Application des isotopes stables en Ecologie trophique et Ecotoxicologie

Gilles Lepoint, François Remy, Loïc Michel & Krishna Das

Laboratoire d’Océanologie
Université de Liège
Studies in the Oceanology Lab involving Stable isotopes (C,N, S):

• Delineation of marine trophic web
• Trophic ecology of aquatic animals (aquatic invertebrates, fishes, birds, marines mammals)
• Relation between trophic ecology and ecotoxicology
Studies in the Oceanology Lab involving Stable isotopes (C,N, S):

• Delineation of marine trophic web

• Trophic ecology of aquatic animals (aquatic invertebrates, fishes, birds, marine mammals)

• Relation between trophic ecology and ecotoxicology
EA – IRMS
(Isoprime 100 – Vario MicroCube)
and
MS- GC- IRMS
"You are what you eat...plus a few per mille"
DeNiro & Epstein, 1978

MIXING Law:
"YOU ARE WHAT YOU EAT"
Plus few per mille = trophic enrichment factor (TEF) = trophic fractionation factor
Our question:
Is it possible from isotopic composition of an animal to calculate the different contribution of potential food sources to its diet?
Mixing equation for n sources:

$$\delta_m = (f_a \delta_a + f_b \delta_b + f_c \delta_c + \ldots)$$

⇒ Complex mixing modelling

⇒ IsoSource (Philips et al., 2001) or SIAR (Parnell et al. 2010) or ….
Case study 1: Trophic ecology of Gammarus aequicauda (amphipoda)

Gammarus aequicauda

François Remy ©
Seagrass meadow (Posidonia oceanica)
Exported Dead Leaves
• More than 120 species
• Up to 6000 id.m\(^{-2}\)
• Dominated by amphipods
• Prey for fishes
\[\delta^{13}C: \text{G.aequicauda}: -16.4 \pm 0.8 \\
\text{G.fucicola}: -19.7 \pm 0.5 \\
\delta^{15}N: \text{G.aequicauda}: 3.0 \pm 0.6 \\
\text{G.fucicola}: 2.2 \pm 0.4 \]

Source: Lepoint et al. 2006
SIAR Modelling

TEF All the same
$\Delta^{13}C = + 1$
$\Delta^{15}N = + 3.4$
\[\delta^{13}C: G. aequicauda: -16.4 \pm 0.8 \]
\[G. fucicola: -19.7 \pm 0.5 \]
\[\delta^{15}N: G. aequicauda: 3.0 \pm 0.6 \]
\[G. fucicola: 2.2 \pm 0.4 \]

Source Lepoint et al. 2006
TEF Determination: Experimental design

3 different treatments:

- Freshwater amphipod powder
- Green algae powder
- Dead *P. oceanica* powder

- Different carbon and nitrogen isotopic compositions
- Different quality (C/N ratios)
- All potentially ingestible by *G. aequicauda*
TEF Determination: Experimental design

- Controled conditions
- 96 ind / treatment (individual isotopic compositions
TEF Calculations and C turnover

Amphipod as food

\[\delta^{13}C = -24.86 + 8.62e^{-0.0591t} \]

\[t_{1/2} = 11.72 \text{ days} \]
Posidonia litter as food

- High mortality
- Very slow assimilation

Food source $\delta^{13}C$

$\delta^{13}C = -10.87 - 5.23e^{-0.0134t}$

$R^2 = 0.6923$

$P < 0.0001$

$t_{1/2} = 51.62\text{ days}$

Far too long!
Green Algae as food:

Even worst (algae toxicity)
No significant change of isotopic composition

⇒ No turnover rates calculation
Trophic Enrichment Factors: TEFs or Δ

<table>
<thead>
<tr>
<th></th>
<th>Amphipod treatment</th>
<th>Algae treatment</th>
<th>Litter treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ^{13}C ($%$)</td>
<td>0.81 ± 0.39</td>
<td>/</td>
<td>1.19 ± 0.13</td>
</tr>
<tr>
<td>Δ^{15}N ($%$)</td>
<td>2.91 ± 0.56</td>
<td>0.53 ± 0.44</td>
<td>0.96 ± 0.42</td>
</tr>
</tbody>
</table>

Treatment 1 ➔ typical of **predator**

Treatments 2 & 3 ➔ typical of primary detritic-feeder
SIAR Modeling: the return

TEF: food source specific

(experimentally determined by Michel for epiphytes and by Remy for litter, sciaphilous algae and animal diets)
* Bulk IRMS does not discriminate different component of epiphytic community
- Discriminate different component of epiphytic community using GC – IRMS

⇒ Measurement of delta 13C on fatty acids

Next Elementar Seminar
Case study 2: To elucidate contamination pathway of an organochlorine pesticide

Organochlorine pollution in tropical rivers (Guadeloupe): Role of ecological factors in food web bioaccumulation
• Heavy contamination by organochlorine pesticides (Banana culture)

• What is the general structure of the trophic web?

• Is there a relation between trophic level and pollutant contamination
Figure 1: Pérou River sampling site (Guadeloupe)

Figure 2: Example of crustacean species found in the river Pérou fauna (photos: Nicolas Marichal)
Fig. 2 Food web of a Caribbean stream (Grande-Anse, Guadeloupe), based on stable isotope analysis (grey units show elements with similar carbon isotopic signatures and constitute the dominant potential food sources of this aquatic ecosystem during the dry season. Mean percent contributions of sources to adult consumers are indicated below the arrows when ≥5%. They are followed by the minimum and the maximum in parentheses (the presence of two means indicates a range of contributions for the different species of a genus). Arrows start with a black dot and link species and/or units. 208 × 179 mm (600 × 600 DPI).

Source: Coat et al. (2009) Freshwater Biology 54, pp. 1028-1041
Fig. 3. Chlordecone concentrations versus trophic level measured in river samples during the dry season (the hatched regression line represents the statistically significant relationship in biota (all circles), the complete regression line only takes into account the species living in calm habitats (black circles), no relationship is observed for the species living in rapid running waters (grey circles)).
Case study 3: Brominated and phosphorus flame retardants in White-tailed Eagle *Haliaeetus albicilla* nestlings: Bioaccumulation and associations with dietary proxies (δ^{13}C, δ^{15}N and δ^{34}S)
C, N, S stable isotopes measurements in feathers

source: Eulaers et al., 2014
Thank you for your attention