Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study Vehicle-Load Assignment

7 Conclusions

"Optimization of Stochastic Multi-Period Problems in Transportation"

July 9, 2013

Joint work from Y. Arda, Y. Crama, Th. Pironet

HEC-ULg, QuantOM

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

0 Message

Transportation models : as decisions making Set of optimal decisions or optimal sequence of decisions TSP, VRP, PDP...No past, no future

- Mono-period vs Multi-period (not periodic, not year)
- Independent and Subsequent and related
- Deterministic and Stochastic Information
- Data and Forecasts
- Parameters and Distribution laws
- Optimal solutions, Heuristic values and Policies
- Instances and Scenarios or Futures
- Values and Statistical performances
- P solvable, NP-Hard and "Intractable"

Contribution : A framework for experimentation

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

1. Outlines

- Multi-period problems
- Decision making under uncertainty
- Stochastic Optimization Techniques
- A Methodology
 - 1. Bounds
 - 2. A picture for manager
 - 3. Algorithms
 - 4. Results validation
- Case study (Vehicle-Load Assignment)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Conclusions

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

2. Rolling Horizon

Decision : in P1

Action : on deterministic part $[P1...Pi] \Rightarrow$ feasible Case study :

- 1. rolling horizon = 5 periods = 5 days = 1 week
- 2. periods deterministic 2 days, forecasts 3 days
- 3. action in P1

Dynamism of the system

- Decision in P1
- Actions (info out)
- Roll-over 1 period, updates (in)
 - 1. stochastic becomes deterministic Pi + 1 = Pi

- 2. new stochastic info RH + 1 = RH
- Decision in P2 = P1

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

3. Solutions to a stochastic problem?

- Worst case (oversize solution)
- Chance constrained (95%)
- Robust to variation (Tree)
- Flexible : Easy to recover (Grass)
- Min or max Expected cost-profit (E*)

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

4. Usual techniques

- 1. "Stochastic Programming" 2-stage, convex, continuous
- 2. "Markov Chain" states, actions, stability
- 3. "Approximated Dynamic Programming" ADP
- 4. "Sample Average Approximation" SAA (continuous)
- 5. Scenario tree, but rolling horizon

Integer + Discrete distribution laws + Tail Curse of dimensionality \Rightarrow Intractable ! 10 trips per period $2^{10} = 1024$, 3 periods 2^{30} Conclusion : "Hard" to find E*

Methodology :

Simulation and optimization over deterministic scenarios Solve one, several, some scenarios = "futures" Literature and algorithms as a brick

Which scenarios?

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-perioo problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

5.1 Bounds

Oracle : a posteriori, revealed info **O*** Infinite horizon value with deterministic info **Real Bound** (Upper or lower) on **E***

VPI : Value of the Perfect Information |O*-E*|≥0

Myopic : Deterministic periods value **LO** Bound (Lower or upper) on any policy with forecasts

Deterministic approximation : **Mean Mean => EVS :** Expected Value Solution

VSS : Value of the stochastic solution $|E^*-EVS| \ge 0$

Rolling horizon : Finite Oracle O*(RH)

VMPM : Value of the multi-period model $|O^*(RH)\text{-}LO|{\geq}0$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

VAI : Value of the Available Information $|O^*(RH)-E^*| \ge 0$

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study Vehicle-Load Assignment

7 Conclusions

5.2 A picture for a manager : max

Simulations => "Expected value of" : EO*, EO*(RH), ELO, EEVS, EVSS, EVAI, EVPI, EVMPM

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

5.3 Approximations of E*

Solve a "good" single scenario (Mean, Mod)

Consensus (Cs) :

- 1. Solve N scenarios
- 2. Create a new solution with common decisions
- Restricted Expectation (RE) : Solve scenarios i,j and cross-evaluate action i over scenarios j
 - 1. Scenarios i, j ($\in N$) \Rightarrow Solutions i, j \Rightarrow Actions i, j
 - 2. Evaluate value of Action i on Scenario j
 - 3. Cumulated value of Actions i, j
 - 4. Select the best action

Questions

- Reduced actions and state techniques ?
- Scenarios generation ?
- Stochastic solution from deterministic model?
- Deterministic solutions are elitist, no option in it

(ロ) (同) (三) (三) (三) (○) (○)

▶ CPU Time : 1, *N* + 1, *N*²

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

5.3 Approximations of E*

Full tree : Deterministic equivalent \Rightarrow One common action for all futures Links : **Non-anticipativity constraints** Action variables are equal in each scenario In practice : Out of Memory, CPU Time, B & B Approximation by a **Subtree** $(1 * ST \neq ST * 1)$

Subtree formulation often harder than a single scenario

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

5.4 Statistical validation and Robustness

Statistical validation :

E* = Best policy we can found How to compare Policy 1 with Policy 2, E*1 vs E*2?

Outclassment = significant difference between means

"Paired sample comparison"

Hypothesis : $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$?

Solve 30 scenarios by instance over an horizon 20 P Non Non-Normality check, confidence level, t-student...

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Robustness analysis :

Assumption : Distribution law is known in practice Test : Calibration law \neq Real law (Cs, RE, Mean)

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.1 Vehicle-Load Assignment Problem

Problem Assign trip to truck FTL (PDP with selection) **Decisions :** Wait, Move Empty, Load

Objective :

Maximize Profit (Load-Empty Moves-Waiting)

Constraint : loading if at place on time, no preemption

Data: [1,2] and forecasts on available loads [3,4,5]

Stochasticity : Availability [...%] of a trip from A to B, start in [3,4,5]

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Distribution laws [...%] linked to :

1. Traveled distance (1, 2, 3, 4)

2. City size (B, M, S)

Solution : Network flow problem

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.2 A Picture for a scenario

A representation of the time-space (Periods, Cities)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.3 Results : one example 150 loads 20 P

TABLE: Distribution laws linked to distance

Info		LB			EVS					UB
Alg	0*	<i>O</i> *2	Opt	Mod	EG	Cs	RE*	TR ₁₀	TR ₃₀	<i>O</i> *5
1-10	120.4	0	22.8	17.3	37.3	31.2	12.4	48.6	58.2	100
1-15-25A	153.0	0	12.9	38.8	38.4	51.4	43.1	65.7	70.2	100
1-15-25B	153.8	0	13.7	44.7	49.2	45.5	26.7	66.5	75.5	100
1-15-25C	176.0	0	32.8	43.5	67.1	45.2	36.9	72.8	85.2	100
1-20	135.0	0	14.8	41.3	52.5	38.9	46.5	69.8	71.0	100
1-20-25A	167.8	0	6.8	32.5	62.4	21.3	44.9	73.1	78.1	100
1-20-25B	149.6	0	23.3	41.0	46.2	42.0	31.8	70.6	60.0	100
1-20-25C	199.8	0	-22.1	30.1	24.1	27.0	-24.7	61.5	67.9	100
1-25	164.9	0	-83.6	6.5	7.9	12.6	-32.1	54.9	50.6	100
2-10	163.7	0	18.4	38.9	44.7	37.7	26.8	67.4	74.3	100
2-15-25A	221.3	0	69.2	70.2	65.8	70.9	63.7	77.2	76.4	100
2-15-25B	186.1	0	65.1	66.3	70.3	51.0	62.4	83.2	87.4	100
2-15-25C	136.6	0	36.7	60.4	67.5	73.1	42.5	78.3	82.4	100
2-20	204.6	0	59.6	74.5	57.7	53.0	39.3	71.6	70.1	100
2-20-25A	190.1	0	51.6	71.1	81.1	69.4	60.2	82.7	83.3	100
2-20-25B	150.9	0	30.4	40.0	54.5	57.4	53.2	77.5	74.2	100
2-20-25C	180.9	0	65.2	86.5	87.1	79.6	62.0	86.3	89.2	100
2-25	167.3	0	11.4	50.0	65.0	64.2	42.6	69.8	61.0	100
		0								100
Aver.	168.4	0	15.2	35.6	46.2	43.2	25.8	65.6	69.3	100

▲□▶ ▲圖▶ ▲画▶ ▲画▶ 三回 ● のへの

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-perioc problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.4 Preliminary conclusions

- 1. Dynamism is important : VMPM
- 2. VPI is high (68.4% + 30.7%)
- 3. No influence of graphs, distribution laws...
- 4. Subtree algorithm is usually the best
- 5. Subtree 30 often better than Subtree 10
- 6. Subtree never under-performs
- 7. EVS is the second best after subtree
- 8. the VSS is important 23.1%

Subsequent tests for the subtree :

Algorithmic parameter : calibration scenarios 10-30-50... \Rightarrow Subtree 50 (mean increases, variance reduces) No statistical outclassment 50 vs 30, once 50 vs 10 CPU time increases "linearly", LP solution \cong IP

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-perioc problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.5 Robustness

TABLE: Robustness of distribution law parameter

Info		LB	EVS				UB
Inst./Alg.	0*	<i>O</i> *2	EG ⁵⁰	TR <mark>30</mark>	TR <mark>50</mark>	TR <mark>70</mark>	<i>O</i> *5
d- <mark>20</mark> -15-25 A	361.4	0	25.2	40.2	65.0	27.3	100
w- <mark>20</mark> -15-25 A	283.7	0	34.5	82.9	72.5	15.1	100
d- <mark>20</mark> -20-25 A	229.0	0	31.9	63.6	45.3	35.6	100
w- <mark>20</mark> -20-25 A	298.4	0	3.7	33.0	9.7	2.6	100
Average 20	293.1	0	23.8	55.0	48.1	20.1	100
d- <mark>80</mark> -15-25 A	152.6	0	91.0	86.0	111.2	111.2	100
w- <mark>80</mark> -15-25 A	217.0	0	44.4	55.7	87.1	86.0	100
d- <mark>80</mark> -20-25 A	129.7	0	85.3	71.0	96.1	103.4	100
w- <mark>80</mark> -20-25 A	184.4	0	20.8	55.2	45.4	49.8	100
Average 80	170.9	0	60.4	67.0	84.9	87.6	100
Inst./Alg.	0*	<i>O</i> *2	EG ⁵⁰	TR <mark>20</mark>	TR <mark>50</mark> 30	TR <mark>80</mark> 30	<i>O</i> *5
d- <mark>50</mark> -15-25 A	201.6	0	49.1	48.0	79.1	59.2	100
w- <mark>50</mark> -15-25 A	187.3	0	54.3	21.9	53.4	35.8	100
d- <mark>50</mark> -20-25 A	145.1	0	34.8	47.5	66.0	43.3	100
w- <mark>50</mark> -20-25 A	225.7	0	7.3	10.3	21.9	-17.6	100
Average 50	189.9	0	36.4	31.9	55.1	30.2	100

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

6.6 Conclusions Case Study

- 1. VPI, VMPM, VSS are relevant
- 2. Independent of graph shape, size or distribution laws
- 3. Subtree is the best algo and others under-perform
- 4. Subtree with 30 or 50 scenarios is enough
- 5. By default, calibrate subtree for 50% availability (2nd best/3 and outclasses if reality is 50%)
- 6. Robustness : better to stick to distribution and approximate by the center
- 7. Less uncertainty on information closes the gap and reduces the VPI

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

7.1 Conclusions-contribution

- Importance of stochastic multi-period models
- Tool to measure the values of informations
- Understandable bounds for managers
- A toolbox of algorithms to tackle those problems
- A statistical validation of algorithms, outclassment
- A subtree solvable by a LP Solver in the case study

Th. PIRONET HEC-ULg QuantOM

0 Message

1 Outlines

2 Multi-period problems

3 Decision making under uncertainty

4 Stochastic Optimization Techniques

5 A Methodology

6 Case study : Vehicle-Load Assignment

7 Conclusions

7.2 Perspectives

- Metaheuristics (many statistical issues)
- Subtree generation
- Exact : Column generation in subtree if hard
- Improve Cs and RE algorithms
- Improve calibration scenarios generation
- Repositioning strategy, LTL (PDP)
- Investigate the gap between VPI and VAI
- Compare with ADP
- Answer your questions, comments, remarks...