Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

"Stochastic Optimization in Multi-Periods Problems in Transportation" HEC-ULg QuantOM Internal Seminar

June 13 2013

Joint work from Y. Arda, Y. Crama, D. Kronus, Th. Pironet, P. Van Hentenryck

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

1 Outlines

- Multi-periods problems in transportation
- Decision making under uncertainty
- Stochastic Optimization
- A Methodology
 - 1. Bounds
 - 2. A picture for manager
 - 3. Algorithms
 - 4. Results validation
- 2 cases study
 - 1. Vehicle Loading
 - 2. Vehicle-Load Assignment

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

- 3 Decision making under uncertainty
- 4 Stochastic Optimization
- 5 A Methodology
- 6 Cases study
- 7 Conclusions

2 What it is not !

Classical problems in transportation

- TSP : one truck visit a collection of customers
- VRP : a fleet of trucks visits a collection of customers
- Assumptions : d = T, triangle inequality, max L
- Options :
 - 1. All or selection of customers (Cost vs Profit)
 - 2. Capacity : demand before or on-road (CVRP-PDP)
 - 3. **Time** (TSPTW-VRPTW-DARP) usually within a day, finite time, max T

Sometimes it models a reality, sometimes it is a reduction. Because, time is not finite, actions can be postponed and related (not independent) along time **Drawback :** solution of a wrong problem, because of a caricatured model...

TIME PROBLEM => PROCESS

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

- 3 Decision making under uncertainty
- 4 Stochastic Optimization
- 5 A Methodology
- 6 Cases study
- 7 Conclusions

Time in transportation

Options for time

- **Timeless**, distance = time
- Continuous time over a finite period (TW)
- Periodic (train, bus,...), usually same patterns
- Dynamic Parameters ! = Time-dependent (not new customers or demand or arcs)
- Several periods (plan), but one time decision (Harvest)
- Multi-periods = fixed periods with rolling horizon over infinite horizon (repeated decisions with interaction among periods)
- On-line = decision if new information (In or Out), "brand" new solution ?

From a **solution** to a **policy** for multi-periods, because the truncation effect leads to a sequence of decisions

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

What we investigate !

[P1] [P1..Pi] [Pi+1..RH] [RH+1..Pn Decision in P1 Stochastic Tail Frozen-Action [P1,<=Pi ?] Deterministic [P1,Pi]

In our cases study :

- 1. action periods=deterministic periods => feasible
- 2. periods are days
- 3. rolling horizon = 5 periods =1 week

Dynamism of the system

- Decision in P1
- Actions (info out)
- Roll-over 1 period, updates (in)
 - 1. stochastic becomes deterministic Pi+1=Pi

- 2. new stochastic info RH+1=RH
- Decision in P2=P1

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

3 What is a solution to a stochastic problem?

In the future, some elements are stochastic. Do they follow a distribution law? A deterministic world? Uncertainty principle "Heisenberg"

Model the world and know it at a point of time?

What is the solution to a stochastic problem?

- Worst case (oversize solution)
- Chance constrained (95%)
- Robust to variation (Tree)
- Flexible : Easy to recover (Grass)
- Min or max Expected cost-profit (E*)

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Uncertainty in a rolling horizon

Forecasts => policy also, because of the stochastic part **Stochasticity in transportation**

- Customer location, destination, existence
- Demand level
- Transportation time
- Release dates [TW]
- Availability (Y-N)

Highly discrete distribution laws due to the periods Probability per period %

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

4 What can we solve?

Usual technique "Stochastic programming" (DK) Model 2 stages :

- 1. First stage strategic investment : facility location, network design, stock
- 2. Second stage operational cost : "Demand"

Formulation:http://en.wikipedia.org/wiki/ Stochastic_programming

Linear, non-linear, continuous or integer variables X, Y If 2nd stage linear and convexity of recourse function Technique : **L-Shaped algorithm** (exact) Introduction of feasibility and optimality constraints Recourse assumption : continuous or piecewise linear => **Discretization :** approximation by a set of scenarios Scenario generation : gap => correctly wrong N = ? Few works on Integer + Integer + discrete, so...

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Techniques using scenarios

Problem "Noise", randomness in scenario generation **Stability** stochastic model not stochastic solution value !

- 1. "Sample Average Approximation Method" (SAA) Solve several sets of scenarios
- "Approximate Dynamic Programming" (ADP) Go forward, go back on scenarios to approximate decisions values

Our cases study : simulation over scenarios Integer (NP-hard) + Integer + discrete laws + infinite tail No convexity, not continuous Highly discrete distribution => Scenarios OK, $|States|^{|Y|}$ Curse of dimensionality => Intractable !! Conclusion on techniques : "Hard" to find E*

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

5 Bounds

Oracle : a posteriori O*

Infinite horizon average value of the deterministic info **Real Bound** (Upper or lower) on **E*** **VPI** : Value of the Perfect Information |O*-E*|>=0 **Myopic** : Deterministic periods average value **LO** Bound (Lower or upper) on any policy with forecasts

Usual deterministic approximation : Mean

EVS : Expected Value Solution

VSS : Value of the stochastic solution |E*-EVS|>=0

Multi-period model

Rolling Horizon Oracle O*(RH)

VMPM : Value of the multi-period model $|O^*(RH)-LO| \ge 0$ **VAI :** Value of the Available Information $|O^*(RH)-E^*| \ge 0$ Practical bound, not strict !

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

A picture for a manager

"Averages" : EO*, EO*(RH), ELO, EEVS, EVSS, EVAI, EVPI, EVMPM

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

If I can solve one deterministic scenario?

Over RH means with t (multi-periods) => Hard ! LO, O*(T), O*(RH), EVS and...others Algorithms or policies to approximate E*

1. Solve a "good" single scenario

- 2. **Consensus (Cs) :** Solve "some" scenarios and create a solution with common decisions
- Restricted Expectation (RE) : Solve "some" scenarios and cross-evaluate each solution over other scenarios

4. RE over all scenarios individually (!!!) 2nd best

No guarantee, just numerical validation ! DK : Characteristic of deterministic solution due to deterministic model Deterministic solutions are elitist, no option in it CPU Time : 1, N + 1, N^2

▲□▶▲@▶▲≣▶▲≣▶ ≣ のQ@

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

If I can solve a subtree of scenarios?

Full tree : exact solution, but Out of Memory, CPU Time

Approximation by a **Subtree** $(1 * ST \neq ST * 1)$! Join scenarios, for solution consistency **Non-anticipativity constraints**

 $X_{1,t} = X_{2,t} = ... = X_{i,t} = X_{ST,t}$ if (*Scenario*₁ = *Scenario*₂ = ...) up to period *t* But, not all of them, just the common part !

Decision variables are equal until scenarios differ. Might destroy the nice structure of a model !!! Hard

Multi-periods : non-anticipativity for decision period only !

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results statistical validation

E* remains unknown : Select Best policy How to compare Policy 1 with Policy 2, E*1 vs E*2? Statistical validation :

"Compare the stochastic solutions from an algorithm sometimes using random calibration scenarios for a random set of scenarios from a random instance" Solve 30 scenarios by instance over an horizon 20 P Non Non-Normality check, confidence level, t-student... **Outclassment** = significant difference between means Hypothesis : $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$?

Robustness analysis :

Is distribution law known in practice ? Check performance when the real distribution law differs from the expected one Calibration scenarios (Cs-RE) differ from test scenarios, other mean EVS

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

6 Cases study : why 2 cases ?

Differences

Natural class instances vs Theoretical instances Objective : Min cost vs Max profit NP-Hard : Set-covering (B&B) vs Network flow (LP \cong IP) Subtree algorithm : Intractable vs Tractable 1 deterministic period vs 2 deterministic periods Fleet : Unlimited vs I imited Capacity : LTL vs FTL Stochasticity : Release date 4 P TW vs Availability 1 P The option : Do now/Postpone vs Go/No go Action periods : P1 vs P1 to P4 if loaded Similarities Rolling horizon = 5 periods Algorithms : LO, O*, O*(5), Cs, RE, EVS Results statistical validation Robustness analysis

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

6.1 Vehicle Loading Problem

Steel industry : Decision coils to be send by trucks Objective :

Minimize transportation cost (Trucks + Penalties) Time windows penalties : [Early ; Inv ; Inv ; Late] **Constraint :** capacity (weight) and delivery time **Data :** stock P1 and forecasts of arrivals from production **Stochasticity :** [TW1 % ; TW2 % ; TW3 % ; TW4 %] **4 distribution laws**

- 1. Early [40; 30; 20; 10]
- 2. Late [10; 20; 30; 40]
- 3. Uniform [25; 25; 25; 25]
- 4. Binomial [12.5; 37.5; 37.5; 12.5]

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

A picture

		Periods					
Coils Weight	P1	P2	P3	P4	P5		
A 0.6	1	LAT					
B 0.3		EAR	INV	INV	LAT		
C 0.2		EAR	INV	INV	LAT		
D 0.6	1	INV	INV	LAT			

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results : Early

TABLE: Algorithmic performance – Early distribution

Early	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
$O^{*}(5)$	107.2	105.3	103.8	105.6
LO	193.5	172.5	168.7	159.3
EVS	116.5	113.9	111.1	110.4
Mod	112.2	108.5	107.0	107.6
Cons	122.4	119.5	113.1	117.4
RE	111.0	111.7	109.2	111.8
$O^{*}(5) - O^{*}$	7.2	5.3	3.8	5.6
VMPM	86.3	67.2	65.0	53.7
VPI	11.0	8.5	7.0	7.6
VAI	3.8	3.2	3.2	2.0
VSS	5.4	5.4	4.1	2.8

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results : Late

TABLE: Algorithmic performance – Late distribution

Late	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
<i>O</i> *(5)	102.7	103.0	102.8	103.8
LO	154.3	144.0	142.3	136.8
EVS	119.6	115.0	112.0	113.2
Mod	120.1	117.0	117.9	115.4
Cons	109.7	110.1	109.8	111.2
RE	109.5	111.0	109.0	109.7
$O^{*}(5) - O^{*}$	2.7	3.0	2.8	3.8
VMPM	51.6	41.1	39.5	33.0
VPI	9.5	10.1	9.0	9.7
VAI	6.8	7.1	6.2	5.9
VSS	10.0	4.9	3.0	3.5

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇◇◇

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results : Uniform

TABLE: Algorithmic performance – Uniform distribution

Uniform	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
<i>O</i> *(5)	108.1	104.2	102.9	104.9
LO	179.5	159.2	154.6	147.5
EVS	117.7	112.3	109.6	109.9
Mod	125.1	118.6	113.9	113.3
Cons	115.7	114.7	111.6	113.3
RE	112.1	112.2	110.0	108.7
$O^{*}(5) - O^{*}$	8.1	4.2	2.9	4.9
VMPM	71.4	55.1	51.7	42.6
VPI	12.1	12.2	9.6	8.7
VAI	4.0	8.0	6.7	3.8
VSS	5.6	0.1	0	1.2

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results : Binomial

 TABLE: Algorithmic performance – Binomial distribution

Binomial	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
<i>O</i> *(5)	107.2	105.8	104.4	106.1
LO	184.8	179.0	160.9	157.3
EVS	123.4	117.2	114.7	116.7
Mod	123.4	109.9	112.4	115.0
Cons	114.7	114.0	113.5	115.3
RE	113.0	111.6	112.1	111.9
$O^{*}(5) - O^{*}$	7.2	5.8	4.4	6.1
VMPM	77.6	73.2	56.5	51.2
VPI	13.0	9.9	12.1	11.9
VAI	5.8	4.1	7.7	5.8
VSS	10.5	7.3	2.6	4.8

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Statistical validation : RE is the best?

TABLE: Comparison of means for *RE* vs. alternative algorithms

	$\mathcal{A} = EVS$		$\mathcal{A} =$	Mod	$\mathcal{A} = Cs$	
Reject H_0 vs. H_1	Yes	No	Yes	No	Yes	No
$H_1: \mu_{RE} \neq \mu_A$?	12	4	13	3	7	9
$H_1: \mu_{RE} < \mu_A?$	12	0	10	0	7	0
$H_1: \mu_A < \mu_{RE}?$	0	0	3	0	0	0

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results with Optimist

TABLE: Algorithmic performance – Early distribution

Real $\mathcal{R} = \mathbf{Early}$	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
<i>O</i> *(5)	107.2	105.3	103.8	105.6
<i>RE_{Early}</i>	111.1	111.7	109.2	111.8
Optimist	112.2	108.5	107.0	107.6

TABLE: Algorithmic performance – Late distribution

Real $\mathcal{R} = Late$	N = 80	N = 120	<i>N</i> = 160	N = 200	
<i>O</i> *	100	100	100	100	
<i>O</i> *(5)	102.7	103.0	102.8	103.8	
RE	109.5	111.0	109.0	109.7	
RE_{Early}	111.7	108.6	106.9	108.8	
Optimist	110.1	109.2	107.3	108.3	

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results with Optimist

TABLE: Algorithmic performance – Uniform distribution

Real \mathcal{R} = Uniform	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	N = 200	
<i>O</i> *	100	100	100	100	
<i>O</i> *(5)	108.1	104.2	102.9	104.9	
RE	112.1	112.2	110.0	108.7	
RE_{Early}	113.7	111.4	107.8	109.5	
Optimist	113.6	109.7	107.3	108.4	

 TABLE: Algorithmic performance – Binomial distribution

Real $\mathcal{R} = $ Binomial	<i>N</i> = 80	<i>N</i> = 120	<i>N</i> = 160	<i>N</i> = 200
<i>O</i> *	100	100	100	100
<i>O</i> *(5)	107.2	105.8	104.4	106.1
RE	112.9	111.6	112.1	111.9
RE_{Early}	117.3	113.5	112.1	111.7
Optimist	116.0	109.0	109.5	110.3

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Statistical validation : Optimist is the best?

TABLE: Comparison of means for *Optimist* vs. alternative algorithms

	$\mathcal{A} =$	RE _{Early}	$\mathcal{A} = RE (L-U-B)$		
Reject <i>H</i> ₀ vs. <i>H</i> ₁	Yes	No	Yes	No	
$\mu_{\mathcal{O} ptimist} eq \mu_{\mathcal{A}}$	6	10	6	6	
$\mu_{\mathcal{O} ptimist} < \mu_{\mathcal{A}}$	6	0	6	0	
$\mu_{\mathcal{A}} < \mu_{\textit{Optimist}}$	0	0	0	0	

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Conclusions Case Study 1

- VMPM high
- VSS relevant
- VAI, VPI relevant, but IS or process problems
- Subtree infeasible
- Optimist : single scenario heuristic : fast, easy and
- Robust : independent from the distribution law !

Why? Optimist postpones more and captures the option! To appear in :

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

"EURO Journal on Transportation and Logistics"

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

6.2 Vehicle-Load Assignment Problem

Transportation industry : Decision travel to truck FTL (PDP with selection) Decisions : Wait, Move Empty, Load Objective : Maximize Profit (Load-Empty Moves-Waiting) Constraint : loading if at place on time, no preemption

Data : [P1, P2] and forecasts on available travels [3,4,5] **Stochasticity :**

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Availability [...%] for a travel from A to B in period $3 \le Pi \le 5$

Distribution laws [...%] linked to :

- 1. traveled distance (1, 2, 3, 4)
- 2. city size (B, M, S)

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

A Picture

A representation of the time-space (Periods, Cities)

(日)

Explain loads (city to city and periods) Explain trucks (loaded-empty) Explain actions (Wait, Move empty, Load)

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Results : one example 150 loads

TABLE: Distribution laws linked to distance

Info	VPI	LB			EVS					UB
Alg	0*	<i>O</i> *2	Opt	Mod	EG	Cs	RE*	TR ₁₀	TR ₃₀	<i>O</i> *5
1-10	120.4	0	22.8	17.3	37.3	31.2	12.4	48.6	58.2	100
1-15-25A	153.0	0	12.9	38.8	38.4	51.4	43.1	65.7	70.2	100
1-15-25B	153.8	0	13.7	44.7	49.2	45.5	26.7	66.5	75.5	100
1-15-25C	176.0	0	32.8	43.5	67.1	45.2	36.9	72.8	85.2	100
1-20	135.0	0	14.8	41.3	52.5	38.9	46.5	69.8	71.0	100
1-20-25A	167.8	0	6.8	32.5	62.4	21.3	44.9	73.1	78.1	100
1-20-25B	149.6	0	23.3	41.0	46.2	42.0	31.8	70.6	60.0	100
1-20-25C	199.8	0	-22.1	30.1	24.1	27.0	-24.7	61.5	67.9	100
1-25	164.9	0	-83.6	6.5	7.9	12.6	-32.1	54.9	50.6	100
2-10	163.7	0	18.4	38.9	44.7	37.7	26.8	67.4	74.3	100
2-15-25A	221.3	0	69.2	70.2	65.8	70.9	63.7	77.2	76.4	100
2-15-25B	186.1	0	65.1	66.3	70.3	51.0	62.4	83.2	87.4	100
2-15-25C	136.6	0	36.7	60.4	67.5	73.1	42.5	78.3	82.4	100
2-20	204.6	0	59.6	74.5	57.7	53.0	39.3	71.6	70.1	100
2-20-25A	190.1	0	51.6	71.1	81.1	69.4	60.2	82.7	83.3	100
2-20-25B	150.9	0	30.4	40.0	54.5	57.4	53.2	77.5	74.2	100
2-20-25C	180.9	0	65.2	86.5	87.1	79.6	62.0	86.3	89.2	100
2-25	167.3	0	11.4	50.0	65.0	64.2	42.6	69.8	61.0	100
		0								100
Aver.	168.4	0	15.2	35.6	46.2	43.2	25.8	65.6	69.3	100

◆□> ◆□> ◆豆> ◆豆> ・豆・ のへぐ

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Preliminary conclusions

Maximization problem

- 1. VPI is high
- 2. Results do not depends on graph type, distribution laws...
- 3. Subtree algorithm is usually the best
- 4. Subtree 30 often better than Subtree 10
- 5. Subtree never under-performs
- 6. EVS is the second best, but behind

Subsequent tests :

Algorithmic parameter : calibration scenarios number ? Subtree 50 (mean increases, variance reduces) No statistical outclassment Subtree 30, once Subtree 10 CPU time increases "linearly", LP solution \cong IP

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Robustness

TABLE: Robustness of distribution law parameter

Info	VPI	LB	EVS				UB
Inst./Alg.	0*	<i>O</i> *2	EG ₅₀	TR <mark>30</mark>	TR <mark>50</mark>	TR <mark>70</mark>	<i>O</i> *5
d- <mark>20</mark> -15-25 A	361.4	0	25.2	40.2	65.0	27.3	100
w- <mark>20</mark> -15-25 A	283.7	0	34.5	82.9	72.5	15.1	100
d- <mark>20</mark> -20-25 A	229.0	0	31.9	63.6	45.3	35.6	100
w- <mark>20</mark> -20-25 A	298.4	0	3.7	33.0	9.7	2.6	100
Average 20	293.1	0	23.8	55.0	48.1	20.1	100
d- <mark>80</mark> -15-25 A	152.6	0	91.0	86.0	111.2	111.2	100
w- <mark>80</mark> -15-25 A	217.0	0	44.4	55.7	87.1	86.0	100
d- <mark>80</mark> -20-25 A	129.7	0	85.3	71.0	96.1	103.4	100
w- <mark>80</mark> -20-25 A	184.4	0	20.8	55.2	45.4	49.8	100
Average 80	170.9	0	60.4	67.0	84.9	87.6	100
Inst./Alg.	0*	<i>O</i> *2	EG ₅₀	TR <mark>20</mark> 30	TR <mark>50</mark> 30	TR <mark>80</mark> 30	<i>O</i> *5
d- <mark>50</mark> -15-25 A	201.6	0	49.1	48.0	79.1	59.2	100
w- <mark>50</mark> -15-25 A	187.3	0	54.3	21.9	53.4	35.8	100
d- <mark>50</mark> -20-25 A	145.1	0	34.8	47.5	66.0	43.3	100
w- <mark>50</mark> -20-25 A	225.7	0	7.3	10.3	21.9	-17.6	100
Average 50	189.9	0	36.4	31.9	55.1	30.2	100

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Conclusions Case Study 2

- 1. VPI is usually high
- 2. VMPM is relevant
- 3. Independent of graph shape, size or distribution laws
- 4. Subtree is the best algo and others under-perform
- 5. Subtree30 for simulation, Subtree50 in practice
- By default, calibrate subtree for 50% availability (2nd best/3 and outclasses if reality is 50%)
- 7. **Robustness :** better to stick to distribution and approximate by the center
- 8. Less uncertainty on information closes the gap and reduces the VPI

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

7 Conclusions

- Importance of stochastic multi-periods models
- Tool to measure the values of informations
- Understandable bounds for managers
- A toolbox of algorithms to tackle those problems
- A statistical validation of algorithms, outclassment
- A robust single scenario heuristic for case 1
- A subtree solvable by a LP Solver for case 2
- Both formulations without t to solve 1 scenario

Th. PIRONET HEC-ULg QuantOM

1 Outlines

2 Multi-periods problems in transportation

3 Decision making under uncertainty

4 Stochastic Optimization

5 A Methodology

6 Cases study

7 Conclusions

Perspectives

- Metaheuristics (many statistical issues)
- Subtree generation
- Exact : Column generation in subtree
- Improve Cs and RE algorithms
- Improve calibration scenarios generation
- Repositioning strategy, LTL (PDP)... in Case 2
- Investigate the gap between VPI and VAI
- Compare with ADP
- Strategy to find what is the option
- Answer your questions, comments, remarks...