄
¯̄±i
2
¡
·
±i
2

¸¯̄
¯̄ :

Since gcd(±i;¢i) = 1 and ¢i is even, ±i is odd and hence j ±i
2
¡ [ ±i

2
]j = 0:5.

Therefore, for ¢i even, the optimal value of the objective function is at least
1

¢i

¥
¢i

2

¦
= 0:5.

Suppose now that ¢i is odd. We prove that there exists a value of k such that
j[kri] ¡ krij = ¢i¡1

2¢i
. Since ±i and ¢i are relatively prime, Bezout's identity

implies that there exist two integers u and v such that u¢i+v±i = 1. Multiply
this inequality by ¢i¡1

2¢i
and set k = jvj¢i¡1

2
thus obtaining

k
±i
¢i

= juj¢i ¡ 1

2
§ ¢i ¡ 1

2¢i
:

Since ¢i¡1
2¢i

< 0:5, one has [k ±i
¢i

] = juj¢i¡1
2

and j[k ±i
¢i

]¡ k ±i
¢i
j = ¢i¡1

2¢i
. 2

We will see in Section 7 that the bound presented in Theorem 6 is attained
for n = 2.

6 Small deviations

Observe that the bound in Theorem 6 is usually close to 1/2, and thatB¤ ¸ 1=2
as soon as there exists some i such that ¢i is even. Note also that the bound
(39) goes to 1=2 when n goes to +1. These observations suggest to look more
closely at those instances for which the maximum deviation does not exceed
the value 1/2.

In the remainder of this section, we state a few conjectures regarding the
structure of the instances with B¤ · 1=2, and we identify all instances with
optimal value B¤ < 1=2 for n · 6. In order to formulate these statements in
the simplest possible form, we restrict our attention to standard instances of
the MDJIT problem, i.e. instances (d1; : : : ; dn) such that d1 · d2 · : : : · dn
and gcd(d1; : : : ; dn; D) = 1 (remember the comments following Theorem 5).
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6.1 Instances with B¤ < 1=2

When B¤ < 1=2, the condition jxik ¡ krij · B¤ forces xik to be equal to
[kri], so that the problem becomes highly constrained. As a matter of fact, we
conjecture that, for n > 2, only a handful of very special instances have this
property, namely the instances of the form (1; 2; 4 : : : 2n¡1) (the case n = 2 will
be dealt with in the next section). We will prove this conjecture for n · 6
using connections with so-called balanced words (Tijdeman 2000a).

Conjecture 2 For n > 2, a standard instance (d1; : : : ; dn) of the MDJIT
problem has optimal value B¤ < 1=2 if and only if di = 2i¡1 for i = 1; 2 : : : ; n,
and B¤ = 2n¡1¡1

2n¡1
.

We ¯rst establish the su±ciency of the conditions.

Proposition 7 The instance (d1; : : : ; dn), with di = 2i¡1 for i = 1; 2 : : : ; n,
has optimal value B¤ = 2n¡1¡1

2n¡1
.

Proof Consider the instance di = 2i¡1 for i = 1; : : : ; n, and let B¤ = D¡1
2D

=
2n¡1¡1
2n¡1

< 1
2
. We want to show that this value B¤ is feasible. In view of Theorem

6, this will imply that B¤ is optimal.

The ideal rates are de¯ned by ri = 2i¡1

2n¡1
. Let sij = 2n¡i(2j ¡ 1) for i 2 [1::n]

and j 2 [1::2i¡1]. We ¯rst prove that

sij ¸
j ¡ B¤

ri
and sij ·

j ¡ 1 + B¤

ri
+ 1:

Indeed,

sij ¡
j ¡B¤

ri
=

2n¡1(2j ¡ 1)¡ j(2n ¡ 1) + 2n¡1 ¡ 1

2i¡1

=
j ¡ 1

2i¡1
¸ 0

and

j ¡ 1 +B¤

ri
+ 1¡ sij =

(j ¡ 1)(2n ¡ 1) + 2n¡1 ¡ 1 + 2i¡1 ¡ 2n¡1(2j ¡ 1)

2i¡1

=
2i¡1 ¡ j

2i¡1
¸ 0:

Since sij is integer, one has E(i; j) =
l
j¡B¤
ri

m
· sij ·

j
j¡1+B¤

ri
+ 1
k

= L(i; j).

Moreover, sij 6= si0;j0 for i 6= i0 or j 6= j0 and 1 · sij · D = 2n ¡ 1. Therefore,
by Proposition 1, there exists a feasible schedule: just produce part (i; j) at
time sij for i 2 [1::n] and j 2 [1::2i¡1].
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2

In order to prove the unicity of the instance in Conjecture 2 for n · 6, let
us introduce some terminology from Tijdeman (2000a). A balanced word on
f1; 2; : : : ; ng is an in¯nite sequence ¾ = (s1; s2; : : :) such that
(1) sj 2 f1; 2; : : : ; ng for all j 2 N0, and
(2) if ¾1 and ¾2 are two subsequences consisting of t consecutive elements of ¾
(t 2 N), then the number of occurrences of i in ¾1 and ¾2 di®ers by at most 1,
for all i = 1; 2; : : : ; n.
If ¾ is a balanced word on f1; 2; : : : ; ng, then the density of i in ¾ is

µi = lim
t!1

jfj 2 [1::t] : sj = igj
t

;

for i = 1; 2; : : : ; n (it can be shown that the limit always exists).

Proposition 8 Let S be an optimal sequence with B¤ < 1=2 for an instance
(d1; : : : ; dn) of MDJIT. Then, the in¯nite sequence obtained by repeating S is
a balanced word with distinct densities (d1

D
; : : : ; dn

D
).

Proof Consider an optimal sequence S for the instance (d1; d2 : : : dn), with
B¤ < 1=2, and consider the in¯nite sequence ¾ obtained by repeating S, i.e.
¾ = (S; S; S; : : :). We want to show that ¾, viewed as a sequence on f1; 2; : : : ng,
is a balanced word. Let t 2 N, let ¾1; ¾2 be two subsequences consisting of t
consecutive elements of ¾, and let us establish condition (2) in the de¯nition
of balanced words.
Assume that ¾j ranges from time tj + 1 to time tj + t, for j = 1; 2. Fix
i 2 f1; 2; : : : ng and denote by jIj the number of occurrences of i in any time
interval I. Then, for j = 1; 2,

j[tj + 1; tj + t]j = j[1; tj + t]j ¡ j[1; tj ]j
<

³
(tj + t)ri +

1

2

´
¡
³
tjri ¡

1

2

´

= tri + 1;

and similarly

j[tj + 1; tj + t]j >
³
(tj + t)ri ¡

1

2

´
¡
³
tjri +

1

2

´

= tri ¡ 1:

Thus, j[t1 +1; t1 + t]j and j[t2 +1; t2 + t]j are two integers lying strictly between
tri¡ 1 and tri + 1. There follows that j[t1 + 1; t1 + t]j and j[t2 + 1; t2 + t]j di®er
at most by 1, and hence ¾ is balanced.

For i = 1; 2 : : : n, the density of i in ¾ is equal to ri = di
D

. If ri = rj for i 6= j,
then xik = [kri] = [krj ] = xjk for all k, which is clearly impossible. Hence, the
densities in ¾ are pairwise distinct. 2
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Some attention has been devoted in number theory to the properties of bal-
anced words and related concepts, such as Beatty covers and Sturmian words.
Without going into the details, let us just mention here that Beatty covers
and Sturmian words are special types of balanced words. Fraenkel conjectured
that, when n ¸ 3, every Beatty cover on n letters with distinct densities has
densities 2i¡1

2n¡1
, for i = 1; : : : ; n. Tijdeman (2000a) presents a thorough discus-

sion of the state-of-the-art concerning this conjecture. Although the conjecture
is still open, it is known to hold when n · 6, even in the more general case of
balanced words (see Tijdeman (1996) for n = 3, Altman, Gaujal, and Hordijk
(1998) for n = 4, Tijdeman (2000a) for n = 5 and Tijdeman (2000a), Tijdeman
(2000b) for n = 6). As a corollary, we obtain:

Theorem 7 Conjecture 2 is valid for n · 6.

Proof This follows from Proposition 8 and from the above discussion. 2

More generally, Conjecture 2 would follow from the validity of Fraenkel's con-
jecture for balanced words.

6.2 Instances with B¤ · 1=2

If we only impose B · 1=2, then the structure of feasible instances becomes
more complex, as xik may now be equal either to [kri] = kri ¡ 1=2 or to
[kri] + 1 = kri + 1=2 when kri is half-integral.

Conjecture 3 A standard instance (d1; : : : ; dn) of the MDJIT problem has
optimal value B¤ · 1=2 if and only if it satis¯es one of the following conditions:

² d1 and d2 are arbitrary and for i ¸ 3, di is the sum of all demands with
smaller index:

di =
X

j<i

dj = 2i¡3(d1 + d2) for all i 2 [3::n];

² d1 = 1, d2 = 2, d3 = 9 and for i ¸ 4, di is the sum of all demands with
smaller index:

d1 = 1; d2 = 2; d3 = 9; di =
X

j<i

dj = 2i¡4 £ 12 for all i 2 [4::n];

² d1 = 2, d2 = 3, d3 = 7 and for i ¸ 4, di is the sum of all demands with
smaller index:

d1 = 2; d2 = 3; d3 = 7; di =
X

j<i

dj = 2i¡4 £ 12 for all i 2 [4::n];
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² the demands are successive powers of two:

di = 2i¡1 for all i 2 [1::n];

² there exists an index l 2 [3::n] such that

di = 2i¡1 for all i 2 [1::l];

di =
X

j<i

dj = 2i¡l¡1(2l ¡ 1) for all i 2 [l + 1::n];

² there exists an index l 2 [3::n] such that

di = 2i¡1 for all i 2 [1::l ¡ 1];

dl = 2l¡1 + 1;

di =
X

j<i

dj = 2i¡1 for all i 2 [l + 1::n]:

The su±ciency of the conditions in Conjecture 3 can be veri¯ed using some
case-by-case analysis together with the general result below (we skip the de-
tails).

Proposition 9 Let I = (n; d1; : : : ; dn; B) be a feasible instance of the MDJIT
problem with B ¸ 1=2. Then, the following instance, involving an additional
part type, is also feasible:

I 0 = (n+ 1; d1; : : : ; dn; dn+1 =
nX

i=1

di; B):

Proof Let (xik) be a solution of the MDJIT for the instance I. For each
k = 0; : : : ; D ¡ 1, one can determine the index of the part type which is
produced at time k + 1, namely the unique index ik such that

xik;k+1 = xik;k + 1 and xi;k+1 = xi;k for all i 6= ik

(for simplicity of notations, we assume here that xi0 = 0 ).

For the extended instance, de¯ne a solution x0ij (i = 1; 2 : : : n+1; j = 1; 2 : : : 2D)
as follows:

for k = 1::D and i = 1::n : x0i;2k = xik
x0n+1;2k = k

for k = 0::D ¡ 1 and i 6= ik : x0i;2k+1 = xik
for k = 0::D ¡ 1 and i = ik : x0i;2k+1 = xik if jxik ¡ (k + 1=2)rij · B

= xik + 1 otherwise
for k = 0::D ¡ 1 and i = ik : x0n+1;2k+1 = k + 1 if jxik ¡ (k + 1=2)rij · B

= k otherwise.
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It remains to prove that x0ik is a solution of the MDJIT problem for the instance
I 0. Since xi;k+1 ¸ xik for any i and k, one may verify that x0i;k+1 ¸ x0ik for
any i and k. Moreover, x0i;2D = xi;D = di and x0n+1;2D = D = dn+1 imply
equality (2). We will now prove that equality (1) applies for x0i;k:

n+1X

i=1

x0i;2k =
nX

i=1

xi;k + k

= 2k for k = 1; 2 : : : D
n+1X

i=1

x0i;2k+1 =
nX

i=1;i6=ik
xi;k + x0ik;2k+1 + x0n+1;2k+1

=
nX

i=1;i6=ik
xi;k + xik;k + k + 1

= 2k + 1 for k = 0; 1 : : : D ¡ 1:

Note that for the instance I 0, the ideal production rate r0i of part i is equal
to ri=2, where ri is the rate for part i in the instance I (i = 1; : : : ; n), and
r0n+1 = 1=2. Using these remarks, one can verify that jx0ik ¡ kr0ij · B for
i = 1; 2 : : : n+ 1 and k = 1; 2 : : : 2D. This concludes the proof. 2

7 Two-part type problem

In this last section, we consider the MDJIT problem for two part types (n = 2)
with ideal production rates r1 and r2 = 1 ¡ r1. We assume without loss of
generality that 0 < r1 · 0:5. The optimization version of the MDJIT problem
can be written as

Input: d1, d2 2 N:

As usual, denote the total demand by D = d1 + d2 and the ideal production
rate for part type 1 by r1 = d1

D
. Then the ideal production rate for part type

2 satis¯es r2 = 1¡ r1.

Question: ¯nd a 2 £ D matrix X = (xi;k) which minimizes the maximum
deviation max1·k·D( jx1k ¡ kr1j; jx2k ¡ kr2j ) subject to

x1;k + x2;k = k k = 1; : : : ; D (40)

xi;D = di i = 1; 2; (41)

0 · xi;k ¡ xi;k¡1 i = 1; 2; k = 2; : : : ;D (42)

xi;k 2 N i = 1; 2; k = 1; : : : ; D: (43)

Theorem 8 The matrix X de¯ned by x1;k = [kr1] and x2;k = k ¡ [kr1] (k =
1; : : : ; D) is an optimal solution of the 2-part type MDJIT problem.
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Proof Note that x2;k might be di®erent from [kr2] whenever the fractional
part of x1;k is 0:5. One can observe that for k = 1; : : : ; D,

x1;k + x2;k = [kr1] + k ¡ [kr1] = k;

xi;D =

·
D
di
D

¸
= di;

x1;k ¡ x1;k¡1 = [kr1]¡ [(k ¡ 1)r1] ¸ 0;

and

x2;k ¡ x2;k¡1 = k ¡ [kr1]¡ k + 1 + [(k ¡ 1)r1]

= 1 + [(k ¡ 1)r1]¡ [kr1]

¸ 0:

Therefore, X satis¯es the constraints (40)-(43). We now prove that X is an
optimal solution for the 2-part type problem. Clearly,

jx1;k ¡ kr1j = j[kr1]¡ kr1j · 1=2

and
jx2;k ¡ kr2j = jk ¡ [kr1]¡ k + kr1j = j ¡ [kr1] + kr1j · 1=2:

Let X 0 = (x01;k;x
0
2;k) be another feasible solution of the 2-part MDJIT problem.

We want to show that X 0 has maximum deviation larger than or equal to 1=2,
which implies that X 0 is not better than X. Assume that X 0 di®ers from
X = (x1;k; x2;k) at period l. Because of constraint (40), it must be the case
that x01;l is not equal to x1l = [lr1]. Thus, by de¯nition of the [:] operator, x01;l
is at distance at least 1=2 from lr1, i.e. jx01;l ¡ lr1j ¸ 1=2; as needed. 2

Remark 2. Note that the matrix de¯ned in Theorem 8 actually minimizes
the deviation xik ¡ kri for all k and i. Therefore, it is optimal for the maxi-
mum deviation problem and for the total deviation problem with any penalty
function F i such as introduced in Section 2.1.

Theorem 8 solves the two-part type MDJIT problem in polynomial time, in the
following sense: at every instant k, the theorem allows to determine e±ciently
which part type should be produced at time k. Furthermore, the optimal value
of the two-part type problem can be computed very easily, as shown by our
next result.

Theorem 9 Let ¢ = D=gcd(d1; D) = D=gcd(d2; D). The optimal value B¤

of the objective function of the 2-part type MDJIT problem is

B¤ =
1

¢

¹
¢

2

º
:
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Proof By Theorem 6, we know that B¤ ¸ 1
¢

¥
¢
2

¦
. There remains to prove

that B¤ · 1
¢

¥
¢
2

¦
, i.e., that j[kri]¡ krij · 1

¢

¥
¢
2

¦
for i = 1; 2 and for every k.

If ¢ is even, then jkri¡ [kri]j · 0:5 = 1
¢

¥
¢
2

¦
. Suppose now that ¢ is odd and

let us prove that j[kri]¡ krij · ¢¡1
2¢

.

After simpli¯cation, the ideal rate ri = di
D

can be rewritten as ±i
¢

. Therefore,
the deviation j[kri] ¡ krij is an integral multiple of 1

¢
, say j[kri] ¡ krij = c

¢

with c 2 N. Suppose that c
¢

= 0:5. Then, ¢ = 2c, in contradiction with the
hypothesis that ¢ is odd.

Thus, c
¢
< 0:5, which implies that 2c < ¢ and hence 2c · ¢ ¡ 1. Therefore

c
¢
· ¢¡1

2¢
as required. 2

8 Conclusions

In this paper, we have revisited one of the most basic scheduling models of
JIT production systems. In spite of its apparent simplicity, this model is not
completely understood, yet. In particular, its computational complexity is not
exactly known. We have shown that the model is in co-NP and that it is
polynomially solvable when the number of part-types is ¯xed, but its general
version may still turn out to be either co-NP-complete or polynomially solvable.
We believe that the algebraic characterization of feasible instances presented
in Theorem 2 may provide a useful tool for the analysis of such issues. Finally,
obtaining a full description of instances with small max-deviation also presents
an interesting challenge for future research.
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Appendix: Greedy algorithm
One may want to suggest the following greedy algorithm for the MDJIT prob-
lem: at each instant k, produce the part for which xi;k¡1 is the farthest from
kri. But this algorithm is not optimal, as shown by the following simple ex-
ample. Assume that 6 parts of type A, 6 parts of type B and 1 part of type
C are to be produced. Then, the greedy algorithm would schedule the part
of type C at time 5 since 5

13
¡ 0 > 5 ¤ 6

13
¡ 2, thus leading to a maximum

deviation of 10
13

(at time 6). But the optimal solution ABABABCABABAB,
where part C is produced at time 7, has a maximum deviation of 9

13
. (The

famous Alabama paradox similarly similarly establishes the shortcomings of
greedy approaches in the apportionment context.) Note also that the greedy
algorithm is pseudo-polynomial, but not polynomial.
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